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ABSTRACT

The number of e-learning platforms and blended learning en-
vironments is continuously increasing and has sparked a lot
of research around improvements of educational processes.
Here, the ability to accurately predict student performance
plays a vital role. Previous studies commonly focused on the
construction of predictors tailored to a formal course. In this
paper we relax this constraint, leveraging domain knowledge
and combining a knowledge graph representation with ac-
tivity scopes based on sets of didactically feasible learning
objectives. Specialized scope classifiers are then combined
to an ensemble to robustly predict student performance on
learning objectives independently of the student’s individual
learning setting. The final ensemble’s accuracy trumps any
single classifier tested.
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1. INTRODUCTION

Performance prediction is one cornerstone of a fully person-
alized learning environment and also an important compo-
nent of the efforts to deliver quality education. Higher ed-
ucation institutes, for example, are striving to incorporate
predictive elements into their educational processes to better
support students. Online systems like Massive Open Online
Courses, Intelligent Tutoring Systems (ITSs) and increas-
ingly Learning Management Systems (LMSs) also look for
methods to compensate the lack of face-to-face interactions
with teachers and the resulting problems with student’s re-
tention, completion, and graduation rates. Knowledge engi-
neering and Educational Data Mining (EDM) methods and
tools have helped to increasingly sharpen the models of stu-
dent knowledge within these environments.
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The foundations for performance prediction and student mod-
eling were introduced more than four decades ago with Knowl-
edge Tracing [1] and have since been constantly refined and

extended to build diverse student models [3, 7, 17]. Such

models are widely used in ITSs to allow for adaptive and

personalized behavior. Technological advancements and in-

novations enabled the development of more elaborate on-

line learning environments that reduce learning costs [8] and

overcome space and time limitations. Through the use of

such systems, previously inaccessible data about student’s

learning behaviors and their activities are now at hand. An-

alyzing student activities has become an important EDM

task [2].

Data mining and machine learning approaches are often em-
ployed for the student performance prediction task since
classification is one of the most frequently studied challenges
by data mining and machine learning researchers. Such an-
alyzes showed the ability to predict student’s performance
[15, 25] and even their drop out [14] in a broad range of edu-
cational technology environments. Usually, such prediction
efforts are centered around a rather formal course students
have to follow, like a university course or a structured online-
only course. In this paper, we focus on a learning technology
system that deliberately refrains from such a course struc-
ture.

This math learning system — called bettermarks — offers its
users, students and teachers alike, guidance without im-
posing a course on them. The learning platform supports
different curricula as well as flexible teacher interventions
and leads students to a particular learning objective at their
pace. The learning objectives range from introductory knowl-
edge to advanced concepts. For our work in this blended
K-12 learning environment where students either work in a
traditional school setting or on their own, we opted to focus
on performance data for the prediction task. We combine
measured performance data with a knowledge graph repre-
sentation of the platform’s learning objectives, without the
need for a strict course structure. Pursuing the prediction
problem from this angle fully utilizes the math content or-
ganization and thereby directly connects extensive domain
expertise and machine learning methods. The knowledge
graph models how learning objectives are interconnected via
pre-knowledge requirements. We use this graph to identify
didactically feasible activity scopes. Based on those, special-
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ized classifiers are trained and finally combined to predict
student performance on a learning objective in an ensemble.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review how student modeling is approached in
traditional ITSs and recent research on student performance
prediction in different environments. Section 3 introduces
the specific usage scenario of the bettermarks platform, its
distinct characteristics, and the dataset. The following Sec-
tion 4 describes our research method, including the genera-
tion of the classifier ensemble. Section 5 presents our find-
ings and Section 6 concludes the paper with a discussion.

2. STATE OF THE ART

For Intelligent Tutoring Systems, student modeling is one
major task which has been used for making assumptions
about student’s latent attributes. It uses observations of
student’s performance (e.g., correctness of given answers) or
student’s actions (e.g., the time a student spent on an exer-
cise) to estimate student’s hidden attributes, like knowledge,
preferences or even motivational state. Which usually can-
not be detected directly.

A well-established method for student modeling that has
been used in various fashions for more than 40 years now
is called Knowledge Tracing (KT). This technique was pio-
neered by Atkinson [1] and substantially developed by Cor-
bett and Anderson. Their variant is based on a 2-state
dynamic Bayesian network [7]. The observed variable is
the student performance, and the student knowledge is the
latent one which is estimated. Regarding student perfor-
mance, there are two additional parameters to account for
accidental and careless mistakes (slip) and solving an ex-
ercise despite not knowing (guess). The set of parameters
is completed with one for any prior knowledge a student
might already have and one for her learning rate. This stan-
dard KT model is often used for its abilities to provide skill
level diagnostics. In recent years, a range of extensions to
Knowledge Tracing have been proposed to mitigate some of
its shortcomings. A particularly noteworthy one is Baker
et al.’s contextual guess and slip model [3]. Recently, Par-
dos and Heffernan proposed an extension to the standard
model to incorporate item-level difficulty [17].

Besides KT, other approaches exist. A comparably new
option is called Performance Factor Analysis (PFA) which
was proposed by Pavlik et al. [19]. Their student model-
ing method uses a logistic regression model with a reconfig-
ured version of Learning Factor Analysis [6] whose skill vari-
able is replaced by one parameter per item (e.g., exercise,
question, knowledge component) and the student variable is
dropped entirely. The model estimates the individual item
difficulty as well as effects of prior successes and failures for
each skill. It predicts student performance based on item
difficulty and prior performances. Comparative analyzes of
KT’s and PFA’s performance showed that either of them
appear to be suitable for student modeling [4, 10, 19].

In learning environments without such semantically rich data
and a domain model, data mining, and machine learning
approaches are often applied for the performance predic-
tion task. The goals here remain mainly the same, with
additional emphasis on early warning and drop out predic-

tion. In general, student’s prior performances are used to
train different machine learning models to predict future
test or exam performance, similarly to PFA. However, not
all environments provide access to performance data. The
steadily growing number of LMSs, for instance, do not al-
ways collect such data. In such environments, one has to
resort to data about student’s activities. Hu et al. devel-
oped an early warning system based on student’s usage of
an LMS utilizing metadata captured while students interact
with the system [12]. The studied dataset includes informa-
tion like login counts, time spent logged in, and metadata
concerning homework assignments and was gathered dur-
ing two semesters of a fully online university course with
300 enrolled students. The course required students to at-
tend online classes and watch videos in specific time peri-
ods. To build their early warning system, the authors gen-
erated three datasets to create different periods to study
(4, 8 and 13 weeks) and applied three often used classifica-
tion techniques, C4.5, CART, and logistic regression. Ad-
ditionally, Hu et al. employed AdaBoost to achieve greater
prediction accuracy which led to the best performing clas-
sifier constructed from AdaBoost and CART. This classifier
achieved a prediction accuracy of at least 0.972 on each of
the three datasets. A similar scenario, yet more open, was
studied by Zacharis who investigated student performance
related to online activities in an LMS, which was used as
part of a blended learning university course [29]. 134 stu-
dents were enrolled in this course for one semester. To ac-
count for student-teacher and student-student interactions
which could not be observed, all of the captured online ac-
tivities were treated equally while searching for significant
correlations with the student’s final grades. Out of 29 vari-
ables, almost 50% were found to be important. A stepwise
regression yielded a model with four variables which were
used in a logistic analysis to discriminate between failing
and not at risk students. An overall classification accuracy
of 81.3% was achieved. Predicting student performance in a
timely fashion as done by Koprinska et al. underscores the
usefulness of performance data [13]. Their studied dataset
included submission sets, assessment information, and en-
gagement data from a discussion forum. All of the data was
gathered from different online systems used in a blended
university course. Koprinska et al. defined their classifica-
tion problem as a three class problem and divided the 224
participating students into high-, average- and low-level stu-
dents based on exam performance at the end of the course.
To predict the exam result, they employed a decision tree
classifier which achieved an accuracy score of 72.69% using
the complete course data. Using just the data from the first
half of the course led to an accuracy score of 66.52%. Here,
almost half of the used features are performance related.

Our work uses a similar approach to predict student perfor-
mance in a blended K-12 learning environment. The critical
difference between other datasets used in previous research
and ours is that students on the bettermarks platform nei-
ther attend nor follow a formal course. The system provides
teachers and students with “math books” for a term’s cur-
riculum. Since the learning platform is often used supple-
mentary to traditional lessons in class, teachers make use
of the learning material at their discretion. Likewise, stu-
dents in a self-regulated learning setting might pick a cou-
ple of learning objectives or decide to work through a whole
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book on their own. The resulting freedom for students and
teachers introduces a huge amount of diversity in the user
behavior and poses challenges for performance prediction al-
gorithms. To fully capture student behavior and overcome
the problem of fitting a single prediction model based on
diverse data sources, Essa and Ayad proposed a domain-
specific decomposition of different (online) learning related
aspects [9]. The final prediction would consequently con-
sist of an ensemble of classifiers specialized on each aspect’s
data. Hence, the resulting model should be more gener-
alizable and flexible than models build on single courses.
Building on this idea, we focused on learning objectives as
the common data underlying every user’s interaction and de-
composed the math content organization of the platform into
different activity scopes. Classifiers trained on those scopes
act as base classifiers for the developed ensemble which ro-
bustly predicts student performance independently of their
learning situation.

The particularly chosen focus on exercises (or learning objec-
tives, for that matter) in our research is a crucial distinction
to prior ensemble-based prediction works. Student perfor-
mance within an I'TS as well as on a paper post-test was pre-
dicted by Baker et al. utilizing ensembles of different student
models (including the previously discussed BKT and PFA).
The achieved results let the authors conclude that ensem-
bling appeared to be only slightly better [4]. Looking fur-
ther into the previous results and concentrating exclusively
on post-test predictions did not yield better prediction re-
sults over the best individual models [18]. Again, different
student modeling approaches were combined to ensembles.
Gowda et al. found that ensembles build on large enough
datasets (about 15 times more data than used in the pre-
vious two studies) can very well yield superior prediction
performance, even with similar models as a base [11].

3. THE USAGE SCENARIO

The bettermarks system is an online math learning plat-
form with more than 100k interactive exercises, covering K-
12 math curricula (grades 4-10) in English, Spanish, Ger-
man and Dutch language. It is designed to be used in math
classes at school without implying a formal course structure.
Teachers can decide to teach math entirely with the system,
supplement their lessons with related bettermarks content
right in class, or assign exercises as homework. At any time,
teachers can be aware of their student’s progress through
detailed reports which present high-level performance aggre-
gation as well as every single solution attempt. The system
can also support and guide students working on their own in
a self-regulated learning setting without additional teacher
interventions. Each month, more than 100k students across
Europe and America use bettermarks.

Besides offering detailed textbook-like explanations of math
topics, the primary means of learning math on the better-
marks platform are math exercises. Exercises are grouped
into exercise series. Each series helps students achieve a
well defined and fine-grained learning objective. Examples
of such learning objectives are “Calculate the surface area
of a prism given the edge lengths and the height” or “Find
the zeros of linear and quadratic functions.” These series
are arranged into digital books based on curricular themes
and didactical concepts without imposing any curriculum
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Figure 1: Small section of the entire knowledge
graph spanning more than 1,500 vertices

structure on the user. Each book is organized similarly to
a printed math book with chapters and series of exercises
within these chapters. Behind those books that are visible
to teachers and students lies a knowledge graph (not visi-
ble to users). This graph describes how learning objectives
relate to each other regarding required prior knowledge.

3.1 Knowledge Graph

The idea of a concept map was first introduced in the 1970s
by Novak. In his later work, he used this framework to or-
ganize and connect already acquired knowledge with new
knowledge [16]. The usefulness of maps related to the orig-
inal ideas for learning and assessment in technology-based
learning environments has already been shown [24, 27]. Build-
ing on these concepts, the underlying structure of the bet-
termarks content is called a knowledge graph. This graph
is built by connecting nodes concerning their pre-knowledge
requirements. Each of the graph nodes represents a learning
objective — a particular skill a student reaches once she suc-
cessfully finishes a series of exercises designed especially for
this skill. These objectives include introductory/elementary
skills as well as core knowledge and advanced skills. The
direction of an edge indicates which node is defined as the
required pre-knowledge for another node. A particular node
might have more than one pre-knowledge node. The en-
tire bettermarks knowledge graph contains more than 1,500
learning objectives in total. A small subset of them is shown
in Figure 1. A digital math book on the bettermarks plat-
form includes a number of these learning objectives. Usually,
not all of them are directly (or indirectly) related.
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3.2 Data

The analysis in this paper focuses on the particularly well-
frequented book “Calculating Percents” from the German
version of the bettermarks system. From this book’s learn-
ing objectives, we chose one with a relatively large amount of
required pre-knowledge as a classification target. It is called
“Calculate decreased and increased base values in context”
and located close to the end of the book. The data was gath-
ered during the entire year of 2015 and includes student’s
activities on the bettermarks platform 40 days before their
first attempt on the classification target. The 40 day period
allows students in a school setting to reasonably work their
way to this objective. In total, the dataset includes perfor-
mance measurements of 566 students on 903 different learn-
ing objectives which are the results of 10,363 solution at-
tempts by 6th - 10th-grade students from all over Germany.
A student is free to repeat an exercise series as often as she
wants. Since the system presents the student’s best solution
attempt to a teacher first, we also used this result for each
student and learning objective. Table 1 shows a randomly
chosen sample of the entire dataset with results on three
learning objectives (represented by identifiers). The results
correspond to the ratio of correctly solved exercises in a se-
ries. It is evident that not all learning objectives have been
addressed by the same amount of attempts. The last column
shows the highest success rate on the classification target
achieved by a student within 3 hours of starting the exercise
series for the first time. We noticed that students employed
different strategies involving repetitions while solving exer-
cise series which makes the success rate achieved in the first
attempt a bad indicator for the final result a student set-
tles on by continuing with the next series. Therefore, the
3 hours allow students some time to repeat the exercise se-
ries and also account for the fact that students might have
reached the classification target during their math lesson at
school and want to repeat the exercise series again at home.
These collected performance measurements are used as pos-
sible features in our classification models.

4. RESEARCH METHODOLOGY

Over the course of the following section, our research method
is discussed in detail, we were guided by a two-fold research
focus: (1) Can an ensemble of classifiers based on the decom-
posed math content organization accurately predict student
performance? (2) Given the usage scenario, is this approach
suitable for an “early prediction” setting? Since the bet-
termarks system offers its users lots of flexibility, an early
prediction task is different from a formal course’s early pre-
diction task. In our case, the early prediction challenge is
not transferable to a subset of the course’s allocated time
and exercises. Instead, we looked into students showing low
usage rates over the examined period. In our case (and in
contrast to online-only environments), a lack of activity does
not imply that students did not attend a regular math lesson
and progressed in school.

In a first step, the math content was decomposed into ac-
tivity scopes relating to the classification target. A follow-
ing pre-processing step used different aggregations to gain
better insights into the available dataset. The primary con-
cerns that governed this step refer to how much of the data
is missing and if the classifiers can learn from roughly bal-
anced classes created by the class split. The first question

is also relevant regarding the number of actually achieved
learning objectives by students within the different scopes
since those directly translate into the initial feature sets.
Afterwards, six different algorithms were evaluated on each
scope as base classifiers for the ensemble. The process is
described in the Ensemble Construction section which also
discusses the imputation and standardization strategies we
employed. Following the final model selection, the ensem-
ble’s weights were optimized. This step also concluded the
generation of the entire ensemble.

4.1 Activity Scopes

To reflect the flexibility the learning system offers its users,
we defined three activity scopes and constructed specialized
classifiers for them. All scopes center around a particular
subset of the knowledge graph’s vertices and thus decom-
pose the graph into relevant groups related to the classifica-
tion target. The subgraph spun by the classification target’s
vertice via the pre-knowledge relation serves as the binding
element between the three scopes.

The first scope includes all learning objectives that are part
of the classification target’s pre-knowledge in the knowledge
graph. These are all vertices connected directly or indirectly
to the classification target through pre-knowledge relation
edges. In total, those are 35 different learning objectives
for our chosen classification target “Calculate decreased and
increased base values in context.”

The classification target is located in the math book “Calcu-
lating Percents”. This book with all of its learning objectives
creates the second activity scope, the math book scope. Ex-
cluding the classification target itself, the set of potential
features for this scope contains 24 learning objectives. Since
the book was created with didactical considerations in mind,
the math book’s learning objectives are arranged similarly
to the knowledge graphs vertices. Still, this scope and the
pre-knowledge scope share only five learning objectives.

The final scope includes student’s activities on learning ob-
jectives that are not part of the math book’s scope. All of
these learning objectives are part of the knowledge graph
as well, but those are located in other math books. Never-
theless, the resulting set was not partitioned any further by
their books. This scope could share up to 30 learning objec-
tives with the first scope but does not include any from the
book’s scope. Those would be the learning objectives the
pre-knowledge scope does not share with the book’s scope.
The actual number depends entirely on the student’s activi-
ties during the examined period. With these defined scopes
we attempted to model the different paths teachers and stu-
dents might have taken to approach the classification target.

4.2 Pre-processing

In Germany, the bettermarks system is often used in math
classes to supplement regular lessons. Therefore, it is not
expected that students solve a vast amount of exercise series
over the chosen 40 days. Figure 2 shows that the median of
different exercise series per student is at 14.5 series with the
0.75 percentile at 23 series.

This result suggests that the amount of gathered perfor-
mance measures per learning objective could be rather sparse
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Table 1: Sample of user IDs with success rates on different learning objectives

user_id . Learning objectives classification_target
PruZiPruZiRFo.LOB04 | PruZiPruZiRDr.LOB06 | ZUZUProp.LOBO01

369947 0.333 0.675

92083 0.708 0.333 0.921

5625246 0.708 0.333 0.429 0.447

347284 0.208 0.500 0.475

361389 0.417 0.333 0.675
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Frequency (number of students)
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Number of distinct exercise series

Figure 2: Students solve a rather small number of
different series with the median at 14.5 series (indi-
cated as green vertical line)
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Figure 3: Data Sparsity

for the majority of series. In fact, 566 students worked on
903 different learning objectives with an average of almost
20 different series per student. Further examination reveals
that only 22 learning objectives had up to 70% of the data
missing. The data sparsity is illustrated in Figure 3. It is im-
portant to employ a suitable data imputation strategy and
apply feature selection means during the construction of the
different classifiers later to cope with this sparse dataset.

We decided to split the classes at a success rate of 0.75. One
class is composed of students with success rates lower than
0.75, whereas the second one contains students with success
rates of at least 0.75 which would translate to a separation of
top performing students from all other students. This class
split has the benefit of dealing with quite balanced classes.
Figure 4 shows the median success rate at 0.76 (red) and our
class split slightly left to it at 0.75 (green). The resulting
spread is 45.6% to 54.4% between both classes.

= = N faud w w
(=] (%] (=] w o w

o
in

Normalized frequency (number of students)

o
=)

0.50
Success rate

Figure 4: Measured success rates at the classifica-
tion target. The red line indicates class split at 0.75
and the green one the median success rate at 0.76

The dataset does not contain the entire set of pre-knowledge
learning objectives. Out of 35 possible learning objectives,
only data for 16 is present. One possible explanation is
that pre-knowledge learning objectives are not always part
of a single term’s curriculum (but available for teachers to
choose from). Hence, it is not expected that students work
their way through the entire pre-knowledge of a particular
learning objective during a short period. All of the expected
24 book scope’s objectives are present in the dataset.

4.3 Ensemble Construction

An ensemble of classifiers blends predictions from multiple
models with a two-fold goal: The first intent is to boost the
overall prediction accuracy compared to a single classifier.
The second benefit is a better generalizability due to dif-
ferent specialized classifiers. As a result, an ensemble can
find solutions where a single prediction model would have
difficulties. A key rationale is that an ensemble can select a
set of hypotheses out of a much larger hypothesis space and
combine their predictions into one [22].

For our purposes, we started with a set of well-known clas-
sification algorithms and used nested cross-validation to de-
termine their performance. The algorithm with the high-
est average accuracy score in each scope is afterwards cho-
sen for final model selection. The performance of the best
model was evaluated on a hold-out dataset (30% of the entire
data). Once the model selection took place, the weights for
the ensemble were adjusted, again, with cross-validation and
the final ensemble’s performance evaluated on the hold-out
dataset. The following sections describe the whole process
in detail.
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Table 2: Average accuracy achieved in nested cross-
validation for each tested algorithm and scope

Algorithm Book | Pre- Outside
knowledge

Decision Tree 0.715 | 0.634 0.525

with AdaBoost

k-Nearest 0.629 | 0.609 0.546

Neighbors

Logistic Regres- | 0.682 | 0.659 0.538

sion

Naive Bayes 0.654 | 0.636 0.467

Random Forest 0.679 | 0.652 0.550

Stochastic Gra- | 0.624 | 0.594 0.525

dient Descent

4.3.1 Selecting Algorithms

A set of six commonly used classification algorithms were
chosen as potential base models. The set consists of Ran-
dom Forest, Decision Tree with AdaBoost, Logistic Regres-
sion, k-Nearest Neighbors, Stochastic Gradient Descent and
a Naive Bayes implementation. For each scope, a classifica-
tion pipeline was created.’ To impute missing data we opted
for filling missing values with the mean success rate of the
particular feature. Tests with the median and the mode did
not significantly influence later on achieved classification re-
sults. The data was robustly standardized by removing the
median and scaling the data according to the Interquartile
Range (IQR)2. Each pipeline used a scope-specific variance
threshold on the imputed data as feature selection mech-
anism. The actual threshold is determined during model
selection (0-60% of the feature’s variance). The purpose is
to remove features that do not meet the set threshold. This
applies to features with low variance due to rather uniform
student activities as well as to features with large amounts
of imputed data.

To get a conservative and thus fairly unbiased base estimate
of each classifiers performance [26], we used nested strati-
fied cross-validation with 10 folds on the outside and 5 folds
on the inside with randomized search [5] over the parameter
space. Depending on the algorithm, the search space was
limited to reasonable values such as restricting the number
of trees in a forest. The search included 100 sets of candi-
date parameters. Table 2 shows the results for each classifi-
cation algorithm and scope. The best performing algorithm
is highlighted in each column.

4.3.2  Model selection and Ensemble construction
AdaBoost on Decision Tree for the math book scope, Lo-
gistic Regression for the pre-knowledge scope and Random
Forest for the outside scope were picked for the final model
selection. It was done by 10-fold cross-validation and a ran-
dom search over 750 sets of candidate parameters. The best
performing model of each scope was afterwards chosen and
re-trained on the entire training set for the ensemble.

!The pipeline facility, as well as the used algorithms’ imple-
mentations are part of scikit-learn [20].

2The IQR is the range between the 1st quartile (0.25 per-
centile) and the 3rd quartile (0.75 percentile)

Table 3: Prediction accuracy on the test set

Classifier Prediction accuracy
Baseline 0.594
Pre-knowledge scope 0.682
Book scope 0.705
Outside 0.647
Ensemble 0.735

To construct the ensemble we opted for a soft voting strat-
egy rather than using hard voting. A soft voting strategy
has the significant advantage of weighing the three scopes
differently. The alternative would be to use a majority deci-
sion among the three classifiers where each classifier’s vote
weights equally. Instead, the ensemble uses soft voting to
classify students based on the argmax of the sums of each
classifier’s predicted probabilities. To determine the weights
to be associated with each classifier, we used random search
with 10-fold cross-validation on 3k parameter sets. The
emerged ensemble with tuned weights was then tested on
the hold-out part of the dataset.

S. RESULTS

To assess the performance of each classifier as well as of the
entire ensemble more thoroughly we also added a baseline
classifier. This simple classifier always predicts the majority
class. Table 3 shows each classifier’s prediction accuracy on
the hold-out dataset.

As before with the nested cross-validation results, the ac-
curacy ranking over the three scopes stayed the same — the
book scope’s classifier performed best (0.705) followed by
the pre-knowledge scope’s classifier (0.682). With a predic-
tion accuracy of 0.594, the baseline classifier scores below
all other approaches. The constructed ensemble achieved
the best prediction accuracy with 0.735.

Since the ensemble showed an improved accuracy on the test
set, we investigated the remaining classification errors fur-
ther. Table 4 displays the confusion matrix for the book
scope’s classifier which is the best single-scope classifier. As
a comparison, Table 5 shows the confusion matrix for the fi-
nal ensemble. Out of the two, the latter made slightly more
errors of type I. This is especially unfortunate because in our
case, false positive errors translate to students incorrectly
classified as top performers even though they could not reach
the required success rate threshold. In our setting, errors of
this type are arguably more expensive than classification er-
rors of type II where a student would be wrongly classified
as a low scoring student. If our prediction method would be
used to trigger human interventions a teacher might deter-
mine rather quickly if a student is able to pass a test or not.
However, if the system fails to notify the teacher in the first
place, she might not at all be aware of a potential problem
with the student’s performance. Thus, the problem would
be revealed after the student has aleardy failed.

Table 4: Book scope classifiers’s confusion matrix

Other students

Top performers

Other students

51

18

Top performers

32

69
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Table 5: Ensemble’s confusion matrix
Other students | Top performers

Other students 50 19
Top performers 26 75

)

]
fl H

1, 8] (8,14.5] (14.5, 23] (23,111]
Quartiles of solved exercise series

Prediction accuracy gain
(number of students)
=

=)

Figure 5: Ensemble’s accuracy gain over book
scope’s classifier per quartile

Lastly, to assess the ensemble’s ability to accurately predict
student performance in an early prediction task, the accu-
racy of the best single-scope classifier and the ensemble was
compared based on quartiles of student’s number of solved
exercise series. As described above, 50% of the students in
our dataset solved up to 14.5 different exercise series in the
examined period. To be used effectively in an early predic-
tion setting, a suitable classifier needs to be able to accu-
rately predict the right class with few data points. Figure 5
shows the accuracy difference between the book scope’s clas-
sifier and the entire ensemble for each quartile. In the first
three quartiles the ensemble predicts more students correctly
than the book scope’s classifier. These results lead to the
conclusion that our approach has the potential be used in
an early prediction setting.

6. DISCUSSION AND OUTLOOK

We investigated an approach that decomposes the math con-
tent structure underlying an online math learning platform,
trains specialized classifiers on the resulting activity scopes
and uses those classifiers in an ensemble to predict student
performance on learning objectives. Students using this par-
ticular math learning platform achieve learning objectives
without a formal course imposed on them which is quite
different from course-centered online-only or blended learn-
ing environments. We showed that looking closer at the
math exercises helped us build a robust classification model
that can cope with student’s notably diverse behavior due to
the lack of a strict course framework. Using the knowledge
graph to decompose the content domain enabled the individ-
ual prediction models to better grasp nuances of student’s
activities.

In general, the results suggest that our approach yields a ro-
bust performance prediction setup that can correctly classify
73.5% of the students in the dataset. This is an improve-
ment over every other classification approach we tested in
our study. Further examinations revealed that the ensemble

also outperforms the best single-scope classifier in an early
prediction or early warning setting. Students with lower lev-
els of activity would benefit the most from our ensemble ap-
proach since it clearly improves the prediction accuracy for
those students, as we have shown. However, the increased
prediction accuracy came with a price: a slight increase in
false positives where students are wrongly classified as top
performing students. Especially in our area of research, false
positive errors like this should be reduced as much as possi-
ble if we want to improve educational processes and make a
lasting impact on every stakeholder.

Looking closer at the classification errors, we found that in
12 cases the three scope classifiers unanimously attributed
the wrong class to a student. Hence, the ensemble was not
able to predict the class for these students correctly either.
The reason is a shortcoming of the ensemble’s soft voting
strategy which cannot overturn matching predictions among
its base classifiers. Rather than using a simple weighted en-
semble, it is possible to use stacking and thus introduce a
second stage classifier. This classifier takes the prediction
results of the ensemble’s base classifiers and employs them
as features to predict the final class. The whole concept
is known as stacked generalization and exists in different
flavors [28]. Gowda et al. have already shown the signifi-
cant benefits of more sophisticated ensemble methods in a
prediction task [11]. Additionally, a number of different en-
semble generation methods can be utilized to achieve better
diversity within the base classifiers [21]. Besides extending
the final ensemble with stacking and exploring the resulting
benefits, our future work will include more performance re-
lated data, like the number of attempts or the total time a
student has spent on a particular exercise series. These ef-
forts will go hand in hand with additional feature selection
strategies, and dimensionality reduction means to capture
more scope-related nuances of student’s performances.

We also plan to investigate whether student’s diverse se-
quences of learning objectives can be used to improve fea-
ture extraction and selection. Scheiter and Gerjets’ results
regarding the order of presented problems and performance
improvements point to a possible connection [23].

While some of the discussed extensions seem obvious, the
most important challenge is to develop our approach into a
strategy suitable for any learning objective in this scenario.
Our current approach uses a narrow set of learning objec-
tives and a specifically tailored ensemble. These constraints
reduce the cold start problem but require a good strategy
to cope with missing data, as we have described. Never-
theless, the ensemble cannot easily be repurposed at scale.
Hence, investigating different strategies leading to a broadly
applicable solution will be our primary focus.
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