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ABSTRACT

We explored a series of feature selection methods for model-
based Reinforcement Learning (RL). More specifically, we
explored four common correlation metrics and based on them,
we proposed the fifth one named Weighed Information Gain
(WIG). While much existing correlation-based feature selec-
tion methods mostly explored high correlation by default, we
explored two options: High vs. Low. The former selects the
next feature that has the highest correlation measure with
existing selected ones while the latter selects the one with
the lowest correlations. The 10 correlation-based methods
were compared against previous feature selection methods
for model-based RL across several datasets collected from
two vastly different intelligent tutoring systems. Our results
showed that the 10 correlation-based methods significantly
outperform all other methods across all datasets. Among the
five correlation metrics, WIG performed best. Surprisingly,
for each of correlation metrics, the low option significantly
outperform its high correlation peer and thus it suggests that
low correlation-based feature selection methods are more ef-
fective for model-based RL than high ones.

1. INTRODUCTION

Optimal decision making in complex interactive environ-
ments is challenging. In Intelligent Tutoring Systems (ITSs),
for example, system’s behaviors can be treated as a sequen-
tial decision process where at each step system selects an
appropriate action from a set of alternatives. Each of these
system decisions will affect the user’s subsequent actions and
performance. Its impact on outcomes cannot be observed
immediately and the effectiveness of each decision is depen-
dent upon the effectiveness of subsequent decisions. Peda-
gogical strategies are policies that are used to decide what
system action to take next in the face of alternatives.

Reinforcement Learning (RL) is one of the best machine
learning approaches for decision making in interactive envi-
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ronments. RL focuses on inducing optimal policies on what
action(s) an agent should take in any context that would
maximize the agent’s cumulative reward. While various RL
approaches have shown promising, existing RL approaches
tend to perform poorly when the interactive environment
is complex in that many factors can impact desired out-
comes yet not fully understood. Our general approach is to
start from a collection of potentially relevant features and
to apply feature selection methods to narrow them down
to a compact and effective state representation. Many fea-
ture selection methods such as Least-squares temporal dif-
ference (LSTD) with lasso regularization [11], Monte-Carlo
tree search algorithm [5] have successfully applied for RL.
However, most of then are designed for model-free RL and
we used model-based RL (Section 3).

In this paper, we proposed a series of correlation based
feature selection methods by exploring different correlation
metrics. Correlation-based methods have been widely used
in supervised learning, where we use input state feature
space X to predict output label Y and previous approaches
mainly select the subsets of X with the highest correlation
with the output label Y [8, 21]. However, for RL there is no
output label Y and thus, to apply correlation-based feature
selection methods directly to RL, we explored two options:
High and Low. The former is to select the next feature that
is the most correlated (High) with the selected ones while
the latter option is to select the least correlated (Low)
one. Theoretically speaking, choosing the most correlated
feature may be effective since the selected feature is more
likely to be related to decision making, however it may not
make more contribution than the current selected feature
set does. On the other hand, choosing the least correlated
feature may raise the diversity of selected feature set and
enrich the state representation, however it takes a risk of
selecting irrelevant or noisy features.

In short, we explored both high and low options for five cor-
relation metrics and resulted in 10 correlation-based meth-
ods. We compared them against an ensemble method, the
methods involved in [3] referred as RLPreviousFS for the
rest of paper, and the random feature selection method across
several datasets collected from two vastly different I'TSs: one
is a data-driven logic tutor named Deep Thought and the
other is a natural language physics tutor named Cordillera.
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2. RELATED WORK

In general, existing feature selection for RL can be classified
into three categories [6]: Filter, Wrapper and Embedded.
Filter approaches can be seen as a preprocessing procedure
in that it usually employs a ranking function so that either
a fixed number of features with the highest rank or a feature
set above a preset threshold value will be selected from the
high-dimensional state space. This process is independent
from the subsequent model learning process. For RL, the
ranking function is generally based on which state feature
subset would directly influence the rewards. For example,
Morimoto et al. applied kernel dimension reduction to eval-
uate the conditional independence among state features and
those with the most impacts on the next-time-step rewards
are selected [14]. Hirotaka and Masashi [7] proposed a filter-
type approach by directly evaluating the independence be-
tween immediate reward and state-feature sequences using
conditional mutual information. However, it is not clear how
their approach can be applied when immediate reward is not
directly observable and only delayed reward is present.

Wrapper approaches search feature space and generate sev-
eral candidate feature subsets, evaluate each subset using
a learning algorithm, and then select the subset with the
best performance. For example, Gaudel and Sebag applied
Monte-Carlo tree search algorithm to generate candidate
feature subsets and then evaluate the goodness of feature
subset using the predefined score function [5]. In addi-
tion, Keller, et al applied LSTD to approximate value func-
tion, selected a feature subset by implementing Neighbor-
hood Component Analysis to decompose approximation er-
ror, which can be used to evaluate the goodness of the fea-
ture subset [9]. Similarly, in LSPI-FFS Li, Williams and
Balakrishnan also applied LSTD to approximate value func-
tion using linear model. They updated the parameters of
the linear model through gradient descent and selected a
feature subset with largest magnitude of weight [13].

Embedded approaches for RL conduct feature selection and
policy induction process simultaneously. Kolter and Ng ap-
plied LSTD with Lasso regularization to approximate value
function as well as to select effective feature subset [11].
Bach explored the penalization of approximation function by
using Multiple Kernel learning (MLKL)[2]. Wright, Loscalzo
and Yu proposed [FSE-NEAT, the feature selection embed-
ded in neuroevolutionary function, which approximates the
value function, and features are selected based on their con-
tributions to the evolution of topology of network[20].

In short, while much of prior research has done on feature se-
lection for RL, most of them is for model-free RL. For Model-
based RL, Chi et al. investigated 10 filter-based methods
(RLPreviousFS) [3]. These methods were implemented to
derive a set of various policies, where features are selected
mainly based on the single feature performance and the co-
variance in training data. Their results showed there was no
consistent winner among the ten feature selection methods
and in some particular cases these methods performed no
better than the random baseline method. Therefore, much
research on feature selection for model-based RL is needed.
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3. REINFORCEMENT LEARNING &
MARKOYV DECISION PROCESS

Generally speaking, RL can be divided into two categories:
model-free and model-based. Model-free RL [4] typically
uses samples to learn a value function, from which a policy
is implicitly derived. Model-based RL, by contrast, first
builds up a model from samples and then compute a policy
based the model. Both approaches have their own strengths
and weaknesses. Model-free methods are appropriate for
domains where data collection is inexpensive and trivial.
Model-based methods, on the other hand, are suitable when
collecting data is expensive. Given the high cost of collect-
ing training data in our task, we focused on model-based RL
and used a Markov Decision Process (MDP) framework.

MDP is defined as a tuple (S, A, T, R). S denotes state
space, which reflects the generalization of interactive envi-
ronment; actions A are agent’s possible behaviors; reward
function R can be immediate or delayed feedback from en-
vironment respect to agent’s behavior and R%g denotes
the reward of transiting from state S to state S’ by tak-
ing action a; transition probabilities T" are defined as T =
{p(S]|Sl,Ak)}fjilmn, which is estimated from training
corpus. More specifically, Tés, = p(S’|S,a) denotes the
probability of transiting from state S to state S’ by taking
action a.

Once the tuple (S, A, T, R) is set, we transform the problem
of inducing effective pedagogical strategies into computing
an optimal policy in an MDP by dynamic programming ap-
proaches. More specifically, we calculate the value function
V7(S) under a policy 7 though Bellman equation[17], which
is defined as:

VTF(S) = Eﬂ—(Rt‘St = S)
= Z”(& a) ZTélsf [Rss +V7™(S)]
a S’

where v is a constant called discount factor. The optimal
value function can be estimated by

V*(S) = max VT(S)

Then we can derive the optimal policy corresponding to the
optimal value function V*(S). Here we used the toolkit
developed by Tetreault and Litman [18]. Besides inducing an
optimal policy, Tetreault, & Litman’s toolkit also calculate
the Expected Cumulative Reward (ECR) for the induced
policy. The ECR of a policy is derived from a side calculation
in the policy iteration algorithm: the V-values of each state,
the expected reward of starting from that state and finishing
at one of the final states. More specifically, the ECR of a
policy 7 can be calculated as follows:

ECR, = N V) (1)

i=1

Where s1,- -, s, is the set of all starting states and V' (s;) is
the V-values for state s;; N; is the number of times that s;
appears as a start state in the model and it is normalized by
dividing ﬁ In other words, the ECR of a policy  is
calculated lby summing over all the initial start states in the
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space and weighting them by the frequency with which each
state appears as a start state. The higher the ECR value of
a policy, the better the policy is supposed to perform.

In our application, we defined our action set A and re-
ward function R in Section 5. However the state space S
is not well-defined, where each state is a vector represen-
tation composed of a fixed number of state features F' =
{F\,Fs,...,F,}. Our approach is to apply various feature
selection methods to narrow a wide set of feature space to
a compact and effective subset that would model student
learning process accurately.

4. METHODOLOGY

In this section, we first describe the five basic correlation
metrics we used and then describe our general feature se-
lection procedure. More specifically, we will describe our
10 correlation-based methods, the ensemble method, and fi-
nally briefly describe the RLPreviousFS methods.

4.1 Five Correlation Metrics

In order to quantize correlation among features, we used five
correlation metrics. The first four are commonly used in su-
pervised learning and here we will investigate whether they
can be applied to RL. We proposed the fifth one, Weighted
Information gain, by combining the four commonly used
metrics and adapting them based on the characteristic our
task and datasets. More specifically, we have:

1. Chi-squared (CHI)[22]: a statistical test used to iden-
tify whether the distribution of a categorical variable
differ from the other one, which induces the indepen-
dence between two variables. CHI is usually applied
to evaluate the independence of two variables in math-
ematical statistics.

2. Information gain (IG)[12]: it measures the differ be-
tween the uncertainty of a variable Y and the uncer-
tainty of Y given variable X as conditional informa-
tion. It is calculated as:

IG(Y,X)=H(Y) - H(Y|X)

where H() is called entropy function, measure uncer-
tainty of a variable. IG evaluates the certainty of vari-
able Y obtained from variable X, which can be treated
as one type of correlation between X and Y. IG has
the bias towards the variable with a large number of
distinct values.

3. Symmetrical certainty (SU)[21]: it is defined as:

H(Y) — H(Y|X)

T T )

SU evaluates the correlation between two variables by
normalizing IG. SU compensates the weakness of 1G
and it is a symmetrical measurement, which treats a
pair of variables symmetrically.

4. Information gain ratio (IGR)[10]: it’s the ratio of in-
formation gain to the intrinsic information, which is
the entropy of conditional information. IGR can be
represented as:
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H(Y) - HY|X)
H(X)

Comparing with IG, IGR takes the uncertainty of con-
ditional information into account with purpose of re-
moving bias of selecting variable with many distinct
values. However, IGR is not a symmetrical measure-
ment (IGR(X,Y) # IGR(Y, X)).

IGR(Y, X) =

5. Weighted Information gain (WIG): it is proposed as:

H(Y) - H(Y|X)

WIG(Y,X) = (HY)+ H(X))H(X)

We propose WIG by combining IG, SU and IGR. Com-
paring with IGR, WIG normalized IG by consider-
ing the uncertainty of both variables X and Y and
also compensate the weakness of IG. Comparing with
SU, although WIG is not symmetrical measurement.
Based on the above equation, WIG sets more weight
for variable X. In our application, WIG is used for
evaluating the correlation between current selected fea-
ture set Y with the new feature X .

For each of the five correlation metrics, we explored two
options: High and Low, which resulted in 10 correlation-
based methods named five High methods: CHI-high, IG-
high, SU-high, IGR-high, WIG-high and five Low methods:
CHI-low, IG-low, SU-low, IGR-low, and WIG-low. Our goal
is to investigate which option is better: high vs. low and
which of the five correlation metric performs the best.

4.2 Correlation-based Feature Selection

In this project, we followed a forward stepwise feature se-
lection procedure in that: given current selected feature set,
our correlation-based methods select the feature forwardly
based on the five correlation metrics described above.

Algorithm 1 Correlation-based Feature Selection Algo-
rithm

Require: Q: Feature space; D: Training data; N: Maxi-
mum number of selected features
Ensure: S§*: Optimal feature set
: for f;in Q do
ECR; <— CALCULATE-ECR(D, f)
end for
Add f* with highest ECR to 8
: while s1ze(S*) < N do
for f;in Q—S8* do
C; < CALCULATE-CORRELATION(S™, f;, m)
end for
F < SELECTTOP(C, 5, reverse)
features based on correlation metrics
10: for f; in F do
11: ECR; < CALCULATE-ECR(D, S§* + f;)
12: end for
13: Replace 8* by 8" + f; with higgest ECR
14: end while

> Select top 5

Algorithm 1 shows the concrete process of our correlation-
based feature selection procedure. It contains three major
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parts: in the first part (lines 1-4), it constructs MDPs for
each single feature, induces a single-feature policy and cal-
culates it FCR. Then the feature with highest ECR is
added into current optimal feature set. In the second part
(lines 6-9), it evaluates the correlations between current op-
timal feature set S* with other features f; € Q — 8™, ranks
the correlations, and then selects the top 5 highest ones for
high correlations or the bottom 5 lowest ones for low cor-
relations. They are selected to form a feature pool F. In
the third part (lines 10-13), several candidate feature sets
are generated by combining current optimal feature set S*
with each feature f; € F. Then ECR for each candidate
feature set can be evaluated by applying Calculate-ECR
function. Current optimal feature set S* will be replaced by
the candidate feature set with highest EC R. The algorithm
will terminate until the size of optimal feature set reaches
maximum number N. The third part can be treated as the
process of wrapper approach where several candidate fea-
ture sets are evaluated by the RL method. Therefore, our
correlation-based methods are the combination of filter and
wrapper approaches.

4.3 Ensemble Method

Our ensemble approach combines the 10 proposed correlation-
based methods and 4 RL-based methods (Section 4.4), which
are most effective methods among RLPreviousFS. Its pro-
cedure is similar to that of correlation-based method except
the second part (lines 6-9). The ensemble approach inte-
grates the features generated from each method and gen-
erates a relatively big feature pool F. The maximum size
of F is up to 70 but often smaller because of the overlap-
ping feature sets. Note that it is still much larger than any of
our 10 correlation-based methods which has 5 candidates for
each step. After generating the feature pool, the ensemble
method jumps to the third part (lines 10-13) of Algorithm 1.
At each step, the ensemble method explores feature sets by
adding the feature with maximum ECR.

4.4 RLPreviousFS

Chi et. al [3] grouped RLPreviousFS into three categories:1)
four RL-based methods; 2) two PCA-based method, which
selects features with the high correlation with principle com-
ponents; 3) four PCA&RL-based methods, which use RL-
based methods to select features from a candidate feature
set which is generated from PCA-based method. All three
categories can be seen as the filter approaches.

S. TRAINING DATASETS

5.1 Two Deep Thought Datasets

Deep Thought (DT)[15] is a data~driven ITS . It is a rule-
based system where students need to select different rules
to complete logic proof problems. In DT, we focused on
a problem level decision named problem solving (PS) vs.
Worked Example(WE). More specifically, when starting the
next training problem, the tutor will make a simple decision:
“should it ask student to solve the next problem (PS), or
should it provide an example to show the student how to
solve the next problem (WE)”.

Our training dataset includes a total of 303 undergraduate
CS students who used DT as part of class assignment in Fall
2014 and Spring 2015. The average amount of time spent in
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the tutor was 416.60 minutes. To induce RL policies, a total
of 134 features were extracted from the student-system log
files. The reward function in DT dataset is calculated based
on level score LevelScore; where ¢ € [1,6]. Particularly,
we designed two type of reward: immediate and delay re-
ward. Immediate reward is defined as R; = LevelScore; —
LevelScore;—1 where i € [1,6], Ri = LevelScorei, it re-
flects the change of students’ performance level by level.
Delayed reward is represented as Rgeiay = LevelScores —
LevelScorey, which determines the change of students’ per-
formance across all levels. For the convenience, we denote
the two DT datasets with immediate reward as DT-Immed
and that with delayed reward as DT-Delay respectively.

5.2 Six Cordillera Datasets

Cordillera [19] is a natural language tutoring system teach-
ing college introductory physics. Different from DT tutor
system, Cordillera requires students to input their answer
by natural language free text. The data collection consists
of the following stages: 1) background survey; 2) studying
textbook and prerequisite materials, 3) taking a pretest; 3)
training on Cordillera, 4) and taking a post test. Cordillera
makes step-level decision: Elicit/Tell (ET). The ET deci-
sion means “should the tutor system elicit the next problem-
solving step for student, or should it tell student the instruc-
tion of next step directly”.

Our training corpus involves 64 students. In Cordillera,
there are five primary Knowledge Components (KCs): Def-
inition of Kinetic Energy (KE), Gravitational Potential En-
ergy (GPE), Spring Potential Energy (PE), Total Mechan-
ical Energy (TME), and finally Conservation of Total Me-
chanical Energy (CTME). In STEM domains such as math
and science, it is commonly assumed that the relevant knowl-
edge is structured as a set of independent but co-occurring
KCs. A KC is “a generalization of everyday terms like con-
cept, principle, fact, or skill, and cognitive science terms like
schema, production rule, misconception, or facet” [19]. For
the purposes of ITSs, these are the atomic units of knowl-
edge. It is assumed that a tutorial dialogue about one KC
(e.g., kinetic energy) will have no impact on the student’s
understanding of any other KC (e.g, of gravity). This is an
idealization, but it has served ITS developers well for many
decades, and is a fundamental assumption of many cognitive
models [1, 16]. Given the KCs’ independence assumptions,
we will apply RL to induce KC-specific pedagogical strate-
gies for each of the five primary KCs individually. Moreover
some steps in Cordillera have mixed KC, thus we also apply
RL to induce pedagogical policies irregardless of the KCs in-
volved (denoted by Across). In short, we have a total of six
Cordillera KC datasets, one per KC for the five primary KCs
and one KC-general for the Across policy. Each of the KC
datasets contains 50 state features and to induce RL-rules,
we used the delayed reward defined as student Normalized
Learning Gains (NLGs): NLG = Ma;f:iiig;f;_et;i;est.
Here MazximumScore is the maximum score a student can
get and for both pretest and posttest, the maximum score
is set to be 1.

6. EXPERIMENT & RESULT

To evaluate the effectiveness of induced policies, we set the
maximum number of selected features to be 6 considering
the size of our training datasets. In this section, we present
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Table 1: The highest ECR Induced by Correlation-based Methods Across Eight Datasets

CHI 1G SU IGR WIG
ITS Data
High Low High Low High Low High Low High Low
DT Immed 55.89 129.82 53.87 95.81 53.87 95.81 53.87 9581 59.04 143.16*
Delay 8.89 1256 8.89 12,58 10.73  12.58 894 15.43*% 8.94  15.43*
KE 5.86 6.75 5.86  6.75 5.86 6.75 5.57  7.64*  5.57 7.62
GPE 1047 1339 11.80 13.39 11.21 13.39 11.10 17.23* 10.82 17.23%
Cordillera SPE  12.67 17.17 12.67 14.88 12.67 18.02* 10.83 18.02* 10.27 18.02%*
TME 7.34 7.96 757  9.42 747 9.42 6.98 10.04* 6.40 10.04*
CTME 23.01 32.71 24.01 31.22 24.31 31.22 23.01 33.24* 23.01 33.24%*
Across  1.77 2.26 1.77 226 177 2.57* 1.77 2.26 1.77 2.57*
Note: The best FC'R among 10 methods for each dataset is highlighted by *.
Table 2: Overall Evaluation Across Eight Datasets
DT Cordillera
Immed Delayed | KE GPE SPE TME CTME Across
Low Correlation 143.16 15.43 7.64 17.23 18.02 10.04 33.24 2.57
High Correlation 59.03 10.72 5.85 11.80 12.67  7.57 24.31 1.71
Ensemble 127.79 12.61 733 1640 1695  9.12 32.06 2.68
RLPreviousFS 60.28 12.56 6.17 1441 1190 7.15 24.60 2.03
Random 8.53 7.62 426  7.34 10.52  4.78 22.02 1.20

the experimental analysis of the correlation-based methods,
the ensemble, the RLPreviousF'S used in previous research,
and random feature selection methods which is our baseline
method.

6.1 Comparing correlation-based methods

In this section, we want to answer two questions:

1) which option is better for model-based RL: High vs. Low;
2) which of the five correlation metrics performs the best.

High VS Low. Table 1 shows the performance of the
10 correlation based methods across eight training datasets:
two DT and six Cordillera datasets. The rows represent the
eight datasets while columns represent the 10 correlation-
based methods. Each cell in Table 1 shows the highest ECR
of the policy generated from the corresponding correlation-
based feature selection method on the corresponding dataset
when the number of features varies from 1 to 6.

Table 1 shows that for each of five correlation metrics, the
low correlation-based method significantly outperform its
high correlation-based peer. For DT-Immed dataset, the
ECR of WIG-low is 143.16, while ECR of WIG-High is
only 59.04; the former is 140% higher than the latter. Sim-
ilarly, the EC'Rs of CHI-low and CHI-High are: 129.82 vs.
55.89 and the former is 132% higher than the latter. The
similar results is true across all five correlation metrics and
across all eight datasets.

Moreover, the out-performance of the Low option over the
High option seems to be more prominent on DT datasets
than Cordillera datasets. For DT data, the average percent
increase for the low correlation methods over the high cor-
relation methods is 75.35%, the maximum percent increase
is 142.48% and the minimum percent increase is 17.24%.
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For Cordillera KC datasets, the average percent increase for
the low correlation methods over the high ones is 35.15%,
the maximum percent increase is 75.46% and the minimum
percent increase is 8.45%. On average the low correlation
methods outperform the high correlation peers by 45.2%.

To summarize, our results showed that the low correlation
option is more suitable for the model-based RL than the
high correlation option. It indicates that it is important to
include a variety of features in the state representation for
applying RL to induce pedagogical policies.

Five Correlation Metrics. In Table 1, for each of the
eight datasets, we highlight the best ECR of the induced
policies by *. Table 1 shows that the WIG is the consis-
tent winner in that it has the best ECR for all datasets
except for KE. On the KE dataset, WIG-Low performance
is slightly lower than the best policy: 7.62 for WIG-Low vs.
the highest 7.64 for IGR-Low. Following WIG, IGR is the
second best in that it has the highest ECR for six out of
eight datasets. Note that WIG and IGR together produced
all the best policies across all eight datasets and they over-
lapped on DT-Delay, GPE, SPE, TME, CTME. Except for
WIG and IGR, the remaining three metrics only induced 2
best policies and both are found by SU-Low. In short, our
proposed WIG performed the best among the five correla-
tion metrics followed by IGR.

6.2 Overall Evaluation

Table 2 shows the overall comparison among all feature se-
lection methods. With the purpose of simplicity, for the five
low-correlation methods, the five high-correlation methods
and the RLPrevousFS methods, we select the best one from
each category. Thus, Table 2 will compare the five cate-
gories of feature selection methods: the best of the five Low-
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correlations, the best of the five High-correlations, the en-
semble, the best of RLPreviousF'S and the random method.

In Table 2, rows denote the five categories and columns show
the eight datasets. Table 2 shows that as expected the ran-
dom method performs the worst across all datasets. In addi-
tion, the best of the low correlation-based methods outper-
forms all other methods in all datasets except in the Across
dataset, where the ensemble method performs slightly better
that the best of the low correlation-based methods. On av-
erage, the best low correlation-based method increases over
the best of RLPreviousFS by 43.87% and over the ensemble
method by 9.05%. In addition, the ensemble method im-
proves over the best of RLPreviousFS on average 36.46%.
To summarize, we can rank the five categories of methods
as Low correlation-based > Ensemble > High correlation-
based, RLPreviousFS > Random.

7. CONCLUSIONS & FUTURE WORK

In this paper, we proposed 10 correlation-based feature selec-
tion methods for model-based RL. Our result clearly showed
that the low correlation-based methods are more effective
than the ensemble, the high correlation-based, the RLPrevi-
ousF'S, and the random method. Among the five correlation-
based metrics, our proposed WIG performed the best. WIG
found the best policies across all eight datasets except that
on KE, its performance is only slightly lower than the best
one which is found by IGR.

While in supervised learning features associated with high-
est correlation are generally selected, for model-based RL
selecting the next feature with lowest correlation is more ef-
fective. Moreover, it is surprising to see that the ensemble
method only performed the best on one out of eight datasets.
Given that the motivation for applying the ensemble method
is that it can take the advantages of each method with pur-
pose of achieving better results. Therefore, one of our future
work is to explore other ways to make our ensemble method
more effective.
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