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ABSTRACT 

Mind wandering (MW) reflects a shift in attention from task-

related to task-unrelated thoughts. It is negatively related to 

performance across a range of tasks, suggesting the importance of 

detecting and responding to MW in real-time. Currently, there is a 

paucity of research on MW detection in contexts other than 

reading. We addressed this gap by using eye gaze to automatically 

detect MW during narrative film comprehension, an activity that 

is used across a range of learning environments. In the current 

study, students self-reported MW as they watched a 32.5-minute 

commercial film. Students’ eye gaze was recorded with an eye 

tracker. Supervised machine learning models were used to detect 

MW using global (content-independent), local (content-

dependent), and combined global+local features. We achieved a 

student-independent score (MW F1) of .45, which reflected a 29% 

improvement over a chance baseline. Models built using local 

features were more accurate than the global and combined 

models. An analysis of diagnostic features revealed that MW 

primarily manifested as a breakdown in attentional synchrony 

between eye gaze and visually salient areas of the screen. We 

consider limitations, applications, and refinements of the MW 

detector.  
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1. INTRODUCTION 
Mind wandering (MW) reflects an attentional shift from task-

related to task-unrelated thoughts [31]. MW is estimated to 

consume half of our everyday thoughts [19] and can occur at 

almost any time – driving down the road, eating a meal, or during 

a classroom lecture. There are some benefits to our innate ability 

to MW, specifically with respect to planning and creativity [34]. 

However, MW has some detrimental effects as well, particularly 

in the realm of education [30]. A recent meta-analysis across 88 

independent samples indicated that MW was negatively correlated 

with performance, and that the negative relationship was stronger 

for more complex tasks such as reading comprehension [26]. 

Given the negative impact of MW on learning [29, 30], it is 

important to develop attention-aware systems that can reorient 

attention when MW occurs [8]. However, these systems require 

reliable MW detection, which is the focus of this work.  

MW detection can be particularly challenging since MW is an 

internal state with few overt markers (unlike some emotions per 

se). It can even be difficult for people to realize when they are 

MW, as it can occur without metacognitive awareness [30]. 

Moreover, the onset and duration of MW cannot be clearly 

demarcated as with other disengaged behaviors, such as gaming 

the system or WTF (Without Thinking Fastidiously) behaviors [1, 

25].  

In the present study, we focus on detecting MW in the novel 

educational context of narrative film comprehension – a more 

complex task than self-paced reading where most MW detection 

efforts have focused on. We chose this task for two reasons. First, 

a large number of students from all over the world watch 

educationally relevant films and recorded lectures daily, 

particularly in the advent of massive open online courses 

(MOOCs). Second, MW is quite frequent in online video lectures: 

students report MW around 40% of the time while viewing 

lectures [29, 33], so there is considerable promise to detecting and 

responding to MW in this context. 

1.1 Background and Related Work 
Only one study (to our knowledge) has attempted MW detection 

while students viewed dynamic visual scenes, such as the 

narrative film we consider here. Pham and Wang [25] detected 

MW while students watched video lectures on a smart phone with 

a MOOC-like application and responded yes or no to thought 

probes during the lectures. They used student heart rate (extracted 

via photoplethysmography) to train classifiers to detect MW. 

They achieved a 22% greater than chance detection accuracy, 

thereby providing some initial evidence that MW detection is 

feasible in this context. 

Aside from [25], other MW detection efforts have been limited to 

self-paced reading. In one of the first MW detection studies [10], 

students read aloud and then paraphrased biology paragraphs. 

They were periodically asked to report zone outs during reading 

on a 1 (all the time) to 7 (not at all) scale. Supervised machine 

learning models trained on acoustic-prosodic features to classify 

between “high” (1-3 on the scale) versus “low” zone outs (5-7 on 

the scale) achieved a 64% accuracy. However, this study did not 

adopt a student-independent validation approach, so it is unclear 

how well their detector would generalize to new students. 

Other research has utilized log-file information to detect MW 

during self-paced reading. In one study [23], MW reports were 

collected via pseudo-random thought probes during self-paced 

computerized reading. Students responded either “yes” or “no” 

about whether they were MW at the time of the probe. Using 

textual features and reading behaviors from log-files, supervised 

machine learning models were able to detect MW with a 21% 

above-chance accuracy. Similarly, [12] attempted to predict MW 

during reading using textual features (e.g., difficulty, familiarity, 

and reading time), but it is not clear if their method, which utilized 

researcher-pre-defined thresholds, would generalize more broadly. 
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Researchers have also adopted sensor-based approaches for MW 

detection during reading. Blanchard et al. [4] used an Affectiva Q 

sensor to record both galvanic skin response and skin temperature 

while participants read texts on research methods and periodically 

provided MW reports in response to thought probes. Their models 

attained a kappa value of .22 using a combination of peripheral 

physiology and contextual features (e.g., page numbers).  

Eye gaze is perhaps one of the most promising modalities for MW 

detection due to the so called eye-mind link [27], which posits a 

coupling between eye movements and attentional focus. Several 

studies have thus built MW detectors using eye gaze features. The 

first study collected data from 84 students during self-paced 

reading of four texts on research methods [7]. MW reports were 

collected in response to thought probes triggered when gaze was 

fixated on predefined words on the screen. Supervised 

classification models were built from 27 gaze features and 

validated in a student-independent fashion. The authors achieved 

an accuracy of 60% after downsampling the data. Since 

downsampling was applied to both the training and test sets, it is 

unclear how the models would perform when presented with data 

that reflected the original skewed class distributions.  

Their work was extended using a larger dataset of 178 students 

from two different universities and a wider array of 80 features, 

including blink and pupil features [2]. Students also read four 

texts on research methods, and MW reports were collected in 

response to nine pseudorandom probes that occurred between four 

to twelve seconds from the beginning of a page of text. 

Supervised models were built using an extended feature set and 

were cross-validated in a student-independent fashion. The 

models achieved an accuracy of 72% (31% above chance) when 

validated with a test set that maintained the original class 

distributions.  Further, in [2], the authors provided evidence for 

the predictive validity of the model by showing that it predicted 

posttest scores at rates higher than self-reported MW, even after 

controlling for prior knowledge.  

The results from this study indicate that MW can be detected from 

eye gaze during self-paced reading with moderate accuracy. 

However, there is an open question about the use of eye gaze to 

detect MW in additional contexts– in particular, for more complex 

stimuli like dynamic visual scenes. One study [35] provided 

evidence that eye movements can be predictive of attention while 

viewing short video clips. In this study, participants watched 

video clips in two different conditions: (1) without any 

distractions (attending) and (2) while performing a mental 

calculation (not attending). Results indicated that eye movements 

toward pre-determined salient locations in the scene could identify 

the watching condition (attending vs. not attending) with a 80.6% 

accuracy, albeit this is not quite the same as MW detection.  

We should note that there is still some debate whether eye 

movements can be driven by salient features of the stimulus 

(exogenous control) or through conscious control (referred to as 

endogenous control). There is some research to suggest that eye 

movements are primarily driven by exogenous control. For 

example, previous research has shown that different viewers tend 

to fixate on the same locations [24], a phenomenon known as 

attentional synchronicity, which suggests exogenous control. 

However, other research pointed out that interesting objects are 

often the most visually salient [11]. Thus, it is possible that 

viewers fixate on the same locations because of top-down 

processes (endogenous control), as opposed to simply looking at 

what is salient. Additional evidence for endogenous control comes 

from a study which found that task instructions can have an effect 

on eye movements while viewing dynamic visual scenes [32]. The 

researchers found that participants looked at more peripheral and 

less visually salient areas of the scene when instructed in order to 

determine where the visual scenes were derived from compared to 

a general viewing task.  Thus, eye movements related to 

endogenous control might be particularly revealing about MW. 

The current study utilizes this idea to compute features that 

capitalize on the relationship between eye movements and 

visually salient regions in the film. 

1.2 Current Study and Novelty 
In this paper we present one of the first attempts to automatically 

detect MW during narrative film viewing in a manner that 

generalizes to new students. We leverage what has been learned in 

previous work using eye gaze to detect MW during reading, while 

also developing theoretically-grounded features to improve 

detection accuracy in this novel context. 

MW detection during film viewing poses unique challenges 

compared to reading, which has been the most common context 

for MW detection thus far. For one, eye movements are much 

more predictable during reading since the words on the screen are 

static. In addition, reading consists of fixations (periods where the 

gaze position is relatively stable) and saccades (rapid movements 

between fixations), while the dynamic nature of film also yields 

smooth pursuits (eye movements that follow a moving stimulus).  

Second, the film played continuously without any clear breaks, 

presenting an additional challenge for MW detection. This is in 

contrast to reading tasks, which are segmented by page breaks. 

Thus, a novel method was devised to segment eye gaze data into 

instances for classification.  

Finally, the dynamic nature of film allowed for novel content-

dependent features that can be computed from dynamic areas of 

interest (AOI). Unlike reading, AOIs are particularly meaningful 

in a film viewing context because of the distinctive visual content 

areas that dynamically change throughout a film.  In this study, 

AOIs were computed from both plot-related and visually salient 

regions.  

2. DATA COLLECTION  
This study utilized a subset of data reported by Kopp el. [21]. 

2.1 Participants 
Eye gaze data was collected for 60 undergraduate students from a 

private Midwestern university. Students were 20.1 years old on 

average and 66% of the students were female. 

2.2 Materials 
Students watched “The Red Balloon,” a 32.5 minute French film 

with few English subtitles (9 in all). The film was displayed on a 

computer screen with a resolution of 1920 × 1080. The film 

depicts the story of a young boy and a red balloon that follows 

him and can inexplicably move on its own. This film was chosen 

because it is unlikely that many students had previously seen it, 

which could have affected their propensity to mind wander. The 

film has also been used in previous film comprehension studies 

[36].  

All data were collected using a Tobii TX 300 eye tracker that was 

attached to the bottom of the monitor. Eye gaze was recorded with 

a sampling frequency of 120 Hz for the first 14 participants (due 

to experimenter error), after which the sampling frequency was 

adjusted to 300 Hz. This difference was taken into account when 

filtering the gaze data as discussed below. 
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2.3 Mind Wandering Reports 
Students were asked to self-report MW while they watched the 

film by pressing labeled keys on a standard keyboard. A short 

beep sounded to register their response, but the film was not 

otherwise interrupted. A self-caught MW report method was 

chosen as opposed to a probe-caught report method (where 

students are probed to report MW at pseudo-random intervals) in 

order to minimize disruption, which was critical as the film played 

without interruption.  

Students were asked to differentiate between two different types 

of MW using separate keys: either task-unrelated thoughts 

(thoughts completely unrelated to the film such as upcoming 

vacation plans) or task-related interferences (thoughts related to 

the task but not the content of the film, such as “This film is 

boring”). For the present analyses, both task-unrelated thoughts 

and task-related interference were grouped as MW. There was a 

total of 616 MW reports. On average, students reported 10.3 

instances of MW during the film (SD = 7.9l; Min = 1; Max = 31).  

2.4 Procedure 
Students were asked to sit comfortably at a desk in front of the 

monitor before beginning the eye-tracker calibration process. 

There were no restrictions on head movements, making the film 

viewing experience more ecologically valid than if a headrest was 

used. Students were randomly assigned to one of two conditions 

before the film started: in one condition, they read a short story 

explaining the movie plot [22] while students in the second 

condition read an unrelated baseball-themed story [1]. The 

experimental manipulations were part of a larger study and are not 

used here (more details can be found in [21]). Finally, students 

were given instructions for how to report MW and then the film 

began. Students completed a multiple choice comprehension 

assessment after viewing the film, but this data is not analyzed 

here. 

3. MODEL BUILDING 

3.1 Eye Movement Detection 
Eye gaze was converted to eye movements (fixations, saccades, 

smooth pursuits, etc.) in order to filter out some of the inherent 

noise in raw eye gaze data. We first averaged the raw data from 

the right and left eyes. A simple moving average filter was then 

applied to the gaze points in order to smooth the signal while 

retaining the same sampling frequency. The filter used a window 

size of five samples for the 120 Hz data and seven samples for the 

300 Hz data.  

Eye movements were detected using a velocity based algorithm 

[18, 20]. These algorithms generally use thresholds to classify 

gaze points as fixations, saccades, or smooth pursuits. The 

algorithm first classified gaze points with a velocity greater than 

110 degrees of visual angle/s as saccades. It then classified gaze 

points with a velocity lower than five degrees of visual angle/s as 

fixations. Any remaining gaze points were classified as smooth 

pursuits. The visual angle thresholds used were based on previous 

research [17].  

3.2 Film Segmentation 
Next, we segmented the continuous stream of eye gaze data into 

MW and non-MW segments. Each segment had three 

components: gap, window, and offset (see Figure 1). The gap was 

the number of seconds between adjacent segments and could be 

adjusted to change the ratio of MW to non-MW segments. The 

window was the portion of the segment used to compute features. 

The offset was the number of seconds between the MW report (the 

moment when the student pressed the key on the keyboard) and 

the end of the window. An offset was used in order to discard data 

affected by the student’s motion to press the key when reporting 

MW. An offset size of three seconds was deemed appropriate 

based on observation of recorded videos.  

The process began by creating a MW segment prior to each MW 

report (segment 2 in Figure 1). The data prior to the MW segment 

were then considered to be non-MW segments (segment 1) after 

accounting for the gap. There was no offset for non-MW 

segments as no key presses were involved. 

 

Figure 1. Hypothetical example of segmented data 

There were several considerations when choosing the window and 

gap sizes. The segment size (sum of the window, offset, and gap 

sizes) determined both the number of available instances 

(segments) and the MW rate as shown in Table 1. Models were 

built with segment sizes of 45, 55, and 65 seconds, resulting in  

MW rates that ranged from .256 to .323 and number of instances 

from 2401 to 1626, thereby allowing us to explore how these two 

factors affected classification accuracy. For each of these segment 

sizes, the window size was also varied. In all, we considered 

window sizes of 10, 15, 20, and 25 seconds. 

 

3.3 Feature Engineering 
A total of 143 features were computed from the window in each 

segment. We considered global features, which were independent 

of the film content, and local features, which were content 

specific. 

3.3.1 Global Features 
There were 88 total global features. Of these, 75 were computed 

from measures of the eye movements, including fixations, 

saccades, and smooth pursuits, as well as blinks and pupil 

diameter. Fixation features were computed from the fixation 

durations (ms). Saccade features were computed from the saccade 

durations (ms), amplitudes (degrees of visual angle), velocities 

(degrees of visual angle/s), relative angle (degrees of visual angle 

between two consecutive saccades), and absolute angle (degrees 

of visual angle between a saccade and the x-axis). Smooth pursuit 

features were computed from the duration (ms), length (degrees 

of visual angle), and velocity (degrees of visual angle/s) of smooth 

pursuits. The following descriptive statistics of the distributions 

were used as the features: minimum, maximum, mean, median, 

Table 1. Effect of segment size on number of 

segments and MW rate 

Seg. Size (secs) Number of Segs. MW Rate 

45 2401 .256 

55 1931 .297 

65 1626 .323 
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standard deviation, skew, kurtosis, and range. Counts of each eye 

movement type were also included as features. 

Eight global features were obtained from pupil diameters, which 

were first z-score standardized at the student-level. The minimum, 

maximum, median, standard deviation, skew, kurtosis, and range 

were computed for the standardized pupil diameter distributions 

from each window and used as features. 

There were five additional global features: blink count, mean 

blink duration, the ratio of total fixation duration to total saccade 

duration, the proportion of horizontal saccades, and the fixation 

dispersion. 

3.3.2 Local Features 
We identified two types of areas of interest (AOIs), Red Balloon 

AOIs and Visual Saliency AOIs, and computed features based on 

the locations of the AOIs in each frame. Red Balloon AOIs were 

used because the red balloon is one of the main objects in the film 

and endogenous attentional control might direct students to focus 

on these AOIs despite competing content. OpenCV [4], an open 

source computer vision software library, was used to isolate the 

red balloon from the rest of the image using a red color mask. A 

bounding box was drawn around a contour of the resultant image 

for each frame in which the balloon appeared (as shown on the 

left in Figure 2). Local features related to the red balloon were 

only computed for frames where it was present (58.2% of frames). 

We manually examined each frame to ensure that the AOIs were 

computed correctly. The red balloon was present in 27,262 out of 

the 46,851 frames. An AOI was constructed for 26,925 of those 

frames, yielding an accuracy of 98.7%. The frames where the red 

balloon was missed could be attributed to lighting conditions 

(making the red balloon appear darker and thus difficult to 

distinguish from other parts of the scene), the small size of the red 

balloon, or the majority of the red balloon being off screen or 

occluded. These frames were left untouched. An additional 8 

frames incorrectly had an AOI around an object that was not the 

red balloon. The AOI was simply deleted from these frames. 

Visual Saliency AOIs were used because visually salient areas are 

known to attract eye gaze [11]. Although, the visual saliency and 

red balloon AOIs overlap in some cases, as in Figure 2, the visual 

saliency AOI can be computed for frames without the red balloon. 

The MATLAB implementation of a Graph-Based Visual Saliency 

algorithm [16] was used to produce a visual saliency map for each 

frame based on color, intensity, orientation, contrast, and 

movement. An area of no more than 2,000 pixels (1.1% of the 

screen area) surrounding the most salient point were retained and 

the remaining pixels were set to an intensity of 0. Similar to 

above, a bounding box was drawn around the largest contour of 

the processed image. 

Local features were computed based on the relationship between 

the AOIs and each type of eye movement. The features included: 

(1) AOI distance, (2) AOI intersection, and (3) saccade landing. 

There were 32 AOI distance features, which captured the distance 

between the AOI and gaze positions. AOI distance features were 

computed as the distance between each fixation point or smooth 

pursuit point and the center of the AOI for each frame in the 

window. Fixation points were generated for each frame at the 

centroid of the fixation. Smooth pursuit points were generated for 

each frame using linear interpolation from the onset to the offset 

of each smooth pursuit. The minimum, maximum, mean, median, 

standard deviation, skew, kurtosis, and range of the measured 

distances were then computed for each eye movement, resulting in 

16 features for each type of AOI (32 in all).  

There were 12 additional AOI intersection features. These were 

calculated as the proportion of frames in which a fixation or 

smooth pursuit point was within the AOI bounding box. Four of 

these features used the original dimensions of the AOI bounding 

box. An additional eight used a bounding box expanded by either 

one or two degrees of visual angle in order to account for 

inaccurate eye gaze or cases where the AOI was small in size. 

 

Figure 2. An example frame with a bounding box around 

contours of the red balloon (left) and most visually salient 

region (right) 

Finally, there were 12 saccade landing features. For each AOI, 

there was a single feature that captured the number of saccades 

onto, away from, or within the AOI bounding box, which resulted 

in six features (3 per AOI). An additional six features were 

computed using a bounding box expanded by one degree of the 

visual angle to accommodate gaze tracking errors or small AOIs. 

In all, there were 56 local features (32 AOI distance, 12 AOI 

intersection, and 12 saccade landing). 

3.4 Model Building 
Twelve supervised machine learning algorithms from Weka [14] 

were used to build models that discriminated between MW and 

non-MW instances (windows). The following classifiers were 

used: Bayes network; naïve Bayes; logistic regression; SVM; k-

nearest neighbors; decision table; JRip; C4.5 decision tree; 

random forest; random tree; REPTree; and REPTree with 

bagging. 

We also varied four external parameters: (1) feature type; (2) 

window and segment size; (3) feature selection percentage; and 

(4) sampling method. With respect to feature type, models were 

built with global features, local features, or both global and local 

features using feature-level fusion.  

The segment and window size(s) were varied because there are 

various tradeoffs at play. Specifically, a larger segment size 

resulted in fewer instances but a higher MW rate, thereby 

reducing class imbalance. A larger window size afforded more 

data for each instance, but it also reduced the number of instances 

available for segments with the same gap size (e.g., a window size 

of 30 and gap size of 15 resulted in fewer instances than a window 

size of 40 and gap size of 15). Thus, models were built with 

segment sizes of 45, 55, or 65 seconds, and window sizes of either 

10, 15, 20, or 25 seconds. 

Feature selection was used on the training set of each cross-

validation fold (see below). Features were ranked using 

correlation-based feature selection (CFS) [15] from Weka and the 

top 30%, 50%, or 80% of features ranked were retained. 

Class imbalance poses a well-known challenge for supervised 

classifiers. Hence, training sets were resampled using 
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downsampling or oversampling. Downsampling consisted of 

randomly removing instances from the majority class (non-MW) 

until the two classes were balanced. Oversampling consisted of 

using the Synthetic Minority Over-sampling Technique (SMOTE) 

algorithm [5]. We also built models without any resampling for 

comparison purposes. 

Tolerance analysis was performed to address multicollinearity 

prior to building each model [9]. This consisted of removing 

features with a tolerance below .2, which indicates highly 

collinear features (such as number of fixations and number of 

saccades).  

3.5 Model Validation and Evaluation 
The models were evaluated using leave-one-student-out cross-

validation, which ensures that data from each student is exclusive 

to either the testing set or training set. Feature selection and 

resampling were performed on the training set only. Feature 

selection was performed with data from a random 66% of students 

in the training data in each fold. Feature rankings were summed 

over five different random selections. Resampling was also 

repeated for five iterations in each training fold. 

Models were evaluated using the F1 score for the target class 

(MW), which was compared to the MW F1 score of a chance 

classifier. For example, if the actual model classified 52% of the 

instances as MW, the chance classifier would classify a random 

52% of the instances as MW. This resulted in a chance precision 

equal to the actual base rate of MW and a chance recall equal to 

the predicted MW rate. We believe this chance model to offer a 

more stringent comparison than a simple minority baseline (assign 

MW to all instances). 

4. RESULTS 

4.1 MW Detection Accuracy 
The overall best performing model achieved a MW F1 score of 

.45, compared to a chance MW F1 score of .35, which is 

consistent with a 29% improvement above chance (Table 2). The 

model was a decision table classifier that used local features and 

had a window size of 20 seconds, segment size of 65 seconds, 11 

features, and a downsampled training set. The confusion matrix 

for the model (Table 3) shows that the model makes fewer misses 

than false alarms.  

 

 

 

Table 2. Performance metrics ( F1) for best models 

 

The best global and global + local models were SVMs with a 

window size of 15 seconds, a segment size of 65 seconds, and a 

downsampled training set. The global model contained 5 features, 

while the global + local model contained 11 features. Both models 

achieved a lower MW F1 score than the local feature model, due 

to much higher false alarm rates (see Table 3 and Figure 3) 

With respect to the external parameters, no clear trends were 

observed for window size, segment size, or proportion of features 

selected, but downsampling and SMOTEing the training set 

outperformed no resampling method. 

 
Figure 3. MW F1 score for the best model by feature Type and 

resampling method. G = Global, L = Local, G + L = Global + 

Local; Down = Downsampling 

4.2 Feature Analysis 
We compared the mean values of each feature (computed per 

participant) for MW vs. non-MW instances with a two-tailed 

paired-samples t-test. We focused on the 16 global and 21 local 

features that were included in the best local and global models. 

Table 4 shows the effect size (Cohen’s d – with positive values of 

d denoting higher values for MW compared to non-MW 

instances) for the significantly different (p < .05) features. We did 

not perform adjustments for multiple comparisons as the present 

analysis is exploratory in nature. Further, the number of 

significant findings (18%) is far greater than what we could 

achieve if we were capitalizing on chance alone. 

We note that students were less likely to focus on the AOIs when 

they were MW. This is evidenced by a fewer number of frames 

where the smooth pursuit points intersected with the red balloon 

AOI or the most visually salient AOI. Further, there were fewer 

saccades onto and off of the most visually salient region during 

MW. Third, smooth pursuits had a longer range, but less 

variability in velocity during MW. Finally, there were fewer 

saccades during MW, which is consistent with previous findings 

of eye movements during MW while reading [2, 28]. Taken 

together, these results reflect a decoupling between salient regions 
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Table 3. Confusion matrices for best models 

Feature 

Type 

Actual Classified Prior 

  Yes No  

Global Yes .65 (hit) .35 (miss) .25 

No .55 (FA) .45 (CR) .75 

     

Local Yes .67 (hit) .33 (miss) .26 

No .47 (FA) .53 (CR) .74 

     

Global + 

Local 

Yes .68 (hit) .32 (miss) .25 

No .60 (FA) .40 (CR) .75 

Note: Values are proportionalized by class label 

FA = false alarm; CR = correct rejection 

 

Feature F1MW  

(Chance) 

F1 

MW 

F1 Non 

MW 

F1 

Overall 

Global .35 .39 .57 .53 

Local .35 .45 .64 .59 

Global+ 

Local 

.36 .39 .54 .50 
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on the screen and eye movements, essentially signaling a 

breakdown in attentional synchronicity during MW. 

5.  DISCUSSION 
There is a growing interest in assuaging the negative effects of 

MW during learning [6, 8]. Reliable MW detection is likely 

required to realize this goal. Although efforts in MW detection 

have had some success in the context of reading, MW detection in 

more media-rich contexts has been unexplored. As a step in this 

direction, this paper presents a student-independent detector of 

MW during narrative film comprehension, a context which is both 

timely and relevant given the increasing use of film and video 

lectures as educational resources. 

5.1 Key Findings and Contributions 
Our primary contribution is the computation of novel local gaze 

features that are based on the dynamic visual content of the film. 

Using these features, we were able to detect MW with a F1 of .45 

reflecting, a 29% improvement over chance. Furthermore, models 

built with local features outperformed models built with global 

features, or a combination of both global and local features. This 

suggests that taking the dynamic visual content into account (local 

features) can be more effective than merely tracking overall gaze 

patterns (global features), which has been the common method for 

MW detection during reading.  

The local features likely performed better in the present context 

(narrative film viewing) compared to reading, because the 

unfolding visual stream provides cues as to where attention should 

be directed. Reading, in contrast, does not provide such explicit 

cues, so there is likely more variability in gaze patterns. This 

would explain why the global gaze features outperformed the 

local features during reading.  

We also found that local features outperformed a combined local 

+ global model, but we adopted a rather simplistic feature-level 

fusion strategy. It is an open question as to whether performance 

of the combined model could be boosted with more advanced 

fusion strategies. 

Our results also provide insight into eye movements related to 

MW during film viewing. The key finding was that eye 

movements during MW were decoupled from the visually salient 

and important (balloon AOI) components of the visual stream, 

suggesting a breakdown in attentional control.  

5.2 Applications 
MW impedes comprehension by diverting a student’s attention 

from the task at hand toward task-unrelated thoughts. Educational 

activities that involve comprehension from dynamic visual scenes, 

such as video clips or short instructional lectures, could benefit 

from pairing a MW detector with interventions that direct 

attention toward the learning task.  

Beyond educational interfaces, detectors built from dynamic 

visual scenes have applications in entertainment and safety 

contexts. For example, they could be used to determine when 

viewers are more likely to MW while viewing entertainment 

films. The scenes could then be improved to increase viewer 

engagement.  

Attentional focus is especially important for safety-critical tasks 

that require vigilance, such as air traffic control. MW detectors 

built for dynamic visual scenes might be more suitable for these 

types of tasks. However, empirical evidence is needed to 

determine the extent to which models built from narrative film 

viewing would generalize to these other contexts. 

5.3  Limitations and Future Work 
There were also some limitations with this study. The first 

limitation is the detection accuracy, which is moderate at best. It 

would be fruitful to explore improvements to the detector. Some 

possibilities include considering additional features based on other 

aspects of the visual content, such as faces or attempting more 

sophisticated modeling approaches that capture the unfolding 

temporal dynamics in eye gaze. 

The segmentation method used in the study reflects yet another 

limitation as it rather arbitrarily segments the visual stream based 

on temporal windows. It would be worthwhile to explore content-

based segmentation, such as scene transitions and event 

boundaries. This would also ensure consistent segments across 

students in lieu of the current method, which segments the film at 

different locations depending on the MW reports. 

It is also unclear if the detector would generalize beyond the 

current film. “The Red Balloon” is a commercially produced film 

that employs cinematic devices to draw attention to the viewer 

[3]. In contrast, many instructional videos consist of an instructor 

lecturing to students [13] or lecturing over power point, which 

reflect rather different visual content. 

Another limitation is the cost of eye tracking technology. The eye 

tracker used for this study was a cost-prohibitive Tobii TX300 

that will not scale out of the laboratory. Fortunately, cost-effective 

eye tracking alternatives are becoming available, such as the Eye 

Tribe and Tobii EyeX, so replication with these trackers is 

warranted.  

Finally, other limitations include a limited student sample (i.e. 

undergraduates from a private Midwestern college) and a 

laboratory setup. It is possible that the detector would not 

generalize to a more diverse student population or in more 

ecological environments. Retraining our model with data from 

more diverse populations and environments would be a suitable 

next step to increase its ecological validity.  

5.4 Conclusion 
We built the first student-independent gaze-based MW detector in 

the context of film viewing. The detector could be used to trigger 

interventions aimed at counteracting the negative effects of MW 

for an array of tasks involving dynamic visual scenes (e.g., 

watching instructional films, historic documentaries, or video 

lectures). Taken together, this work takes us closer to the goal of 

developing next-generation intelligent educational interfaces that 

“attend to attention” [6]. 

Table 4. Effect size of difference in feature value between 

MW and non-MW instances 

Feature Cohen’s d 

Smooth Pursuit with Balloon AOI (frames) -.37 

Smooth Pursuit within 2° Saliency AOI (frames) -.38 

Number of Saccades away from Saliency AOI -.39 

Number of Saccades nearly onto Saliency AOI -.35 

Smooth Pursuit Duration Range (ms) .30 

Smooth Pursuit Velocity SD (°/s) -.28 

Number of Saccades -.31 

Note: SD = Standard Deviation; All tests were significant at p 

< .05 df = 53 for local features and df = 50 for global features. 
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