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ABSTRACT
Intelligent Tutoring Systems (ITSs) have shown success in the
domain of programming, in part by providing customized hints
and feedback to students. However, many popular novice pro-
gramming environments still lack these intelligent features. This
is due in part to their use of open-ended programming assign-
ments, which are difficult to support with existing hint gener-
ation techniques. In this paper, we present a new data-driven
algorithm, based on the Hint Factory, to generate hints for
these open-ended assignments. We evaluate our algorithm on
historical student data and show that it can provide hints that
successfully lead students to solutions from any state, help stu-
dents achieve assignment objectives, and align with the student’s
future solution.

1. INTRODUCTION AND BACKGROUND
Intelligent Tutoring Systems (ITS) have shown much promise
in the domain of computer programming [3, 14, 16, 22], with
studies arguing that students using an ITS perform as much as
two standard deviations higher than those who receive conven-
tional instruction [3]. A key feature of any ITS is the ability to
give students context-sensitive feedback during problem solving,
often in the form of hints. In the domain of programming, this
feedback has been shown to improve students’ performance,
both inside the tutor and on subsequent assessment [4].

Despite positive empirical evaluations, these specialized ITSs
are not generally used in introductory programming classes. In
particular, new introductory Computer Science (CS) curricula,
such as CS Principles1 and Exploring CS2 are turning to pro-
gramming environments designed specifically for novices, such as
Scratch [19], Snap [8] and Alice [5], which engage students in cre-
ating open-ended projects, such as games, stories and simulations
[25]. These environments have features specifically designed for
novices, such as drag-and-drop, block-based interfaces that im-
prove student performance by minimizing the challenges of syn-
tax [18]. They offer improved outcomes over traditional instruc-
tion, such as increased retention [11] and improved test scores [5].

Unfortunately, aside from some preliminary research [2], little
effort has been made to bring the intelligent features of ITSs
to these novice programming environments. This is due in part
to the large investment of time required by domain experts to
create these systems, which has been estimated as high as 300
hours to create one hour of intelligent content [12]. Further,
the use of open-ended programming assignments, which makes

1www.csprinciples.org
2www.exploringcs.org

these environments so appealing to students and teachers, also
serves as a major barrier to providing intelligent, adaptive feed-
back. These assignments often have multiple, loosely ordered
objectives, which cannot be assessed automatically, making it
difficult to apply automatic hint generation techniques that rely
on test cases (e.g. [15, 22, 23]).

Data-driven tutors have the potential to overcome these barriers.
The Hint Factory is an algorithm that has been used to generate
data-driven hints from historical student data, originally in
the domain of logic proofs [1]. The Hint Factory is like a
recommender system that uses student data as a basis for
automatic hint generation, making it easy to scale up without
additional expert involvement. The Hint Factory has been
successfully adapted to the domain of programming in a variety
of ways [14, 9, 22]. However, data-driven hints have not been
evaluated on open-ended assignments in novice programming
environments, and may not be well equipped to handle them [17].

In this paper we present an extension of the Hint Factory
specifically designed to provide hints to students working on
open-ended programming assignments. The algorithm is fully
data-driven, requiring no reference solution or test cases, and
presents hints that represent real student actions. It is designed
to be programming language and system agnostic, with the
intention of making it applicable to a variety of novice program-
ming environments. We evaluate this algorithm on historical
student data from an open-ended assignment in a novice pro-
gramming environment, and show that it is capable of providing
hints that successfully lead students to solutions from any state,
help students achieve assignment objectives, and align with the
student’s future solution.

1.1 The Hint Factory
The Hint Factory [24] is an algorithm for generating next-step
hints for students working on multi-step problems. It operates
on a data-structure called an interaction network [6], which is
built from log data of the interactions between students and a
learning environment for a given problem. The interaction net-
work is a directed graph, where each vertex represents a state of
the problem. In programming a state corresponds to a snapshot
of the student’s current work (code). States are connected by
edges, which represent student actions, such as adding, editing
or deleting code, which transform one state into another. Each
student attempt is traced from a start state to its final state
and is added to the interaction network. If this final state is a
correct solution, we label it as a goal state. By combining all
students’ attempts into a single network and weighting edges

Proceedings of the 9th International Conference on Educational Data Mining 191



with the number of attempts that passed through them, the
interaction network forms a compact representation of student
problem solving strategies for a given problem.

The Hint Factory uses the interaction network for a given prob-
lem to generate hints for new students working on that problem.
When a student requests a hint, the algorithm matches that
student to an existing state in the network and then calculates
the best path from that state to a goal state. The Hint Factory
uses a Markov Decision Process (MDP) to calculate this solution
path [1], but other techniques can also be used, which are more
effective in some contexts [16]. Once a solution path is calculated,
it is typically used to provide a next-step hint, which points the
student towards the next state in the solution path. The exact
method of suggesting this state as a hint is system-dependent.

1.2 Hint Generation in Programming
The domain of computer programming presents a serious chal-
lenge for automatic hint generation, especially for data-driven
systems. Even for simple programming problems, the space of
possible solutions is quite large, often infinite, and there may be
little overlap among student solutions [17, 20]. Many automated
hint generation algorithms search through this space, attempting
to transform a student’s current program into a solution state
using some sort of program generation or synthesis [10, 15, 22,
23, 26]. These techniques require an expert-supplied reference
solution and/or set of test cases to ensure that generated pro-
grams are correct. To facilitate this transformation, algorithms
often represent a student’s program using an Abstract Syntax
Tree (AST), a directed, rooted tree where each node represents
a program element, such as a function call, control structure
or variable, and the hierarchy of the tree represents how these
elements are nested together.

Zimmerman and Rupakheti [26] use a pq-Gram tree edit distance
algorithm to match a student’s program to its closest counterpart
in a database of target solutions, as well as to identify the set of
insertions, deletions and relabelings that will directly transform
the student’s AST into this solution. Rather relying on a fixed set
of solutions, Singh et al. [23] use program synthesis to generate
a new solution from the student’s current program. They do
so using an expert-provided Error Model, which defines a set of
potential transformations to a student’s code for a given problem.
Other techniques are data-driven like the Hint Factory, using
previous student solutions to provide hints. Perelman et al. [15]
also employ program synthesis to search for a solution program,
using a Domain-Specific language (DSL) to define possible
program transformations; however, they show that this DSL
can be automatically generated from previous student solutions.
Our approach also works to transform a student’s program into
a solution, but rather than using an automated technique like
program synthesis, we use edits from actual students. Lazar
and Bratko [10] employ a similar approach, applying single-line
edits observed in previous student work to transform a student’s
program into a solution; however, their technique requires a set
of test cases to evaluate generated programs, and ours does not.

The Hint Factory has also been adapted to the domain of
programming, with modifications to address the large state
space and lack of overlap among student solutions. Rivers and
Koedinger [22] extend the Hint Factory using a strategy called
path construction to generate a path from a student’s current
state to a previously observed goal state, rather than relying on

observed student paths. They compute a change vector of all
edits needed to transform the student’s current state into the goal
state and test to see if any closer solutions are discovered along
the way. Peddycord III et al. [14] applied the Hint Factory to a
programming game called BOTS, but rather than representing
a student’s state using an AST (a codestate), they used the
state of the game world after running the student’s program
(a worldstate). The authors found considerably more overlap
among worldstates than codestates, allowing more hints to be
generated; however, these hints may be more challenging to apply.
Fossati et al. [7] used a similar approach to the Hint Factory
to generate both reactive and proactive data-driven feedback in
the iList linked list tutor. They found that with this feedback,
iList produced equivalent learning gains to a human tutor.

Most methods for hint generation benefit from overlap among
student programs. This overlap can be increased through canon-
icalization, which standardizes the syntax of programs, while
maintaining their semantic meaning. For example, the expres-
sion a>b can be rewritten b<a without changing its meaning.
Rivers and Koedinger [20] present a comprehensive technique
for canonicalization, which standardizes programs in a variety
of ways, such as normalizing arithmetic and boolean operators,
removing unreachable and unused code and inlining helper func-
tions. Jin et al. [9] take a different approach, representing a
student’s program as a Linkage Graph, where each vertex is a
code statement, and each directed edge represents an ordering
dependency. This removes some semantically unimportant or-
dering information from the program, allowing for more overlap.

2. THE CTD ALGORITHM
In this section we present the Contextual Tree Decomposition
(CTD) algorithm for hint generation, our extension of the Hint
Factory to the domain of open-ended programming problems.
Existing hint generation techniques are effective on traditional
programming assignments with single objectives that are easily
assessed with test cases. Open-ended assignments, by contrast,
may have multiple, loosely ordered objectives that do not lend
themselves to automated assessment, as they often deal with
user interaction or graphical output. As such, we cannot rely
on the program generation techniques discussed in Section 1.2
to create hints. Instead, we take a fully data-driven approach,
using student data, rather than automated search, to construct
a path to a goal state. Not only does this approach make hint
generation feasible for open-ended assignments, it also has the
advantage of presenting hints that correspond to real student
actions, which should be understandable to other students.

2.1 An Example Assignment
To illustrate the CTD algorithm, we will use an assignment
called the “Guessing Game” as a running example throughout
this section. In the Guessing Game, students are asked to create
a program that stores a random number and then repeatedly
asks the player to guess it until they are correct, informing
them if they have guessed too high or too low. To begin, the
game should welcome the player and greet them by name. The
assignment requires the use of loops, conditionals, variables and
various arithmetic operators. A common implementation of the
Guessing Game is presented in Figure 1.

Note that this is one of many possible solutions to the problem.
For example, we could use three if statements, rather than
an if/else block. Now consider a student, Alice, working on
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GuessingGame :

Say( "Welcome to the Guessing Game !" )

answer ← Ask( "What is your name ?" )

Say( Join( "Hello ", answer ) )

number ← Random( 1, 10 )

doUntil ( answer == number ):

answer ← Ask( "Guess a number" )

if ( answer == number ):

Say( "Correct !" )

else:

if ( answer > number ):

Say( "Too high !" )

if ( answer < number ):

Say( "Too low !" )

Figure 1: An example solution to the Guessing Game
assignment.

GuessingGame :

number ← 8

Say( "Welcome !" )

answer ← Ask( "Who ’s playing ?" )

Say( Join ("Hi ", answer ) )

doUntil ( answer == Random( 1, 10 ) ):

answer ← Ask( "Guess a number" )

Figure 2: An example of a partial, flawed solution
attempt from a student, Alice.

the Guessing Game with code presented in Figure 2. Alice has
added the first few lines of code in a different (but correct) order;
however, she does not understand how to store and use the ran-
dom number for the guessing game. A hint could demonstrate
the correct behavior for her.

2.2 Generating Hints
In the CTD algorithm, as in previous work, we represent a
student’s state using an AST. Borrowing from Rivers and
Koedinger’s work [20], we also use basic canonicalization to
increase overlap among ASTs. In our ASTs, we use a single
label for all variables (var) and for all literals (literal). The
arguments of commutative operators (e.g. ==, +, *) are given
a fixed ordering, and we rewrite any greater than expression
x>y as a less than expression y<x. A canonicalized AST for
the code presented in Figure 1 is shown in Figure 3.

Most data-driven hint generation algorithms attempt to answer
the question, “Given a student’s current state, what should their
next state be?” Rather than trying to answer this question for a
student’s entire program, we try to answer it for the children of
each node of a student’s AST. For example, if Alice were to re-
quest a hint, we might tell her to assign a different value to num-

ber, compare different values using == or add code to the body
of doUntil. By breaking the student’s program down into a set
of smaller pieces, we can more easily match it to the programs
of previous students, as suggested in previous work [10, 21].

To generate hints from student data, we build a set of contextual
interaction networks (CINs), which each model how students
edit a subsection of the program over time. We build one CIN for

Figure 3: A partial AST for the code shown in
Figure 1. A root path r is outlined in bold blue, with
its current state (Cg) in dashed green.

Figure 4: The contextual interaction network
CIN({script, doUntil, ==}) with goal state Cg. Edge
thickness represents transition frequencies.

each unique root path observed in all students’ ASTs (including
ASTs from intermediate code snapshots). A root path (RP) for
a node n in an AST is the path from the root node to n. Figure 3
highlights an example RP for the (==) node: {script, doUn-

til, ==}. Some nodes have the same root path, such as the two
(Say) nodes, which have the RP {script, Say}. Each RP r
corresponds to a unique CIN, denoted CIN(r), which functions
just as the interaction networks described in Section 1.1. How-
ever, CIN(r) only models changes to the immediate children of
the last node in r. For example, CIN({script, doUntil, ==}),
shown in Figure 4, models changes to the children (operands)
of the (==) node. Each state in CIN(r) is a list of the children
of the last node in r, and each edge represents an edit to those
children. Figure 3 highlights Cg, the list of children of the (==)

node, which corresponds to a state in the CIN shown in Figure 4.
Because the AST shown in Figure 3 is a correct solution, Cg is a
goal state in CIN({script, doUntil, ==}). Given that Alice’s
current state in this CIN is [var, Random], to get to the goal
state Cg we would recommend that she delete her (Random)

node and then replace it with a (var) node.

The procedure for building the CINs from previous data is shown
in Algorithm 1. We represent a student’s work as a sequence
of ASTs, T , where each tree ti in the sequence is a snapshot
of the student’s work at time i, and the last tree represents the
submitted solution attempt. For each sequential pair of trees, ti
and ti+1, we find all pairs of AST nodes (ni,ni+1) that represent
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the same code element in both trees, and therefore have the same
RP r. We examine the lists of child nodes Ci of ni and Ci+1 of
ni+1 in their respective ASTs. If Ci and Ci+1 are different, we
add the states Ci and Ci+1 to CIN(r) (if they do not already
exist) and add an edge from Ci to Ci+1. This edge represents
how the student has edited the code in this part of the AST
from time i to time i+1. Algorithm 1 runs in O(|T ||tm|2) time
for a given student, where |T | is the number of ASTs recorded
for that student and |tm| is size of the largest recorded AST.

Algorithm 1 Add a Student to the CINs

Require: A sequence of student ASTs T
Ensure: Student data has been added to relevant CINs

for all ti,ti+1∈T do
for all (ni,ni+1)∈ MatchingNodes(ti, ti+1) do

r← RootPath(ni)
Ci← Children(ni)
Ci+1← Children(ni+1)
if Ci 6=Ci+1 then

AddEdge(CIN(r), Ci, Ci+1)
end if

end for
end for

Once we have added student data to the CINs, we can generate
hints for new students, as shown in Algorithm 2. Because we
now have many CINs, rather than a single interaction network,
we also generate a set of hints. For each node n in a student’s
current AST, we calculate its root path r and find CIN(r). The
student’s current state in CIN(r) is C0, the list of children of
n. We then use the Hint Factory algorithm [1] to generate a
hint using the interaction network CIN(r) and the student’s
current state in the network C0. This hint will recommend a
new set of children C1 for n, which we can then display as a
suggestion to the student. Note that if C0 is already a goal
state the Hint Factory will recommend that the student stay
in that state, in which case C0=C1 and we present no hint for
n. Algorithm 2 runs in O(|t|2+|t||Sm|2) time 3, where |t| is the
size of the student’s AST and |Sm| is the number of states in
the largest CIN(r). In practice, |Sm| remains small, as a given
CIN models changes to only a small part of a student’s code.

Algorithm 2 Get Hints

Require: The student’s current AST t
Ensure: H is a set of node-hint pairs
H←{}
for all n∈ Nodes(t) do

r← RootPath(n)
C0← Children(n)
C1← HintFactoryHint(CIN(r), C0)
H←H ∪{(n, C1)}

end for

A classic challenge for the Hint Factory is how to provide hints
to states with no exact matches in the interaction network.
CINs break a program down into smaller parts to provide more
opportunities for matches, but this does not guarantee a match.
If no exact match is found for a state C0, we find the closest
state to C0 in the CIN and use it as a next-step hint. Because

3This assumes we use a constant bound on the number of
iterations allowed during the Hint Factory’s value iteration.

CIN states are lists of children, we can use a simple edit dis-
tance to determine the closest state. If the distance between
the current state and its closest pair in the CIN is beyond a
certain threshold (e.g. 3 edits), we assume the student is doing
something unknown, and we do not provide a hint for that state.

2.3 Goal States
In order to run on an interaction network, the Hint Factory
requires a reward function R(s), which is used by the MDP to
assign a reward to each state in the network [1]. Traditionally,
this value has been some large number (e.g. 100) for goal states
and 0 otherwise. However, in many open-ended programming
problems, we cannot automatically determine whether or not a
given program state satisfies the goal of the assignment. A sim-
ple solution is to assign a reward value to each state proportional
to the number of students who submitted a program in that
state. We accomplish a similar effect with CINs by finding each
node n and corresponding RP r in each student’s submitted
AST and marking the list of children of n as a goal in CIN(r).

One challenge with CINs is that two different parts of a program
may correspond to the same CIN. For example, recall that the
two Say statements in Figure 3 have the same RP, and thus
the same CIN, but ideally these two nodes should end up in
two different goal states. The first should end up with children
[literal], while the second should have children [Join]. Both
of these states will be marked as goals in the shared CIN, so how
can the algorithm determine when one goal should be chosen
over the other?

To address this, each time a node’s children are marked as a goal
state in a CIN, we also store that node’s context. This context
helps identify when a particular goal state might be applicable.
We define a node’s context using two lists, consisting of its left
and right siblings in the AST. For example, in Figure 3, the
first Say node has a context {[], [←, Say, ←, doUntil]},
while the second node has a context {[Say, ←], [←, doUn-

til]}. Rather than giving goal states a fixed reward value, we
determine this value individually for each hint request. For each
previous student attempt that finished in a given goal state, we
increase the reward for that state by a value inversely propor-
tional to the distance between the previous attempt’s context and
the current attempt’s context. Again, because the contexts con-
sist of lists, a simple edit distance can serve as a distance metric.

2.4 Smoothing Hints
The Hint Factory is typically used to generate a next-step hint,
which suggests the next state a student should achieve. The
advantage of the Hint Factory is that this action has been done
by a previous student, and is therefore likely to seem reasonable
to the current student. However, sometimes the path that a real
student takes to a solution can be circuitous. Students often add
code that they later delete, or add code in one place and later
move it to another. In these cases we use the entire solution
path generated by the MDP, rather than a single state, to make
suggestions that will not be contradicted by future hints. We
call this process “smoothing”, since it will make hints appear
more consistent.

We use Algorithm 3 to generate hints which follow real students’
paths, while avoiding unnecessary or contradictory edits. We
first calculate a full solution path from the student’s current state
to a goal state using the Hint Factory on the CIN, as described
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earlier. Recall that each state in this path is a list of child nodes
in the AST. We first reorder nodes in the student’s current state
to match the goal state ordering. We then insert any new nodes
from the next state in the solution path (like set union) and
reorder the nodes again to match the goal state. Finally, we
remove any nodes that are not in the goal state (like set inter-
section). If the resulting state is not different than the student’s
current state, we repeat the process with the next state in the so-
lution path. Using this“smoothing”process helps us avoid giving
hints that add code that will later need to be moved or deleted.

Algorithm 3 Get Smoothed Hint

Require: The MDP of a CIN and student’s state
Ensure: hint is a smoothed hint for the student
path← GetSolutionPath(state, MDP)
goal← Last(path)
hint←state
hint← Reorder(hint, goal)
for all si∈path do

hint←hint∪ si
hint← Reorder(hint, goal)
hint←hint∩goal
if hint 6=state then

return
end if

end for

3. METHODS
We evaluated the efficacy of the CTD algorithm using data
from real students working on the Guessing Game assignment
described in 2.1. Data was collected from an introductory under-
graduate computing course for non-CS majors during the Fall
of 2015, which had approximately 80 students. The first half of
the course focused on learning the Snap programming language
through a curriculum based on the Beauty and Joy of Comput-
ing (BJC) [8]. Snap is a visual programming environment that
allows users to create media-rich, interactive programs by drag-
ging blocks of code together to form scripts. Students worked on
the Guessing Game assignment during class for approximately
one hour, with a teaching assistant (TA) available to assist them
and the ability to discuss the assignment with nearby students.
We collected trace log data of all student interactions with the
programming environment. After each edit to a student’s pro-
gram, the complete program state (a snapshot) was recorded.
For the “Guessing Game” assignment, we collected 51 attempts,
consisting of 8666 total code snapshots.

Each of the final submissions was graded by two independent
graders. The graders used a rubric consisting of nine assignment
objectives, such as welcoming the player by name, storing a
secret number, and repeatedly asking the player for guesses.
The graders had an initial agreement of 94.5%, with Cohen’s
κ= 0.544, and after clarifying objective criteria and indepen-
dently re-grading this rose to 98.1%, with Cohen’s κ= 0.856.
Any remaining disagreements were discussed to create final
grades for each assignment. The students achieved on average
92.8% of objectives, with all students getting at least 4 out of 9.
The high grades can be attributed in part to the presence of TAs,
who helped struggling students to complete the assignment. Us-
ing the same criteria, an automatic grading program was created,
which manually checked code structure for objective completion.
The automatic grader was tested on the manually graded data,
achieving 100% accuracy on 7 of 9 objectives. On each of the

remaining two objectives, it incorrectly marked two submissions
as failing since they used atypical approaches. Note that this
grader was used in our evaluation but not for hint generation.

We generated and evaluated hints for each code snapshot of each
student in our dataset (n=8666), giving us a clear view of hint
performance across students and time. We evaluated the hints
using a number of criteria, detailed in Section 4. Because Snap
lends itself to a “tinkering” approach, code snapshots often con-
tain many extra scripts that students keep in their workspace for
later use. Since the Guessing Game uses only one script, these
extra scripts do not reflect the student’s primary work, and it
would not make sense to evaluate hints for them. Therefore, in
our analyses we considered only the largest script in a snapshot.

3.1 Hint Policies
To better evaluate the CTD algorithm, we generated hints using
four hint policies:

1. CTD All (CA): Hints are generated using CTD on all
student data (n=51).

2. CTD Exemplar (CE): Hints are generated using CTD
on data from only exemplar students, whose final submis-
sions achieved all assignment objectives (n=32).

3. Direct Expert (DE): Hints modify a student’s program
directly towards an expert solution using a single node
insertion, deletion or relabeling.

4. Direct Student (DS): Hints modify a student’s program
directly towards their own submitted solution, using a
single node insertion, deletion or relabeling.

The CA and CE policies both use the CTD algorithm, and
comparing them allows us to explore the effect of including
students with incorrect final solutions on the algorithm’s output.
The DE and DS policies both generate hints using a technique
outlined by Zimmerman et al. [26], which identifies the node
insertions, deletions and relabelings required to transform one
AST into another. Each of these modifications is treated as a
hint. The DE policy targets a single expert solution, while the
DS policy targets the student’s own future final solution, and
could not actually be implemented on real-time data. In many
ways, the DS policy represents an ideal hint policy for students
who achieve a correct final solution (which the majority of our
sample did), as it perfectly anticipates their solution strategies.

All policies generate a set of hints, where each hint represents
a small modification to a student’s program. When generating
hints for a given student using CTD, we did not include that
student in the dataset used to build the CINs, similar to leave-
one-out cross validation, since that student’s future data could
not be used in a real-time setting.

4. EVALUATION AND DISCUSSION
Our evaluation of CTD focused on the following research ques-
tions:

RQ1 Can CTD successfully lead students to a solution regard-
less of their current program?

RQ2 Can CTD hints help students complete objectives?

RQ3 How consistent are CTD hints with student actions?
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RQ1 asks whether CTD solves the challenge of generating hints
for an open-ended problem where there is little exact overlap
among student solution paths. RQ2 investigates whether these
hints are good in that they leads student to complete assign-
ment objectives. Lastly, RQ3 asks whether the hints that CTD
provides point students in what might be perceived as a rea-
sonable direction, so students will be inclined to use them. Our
evaluations for RQ2 and RQ3 compared the CA and CE policies
with the baseline DE and DS policies discussed in Section 3.1.

4.1 Providing Hints
RQ1 asks whether CTD can successfully generate hints for so-
lution attempts regardless of how much overlap they have with
other attempts in our dataset. Therefore, we first examined how
much overlap there was in our dataset. We recorded 8666 snap-
shots from 51 students; however, many students produced du-
plicate snapshots, for example by adding and then removing an
element of code. If we do not count duplicate snapshots from the
same student, we are left with 5103 snapshots. If we also ignore
all but the largest script from these snapshots (as is done in our
analyses), there are 3181 non-duplicate snapshots. Of these, 2714
(85%) were unique after canonicalization, meaning they showed
up in only one student’s data. In addition, 47 of 51 students had
unique final solution ASTs. We conclude that the state space is
quite sparse, with little overlap among student solution paths.

We evaluated hints from the CA and CE policies to determine
if they could get students to a solution despite this sparsity. To
align student attempts over time, and to balance our sample
evenly across students, we took 50 snapshots from each student,
spaced evenly throughout their progression, and called these
“slices.” For each student, we generated a hint chain from each
of these 50 snapshots to a final solution. A hint chain is the
sequence of program states that would result if the students
followed sequential “top-level” CTD hints from a given snapshot
to program completion. The top-level hint is that which comes
from the CIN(r) with the shortest RP r.

Both CA and CE policies were able to generate successful hint
chains for every slice, meaning the hint policies always had a
hint to provide and there were no hint cycles. Figure 5 shows
the average hint chain length for each slice. Both policies showed
a steady, near-linear decline in hint chain length over time. This
supports the notion that CTD makes good use of the student’s
existing work. On average, students took 175.8 steps to com-
plete the assignment, so both policies are more efficient than
the student until slice 46/50. As students converge on their
own solutions, however, the hints chains become less efficient,
as they often lead students to alternative solutions.

To understand the quality of solutions created using hint chains,
we evaluated the final solutions generated by the hint chains at
each slice using the automatic grader discussed in Section 3. The
CA policy solutions received grades averaging from 89.5-93.0%
across slices, while the CE policy averaged 98.5-100% across
slices. Upon closer inspection, we found that all imperfect CA
solutions were identical and satisfied 8 of 9 objectives (88.9%),
and all correct CA solutions were identical as well. The one
objective missed by the imperfect CA solution was also missed
by 12 of 51 students (23.5%), indicating that a frequent enough
mistake in student data will be reflected in CTD hints. The
CE policy produced 3 unique, correct solutions and 2 unique,
incorrect solutions, which both satisfied the same 8 out of 9
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Figure 5: The average CA and CE hint chain length
across all snapshot slices. The shading indicates
standard error.

objectives. These results suggest that both CTD policies can
lead students to high-quality (though sometimes imperfect) fi-
nal solutions, but exemplar data may be required to generate
consistently correct solutions. It is important to note that CTD
operates without test cases, and therefore cannot guarantee
correctness 100% of the time.

4.2 Objective Satisfaction
To address RQ2, we tested how frequently an available hint
would complete an assignment objective before the student did.
Figure 6 shows, for each policy in Section 3.1, the percentage
of students who had an objective completing hint available for
each objective. All hint policies perform fairly well, with at least
45% of students having a completion hint available for objectives
3-9. The CTD policies perform much worse on Objective 2,
but otherwise they generally keep pace with the Direct policies.
Since these Direct policies offer all edits towards their target
solution as hints, they should discover most of the possible
completing hints. However, it is important to remember that it
is not always possible to complete an objective before a student
because hints cannot add more than one node to the AST at
a time, while a student’s edit might change many nodes at once
by dragging and dropping code.

It is not sufficient for a hint policy to generate good hints; it is
equally important that it not generate bad hints. To evaluate
this second facet of RQ2, we tested how frequently hints from
each policy undid an objective, meaning the objective was satis-
fied before applying the hint, but it became unsatisfied afterward.
Figure 7 compares each policy, showing the percentage of stu-
dents who received a hint that would undo each objective. Pre-
dictably, the DS policy, which anticipates a student’s final solu-
tion, performs well across the board. However, the difference be-
tween the DE and CE policies is clear. The CE policy stays below
40% on all objectives, and performs as well or better than the DE
policy on all but one objective, often by a factor of 2 or more. The
CA policy performs slightly worse than the CE policy on most
objectives, most notably Objective 1. This can be attributed to
the fact that many students did not in fact complete Objective 1,
leading the CA policy to suggest removing the code that did so.
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Figure 6: The percent of students who received a hint
that completed an objective before the student did
under each policy.
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Figure 7: The percent of students who received a hint
that undid an objective under each policy.

We do not make the claim that a good hint always completes
an assignment objective, nor that undoing an objective always
constitutes a bad hint. Still, these criteria serve as good baseline
standards for a hint policy. While all policies are fairly success-
ful at suggesting hints that move students toward completing
objectives, the CTD and DS policies avoid undoing objectives
much better than the DE policy.

4.3 Alignment with Student Actions
RQ3 asks whether or not CTD produces hints which are con-
sistent with a student’s solution path. Ideally, a hint policy
should not only provide hints which lead to a good solution;
as much as possible, these hints should also make sense to the
student receiving them. While the comprehensibility of a hint is
impossible to measure without user data, we can approximate
this by asking whether or not a hint gets the student closer to
their future final solution. Presumably, such hints will seem
reasonable to the student, as the student eventually went in
that direction on their own.

To answer this question, we examined each hint generated with
each policy across all code snapshots and calculated whether or

Policy Closer SD
CTD All 35.47% 17.50%
CTD Exemplar 32.52% 15.88%
Direct Expert 21.49% 10.02%
Direct Student 39.37% 13.60%
Student Next 60.97% 8.42%

Table 1: The percent of hints under each policy that
would bring the student closer to their final solution,
averaged over students. Student Next refers to the
student’s actual next action.

not each hint would get the student closer to their final solution
than their original state. We used the Robust Tree Edit Distance
algorithm [13] to measure the distance between snapshot ASTs.
This metric counts the number of insertions, deletions and
relabelings required to transform one AST into another. As a
baseline, we also calculated this measure for the student’s own
next state, to determine how frequently a student’s actions got
them closer to their own final solution state. The results for
each policy, averaged over students, are presented in Table 1.

As a baseline, we see that the student’s own next step got closer
to their final solution 60.95% of the time. The DS policy, which
attempts to directly transform the student’s state into their
solution state, achieves only 39.37%, in part because its hints will
often delete useful code and later add it again in a better location.
However, the DS policy’s performance might be seen as a high
target, as it requires future knowledge of the student’s actions.
In comparison, we see that the CTD policies both approach the
DS policy and far outperform the DE policy. The CE policy gets
students closer to their final objective 53.4% as frequently as the
student’s own actions and 82.6% as frequently as the DS policy,
and the CA policy performs even better. Post hoc paired t-tests
showed that the difference between the CA and DS policies was
not significant (t(50) =−1.63; p= 0.109), while the difference
between the CA and DE policies was significant (t(50)=6.96;
p<0.001). Interestingly, the difference between the CA and CE
policies was also significant (t(50)=2.67; p=0.010), suggesting
that restricting data to exemplar students makes CTD hints less
reflective of real student behavior. While all policies present some
hints that move the student farther away from their final solution,
the CTD and DS policies seem to minimize this behavior.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel algorithm called CTD
for generating next-step hints for students working on open-
ended programming assignments. Using data from 51 students
working on one such assignment, we have shown that the hints
generated by the CTD hint policies can get a student to a
high-quality solution from all observed states. We have also
shown that the hints are capable of helping students accomplish
most assignment objectives before they would otherwise do so,
without presenting many hints which undo these objectives.
Further, CTD produces hints which get students closer to their
final solutions relatively frequently. We have also compared the
CA policy, which uses all student data, to the CE policy, which
uses exemplar data only. While both policies perform well, the
CA policy aligns closer with real student actions, while the CE
policy produces higher quality final solutions and is less likely
to suggest undoing assignment objectives.
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Despite these positive initial results, much work remains to be
done to improve CTD. A major limitation of this work is the
reliance on a single assignment for evaluation. Future work
will explore the efficacy of CTD with a variety of assignments.
One challenge that will be presented by larger assignments is
ensuring that the contextual goal matching features discussed
in Section 2.3 work for programs with multiple scripts. Ad-
ditionally, while CTD incorporates some of the strategies of
the other hint generation algorithms discussed in Section 1.2,
such as canonicalization, there are others, such as Rivers and
Koedinger’s path construction [22], which could also be incorpo-
rated. Because the CINs are simply small interaction networks,
any advances to the Hint Factory can also be applied to them.
Lastly, we have already incorporated our hints into the Snap en-
vironment, and future work will investigate how they impact real
students. We will explore the effect of CTD hints on students’
performance on assignments, as well as their learning gains.
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