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ABSTRACT 
The increasing use of educational technologies in classrooms is 
producing vast amounts of process data that capture rich 
information about learning as it unfolds. The field of educational 
data mining has made great progress in using log data to build 
models that improve instruction and advance the science of 
learning. Thus far, however, the predictive and explanatory power 
of such models has often been limited to the actions that 
educational technologies can log. A major challenge in 
incorporating more contextually rich data streams into models of 
learning is collecting and integrating data from different sources 
and at different grain sizes. We present our methodological 
advances in automating the integration of log data with additional 
multi-modal (e.g., audio, screen video, webcam video) data 
streams. We also demonstrate several examples of how 
integrating multiple streams of data into the knowledge 
component (KC) model refinement process improves the 
predictive fit of student models and yields important pedagogical 
implications. This work represents an important advancement in 
facilitating the integration of rich qualitative details of students’ 
learning contexts into the quantitative approaches characteristic of 
EDM research. 
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1. INTRODUCTION 
As student learning becomes increasingly conducted on 
computers and other digital devices, vast amounts of learning-
related data are produced. Ideally, such data will provide a rich 
picture of student knowledge and behaviors (e.g., [8]). But 
predicting performance and generating pedagogical insight is 
limited, in the majority of cases, to the actions that digital systems 
can log. Computerized tutors are often used in a classroom 
context, and log data cannot capture all learning phenomena. A 
student working at a computer might be working independently 
with few outside influences. Alternatively, she might be in a lively 
classroom, with other students around her, talking and even 
offering suggestions. Data that capture the context surrounding 
educational technology use may add to and complement log data. 
In some cases, it may lead to critical insights. 

Educational data mining analyses often omit additional contextual 
data for a number of reasons. Data on classroom context are 
difficult to collect. Data from different sources are often collected 
at different grain sizes, which are difficult to integrate. Here, we 
present work that extends educational data mining techniques to 
incorporate multiple modalities of data (computer log files, audio, 
screen videos, and webcam videos). We present methods we 
developed that help streamline both the collection of additional 

streams of data and the linkage across multiple streams. In two 
experiments, we then demonstrate the value of incorporating 
multi-modal, contextually rich data streams into established 
educational data mining techniques. In the first experiment, 
students use a chemistry virtual lab tutor and, in the second, 
students use an intelligent tutoring system to collaborate on 
fraction arithmetic. 

Specifically, we extend methods of data-driven knowledge 
component (KC) model refinement [17] by incorporating, into the 
process, multiple streams of data spanning different modalities. 
We show that KC model improvements uniquely derived from 
these additional data beyond log files led to improved predictive 
models of student learning and behavior. These improved models 
of learning, in turn, can generate actionable knowledge for 
systems, students, teachers, and researchers. 

2. BACKGROUND 
2.1 Related Work 
Recent work reflects a growing interest in multi-modal data 
analytics, particularly surrounding project-based, constructionist, 
and/or informal learning contexts [4, 18]. These efforts have 
focused on capturing divergent student strategies [4] and 
interactions that happen outside of a traditional computer tutor 
environment (e.g., with peers and with the physical environment 
[16]). Their primary goal is to make technologies supporting 
open-ended learning environments more scalable and to develop 
assessments appropriate for this type of learning. 

Areas of research within the EDM community have also focused 
on collecting sources of data computer logs cannot capture to 
serve as “ground truth” labels in training log-data based detectors. 
These efforts have largely focused on modeling and detecting 
students’ motivational and affective states [2, 8, 15]. For example, 
models can detect patterns of log data activity that precede 
affective states like confusion, frustration, and boredom. 
Physiological data may also be collected and used to develop 
models that can detect affective states from machine-readable 
signals, such as facial features, body movements, and 
electrodermal activity [14]. 

Outside of these pockets of the community, though, the majority 
of EDM research has focused exclusively on using log data to 
model learning. Building statistical models to predict step-level 
performance and data-driven KC model (or Q-matrix [3]) 
discovery are examples of major branches of EDM research that 
are typically limited to computer-logged data. In the present work, 
we demonstrate the value of expanding EDM research to include 
additional data streams that convey important contextual 
information about students’ learning. We also present 
methodological advancements that improve the ease with which 
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additional data streams can be collected and incorporated into 
educational data mining methods more broadly. 

2.2 Data-Driven KC Model Improvement 
Knowledge component models are an important basis for the 
instructional design of automated tutors and are important for 
accurate assessment of learning. Knowledge components (KCs) 
refer to units of knowledge representation (e.g., facts, concepts, or 
skills) that students need in order to solve problems. A KC Model 
maps a set of KCs mapped to a set of items or problem steps. 
Student models that are based on more accurate KC models 
produce better predictions of what a student knows based on their 
performance and, thus, result in better assessment and improved 
learning and instruction [11]. Cognitive Task Analysis is the 
traditional method for creating cognitive models of learning, but it 
requires subjective decisions and large amounts of human time 
and effort. Data-driven techniques of KC model discovery and 
refinement, when applied to large sets of educational data, can 
provide both more objectivity and reduce human effort. 

A method developed by [17] leverages tools available in the 
PSLC DataShop [10] to identify potential improvements to a KC 
model in a data-driven manner. This method iterates through the 
following steps: (1) inspect learning curve visualizations and best-
fitting statistical parameter estimates for the best existing KC 
model, (2) identify problematic KCs, (3) hypothesize changes to 
the KC model based on examining constituent problem content 
and applying domain expertise, and (4) re-fit the statistical model 
with the revised KC model and assess improvements in predictive 
accuracy. The premise for this method is that a hallmark of 
learning on a well-defined KC is a smooth learning curve that 
shows monotonic improvement in performance over time. KCs 
that lack these learning curve characteristics, but not because 
students are at ceiling performance, are likely to involve certain 
problem steps that require unlabeled difficulty factors or 
knowledge demands. 

After a problematic KC is identified, its constituent problem steps 
must be examined in order to identify potential hidden difficulty 
factors. Thus far, this part of the process is limited to what 
computer log data. For example, a researcher might examine the 
error rates of the different constituent problem steps for the KC in 
question and the problem step names to gain clues about hidden 
difficulties. In the best-case scenario, the researcher might have 
access to the actual problem content for the dataset (as in [17]) 
and can apply domain knowledge to identify potential KC 
modifications. This step of content examination can be greatly 
enriched by additional streams of contextually rich data from the 
relevant moments of learning. To this end, we present a method of 
integrating streams of contextual audio and video data into the KC 
model refinement process. We show that such integration leads to 
insights that would not be derived by solely analyzing log data or 
curriculum content in isolation. We present several examples of 
how these insights lead to quantitative KC model improvements 
that improve the overall fit of student models to the data. 

3. METHODS 
We developed a method of semi-automatically extracting epochs, 
across multi-modal data streams, associated with the moments 
during which students engage with a particular KC of interest. 
This allows the content reviewer, after identifying a candidate 
KC, to not only view the curriculum content associated with a 
given KC but also to experience students engaging with that 
curriculum content through multiple modalities. 

There are many ways to collect additional streams of contextually 
rich data (e.g., using video cameras, external microphones, eye-
trackers, and sensors). We focused on a method that minimizes 
both deployment effort and interference with students’ usage of 
educational technology to increase the likelihood that researchers 
would consider collecting, analyzing, and sharing such data. In the 
following experiments, we used Camtasia to simultaneously 
capture audio recordings, screen videos, and webcam videos of 
the students. Camtasia can be run in the background to collect all 
of these streams of data while a student engages with educational 
software. We installed Camtasia to all classroom laptops in 
advance of the two studies. On each day of the studies, we opened 
Camtasia and prepared recording settings before each class period 
so that all students needed to do was click a red “Record” button 
prior to logging into the tutors. At the end, students were led 
through a simple sequence of steps to ensure that their recordings 
were saved and named properly for easy post-hoc identification. 

All recordings (audio, screen video and webcam video) for a 
single session are initially saved in a Camtasia-specific file 
format. We used the batch processing function to import and 
convert the original files to MP4 files that contained all data 
streams merged. We used timestamp information within the log 
files to map segments of log data to the appropriate corresponding 
multi-modal video stream. This step required human input, as 
Camtasia does not automatically log the system time (at 
millisecond level) that marks the start of the video recording. For 
each video file, someone must identify the offset between the 
beginning of the video and the time of some event in the log file. 
This offset can then be used to automatically align all remaining 
events between the log file and the corresponding video files. 

We developed a tool called Structured Event Analysis of Multiple 
Streams (SEAMS) that builds upon the moviepy Python package 
in conjunction with the FFMPEG multimedia framework to 
automatically extract video epochs associated with specific events 
in the log data. The tool allows the user to indicate any event type 
that can be identified by labels within the log data and generates a 
folder of video clips that contain all epochs of the merged data 
streams pertaining to the particular event of interest (in this case, a 
specific KC at the specific opportunity count). With the relevant 
epochs grouped together in a manner that allows for quick and 
effortless analysis by a human examiner, it becomes much easier 
to quickly view multi-modal data streams to identify hidden 
knowledge demands towards KC refinement. 

We applied our methods to examine the contributions of 
additional multi-modal data streams on KC model refinement 
across two classroom experiments. One experiment engaged 
students in a Chemistry Virtual Lab tutor for which we collected 
both screen videos and webcam data of learners’ facial 
expressions in addition to traditional log data. The other 
experiment engaged students in a Collaborative (partner-based) 
Fraction tutor, and we collected screen videos and audio 
recordings of students’ collaborative dialogue. Due to processor 
limitations of the school laptops that were available for the 
Collaborative Fraction tutor experiment, we were not able to 
collect webcam data. Using the data from both of these studies, 
we illustrate the application of our methods to leverage the 
additional multi-modal data streams to improve upon existing KC 
models. These KC model improvements, in turn, yielded insights 
about how to improve instruction within the respective tutors. 
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4. EXPERIMENTS 
4.1 Chemistry 
ChemVLab+ (chemvlab.org) provides a set of high school 
chemistry activities designed to build conceptual understanding 
and inquiry KCs [6]. In each activity, students work through a 
series of tasks to solve an authentic problem and receive 
immediate, individualized tutoring. As students work, teachers are 
able to track student progress throughout the activity and attend to 
students that may be lagging behind. Upon completion of the 
activities, students receive a report of their proficiency on targeted 
KCs, and teachers can view summary reports that show areas of 
mastery or difficulty for their students. In the current study, 
students completed four modules: PowerAde: Using Sports 
Drinks to Explore Concentration and Dilution, The Factory: Using 
a City Water System to Explore Dilution, Gravimetric Analysis, 
and Bioremediation of Oil Spills. 

4.1.1 Participants 
Participants were 59 students at a high school in the greater 
Pittsburgh area enrolled in honors chemistry classes. They 
participated in four Stoichiometry modules of the ChemVLab+ 
educational tutor. They completed these modules across four 50-
minute class periods spread over the course of 3 weeks. We 
collected, using Camtasia, audio recordings and screen video 
captures for 58 students and webcam recordings of facial 
expressions for a subset of 25 students who were comfortable with 
their face being recorded during tutor use. 

4.1.2 Results 
The newly developed methods facilitated the identification of the 
way in which a problematic KC needed to be split as well as 
technical issues that impacted student learning. First, following 
methods described in [17], we identified a knowledge component 
called Concentration that seemed to have uncharacteristically 
high error rates on later practice opportunities (Figure 1). This KC 
represents understanding that the measure of concentration is the 
amount of substance (e.g., a sports drink powder) in a volume of 
substrate (e.g., water). It also represents being able to read, report, 
and compare concentrations of solutions. 

 
Figure 1. Aggregate learning curve for the Concentration KC 
as originally defined by the ChemVLab+ tutor. 
We then used the methods described in Section 3 to automatically 
extract the screen and webcam videos of all epochs of students 
engaging with the Concentration KC on their 11th, 12th, 14th, 15th, 
16th, and 19th practice opportunities. These were the opportunities 
on which the KC learning curve had unusually high error rates. 

Qualitative analyses of these video stream epochs revealed that 
students were particularly confused by problems that involved 

dilution in conjunction with concentration, particularly when a 
dilution ratio or “factor” is involved. Students demonstrated this 
confusion as they responded to prompts such as ‘Create a 1:2 
dilution of the reported sample’ or ‘Add water to the sample until 
the concentration is diluted by a factor of 2’. The correct solution 
requires students to know that the amount of substance (e.g., the 
powder) takes up negligible volume, so to dilute the powder by 
2x, the total amount of water needs to be doubled. Students 
demonstrated shallow knowledge by responding to prompts like 
these by adding two parts water to one part solution rather than 
adding one part water to one part solution, which halves the 
concentration. In another example, prompt ‘Dilute this sample by 
a ratio of 6:1’ student tended to add six parts water to one part of 
solution (making the resulting amount of powder to volume 1:7), 
part rather than adding five parts of water to one part of solution 
(making the resulting amount of powder to volume 1:6). 

 
Figure 2. Aggregate learning curves for the two new KCs, 
Concentration-Only and Concentration-Dilution, resulting 
from the KC model refinement process. 
Based on this insight, we split the Concentration KC into cases 
where the problem step required a conceptual understanding of 
dilution ratios/factors (Concentration-Dilution) and cases where it 
did not (Concentration-Only). The learning curves for the 
resulting two KCs are shown in Figure 2. The curves are much 
smoother than the original learning curve, with the exception of a 
particular opportunity count with unusually high error rate in the 
resulting ‘Concentration-Only’ KC at practice opportunity 11. 

To further examine this unusual blip, we re-applied our method to 
automatically extract screen and webcam videos of all epochs of 
the 11th opportunity to practice the Concentration-Only KC. We 
noticed that the majority of problem steps experienced by students 
on this opportunity count were from a particular screen in the 
tutor in which the problem text was cut off in the interface. This 
resulted in students being confused about what they should be 
doing on this problem. Guessing the answer incorrectly was a 
common first attempt, as was clicking a hint button. Since the 
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problem text was fine when viewed on research computers, it did 
not appear to be a problem with the educational software itself. 
We hypothesize that the problem may have been due to a unique 
interaction between the software and the resolution of the 
computers that students were working on. This is a reality of 
educational technology deployment in classrooms, and it would 
have been impossible to know from strictly the log data file or 
even problem content records that this was the source of students’ 
struggle. If we had only accessed the recorded (idealized) version 
of the problem content, we may have incorrectly attributed the 
high error rate on this problem step to intrinsic content present 
within the problem. After separating these problem steps out from 
the ‘Concentration-Only’ KC, the resulting learning curve was 
much smoother, with an overall low error rate (Figure 3). 

 
Figure 3. Resulting Concentration-Only learning curve, after 
separating out the problem step in which students experienced 
a technical difficulty during deployment. 
Student model predictive fit metrics are shown in Table 1 for the 
different KC models when used in conjunction with the Additive 
Factors Model [5] and reveal an improvement in predictive fit 
across all metrics (AIC, BIC, and 10-fold cross validation) after 
splitting the original Concentration KC based on our qualitative 
analysis of student behavior during epochs of that KC (Row 2). 
Further improvements in predictive fit across all metrics were 
observed after we separated out the problem step that contained 
missing problem text during implementation (Row 3). 

Table 1. Student model fit metrics comparing different models 
resulting from the KC model refinement process. 

 AIC BIC Cross 
Validation 

RMSE 

Original KC model 6694.58 7196.59 0.3859 

‘Concentration’-Split KC 
Model 

6388.35 6904.12 0.3838 

‘Concentration’-Split KC 
Model with text-error 
problem step separated 

6318.95 6848.47 0.3819 

 
Both of these KC model refinements, each of which resulted in a 
substantive and consistent improvement in predictive accuracy 
when used by the Additive Factors Model, were uniquely 
dependent on qualitative analyses of the video data we had 
collected using Camtasia. Although it may have been possible to 
recognize that the concept of dilution ratios was an additional 
difficulty factor by purely accessing problem content, there were 
many other differences between the high error-rate problem steps 

and the low error-rate problem steps that constituted the original 
Concentration KC. For example, many of the higher error rate 
problem steps were part of a different activity (Activity 2, The 
Factory) than the lower error rate problem steps were (Activity 1, 
Powerade). Only by observing the students specifically exhibiting 
actions suggestive of possessing a shallow understanding of 
dilution ratios (via Camtasia screen videos) and affective states 
resembling frustration (via webcam videos) were we able to 
quickly identify the true hidden difficulty factor. Another benefit 
of this insight, perhaps even more significant than generating a 
better fitting KC model, is that there are clear implications for 
instructional redesign. That is, future iterations of the 
ChemVLab+ tutor might include instruction that more directly 
targets the misconceptions that students seem to have about the 
relationship between dilution ratios and existing solutions. 

Discovering the high-error-rate problem step in which text was 
cut off would not have been possible without viewing the real 
context in which students experienced the problem. Since it was 
not a general problem with the ChemVLab+ tutor but, rather, an 
idiosyncrasy in that problem’s display on the technology used in 
the classroom, the Camtasia screen videos were critical in 
correctly attributing the source of these errors. 

4.2 Collaborative Fraction Tutor 
The collaborative fraction tutor is online software developed by 
researchers at Carnegie Mellon University that helps students 
become better at understanding and working fractions. The tutor 
was created using Cognitive Tutor Authoring Tools, which allow 
for rapid development and easy deployment of intelligent tutors 
[1]. This particular fraction tutor supports collaboration between 
partners in order to learn fraction-solving KCs such as addition, 
subtraction, comparing fractions to determine which is larger or 
smaller, finding the least common denominator, and finding 
equivalent fractions. In the tutor, each student in a pair can control 
only part of the screen, so both partners must to work together in 
order to finish the problem. One student cannot do the whole thing 
him or herself. Students work at the same time and can talk about 
what they are doing, ask for help from their partner, and generally 
collaborate to get the correct answer. 

4.2.1 Participants 
Participants were 26 fifth grade students at a middle school in the 
greater Pittsburgh area enrolled in an advanced math class. 
Students participated across five 45-minute class periods on 
consecutive days within a week. On the first and last days, 
students took a computerized pre- and post-test, respectively. 
They engaged in the Collaborative Fraction Tutor during the three 
consecutive days between the pre- and post-test days. Students 
spent half of each class period working individually and half 
collaborating with a partner. Students were paired with the same 
person for all partner activities throughout the experiment. We 
also collected audio and screen video captures for all students 
working both individually and in pairs on the three tutor use days. 

4.2.2 Results 
The newly developed methods facilitated the identification of KCs 
that needed to be split. First, as in [17], we identified a knowledge 
component called LCD_procedural that was noisy, in particular 
due to an uncharacteristically high error rate on the 5th practice 
opportunity (Figure 4). We then used the methods described in 
Section 3 to automatically extract the combined audio and screen 
videos of all epochs of students engaging in their 5th opportunity 
of the LCD_procedural KC. Based on qualitative analyses of the 
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video and audio streams, it was clear that the most common 
mistake that students were making on those practice opportunities 
was multiplying the two denominators but failing to reduce the 
product to find the least common multiple. This was particularly 
apparent in students’ collaborative dialogue following their 
incorrect first attempts. Students often verbalized the realization 
that there must be a smaller common multiple. This verbalization 
did not occur on problems in which the product of denominators 
happened to be the correct solution. This suggests that there was a 
separate learning curve for the additional difficulty factor of cases 
where finding the least common denominator required reducing 
the product of the two original fractions’ denominators to find a 
smaller common multiple. Based on this, we split the 
LCD_procedural KC into cases where the LCD required reducing 
from the product of denominators (LCD_procedural_REDUCE) 
and cases where it simply was the product of denominators 
(LCD_procedural_PRODUCT). The resulting learning curves 
(Figure 5) are much smoother than the original learning curve. 

 

Figure 4. Aggregate learning curve for the LCD_procedural 
KC as originally defined by the Collaborative Fraction tutor. 
The student model predictive fit metrics (Table 2) for the different 
KC models, when used in conjunction with the Additive Factors 
Model, reveal a substantial improvement in predictive fit across 
all metrics (AIC, BIC, and 10-fold cross validation) after splitting 
the original LCD_procedural KC based on our qualitative analysis 
of student behavior during epochs of that KC. 

Through the audio-video segments, we observed students make 
denominator-product-based errors on their incorrect first attempts 
and realize they needed to find a smaller common multiple on 
certain problem steps. This greatly streamlined our identification 
of the hidden difficulty factor. As a result, we were able to quickly 

identify the appropriate KC split that led to much smoother 
learning curves and a better fitting student model. 

This discovery also has important instructional implications: for 
example, the tutor might incorporate a bug message specific to 
students’ inputting the product of the two denominators when the 
answer is a smaller multiple (i.e., “Can you find a smaller number 
that divides both denominators?”). A student model based on the 
revised KC model (with ‘LCD_procedural’ split into two separate 
KCs) would also result in students receiving more practice on 
problems in which the correct answer is a smaller multiple than 
the product of the two denominators. These instructional changes, 
resulting from the audio dialogue and video driven insights, will 
give students better support to overcome this difficulty. 

Table 2. Student model fit metrics compared between the 
original KC model and the improved KC model resulting 
from multi-modal data stream driven refinement process 

 AIC BIC Cross 
Validation 

RMSE 

Original KC model 3497.6 4156.3 0.2738 

‘LCD_procedural’ 
split KC model 3462.2 4134.5 0.2734 

5. DISCUSSION & FUTURE WORK 
The vast majority of EDM research, especially research focused 
on predicting student performance and generating pedagogical 
insights, is limited to models based on computer-logged data. A 
recognized issue within the EDM community is that log data 
cannot capture all learning phenomena; it can miss important 
details of both learning processes and the learning context. Recent 
advances in DataShop [10] allow researchers to connect problem 
names in log data to screenshots of problem content and 
encourage inclusion of contextual details in custom fields of log 
data. Clearly, however, there are still instances where a better 
understanding of the implementation environment and students’ 
experience working through certain problem steps is needed, as 
demonstrated here. 

The main contributions of this work are (1) developing 
methodological advancements (e.g., the SEAMS tool) that 
facilitate the ease with which EDM researchers can incorporate 
context-rich data streams into quantitative modeling techniques, 
and (2) demonstrating the utility of doing so. Using a top-down, 

Figure 5. Aggregate learning curves for the two new KCs, LCD_procedural_PRODUCT and LCD_procedural_REDUCE, resulting 
from our KC model refinement process5. 
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KC visualization driven method, we show that valuable 
qualitative insights can be obtained from targeted segments of 
audio and video data even without fully “coding” all of the 
multiple streams. We also show that these qualitative insights lead 
to quantitative model fit improvements and actionable 
pedagogical implications. 
There are many promising areas for future work based on the 
methods we have developed here. The present work has focused 
on refining an existing KC model. Educational data does not 
always come with an existing expert-labeled KC model, and there 
have been recent efforts to automatically generate, or discover, 
KC models [9, 12, 13]. One concern about fully machine-
discovered models is their interpretability. The ability to view 
contextually-rich audio and video segments corresponding to 
machine-discovered KCs will facilitate the interpretation of these 
KCs and, in turn, help researchers refine their methods to yield 
more interpretable or cognitively plausible KC models. 
Another interesting issue that contextually-rich streams of data are 
uniquely suited to address is the attribution of pauses of activity in 
the log data. A pause in the data because a student is off-task has 
very different implications than a pause because the student is 
actively help-seeking outside of the educational technology 
interface. Being able to use detailed information about students’ 
learning context can help produce correct interpretations of log 
data activity and, in turn, more robust student models. 

Finally, one of the interesting data streams we collected in the 
Chemistry dataset was student-facing webcam video. Aside from 
noticing the moments during which students seemed frustrated in 
the Chemistry tutor due to confused about dilution ratios, we have 
not yet fully explored the extent to which the webcam data could 
be used to improve KC models and student models. There is rich 
potential for our methods to facilitate connections between the 
cognitive (e.g., knowledge component modeling) and the affective 
[2, 8] branches of EDM research. 
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