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Preface

The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the In-
ternational Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina,
in the USA. The conference, held June 29 - July 2, 2016, follows the eight previous editions (Madrid 2015, London
2014, Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010, Cordoba 2009 and Montreal 2008).

The EDM conference is the leading international forum for high-quality research that leverages educational data,
learning analytics, and machine learning to answer research questions that shed light on the learning processes.
Educational data may come from traces that students leave when they interact with learning management systems,
interactive learning environments, intelligent tutoring systems, educational games or when they participate in other
data-rich learning contexts. The types of data range from raw log files to data captured by eye-tracking devices or
other kind of sensors. The methods used by EDM researchers include analytics, data science, data mining, machine
learning, as well as social network analysis, graph mining, recommender systems, and model building.

This years conference features three invited talks by: Rakesh Agrawal, President and Founder of Data Insights
Laboratories; Marcia C. Linn, Professor of the University of California at Berkeley; and Judy Kay, Professor of the
University of Sydney. Judy Kay’s invited paper entitled “Enabling people to harness and control EDM for lifelong,
life-wide learning” is also presented in the proceedings. Together with the Journal of Educational Data Mining
(JEDM), the EDM 2016 conference supports a JEDM Track that provides researchers a venue to deliver more
substantial mature work than is possible in a conference proceedings and to present their work to a live audience.
The papers submitted to this track followed the JEDM peer review process; three papers have been accepted to the
track and will be presented at the conference. The abstracts of the invited talks and accepted JEDM Track papers
can be found in the proceedings. The main conference invited contributions to the Research Track and Industry
Track. We received 161 submissions (109 full, 45 short, and 7 industry). We accepted 16 exemplary full papers (15%
acceptance rate), 14 full papers (27.5% acceptance rate) and 51 short papers for oral presentation (52% acceptance
rate ) and an additional 40 for poster presentation. Of the industry papers, 3 were selected for oral presentations
and 2 for posters.

This year’s best paper and best student paper awards were generously sponsored by the Prof. Ram Kumar
Memorial Foundation. The best paper was awarded to the paper entitled “How Deep is Knowledge Tracing?” while
the best student paper was awarded to the paper entitled “Calibrated Self-Assessment.”

The EDM conference traditionally provides opportunities for young researchers, and particularly for PhD students,
to present their research ideas and receive feedback from the peers and more senior researchers. This year, the
Doctoral Consortium features 6 such presentations. In addition to the main program, the conference also includes 3
workshops: WS1: Computer-Supported Peer Review in Education (CSPRED-2016), WS2: Writing Analytics, Data
Mining, and Writing Studies; WS3: Educational Data Analysis using LearnSphere, and 2 tutorials: T1: SAS Tools
for Educational Data Mining, and T2: Massively Scalable EDM with Spark. This year we expand our electronic
presence with Whova a social app for conference attendees that provided services for personal scheduling, social
linking and personalized recommendations of papers.

We thank the sponsors of EDM 2016 for their generous support: Civitas Learning, Blackboard, MARi, SAS,
Cengage Learning and the Prof. Ram Kumar Memorial Foundation. We thank North Carolina State University for
their in-kind support, and the Sheraton Downtown Raleigh for their excellent conference services. We also thank the
program committee members and reviewers, who with their enthusiastic contributions gave us invaluable support in
putting this conference together. Last but not least we thank the organizing team: David Lindrum – Sponsorship
Chair; Paul Inventado – Proceedings Chair & Webmaster; Collin Lynch – Posters Chair; Ed Gehringer – Student
Volunteer Chair; Sidney D’Mello – DC Chair; Erica Snow and Jonathan Rowe – Workshop & Tutorials Chairs; and
Piotr Mitros – Industry Track Chair.

Min Chi Mingyu Feng Tiffany Barnes
North Carolina State University SRI North Carolina State University

Program Co-chair Program Co-chair General Chair
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Awards

EDM 2016 thanks the Prof. Ram Kumar Memorial Foundation for generously sponsoring the
2016 best paper and best student paper awards.

Best papers and exemplary paper selection

A total of 16 exemplary papers were selected by the program chairs as those that represent the best work submitted
to EDM 2016. Candidates for exemplary papers were selected among those accepted as full papers using the following
criteria: 1) the average ratings of all reviewers and 2) at least one reviewer indicated the paper should be considered
for best paper. Program Chairs and the General Chair then performed meta-reviews for all of these papers to make
the final exemplary paper selections.

Finally, the Best Paper Committee was formed to review the top papers in the conference to select best paper
nominations. We used random selection to divide both the 16 exemplary papers and the 10 committee members into
two groups. All members in the same Best Paper Sub-committee received the same 8 exemplary papers together with
their reviews. Sub-committee members were asked to rank the three best papers from the 8 papers, and to provide a
1-2 sentence justification for each of the top 3 they chose. Based on these rankings, four Best Paper nominees were
selected.

Best Paper Committee:

Koedinger, Kenneth Pavlik Jr., Philip I. Aleven, Vincent Baker, Ryan Galyardt, April
Goldin, Ilya Heffernan, Neil Ritter, Steven Olney, Andrew Pechenizkiy, Mykola

Award winners

Best paper How Deep is Knowledge Tracing?
Mohammad Khajah, Robert Lindsey and Michael Mozer

Best student paper Calibrated Self-Assessment
Igor Labutov and Christoph Studer

Best paper nominees LIVELINET: A Multimodal Deep Recurrent Neural Network to Predict
Liveliness in Educational Videos
Arjun Sharma, Arijit Biswas, Ankit Gandhi, Sonal Patil and Om Deshmukh

How to Model Implicit Knowledge? Similarity Learning Methods to
Assess Perceptions of Visual Representations
Martina Rau, Blake Mason and Robert Nowak

Measuring Gameplay Affordances of User-Generated Content in an
Educational Game
Andrew Hicks, Zhongxiu Liu and Tiffany Barnes
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 Lukasz Kidziński, Kshitij Sharma, Mina Shirvani Boroujeni and Pierre Dillenbourg

Closing the Loop with Quantitative Cognitive Task Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Kenneth Koedinger and Elizabeth McLaughlin

Does a Peer Recommender Foster Students’ Engagement in MOOCs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Hugues Labarthe, François Bouchet, Remi Bachelet and Kalina Yacef

A Contextual Bandits Framework for Personalized Learning Action Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Andrew Lan and Richard Baraniuk

How Good Is Popularity? Summary Grading in Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Haiying Li, Zhiqiang Cai and Art Graesser

Beyond Log Files: Using Multi-Modal Data Streams Towards Data-Driven KC Model Improvement . . . . . . . . . . . . 436

Ran Liu, Jodi Davenport and John Stamper

Seeking Programming-related Information from Large Scaled Discussion Forums, Help or Harm? . . . . . . . . . . . . . . . 442

Yihan Lu and Sharon Hsiao

Classifying behavior to elucidate elegant problem solving in an educational game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

Laura Malkiewich, Ryan S. Baker, Valerie Shute, Shimin Kai and Luc Paquette

Predicting Dialogue Acts for Intelligent Virtual Agents with Multimodal Student Interaction Data . . . . . . . . . . . . . 454

Wookhee Min, Joseph Wiggins, Lydia Pezzullo, Alexandria Vail, Kristy Elizabeth Boyer, Bradford Mott,
Megan Frankosky, Eric Wiebe and James Lester

Proceedings of the 9th International Conference on Educational Data Mining xii



Exploring the Impact of Data-driven Tutoring Methods on Students’ Demonstrative Knowledge in Logic
Problem Solving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Behrooz Mostafavi and Tiffany Barnes

Properties and Applications of Wrong Answers in Online Educational Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
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Data-Driven Education: Some opportunities and
Challenges

Rakesh Agrawal
Data Insights Laboratories

ragrawal@acm.org

ABSTRACT
A program of study can be viewed as a knowledge graph
consisting of learning units and relationships between them.
Such a knowledge graph provides the core data structure for
organizing and navigating learning experiences. We address
two issues in this talk. First, given a knowledge graph, how
can we use data mining to identify and correct deficiencies
in a knowledge graph. Second, how can we use data mining
to form study groups with the goal of maximizing overall
learning. We conclude by pointing out some open research
problems.
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WISE Ways to Strengthen Inquiry Science Learning

Marcia C. Linn
University of California, Berkeley, Berkeley, CA, USA

mclinn@berkeley.edu

ABSTRACT
The Web-based Inquiry Science Environment (WISE) logs
student and teacher interactions during classroom science
inquiry instruction. Over the past 10 years we have used
these logs for many purposes including: to analyze patterns
of student interactions with dynamic, interactive scientific
models and improve instruction; to determine when students
revisit prior activities and assess whether the visit was fruit-
ful; and to analyze the coherence of student essays and offer
personalized guidance. I will illustrate our findings with
some successes and failures as we attempt to: validate what
a sequence of logged actions means; measure a key learn-
ing construct with logged interactions; and determine how
to use scores derived from logged variables to guide student
inquiry learning.
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Enabling people to harness and control EDM for lifelong,
life-wide learning

Judy Kay
Faculty of Engineering and Information Technologies, The University of Sydney, Australia

judy.kay@sydney.edu.au

ABSTRACT
There has been an explosion of digital learning sensors. Some
are in bespoke learning applications. But many more are in
the digital tools people use in every aspect of their lives.
This paper introduces a user-centred view of EDM for life-
long, life-wide learning. That includes formal education, but
goes beyond it to the complex, multi-faceted and ill-defined
learning in our broader lives. This is the learning that takes
decades and is critical for aspects as diverse as health and
wellness, responsible citizenship or working effectively with
other people.

The paper begins by asking who the users for EDM are, what
their different needs are, and why the answers matter. It
then reviews a series of case studies for learning group-work
skills. These illustrate the analysis that follows. This starts
with the issues for personal data sensing for learning over
the long term, in many contexts and aspects of life. Then
it considers middleware, a topic rarely discussed in EDM
research. Finally, it considers the all important user inter-
faces for: user control; human-in-the-loop EDM; and learn-
ing, particularly, self-monitoring, reflection, planning and
broader metacognitive activity. This paper takes a highly
critical assessment of over 20 years of my research, from the
perspective of user-centred EDM. Building upon that cri-
tique, it summarises major mistakes made and lessons learnt
and then presents a research agenda and vision.
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Toward Data-Driven Design of Educational Courses: A
Feasibility Study

Rakesh Agrawal
Data Insights Laboratories

ragrawal@acm.org

Behzad Golshan
Boston University

behzad@cs.bu.edu

Evangelos Papalexakis
Carnegie Mellon University
epapalex@cs.cmu.edu

ABSTRACT
A study plan is the choice of concepts and the organization and se-
quencing of the concepts to be covered in an educational course.
While a good study plan is essential for the success of any course
offering, the design of study plans currently remains largely a man-
ual task. We present a novel data-driven method, which given a
list of concepts can automatically propose candidate plans to cover
all the concepts. Our method uses Wikipedia as an external source
of knowledge to both identify which concepts should be studied
together and how students should move from one group of con-
cepts to another. For our experimental validation, we synthesize
study plan for a course defined by a list of concept names from
high school physics. Our user study with domain experts finds that
our method is able to produce a study plan of high quality.
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ABSTRACT
An enduring issue in higher education is student retention to
successful graduation. National statistics indicate that most
higher education institutions have four-year degree comple-
tion rates around 50%, or just half of their student pop-
ulations. While there are prediction models which illumi-
nate what factors assist with college student success, inter-
ventions that support course selections on a semester-to-
semester basis have yet to be deeply understood. To further
this goal, we develop a system to predict students’ grades
in the courses they will enroll in during the next enroll-
ment term by learning patterns from historical transcript
data coupled with additional information about students,
courses and the instructors teaching them.

We explore a variety of classic and state-of-the-art tech-
niques which have proven effective for recommendation tasks
in the e-commerce domain. In our experiments, Factoriza-
tion Machines (FM), Random Forests (RF), and the Person-
alized Linear Multiple Regression model achieve the lowest
prediction error. Application of a novel feature selection
technique is key to the predictive success and interpretabil-
ity of the FM. By comparing feature importance across pop-
ulations and across models, we uncover strong connections
between instructor characteristics and student performance.
We also discover key differences between transfer and non-
transfer students. Ultimately we find that a hybrid FM-RF
method can be used to accurately predict grades for both

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.
†Corresponding Author.

new and returning students taking both new and existing
courses. Application of these techniques holds promise for
student degree planning, instructor interventions, and per-
sonalized advising, all of which could improve retention and
academic performance.
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ABSTRACT
Although thousands of students enroll in Massive Open
Online Courses (MOOCs) for learning and
self-improvement, many get confused, harming learning
and increasing dropout rates. In this paper, we quantify
these effects in two large MOOCs. We first describe how
we automatically estimate students’ confusion by looking
at their behavior clicking on course content and
participating in the course discussion forums. We then
apply survival analysis to quantify the impact of confusion
on students’ dropout. The results demonstrate that the
more confusion students express themselves and the more
they are exposed to other students’ confusion, the sooner
they drop out of the course. We also explore the effects of
confusion expressed in different contexts and related to
different aspects of courses. We conclude with implications
for the design of interventions to improve student retention
in MOOCs.
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ABSTRACT
There has been an explosion of digital sensors of learning.
Some are in bespoke learning applications. But many more
are in every aspect of our lives. This paper takes a human-
centred view of EDM for lifelong, life-wide learning, where
EDM enables people to harness that data. This view in-
cludes formal education. But it goes beyond that, to the
complex, multi-faceted, ill-defined and long-term learning
needed to work towards the most important goals in our
broader lives. Some of the most important of these goals
are lifelong and are critical for aspects as diverse as health
and wellness, responsible citizenship or working effectively
with other people.

The paper begins by considering the stakeholders for EDM.
It then presents three longitudinal case studies from my re-
search on supporting learning of complex skills. Drawing on
these, the analysis that follows presents lessons learnt and
a wish list and vision for future EDM directions towards
human-centred EDM.

Keywords
Lifelong learning, life-wide learning, educational data min-
ing, user control, student modelling, learner modelling, per-
sonal data, privacy, provenance, user control, business ana-
lytics, learning analytics, personal informatics.

1. INTRODUCTION
Technology that can support learning is now pervasive. This
has created an explosion of opportunities for life-wide and
lifelong learning. One important part of that is formal learn-
ing and that has dominated decades of AIED and ITS re-
search. Even this happens in diverse contexts, from physi-
cal classrooms to nearly every other place. But it goes well
beyond formal learning. The pervasiveness of technology
means that we have a rich digital ecosystems. This includes
devices that we wear and carry as well as those located and
embedded in our environments. From an EDM perspective,

this provides many streams of digital footprints that might
be harvested to support learning. The potential these offer
has created the EDM community [9] as well as many others,
such as learning analytics [53] business analytics [37] and
personal informatics [38].

Figure 1 illustrates one way to think about EDM as the
transformer of sensor data into the learner models that can
support learning. The top of the figure shows a person called
Mykola1 who uses many digital tools and devices. For exam-
ple, Mykola may interact with a collection of maths tutoring
applications, perhaps over many months or even years, using
various desktops, tablets and smart phones. Viewing each of
these applications as sensors that collect data about Mykola,
the figure distinguishes two classes of EDM transformations.
At the left are the transformations that feed into the learner
model for this individual learner. At the right are those that
aggregate the data from collections of learners. The thinner
grey lines, numbered 1 to 4, are classic EDM, interpreting
raw sensor data to add it to a learner model of the individual
learner (1) and then reasoning on it (2) and the correspond-
ing actions for aggregate models for a collection of learners
(3 and 4). Of course the whole point of EDM is to create
learner models that are to be used. So the lines 1 and 3 are
bidirectional. This reflects the times that the learner model
serves information to an application. Creating individual
and aggregate learner models may draw on diverse methods
and infer aspects that include the learner’s knowledge, as
well as other critical factors, such as motivation [36].

Over the many years of Mykola’s maths education, current
EDM approaches produce many learner models. This is
what we have seen in over 25 years of AIED research. The
learner model has typically been just one part of just one
application. It has often been short-lived, perhaps just the
single session of a research study. That is changing in two
important ways. Learner models are becoming first class
citizens and they are becoming long-term.

One driver for learner models to transition to first class
citizen-ship follows from our understanding of their direct
value for learners when there is a user interface onto them.
This has long been called an Open Learner Model [12] and,
more recently, similar interfaces are called learning analytics
and dashboards [53]. At a quite different level, learner mod-

1Thanks to Mykola Pechenizkiy, President of International
Educational Data Mining Society for agreeing to be every-
man in this image.
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Figure 1: EDM as transformer: from sensor data to
learner models as first class citizens

els should have independent standing so that an application-
program interface, API enables multiple applications to re-
use the same learner model. This is a quite different form of
openness that is potentially valuable for long term learning.
Both these aspects of openness should be designed from a
human-centred foundation.

Consider Mykola’s broader learning, in areas such as health
and wellness. He might use various tracking devices and
coaching applications over the long term. The trackers can
capture data about aspects like his food intake, physical ac-
tivity, weight, rest pulse and stress. All of these could serve
as sensors for a steadily growing and rich learner model.
His interactions with various coaching systems could pro-
vide data to model aspects like his metacognitive skills, as
he uses each coach to set goals, self-reflect and self-monitor.
For life-long goals for good health, Mykola’s learner model
needs to be kept over the long term, accumulating and min-
ing data from many sensors. Equally, a long-term model
representing stable traits, such personality, could be re-used
by multiple personalised learning applications [15].

Mykola’s sensor data and associated learner model is his
personal data. People typically want to be able to control
such data and its use, as reflected in privacy legislation [34].
User concerns and needs around privacy are important and
complex. EDM’s learner models may represent aspects that
are quite sensitive. These include stable attributes like per-
sonality as well ephemeral, sensed attributes such as atten-
tion [17]. The aggregated learner model at the right side of
Figure 1 has been at the core of EDM research. It is well
understood that Mykola’s data in these models needs to be
treated with care. This is typically achieved with forms of
de-identification so that the data actually kept is divorced
from the user.

Let us now turn to the lower part of the figure. This de-
picts several people, in several roles, interacting with suit-
able interfaces onto these learner models. Some important
stakeholders include:

1. builders of ITS/AIED systems;

2. the individual learner;

3. the classroom teacher, parent, mentor, peer learner or
other supporter for the learner;

4. administrators, governments and learning“accountants”.

5. learning scientists;

In the box above the people, the figure shows four classes of
user interfaces onto learner models. The first, already men-
tioned, is the Open Learner Model or learning dashboard.
Appropriate forms of these are useful for each stakeholder
group. The system builders need them to help understand
and debug their systems. Appropriately designed interfaces
onto individual and aggregate learner models can be used as
part of the learning process by the next three groups. The
individual learner and their support team are particularly
concerned with the individual learner model, although ag-
gregate models can put this in context and help these stake-
holders interpret it. The Learning Analytics community has
introduced such interfaces for stakeholders at the institu-
tional level with dashboards for administrators. These have
much in common with dashboards used in many fields [56,
21]. Learning scientists have a quite different perspective.
With their psychology focus, they can use interfaces onto
aggregate models to display how people learn, with the ex-
emplar being an increasingly refined understanding of for-
getting curves [6].

The figure also highlights other roles. There is an under-
explored EDM role for human-in-the-loop systems. Cer-
tainly system builders do some of this when debugging. OLMs
and dashboards have provided simple interaction to support
this role for the learning process stakeholders. The third
class of interface shown in the figure is the metacognitive
scaffolding that is needed for individual learners because self-
reflection, self-monitoring and planning are hard for many
people. Finally, the figure show a class of interfaces that
enable people to control their own data and provenance. I
return to these after the case studies in the next section.

2. CASE STUDIES
This section overviews three strands of my research. The
first aimed to help students learn group work skills. These
are complex and they require many skills. For example, ef-
fective group work relies on communication, including lis-
tening skills. Long term group work demands consider-
able self-regulation so that the individual and the group can
plan, monitor and reflect on progress. It involves learning
leadership skills, which is important for effective teams [51]
The second case study is in computer supported collabora-
tive learning, a common feature of classrooms. The third
concerns design and management of the curriculum for long
term learning of generic skills across a university degree. All
three cases take a human-centred approach to tackling some
of the many parts of the complex puzzle of EDM to support
lifelong and life-wide learning.
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Long term asynchronous group work
Team work skills are important in many contexts. They
are so common in the creation of software that computing
degrees have a capstone software engineering project. Typi-
cally, students work in small teams over a semester to create
a substantial software artefact that meets a clients’ needs.
It is common practice for such teams to use a platform that
supports the management of the code and other files as well
as the team processes. (Just a few of the many platforms
include GitHub2, trac3 and BitBucket4). These platforms
provide rich sensor data about the group behaviour. This
case study involved use of trac. We explored how to harness
the data about each team member’s use of its core tools, a
wiki, the ticket system (called issue tracker in other systems)
and the version control system (svn in our case). In terms of
Figure 1, these three media were the sensors and we wanted
to build a model of each individual in the team and make it
available to them and their teachers. We wanted to trans-
form the huge amount of data from the sensors (thousands
of actions over the three months of the semester) into an
OLM.

Figures 2, 3 and 4 illustrate three key stages in our work to
create effective OLM interfaces. We began by creating sev-
eral presentations that were in the spirit of the interaction
diagram shown in Figure 2. These were inspired by social
translucence visualisations [19]. Each circle represents one
team member (the figure has anonymised the display, remov-
ing the names that were near each dot). So, for example one
user is represented by the pink dot at 2 o’clock. The lines
between the dots indicate how much that pair of people in-
teracted on the wiki. This is based on a measure of each
person’s contributions to the same page. For example, stu-
dents were advised to create a page for their weekly meeting
minutes, with each team member reviewing this and adding
a comment, to indicate agreement or identifying problems.
If the whole team did this, we would see connections between
every pair. In Figures 2, it is striking that the green dot at 7
o’clock is not connected to any others. Worse yet, the green
dot represents the person who was supposed to be the team
manager. This diagram highlights a potential problem! In
practice, these diagrams proved valuable because problems
like this became apparent. So long as they were available
early enough, and used appropriately in the teaching (not
for assessment), they facilitated valuable discussions within
the team and with their teachers.

The interaction diagrams and activity diagrams, one for each
of the media (wiki, tickets and svn) were our starting point.
These were useful for a single point in time. Our next step
was to create an OLM showing the long term model. We
particularly wanted to be able to see changes. For example,
we needed to see what happened after we had identified and
tried to remediate a team problem like that of the manager
in Figure 2. Our next step was the Wattle Tree visualisation
[31], like the example shown in Figure 35. Each green ver-
tical line is one team member. (There are 6 in the figure.)
Each day’s wiki activity appears as a yellow circle to the left

2https://github.com/
3https://trac.edgewall.org/
4https://bitbucket.org/
5The Australian Wattle Tree has small round balls for flow-
ers and they appear in clusters as in the figure.

Figure 2: Simple EDM, showing interaction between
team members

of the person’s line. Each svn action is an orange circle to
the right of their line. The size of the circle is a logarithmic
function of the count of actions or code lines committed.
The green lines are ticket actions. Defining a new task is
a dark green line on the left. Completing an allocated task
gives the light green ones at the right. This figure shows
a high functioning team, with very active leadership by the
person on the second line. The rightmost user is clearly
less active. The almost barren area towards the top was
the semester break. This group was doing well enough that
they took a break at that time. This OLM proved useful in
the hands of a skillful teacher and team leader. But it was
fragile in that weak teams did not use it very well without
considerable mentoring. It was also flawed as an interface;
the idea of the wattle tree was cute, but it was somewhat
forced, difficult to extend and the metaphor does not match
the learning goals well.

Our next step was the Narcissus interface [54], shown in
Figure 4. Now each user is a block (5 of them in them in the
figure). As the legend at the upper right indicates, these
show the three media as squares, coloured purple (wiki),
blue (svn) and green (tickets). The brighter each square, the
more that user did that day on that medium. The bottom
of each block shows a cumulative picture for that individual,
compared to the team average (grey). Narcissus used quite
simple EDM measures, pure counts of actions. But it added
scrutability, with the user able to configure how the simple
sensor counts map to the colour intensity.

Even more valuable, each cell is interactive. In the figure,
the user has clicked a blue (svn) cell and the details are
available at the right. This lists details of, and links to, all
the changesets to the code checked in by that user on that
day. So we now transform the OLM into a navigation tool.
This was invaluable for tracking down the details as needed.

A parallel stream of this work explored more sophisticated
EDM methods [32, 50] for a cohort of 43 students in 7
groups. The sensor data was 1.6 megabytes in mySQL for-
mat, with over 15000 events. With a combination of ex-
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Figure 3: Simple EDM, in a Wattle Tree, showing
daily actions by each user on each medium

Figure 4: Simple EDM, with Narcissus, a much bet-
ter and interactive interface onto daily actions by
each user on each medium

ploratory and theory-driven approaches, we discovered use-
ful measures of aspects of group and individual behaviour.
For example, we identified patterns that are associated with
effective leadership. Whether a group’s nominated leader
exhibited these was predictive of the effectiveness of the lead-
ership. For example, one nominated leader failed to exhibit
those patterns, but rather had the pattern of a pure devel-
oper, with others having some of the leadership patterns. In
fact, the leader was trying to do much of the programming
alone, neglecting group management. Other team members
tried to fill the leadership void. Promisingly, the group-role
patterns were established early in the semester. This is im-
portant for remediation. These results also gave the teach-
ers guidance on aspects to teach students and indications
of how to better guide them. However, we never translated
this more complex approach into an OLM, like Narcissus.

So what did we learn from creating and using the OLMs?
They relied on very simple mining of the raw sensor data,
just counting actions. And that worked well. In the case
of the wiki, actions on the same page were interpreted to
model interaction and we used even simpler counts of all
ticket actions and lines of code committed. With Narcissus,
we transformed this simple data mining into an interactive
OLM that supported navigation of the complex information
space and this was heavily used in meetings between the
tutor and each team and in helping groups with problems.
We contributed the Narcissus code to the open source trac
project’s Track Hacks and used it for several years (until we
stopped using trac). We know anecdotally that our students
asked for Narcissus to be installed for use in other classes
using trac. But there ends it deployment. We are not aware
of any team programming environment that provides com-
parable facilities to model group health. We fell short of
any deployment of the complex data mining approaches. It
would be excellent to see them integrated into a future ver-
sion of Narcissus-like tools. That will require design of suit-
able interfaces. It will be challenging to do this and maintain
the Narcissus philosophy of user control. In summary, this
sequence of work explored how to harness the digital foot-
prints of teams using trac-like tools and demonstrated the
power of simple measures in OLMs and the promise of more
sophisticated mining.

Collocated collaborative learning
This case study continues the exploration of how to harness
data about groups to inform learning. But we now move to a
collocated context (rather than the above asynchronous long
term collaboration). This work was inspired by the poten-
tial of interactive tabletops to provide a new way to support
small group work. This is because small groups commonly
work at a table, and tabletops offer a shared interactive can-
vas. From an EDM perspective, tabletops offer new sensors
of collocated collaboration.

Figure 5 shows users in one of our lab studies. This group of
three students is doing a collaborative learning task. Each of
them had previously worked individually to create a concept
map summarising their understanding of provided learning
material. Then they came together to create a joint map.
We had considerable sensor data: the tabletop touches, so
we could determine which learner did each action; the speech
captured by the microphone that is visible at the front mid-
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Figure 5: Lab study of small group creating a con-
cept map collaboratively

Figure 6: Group health sophisticated dashboard

dle of the table; the initial individual maps, the final group
map and all the intermediate states.

To harness all that data, we used data mining to build a
model of the quality of the collaboration [45, 44]. Figure 6
shows a set of visualisations for these. The dial at the left
summarises how well the group is collaborating [41]. This is
left of centre, indicating somewhat poor collaboration. The
transformation of sensor data to produce this single measure
are complex. They use a model learnt from measures derived
from video analysis and the automatically collected sensor
data. The other two figures are versions of the interaction
and activity diagrams from our earlier work. The middle one
shows interactions, such as one user working with interface
elements created by another user. The right one shows the
level of activity for each user in terms of tabletop touches
and speech with both of these highest for the yellow user
near 12 o’clock. The left collaboration dial is inscrutable; we
never attempted to create an explanation or justification of
it for use by a teacher. However, the two simpler diagrams
do help as they show elements that use some of the same
sensors as that measure.

The tabletop lab work seemed promising. So we then ex-
plored how to move it to an authentic classroom, such as
shown in Figure 7 [43, 42]. Under the real time and cur-
riculum pressures of a classroom, the teacher wanted to har-
ness the tabletops and an OLM to track each class group’s
progress on the content learning objectives for the class,
rather than our inscrutable models of collaboration. This
led to the design of the dashboard shown in Figure 8 [41].
The tabletop activity data was used to create models of each
group. The OLM for these can be seen at the right of the
dashboard. This has a set of bar chars, each group in a dif-
ferent colour, with one bar for each student. This shows a
count of the number of propositions that student has cre-

Figure 7: Classroom of interactive tabletops

Figure 8: Simple dashboard

ated. The darker part of the bar shows propositions match-
ing ones the teacher had defined. Other propositions that
students created are indicated in the light parts of each bar.
Under the pressure of classroom teaching, even such simple
OLMs were more effective when there were alerts to help
the teacher see which group seemed to most need attention
[42].

So what did we learn? We showed that sophisticated EDM
resulted in a model of how collaborative a group was. This
black box result has the potential to be valuable information
for a classroom teacher. When they need to spend time with
one group, they cannot be closely following all of others. So
this measure might be helpful when they finish working with
one group and need to decide which group most needs their
attention. In practice, when we moved to a real classroom,
the teachers saw a greater need for simpler measures about
the learning activity. The EDM could both provide these
in an OLM and drive the alerts to help them quickly decide
how to split their time between the groups.

Modelling generic skills over 3-5 years
This case study was driven by two key demands. The first
was to improve the design of a university curriculum, with
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Figure 9: Aggregate long term learning model of
generic skills and potential sensors

a particular focus on systematic building of generic skills,
such as group work and communication. A second driver
was the needs of accreditation of engineering and IT degree
programmes. A human-centred perspective was essential.
This is because a whole university degree involves hundreds
of academics. We needed all of them to contribute to the
project by using our system effectively. More importantly,
they control the actual classroom teaching.

We created CUSP [25]. This supports definition of the ontol-
ogy for the generic skills in the whole of a university degree
that runs from 3 to 5 years. CUSP also supports mapping
the core ontology, from the university (and faculty) learn-
ing outcomes, to each of multiple accreditation standards.
It provides views of the curriculum, in terms of these on-
tologies. CUSP has been in use for several years at the
University of Sydney. Indeed, although it was initially de-
signed for use by academics to manage the curriculum design
and accreditation processes, it has been repurposed for use
by students. This means it used daily, with thousands of
students relying on it in Sydney6.

From the perspective of Figure 1, CUSP provides the ontol-
ogy for an aggregate learner model. The interfaces enable
an individual teacher to see their subject in terms of this on-
tology. The academics responsible for a whole degree have
interfaces that show the big picture. For example, Figure 9
shows the seven broad classes of generic skills that are as-
sessed at each of the five levels. This defines the intended
learning outcomes and level of each across the degree.

Key to the success of CUSP was its mapping of the generic
skill ontologies, from the institutional one, as in the figure,
to several used by external accreditation bodies. This was
based on a very simple approach. There is a mapping only
between these ontologies. Each subject co-ordinator maps
their detailed learning objectives against the institutional
ones. The approach assumes this will correctly translate to
the various accreditation ontologies. In practice, our evalua-
tions indicated this worked well [22, 25]. When we examined
the small proportion of errors, most were due to the lecturers
incorrectly coding against the institutional ontology.

CUSP’s ontology is hand crafted centrally with individual
teachers mapping their subject against it. This worked well

6and thousands more use a commercial version called U-
Improve http://www.u-planner.com/products/u-improve

for generic attributes. We explored how to take this ap-
proach further, to deal with subject matter content. We did
this in the context of the Programming Fundamentals se-
quence of subjects in Computer Science. These are intended
to build and develop skills and knowledge, with students
reaching higher levels of mastery over several subjects and
several years. The result was ProGoSs [23]. This enabled
teachers to map either their subject description of their exam
against a standard curriculum, such as ACM 2013. Our ed-
ucators found exam mapping easier. ProGoSs provided a
framework, or ontology, for a learner model. Notably, teach-
ers needed to augment the standard concepts. This is partly
because standard curricula need to be framed in general
terms. By contrast, an actual subject learning objectives are
linked to aspects like the particular programming language,
as well as very fine-grained or new concepts. The actual
exam became the sensor. The marks for each question were
added to the individual learner models. This detailed learner
modelling has considerable potential for EDM or learner an-
alytics if combined with other information about the indi-
vidual learner. ProGoss was tested over multiple subjects in
multiple institutions. But it has not been in broader use.

A similar approach is being incorporated into tools like Grade-
scope7. The demands of accreditation, linked to the process
of grading exams, seem potential drivers. The human fac-
tors will be critical for real world deployment. These include
interfaces that make it easy to create the learner model and
it will rely of the value of the learner models for the stake-
holders.

In both CUSP and ProGoSs, the main stakeholders were the
custodians of the curriculum, both at the level of the degree
and the individual subject. CUSP has been repurposed for
student use because its curriculum role meant that it en-
coded considerable detail of each subject and how it fits into
the degree programme. ProGoSs, as a research prototype,
foreshadows the potential for tracking fine-grained learning
progression.

3. LESSONS LEARNT, FEARS, VISION
The stakeholders identified in the introduction all share the
need for EDM to provide evidence-based insights about learn-
ers. But there are important differences. In terms of Figure
1, the individual learner model and the aggregate models
have different roles. By contrast, the learning scientists are
concerned with the aggregate models only. For all the stake-
holders aiding the individual learner, that learner’s individ-
ual learner model is key. But these stakeholders also need
an aggregate model, to make sense of the individual one.
For example, for a learner to judge their progress, they may
want to compare the learning model against those of success-
ful students – where some students want to compare against
bare pass students and others against the high achievers.

The builders of ITS/AIED systems need EDM to drive per-
sonalised learning. Learning scientists want to understand
learning more broadly. Both these roles reflect core goals of
AIED/ITS communities, from their foundations. Both are
well represented in current EDM research and in deployed
AIED systems.

7https://gradescope.com/
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But EDM can also give a quite different level of benefit. One
of these is the OLM or dashboard interface into a learner
model. As in Figure 1, EDM can be seen as any process
that transforms data from sensor of learning into a learner
model, where this is any representation of learners that is
intended to support learning. Then a suitable OLM (or
dashboard) has the potential to serve many purposes [12],
listed below an illustrated in terms of Narcisses.

• Improving the accuracy of the model − students could
set the counts that triggered colour changes;

• Supporting metacognitive processes of planning, mon-
itoring and reflection, with evidence supporting self-
awareness [52] − the group’s tutor played a key role in
useing the OLM to support individuals and the group.

• Facilitating collaboration or competition − the main
teachers used the OLM in meetings with the managers
from each group so each manager could use the OLM
to share their current challenges and actions;

• Facilitating navigation− with the OLM linking to each
sensor element;

• Respecting the learner’s right to access and control
their personal data, and their trust in the learner model
− all sensor data was accessible and controlled by the
students;

• Using the learner model as an assessment of the learner
− this was purely formative and was far too simplistic
to use directly to assess the learning objectives.

A human-centred view frames EDM in terms of the needs of
stakeholders. One such need is for interfaces onto the learner
models. This should also impact the design of sensors, the
way that they are processed, the design of learner models,
the ways that sensors contribute to them and the ways that
people can control and harness their own data. Taking this
perspective, what are the key lessons from the case studies?

Embrace simplicity, with care
Baker has suggested that we need “stupid tutoring systems,
and intelligent humans” [8] where this is possible because of
rich data-driven teaching system. This matches our experi-
ences. A human-centred perspective favours at least taking
serious account of the simplest approaches to the design of
each element of the EDM processes, as in Figure 1. All three
case studies indicated simple models were valuable and could
be deployed.

EDM can point to the need create new sensors. For example,
we concluded that we needed to link the tabletop touches
to the individual who did the touch. Tabletop hardware
generally does not support this (one exception being Dia-
mondTouch). To create this sensor, we integrated a Kinect
with the tabletop to provide a hardware independent way.
When EDM uses systems that were not designed for it, we
may need new sensors to support downstream simplicity of
the EDM. There is a need for this in MOOCs. These appear
to have been created without EDM as a core design driver.

So it is hard to link each sensor, for example video activ-
ity and MCQ responses, to learning objectives for learner
modelling [33].

CUSP has proved useful for curriculum management and its
very simple mapping of learning“ontologies”has worked well
in practice. ProGoSs has potential that has yet to be demon-
strated in a deployed system. For long term learner models,
our work with CUSP, ProGoSs and infrastructures highlight
the power of exploring simple approaches. Even these de-
mand effort to create effective interfaces and to carefully
take account for the pragmatics that will mean that people
will see it as worth investing the time needed to make use
of them.

In terms of Figure 1, simple interfaces onto simple learner
models have huge but under-exploited potential. The hu-
man, context, cultural and interface challenges are critical
and should underpin EDM design. There is a risk in taking
too narrow a focus or too simplistic approaches that miss
these [40]. Standardised tests and arbitrary data within ad-
ministrative systems are simple sensors to drive EDM to
produce aggregate models. But they also pose potential
risks for misuse, for example, creating pressure for teach-
ers and learners to focus on improving arbitrary measures
on whatever is readily tested even if these relate only weakly
to important learning outcomes.

Gaming-aware design
Gaming educational systems occurs when people subvert or
violate the use that was intended and is required to support
effecyive learning. We can expect gaming [3]. If we intend
EDM for real world use, beyond the lab, we need to consider
the drivers and opportunities for gaming by any and all of
the stakeholders. The direct sensor data and the learner
models of EDM are supremely “gamable” at many levels.

High stakes, simplistic use of learning data invites gaming.
Even quite low stakes system, such as an ITS with formative
assessment can have gaming [7] and there may be a fine line
between gaming and “help” [1]. ITS/AIED/EDM commu-
nities have amassed considerable experience of gaming both
in recognising it and using that to tackle it. This could be a
foundation for a checklist to help system builders inform de-
sign, by considering potential gaming throughout the EDM
process.

We detected gaming with Narcissus. For example, a student
was called to account in one class for their lack of recent
visible activity. In the following week, they appeared to
have considerable activity. The design of Narcissus, its use,
meant the group mentor simply clicked on each link to each
action, to navigate through the activity. When that revealed
trivial actions to create the appearance of activity, it created
a teachable moment! Narcissus’s simple measures, and its
scrutability, meant that students see how to game it if its
use is simple-minded. At the same time, its direct mapping
to navigation of the complex space of the trac site made it
easy for a teacher to scrutinise the actual activity.

One might expect that gaming would not occur in systems
for personal use alone. There would seem to be no point
in gaming the system. The learner would simply be fooling
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themselves, reflected in OLMs that are incorrect. Our earli-
est work aimed to provide a personal learning tool about a
text editor [14]. Even so, we discovered one (and only one)
user who tediously used the OLM interface to indicate they
knew a great deal. Their log of actual activity told a very
different story.

Our Personis learner model representation was robust against
this form of gaming. It kept all evidence from its sensors.
These were: log data use of the editor, with inferences trans-
lating this into a model of demonstrated knowledge; data
from the use of the OLM. The OLM used a resolvers to inter-
pret the evidence from the learner as more reliable than the
usage analysis. Other resolvers treated behaviour as more
reliable. Perhaps the OLM interface should have helped the
learner appreciate this.

Personal data-mining
It is currently difficult for people to mine their control data.
This is true on every level. It is often challenging to ac-
cess the data, be it at the sensor level or within a learner
model. Beyond that, it is difficult for a typical use to com-
bine sources of data and to analyse collections in useful
ways. Figure 1 shows interfaces for human-in-the-loop anal-
yses such as advocated for machine learning generally [2].
These approaches seem particularly important for personal
data mining so that the individual can annotate and pre-
process their own data, its interpretation and processing.

Reflecting its roots, EDM has substantial work in sophisti-
cated tutoring systems. Issues of personal data mining may
be less pressing in these. But for the many sources of sim-
ple sensor data, the Quantified Self community is already
exploring how to mine many forms of their own data, typ-
ically to gain self-awareness and often to tackle important
long term goals. The famous example of Nicholas Felton
[18] points to the huge amounts of diverse data that an in-
dividual can amass and then actually harness for their own
needs. Another example is lifelogging, for example based
on worn cameras [39] to collect rich personal data, requir-
ing sophisticated image processing to support personal data
mining.

When personal data mining is conducted by a learner, it has
the potential to play a key role in the metacognitive and self-
regulation processes. These are already central to the use of
data by the Quantified Selfers. We know that many learners
benefit from metacognitive scaffolding for such activities [5].
We need to explore how to create these.

It is unsurprising that mainstream data mining deals with
big data, and aggregate model for many people. For ex-
ample, Microsoft has a patent on personal data mining [48]
but this is actually about mining of personal-data. EDM re-
searchers are perfectly placed to lead initiatives in the quite
different task of personal data-mining. It calls for meth-
ods that can deliver useful insights with the relatively small
amounts of data of an individual.

Infrastructures for personal data-mining
Figure 1 hints at the infrastructures needed for the EDM
processes of lifelong and life-wide learning. The sensors it
shows are already embedded in the many technologies we

use across our lives. These include formal learning with
its plethora of devices and applications, ranging from the
LMSs to the thousands to specialised apps, videos and other
learning researches that can produce digital footprints.

Currently, the sensor data is splattered across many devices
that we own as well as in the cloud and managed by diverse
services that we do not control. When we explored how
people wanted such data managed [11], we learnt that most
people want to have control over it, even when they cannot
yet establish a use for it. If we are to make use of such
findings, we need to explore how to create infrastuctures
that can support people in bringing together their diverse
personal data. We will also need to tackle the HCI challenges
of creating interfaces that enable people to actually manage
their collected data and use it effectively.

One strand of my research has explored how to create an in-
frastructure for a lifelong learner model [30]. This is similar
to the vision recently proposed by Nye [47] where a learner
model becomes a web-service. My Personis family of learner
models can make flexible use of ubicomp sensors [13, 4]. A
central design goal was to support user control. So its rep-
resentation has hooks that interface designers need to create
interfaces that enable people to control data from the sen-
sors, in the learner model, including the reasoning within the
model and in all uses of the model by applications [29].

The infrastructure needed for lifelong EDM is similar to the
notion of a personal data vault [46]. The key difference is
that a learner model is more than a unified collection of sen-
sor data. It needs to be designed to answer questions that
matter to learners, either with direct access to the data, via
an OLM interface, or indirectly because it can be used ef-
fectively in one or more applications. This was a driver for
work, like CUSP and ProGoSs to help define the learner
model ontology, and mappings between multiple ontologies
[47]. In the case of CUSP, the ontologies were handcrafted.
But our ProGoSs work explored use of standard and widely
used resources, such as international and professional cur-
riculum specifications for the ontology of learning elements.
For the levels of learning, ProGoSs imported the definition
and associated tutoring elements to help classroom teachers
understand them. Our experiments with Bloom and Neo-
Piagetian learning taxonomies make it clear that teachers
can to learn to use these effectively [24]. This will enrich
progressive modelling of lifelong learning.

EDM has made real headway on this problem of infrastruc-
tures for aggregate models. For example, the DataShop [35]
has tackled infrastructure issues, providing standards for
representation, tools for analysis and interfaces. These are
valuable for the builders of ITS/AIED systems and for learn-
ing scientists. Learners may well be willing to contribute
their learner models to similar aggregate data stores in a
form of citizen science, so long as they have the assurances
they need about the management of their data, including
provenance metadata and privacy [20].

Interfaces for user control
System builders could consider how their design decision im-
pact user control. This is partly a matter of taking the
perspective of the learner, or other users, when building el-
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ements for EDM. For example, how can a learner define the
structure of their long term learner model? And then link
in the sensors? For the case of personal informatics sen-
sors, such as physical trackers, we have demonstrated that
a promising approach is to create interfaces for people to
define goals [10] and link various sensors to these. In our
user study, people could readily think about this data and
its use in terms of their goals. They could then link the goals
to various sensors, such as a FitBit, mobile phone app or a
smart cushion. This is one human-centred approach to the
design of control interfaces for infrastructures for EDM.

At a quite different level, scrutability could become a cri-
terion for the design of the EDM, as well as software ar-
chitectures [28]. These could then flow into a test-driven
approach for building EDM systems. For this, we need to
identify success measures that include interpretability of the
EDM processes and learner models [49].

Stealth assessment [55] is appealing since it enables a learner
to focus on learning, and getting assessment measures for
free. These approaches could be made compatible with user
control if the user is able to define what the systems that
can log, as has been done for computer use [27].

Conclusions
Figure 1 presented a view of EDM with sensors associated
with each learner, and EDM processes transform the sensor
data into learner models. This view highlights the individual
learner model, which holds only the data of one learner.
This is increasingly becoming a long term first class citizen,
independent of any one application, especially for reuse by
multiple applications [16]. The data within the EDM system
belongs to the learner (even if they may barely be aware of
that). An OLM can enable a learner to see and, perhaps,
also make good use of it. This personal EDM is catching on
in the Quantified Self community.

A human-centred view of EDM will raise the profile of all the
interfaces in the figure. One of these will scaffold metacogni-
tive processes, to help the learner make effective use of their
OLM. A quite different class of interfaces is needed to en-
sure learners can manage their learner models. It will be far
harder to graft these on, as an after-thought, to the EDM
processes. As we design and build each element of the EDM
processes, we need to consider this goal. For example, this
calls for consideration of how intelligible the processes are.
We may begin to measure the trade-off between the perfor-
mance of an EDM algorithm and how easy it is to explain
it in ways different stakeholders find satisfactory. It will re-
quire capture of provenance and support for people to use
this to define how they want their learner model used.

EDM and ITS/AIED have built strong foundations for ag-
gregate learner modelling. These fit well into our historic
core business of building personalised teaching systems, that
combine aggregate learner models with the individual learner’s
model. Aggregate models could be key EDM contributions
to learning science. They are also core for Learning Analyt-
ics, especially for use by teachers and the administrators.

Returning to the three cases studies, all relate to learning
complex skills that we develop over years. All involved lab

and deployed systems. All explored both simple and so-
phisticated EDM. The longitudinal group work had rather
conventional sensors, based on interactions with trac. The
tabletops involved more diverse sensors. The effectiveness
of that deployed EDM in the classroom relied heavily on
the ways that students and teachers used the OLMs. The
tabletop work was driven by the needs of classroom teachers,
with student interfaces still on the future work slate. CUSP
and PRoGoS explored infrastructures for long term learn-
ing, with key stakeholders being the curriculum caretakers,
both administrators at the level of the whole degree and the
teachers of individual subjects.

This paper has presented a reflection on three strands of my
research, with lesson learnt and how they might contribute
to a vision for EDM research. In terms of the sensors, the
learner models and the stakeholders, these case studies are
outside the mainstream of EDM. This seems set to change.
For example, Baker has comments that: “there is a discon-
nect between the vision of what intelligent tutoring systems
could be, and what they are ... between the most impressive
examples of what intelligent tutors can do, and what current
systems used at scale do”. He highlights the power achieved
by a human-centred approach, with extensive EDM inform-
ing the design and refinement of the ASSISTments system
[26]. One of the key lessons of the three case studies is that
we have much to gain from simplicity. It is important for
practical and useful deployments of systems. It should help
in the design of interfaces for scrutability. This paper has
argued for the need for a set of evidence-based guidelines
for EDM design that considers the many levels of gaming.
These must particularly help account for potential misuse of
learner models when a stakeholder group repurposes them.
I have proposed that we explore personal data mining, po-
tentially building links with the Quantified Self movement.
Finally, it calls for EDM research into practicalities of cre-
ating infrastuctures for EDM with associated interfaces so
people can control their data and associated EDM processes.
These are parts of a broad vision for EDM that supports
lifelong and life-wide learning.
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Mining patterns of events in students’ teamwork data.
In Proceedings of the Workshop on Educational Data
Mining at the 8th International Conference on
Intelligent Tutoring Systems (ITS 2006), pages 45–52,
2006.

[33] J. Kay, P. Reimann, E. Diebold, and B. Kummerfeld.
Moocs: So many learners, so much potential... IEEE
Intelligent Systems, (3):70–77, 2013.

[34] A. Kobsa. Privacy-enhanced web personalization. In
The adaptive web, pages 628–670. Springer, 2007.

[35] K. R. Koedinger, R. S. Baker, K. Cunningham,
A. Skogsholm, B. Leber, and J. Stamper. A data
repository for the edm community: The pslc datashop.
Handbook of educational data mining, 43, 2010.

Proceedings of the 9th International Conference on Educational Data Mining 19



[36] K. R. Koedinger, E. Brunskill, R. S. Baker, E. A.
McLaughlin, and J. Stamper. New potentials for
data-driven intelligent tutoring system development
and optimization. AI Magazine, 34(3):27–41, 2013.

[37] R. Kohavi, N. J. Rothleder, and E. Simoudis.
Emerging trends in business analytics.
Communications of the ACM, 45(8):45–48, 2002.

[38] I. Li, Y. Medynskiy, J. Froehlich, and J. Larsen.
Personal informatics in practice: improving quality of
life through data. In CHI’12 Extended Abstracts on
Human Factors in Computing Systems, pages
2799–2802. ACM, 2012.

[39] N. Li, M. Crane, C. Gurrin, and H. J. Ruskin. Finding
motifs in large personal lifelogs. In Proceedings of the
7th Augmented Human International Conference 2016,
AH ’16, pages 9:1–9:8, New York, NY, USA, 2016.
ACM.

[40] D. Y.-T. Liu, T. Rogers, and A. Pardo. Learning
analytics - are we at risk of missing the point? In
Proceedings of the 32nd Ascilite Conference, 2015.

[41] R. M. Maldonado, J. Kay, K. Yacef, and
B. Schwendimann. An interactive teacher’s dashboard
for monitoring groups in a multi-tabletop learning
environment. In Intelligent Tutoring Systems, pages
482–492. Springer, 2012.

[42] R. Martinez-Maldonado, A. Clayphan, and J. Kay.
Deploying and visualising teacher’s scripts of small
group activities in a multi-surface classroom ecology:
a study in-the-wild. Computer Supported Cooperative
Work (CSCW), 24(2-3):177–221, 2015.

[43] R. Martinez Maldonado, Y. Dimitriadis, J. Kay,
K. Yacef, and M.-T. Edbauer. Orchestrating a
multi-tabletop classroom: from activity design to
enactment and reflection. In Proceedings of the 2012
ACM international conference on Interactive tabletops
and surfaces, pages 119–128. ACM, 2012.

[44] R. Martinez-Maldonado, Y. Dimitriadis,
A. Martinez-Monés, J. Kay, and K. Yacef. Capturing
and analyzing verbal and physical collaborative
learning interactions at an enriched interactive
tabletop. International Journal of Computer-Supported
Collaborative Learning, 8(4):455–485, 2013.

[45] R. Martinez-Maldonado, K. Yacef, and J. Kay. Data

mining in the classroom: Discovering groupsâĂŹ
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ABSTRACT 
This study investigates how and whether information about 
students’ writing can be recovered from basic behavioral data 
extracted during their sessions in an intelligent tutoring system for 
writing. We calculate basic and time-sensitive keystroke indices 
based on log files of keys pressed during students’ writing 
sessions. A corpus of prompt-based essays was collected from 126 
undergraduates along with keystrokes logged during the session. 
Holistic scores and linguistic properties of these essays were then 
automatically calculated using natural language processing tools. 
Results indicated that keystroke indices accounted for 76% of the 
variance in essay quality and up to 38% of the variance in the 
linguistic characteristics. Overall, these results suggest that 
keystroke analyses can help to recover crucial information about 
writing, which may ultimately help to improve student models in 
computer-based learning environments.  
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1. INTRODUCTION 
Effective written communication is a complex socio-cognitive 
skill that is important for success in academic and professional 
settings [1-2]. The writing process relies on both lower- and 
higher-level knowledge and skills, ranging from knowledge of the 
language and domain to strategies necessary for generating 
inferences and flexibly adapting to different task demands [1; 3-5] 
Not surprisingly, then, the development of strong writing skills is 
extremely difficult and students consistently underachieve on 
national and international assessments of writing [6-8].  
The remediation of these writing deficits is a similarly challenging 
task. The development of writing proficiency demands that 
students have access to high-quality instruction that is attuned to 
their particular needs. Research on writing instruction finds that 
students attain the greatest benefits when they are provided 
strategy instruction, practice, and feedback [9-10]. In particular, 

deliberate practice is crucial for the development of writing skills 
[11] and has been shown to help students regulate the planning, 
drafting, and reviewing stages of writing [10]. This type of 
meaningful and mindful practice inherently relies upon 
individualized formative feedback—feedback that reveals and 
explains actionable steps that students must take to improve. 
However, in large classrooms, detailed and targeted feedback on 
multiple essay drafts per student presents a daunting challenge for 
teachers. 
Computer-based tools such as automated writing evaluation 
(AWE) systems have been developed to alleviate some of the 
pressures facing writing instructors [12]. At their core, AWE tools 
implement natural language processing (NLP) and machine 
learning techniques to accurately model the scores that expert 
human raters would assign based on the structure and content of 
students’ essays [13-14]. Additionally, many AWE systems and 
intelligent tutoring systems (ITSs) incorporate instructional 
elements such as lessons and practice games [15-16]. These 
modern systems extend beyond the assessment of essay quality to 
provide students with personalized feedback and 
recommendations for improvement. 
Although a wealth of research has been conducted to validate the 
accuracy of AWE scores, much less attention has been paid to the 
pedagogical and rhetorical elements of these systems. 
Specifically, critics often cite the lack of sensitivity to different 
audiences, rhetorical moves, and writing processes as serious 
areas of concern, which can lead to impersonal and ineffective 
instruction and feedback [17;18]. These critiques are valid and 
point to much needed future research. Accordingly, researchers 
and developers have begun to re-focus their efforts away from 
establishing the accuracy of scoring models and towards the 
improvement of the personalized and nuanced aspects of the 
feedback and instruction.  

To better detect and respond to differences among students’ 
writing processes and behaviors, we may need to embed 
assessments that are based on more than their written products and 
essay scores. These measures can be either visible or hidden from 
users (i.e., “stealth assessments”) [19], and can inform specific 
instruction and feedback that is tailored to students’ individual 
habits. In the context of computer-based learning environments, 
these assessments can be informed by a wealth of information that 
is easily logged within the system. Snow and colleagues (2014) 
[20], for example, developed stealth assessments of self-
regulation within a reading comprehension tutoring system. They 
found that the predictability of students’ choices in the system was 
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indicative of their self-regulation skill and influenced their 
performance on the learning task. Overall, such assessments may 
offer a viable solution to the writing process assessment problem. 
Both simple measures (e.g., typing speed) and complex measures 
(e.g., trajectories of mouse movements) might allow us to model 
the writing processes and characteristics of student users.  

In this paper, we examine the efficacy of behavioral measures that 
are accessible (but rarely collected or analyzed) in writing training 
systems to detect information about students’ performance on 
their essays. In particular, we examine whether basic and time-
sensitive keystroke indices can be used to model the scores and 
linguistic features of students’ essays. Our ultimate goal is to use 
these models to provide more individualized tutoring and 
feedback to students.   

1.1 Keystroke Analyses for Writing 
Keystroke data presents a potentially valuable approach for 
modeling students’ writing behaviors [e.g., 21]. Although 
researchers have made significant strides in leveraging the 
linguistic features of texts to understand writing quality, there has 
been substantially less research on students’ online or real-time 
writing processes. Due to challenges of data collection, prior 
writing research has focused primarily on students’ finished 
writing products and not their moment-by-moment writing 
processes. Recently, however, keystroke logging tools (i.e., 
software that records the keys individuals press while typing) 
have been applied to the study of writing [22]. These tools offer a 
viable way to study students’ actions as they compose and edit 
their essays. One such tool, InputLog, has been developed to 
interface with NLP tools, which enables analyses that synthesize 
both keystroke and linguistic data. 

Illustrative examples of the value of keystroke analyses stem from 
work on affect detection during writing [21; 23]. Writers’ 
affective states during writing—ranging from boredom and 
frustration to excitement and engagement—can have a significant 
impact on the writing experience and eventual products. However, 
these qualities may not be detectable from written products alone. 
How might keystroke patterns vary when writers are in a fluid, 
engaged “flow” state as compared to a frustrated struggle to 
generate ideas?  

In recent work, Bixler and D’Mello (2013) [21] have begun to 
explore such questions. They collected individual difference 
measures and keystroke data from student writers to detect online 
affective states during writing (i.e., self-reported affective states in 
15-second intervals). Their results indicated that a combination of 
behavioral (keystroke) measures and student-level indices was 
able to detect boredom, engagement, and neutral states between 
11% and 38% above baseline. Similarly, Allen et al. (in press) 
[23] combined individual difference, linguistic, and keystroke 
indices to predict engagement and boredom across writing 
sessions. Their results suggested that these three categories of 
indices were successful in modeling students’ affective states 
during writing. Indices related to academic ability, text properties, 
and keystroke logs were able classify high and low engagement 
and boredom in writing sessions with 77% accuracy. 

In sum, keystroke analyses hold the potential to reveal crucial data 
on students’ online writing experiences and processes that are 
normally invisible in product-based analyses alone. 

1.2 Writing Pal 
A long-term goal of our research is to improve personalized, 
adaptive learning and feedback within the Writing Pal (W-Pal) 
intelligent tutoring system [24]. W-Pal offers explicit strategy 
instruction, practice, and feedback for prompt-based persuasive 
essay writing for high school and early college students. Relative 
to other writing training systems (see [24] for a review), W-Pal is 
unique in its focus on explicit strategy instruction and its varied 
opportunities for practice (i.e., game-based strategy practice and 
essay writing practice). Strategy instruction is delivered via video 
presentations on canonical writing processes: prewriting, drafting, 
and revising. These videos feature virtual pedagogical agents who 
explain and demonstrate a variety of principles and strategies (see 
Figure 1 for a screenshot of the Freewriting Module). These 
lessons include: Freewriting and Planning (prewriting); 
Introduction Building, Body Building, and Conclusion Building 
(drafting); and Paraphrasing, Cohesion Building, and Revising 
(revising). After completing lessons, students unlock a suite of 
strategy practice mini-games. In these games, students reinforce 
their strategy knowledge through both generative and 
identification tasks. Game-based practice allows students to work 
on specific components of the writing process and strategies prior 
to applying them in a complete essay composition.   

 
Figure 1. Screenshot of the the Freewriting module 

1.2.1 W-Pal Essay Practice and Feedback 
W-Pal also gives students the opportunity to practice writing 
persuasive essays and receive summative and formative feedback. 
Writing takes place in a word-processing interface where students 
can view the prompt, a “scratch-pad” for brainstorming and 
outlining, and the writing space. Once the essays are submitted, a 
combination of formative and summative feedback is provided. 
Like other AWEs, W-Pal employs NLP tools to extract linguistic 
data from essays, and implements a series of algorithms to assess 
quality and guide feedback delivery. In analyzing the text, the 
system considers characteristics across a variety of linguistic 
indices. 
Summative feedback (see Figure 2) includes a holistic score on a 
1-6 scale, with descriptors representing each level (i.e. “Great”). 
Formative feedback (see Figure 2) is given both at the essay-level 
(i.e. length, relevance, structure) and section-level (i.e. 
suggestions to improve an introduction). This formative feedback 
is designed to be specific, actionable, and aligned to strategies 
taught in the lessons. For example, students who submit essays 
with weak conclusions may receive feedback about summarizing 
key arguments from the body paragraphs in the conclusion. After 
viewing the feedback, students can revise their essays. In the 
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revision phase, essay feedback is displayed adjacent to the writing 
space, facilitating uptake of the recommendations.   
Previous research evaluating the efficacy of the W-Pal system has 
found that this training results in improved essay scores, increased 
strategy knowledge, and improved revising strategies [15; 25-26].  

Figure 2. Screenshot of the feedback window 

1.3 CURRENT STUDY 
The current study investigates how and whether information about 
students’ writing behaviors within W-Pal can be recovered from 
basic behavioral data extracted from keystroke analyses. To this 
end, we calculate a number of indices based on the keystrokes 
pressed by student writers with the intent of modeling the quality 
and linguistic features of their essays. An overarching aim of this 
research is to develop online, stealth assessments of students’ 
writing processes that can inform new student models and system 
adaptivity. An increase in the sensitivity of W-Pal to students’ 
writing processes is expected to improve its ability to offer more 
nuanced and personalized feedback and recommendations.  

We collected timed, persuasive essays written by undergraduate 
students and scored using the W-Pal algorithm [27]. Linguistic 
properties of the essays were assessed via Coh-Metrix [28] and 
WAT [29], which are automated NLP tools that calculates text 
information related to lexical, syntactic, cohesive, and rhetorical 
properties. In addition, we logged keystrokes during students’ 
writing session and calculated measures related to the general and 
temporal properties of these keystroke logs.  

We hypothesized that these basic and time-sensitive keystroke 
indices would provide meaningful information about the writing 
processes enacted by students, which would subsequently relate to 
the quality and characteristics of their essays. 

2. METHODS 
2.1 Participants 
We recruited 131 undergraduate participants from a university in 
the United States, who received course credit. Students reported a 
mean age of 19.8 years, with 44.3% identifying as female, 64.1% 
Caucasian, 14.5% Asian, 7.6% African American, 7.6% Hispanic, 
and 6.1% as “Other.” Data for five students were lost due to 
computer error; thus, the final corpus comprised 126 essays.  

2.2 Data Collection Procedure 
Participants wrote a timed (25-minute), prompt-based, persuasive 
essay. Essay prompts resembled typical SAT items, and students 
were not allowed to proceed until the full 25 minutes elapsed. 
Students typed their essays in the AWE component of W-Pal and 

all keystrokes were logged along with millisecond timestamps. 
Essays contained an average of 412.3 words (SD = 159.9, min = 
47.0, max = 980.0).  

2.3 Essay Scoring 
Students’ essays were automatically scored using a computational 
algorithm that assigns scores on a scale from 1 (lowest) to 6 
(highest). This algorithm relied on linguistic features computed by 
Coh-Metrix, the Writing Assessment Tool (WAT), and Linguistic 
Inquiry and Word Count (LIWC). For more details on this 
algorithm, see [27].  

2.4 Text Analyses 
Linguistic properties of essays were assessed via two NLP tools: 
Coh-Metrix [28] and WAT [29]. These tools report hundreds of 
linguistic indices that relate to text structure, general readability, 
rhetorical patterns, lexical choices, and cohesion. For the current 
analyses, we selected four indices from Coh-Metrix and WAT that 
demonstrated theoretical ties to writing quality. We chose this 
limited number of indices to specifically examine whether and 
how the keystroke indices would map onto four key dimensions of 
the essays: lexical, syntactic, semantic, and cohesion.  
Word Frequency. Coh-Metrix and WAT calculate multiple 
indices that describe the specific types of words used in texts. 
Word frequency measures, for instance, are used to assess how 
frequently certain words occur in the English language. Coh-
Metrix reports indices of word frequency that are taken from the 
CELEX database. Additionally, Coh-Metrix reports the logarithm 
of word frequency for all words in a text. An index of log 
frequency is calculated because reading times are typically 
linearly related to the logarithm of word frequency rather than the 
raw word frequency [30]. For this reason, we chose to examine 
the log frequency of all words. 
Syntactic Complexity. Additionally, Coh-Metrix and WAT 
contain a number of indices that describe the properties of the 
sentences in texts, such as the frequency of specific parts of 
speech and the complexity of their syntactic constructions. 
Sentence complexity is assessed by multiple indices. More 
complex syntax is typically associated with higher quality essays 
[28] and recent evidence suggests that working memory capacity 
is linked to the production of more complex syntax [31]. Here, we 
used the index mean number of words before the main verb as a 
proxy for sentence complexity. 
Semantic Diversity. Semantic diversity refers to the number of 
unique concepts expressed in an essay. This measure is 
conceptually similar to measures of lexical diversity, but more 
strongly emphasizes the diversity of ideas rather than specific 
words. A semantic diversity score is calculated in WAT using 
Latent Semantic Analysis (LSA) [32] and is operationalized as the 
ratio of semantically independent concepts to the total number of 
word types in an essay.  
Global Semantic Cohesion. Global semantic cohesion is also 
calculated in WAT using LSA. Here, we used the index LSA 
(start-to-end), which calculates the degree to which the 
introduction and conclusion of an essay contain semantically 
similar information. We chose this index (rather than examining 
the semantic similarity between all the paragraphs) because 
higher-quality essays typically share semantic content in the 
opening and closing paragraphs, but bring in outside information 
in the form of arguments and evidence in the body paragraphs. 
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3. KEYSTROKE ANALYSES 
To investigate whether and how students’ writing behaviors were 
related to the quality and linguistic properties of their essays, we 
computed a number of keystroke indices. In particular, we 
calculated both basic keystroke indices (i.e., indices that were 
aggregated across the entire essay), as well as time-sensitive 
keystroke indices (i.e., indices that accounted for the temporal 
nature of the keystroke data). 

3.1 Basic Keystroke Indices 
Basic keystroke indices aggregated the number of specific writing 
events (e.g., pauses and backspaces) that occurred across an entire 
writing session. These basic indices are deliberate replications of 
indices from previous studies because they have been successfully 
used to model students’ affect during writing [21; 23]. Table 1 
provides an overview of these indices.  

Table 1. Basic Keystroke Indices 

Measure Description 
Verbosity Number of keystrokes per essay  
Backspaces Number of backspaces per essay 
Largest Latency Largest time difference between 

keystrokes during essay writing 
Smallest Latency Smallest time difference between 

keystrokes during essay writing 
Median Latency Median of all the differences in time 

between keystrokes per essay (not 
including initial pause) 

Initial Pause Length of the first pause of an essay 
writing session 

0.5 Second Pauses Number of pauses above .5 seconds and 
below 1 second 

1 Second Pauses Number of pauses above 1 second and 
below 1.5 seconds 

1.5 Second Pauses Number of pauses above 1.5 seconds 
and below 2 seconds 

2 Second Pauses Number of pauses above 2 seconds and 
below 3 seconds 

3 Second Pauses Number of pauses above 3 seconds  

3.2 Time-Sensitive Keystroke Indices  
Despite the importance of basic keystroke indices, indices that 
aggregate behavioral patterns over the course of an entire essay 
session can miss out on important temporal variability. For 
instance, consider the time series depicted in Figure 3. This plot 
shows the number of keystrokes pressed by one student writer 
within each 30 second window of a writing session. The student 
clearly did not maintain stable behavioral patterns throughout the 
writing session; instead, she engaged in periods of high and low 
activity. Analyses that are restricted to basic indices necessarily 
ignore this variability. We hypothesize that investigations into the 
temporal structure of the keystrokes (i.e., the distributions of 
events in time) will provide meaningful information about 
students’ writing processes beyond the basic aggregated measures.  

 
Figure 3. Variability of keystroke patterns for a single student 

 
Table 2. Time-Sensitive Keystroke Indices 

Description 

StDev 
Events 

Standard deviation of the number of events in 
each time window 

Slope 
Degree 

Slope of the linear regression applied on the 
time series 

Entropy Shannon’s Entropy calculated for the number of 
events in the windows normalized by the total 
number of events for the overall time series. If a 
student only typed in a single window, the 
entropy would be 0. When maintaining a 
constant typing rate, entropy converges toward 
the maximum value of log(n).  

Degree of 
Uniformity 

Uniformity of the time series (Jensen-Shannon 
divergence method), which is a symmetric and 
bounded function of similarity that calculates 
the similarity between two distributions: a 
uniform probability distribution of 1/n (i.e., a 
constant typing rate) and the probability of key 
presses in a given window (i.e., the actual time 
series produced by the student).  

Local 
Extremes 

Number of time windows for which the 
direction of the evolution of keystroke events 
changes. This reflects inconsistency in writing 
rates across the windows.  

Average 
Recurrence 

Average recurrence of events across the time 
windows. This recurrence is expressed as the 
distances between time windows that contain at 
least one keystroke event. This measure is 
useful for identifying writing pauses. If each 
time window has at least one event, recurrence 
is 0, whereas if students take long pauses that 
occasionally result in time windows of 0 events, 
recurrence increases (if they write every two 
time windows, recurrence will be one).   

StdDev 
Recurrence 

Standard deviation of the recurrence across the 
time windows 

Note: All time-sensitive keystroke indices were calculated 
using 30- and 60-second time windows. 

To this end, we calculated a number of new indices that we have 
classified as time-sensitive keystroke indices. These indices 
deliberately take the within-subject temporal distribution of 
keystroke events into account. The time series of keystrokes 
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generated during students’ sessions were first separated into non-
overlapping windows of 30 and 60 seconds to account for 
variability across different scales. These individual windows 
contained information about the number of keystroke events that 
occurred in each time window. The time-sensitive keystroke 
indices were then separately generated based on each of the two 
window intervals (see Table 2).  

3.3 Statistical Analyses 
Statistical analyses investigated whether basic and time-sensitive 
keystroke indices accounted for variability in student writing 
performance. Pearson correlations were first calculated between 
the holistic essay scores and the keystroke indices obtained from 
the writing sessions (see Tables 1 and 2). Indices that displayed a 
significant or marginally significant correlation with essay scores 
(p < .10) were retained in the analysis.  

Normality of the indices was assessed with skew, kurtosis, and 
visual data inspections, and no indices were removed based on 
these inspections. Range transformations (0-1) were applied to 
ensure that the keystroke and linguistic indices were on the same 
scale. Multicollinearity was then assessed among the indices (r > 
.90). When two or more indices demonstrated multicollinearity, 
the index that correlated most strongly with essay scores was 
retained in the analysis.  

A linear regression analysis1 was conducted using M5-prime 
feature selection to assess which of the remaining keystroke 
indices were most predictive of essay scores. To avoid overfitting 
the model, we chose a ratio of 15 essays to 1 predictor, which 
allowed for a maximum of eight indices to be entered in to the 
model, given that there were 126 essays included in the analysis.  

We first conducted the regression analysis on the entire corpus, 
and then validated the model using ten-fold cross-validation with 
shuffled sampling. In this cross validation analysis, the corpus 
was first split into 10 “folds” and each fold was individually 
removed from the corpus for each analysis and the remaining 
essays were used as the training set. We tested the accuracy of the 
linear regression model by examining its ability to model the 
omitted fold. The process was repeated until each fold was 
omitted once in the test set. This analysis therefore allowed us to 
test the model’s accuracy on independent sets of data (i.e., data 
that are not in the training set). If the overall model and the model 
generated by the cross-validation analysis are similar, our 
confidence in model stability is increased.  

Following this essay score analysis, similar follow-up analyses 
were conducted using the keystroke indices to predict the 
linguistic features of the essays. For these analyses, we followed 
the same procedure detailed above.  

4. RESULTS 
4.1 Keystrokes and Essay Quality 
Pearson correlations were calculated between the basic and time-
sensitive keystroke indices and students’ holistic essay scores to 
examine the strength of the relationships among the variables. The 

                                                                    
1 We investigated the usefulness of a number of regression and 

neural net techniques in the current study. However, due to 
space limitations, these models are not reported. In the end, we 
report the the linear regression models because this approach 
yielded the strongest and most stable models. 

correlation analysis revealed that there were 10 keystroke indices 
that demonstrated a significant relation with holistic essay scores 
and did not demonstrate multicollinearity with each other. To 
avoid overfitting the model, we only selected the eight indices that 
were most strongly correlated with essay scores. These eight 
indices are listed in Table 3. 

Table 3. Correlations between Essay Scores and Keystroke 
Indices 
Keystroke Index r p 

Verbosity 0.819 <.001 
Local Extremes (30s time window) -0.476 <.001 
Entropy (30s time window) 0.472 <.001 
Median Latency -0.436 <.001 
StdDev Events (30s time window) 0.397 <.001 
Largest Latency -0.359 <.001 
Backspaces 0.308 <.001 
StdDev Recurrence (30s time window) -0.297 = .001 

 

A linear regression analysis was calculated with the eight 
keystroke indices as predictors of students’ essay scores (score 
range: 1-6). This analysis yielded a significant model, R2 = .758, 
RMSE = 0.377, p < .001, with three variables that combined to 
account for 76% of the variance in the essay scores: Verbosity [β 
= 1.03, p < .001], Largest Latency [β = -.09, p < .001], and 
Backspaces [β = .39, p < .001]. The follow-up ten-fold cross 
validation analysis produced a significant model with similar 
statistics, R2 = .737, RMSE = 0.386.  

An interesting question is whether additional indices provided 
useful information about the essay quality once Verbosity was 
removed from the analysis. That is, including the total number of 
key presses may suppress the important role of other writing 
behaviors. We conducted a second regression analysis that 
excluded Verbosity. This regression yielded a significant model, r 
= .778, R2 = .606, RMSE = 0.482, p < .001. Six variables were 
significant or marginally significant predictors in the regression 
analysis and combined to account for 61% of the variance in 
students’ essay scores: StdDev Events (30s) [β = 0.529, p < .001], 
Entropy (30s) [β = 1.047, p < .001], StdDev Recurrence (30s) [β = 
-0.509, p < .001], Backspaces [β = 0.209, p < .01], Local 
Extremes (30s) [β = -0.176, p < .05], and Median Latency [β = -
0.141, p = .096]. As above, the cross validation model produced 
similar results, R2 = .588, RMSE = 0.534.  

In sum, these correlation and regression analyses indicate that 
better writers pressed more keys (both characters and backspace) 
over the course of their writing session. They also maintained a 
more consistent rate across the 30 second time windows (i.e., 
whether they typed or not within the individual time windows), as 
measured by Entropy, Local Extremes, and StdDev Recurrence 
indices, but exhibited greater variability in the number of 
keystroke events within the 30s time windows (StdDev Events). 
Additionally, these students’ keystroke logs were characterized by 
shorter pause times as measured both by the Median and Largest 
Latency indices. Taken together, these findings demonstrate that 
writing fluency—the ease and consistency with which writers 
generate text—is a key indicator of proficiency (e.g., [33]). This 
work both confirms and extends prior research by investigating a 
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feature of higher quality writing using process analyses rather 
than post-hoc linguistic analyses alone. 

4.2 Keystrokes and Linguistic Features 
Our second aim was to investigate whether keystroke indices were 
related to specific linguistic features of the essays. Pearson 
correlations were calculated between the keystroke indices and the 
four linguistic variables calculated by Coh-Metrix and WAT. 
These analyses were then followed by a regression analysis, and 
validated using ten-fold cross validation. The statistical 
information for these resulting models is provided below.  

Word Frequency. The word frequency regression analysis 
yielded a significant model, R2 = .185, RMSE = 0.179, p < .001. 
Three variables were significant or marginally significant 
predictors: 2 Second Pauses [β = -0.278, p < .01], Initial Pause [β 
= 0.203, p < .05], and 0.5 Second Pauses [β = 0.208, p = .06]. The 
cross validation model was significant, R2 = .204, RMSE = 0.187. 
Syntactic Complexity. None of the keystroke indices were 
significantly or marginally significantly correlated with the 
selected measure of syntactic complexity.  
Semantic Diversity. The analysis to predict the semantic 
diversity in essays yielded a significant model, R2 = .375, RMSE = 
0.123, p < .001. Five variables were significant predictors in this 
regression analysis: 1 Second Pauses [β = -0.379, p < .001], 
StdDev Events (30s) [β = -0.361, p < .01], Slope Degree (30s) [β = 
0.336, p < .01], Median Latency [β = -0.265, p < .05], and Local 
Extremes (60s) [β = 0.173, p < .05]. The cross-validation analysis 
yielded a significant model, R2 = .255, RMSE = 0.133.  
Global Semantic Cohesion. Analyses to predict global semantic 
cohesion based on keystroke data yielded a significant model, R2 
= .194, RMSE = 0.238, p < .001 with four significant predictors: 
StdDev Events (30s) [β = 0.477, p < .01], 3 Second Pauses [β = 
0.424, p < .001], Verbosity [β = 0.337, p < .01], and Median 
Latency [β = 0.307, p < .05]. The model produced by the cross-
validation analysis was significant, R2 = .160, RMSE = 0.244.  
The results of the linguistic analyses indicate that the basic and 
time-sensitive keystroke indices were meaningfully related to the 
linguistic features of students’ essays at multiple levels. Notably, 
however, the linguistic regression models were weaker than the 
essay score model, and the findings were less robust to the cross-
validation procedure.  

The model generated to predict semantic diversity was the 
strongest of the linguistic models. This analysis indicated that 
more semantically diverse essays were related to shorter pauses, 
with more variability at the 60-second time window (Local 
Extremes), but less variability at the 30-second time windows. 
The global semantic cohesion and word familiarity models were 
also significant with keystroke indices for both accounting for just 
under 20% of the variance in the linguistic properties. Finally, the 
syntactic complexity measure was not significantly related to any 
of the keystroke indices, indicating that perhaps behavioral 
patterns do not manifest in the different sentence structures 
produced by writers.  

5. DISCUSSION 
AWE systems provide an environment for students to receive 
writing instruction and engage in deliberate practice with 
summative and formative feedback [12]. Despite the general 
success of their scoring algorithms (e.g., [13-14; 27]), however, 
the pedagogical elements of these systems have much room for 

improvement. For instance, one major weakness of AWE systems 
is that they they typically only adapt to student users based on 
individual essay drafts. System developers tend to rely on NLP 
methods to examine the quality of students’ written products; yet, 
information about their behavioral processes is largely ignored.  

In the current study, we used system logs of keystrokes to develop 
online assessments of students’ writing performance. The 
behavioral processes enacted by writers are important elements of 
writing skill [1; 22]; therefore, our aim was to determine whether 
we could assess and model the quality and linguistic properties of 
students’ essays by calculating indices related to their typing 
behaviors. Basic and time-sensitive keystroke indices were 
calculated to analyze the behavioral patterns enacted by student 
writers. These indices provided information about writing 
processes at both the aggregate level (e.g., total number of pauses 
and backspaces) as well as information about how these behaviors 
unfolded over time. The results revealed that keystroke indices 
were able to model over three-quarters of the variance in students’ 
essay scores. Additionally, these indices were able to model the 
linguistic properties of the essays at multiple levels.  

The essay score analyses revealed that 10 keystroke indices were 
significantly correlated with students’ holistic essay scores. This 
is important because it indicates that information about the quality 
of students’ essays can be detected by analyzing their behavioral 
processes. Further, the two regression analyses revealed that the 
total number of keystrokes pressed by writers provided the most 
predictive power in the model, but that without this measure of 
Verbosity, the remaining indices were still about to account for 
61% of the variance in essay scores.  

These initial analyses of essay score indicate that fluency may be 
an important skill that is captured by the keystroke indices. In our 
study, the students who produced higher-quality essays were also 
more consistent in their typing (i.e., whether they typed or not) 
across the 30 second time windows, yet they had higher 
variability in the number of keystroke events they produced in 
these time windows. This finding suggests that these students’ 
writing sessions may have been characterized by short (rather than 
long) patterns of writing and pausing. Some confirmation for this 
intuition is found in the the negative correlations between essay 
score and pause times (i.e., Median and Largest Latency). 
However, future research will need to examine these writing-
pause patterns more closely. It may be the case, for instance, that 
short pauses are indicative of thoughtful writing, such as the 
search for appropriate words or phrases rather than “freewriting” 
behavior. Long pauses, on the other hand, may be indicative of 
mind wandering that warrants system intervention.  

Follow-up linguistic analyses similarly revealed important 
information about the role of behavioral processes in writing. 
These analyses first indicated that the basic and time-sensitive 
keystroke indices were significantly related to the linguistic 
features of students’ essays at the lexical, semantic and global 
cohesion levels, but not at the syntactic level. This indicates that 
keystroke indices may be picking up on specific meaning-making 
processes, rather than differences in cognitive factors, such as 
working memory capacity. For instance, semantic diversity 
represents the number of semantically related concepts that appear 
in students’ essays, which may map onto the differences in the 
content that students chose to include in their essays. Syntactic 
complexity, on the other hand, is much more weakly related to the 
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meaning of a particular text and, instead, may be indicative of 
individual differences in specific cognitive skills (e.g., [31; 34]). 

It is important to note that the keystroke indices accounted for a 
smaller amount of the variance in linguistic properties than in the 
overall essay scores. This suggests that variations in students’ 
behavioral patterns may manifest in the properties of students’ 
essays in different ways depending on the specific context. For 
instance, long pauses may be more indicative of cohesion if 
students are writing about an unfamiliar topic that requires more 
deliberate planning. On the other hand, if students are writing in 
response to a familiar or emotionally charged topic, it may be the 
case that essay cohesion will be associated with rapid typing with 
minimal pauses. The results of these follow-up analyses suggest 
that future analyses may need to use content-based information to 
make predictions about the relevance and interpretation of 
particular keystroke indices. Analytic techniques that allow the 
system to take past behavior and prompt content into 
consideration, for instance, could go a long way in improving the 
interpretability of these patterns.  

These results are promising and suggest that keystroke indices can 
be utilized to uncover important information about the behavior 
and performance of student writers. Here, we analyzed the 
keystrokes produced for a short, prompt-based essay task. In the 
future, additional studies will be conducted to specifically 
examine how these keystroke patterns map onto writing across 
different genres, contexts, and difficulty levels. For example, 
multiple writing sessions could be collected for each participant, 
with prompt difficulty, genre, or audience varying across these 
sessions. This research design would help to disentangle signals 
that vary across multiple factors, such as boredom and difficulty.    

Another area for future research lies in the calculation of more 
sophisticated keystroke indices, as well as the integration of 
keystroke indices with other system information. We used only 
keystroke indices as our predictors because we were interested in 
the degree to which simple behavioral measures alone could 
predict information about students’ essays. In future studies, it 
will be important to consider additional indices that may be 
related to the context of these writing behaviors. For instance, if 
we aim to model students’ engagement during writing, it will be 
important to collect additional information from our systems, such 
as their prior writing behaviors (e.g., on previous essays, or from 
original to revised drafts), as well as the linguistic content of the 
essays. 

The overarching goal of this research is to enhance AWE systems 
such that they provide feedback and instruction that is more 
attuned to writers’ processes. Eventually, we aim to be able to 
identify specific behavioral patterns associated with different 
writing processes, which will allow us to provide students with 
more pointed, online feedback and instruction. For example, 
through the combination of multiple keystroke indices, systems 
may be able to distinguish when students are experiencing 
writer’s block as opposed to when they are engaged in the task, 
but have paused to think. If writer’s block were detected, W-Pal 
could then ask students if they need help or offer specific 
strategies and practice opportunities for idea generation.   

Overall, our results suggest that time-sensitive behavioral data can 
(and, in our opinion, should!) be used to help drive more 
personalized feedback and instruction in computer-based learning 
environments. Although a number of future studies are needed to 

investigate how this keystroke information can be used most 
effectively, the current study takes a strong first step in revealing 
the power of these indices.  
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ABSTRACT 
Mind wandering (MW) reflects a shift in attention from task-
related to task-unrelated thoughts. It is negatively related to 
performance across a range of tasks, suggesting the importance of 
detecting and responding to MW in real-time. Currently, there is a 
paucity of research on MW detection in contexts other than 
reading. We addressed this gap by using eye gaze to automatically 
detect MW during narrative film comprehension, an activity that 
is used across a range of learning environments. In the current 
study, students self-reported MW as they watched a 32.5-minute 
commercial film. Students’ eye gaze was recorded with an eye 
tracker. Supervised machine learning models were used to detect 
MW using global (content-independent), local (content-
dependent), and combined global+local features. We achieved a 
student-independent score (MW F1) of .45, which reflected a 29% 
improvement over a chance baseline. Models built using local 
features were more accurate than the global and combined 
models. An analysis of diagnostic features revealed that MW 
primarily manifested as a breakdown in attentional synchrony 
between eye gaze and visually salient areas of the screen. We 
consider limitations, applications, and refinements of the MW 
detector.  

Keywords 
mind wandering; film comprehension; machine learning; eye gaze 

1. INTRODUCTION 
Mind wandering (MW) reflects an attentional shift from task-
related to task-unrelated thoughts [31]. MW is estimated to 
consume half of our everyday thoughts [19] and can occur at 
almost any time – driving down the road, eating a meal, or during 
a classroom lecture. There are some benefits to our innate ability 
to MW, specifically with respect to planning and creativity [34]. 
However, MW has some detrimental effects as well, particularly 
in the realm of education [30]. A recent meta-analysis across 88 
independent samples indicated that MW was negatively correlated 
with performance, and that the negative relationship was stronger 
for more complex tasks such as reading comprehension [26]. 
Given the negative impact of MW on learning [29, 30], it is 
important to develop attention-aware systems that can reorient 
attention when MW occurs [8]. However, these systems require 
reliable MW detection, which is the focus of this work.  

MW detection can be particularly challenging since MW is an 
internal state with few overt markers (unlike some emotions per 

se). It can even be difficult for people to realize when they are 
MW, as it can occur without metacognitive awareness [30]. 
Moreover, the onset and duration of MW cannot be clearly 
demarcated as with other disengaged behaviors, such as gaming 
the system or WTF (Without Thinking Fastidiously) behaviors [1, 
25].  

In the present study, we focus on detecting MW in the novel 
educational context of narrative film comprehension – a more 
complex task than self-paced reading where most MW detection 
efforts have focused on. We chose this task for two reasons. First, 
a large number of students from all over the world watch 
educationally relevant films and recorded lectures daily, 
particularly in the advent of massive open online courses 
(MOOCs). Second, MW is quite frequent in online video lectures: 
students report MW around 40% of the time while viewing 
lectures [29, 33], so there is considerable promise to detecting and 
responding to MW in this context. 

1.1 Background and Related Work 
Only one study (to our knowledge) has attempted MW detection 
while students viewed dynamic visual scenes, such as the 
narrative film we consider here. Pham and Wang [25] detected 
MW while students watched video lectures on a smart phone with 
a MOOC-like application and responded yes or no to thought 
probes during the lectures. They used student heart rate (extracted 
via photoplethysmography) to train classifiers to detect MW. 
They achieved a 22% greater than chance detection accuracy, 
thereby providing some initial evidence that MW detection is 
feasible in this context. 

Aside from [25], other MW detection efforts have been limited to 
self-paced reading. In one of the first MW detection studies [10], 
students read aloud and then paraphrased biology paragraphs. 
They were periodically asked to report zone outs during reading 
on a 1 (all the time) to 7 (not at all) scale. Supervised machine 
learning models trained on acoustic-prosodic features to classify 
between “high” (1-3 on the scale) versus “low” zone outs (5-7 on 
the scale) achieved a 64% accuracy. However, this study did not 
adopt a student-independent validation approach, so it is unclear 
how well their detector would generalize to new students. 

Other research has utilized log-file information to detect MW 
during self-paced reading. In one study [23], MW reports were 
collected via pseudo-random thought probes during self-paced 
computerized reading. Students responded either “yes” or “no” 
about whether they were MW at the time of the probe. Using 
textual features and reading behaviors from log-files, supervised 
machine learning models were able to detect MW with a 21% 
above-chance accuracy. Similarly, [12] attempted to predict MW 
during reading using textual features (e.g., difficulty, familiarity, 
and reading time), but it is not clear if their method, which utilized 
researcher-pre-defined thresholds, would generalize more broadly. 
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Researchers have also adopted sensor-based approaches for MW 
detection during reading. Blanchard et al. [4] used an Affectiva Q 
sensor to record both galvanic skin response and skin temperature 
while participants read texts on research methods and periodically 
provided MW reports in response to thought probes. Their models 
attained a kappa value of .22 using a combination of peripheral 
physiology and contextual features (e.g., page numbers).  

Eye gaze is perhaps one of the most promising modalities for MW 
detection due to the so called eye-mind link [27], which posits a 
coupling between eye movements and attentional focus. Several 
studies have thus built MW detectors using eye gaze features. The 
first study collected data from 84 students during self-paced 
reading of four texts on research methods [7]. MW reports were 
collected in response to thought probes triggered when gaze was 
fixated on predefined words on the screen. Supervised 
classification models were built from 27 gaze features and 
validated in a student-independent fashion. The authors achieved 
an accuracy of 60% after downsampling the data. Since 
downsampling was applied to both the training and test sets, it is 
unclear how the models would perform when presented with data 
that reflected the original skewed class distributions.  

Their work was extended using a larger dataset of 178 students 
from two different universities and a wider array of 80 features, 
including blink and pupil features [2]. Students also read four 
texts on research methods, and MW reports were collected in 
response to nine pseudorandom probes that occurred between four 
to twelve seconds from the beginning of a page of text. 
Supervised models were built using an extended feature set and 
were cross-validated in a student-independent fashion. The 
models achieved an accuracy of 72% (31% above chance) when 
validated with a test set that maintained the original class 
distributions.  Further, in [2], the authors provided evidence for 
the predictive validity of the model by showing that it predicted 
posttest scores at rates higher than self-reported MW, even after 
controlling for prior knowledge.  

The results from this study indicate that MW can be detected from 
eye gaze during self-paced reading with moderate accuracy. 
However, there is an open question about the use of eye gaze to 
detect MW in additional contexts– in particular, for more complex 
stimuli like dynamic visual scenes. One study [35] provided 
evidence that eye movements can be predictive of attention while 
viewing short video clips. In this study, participants watched 
video clips in two different conditions: (1) without any 
distractions (attending) and (2) while performing a mental 
calculation (not attending). Results indicated that eye movements 
toward pre-determined salient locations in the scene could identify 
the watching condition (attending vs. not attending) with a 80.6% 
accuracy, albeit this is not quite the same as MW detection.  

We should note that there is still some debate whether eye 
movements can be driven by salient features of the stimulus 
(exogenous control) or through conscious control (referred to as 
endogenous control). There is some research to suggest that eye 
movements are primarily driven by exogenous control. For 
example, previous research has shown that different viewers tend 
to fixate on the same locations [24], a phenomenon known as 
attentional synchronicity, which suggests exogenous control. 
However, other research pointed out that interesting objects are 
often the most visually salient [11]. Thus, it is possible that 
viewers fixate on the same locations because of top-down 
processes (endogenous control), as opposed to simply looking at 
what is salient. Additional evidence for endogenous control comes 
from a study which found that task instructions can have an effect 

on eye movements while viewing dynamic visual scenes [32]. The 
researchers found that participants looked at more peripheral and 
less visually salient areas of the scene when instructed in order to 
determine where the visual scenes were derived from compared to 
a general viewing task.  Thus, eye movements related to 
endogenous control might be particularly revealing about MW. 
The current study utilizes this idea to compute features that 
capitalize on the relationship between eye movements and 
visually salient regions in the film. 

1.2 Current Study and Novelty 
In this paper we present one of the first attempts to automatically 
detect MW during narrative film viewing in a manner that 
generalizes to new students. We leverage what has been learned in 
previous work using eye gaze to detect MW during reading, while 
also developing theoretically-grounded features to improve 
detection accuracy in this novel context. 

MW detection during film viewing poses unique challenges 
compared to reading, which has been the most common context 
for MW detection thus far. For one, eye movements are much 
more predictable during reading since the words on the screen are 
static. In addition, reading consists of fixations (periods where the 
gaze position is relatively stable) and saccades (rapid movements 
between fixations), while the dynamic nature of film also yields 
smooth pursuits (eye movements that follow a moving stimulus).  

Second, the film played continuously without any clear breaks, 
presenting an additional challenge for MW detection. This is in 
contrast to reading tasks, which are segmented by page breaks. 
Thus, a novel method was devised to segment eye gaze data into 
instances for classification.  

Finally, the dynamic nature of film allowed for novel content-
dependent features that can be computed from dynamic areas of 
interest (AOI). Unlike reading, AOIs are particularly meaningful 
in a film viewing context because of the distinctive visual content 
areas that dynamically change throughout a film.  In this study, 
AOIs were computed from both plot-related and visually salient 
regions.  

2. DATA COLLECTION  
This study utilized a subset of data reported by Kopp el. [21]. 

2.1 Participants 
Eye gaze data was collected for 60 undergraduate students from a 
private Midwestern university. Students were 20.1 years old on 
average and 66% of the students were female. 

2.2 Materials 
Students watched “The Red Balloon,” a 32.5 minute French film 
with few English subtitles (9 in all). The film was displayed on a 
computer screen with a resolution of 1920 × 1080. The film 
depicts the story of a young boy and a red balloon that follows 
him and can inexplicably move on its own. This film was chosen 
because it is unlikely that many students had previously seen it, 
which could have affected their propensity to mind wander. The 
film has also been used in previous film comprehension studies 
[36].  

All data were collected using a Tobii TX 300 eye tracker that was 
attached to the bottom of the monitor. Eye gaze was recorded with 
a sampling frequency of 120 Hz for the first 14 participants (due 
to experimenter error), after which the sampling frequency was 
adjusted to 300 Hz. This difference was taken into account when 
filtering the gaze data as discussed below. 
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2.3 Mind Wandering Reports 
Students were asked to self-report MW while they watched the 
film by pressing labeled keys on a standard keyboard. A short 
beep sounded to register their response, but the film was not 
otherwise interrupted. A self-caught MW report method was 
chosen as opposed to a probe-caught report method (where 
students are probed to report MW at pseudo-random intervals) in 
order to minimize disruption, which was critical as the film played 
without interruption.  

Students were asked to differentiate between two different types 
of MW using separate keys: either task-unrelated thoughts 
(thoughts completely unrelated to the film such as upcoming 
vacation plans) or task-related interferences (thoughts related to 
the task but not the content of the film, such as “This film is 
boring”). For the present analyses, both task-unrelated thoughts 
and task-related interference were grouped as MW. There was a 
total of 616 MW reports. On average, students reported 10.3 
instances of MW during the film (SD = 7.9l; Min = 1; Max = 31).  

2.4 Procedure 
Students were asked to sit comfortably at a desk in front of the 
monitor before beginning the eye-tracker calibration process. 
There were no restrictions on head movements, making the film 
viewing experience more ecologically valid than if a headrest was 
used. Students were randomly assigned to one of two conditions 
before the film started: in one condition, they read a short story 
explaining the movie plot [22] while students in the second 
condition read an unrelated baseball-themed story [1]. The 
experimental manipulations were part of a larger study and are not 
used here (more details can be found in [21]). Finally, students 
were given instructions for how to report MW and then the film 
began. Students completed a multiple choice comprehension 
assessment after viewing the film, but this data is not analyzed 
here. 

3. MODEL BUILDING 
3.1 Eye Movement Detection 
Eye gaze was converted to eye movements (fixations, saccades, 
smooth pursuits, etc.) in order to filter out some of the inherent 
noise in raw eye gaze data. We first averaged the raw data from 
the right and left eyes. A simple moving average filter was then 
applied to the gaze points in order to smooth the signal while 
retaining the same sampling frequency. The filter used a window 
size of five samples for the 120 Hz data and seven samples for the 
300 Hz data.  

Eye movements were detected using a velocity based algorithm 
[18, 20]. These algorithms generally use thresholds to classify 
gaze points as fixations, saccades, or smooth pursuits. The 
algorithm first classified gaze points with a velocity greater than 
110 degrees of visual angle/s as saccades. It then classified gaze 
points with a velocity lower than five degrees of visual angle/s as 
fixations. Any remaining gaze points were classified as smooth 
pursuits. The visual angle thresholds used were based on previous 
research [17].  

3.2 Film Segmentation 
Next, we segmented the continuous stream of eye gaze data into 
MW and non-MW segments. Each segment had three 
components: gap, window, and offset (see Figure 1). The gap was 
the number of seconds between adjacent segments and could be 
adjusted to change the ratio of MW to non-MW segments. The 
window was the portion of the segment used to compute features. 

The offset was the number of seconds between the MW report (the 
moment when the student pressed the key on the keyboard) and 
the end of the window. An offset was used in order to discard data 
affected by the student’s motion to press the key when reporting 
MW. An offset size of three seconds was deemed appropriate 
based on observation of recorded videos.  

The process began by creating a MW segment prior to each MW 
report (segment 2 in Figure 1). The data prior to the MW segment 
were then considered to be non-MW segments (segment 1) after 
accounting for the gap. There was no offset for non-MW 
segments as no key presses were involved. 

 
Figure 1. Hypothetical example of segmented data 

There were several considerations when choosing the window and 
gap sizes. The segment size (sum of the window, offset, and gap 
sizes) determined both the number of available instances 
(segments) and the MW rate as shown in Table 1. Models were 
built with segment sizes of 45, 55, and 65 seconds, resulting in  
MW rates that ranged from .256 to .323 and number of instances 
from 2401 to 1626, thereby allowing us to explore how these two 
factors affected classification accuracy. For each of these segment 
sizes, the window size was also varied. In all, we considered 
window sizes of 10, 15, 20, and 25 seconds. 

 

3.3 Feature Engineering 
A total of 143 features were computed from the window in each 
segment. We considered global features, which were independent 
of the film content, and local features, which were content 
specific. 

3.3.1 Global Features 
There were 88 total global features. Of these, 75 were computed 
from measures of the eye movements, including fixations, 
saccades, and smooth pursuits, as well as blinks and pupil 
diameter. Fixation features were computed from the fixation 
durations (ms). Saccade features were computed from the saccade 
durations (ms), amplitudes (degrees of visual angle), velocities 
(degrees of visual angle/s), relative angle (degrees of visual angle 
between two consecutive saccades), and absolute angle (degrees 
of visual angle between a saccade and the x-axis). Smooth pursuit 
features were computed from the duration (ms), length (degrees 
of visual angle), and velocity (degrees of visual angle/s) of smooth 
pursuits. The following descriptive statistics of the distributions 
were used as the features: minimum, maximum, mean, median, 

Table 1. Effect of segment size on number of 
segments and MW rate 

Seg. Size (secs) Number of Segs. MW Rate 
45 2401 .256 
55 1931 .297 
65 1626 .323 
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standard deviation, skew, kurtosis, and range. Counts of each eye 
movement type were also included as features. 

Eight global features were obtained from pupil diameters, which 
were first z-score standardized at the student-level. The minimum, 
maximum, median, standard deviation, skew, kurtosis, and range 
were computed for the standardized pupil diameter distributions 
from each window and used as features. 

There were five additional global features: blink count, mean 
blink duration, the ratio of total fixation duration to total saccade 
duration, the proportion of horizontal saccades, and the fixation 
dispersion. 

3.3.2 Local Features 
We identified two types of areas of interest (AOIs), Red Balloon 
AOIs and Visual Saliency AOIs, and computed features based on 
the locations of the AOIs in each frame. Red Balloon AOIs were 
used because the red balloon is one of the main objects in the film 
and endogenous attentional control might direct students to focus 
on these AOIs despite competing content. OpenCV [4], an open 
source computer vision software library, was used to isolate the 
red balloon from the rest of the image using a red color mask. A 
bounding box was drawn around a contour of the resultant image 
for each frame in which the balloon appeared (as shown on the 
left in Figure 2). Local features related to the red balloon were 
only computed for frames where it was present (58.2% of frames). 

We manually examined each frame to ensure that the AOIs were 
computed correctly. The red balloon was present in 27,262 out of 
the 46,851 frames. An AOI was constructed for 26,925 of those 
frames, yielding an accuracy of 98.7%. The frames where the red 
balloon was missed could be attributed to lighting conditions 
(making the red balloon appear darker and thus difficult to 
distinguish from other parts of the scene), the small size of the red 
balloon, or the majority of the red balloon being off screen or 
occluded. These frames were left untouched. An additional 8 
frames incorrectly had an AOI around an object that was not the 
red balloon. The AOI was simply deleted from these frames. 

Visual Saliency AOIs were used because visually salient areas are 
known to attract eye gaze [11]. Although, the visual saliency and 
red balloon AOIs overlap in some cases, as in Figure 2, the visual 
saliency AOI can be computed for frames without the red balloon. 
The MATLAB implementation of a Graph-Based Visual Saliency 
algorithm [16] was used to produce a visual saliency map for each 
frame based on color, intensity, orientation, contrast, and 
movement. An area of no more than 2,000 pixels (1.1% of the 
screen area) surrounding the most salient point were retained and 
the remaining pixels were set to an intensity of 0. Similar to 
above, a bounding box was drawn around the largest contour of 
the processed image. 

Local features were computed based on the relationship between 
the AOIs and each type of eye movement. The features included: 
(1) AOI distance, (2) AOI intersection, and (3) saccade landing. 
There were 32 AOI distance features, which captured the distance 
between the AOI and gaze positions. AOI distance features were 
computed as the distance between each fixation point or smooth 
pursuit point and the center of the AOI for each frame in the 
window. Fixation points were generated for each frame at the 
centroid of the fixation. Smooth pursuit points were generated for 
each frame using linear interpolation from the onset to the offset 
of each smooth pursuit. The minimum, maximum, mean, median, 
standard deviation, skew, kurtosis, and range of the measured 

distances were then computed for each eye movement, resulting in 
16 features for each type of AOI (32 in all).  

There were 12 additional AOI intersection features. These were 
calculated as the proportion of frames in which a fixation or 
smooth pursuit point was within the AOI bounding box. Four of 
these features used the original dimensions of the AOI bounding 
box. An additional eight used a bounding box expanded by either 
one or two degrees of visual angle in order to account for 
inaccurate eye gaze or cases where the AOI was small in size. 

 
Figure 2. An example frame with a bounding box around 
contours of the red balloon (left) and most visually salient 

region (right) 

Finally, there were 12 saccade landing features. For each AOI, 
there was a single feature that captured the number of saccades 
onto, away from, or within the AOI bounding box, which resulted 
in six features (3 per AOI). An additional six features were 
computed using a bounding box expanded by one degree of the 
visual angle to accommodate gaze tracking errors or small AOIs. 

In all, there were 56 local features (32 AOI distance, 12 AOI 
intersection, and 12 saccade landing). 

3.4 Model Building 
Twelve supervised machine learning algorithms from Weka [14] 
were used to build models that discriminated between MW and 
non-MW instances (windows). The following classifiers were 
used: Bayes network; naïve Bayes; logistic regression; SVM; k-
nearest neighbors; decision table; JRip; C4.5 decision tree; 
random forest; random tree; REPTree; and REPTree with 
bagging. 

We also varied four external parameters: (1) feature type; (2) 
window and segment size; (3) feature selection percentage; and 
(4) sampling method. With respect to feature type, models were 
built with global features, local features, or both global and local 
features using feature-level fusion.  

The segment and window size(s) were varied because there are 
various tradeoffs at play. Specifically, a larger segment size 
resulted in fewer instances but a higher MW rate, thereby 
reducing class imbalance. A larger window size afforded more 
data for each instance, but it also reduced the number of instances 
available for segments with the same gap size (e.g., a window size 
of 30 and gap size of 15 resulted in fewer instances than a window 
size of 40 and gap size of 15). Thus, models were built with 
segment sizes of 45, 55, or 65 seconds, and window sizes of either 
10, 15, 20, or 25 seconds. 

Feature selection was used on the training set of each cross-
validation fold (see below). Features were ranked using 
correlation-based feature selection (CFS) [15] from Weka and the 
top 30%, 50%, or 80% of features ranked were retained. 

Class imbalance poses a well-known challenge for supervised 
classifiers. Hence, training sets were resampled using 
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downsampling or oversampling. Downsampling consisted of 
randomly removing instances from the majority class (non-MW) 
until the two classes were balanced. Oversampling consisted of 
using the Synthetic Minority Over-sampling Technique (SMOTE) 
algorithm [5]. We also built models without any resampling for 
comparison purposes. 

Tolerance analysis was performed to address multicollinearity 
prior to building each model [9]. This consisted of removing 
features with a tolerance below .2, which indicates highly 
collinear features (such as number of fixations and number of 
saccades).  

3.5 Model Validation and Evaluation 
The models were evaluated using leave-one-student-out cross-
validation, which ensures that data from each student is exclusive 
to either the testing set or training set. Feature selection and 
resampling were performed on the training set only. Feature 
selection was performed with data from a random 66% of students 
in the training data in each fold. Feature rankings were summed 
over five different random selections. Resampling was also 
repeated for five iterations in each training fold. 

Models were evaluated using the F1 score for the target class 
(MW), which was compared to the MW F1 score of a chance 
classifier. For example, if the actual model classified 52% of the 
instances as MW, the chance classifier would classify a random 
52% of the instances as MW. This resulted in a chance precision 
equal to the actual base rate of MW and a chance recall equal to 
the predicted MW rate. We believe this chance model to offer a 
more stringent comparison than a simple minority baseline (assign 
MW to all instances). 

4. RESULTS 
4.1 MW Detection Accuracy 
The overall best performing model achieved a MW F1 score of 
.45, compared to a chance MW F1 score of .35, which is 
consistent with a 29% improvement above chance (Table 2). The 
model was a decision table classifier that used local features and 
had a window size of 20 seconds, segment size of 65 seconds, 11 
features, and a downsampled training set. The confusion matrix 
for the model (Table 3) shows that the model makes fewer misses 
than false alarms.  

 

 

 

Table 2. Performance metrics ( F1) for best models 

 
The best global and global + local models were SVMs with a 
window size of 15 seconds, a segment size of 65 seconds, and a 
downsampled training set. The global model contained 5 features, 
while the global + local model contained 11 features. Both models 
achieved a lower MW F1 score than the local feature model, due 
to much higher false alarm rates (see Table 3 and Figure 3) 

With respect to the external parameters, no clear trends were 
observed for window size, segment size, or proportion of features 
selected, but downsampling and SMOTEing the training set 
outperformed no resampling method. 

 
Figure 3. MW F1 score for the best model by feature Type and 
resampling method. G = Global, L = Local, G + L = Global + 

Local; Down = Downsampling 

4.2 Feature Analysis 
We compared the mean values of each feature (computed per 
participant) for MW vs. non-MW instances with a two-tailed 
paired-samples t-test. We focused on the 16 global and 21 local 
features that were included in the best local and global models. 
Table 4 shows the effect size (Cohen’s d – with positive values of 
d denoting higher values for MW compared to non-MW 
instances) for the significantly different (p < .05) features. We did 
not perform adjustments for multiple comparisons as the present 
analysis is exploratory in nature. Further, the number of 
significant findings (18%) is far greater than what we could 
achieve if we were capitalizing on chance alone. 

We note that students were less likely to focus on the AOIs when 
they were MW. This is evidenced by a fewer number of frames 
where the smooth pursuit points intersected with the red balloon 
AOI or the most visually salient AOI. Further, there were fewer 
saccades onto and off of the most visually salient region during 
MW. Third, smooth pursuits had a longer range, but less 
variability in velocity during MW. Finally, there were fewer 
saccades during MW, which is consistent with previous findings 
of eye movements during MW while reading [2, 28]. Taken 
together, these results reflect a decoupling between salient regions 
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Table 3. Confusion matrices for best models 

Feature 
Type 

Actual Classified Prior 

  Yes No  
Global Yes .65 (hit) .35 (miss) .25 

No .55 (FA) .45 (CR) .75 
     
Local Yes .67 (hit) .33 (miss) .26 

No .47 (FA) .53 (CR) .74 
     
Global + 
Local 

Yes .68 (hit) .32 (miss) .25 
No .60 (FA) .40 (CR) .75 

Note: Values are proportionalized by class label 
FA = false alarm; CR = correct rejection 
 

Feature F1MW  
(Chance) 

F1 
MW 

F1 Non 
MW 

F1 
Overall 

Global .35 .39 .57 .53 
Local .35 .45 .64 .59 
Global+ 
Local 

.36 .39 .54 .50 
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on the screen and eye movements, essentially signaling a 
breakdown in attentional synchronicity during MW. 

5.  DISCUSSION 
There is a growing interest in assuaging the negative effects of 
MW during learning [6, 8]. Reliable MW detection is likely 
required to realize this goal. Although efforts in MW detection 
have had some success in the context of reading, MW detection in 
more media-rich contexts has been unexplored. As a step in this 
direction, this paper presents a student-independent detector of 
MW during narrative film comprehension, a context which is both 
timely and relevant given the increasing use of film and video 
lectures as educational resources. 

5.1 Key Findings and Contributions 
Our primary contribution is the computation of novel local gaze 
features that are based on the dynamic visual content of the film. 
Using these features, we were able to detect MW with a F1 of .45 
reflecting, a 29% improvement over chance. Furthermore, models 
built with local features outperformed models built with global 
features, or a combination of both global and local features. This 
suggests that taking the dynamic visual content into account (local 
features) can be more effective than merely tracking overall gaze 
patterns (global features), which has been the common method for 
MW detection during reading.  

The local features likely performed better in the present context 
(narrative film viewing) compared to reading, because the 
unfolding visual stream provides cues as to where attention should 
be directed. Reading, in contrast, does not provide such explicit 
cues, so there is likely more variability in gaze patterns. This 
would explain why the global gaze features outperformed the 
local features during reading.  

We also found that local features outperformed a combined local 
+ global model, but we adopted a rather simplistic feature-level 
fusion strategy. It is an open question as to whether performance 
of the combined model could be boosted with more advanced 
fusion strategies. 

Our results also provide insight into eye movements related to 
MW during film viewing. The key finding was that eye 
movements during MW were decoupled from the visually salient 
and important (balloon AOI) components of the visual stream, 
suggesting a breakdown in attentional control.  

5.2 Applications 
MW impedes comprehension by diverting a student’s attention 
from the task at hand toward task-unrelated thoughts. Educational 
activities that involve comprehension from dynamic visual scenes, 
such as video clips or short instructional lectures, could benefit 

from pairing a MW detector with interventions that direct 
attention toward the learning task.  

Beyond educational interfaces, detectors built from dynamic 
visual scenes have applications in entertainment and safety 
contexts. For example, they could be used to determine when 
viewers are more likely to MW while viewing entertainment 
films. The scenes could then be improved to increase viewer 
engagement.  

Attentional focus is especially important for safety-critical tasks 
that require vigilance, such as air traffic control. MW detectors 
built for dynamic visual scenes might be more suitable for these 
types of tasks. However, empirical evidence is needed to 
determine the extent to which models built from narrative film 
viewing would generalize to these other contexts. 

5.3  Limitations and Future Work 
There were also some limitations with this study. The first 
limitation is the detection accuracy, which is moderate at best. It 
would be fruitful to explore improvements to the detector. Some 
possibilities include considering additional features based on other 
aspects of the visual content, such as faces or attempting more 
sophisticated modeling approaches that capture the unfolding 
temporal dynamics in eye gaze. 

The segmentation method used in the study reflects yet another 
limitation as it rather arbitrarily segments the visual stream based 
on temporal windows. It would be worthwhile to explore content-
based segmentation, such as scene transitions and event 
boundaries. This would also ensure consistent segments across 
students in lieu of the current method, which segments the film at 
different locations depending on the MW reports. 

It is also unclear if the detector would generalize beyond the 
current film. “The Red Balloon” is a commercially produced film 
that employs cinematic devices to draw attention to the viewer 
[3]. In contrast, many instructional videos consist of an instructor 
lecturing to students [13] or lecturing over power point, which 
reflect rather different visual content. 

Another limitation is the cost of eye tracking technology. The eye 
tracker used for this study was a cost-prohibitive Tobii TX300 
that will not scale out of the laboratory. Fortunately, cost-effective 
eye tracking alternatives are becoming available, such as the Eye 
Tribe and Tobii EyeX, so replication with these trackers is 
warranted.  

Finally, other limitations include a limited student sample (i.e. 
undergraduates from a private Midwestern college) and a 
laboratory setup. It is possible that the detector would not 
generalize to a more diverse student population or in more 
ecological environments. Retraining our model with data from 
more diverse populations and environments would be a suitable 
next step to increase its ecological validity.  

5.4 Conclusion 
We built the first student-independent gaze-based MW detector in 
the context of film viewing. The detector could be used to trigger 
interventions aimed at counteracting the negative effects of MW 
for an array of tasks involving dynamic visual scenes (e.g., 
watching instructional films, historic documentaries, or video 
lectures). Taken together, this work takes us closer to the goal of 
developing next-generation intelligent educational interfaces that 
“attend to attention” [6]. 

Table 4. Effect size of difference in feature value between 
MW and non-MW instances 

Feature Cohen’s d 
Smooth Pursuit with Balloon AOI (frames) -.37 
Smooth Pursuit within 2° Saliency AOI (frames) -.38 
Number of Saccades away from Saliency AOI -.39 
Number of Saccades nearly onto Saliency AOI -.35 
Smooth Pursuit Duration Range (ms) .30 
Smooth Pursuit Velocity SD (°/s) -.28 
Number of Saccades -.31 
Note: SD = Standard Deviation; All tests were significant at p 
< .05 df = 53 for local features and df = 50 for global features. 
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ABSTRACT
Solving challenging math problems often invites a child to
ride an “emotional roller-coaster” and experience a complex
mixture of emotions including confusion, frustration, joy,
and surprise. Early exposure to this type of “hard fun” may
stimulate child’s interest and curiosity of mathematics and
nurture life long skills such as resilience and perseverance.
However, without optimal support, it may also turn off child
prematurely due to unresolved frustration. An ideal teacher
is able to pick up child’s subtle emotional signals in real
time and respond optimally to offer cognitive and emotional
support. In order to design an intelligent tutor specifically
designed for this purpose, it is necessary to understand at
fine-grained level the child’s emotion experience and its in-
terplay with the inter-personal communication dynamics be-
tween child and his/her teacher. In this study, we made
such an attempt by analyzing a series of video recordings of
problem solving sessions by a young student and his mom,
the ideal teacher. We demonstrate a multimodal analysis
framework to characterize several aspects of the child-mom
interaction patterns within the emotional context at a gran-
ular level. We then build machine learning models to predict
teacher’s response using extracted multimodal features. In
addition, we validate the performance of automatic detector
of affect, intent-to-connect behavior, and voice activity, us-
ing annotated data, which provides evidence of the potential
utility of the presented tools in scaling up analysis of this
type to large number of subjects and in implementing tools
to guide teachers towards optimal interactions in real time.

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

Keywords
math problem solving, affect, interaction dynamics, multi-
modal learning analytics

1. INTRODUCTION
A popular perception of math education in the US schools is
often associated with the lack of inspiration and excitement.
One of the possible reasons for that is a common perception
of math learning as shallow learning activities such as memo-
rizing multiplication tables and procedure learning activities
such as long division [10]. This is especially true with ele-
mentary level education where learning facts and procedures
accounts for most of the curriculum. In contrast, math prob-
lem solving activities can take a form of complex learning
[10] that often requires the student to take an adventurous
emotional and cognitive “roller-coaster” ride when navigat-
ing the uncharted land of possible solutions.

Involvement in this type of activities from young age may
play a major role in stimulating student’s interest in math
and more generally in STEM topics. It may also help build-
ing self-confidence and perseverance. However, if not done
right, it may disengage student due to unresolved frustration
and result in an even more negative view of the subject. It
is thus important to know what is the right mixture of emo-
tional and cognitive support to be provided in the process,
as well as the right amount and the optimum timing of such
support. This role of support is consistent with the vision of
a Learning Companion [12] which is a computer system that
facilitates learning on the side, is watchful for the trajectory
and provides appropriate level of support.

In this study, we explore that question by analyzing the fine-
grained multimodal behavior cues that could be automati-
cally extracted from video recordings of one-to-one math
problem solving sessions in a naturalist environment. Specif-
ically, we explore data driven methods to characterize the
temporal dynamics of the child’s emotion states as well as
patterns of the interaction between the child and the teacher
when problem solving processes unfold.

2. RELATED WORK
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A substantial amount of prior work on the automatic de-
tection of student’s affective states exists primarily in the
context of intelligent tutor systems. [2] introduces a “sensor
free” detector to infer engagement from the logs of students’
interaction with computerized reading tutor using a method
called engagement tracing. [15] uses facial expression anal-
ysis to infer engagement during interactive cognitive skill
training sessions. Using the same sensing modality, [13]
studies an array of affective states such as boredom, con-
fusion, delight, flow, frustration and surprise, based on Fa-
cial Action Units. [5] leverages multimodal inputs including
conversational cues with computer tutors and gross body
language as well as facial features to detect distinct affective
states.

While the work mentioned above focuses on static model-
ing of affects, another thread studies dynamics of affective
states. [5] characterizes transitions of affective states be-
tween confusion, engagement/flow, boredom and frustration
during complex learning activities when using computer tu-
tors. [11] uses a hierarchical dynamic Bayesian network to
model temporal dynamics of behavior trends such as flow,
stuck and off-task, as well as related emotion states such as
stress, confusion, boredom and frustration.

Within literature on student and human teacher interaction,
[14] applied theory of dynamic systems to model real time
teacher-student interactions using videotaped classroom ses-
sions. Quality of interaction was rated and analyzed in terms
of content, structure and complementary. [8] uses turn level
audio features and contextual information to predict stu-
dents’ high level affect states using a human-human tutoring
dialogue corpus.

There are several aspects in which this study differs from
relevant prior work: (1) Instead of using computer tutor,
we are interested in an “unplugged” scenario where the child
is interacting with a real human teacher. This setup al-
lows us to observe the genuine inter-personal communica-
tion dynamics which is not available when interacting with
a computer tutor. Specifically, help seeking behaviors, a well
studied phenomenon with computer tutors, are generalized
into Intent-To-Connect (ITC) behaviors manifested by ei-
ther subtle cues such as eye contacts or head pose changes,
or explicit verbal help requests. ITC behaviors carry a richer
meaning that exceeds the conventional cognitive support ori-
ented “help seeking”. Instead, ITC behaviors can also be
used to signal emotional connection for other purposes such
as “comfort seeking” or “joy sharing”; (2) The subject in this
study is a child at young age. Since children at this age
often are not exposed to the social pressure to hide nega-
tive emotions such as frustration, this allows observing their
emotions with high fidelity, though it also presents unique
detection challenges since the frequent baseline body move-
ment are more frequently observed in young children; (3)
The problem solving tasks in this study call for the child
to take an active role in open exploration, with support
from adult only when needed, whereas other studies typi-
cally consider a specific task such as cognitive skill training
[15]. Consequently, we expect to observe non-baseline affect
states at higher level of frequency and intensity; (4) With
a few exceptions, most of the existing work relies on sig-
nals from a single modality, while this study attempts to

Figure 1: An example of a Math Kangaroo problem

integrate multimodal signals available from audio and video
data.

3. DATASET AND USER STUDY
We collected video recordings of one-to-one problem solving
sessions between a 9-year-old boy (a third grader) and his
mom (the first author of this paper) as his teacher. We chose
this setup because this mom and son has worked together
on math problem solving for a few years. As result, the
mom is used to picking up and reacting optimally to child’s
behaviors. This is the closest to the desirable model of the
“ideal teacher” as we described earlier.

In each of multiple sessions, the child was asked to solve one
challenging math problem. We selected the problems from
Math Kangaroo1, an annual international math competition
for students in K-12. Using interesting but challenging prob-
lems, the goal of this competition is to stimulate students’
interest in math problem solving. There are 24 problems
in each competition, divided into three sections with grad-
ual increase of difficulty. The problems for this study were
selected from the most difficult set of levels 3 and 4 compe-
tition geared towards students in third and fourth grades.
Those problems assume basic arithmetic skills and back-
ground knowledge at the child’s grade level. Figure 1 shows
an example of a problem used in the study. In all of the
sessions, mom tried to optimize the experience of the child
by balancing the goal of reducing frustration and providing
sufficiently stimulating challenge.

The videos were captured in a home environment using a
Logitech 1080P webcam with an integrated microphone. The
positions of mom and child make it possible to capture child’s
non-verbal behavior cues such as head pose and gaze changes
when he intends to connect with mom. Both audios and
videos were captured for child, whereas only voice was recorded
for mom. We recorded a total of 21 sessions, accumulating
141 minutes of raw video with mean length of 6.4 minutes
per session, with longest session lasting 14.6 minutes and the
shortest only about 2 minutes. In most of the recordings,
the child ended with a joyful mood and a sense of accom-
plishment.

All recordings were manually annotated in ELAN 2[3] for
voice activity at utterance level of child and mom. We also
annotated child’s non-verbal ITC behaviors using cues such
as head turn and eye contact as well as verbal cues. Annota-
tion included timestamps of start and end of events. Frame-

1www.mathkangaroo.org
2http://tla.mpi.nl/tools/tla-tools/elan/, Max Planck Insti-
tute for Psycholinguistics, The Language Archive, Nijmegen,
The Netherlands
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Table 1: The affective state and problem solving
stages and their behavior cues F(facial), HP(head
pose), Voc(vocal), Ver(verbal)

Affects Problem
Understanding

Planning Execution

Confusion F+Ver
Frustration F+HP+Voc F+HP
Joy F+Ver
Engaged Voc+HP
Disengaged HP HP HP

by-frame emotion states were extracted using FACET Soft-
ware Development Kit3. Head pose and gaze features were
extracted using OpenFace framework toolkit4 [1]. In ad-
dition, acoustic features were extracted using COVAREP
toolkit (version 1.3.2) [4] every 10ms.

4. QUALITATIVE ANALYSIS
4.1 Problem solving stages and affective states
In his famous book “How to solve it” [9] , the mathemati-
cian Gorge Polya proposed four stages of problem solving,
a framework widely used in today’s math problem solving
instructions. In this study we adapt it into a three-stage
framework without the last reflection stage, including“prob-
lem understanding”, “planning” and “execution”. Table 1
lists the most likely affective states as well as plausible be-
havior cues at each problem solving stage based on quali-
tative analysis of video recordings. Those cues were used
to guide the annotation of events as well as informed the
feature design for the automated analysis.

There are several “landmark” behavior cues that could be
used to identify problem solving stages and transitions. Dur-
ing problem understanding stage, the child reads the prob-
lem and asks clarification questions when necessary. The
child often ends this stage by saying “okay”. Afterwards,
the child might be stuck at the planning stage with no idea
as for how to proceed, or go on smoothly with a brief plan-
ning stage, or in rare cases dive right into the implementa-
tion stage. During the implementation stage, the child is
often engaged, with his head down, writing on paper, ei-
ther silently or with fast paced talking suggesting a “flow”
experience. After one attempt, he may succeed at solving
the problem, or he could find that his answer is obviously
wrong.5 In those cases, he needs to re-enter into the plan-
ning stage to find alternative solution, or rework the original
plan. The process ends when the correct answer is confirmed
in which case the child often exhibits positive emotions such
as excitement and joy.

4.2 Interpersonal communication dynamics
The problem solving sessions can be highly interactive be-
tween mom and child: the child actively verbalizes his prob-
lem solving process and frequently connects with mom through
verbal and non-verbal cues which we call “intent-to-connect”

3www.emotient.com
4https://github.com/TadasBaltrusaitis/OpenFace
5Since the problems are formulated as multiple-choice ques-
tions, if the answer is not any of the choices provided, then
it must be wrong

behaviors, or, ITC. Verbal ITC cues refer to explicit request
for help or questions, while non-verbal ITCs are subtle cues
of head pose and/or gaze change.

ITC may carry multiple different meanings, which calls for
differentiated responses to achieve best learning outcomes.
According to her interpretation, mom’s response to ITC may
serve a purely cognitive support purpose such as providing
scaffolding, or, as in most cases, providing emotional support
in the form of “back channel” signals such as “yes”, “good”,
“good thinking”. Given the many subtle variation of ITCs
that can be considered in modeling response, it is desirable
to take into account contextual information such as problem
solving stages and emotion states in order to infer the true
intent of an ITC.

Figure 2 provides an overview of the events of an example
session that illustrates the interplay between interpersonal
communication dynamics, including voice activity events (mom’s
talk and child’s talk) and child’s ITC behaviors, within the
context of problem solving stages transitions and emotion
states. As shown in the plot, the session started with the
problem understanding stage (1) that is characterized by
child’s monologue while reading the problem followed by
a brief period of pause and thinking. At the same time,
confusion and frustration began to kick in (A), after which
mom started to intervene by explaining the problem (2),
then child entered planning and execution stage (3) that
lasts about 3 minutes. Then, at 1 minute into this process,
child said “I didn’t get it” with head turn, and mom offered
help by asking “Do you need help?”. However, the child did
not take the offer and kept working on his own. Towards
the end of this phase, the child exhibited positive emotion
of joy. Then mom discovered that child is on the wrong
path, so she intervened (4) and the two worked together to
correct the error during which time the child showed brief
moments of frustration and confusion (C). Afterwards, the
session moved into the problem solved stage (5), the child
revealed a spike of surprise and moderate joy (D).

5. QUANTITATIVE ANALYSIS
In this section, we present an analytic framework developed
to characterize and understand the interplay between dy-
namics of emotional states as well as interpersonal commu-
nication. We first present a method to quantify the rela-
tionship between ITC and mom and child’s talk. We then
present results from analysis of videos using emotion and
interaction features. We end this section with predictive
modeling of mom’s response using multimodal features.

5.1 Interpersonal communication dynamics
5.1.1 Event intensity metric

We use event intensity metric to characterize temporal pat-
terns of intensity of a specific type of event (e.g. child’s talk).
This metric takes into account both the frequency and du-
ration of an event. To compute the metric, we first convert
the annotated duration of the events into discrete sequences
sampled uniformly at interval of every 20ms. Binary flag
of 1 is assigned to intervals of the event’s occurrence and 0
otherwise. A moving sum is then computed from a window
centered at the time of interest. The resulting time series of
the moving sum of thusly assigned binary flags characterizes
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C:	I	don’t	get	
this	

M:	Do	you	
need	help?	

1 2 3 4 5

A

B

C

D

C:	Oh!	I	see		

Problem	Solving	
Stages	

Figure 2: Timeline of annotated events within the context of problem solving stages and affective state
transitions. Problem solving stages: (1) problem understanding (2) mom’s intervention (3) planning and
execution (4) mom’s intervention (5) solved ; Emotion states: (A) confused and frustrated (B) joy (C)
confused and frustrated (D) joy and surprise; Dialogue legends: C: child; M: mom

temporal intensity distribution of the events. The width of
the window determines temporal resolution and smoothness
of the temporal patterns.

5.1.2 Floor sharing metrics
We characterize temporal patterns of floor sharing between
mom and child using normalized metrics of event intensity of
mom’s talk and child’s talk as described above. The formula
for mom’s sharing of conversation at time stamp t is given
as:

Mom Talk Share(t) =
Mom Talk(t)

Child Talk(t) +Mom Talk(t))
(1)

This metric is useful to identify periods of time when mom’s
intervention dominates or vice versa. Figure 3 shows tem-
poral distribution of floor sharing patterns for each video
sorted by video length. It seems apparent that in short
videos (presumably representing easy problems), mom did
not talk much. However, longer videos often involve larger
proportion of mom’s talk. It is also interesting to observe
that mom’s talk often occurs in batches, presumably at the
time when child gets stuck so that elaborate explanation is
necessary.

5.1.3 Synchronization of voice activity and ITC
In this section, we describe a method to quantify synchro-
nization between voice activity (mom’s talk and child’s talk)
and ITC. Figure 4 shows two examples with different syn-

chronization patterns. In the left plot, ITC seems to be more
synchronized with child’s talk, while in the right plot it is
more synchronized with mom’s talk which suggests child’s
attention or engagement . We summarize synchronization
as the pairwise correlation among these time series. The
result is displayed in the scatter plot in Figure 5 in which
each video is plotted as a point labeled with its index. As
shown, ITC seems to be more correlated with mom’s talk
than child’s talk as seen from the cluster of points in the up-
per left quadrant of the plot in Figure 5, with a few excep-
tions (videos 12, 14 and 32) in which ITC seems to be drifted
away from mom’s talk and correlate more with child’s talk.
Incidentally, mom intervened significantly in those videos,
which suggests child’s disengagement may be induced by
mom’s higher intensity of teaching.

5.2 Video analysis
In this section, we report the results from video analysis by
exploring the pairwise statistical correlations among vari-
ables related to interaction dynamics (i.e. voice activity and
ITC behaviors) and affective states, as well as the outcome
measure, i.e. time taken to solve a problem. For each video,
we computed the following variables:

1. Interaction dynamics variables

• Mom/Child talk ratio (mom-child): The ratio of
the accumulative duration of mom’s talk versus
child’s talk.

• ITC rate: The count of ITC, normalized by video
length.
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Figure 3: Temporal patterns of floor sharing for each video (dark color: mom, light color: child)
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Figure 4: Two example time series plot of events
intensity, ITC synchronized more with child’s talk
(left) or with mom’s talk (right)
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• Mom’s back channel response rate (mom-BC): Back
channel response is defined as a response that
lasts less than 2 seconds. This variable represents
the count of such response normalized by video
length.

2. Affective state variables

• These are counts of video frames with FACET
score greater than 1, normalized by total number
of frames during the period of interest for each
of the four affect channels including joy, surprise,
frustrations and confusion.

In order to further explore the importance of features at
the beginning as well as those at the end of a session,we also
compute statistical features from two sub-periods of interest:
first 30 and last 30 seconds of each video.

We then compute pairwise Pearson correlation among the
variables, including outcome. Due to the small number of
videos, for each pair of correlations, we performed 1000 it-
erations of a randomization test [7] under null hypothesis
of zero correlation to obtain non-parametric p-values. A
sparse graph (Figure 6) is created to summarize the signifi-
cant correlations among the variables with a p-value cutoff
at 5% significance level.

There are several interesting insights that could be derived
from this graph. Firstly, there is a significant positive corre-
lation between initial frustration or confusion and the time
taken to solve a problem. Since the beginning period is likely
to be devoted to problem understanding, this suggests dif-
ficulty in understanding of the problem is the first obsta-
cle child may face. His struggle in this period is likely to
extend over the entire problem solving process. Secondly,
there is a positive correlation between mom/child talk ratio
and the video length. This suggests that mom intervenes
more in case of hard problems which take longer to solve.
Thirdly, child’s ITC rate is positively correlated with mom’s
back channel rates which suggests a level of interaction syn-
chrony between the two. Lastly, there is negative correla-
tion between the overall frustration and joy at the ending
period, in other words, more frustrating experience is asso-
ciated with less joy toward the end, and vice versa.

5.3 Predictive modeling of response
In this section, we report the results from machine learning
models used to predict the binary label if there is mom’s
response within 5 seconds for occurrence of an ITC. The
following list explains the features used for the predictive
model:

1. Voice activity features:

• ITC co-occurrence: The count of other ITC within
time windows of 2, 5 and 10 seconds respectively
for each ITC;

• Overlap statistics: The number of child talk, mom
talk and child or mom talk events that are over-
lapping a given instance of ITC;

Table 2: Performance of the predictive models of
mom’s response to child’s ITC (leave one video out)

Model AUC mean Lower bound of CI Upper bound of CI
LR 0.594 0.557 0.630
NB 0.617 0.581 0.652
SVM 0.519 0.506 0.531

2. Head pose features : Min, max, mean, median of de-
tection success, confidence, tilt, turn, up-down, within
5 seconds surrounding a given ITC;

3. Features from affect detector: Min, max, mean, me-
dian of FACET score for each of the emotion cate-
gories (joy, surprise, confusion, frustration and base-
line) within the 5 seconds surrounding a given ITC.
Negative scores are replaced with 0.

We performed a leave-one-video-out cross-validation exper-
iment to evaluate three different classifiers (logistic regres-
sion[LR], naive bayes[NB] and support vector machine[SVM]).
The Area Under Curve(AUC) score for each classifier is
shown in Table 2 with mean values and 95% confidence in-
tervals. Though the overall performance has much room for
improvement, all of the three models perform significantly
better than random, which suggests there are indeed pre-
dictive signals in the features. A better model might need
to incorporate features related to the problem solving state,
which may be learned using state space method such as Hid-
den Markov Models or Conditional Random Fields.

6. VALIDATION OF AUTOMATIC RECOG-
NITION

6.1 ITC and voice activity recognition
In this section we summarize the results from following recog-
nition tasks:

1. ITC recognition using Openface head pose features.
For each video, a random sample of 500 positive frames
with ITC and 500 negative frames without ITC were
selected, and a model was trained using frame-by-frame
head pose features (confidence, Tx, Ty, Tz, Rx, Ry,
Rz, up-down, turn and tilt) as inputs;

2. Voice activity recognition using features from COVARAP.
One classifier built to discriminate between speaker
and non-speaker segments; another classifier to dis-
criminate mom’s talk and child’s talk. For each task,
we random select 500 samples from each class from
each video.

In those recognition tasks, we experimented with different
types of classifiers including logistic regression, support vec-
tor machine, decision tree and naive Bayes, and found lo-
gistic regression to show overall superior performance as re-
ported in Table 3. We performed leave-one-video-out cross
validation and reported mean AUC scores. We also reported
per video performance where we build a dedicated classifier
for each video and summarized 10-fold cross-validation AUC
score across all videos. As expected, leave-one-video perfor-
mance is worse than the per video performance for both ITC
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Table 3: AUC scores of models built for ITC and
voice activity recognition task

ITC
recognition

Speaker vs.
non-speaker

Mom and
child talk

Leave one
video out CV

0.90 0.81 0.74

Dedicated
classifier
10-fold CV

0.92 0.81 0.81

and mom and child talk classification. This suggests that
camera and microphone calibration/normalization might have
impact on those two tasks, however the speaker and non-
speaker classification task seems to be more robust to this
issue. Overall, performance of ITC detection is satisfactory,
while the voice activity recognition task leaves room for im-
provement, using a higher quality microphone for each par-
ticipant might be beneficial.

6.2 Affect detection
In this section, we report validation results for affect labels
produced by FACET. We randomly selected 30 top-scored
frames (at least 10 seconds apart) from each of the affect
class (joy, surprise, frustration, confusion and baseline), and
requested labels from two independent annotators who were
blinded from FACET labels. Table 4 shows Cohen’s Kappa
for each affect label (when treated as a binary labeling task)
as well as the overall score. As shown, the inter-rater agree-
ment is relatively high for both joy and surprise, though
the annotator’s agreement with FACET is higher for joy

Table 4: Validation scores of FACET’s affect detec-
tion (Cohen’s Kappa)

Affect annotator1
vs FACET

annotator2
vs FACET

annotator1
vs annotator2

joy 0.70 0.57 0.73
surprise 0.48 0.43 0.71
confusion 0.30 0.51 0.41
frustration 0.11 0.36 0.44
baseline 0.58 0.42 0.44
overall 0.35 0.46 0.41

than surprise. Confusion and frustration are two of the
most challenging affects to detect as compared to joy and
surprise, possibly due to the fact that confusion and frus-
tration are easily mistaken for each other, as evidenced by
the low inter-rater agreement score. This suboptimal perfor-
mance may also be attributable to the fact that FACET is
trained on faces from general population rather than specif-
ically on young children. A detection algorithm that would
incorporate transfer learning and age based customization
will possibly improve the performance.

7. CONCLUSION AND FUTURE WORK
In this study, we analyzed data from the 21 video recordings
of a nine year old boy while he was working through chal-
lenging math problems that demand high order cognitive
skills to understand, plan, execute and solve the problems
on his own, with only limited and mostly passive support
from his mom.
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We have shown qualitatively that there are clusters of non-
baseline emotions rolling throughout the problem solving
process, with the strongest representation from emotion class
of joy, surprise, confusion and frustration. This observation
confirmed our hypothesis that this type of active exploration
indeed facilitates a unique experience of riding an“emotional
roller coaster”.

We also explored various analytical approaches to charac-
terize the interpersonal dynamics between mom and child as
well as the interplay with ITC behaviors. Our video analysis
reveals some interesting associations between voice activity,
ITC and emotional context.

Lastly, we built a classification model to predict whether
there is mom’s response within 5 seconds of a given ITC.
The recognition task results show promise for automatic an-
notation of ITC and voice activity in order to scale up the
presented analysis. Those findings collectively provide initial
evidence for the feasibility of building affect sensitive com-
puter tutor by mining multimodal signals as demonstrated
in this study.

The key contributions of this paper include the new frame-
work for fine-grained analysis of affect dynamics during stu-
dent’s interaction with a human teacher, the use of multi-
modal signals in truly dynamic settings, and demonstration
of the utility of the proposed approach to automatically de-
tect behaviors and predict emotions.

We consider multiple thrusts of future work. With the cur-
rent data set, we envision the following tasks worth consid-
eration: (1) Learn latent dynamic model for problem solving
state recognition so that it can be used to improve predictive
model of ITC; (2) Explore the possibility of automatic tran-
scription with Automatic Voice Recognition system, and ex-
plore sentiment analysis of mom’s response; (3) Explore the
utility of prosody features of speech signals to complement
the current visual-cues based affect detection. Another re-
search direction involves extending this study to more sub-
jects so that inter-subject variation can be observed and
modeled. In addition, we would also like to explore the
possibility of transferring models learned from one child to
another. It is also of interest to explore the correlation be-
tween metrics gathered in this study with psychological in-
struments such as grit scales [6]. Last but not least, we en-
vision our current work to be a foundation for a future tool
to guide teachers towards optimal interactions with their
students in real time.
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VOICE ANALYSIS REPOSITORY FOR SPEECH
TECHNOLOGIES Computer Science Department ,
University of Crete , Heraklion , Greece Phonetics and
Speech Laboratory , Trinity College Dublin , Ireland
TCTS Lab - University of Mons , Belgium A. pages
960–964, 2014.

[5] S. K. D’Mello and A. Graesser. Multimodal
semi-automated affect detection from conversational
cues, gross body language, and facial features. User
Modeling and User-Adapted Interaction,
20(2):147–187, 2010.

[6] A. L. Duckworth, C. Peterson, M. D. Matthews, and
D. R. Kelly. Grit: perseverance and passion for
long-term goals. Journal of personality and social
psychology, 92(6):1087–1101, 2007.

[7] E. S. Edgington. Randomization Tests. Marcel Dekker,
Inc., 1986.

[8] K. Forbes-riley. Predicting emotion in spoken dialogue
from multiple knowledge sources. Proceedings of the
4th Meeting of the North American Chapter of the
Association for Computational Linguistics: : Human
Language Technologies,, pages 201–208, 2004.

[9] P. Gorge. How to Solve It. Princeton University Press,
1945.

[10] A. Graesser, Y. Ozuru, and J. Sullins. What is a good
question? In M. G. McKeown & L. Kucan, editor,
Threads of coherence in research on the development
of reading ability, pages 112–141. Guilford, New York,
New York, USA, 2009.

[11] I. Jraidi, M. Chaouachi, and C. Frasson. A hierarchical
probabilistic framework for recognizing learners’
interaction experience trends and emotions. Advances
in Human-Computer Interaction, 2014, 2014.

[12] A. Kapoor, S. Mota, and R. W. Picard. Towards a
Learning Companion that Recognizes Affect. AAAI
Fall symposium, (543):2–4, 2001.

[13] B. Mc, S. D’Mello, B. King, P. Chipman, K. Tapp,
and A. Graesser. Facial Features for Affective State
Detection in Learning Environments. 29th Annual
meeting of the cognitive science society, pages
467–472, 2007.

[14] H. J. M. Pennings, J. van Tartwijk, T. Wubbels,
L. C. a. Claessens, A. C. van der Want, and
M. Brekelmans. Real-time teacher-student
interactions: A Dynamic Systems approach. Teaching
and Teacher Education, 37:183–193, 2014.

[15] J. Whitehill, Z. Serpell, Yi-Ching Lin, A. Foster, and
J. R. Movellan. The Faces of Engagement: Automatic
Recognition of Student Engagementfrom Facial
Expressions. IEEE Transactions on Affective
Computing, 5(1):86–98, 2014.

Proceedings of the 9th International Conference on Educational Data Mining 45



Joint Discovery of Skill Prerequisite Graphs
and Student Models

Yetian Chen?†, José P. González-Brenes†, Jin Tian?

?Computer Science Department
Iowa State University

Ames, IA, USA
{yetianc, jtian}@iastate.edu

†Advance Computing and Data Science Lab
Pearson

San Diego, CA, USA
jose.gonzalez-brenes@pearson.com

ABSTRACT
Skill prerequisite information is useful for tutoring systems that as-
sess student knowledge or that provide remediation. These systems
often encode prerequisites as graphs designed by subject matter
experts in a costly and time-consuming process. In this paper, we
introduce Combined student Modeling and prerequisite Discovery
(COMMAND), a novel algorithm for jointly inferring a prerequisite
graph and a student model from data. Learning a COMMAND
model requires student performance data and a mapping of items to
skills (Q-matrix). COMMAND learns the skill prerequisite relations
as a Bayesian network (an encoding of the probabilistic dependence
among the skills) via a two-stage learning process. In the first stage,
it uses an algorithm called Structural Expectation Maximization to
select a class of equivalent Bayesian networks; in the second stage,
it uses curriculum information to select a single Bayesian network.
Our experiments on simulations and real student data suggest that
COMMAND is better than prior methods in the literature.

Keywords
Prerequisite discovery, Bayesian network, student modeling

1. INTRODUCTION
Course curricula are usually organized in a meaningful sequence
that evolves from relatively simple lessons to more complex ones.
Among these lessons, some are required to be mastered by the
student before the subsequent ones can be learned. For instance,
students have to know how to do addition before they learn to do
multiplication. We refer to prerequisite structure as the relationships
among skills that place strict constraints on the order in which skills
can be acquired.

Prerequisite structures are crucial for designing intelligent tutoring
systems that assess student knowledge or that offer remediation
interventions to students. Building such systems require prerequisite
information that is often hand-engineered by subject matter experts
in a costly and time-consuming process. Moreover, the prerequisite
structures specified by the experts are seldom tested and might be
unreliable in the sense that experts may have “blind spots".

Recent interest in computer assisted education promises large amounts
of data from students solving items— questions, problems, parts
of questions. Performance data –what items a learner answers
correctly– can be used to create student models. These models rep-
resent an estimate of skill proficiency at a given point in time [17].
For example, a student model can represent that Alice has already
mastered integer addition, but Bob has not. Student models are often
used to personalize instruction in tutoring systems or to predict fu-
ture student performance. In this paper, we introduce Combined stu-
dent Modeling and prerequisite Discovery (COMMAND), a novel
algorithm for simultaneously discovering prerequisite structure of
skills and a student model from student performance data.

2. RELATION TO PRIOR WORK
Prior work has investigated how to discover prerequisites among
items without considering their mapping into skills [6, 19]. Item-to-
skill mappings (also called Q-matrices) are desirable because they
allow more interpretable diagnostic information. Because of this,
follow-up work [2, 4] has studied whether a pair of skills have a
prerequisite relationship or not. For this, we can measure if a model
that assumes a dependency between the two skills explains the data
better than a model that assumes independence. This comparison
can be done with data likelihood [2] or association rule mining [4].
Although promising, prior methods have limitations that we address:

1. We estimate the global prerequisite structure, not just the
pairwise relationships. For example, suppose we want to
discover the prerequisites of three skills for English learning
(S1:syntax, S2:cohesion and S3:lexical rules). If we use prior
methods, we discover that the three skills are related among
each other. However, pairwise methods are unable to tell if
the relationships are due to indirect (e.g, S3→ S2→ S1), or
direct (e.g, S3→ S2→S1) effects.

2. It is unclear how to use the output of these prerequisite struc-
tures for student modeling. For example, it is not obvious
how to best use them to make predictions of future student
performance.

3. Prior work does not provide quantitative evaluation using real
student data. Overall, learner data has been used to provide
examples, but without any methodology that can help compare
what algorithm works better.

A statistical formalism called Bayesian network has been useful
to model prerequisite structures [12]. Bayesian networks allows
modeling the full structure of skills (beyond pairwise relationships)
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Figure 1: A hypothetical Bayesian network. Solid edges are given
by item to skill mapping, dashed edges between skill variables are
to be discovered from data. The conditional probability tables are to
be learned.

and can encode conditional independence between the skills. Un-
fortunately, prior work with Bayesian networks requires a domain
expert to design the prerequisite structures [10], and automatic tech-
niques have not been demonstrated with real student data [14]. We
now describe the COMMAND algorithm that discovers a Bayesian
network that encodes the prerequisite structure of skills.

3. THE COMMAND ALGORITHM
COMMAND learns the prerequisite structure of the skills from data
with a statistical model called Bayesian network [13, 15]. Bayesian
networks are one type of probabilistic graphical models because
they can be represented visually and algebraically as a collection
of nodes and edges. A tutorial description of Bayesian networks in
education can be found elsewhere [12], but for now we say that they
are often described with two components: the nodes represent the
random variables, which we describe using conditional probability
tables (CPTs), and the set of edges that form a directed acyclic
graph (DAG) represent the conditional dependencies between the
variables. Bayesian networks are a flexible tool that can be used to
model an entire curriculum.

Figure 1 illustrates an example of a prerequisite structure modeled
with a Bayesian network. Here, we relate four test items with the
skills of addition and multiplication. Addition is a prerequisite of
multiplication thus there is an arrow from addition to multiplication.
Modeling prerequisites as edges in a Bayesian network allows us
to frame the discovery of the prerequisite relationships as the well-
studied machine learning problem of learning a Bayesian network
from data with the presence of unobserved latent variables. We
represent the prerequisite structure using Bayesian networks that
use latent binary variables to represent the student knowledge of a
skill (i.e., mastery or not mastery), and observed binary variables
that represent the student performance answering items (i.e., correct
or incorrect).

Algorithm 1 describes the COMMAND pipeline. The input to COM-
MAND is a matrix D with n× p dimensions, representing n students,
answering p items. Each entry in D encodes the performance of
a student (see Table 1 for an example). Additionally, we require
a Q-matrix to represent the item-to-skill mapping. Q-matrices are
often designed by subject matter experts but automatic methods to
discover them exist [8].

Table 1: Example student performance matrix to use with COM-
MAND. The performance of a student is encoded with 1 if the
student answered correctly the item, and 0 otherwise.

User Item 1 Item 2 Item 3 Item p

Alice 0 1 0
Bob 1 1 ... 1
Carol 0 0 1

...

Algorithm 1 The COMMAND algorithm
Require: A matrix D of student performance on a set of test items,

skill-to-item mapping Q (containing a set of skills S).
1: G0← Initialize(S,Q)
2: i← 0
3: do
4: E-step:
5: Θ∗i ← ParametricEM(Gi,D)
6: D∗i ← Inference(Gi,Θ∗i ,D)
7: M-step:
8: 〈Gi+1,Θi+1〉 ← BNLearning(Gi,D∗i )
9: i← i+1

10: while stop criterion is not met
11: RE← FindReversibleEdges(Gi)
12: EC← EnumEquivalentDAGs(Gi)
13: DE←{}
14: for every reversible edge Si−S j in RE do
15: ratio← P(S j=0|Si=0)

P(Si=0|S j=0)
1

16: if ratio≥ 1 then
17: ratio∗ = ratio
18: DE← DE ∪Si→ S j
19: else
20: ratio∗ = 1

ratio
21: DE← DE ∪Si← S j
22: end if
23: end for
24: sort(DE) by ratio∗ in descending order
25: while DE is not empty do
26: e← dequeue(DE)
27: if ∃G ∈ EC e ∈ G then
28: ∀G ∈ EC, remove G from EC if e < G
29: end if
30: end while
31: return EC

Initialization

Structural EM

Discriminate
between equiv-

alent BNs

COMMAND relies on a popular machine learning algorithm called
Structural Expectation Maximization (Structural EM), which to the
extent of our knowledge has not been used in educational applica-
tions before. Structural EM extends the Expectation Maximization
(EM) algorithm to allow efficient structure learning of Bayesian
networks when there are latent variables or missing values in the
data. A secondary contribution of our work is introducing Structural
EM for learning Bayesian network structures from educational data.
We now describe the steps of COMMAND in detail.

3.1 Initial Bayesian Network
COMMAND first creates an initial Bayesian network using the Q-
matrix by creating an arc to each item from each of its required

1P(Si = a|S j = b) can be computed using any Bayesian network
inference algorithm such as Junction tree algorithm [11].
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Figure 2: An illustration of the Structure EM algorithm to discover the
structure of the latent variables. G represents the DAG structure. Θ is the set
of conditional probability tables (CPTs).

skills. Because there are no edges between the skills, this initial
network does not encode any prerequisite information. COMMAND
uses Structural EM to learn arcs (prerequisites) between the skill
variables.

3.2 Structural EM
A common solution to learning a Bayesian network from data is
the score-and-search approach [5, 9]. This approach uses a scoring
function (like the Bayesian Information Criterion (BIC)) to mea-
sure the fitness of a Bayesian network structure to the observed
data, and it attempts to find the optimal model in the space of
all possible Bayesian network structures. However, the conven-
tional score-and-search approaches rely on efficient computation
of the scoring function, which is only feasible for problems where
data contain observations for all variables in the Bayesian network.
Unfortunately, our domain has skill variables that are not directly
observed. An intuitive work-around is to use EM to estimate the
scoring function. However, in this case EM takes a large number
(hundreds) of iterations that require Bayesian network inference,
which is computationally prohibitive. Further, we need run EM
for each candidate structure, and the number of possible Bayesian
network structures is super-exponential with respect to the number
of nodes. The Structural EM algorithm [7] is an efficient alternative.

Structural EM is an iterative algorithm that inputs a matrix D of
student performance (see example Table 1). Figure 2 illustrates one
iteration of the Structural EM algorithm. The relevant steps are also
sketched in Algorithm 1. Each iteration consists of an Expectation
step (E-step) and a Maximization step (M-step). In the E-step, it first
finds the maximum likelihood estimate Θ∗ of the CPTs for the cur-
rent structure G calculated from previous iteration using parametric
EM. It then does Bayesian inference to compute the expected values
for the latent variables using the current model (G,Θ∗), and uses the
values to complete the data. In the M-step, it uses the conventional
score-and-search approach to optimize the structure according to the
completed data (as if the latent variables were observed). Since the
space of possible Bayesian network structures is super-exponential,
exhaustive search is intractable and local search algorithms, such
as greedy hill-climbing search, are often used. The E-step and
M-step interleave and iterate until some stop criterion is met, e.g.,
the scoring function does not change significantly. Contrast to the
conventional score-and-search algorithm, Structural EM runs EM
only on one structure in each iteration, thus is computationally more
efficient.

We use an efficient implementation of Structural EM available on-
line called LibB2. Because COMMAND’s initialization step fixes
the arcs from skills to items according to the Q-matrix, the M-step

2http://compbio.cs.huji.ac.il/LibB/programs.html

only needs to consider the candidate structures that comply with
the Q-matrix. An advantage of using Structural EM to discover the
prerequisite relationship of skills is that it can be easily extended
to incorporate domain knowledge. For example, we can place con-
straints on the output structure to force or to disallow a skill to be a
prerequisite of another skill. Another advantage of Structural EM
is that it can be applied when there are missing data in the student
performance matrix D [7]. That is, some students do not answer
all the items. The general idea is, in the E-step, the algorithm also
computes the expected values for missing data points, in addition
for latent variables.

3.3 Discriminate Between Equivalent BNs
Structural EM selects a Bayesian network model based on how well
it explains the distribution of the data. Bayesian network theory
states that some Bayesian networks are statistically equivalent in
representing the data. Thus, the output from Structural EM is ac-
tually an equivalence class (EC) that may contain many Bayesian
network structures3. These equivalent Bayesian networks have the
same skeleton and the same v-structures4. For instance, Figure 3
gives an example of a simple equivalence class containing three
Bayesian networks that are not distinguishable by Structural EM
algorithm and the method in [14]. They share the skeleton but differ
in the orientation of at least one of the edges (we will call such an
edge a reversible edge). They apparently represent three different
prerequisite structures.

(a) (b) (c)

Figure 3: Three equivalent Bayesian networks representing different
prerequisite structures.

3.3.1 Domain Knowledge
To determine a unique structure, we use a heuristic based in domain
knowledge to determine the orientation of each reversible edge. For
convenience in notation, let’s assume that the random variables that
represent skill proficiency can take two values: 0 if the skills is not
mastered, and 1 if the skill is mastered. Our assumption is that if
a skill S1 is the prerequisite of a skill S2, a student can not master
skill S2 before she masters S1. More formally:

Assumption. If S1 is a prerequisite of S2 (i.e., S1 → S2), then
S1 = 0⇒ S2 = 0. In other words, P(S2 = 0|S1 = 0) = 1.

Our assumption implies that S1 cannot be a prerequisite of S2 if
P(S2 = 0|S1 = 0) = 1 does not hold. This puts a constraint on the
joint distribution encoded by the Bayesian network to be learned.

For example, consider the case of choosing the orientation of a
reversible edge S1− S2 from S1 ← S2 or S1 → S2. We can check
whether P(S2 = 0|S1 = 0) = 1 or P(S1 = 0|S2 = 0) = 1. However,
it is possible that our assumption does not hold, and a student
got to master a skill even if he does not know the prerequisite.
Moreover, because of statistical noise, the conditional probability
P(S2 = 0|S1 = 0) may not be exactly 1. Thus, we use the following
empirical rule:

3Structural EM outputs a DAG. However, the scoring function does
not discriminate between the many DAGs of the equivalence class.
4A v-structure with nodes u,v,w in a DAG are the directed edges
u→ v and w→ v and u and w are not adjacent in the DAG [18].
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Rule 1. if P(S2 = 0|S1 = 0) ≥ P(S1 = 0|S2 = 0), we determine
S1→ S2; otherwise, we determine S1← S2.

Note that these two conditional probabilities can be computed eas-
ily from the Bayesian network model output from Structural EM.
The intuition behind this rule is that the conditional probability
P(S2 = 0|S1 = 0) can be interpreted as the strength of the prerequi-
site relationship S1→ S2. The larger of this probability, the more
likely the relationship S1→ S2 holds. Since here we are concerned
with which direction the edge goes, we simply compare the two
probabilities and select the direction that is more probable. Note
that P(S2 = 0|S1 = 0) = 1 and P(S1 = 0|S2 = 0) = 1 may hold
simultaneously. If S1 → S2 is true, P(S1 = 0|S2 = 0) = 1 only
if P(S1 = 1) = 0 or if P(S2 = 0|S1 = 1) = 0.5 If P(S1 = 1) = 0,
this implies that no student knows S1. If P(S2 = 0|S1 = 1) = 0, it
means that learning S2 becomes trivial once students know S1. For
simplicity, we ignore this extreme case.

3.3.2 Theoretical Justification of Heuristic
We now provide theoretical justification for the rule we propose.
Consider a simple equivalence class, which contains two equivalent
DAGs S1→ S2 and S1← S2, where the true model is S1→ S2. We
have three free conditional probability parameters: P(S1 = 0) = p,
P(S2 = 0|S1 = 0) = q, P(S2 = 1|S1 = 1) = r. Let’s define a ratio
that quantifies choosing the true model:

ratio =
P(S2 = 0|S1 = 0)
P(S1 = 0|S2 = 0)

. (1)

Using Bayes rule and rules of probability, the rule ratio≥ 1 becomes
(1− p)(1−r)− p(1−q)≥ 0. Since ratio depends on p, q and r, we
study how ratio changes with these parameters. Figure 4 shows the
contour plots of log(ratio) against P(S1 = 0) and P(S2 = 1|S1 = 1)
for three different values of P(S2 = 0|S1 = 0). The white region
in each contour plot is the region where our heuristic fails because
ratio < 1. Figure 4(a) shows that when P(S2 = 0|S1 = 0) = q = 1,
our heuristic rule is always correct, no matter what, because there
is no white space. With P(S2 = 0|S1 = 0) decreasing, the white
region becomes larger and the rule becomes less accurate. As
mentioned, P(S2 = 0|S1 = 0) can be interpreted as the strength of
the prerequisite relationship. If we fix the value of P(S2 = 0|S1 = 0)
and assume that the two free parameters p and r are independent and
uniformly distributed, then the area of the white region represents
the probability that the rule makes a wrong decision. As the strength
of the prerequisite relationship gets weaker, our rule to determine
the prerequisite relationship becomes less accurate.

(a) (b) (c)

Figure 4: Contour plots of log(ratio) against P(S1 = 0) and P(S2 =
1|S1 = 1) for various values of P(S2 = 0|S1 = 0).

3.3.3 Orient All Reversible Edges
Using our proposed rule, we can orient every reversible edge in
the network structure. However, orienting each reversible edge is

5Since P(S1 = 0|S2 = 0)= P(S2=0|S1=0)P(S1=0)
P(S2=0|S1=0)P(S1=0)+P(S2=0|S1=1)P(S1=1) ,

P(S1 = 0|S2 = 0) = 1 only if P(S2 = 0|S1 = 1)P(S1 = 1) = 0.

not independent and may conflict with each other. Having oriented
one edge would constrain the orientation of other reversible edges
because we have to ensure the graph is a DAG and the equivalence
property is not violated. For example, in Figure 5a, if we have
determined S1→ S2, the edge S2→ S3 is enforced. In this paper, we
take an ad-hoc strategy to determine the orientation for all reversible
edges. For each reversible edge Si− S j, we let ratio∗ = ratio if
ratio≥ 1 and ratio∗ = 1

ratio otherwise. The larger the ratio∗ is, the
more confidently when we decide the orientation. We sort the list of
reversible edges by ratio∗ in descending order. We then orient the
edges by this ordering. In our implementation, we use the following
strategy: we first enumerate all equivalent Bayesian networks and
make them a list of candidates; when an edge is oriented to Si→ S j ,
we remove all contradicting Bayesian networks from the list. Even-
tually only one Bayesian network structure stands. This procedure is
detailed in the Discriminate between equivalent BNs section of Algo-
rithm 1. The EnumEquivalentDAGs(Gi) implements the algorithm
of enumerating equivalent DAGs in [3].

4. EVALUATION
In § 4.1, we evaluate COMMAND with simulated data to assess the
quality of the discovered prerequisite structures. Then, in § 4.2 we
use data collected from real students. In all our experiments, we use
BIC as the scoring function in Structural EM .

4.1 Simulated Data
Synthetic data allow us to study how COMMAND compares to the
ground truth. For this, we engineered three prerequisite structures
(DAGs), shown in Figure 5. Here, each figure represents different
causal relations between the simulated latent skill variables.

(a) Structure 1

(b) Structure 2 (c) Structure 3

Figure 5: Three different DAGs between latent skill variables. Item
nodes are omitted.

For clarity, Figure 5 omits the item nodes; but each skill node is
parent of six item variables and each item variable has 1-3 skill nodes
as parents. All of these nodes are modeled using binary random
variables. More precisely, the latent nodes represent whether the
student achieves mastery of the skill, and the observed nodes indicate
if the student answers the item correctly. Notice that these networks
include the prerequisite structures as well as the skill-item mapping.

We consider simulated data with different number of observations
(n = 150,500,1000,2000). For each sample size and each DAG, we
generate ten different sets of conditional probability tables randomly
with three constraints. First, we enforce that achieving mastery of the
prerequisites of a skill will increase the likelihood of mastering the
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skill. Second, for each prerequisite pair Si→ S j, P(S j = 0|Si = 0)
is randomly selected to be in [0.9,1.0]. Finally, mastery of a skill
increases the probability of student correctly answering the test item.
In total we generated 120 synthetic datasets (3 DAGs x 4 sample
sizes x 10 CPTs), and report the average results.

We evaluate how well COMMAND can discover the true prerequi-
site structure using metrics designed to evaluate Bayesian networks
structure discovery. In particular, we use the F1 adjacency score and
the F1 orientation score. The adjacency score measures how well
we can recover connections between nodes. It is a weighted average
of the true positive adjacency rate and the true discovery adjacency
rate. On the other hand, the orientation score measures how well we
can recover the direction of the edges. It is calculated as a weighted
average of the true positive orientation rate and true discovery ori-
entation rate. In both cases, the F1 score reaches its best value at
1 and worst at 0. Moreover, for comparison, we compute the F1
adjacency score for Bayesian network structures whose skill nodes
are fully connected with each other. These fully connected DAGs
will serve as baselines for evaluating the adjacency discovery6. For
completeness, we list these formulas in tables 2 and 3, respectively.

Table 2: Formulas for measuring adjacency rate (AR)

Metric Formula

True positive (TPAR) # of correct adjacencies in learned model
# of adjacencies in true model

True discovery (TDAR) # of correct adjacencies in learned model
# of adjacencies in learned model

F1-AR 2·TPAR·TDAR
TPAR+TDAR

Table 3: Formulas for measuring orientation rate (OR)

Metric Formula

True positive (TPOR) # of correctly directed edges in learned model
# of directed edges in true model

True discovery (TDOR) # of correctly directed edges in learned model
# of directed edges in learned model

F1-OR 2·TPOR·TDOR
TPOR+TDOR

We use these metrics to evaluate the effect of varying the number
of observations of the training set (sample size) on the quality of
learning the prerequisite structure. We designed experiments to
specifically answer the following four questions:

1. How does the type of items affect COMMAND’s ability to
recover the prerequisite structure? We consider the situation
where in the model each item requires only one skill and the
situation where each item requires multiple skills.

2. How well does COMMAND perform when there is noise in
the data? We focus on studying noise due to the presence of
unaccounted latent variables.

3. How well does COMMAND perform when the student per-
formance data have missing values?

4. How is COMMAND compared with other prerequisite dis-
covery methods? In particular, we compare COMMAND to
the Probabilistic Association Rules Mining (PARM) method
[4].

We now investigate these questions.

6We do not compute F1 orientation score for fully connected DAGs
because all edges in a fully connected DAG are reversible.

4.1.1 Single-skill vs Multi-skill Items
We consider two situations where different types of Q-matrix are
used. In the first situation, each item node maps to exactly one skill
node. In the second one, each item maps to 1-3 skills. Figure 6
compares the F1 of adjacency discovery and edge orientation results
under the two types of Q-matrices. With only 500 observations,
COMMAND improves on a fully connected Bayesian network base-
line. COMMAND’s accuracy improves with the amount of data, but
its accuracy is slightly lower when the Q-matrix contains items that
require more than one skill. A possible explanation for this is that
multi-skill items may introduce more spurious correlations in the
data. With just 2000 observations, COMMAND recovers the true
structures almost perfectly.
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Figure 6: Comparison of F1 scores for adjacency discovery (top
row) and for edge orientation (bottom row). Horizontal lines are
baseline scores for fully-connected (complete) networks. The error
bars show the 95% confidence intervals, i.e., ±1.96∗SE.

4.1.2 Sensitivity to Noise
Real-world data sets often contain various types of noise. For exam-
ple, noise may occur due to latent variables that are not explicitly
modeled. To evaluate the sensitivity of COMMAND to noise, we
synthesize the three Bayesian networks in Figure 5 to include a
StudentAbility node that takes three possible states (low/med/high).
In these Bayesian networks, students’ performance depends not only
on whether they have mastered the skills, but also on their individual
ability. For simplicity, all items in the setting are single-skilled
items. We first simulated data from Bayesian networks that have a
StudentAbility variable to generate “noisy” data samples, and then
use this data to recover the prerequisite structure. Figure 7 illustrates
the procedure of this sensitivity analysis experiment for Structure 1.

Figure 7: Evaluation of COMMAND with noisy data
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Figure 8: Results of adding systematic noise. Top: Comparison of
F1 scores for adjacency discovery. Horizontal lines are baseline F1
scores computed for fully connected Bayesian networks. Bottom:
Comparison of F1 scores for edge orientation.

Figure 8 compares the results where noise was introduced or not.
Interestingly, the noise actually improves COMMAND’s accuracy.
This improvement is more evident when the sample size is small
(see n = 150). For smaller sample sizes, Structural EM usually
discovers less relationships than actually exist, because BIC prefers
sparse structures. We hypothesize that the correlations caused by
StudentAbility node would cause Structural EM to add “stronger”
edges between skill nodes, resulting in higher F1.

4.1.3 Sensitivity to Missing Values
Real-world datasets collected from students often have missing
values, for example, when learners do not answer all items. To
evaluate how COMMAND performs on data with missing values,
we generated data sets of with 1000 observations with varying
fraction of randomly missing values (10%, 20%, 30%, 40%, 50%).
We used COMMAND to recover the structures from these data sets.
Again, the models only contain single-skilled items. Figure 9 shows
the results of this experiment. Although accuracy decreases when
the fraction of missing values increases, COMMAND is able to
recover the true structures for Structure 1 and 2 even when the data
contain up to 30% missing values.
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Figure 9: Results of learning with missing data. Left: Comparison
of F1 scores for adjacency discovery. Horizontal lines are baseline
F1 scores computed for fully connected Bayesian networks. Right:
Comparison of F1 scores for edge orientation.

4.1.4 Comparison With Prior Work
The Probabilistic Association Rules Mining (PARM) is a recent
algorithm for discovering the prerequisite relationships between
skills [4]. In this approach, a prerequisite relationship S1→ S2 is
considered to exist if P(S1 = 1,S2 = 1)≥ minsup∧P(S1 = 1|S2 =
1) ≥ mincon f ) ≥ minprob and P(P(S1 = 0,S2 = 0) ≥ minsup∧
P(S2 = 0|S1 = 0)≥mincon f )≥minprob, where minsup, mincon f
and minprob are pre-specified constants between 0 and 1.

We simulate data from Structure 3 from Figure 5(c) (with single-
skilled items), which has 21 pair-wise prerequisite relationships. We
derive pair-wise prerequisite relationships from this network and
see how the two approaches discover these relationships. When ex-
perimenting with PARM, we use minsup = 0.125, mincon f = 0.76,
minprob = 0.9, because they were suggested by the authors [4].

PARM is limited to discovering pair-wise prerequisite relationships
(instead of constructing the full structure). To make a fair compari-
son, we evaluate how accurately COMMAND and PARM discover
relationship pairs. For this, we use the F1 metric in Table 2, but
we count pairs of related skills instead of adjacencies. Two skills
are related if one is a descendant of the other one. Figure 10 shows
that COMMAND outperforms PARM, and the difference becomes
significant for sample size n≥ 500. The low F1 score of by PARM
is because it fails to discover many prerequisite relationships (data
not shown), and because PARM does not respect transitivity. For
example, PARM may reject S1→ S3 even it has discovered S1→ S2
and S2→ S3. We speculate that selecting a different set of cutoff
values for PARM may improve the results. However, determining
these thresholds is not trivial and may require experts’ intervention.
By contrast, COMMAND does not require tuning.
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Figure 10: Comparison of COMMAND and PARM for discovering
prerequisite relationships in Structure 3.

4.2 Real Student Performance Data
We now evaluate COMMAND using two real-world data sets.

4.2.1 English Data Set
The Examination for the Certification of Proficiency in English
(ECPE) dataset describes 2922 examines in their understanding
of English language grammar [16]. The dataset includes student
performance in 28 items on 3 skills (S1: morphosyntactic rules, S2:
cohesive rules, and S3:lexical rules). Each item requires either one
or two of the three skills.

Figure 11 shows the prerequisite structure discovered with COM-
MAND. It hypothesizes that lexical rules is a prerequisite of cohe-
sive rules and morphosyntactic rules; cohesive rules is a necessary
skill for learning morphosyntactic rules. The pair-wise prerequisite
relationships totally agrees with the findings in [16] and that by the
PARM method in [4]. Our model infers a complete DAG, suggest-
ing that there are no conditional independencies among the three
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Figure 11: The estimated DAG and CPTs of the ECPE data set.

skills. This is an interesting insight that previous approaches cannot
provide. Further, COMMAND also outputs the conditional prob-
abilities associated with each skill and its direct prerequisite. We
clearly see that the probability of student mastering a skill increases
when the student has acquired more prerequisites of the skill.

4.2.2 Math Data Set
We now evaluate COMMAND using data collected from a commer-
cial non-adaptive tutoring system. The textbook items are classified
in chapters, sections, and objectives. We only use student perfor-
mance data from tests in Chapter 2 and 3. That is, students are tested
on the items after they have been taught all relevant skills.

Q-matrix and preprocessing. We define skills as book sec-
tions. We use a Q-matrix that assigns each exercise to a skill solely
as the book section in which the item appears.7 For each chapter,
we process the data to find a subset of items and students that do not
have missing values. That is, the datasets we use in COMMAND
have students responding to all of the items.

After filtering, two data sets, Math-chap2 and Math-chap3, were
obtained for Chapter 2 and 3 respectively. In Math-chap2, six
skills are included and each skill is tested on three to eight items,
for a total of 30 items. In Math-chap3, seven skills are included
and each skill has three to seven items, for a total of 33 items.
Math-chap2 includes student test results for 1720 students, while
the Math-chap3 has test results for 1245 students. For simplicity we
use binary variables to encode performance data and skill variables.

Prerequisite Structure Discovery. The Bayesian networks
generated with the COMMAND algorithm are illustrated in Fig-
ure 12. Our observation is that the topological order of the sections
in both structures are fully consistent with the book ordering heuris-
tic. This shows an agreement between our fully data-driven method
and human experts. We also ran PARM approach to learn pair-wise
prerequisite relationships from these data sets. Given minsup =
0.125, mincon f = 0.76 and minprob = 0.9, 2_5→ 2_6, 2_5→ 2_7
and 2_6→ 2_7 are discovered for Math-chap2, 3_1→ 3_3 and
3_2→ 3_3 are discovered for Math-chap3. These relationships are
small subset of the set of relationships discovered by COMMAND.

Predictive Performance. COMMAND outputs a Bayesian net-
work model that can be used for inference and predictive modeling.
For example, given a student’s response to a set of items, we can
infer the student’s knowledge status of a skill. We could use COM-
MAND to identify students that may need remediation because they

7Here we assume the items are single-skilled despite that they might
be multi-skilled.

(a) Prerequisite structure learned for Math-chap2.

(b) Prerequisite structure learned for Math-chap3.

Figure 12: Prerequisite structures constructed by COMMAND for
Math data sets.

lack some background. We evaluate the accuracy of the predicted
student performance on an item, when we observe the student re-
sponse on the other items. More precisely, we compute the posterior
probability of a student’s response to an item Ii given his perfor-
mance on all other items I−i = I\{Ii}, by marginalizing over the
set of latent variables S:

P(Ii|I−i = i−i) = ∑
S

P(Ii,S|I−i = i−i).

This probability can be computed efficiently using the Junction
tree algorithm [11]. We then do binary classification based on the
posterior probability to determine if the student is likely to answer
correct. We compare the Bayesian network models generated from
COMMAND with five baseline predictors:

• A majority classifier which always classifies an instance to
the majority class. For example, if majority of the students
get an item wrong, other students would likely get it wrong.

• A Bayesian network model in which the skill variables are
disconnected. This model assumes that the skill variables are
marginally independent of each other. Most existing knowl-
edge tracing approaches make this assumption.

• A Bayesian network model in which the skill variables are
connected in a chain structure, i.e., 2-2→2-3→2-4→ . . . This
assumes that a section (skill) only depends on the previous sec-
tion. In other words, a first-order Markov chain dependency
structure.

• A Bayesian network model constructed using the pairwise
relationships output from PARM. That is, we create an edge
Si→ S j if PARM says Si is the prerequisite of S j.
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• A fully connected Bayesian network where skill variables
are fully connected with each other. This model assumes
no conditional independence between skill variables and can
encode any joint distribution over the skill variables. However,
it has exponential number of free parameters and thus can
easily overfit the data.
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(a) Math-chap2 AUC results.
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(b) Math-chap3 AUC results.

Figure 13: Ten fold cross-validation results of evaluating the predic-
tions of student performance.

The parameters of these baseline Bayesian network predictors are
estimated from the data using parametric EM. The model predic-
tions were evaluated using the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve metric calculated
from 10-fold cross-validation. Results are presented in Figure 13.
The error bars show the 95% confidence intervals calculated from
the cross-validation. On both Math-chap2 and Math-chap3 data
sets, the COMMAND models outperform the other five models. The
fully connected models are the second best performing models. On
Math-chap2, COMMAND model has an AUC of 0.803± 0.008
and the fully-connected model has an AUC of 0.791±0.007 (Fig-
ure 13a). A paired t-test reveals that the AUC difference of two
models are statistically significant with a p-value of 0.0022. On
Math-chap3, COMMAND model has an AUC of 0.775± 0.007
and the fully-connected model has an AUC of 0.765±0.008 (Fig-
ure 13b). The AUC difference of two models are also statistically
significant with a p-value of 0.01. The fully connected models are
outperformed by the much simpler prerequisite models, suggesting
overfitting.

5. CONCLUSION AND DISCUSSION
Prerequisite graphs have been shown [1, 10] to improve student mod-
els. However, discovering the prerequisites between skills requires
significant effort from subject matter experts. The main contribu-
tion of our work is a novel algorithm that simultaneously infers a
prerequisite graph and a student model from data with less human
intervention.

We extend on prior work in significant ways. We optimize the full
structure of skills that captures the conditional independence be-
tween skills, instead of only estimating the pairwise relationships.
Our experiments suggests that this results in better accuracy. More-
over, we argue that our strategy is easier to use because it does not
require manual tuning of parameters. Other methods [2] require
the guess and slip probabilities to be provided as input, or alterna-
tively [4], thresholds to determine the existence of a prerequisite
relationship. Determining these values requires experts’ interven-
tion. COMMAND does not require such tuning.

We analyze how missing values, noise and dataset size can affect
the performance of COMMAND. Further research could explore
additional datasets and baselines. A secondary contribution of our

work is that we develop a methodology to evaluate prerequisite
structures on real student data. We believe that we are the first
to compare prerequisite discovery strategies by how well they can
be used to predict student performance. Therefore, we validate
COMMAND not only with synthetic data, but with two real-world
datasets. Our results suggest that COMMAND improves on the state
of the art because it significantly improves on a recently published
technique.

Learning a prerequisite graph is not merely discovering a Bayesian
network— equivalent Bayesian network structures in fact represent
different prerequisite structures. We believe we are the first to
address this problem. We use domain knowledge to refine the
prerequisite models output using a theoretically motivated method.
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ABSTRACT
Massive Open Online Course (MOOC) platform designs,
such as those of edX and Coursera, afford linear learning
sequences by building scaffolded knowledge from activity to
activity and from week to week. We consider those sequences
to be the courses’ designed learning paths. But do learners
actually adhere to these designed paths, or do they forge
their own ways through the MOOCs? What are the im-
plications of either following or not following the designed
paths? Existing research has greatly emphasized, and suc-
ceeded in, automatically predicting MOOC learner success
and learner dropout based on behavior patterns derived from
MOOC learners’ data traces. However, those predictions do
not directly translate into practicable information for course
designers & instructors aiming to improve engagement and
retention — the two major issues plaguing today’s MOOCs.
In this work, we present a three-pronged approach to ex-
ploring MOOC data for novel learning path insights, thus
enabling course instructors & designers to adapt a course’s
design based on empirical evidence.

Keywords
MOOCs, learning path analysis, visualization

1. INTRODUCTION
MOOCs can deliver a world-class education on virtually any
academic or professional development topic to any person
with access to the Internet. Millions of people around the
globe have signed up to courses offered on platforms such
as edX, Coursera, FutureLearn and Udacity. At the same
time though, only a very small percentage of these learners
actually complete a MOOC successfully [15], an issue that
continues to plague massive open online learning. Keeping
MOOC learners engaged and improving the dismal reten-

∗The author’s research is supported by the Leiden-Delft-
Erasmus Centre for Education and Learning.
†The author’s research is supported by the Extension School
of the Delft University of Technology.

tion rates are major concerns to instructional designers and
MOOC instructors alike. Considerable research efforts have
been dedicated to the automatic prediction of learners’ (im-
minent) dropout in MOOCs, e.g. [9, 12, 17, 24], under the
assumption that once learners under the threat of attrition
are identified, an automated intervention can be staged to
(re)engage those learners with the course material. While
the accuracy of these usually machine-learning-based pre-
dictors is high, their explanatory power is often low. Model
features that have the strongest impact on prediction purely
based on statistical grounds may not provide course design-
ers & instructors with enough information to adapt the de-
sign or content of a MOOC in response.
In this work we aim to provide a more holistic view of learn-
ers’ progression through a MOOC in order to enable more
practicable insights to instructors and designers. Our ap-
proach to educational data mining as presented here is a
very literal realization of Graesser’s vision for the field by
illustrating and “look[ing] at unique learning trajectories of
individuals” [21]. We make use of the concept of learning
paths (a learner’s route through course activities) and inves-
tigate how the learning paths of successful and unsuccessful
MOOC learners differ.
The design of MOOCs on the edX platform1 implies a linear
trajectory through the learning material. Most courses are
broken up into weeks (Week 1, Week 2, etc.) and released
one week at a time. Within these weeks, the standard in-
structional approach is to first provide a brief introduction
to the week’s material, followed by the weekly video lectures
(the main source of content delivery), then the assessments
that evaluate learners’ knowledge of the preceding video lec-
tures, and, finally, courses may offer bonus material. This
cycle is repeated each course week (and sometimes multi-
ple cycles comprise a single week). But do learners actually
adhere to this cycle, and thus the designed learning path?
Does it matter if they do not? These are the central issues
that we focus on in this paper. While the concept of executed
learning paths (i.e., the paths students actually take through
a course) has received substantial attention in the e-learning
and intelligent tutoring communities [13, 19], in the MOOC
setting this concept has so far garnered little attention. First
empirical evidence that learners do not always follow the de-
signed sequence through a MOOC has been observed in [8],
however, to our knowledge no in-depth investigation of this
phenomenon in the MOOC context exists as of yet. We aim
to close this knowledge gap and investigate the following

1Our empirical work is based on edX MOOCs, but the same
principles apply to other major MOOC platforms.
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research question:

To what extent do learners adhere to a MOOC’s designed
learning path?

We develop three approaches to characterize learning paths,
thus providing three different views on a MOOC’s designed
learning path (created by the course instructor or designer)
and the executed paths (created by the learners of the MOOC).
We apply our approaches on the log traces of more than
113, 000 learners who participated in one of four edX-based
MOOCs in the domains of computer science, political de-
bates and business ethics.
We show that (1) our approaches shed light on the devi-
ations between designed and executed learning paths, and,
(2) successful and unsuccessful learners differ considerably in
the paths they follow. We believe that our work can provide
instructional designers a valuable analysis tool to improve
the design of both online courses and MOOC platforms in
the future as they provide data-driven insights into the ac-
tual behavior of learners and the impact of their behaviors
on learning outcomes.

2. RELATED WORK
In this section, we elaborate on existing research in learner
modeling [5], focusing on works that investigate learning ac-
tivity sequences and their impact on learning outcomes.
The problem solving behavior of learners in the context of e-
learning and intelligent tutoring systems has been explored
in [10, 13, 14, 19]. In contrast to our work, which considers
a range of activities learners perform throughout a course
(and compares them to the designed learning path), these
works have explored learners’ exhibited behavior within only
one activity type — problem solving. Specifically, Köck and
Paramythis [14] performed activity sequence clustering (an
application of sequential pattern mining [22]) to model the
learners’ behavior, while in [13] automated clustering and
human synthesis of the generated clusters were combined
to identify patterns of problem solving. Shanabrook et al.
[19] introduced a semi-automatic approach to identify a stu-
dent’s state while problem solving (including: gaming the
system, guessing out of frustration, abusing hints, being on-
task) in a high school-level intelligent tutoring system em-
ploying sequence-based motif discovery. Jeong and Biswas
[10] developed a Hidden Markov Model to describe how dif-
ferent middle school student behavior trends lead to different
learning processes & outcomes when problem solving.
In the context of MOOCs, sequences of learning activities
have been explored by Wen and Rosé [23], who investigated
the most common two-step activity sequences learners ex-
hibit across two MOOCs. These patterns were then man-
ually checked and analysed for interesting learning habits.
A similar analysis of two-step chains was performed in Guo
and Reinecke [8] who found that learners generally progress
through the course content in a non-linear, “exploratory”
manner [16]. Guo and Reinecke [8]’s observation of learners
frequently performing “backjumps” (moving from a quiz to
a lecture video previously introduced) can be considered as
one of the first comparisons of executed and designed learn-
ing paths in MOOCs. Kizilcec et al. [11] (replicated in [6])
have also taken steps in this direction, by utilizing the as-
sessment submission times (either on track, late or never) in
MOOCs as indicators of learner engagement groups (com-

pleting, auditing, disengaging or sampling learners). Our
work can be considered a significant expansion to these ap-
proaches, as we explore longer activity sequences (eight-step
chains), thus enabling the discovery of more high-level and
complex patterns and making designed vs. executed paths
the focal point of our investigation.
Video interactions in MOOCs were the focus of Sinha et al.
[20], who categorized the most prominent chains of video
interactions (pause, play, speed, and skipping) and analyzed
them with respect to learner dropout.MOOC discussion pat-
terns have been investigated by Brooks et al. [3] who found
that MOOC students exhibit markedly different discussion
patterns than were expected based on blended learning en-
vironments. This finding can also be considered as a mo-
tivation for our work; MOOCs may not always be used by
learners the way the instructors or course designers intended.
The concepts of process mining and conformance checking,
in particular, are also employed in areas such as business
process execution; [18] explains how business processes can
be monitored (process mining) and then compared to the
intended model (conformance checking) via a measure of
fitness.

3. SUBJECTS & DATA
We explore our research question in the context of four
MOOCs: Functional Programming (teaching the functional
programming paradigm), Data Analysis (teaching spread-
sheet and basic Python skills for data analysis), Framing

(the art of political debates), and Responsible Innovation

(a MOOC on the ethics and safety of new technologies). All
MOOCs were offered on the edX platform in 2014/2015 and
designed as xMOOCs.

Overview of MOOCs. Table 3 provides an overview of the
four MOOCs in this study. The learner enrollment varies
between ≈9k and ≈37k. While the four MOOCs are com-
parable in their video material offerings (between 41 and 59
videos), they differ significantly in the number of summative
assessment questions (between 26 and 288 quiz questions).
We also observe considerable differences in the percentage of
video material watched by certificate-earning learners (repli-
cating [8]) — less than half of the videos are accessed by
successful learners in Data Analysis, while more than two
thirds of the videos are accessed by successful learners in
Functional Programming. Lastly, we note that the Re-

sponsible Innovation MOOC is an outlier with respect
to the percentage of learners that passed the course without
streaming any video material,2 with nearly 20% of success-
ful learners falling into this category; the same applies for
only ≈4% of learners in the other three MOOCs.

Translating Log Traces into a Semantic Event Space.
The edX platform provides a great deal of timestamped log
traces, including clicks, views, quiz attempts, and forum in-
teractions. We adapted the MOOCdb3 toolkit to our needs
and translated these low-level log traces into a data schema
that is easily query-able.

For this work, we focus on four event types as listed in
Table 2: events related to videos, quizzes, progress pages,
and discussion forums. Videos can be watched - this event

2Note that the log traces did not capture video downloads
and subsequent offline watching.
3http://moocdb.csail.mit.edu/
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MOOC Enrolled Pass Chains Weeks Videos Quiz Passing Tries Videos Missing
Rate Pass/Non-p. Questions Grade Accessed

Functional
Programming

37,485 5.3% 1.06M/807k 14 41 288 60% 1 67.5% 4.3%

Responsible
Innovation

8,850 4.3% 66k/30k 7 47 75 59% 1-3 49.7% 19.6%

Framing 34,017 2.4% 95k/141k 6 55 26 50% 2 51% 3.8%
Data Analysis 33,515 6.5% 1.02M/855k 8 59 136 60% 2 45% 3.6%

Table 1: Overview of the MOOCs in our study. The #Chains column contains the number of events observed
throughout the MOOC (cf. Table 2). The “Passing Grade” shows the percentage of quiz questions to answer
correctly to receive a course certificate. “Tries” indicates how many attempts a learner has per question.
“Videos Accessed” shows the average % of course videos watched by certificate-earning learners. “Missing”
is the % of certificate-earning learners who streamed zero video lectures.

Video Quiz Progress Forum

WATCH START VIEW START

SUBMIT SUBMIT

END END

Table 2: Overview of events considered in this work.

is generated whenever a user clicks the video ‘play’ button.
Quizzes are identified through the beginning of the quiz ses-
sion (the user enters the quiz page), the submission of one
or more answers4, and the ending of the quiz session (the
user leaves the quiz page). Those quizzes are typically sum-
mative in nature. If a user views his or her progress page,
the VIEW event is elicited. Finally, we condense discussion
forum events into three kinds of items: the start of a forum
session (the user first enters the forum), the submission of
content (question, comment or reply) and the end of the fo-
rum session (the user leaves the forum page).
All executed learning paths that we extract from the learner
log traces consist of the events listed in Table 2. The ra-
tionale for choosing these events comes from the designed
learning path by which xMOOCs are typically formed: first
watch one or more lecture videos, and then move on towards
the quiz and/or forum section for assessment and knowledge
building & verification respectively. In Figure 2 we visu-
alize a week’s designed learning path for each of the four
MOOCs we study (this pattern is repeated in every course
week). Video lectures form a common denominator, start-
ing the path. Functional Programming and Data Analysis

rely on videos and quizzes only (with Data Analysis ex-
hibiting multiple video-quiz“cycles”within a week), whereas
Responsible Innovation and Framing make use of the fo-
rums as well. The learning path shown for Framing does not
include quizzes as they are posed only in the final week (in
the form of an exam).

4. APPROACH
Having introduced the subjects of our work and the events
we consider, we now describe the three distinct approaches
to the visualization & exploration of executed learning paths
(that is, learners’ sequential movement over time through
the activities offered in a MOOC) we developed.

4Note that on the edX platform answers to individual quiz
questions are submitted (instead of all answers at once).

4.1 Video Interactions
As shown in Figure 2, videos are a focal point of xMOOCs.
Accordingly, in a first analysis, we focus exclusively on video
interactions and explore to what extent learners adhere to
the designed video watching learning path. Therefore, in
this study we only make use of WATCH events.
We transform the WATCH events generated by a set of learners
L across the duration of a MOOC M into a directed graph
GM,L = (VM, EM,L) — as the subscripts indicate, with M
fixed, the set V is independent of the subset of learners cho-
sen, while E is dependent on the learners in L. All lecture
videos contained in M form the set of vertices VM. The
vertices are labelled chronologically, that is, for any vertex
pair (vi, vj) with i < j, the corresponding lecture video i
must appear in the designed learning path before video j.
The edges are directed and weighted according to the num-
ber of WATCH events by the learners L: an edge between
vi−1 (source) and vi (target) presents the learners’ transi-
tion between these videos, i.e. the number of times learners
watching video vi−1 watch vi next, before any other video.
We disregard self-loops (watching the same video again) as
we are focusing on the progression of the learners through
the set of lecture videos.
Having generated GM,L, we now turn to its visualization
(to aid instructors and course designers): the vertex layout
is sequential and governed by the designed learning path
through the videos (represented as vertices). For MOOCs
with thousands of participants it is likely that every sin-
gle video pair combination possible is contained in at least
one learning path. To avoid visual clutter, we filter out the
most infrequent edges: we bin the edges according to the
week their source vertex appears in and remove the 10% of
edges that occur most infrequently in this course week.
To discover whether or not there are marked differences in
the way different groups of learners behave, we generate the
video interaction graph for different sets of learners, such as
successful (certificate earning) vs. unsuccessful learners.

4.2 Behavior Pattern Chains
Having considered the transitions between lecture videos, we
now turn to the exploration of transition patterns among all
eight events identified in Table 2. Previous works [23] have
viewed MOOC learner patterns either in terms of one-step
directed pairs of events (such as watch video → begin quiz)
or based on video click chains only [20].
One-step chains can only provide limited insights into more
high-level behavioral patterns — we may, for instance, be in-
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Figure 2: The designed learning path for a standard week (Week 4) of each MOOC. The circled numbers
indicate the step number of each transition in that week’s sequence. Notice the diversity in course designs
that characterize these four MOOCs.

QUIZSTART→QUIZEND→WATCH→WATCH

→WATCH→WATCH→WATCH→WATCH

Figure 1: An example eight-step chain.

terested to understand how many learners are “binge watch-
ers” (watching many videos in a row) or “strategic learners”
(looking at quiz questions before watching the correspond-
ing lecture video). In order to contribute insights to our
research question we need to consider longer chains. We
have settled on eight-step chains, as they provide insights
into more high-level concepts but are still numerous enough
in our log traces to make claims about their general usage.
We consider all events of Table 2 and create event chains by
sliding a window of size eight over each learner’s chronolog-
ically ordered learning path through a MOOC. An example
eight-step chain this procedure yields is shown in Figure 1.
To identify the underlying trends in the chains, we em-
ployed the open card sort approach [7]. After printing out
two sets of the thirty most frequently occurring chains on
paper, two authors independently sorted them into (non-
predefined) like-groups by hand and afterwards discuss the
differences in each sort, creating a composite of the two re-
sults. The outcome of this method is a synthesis of similar
chain types into groups sharing the same motif, or recurring
theme. Based on the motifs, we created a rule-based system
that assigned a MOOC’s entire set of chains to the identified

motifs (chains that do not fit into any motif are left “unas-
signed”). This process is repeated for each of the MOOCs
we investigate. The advantage of this approach over the au-
tomatic clustering of the chains is the infusion of our domain
knowledge into the clustering process.

4.3 Event Type Transitions
Lastly, we explore event type transitions, or how likely learn-
ers are to move from one event type to another. Inspired
by the methods employed in [10, 13, 14] we use discrete-
time Markov chains (a memory-less state transitioning pro-
cess encoding how often learners move from one event type
to another) in order to chart the likelihood that a learner
will transition from one engagement activity to another.
Whereas the prior works employ these methods in the con-
text of problem solving (knowledge assessment), we focus
on the larger process of knowledge building, which transpires
over the span of an entire course.
While it may be self-evident that non-passing learners an-
swer less quiz questions than their certificate-earning peers
(and thus the transition probabilities to SUBMITQUIZ are
likely to be lower for non-passers), the visualization of the
Markov chains enables designers to pinpoint the differences
in transitions between different types of learners (e.g. passers
vs. non-passers) across all events in one coherent plot.
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5. FINDINGS
To answer our research question (do learners adhere to the
designed learning path?), we apply the three approaches out-
lined in Section 4 to the datasets described in Section 3.

5.1 Video Interactions
We visualize the video interactions across the first three
weeks (these are where the most deviations occur; the later
weeks are more in line with the designed path) of each
MOOC in Figures 3 to 6, distinguishing two sets of learn-
ers: those that eventually earn a certificate (“Passing”) and
those that do not (“Non-Passing”). The designed video in-
teraction learning path is exhibited by the left-to-right flow
of the vertices (one per video). The edges correspond to the
executed learning paths — with edge thickness indicating
the (normalized) number of learners having taken that path
(only the 90% most frequently occurring transitions each
week are shown); the set of red edges represent the executed
transitions that follow the designed transitions. A number
of observations can be made based on the visualizations:
(i) passing learners deviate considerably less from the de-
signed learning path than non-passing learners across all four
MOOCs, (ii) passing learners are more likely to skip video
lectures introducing the platform (the first three videos in
the Framing MOOC) than non-passing learners, indicating
a higher level of seniority in MOOC-taking, (iii) towards the
end of week three, the deviations among the sets of passing
and non-passing learners are negligible (i.e. the non-passing
learners still active exhibit a similar video watching behavior
as the passers), and (iv) skipping videos — jumping ahead
— is much more common than backtracking — jumping
backwards — for both passers and non-passers.
An emerging object in the field of Design (and gaining some
attention in the field of Software Design [4]) is that of desire
paths, or paths not intended by the designer, but those which
“arise due to off-[path] use ... for a variety of purposes such
as access to places of interest and shortcutting” [2]. This
research serves as a reminder that desire paths indeed exist
in MOOCs (as evident in the skipping of introductory lec-
ture material) — they just have not yet been made as visible
as those brown stripes of beaten grass and dirt transecting
public parks and trails. They are a reminder that humans
can collectively communicate good design by their actions.

5.2 Behavior Pattern Chains
Our second approach explores learners’ behavioral patterns.
As outlined in Section 4.2, we first manually clustered and
labelled the most frequent eight-step pattern chains in order
to determine what type of behaviors (or motifs) learners ex-
hibit beyond a single-click transition, before automatically
assigning the remaining chains into those motifs. Depend-
ing on the MOOC, this approach yielded between eight and
11 motifs, with some motifs appearing only in a subset of
courses. For brevity reasons, in Tables 3 to 6 for each MOOC
we list its most frequent motifs (specifically those into which
≥2% of all chains are classified); as a comparison in Ta-
ble 3 we also list the total number of chains generated by
passing/non-passing learners in each MOOC — depending
on the MOOC, the listed motifs capture between 42%–77%
of the total number of chains. Whenever a motif is first in-
troduced, we briefly describe which event types and event

Non-Passing

Passing
Week 1 Week 2 Week 3

Figure 3: Functional Programming video interactions.

Non-Passing

Passing
Week 1 Week 2 Week 3

Figure 4: Framing video interactions.

Non-Passing

Passing
Week 1 Week 2

Week 3

Figure 5: Data Analysis video interactions.

Non-Passing
Passing
Week 1

Week 2 Week 3

Figure 6: Responsible Innovation video interactions.

orderings characterize it5.
Examining the results, we observe that (i) Binge Watching
is a frequent motif in all MOOCs with non-passers always ex-
hibiting more binge watching (i.e. watching videos uninter-
rupted by other activities) than passers, (ii) the Lecture→Quiz
Complete motif, which captures the “classic” xMOOC idea
of video watching with subsequent question answering is fre-
quent in three of the four MOOCs6, however no consistent
divergent behavior for passers and non-passers is found, (iii)
motifs with forum events occur in three of the four MOOCs
— by course design in Framing and Responsible Innova-

tion (cf. Figure 2), but not in Functional Programming,
indicating issues related to material clarity, and (iv) the
Quiz Check motif, which is exhibited by learners checking
the quiz questions without answering any of them (which
is usually followed by video watching and subsequent quiz
completion), is only found in one MOOC frequently; in Data

Analysis 2% of the chains follow this motif, a smaller per-
centage than we expected, indicating that very few learners
are gaming the system by “attempting to succeed in an ed-
ucational environment by exploiting properties (quiz ques-

5Note, that we implemented our rules for the automatic as-
signment of chains to motifs according to these characteri-
zations.
6It does not appear among the frequent motifs in Framing,
which has a final exam instead of weekly quizzes.
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tions are posted alongside the video material) of the system
(edX platform) rather than by learning the material and
trying to use that knowledge to answer correctly,” [1].

Motif Freq.
Total

Freq.
Pass-

ing

Freq.
Non-
pass.

1 Quiz Complete 552,363
(29.4%)

328,995
(30.8%)

223,368
(27.7%)

XQUIZ events only with at least one X = SUBMIT

2 Binge Watching 149,784
(8%)

59,498
(5.6%)

90,286
(11.2%)

WATCH events only

3 Lecture→Quiz Complete 100,179
(5.3%)

50,415
(4.7%)

49,764
(6.2%)

WATCH event(s) followed by XQUIZ events; at least one X = SUBMIT

4 Quiz Complete→Forum 99,828
(5.3%)

67,722
(6.3%)

32,106
(4%)

XQUIZ events (at least one X = SUBMIT) followed by XFORUM events

5 Quiz Complete→Progress 38,854
(2.1%)

26,126
(2.4%)

12,728
(1.6%)

XQUIZ events (at least one X = SUBMIT) followed by XProgress events

Table 3: Most frequent motifs (≥2% chains) in Func-

tional Programming.

Motif Freq.
Total

Freq.
Pass-

ing

Freq.
Non-
pass.

1 Quiz Complete 18,446
(16.6%)

11,377
(14.7%)

7,069
(21.1%)

2 Binge Watching 12,530
(11.3%)

8,461
(10.9%)

4,069
(12.1%)

3 Lecture→Quiz Complete 5,060
(4.6%)

3,752
(4.8%)

1,308
(3.9%)

4 Lecture→Forum→Lecture 3,910
(3.5%)

2,386
(3.1%)

1,524
(4.5%)

WATCH events followed by XFORUM events followed WATCH events

5 Quiz
Complete→Progress

3,741
(3.4%)

2,898
(3.7%)

843
(2.5%)

6 Quiz Complete → Lec-
ture → Quiz Complete

2,277
(2.1%)

2,019
(2.6%)

258
(0.8%)

Table 4: Most frequent motifs (≥2% chains) in Re-

sponsible Innovation.

5.3 Event Type Transitions
The Markov models of our four MOOCs are visualized in
Figures 7 to 10. Since we observe the same event types across
the four MOOCs, the set of vertices, their placement in the
visualization, and their semantics are identical. To minimize
visual clutter, we only plot the transitions (i.e. the edges)
that exhibit a probability of 0.2 or higher. Once more we
make the distinction between passing and non-passing learn-
ers. The resulting visualizations show the behavioral differ-
ences not only between passing and failing students within
a given course, but these also allow for cross-course analyses
which shed light on what types of behavioral patterns define
a course. For example, when comparing Framing (Figure 9)
and Data Analysis (Figure 7), marked differences in their
pedagogical structure are evident; Framing appears to fos-
ter a very social, collaborative environment, whereas Data

Motif Freq.
Total

Freq.
Pass-

ing

Freq.
Non-
pass.

1 Binge Watching 64,822
(27.3%)

18,023
(18.9%)

46,726
(33.1%)

2 Lecture→Forum→Lecture 29,224
(12.3%)

11,651
(12.2%)

17,505
(12.4%)

3 Quiz Complete 12,984
(5.5%)

9,156
(9.6%)

3,781
(2.7%)

4 Forum→Lecture 7,850
(3.3%)

3,035
(3.2%)

4,800
(3.4%)

XFORUM events followed WATCH events

5 Lecture→Forum 7,488
(3.2%)

3,008
(3.2%)

4,462
(3.2%)

6 Quiz
Complete→Lecture→Quiz
Complete

5,551
(2.3%)

4,022
(4.2%)

1,501
(1.1%)

Table 5: Most frequent motifs (≥2% chains) in Fram-

ing.

Motif Freq.
Total

Freq.
Pass-

ing

Freq.
Non-
pass.

1 Quiz Complete 169,786
(9%)

116,878
(11.4%)

52,908
(6.2%)

2 Quiz
Complete→Lecture→Quiz
Complete

145,596
(7.7%)

82,247
(8%)

63,349
(7.4%)

3 Binge Watching 87,760
(4.7%)

28,066
(2.7%)

59,694
(7%)

4 Lecture→Quiz Complete 78,790
(4.2%)

41,543
(4.0%)

37,247
(4.4%)

5 Quiz Complete→Lecture 43,612
(2.3%)

21,916
(2.1%)

21,696
(2.5%)

6 Quiz Check 37,406
(2%)

19,444
(1.9%)

17,962
(2.1%)

QUIZSTART followed by QUIZEND events

Table 6: Most frequent motifs (≥2% chains) in Data

Analysis.

Analysis learners mostly focus their attention on lectures
and assessments, with little concern for discussion. The vi-
sualizations also reveal at which specific moments learners
seek feedback on their progress (i.e. make a transition to the
Progress vertex), such as after a Quiz or Forum in Respon-

sible Innovation and Framing. These movements are not
included in any of the courses’ designed paths; course de-
signers can use this insight to proactively insert feedback in
order to encourage more awareness and self-regulated learn-
ing. When comparing transitions of passing vs. non-passing
learners, we observe that (i) non-passers make the transi-
tion to the video event from more diverse event types than
passers (indicating that non-passers’ executed paths follow
the designed path to a lesser degree than passers’ executed
paths), (ii) video-to-video transitions are more prevalent
among non-passers (in line with our findings on the binge
watching motif), and (iii) passing learners are more likely
to move from Quiz Start to Quiz Submit, while non-passing
learners are more likely to move from Quiz Start to Quiz
End (without answering a question).
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6. CONCLUSION
Before adaptive learning systems can reach their potential,
two important baselines must be established: (i) the precise
learning path the instructor wants the student to follow and
(ii) students’ natural behavior within the course. Adaptive
instruction will be most effective when the differences be-
tween these two baselines are both identified and addressed.
The present research offers novel insights into the identifica-
tion of those differences.
Specifically, in this work we have introduced three different
approaches (the video interaction graph, behavior pattern
chains and event type transitions) to explore and visualize
MOOC log traces with respect to the designed and executed
learning paths.
We have applied our approaches on the log traces of four
different edX-based MOOCs (from different domains and
different pedagogical structures) and have shown to what
extent learners (as a whole group as well as partitioned into
passing and non-passing learners) follow the prescribed path.
In future work, we will expand our analyses to a larger set of
MOOCs to gain a greater understanding of the “classes” of
xMOOCs that exist on the major MOOC platforms today.
We also plan to consider more diverse sub-populations of
learners in future analyses, beyond passing or not passing.
We will also investigate semi-automatic approaches to the
adaptation of MOOC learning paths, in order to minimize
the gap between designed and executed paths as well as the
impact this work has on engagement, retention, learner suc-
cess and more fine-grained learner partitions (such as com-
pleting, auditing, and sampling learners [11]).
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Figure 7: Markov Model state visualization of non-passing (left) and passing (right) learners in the Data

Analysis MOOC. Edges with weights below 20% are hidden from view.

Figure 8: Markov Model state visualization of non-passing (left) and passing (right) learners in the Functional

Programming MOOC. Edges with weights below 20% are hidden from view.

Figure 9: Markov Model state visualization of non-passing (left) and passing (right) learners in the Framing

MOOC. Edges with weights below 20% are hidden from view.

Figure 10: Markov Model state visualization of non-passing (left) and passing (right) learners in the Respon-

sible Innovation MOOC. Edges with weights below 20% are hidden from view.
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ABSTRACT
Peer grading is widely used in MOOCs and in standard university
settings. The quality of grades obtained via peer grading is essential
for the educational process. In this work, we study the factors that
influence errors in peer grading. We analyze 288 assignments with
25,633 submissions and 113,169 reviews conducted with Crowd-
Grader, a web based peer grading tool. First, we found that large
grading errors are generally more closely correlated with hard-to-
grade submission, rather than with imprecise students. Second, we
detected a weak correlation between review accuracy and student
proficiency, as measured by the quality of the student’s own work.
Third, we found little correlation between review accuracy and the
time it took to perform the review, or how late in the review pe-
riod the review was performed. Finally, we found a clear evidence
of tit-for-tat behavior when students give feedback on the reviews
they received. We conclude with remarks on how these data can
lead to improvements in peer-grading tools.

1. INTRODUCTION
In peer grading, students review and grade each other’s work. The
grades assigned by the students to each item are then merged into a
single consensus grade for the item. Peer grading has several ben-
efits, as reported in the literature, including the fact that students
learn from each other’s work, and the reduced workload on the in-
structors. For these reasons, peer grading has been widely used
both in MOOCs, where it would be infeasible for a small number
of instructors to grade all work [14, 1, 5, 12], and in standard uni-
versity classes [17, 15, 10, 18, 3, 16].

Successful peer grading is predicated on the ability to reconstruct a
reasonably accurate consensus grade from the grades assigned by
the students. This leads to the following question: what factors
cause or influence the errors in peer-assigned grades? We are in-
terested in this question for three reasons. First, we wish to obtain
a better understanding of the dynamics and human factors in peer
grading. Second, a better understanding of the causes of error has
the potential to lead to tool improvements that reduce the errors.

∗In alphabetical order

For example, if mis-understanding on the work submitted consti-
tuted a large source of error, then peer grading tools could be aug-
mented with means for work authors and graders to communicate,
so that the misunderstandings could be resolved. Third, a better
model of peer grading errors might lead to better algorithms for ag-
gregating the student-assigned grades into the consensus grades for
each item.

Our interest in the origin of peer-grading errors is also due to our
work on the peer-grading tool CrowdGrader [8]. We have put con-
siderable effort in reducing the error in the consensus grade com-
puted by CrowdGrader, as compared to control instructor-assigned
grades. While efforts on the tool UI and UX paid off, as we will
detail later, the efforts to create more precise grade-aggregation al-
gorithms did not. In the context of MOOCs, [14] reports a 30%
decrease in error using parameter-estimation algorithms that in-
fer, and correct for, the imprecision and biases of individual users.
CrowdGrader is used mostly in universities and high-schools. On
CrowdGrader data, the parameter-estimation algorithm of [14] of-
fers no benefit compared with the simple “Olympic average” ob-
tained by removing lowest and highest grades, and averaging the
rest. Indeed, we have spent a large amount of time experimenting
with variations upon the algorithm (see also [7]) and new ideas, but
we are yet to find an algorithm that offers consistent error reduc-
tion of more than 10% compared to the Olympic average. Thus our
interest on the origin of errors in CrowdGrader: what are the main
causes? What makes them so difficult to remove using algorithms
based on parameter estimation, reputation systems, and more?

To gain an understanding of the dynamics of peer grading, we
have analyzed a set of CrowdGrader data consisting in 288 assign-
ments, 25,633 submissions, and 113,169 grades and reviews. Of
the 25,633 submissions, 2,564 were graded by the instructors in
addition to the students. The questions we ask include the follow-
ing.

Is error mostly due to items or to students? We first ask the question
of whether the imprecision in peer grades can be best explained in
terms of students being imprecise, or items being difficult to grade.
We answer this question in two different ways.

First, we build a parameterized probabilistic model of the review
process, similar to the model of [14], in which every review error is
the sum of a component due to the submission being reviewed, and
of a component due to the reviewer. The parameters of the model
are then estimated via Gibbs sampling [11]. The results indicate
that students contribute roughly two thirds of the total evaluation
error.
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This result, however, speaks to the average source of error. Of par-
ticular concern in peer grading are the very large errors that happen
less frequently, but have more impact on the perceived fairness and
effectiveness of peer grading. We measure the correlation of large
errors in items, and in users; our results indicate that hard-to-grade
items are a more common cause of large errors than very imprecise
students.

Do better students make better graders? A natural question is
whether better students make better graders. In Section 6 we give
an affirmative answer: students whose submissions are in the lower
30%-percentile quality-wise have a grading error that is about 15%
above average. The effect is fairly weak, a likely testament to the
fundamental homogeneity in abilities in a high-school or college
class, as well as to the fact that grading a homework is usually eas-
ier than solving the homework.

Does the timing of reviews affect their precision? In Section 7 we
consider the relation of review timing and review precision. We
did not detect strong dependencies between grading error and the
time taken to complete a review, the order in which the student
completed the reviews, or how late the reviews were completed
with respect to the review deadline.

Does error vary with class topic? In Section 4 we consider the
question of whether grading precision varies from topic to topic.
Comparing broad topic areas, such as computer science, essays,
science, we find the statistics to be quite similar, indicating how
general factors are less important than the specifics of each class.

Does tit-for-tat affect review feedback? CrowdGrader allows stu-
dents to leave feedback on the reviews and grades they receive;
this feedback is then used as one of the factor that determines the
student’s grade in the assignment. The feedback was introduced
to provide an incentive for writing helpful reviews. In Section 8
we show that when a grade is over 20% below the consensus, it
receives a low feedback score due to tit-for-tat about 38% of the
time.

In the next section, we give a brief description of CrowdGrader,
and of the datasets on which our analysis is based. The subsequent
sections present the details of the answers to the above questions.
We conclude with a discussion on the nature of errors in peer grad-
ing, and on the implications for algorithms and reputation systems
for computing consensus grades.

2. RELATED WORK
The accuracy of peer grading in the context of MOOCs has been
analyzed in [13], where the match between instructor grade and
student grades is analyzed in detail. The study finds a tendency by
student to rate higher people that share their country of origin —
and this in spite of the grading process being anonymous. The study
finds that improvement in grading rubrics lead to improved grading
accuracy. Geographical origin, along with gender, employment sta-
tus, and other factors, are found to have influence on engagement in
peer grading in a French MOOC in [4]. Our work is thus somewhat
orthogonal to [4, 13]: we do not have data on student ethnicity,
and we focus instead on factors measurable from the peer grading
activity itself.

Frequently, peer grades are accompanied with reviewers’ comments
or feedback; [19] explores the possibility of using the review text to
asses review quality. The authors show a successful application of

classifiers and statistical Natural Language Processing to evaluate
reviews.

Peer Instruction is a process in which students can observe grades
by other reviewers, discuss the review, and consequently modify
their grades [6]. The factors that influence grades in peer instruc-
tion have been studied in [2]. In spite of the different settings, [2]
also observe that the behavior of high and low-scoring students is
fairly similar in terms of their grading accuracy.

3. THE CROWDGRADER DATASET
To analyze the source of grading errors in peer grading, we rely on
a dataset from CrowdGrader, a peer review and grading tool used in
universities and high-schools [8]. After students submit their solu-
tions to an assignment, students review and grade a certain number
of submissions by their peers. From these peer grades, Crowd-
grader computes a consensus grade for every submission. Once
the review phase is concluded, the students can rate the reviews
they received according to a 1 to 5-star rating. These review ratings
are meant to provide an incentive for students to write detailed,
helpful reviews of other students work.

The overall dataset we examined consisted in 288 assignments,
for a total of 25,633 submissions and 113,169 reviews, written by
23,762 distinct reviewers. The number of reviewers is smaller than
the number of submissions, as some students did not participate in
the review phase. Table 1 gives a break-down of the dataset ac-
cording to subject area. On average, each submission received 4.41
reviews, and each reviewer wrote on average 4.76 reviews.

We will refer to submissions also as items, and we will refer to
students or reviewers also as users, thus adopting common termi-
nology for general peer-review systems.

CrowdGrader includes three features that promote grading accu-
racy; these features likely influenced the data presented in this study.

Incentives for accuracy. The overall grade a student receives in
a CrowdGrader assignment is a weighed average of the student’s
submission, accuracy, and helpfulness grades. The accuracy grade
reflects the precision of the student’s grade, compared either to the
other grades for the same submission or, when available, to the
instructor-assigned grade. The helpfulness grade grade reflects the
rating received by the reviews written by the student. Combining
the submission grade with the accuracy grade creates an incentive
for students to be precise in their grading. The amount of incen-
tive can be chosen by the instructor, but the default is to give 75%
weight to the submission grade, 15% weight to the accuracy grade,
and 10% weight to the helpfulness grade, and most instructors do
not change this default.

Ability to decline reviews. Early in the development of Crowd-
Grader, we noticed that some of the most glaring grading errors
occurred when reviewers were forced to enter a grade for submis-
sions that they could not properly evaluate. This occurred, for in-
stance, when students could not open the files uploaded as part of
the submission, due to software incompatibilities. To mitigate this
problem, we gave students the ability to decline to perform reviews
of particular submissions. The total number of submissions a stu-
dent can decline is bounded, to prevent students from “shopping
around” for the easiest submissions to review.

Submission discussion forums. Another early source of large errors
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Assignments Submissions Reviewers Reviews Graded Assignments Graded Submissions
Computer Science 188 19397 17829 86347 68 2402

Physics 7 274 270 907 6 33
Epidemiology 5 337 313 1551 0 0

Sociology 49 3822 3683 18339 3 16
Business 26 1217 1108 3915 15 106

English 9 397 383 1717 1 7
High-school 7 279 278 1097 5 20

Other 4 189 176 393 0 0
All Combined 288 25633 23762 113169 93 2564

Table 1: The CrowdGrader dataset used in this study. Graded assignments are the assignments where an instructor or teaching assistant
graded at least a subset of the submissions. Graded submissions is the number of submissions that were graded by instructors or teaching
assistants, in addition to peer grading.

in CrowdGrader consisted in gross mis-understandings between the
author of a submission, and the reviewers. For instance, when zip
archives are submitted, the reviewers may expect some information
to be contained in one of the component files, whereas the author
might have included it in another. Another example consists in
mis-organizing the content of a software submission, so that the
reviewers do not know how to run it and evaluate it. To remedy this,
CrowdGrader introduced anonymous forums associated with each
submission, where submission authors and reviewers can discuss
any issues they encounter in evaluating the work.

4. ERRORS IN PEER GRADING
Instructor grades and Olympic averages. We measure review er-
ror as the difference between individual student grades, and the
“consensus grade” for each submission. We consider two kinds
of consensus grades. One is the Olympic average of the grades
provided by the students: this is obtained by discarding the lowest
and highest grade for each submission, and taking the average of
the remaining grades. The other is the instructor grade. In Crowd-
Grader, instructors (or teaching assistants) have the option of re-
grading submissions. In some assignments, instructors decided to
grade most submissions as control; in other assignments, instruc-
tors mostly re-graded only submissions where student grades were
in too much disagreement. When considering instructor grades,
we consider only assignments of the first type, where instructors
graded at least 30% of all submissions. Considering assignments
where instructors grade only problematic submissions would con-
siderably skew the statistics. The dataset, for instructor grades, is
thus reduced to 19 assignments and 7675 reviews. Instructor and
Olympic average grades have a coefficient of correlation ρ = 0.81
(with p < 10−200), and an average absolute difference of 6.11 on
the [0, 100] grading range.

Global and per-topic errors. Table 2 reports the size of errors in
CrowdGrader peer grading assignments, split by assignment topic,
and taking instructor grades and Olympic grades as reference. When
the error is measured with respect to instructor grades, computer
science, physics, and high-school assignments showed smaller av-
erage error than business, sociology and English, all of whose as-
signments required essay-writing. When the error is measured with
respect to Olympic average, is is mainly business and English that
show larger error.

5. ITEM VS. STUDENT ERROR
We consider in this section the question of whether error can be
attributed predominantly to imprecise students, or to items that are
difficult to grade.

Average Error N. of Assignments
Computer Science 7.52 15

Physics 10.6 1
Business 16.5 2

English 17.2 1
High School 10.6 1

All 7.67 19

(a) Error with respect to instructor grades, based on assignments with at
least 30% of items graded by the instructor.

Average Error N. of Assignments
Computer Science 6.34 188

Physics 4.65 7
Epidemiology 4.57 5

Sociology 4.93 49
Business 7.7 26

English 8.37 9
High School 5.09 7

Other 8.15 4
All 6.16 288

(b) Error with respect to Olympic average.

Table 2: Mean absolute value difference error by topic. The grading
range is normalized to [0, 100].

5.1 Average error behavior
To compare the contribution of students and items to grading er-
rors, we develop a probabilistic model in which both students and
items contribute to the evaluation error. The model is a modifica-
tion of the PG1 model in [14], which allowed for student (but not
item) error. In our model, each student has a reliability and each
item has a simplicity; the variances of student and item errors are
inversely proportional to their respective reliabilities and simplici-
ties. Precisely:

(Reliability) τu ∼G(α0, β0) for every student u,
(Simplicity) si ∼G(α1, β1) for every item i,

(True Grade) qi ∼N (µ0, 1/γ0) for every item i,

(Observed Grade) giu ∼N (qi, 1/τu + 1/si)

for every observed peer grade giu

where G(α, β) denotes the Gamma distribution with parameters α,
β, and N (q, v) denotes the normal distribution with average q and
variance v.

Given an assignment, we use Gibbs sampling [11] to infer the pa-
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rameters α0, β0, α1, β1, µ0, γ0. In order to apply Gibbs sampling,
we need to start from suitable prior values for the quantities be-
ing estimated. To obtain suitable priors for the distribution of item
quality, we first compute an estimated grade for each item using
Olympic average, and we obtain µ0 and γ0 by fitting a normal
distribution to the estimated grades. To estimate prior parameters
α0, β0 of student reliabilities we fit a Gamma distribution to a set
of approximated students reliabilities. In detail, for every student
u we populate a list of errors lu by the student. Again, we com-
puter errors with respect to the average item grades after removing
the extremes (the Olympic average). Using the list of error lu, we
estimate a standard deviation σu for every student u ∈ U . This
allows us to approximate student reliability τ̂u as 1

σ2
u

. Prior param-
eters α0, β0 are obtained by fitting a Gamma distribution to the set
of estimated student reliabilities {τ̂u|u ∈ U}. To estimate prior
parameters α1, β1 for item simplicities we use the same approach
as for α0, β0; the only difference is that item simplicities ŝi are es-
timated using error lists li computed for every item i, rather than
for every student u.

students items
Average Standard Deviation 14.2 6.4

Table 3: The average standard deviation of students and items er-
rors computed over 288 assignment with 25633 items. The grading
range is [0, 100].

Table 3 reports the average standard deviation of students and items
inferred from the model. As we can see, students are responsible
for over two thirds of the overall reviewing error.

5.2 Large error behavior
While students intuitively understand that small random errors will
be averaged out, they are very concerned by large errors that, they
fear, will skew their overall grade. Thus, we are interested in de-
termining whether such large errors are more often due to students
who are grossly imprecise, or items that are very hard to grade.
In other words: do large errors cluster more around imprecise stu-
dents, or around hard-to-grade items? We can answer this question
because in CrowdGrader, items are assigned to students in a com-
pletely random way. Thus, any correlation between errors on items
or students indicates causality.

We answer this question in two ways. First, we measured the
information-theoretic coefficient of constraint. To compute it, letX
and Y be two random variables, obtained by sampling uniformly at
random two reviews x and y corresponding to the same item, or
to the same student, and letting X (resp. Y ) be 1 if x (resp. y) is
incorrect by more than a pre-defined threshold (such as, 20% of the
grading range for the assignment). Then, the mutual information
I(Y,X) indicates the amount of information shared by X and Y ,
and the coefficient of constraint I(X,Y )/H(X), where H(X) is
the entropy of X , is an information-theoretic measure of the corre-
lation between X and Y .

Tables 4 gives I(X,Y )/H(X) for student and item errors, for dif-
ferent values of the error choice, and taking as reference truth for
each item either the instructor grade, or the Olympic average for the
item. When taking instructor grades as reference (Table 4a), large
errors are about 5 times more correlated on items than on students,
as measured by the coefficient of constraint. When Olympic grades
are take as reference (Table 4b), large errors are about as correlated
on items as they are on students. The difference in behavior is due

Error Threshold
10% 15% 20% 25% 30%

Students 0.015 0.026 0.017 0.019 0.017
Items 0.075 0.082 0.082 0.1 0. 097

(a) Item errors computed with respect to instructor’s grades. We use only
assignments that have at least 30% of items grade by the instructor.

Error Threshold
10% 15% 20% 25% 30%

Students 0.018 0.018 0.019 0.020 0.021
Items 0.045 0.030 0.020 0.021 0.020

(b) Item errors computed with respect to Olympic average.

Table 4: Coefficient of constraint I(X,Y )/H(X) of large errors
on the same item or by the same student, for different error thresh-
olds.

to the fact that, when an instructor disagrees with the student-given
grades on an item, this generates highly correlated errors on that
item with respect to the instructor grade, but not with respect to
the Olympic average. In any case, the results show that there is no
particular correlation on students.

Another way to measure whether large errors tend to cluster around
hard-to-evaluate items or around imprecise students consists in mea-
suring the conditional probability ρn = P (ξ ≥ n|ξ ≥ n−1) of an
item (resp. student) having ξ ≥ n grossly erroneous reviews, given
than it has at least n − 1. If errors on an item (resp. reviewer) are
uncorrelated, we would expect that ρ1 = ρ2 = ρ3 = · · · . If these
conditional probabilities grow with n, so that ρ3 > ρ2 > ρ1, this
indicates that the more errors an item (resp. a student) has partic-
ipated in, the more likely it is that there are additional errors. The
values of ρ1, ρ2, ρ3, . . . allow thus one to form an intuitive appre-
ciation for how clustered around items or students the errors are.

The results are given in Figure 1. The data shows some clustering
around users, for large errors of over 30% of the grading range.
However, clustering around users seems weaker than clustering
around items.

This provides a possible explanation for why reputation systems
have not proved effective in dealing with errors in peer-graded as-
signments with CrowdGrader. Reputation systems are effective in
characterizing the precision of each student, and taking it into ac-
count when computing each item’s grade. Our results indicate how-
ever that errors in CrowdGrader are not strongly correlated with
students, limiting the potential of reputation systems.

6. STUDENT ABILITY VS. ACCURACY
A natural question is whether better students make better graders.
To answer this question, we can approximate the expertise of every
student with the grade received by the student’s own submission,
and we can then study the correlation between the student’s submis-
sion grade, and the review error. As we have only partial coverage
of students with instructor grades, we compute the grade received
by the student’s own submission via Olympic average, rather than
instructor grade. As the two generally are close, this increases cov-
erage with minimal influence on the results. We study grading error
with respect to both instructor grades and Olympic average.
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(a) Errors computed with respect to the instructor’s grades. We use only
assignments that have at least 30% of items grade by the instructor.
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(b) Errors computed with respect to Olympic average.

Items, Error Threshold = 15
Items, Error Threshold = 20
Items, Error Threshold = 25
Items, Error Threshold = 30
Users, Error Threshold = 15
Users, Error Threshold = 20
Users, Error Threshold = 25
Users, Error Threshold = 30

Figure 1: Conditional probabilities ρn = P (ξ ≥ n|ξ ≥ n − 1)
of least n errors given at least n − 1 errors. We considered error
thresholds of 15%, 20%, 25%, 30%.

6.1 Aggregating data from multiple assignments
When aggregating data from multiple assignments, we cannot di-
rectly compare absolute values of grades, or absolute amount of
time spent reviewing: each assignment has its own grade distribu-
tion, review time distribution, and so forth. To account for variation
across assignments, we use the following approach. For each stu-
dent there is an independent variable x, and an error e. In this
section, x is the grade received by the student’s own submission,
measured via Olympic average; in the next section, x will be re-
lated to the time spent during the review, or the time at which the
review is turned in. The error e is the difference, for each review,
between the grade assigned as part of the review, and the grade of
the reviewed submission, obtained either via Olympic average or

via instructor grading.

First, for each assignment independently, we sort all students ac-
cording to their x-value, and we assign them to one of 10 percentile
bins: if the assignment comprises m students and the student ranks
k-th, the student will be in the d10k/me bin; we call these bins
the 10%, 20%, . . . , 100% bins. For each assignment a, we nor-
malize the grading range to [0, 100], and we let na,q and ea,q be
the number of students and the average error in the q percentile bin
of assignment a, respectively. The average error for assignment a
overall is thus ea =

∑
q na,qea,q/

∑
q na,q . There are two ways

of measuring the average error ea,q for one bin: as average abso-
lute value error, or as average root-mean-square error. The two ap-
proaches lead to qualitatively similar conclusions, as we show later
in this section. Due to lack of space, unless otherwise explicitly
stated, we present here only the results for average absolute value,
as they are somewhat less sensitive to rare large errors, and thus,
more stable. The complete set of results is reported in [9].

We aggregate data from multiple assignments, computing for each
percentile bin an absolute and a relative error, as follows. The ab-
solute error eq for each percentile q is computed as

eq =
∑
a na,qea,q

/∑
a na,q. (1)

The relative error rq for each percentile q is computed as

rq =
∑
a na,q

(
ea,q/ea

) / ∑
a na,q, (2)

where ea,q/ea is the relative error of bin q in assignment a.

6.2 Student ability vs. error
The data reported in Figure 2b shows the existence of some cor-
relation between student submission grade, and grading precision,
measured with respect to the Olympic average. In relative terms,
students in the 80–100% percentile brackets show error that is 10%
to 20% greater than students with higher submission grade. The
absolute error tells a similar story. The two graphs do not have
the same shape, due to the fact that relative errors are computed in
(2) in a per-assignment fashion. In Figure 2a we report the same
data, computed using rms error rather than average absolute value
error. The data is qualitatively similar. Due to lack of space, in the
remaining graphs we consider only average absolute error.

In Figure 3 we compare the error with respect to Olympic aver-
age with the error compared to instructor grades, for the subset of
classes where at least 30% of submissions have been instructor-
graded. While the absolute values are different, we see that the
curves are very closely related, indicating that Olympic averages
are a good proxy for instructor grades when studying relative changes
in precision. The error with respect to instructor grades has very
wide error bars for the 90% percentile, mainly due to the low num-
ber of data points we have for that percentile bracket in our dataset.
We favor the comparison with the Olympic average, since the abun-
dance of data makes the statistics more reliable.

The correlation between student ability (as measured by the sub-
mission score) and grading precision is lower than we expected.
This might be a testament to the clarity of the rubrics and grading
instructions provided by the instructors: apparently, such instruc-
tions ensure that most students are able to grade with reasonable
precision the work by others. This may also be a consequence of
the fundamental skill and background homogeneity of students in a
classroom, as compared to a MOOC. We note that [2] also reported
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(b) Root mean square error.

Figure 2: Average grading errors arranged into authors’ submis-
sions quality percentiles. Grading errors and submission qualities
are measured with respect to the Olympic average grades. The first
percentile bin 10% corresponds to reviewers that have authored
submissions with highest grades. Error bars correspond to one stan-
dard deviation.

low correlation between student grades and student precision in the
related setting of peer instruction.

7. REVIEW TIMING VS. ACCURACY
We next studied the effect of the time taken to perform the reviews,
and the order in which they were performed, on review accuracy.
These measurements are made possible by the fact that Crowd-
Grader assigns reviews one at a time: a student is assigned the next
submission to review only once the previous review is completed.
This dynamic assignment ensures that all submissions receive a
sufficient number of reviews. If each student were pre-assigned a
certain set of submissions to review, as is customary in conference
paper reviewing, then students who omitted or forgot to perform
reviews could cause some submissions to receive insufficient re-
views. CrowdGrader records the time at which each submission
is assigned for review to a student, and the time when the review
is completed. For these results, to conserve space, we provide the
error only with respect to the Olympic average, for which we have
more data. A comparison of error with respect to Olympic average
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Figure 3: Average grading error arranged into authors’ submission
quality percentiles. The first percentile bin 10% corresponds to
reviewers that have authored submissions with highest grades. We
report the error both with respect to instructor grades, and to the
Olympic average, considering only assignments for which at least
30% of submissions have been graded by instructors. Error bars
correspond to one standard deviation.

and instructor grades confirms that the Olympic average is a good
proxy for studying variation with respect to instructor grade also
We omit the analogous of Figure 3 for the timing analysis due to
lack of space; similarly, we include results only for mean absolute
error. The complete result set is available in [9].

Time to complete a review. We first considered the correlation be-
tween the time spent by students performing each review, and the
accuracy of the review; the results are reported in Figure 4. The
results indicate that reviews that are performed moderately quickly
tend to be slightly more precise. The correlation is weaker than we
expected. We expected to find error peaks due to students that spent
very little time reviewing, and that entered a quick guess for the
submission grade, rather than performing a proper review. There
are no such peaks: either students are very good at quickly estimat-
ing submission quality, or they mostly take reviewing and seriously
in CrowdGrader. We believe the latter hypothesis is likely the cor-
rect one: for instance, in many computer science assignments, there
is no good way of “eye-balling” the quality of a submission without
compiling and running it.

Time at which a review is completed. Next, we studied the corre-
lation between the absolute time when reviews are performed, and
the precision of the reviews. Figure 5 shows the existence of a
modest correlation: the reviews that are completed in the first 10%
percentile tend to be 10% more accurate than later reviews. The ef-
fect is rather small, however. In a typical CrowdGrader assignment,
students are given ample time to complete their reviews, and the re-
views themselves take only one hour or so to complete. Students
likely do not feel they are under strong time pressure to complete
the reviews, and time to deadline has little effect on accuracy.

Order in which reviews are completed. Lastly, we study whether
the order in which a student performs the reviews affects the accu-
racy of the reviews. We are interested in the question of whether
students learn while doing reviews, and become more precise, or
whether they grow tired and impatient as they perform the reviews,
and their accuracy decreases. Figure 6 shows that the accuracy of
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students does not vary significantly as the students progress in their
review work. Evidently, the typical review load is sufficiently light
that students do not suffer from decreased attention while complet-
ing the reviews.
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Figure 4: Absolute and relative grading error vs. the time employed
to perform a review; the first percentile bin 10% corresponds to
reviews with shortest review time. The grading range is normalized
to [0, 100], and the error is measured with respect to the Olympic
average. The error bars indicate one standard deviation.
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Figure 5: Absolute and relative grading error vs. absolute time
when a review is completed. The first percentile bin 10% corre-
sponds to the 10% of reviews that were completed first among all
assignment reviews. The grading range is normalized to [0, 100],
and the error is measured with respect to the Olympic average. The
error bars indicate one standard deviation.

8. TIT-FOR-TAT IN REVIEW FEEDBACK
In CrowdGrader, students can leave feedback to each review and
grade they receive. The feedback is expressed via 1-to-5 star rating
systems as follows:

• 1 star: factually wrong; bogus.
• 2 stars: unhelpful.
• 3 stars: neutral.
• 4 stars: somewhat helpful.
• 5 stars: very helpful.
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Figure 6: Absolute and relative grading error vs. ordinal number of
a review by a student. The review 1 is the first a student performs,
2 is the second, and so forth. The grading range is normalized
to [0, 100], and the error is measured with respect to the Olympic
average. Error bars indicate one standard deviation.

Many such ratings are given as tit-for-tat: when a student receives a
low grade, the student responds by assigning a low feedback score
(typically, 1 star) to the corresponding review. Indeed, Crowd-
Grader includes a technique for identifying such tit-for-tat, so that
students, whose overall grade depends also on the helpfulness of
their reviews, are not unduly penalized. We were interested in ana-
lyzing the question of how prevalent tit-for-tat is.

Overall, review grade and review feedback have a correlation of
0.39, with a p-value smaller than 10−300. The correlation between
grade and feedback indicates tit-for-tat, as there is no reason why
lower grades should per-se be associated with written reviews that
are less helpful. Interestingly, the correlation is fairly independent
from the subject area. To bring the tit-for-tat into sharper evidence,
we computed also the following statistics. We consider a grade a
p (resp. n) outlier if the grade is over 20% above (resp. below) the
Olympic average. We then measured the conditional probabilities
Pp, Pn that p and n outliers would receive a one or two-star rating,
conditioned over the probability that the reviews received a rating
at all (students do not always rate the reviews they receive). Over
all assignments, we measured Pp = 0.06 and Pn = 0.44. Since
there is no a-priori reason why overly negative reviews may be of
worse quality than overly positive ones, the excess probability Pn−
Pp = 0.38 can be explained by tit-for-tat. This shows that tit-for-
tat is rather common: for grades that are 20% or more below the
consensus, there is a 38% probability of low feedback due to tit for
tat. Fortunately, it is easy to discard low ratings given in response
to below-average grades, as CrowdGrader does.

9. DISCUSSION
We presented an analysis of a large body of peer-grading data, gath-
ered on assignments that used CrowdGrader across a wide set of
subjects, from engineering to business and humanities. Our main
interest consisted in identifying the factors that influence grading
errors, so that we could devise methods to control or compensate
for such factors. Out results can be thus summarized:

• Large errors are no more strongly correlated on students than
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they are on items. In other words, students who are imprecise
on many submissions are not a dominant source of error.

• There is some correlation between the quality of a student’s
own submission (which is an indication of the student’s ac-
complishment), and the grading accuracy of the student, but
the correlation is weak and limited to the student with high-
est, and lowest submission grades.

• There is little correlation between the accuracy of a review,
and the time it took to perform the review, or how late in the
review period the review was performed.

• There is clear evidence of tit-for-tat behavior when students
give feedback on the reviews they receive.

All of the correlations we measured, except for the tit-for-tat one,
are rather weak. This is a reassuring confirmation that peer-grading
works as intended.There are no large sources of uncontrolled er-
ror due to factors such as student fatigue in doing the reviews, or
gross inability of weaker students to perform the reviews. The peer-
grading tool, in our classroom settings, ensures that the remaining
errors are fairly randomly distributed, with little remaining struc-
ture.

The results highlight the difficulties in using reputation systems to
compute submission grades in peer-grading assignments in high-
school and university settings. Reputation systems characterize the
behavior of each student, in terms for instance of their grading ac-
curacy and bias, and compensate for each student’s behavior when
aggregating the individual review grades into a consensus grade.
However, our results indicate that the large errors that most affect
the fairness perception of peer grading are most closely associated
with items, rather than with students. Reputation systems are pow-
erless with respect to errors caused by hard-to-grade items: even
if they can correctly pinpoint which submissions are hard to grade,
little can be done except flagging them for instructor grading. In-
deed, the reputation system approach of [14], which yielded error
reductions of about 30% for MOOCs, yielded virtually no benefit
in our classroom settings.

There is more potential, instead, in approaches that make it easier to
grade difficult submissions. In CrowdGrader, we introduced anony-
mous forums, associated with each submission, where submissions
authors and reviewers can discuss any issues that arise while re-
viewing the submission. These forums are routinely used, for in-
stance, to solve the glitches that often arise when trying to compile
or run code written by someone else. Anectodally, these forums
have markedly increased the satisfaction with the peer-grading tool,
as students feel that they have a safety net if they make small mis-
takes in formatting or submitting their work, and are in the loop
should any issues occur.
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ABSTRACT
How should a wide variety of educational activities be se-
quenced to maximize student learning? Although some ex-
perimental studies have addressed this question, educational
data mining methods may be able to evaluate a wider range
of possibilities and better handle many simultaneous se-
quencing constraints. We introduce Sequencing Constraint
Violation Analysis (SCOVA): a general method for eval-
uating alternative activity sequences using existing data.
SCOVA can be used to explore many complex sequencing
constraints, such as prerequisite relationships, blocking, in-
terleaving, and spiraling. We demonstrate SCOVA on data
collected from a fractions intelligent tutoring system (ITS).
Some of our findings challenge our initial hypotheses regard-
ing sequencing, illustrating the utility and versatility of the
method. The method can also be applied to other learning
environments, as long as the available data has substantial
variability in students’ activity sequences.

1. INTRODUCTION
How does the sequencing of pedagogical activities impact
student learning? Answers to this question can both con-
tribute to core learning sciences knowledge, as well as have
important practical implications for how educational activ-
ities should be sequenced in order to maximize learning. As
such, there has been significant interest in this issue, and
prior research suggests that student learning can be quite
sensitive to temporal sequencing (e.g., [16, 1, 15, 17]).

Prior work that tackles this problem mostly falls into either
theoretical analyses or empirical studies. Unfortunately, con-
ducting theoretical analyses of the cognitive demands of in-
dividual tasks and the interdependencies among multiple
tasks [7, 10, 3] can be prohibitively time consuming for large
curricula. In addition, such analyses may be particularly
vulnerable to various cognitive biases, such as expert blind
spots [12]. Considerable experimental research has exam-
ined the effects of activity sequencing along various dimen-
sions, including interleaving versus blocking of topics [1, 17]

and sequencing of activities according to the degree of scaf-
folding they provide [15, 8]. However, such classroom exper-
imental studies typically compare only two or three possible
conditions, in contrast to the enormous number of order-
ings possible (at least exponential in the number of activity
categories of interest).

An educational data mining approach could allow us to eval-
uate a much broader range of possible orderings in order to
better understand which sequences may be optimal. More-
over, it might be possible to apply such techniques to any
datasets that have considerable variation in how they order
instructional content for students. These include datasets
generated from educational technologies that present activ-
ities in a partially or fully randomized order (e.g., [13]),
those that adaptively present activities in response to mea-
sured student variables (e.g., [4]), and those that provide
students with some degree of control over activity selection
(e.g., [11]).

We are particularly interested in investigating which order-
ings over a variety of topics and activity types are most effec-
tive for maximizing student learning and performance. Prior
educational data mining approaches have focused on ex-
amining pairwise dependencies between instructional items
(e.g., individual skills, problems, or problem sets) in a cur-
riculum, in order to infer underlying prerequisite structure
[5, 21, 18]. The prerequisite structures learned via such
methods could be used, for example, to inform adaptive
problem selection algorithms that avoid presenting a given
item until the student is believed to have mastered its pre-
requisites [7]. Other methods for detecting ordering effects
over instructional items have additionally relied upon the
use of fitted Bayesian Knowledge Tracing (BKT) models [13,
19], and have thus depended upon strong assumptions about
student learning. Whereas these prior approaches are typ-
ically limited to discovering pairwise relationships between
items, and have tended to assume that these items are pre-
sented in a blocked fashion, we wish to examine the impacts
on student learning and performance of more complex (and
potentially softer) sequencing constraints.

We investigate the question of optimal topic and activ-
ity type sequencing in the context of our fractions intel-
ligent tutoring system (ITS) [6]. Our tutor covers three
broad topics (making and naming fractions, fraction equiv-
alence and ordering, and fraction addition) and three dif-
ferent types of activities that correspond to learning mech-
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anisms in the theoretical Knowledge-Learning-Instruction
(KLI) framework: sense-making, induction and refinement,
and fluency-building processes [9]. While previous experi-
mental work has investigated the optimal sequencing of ac-
tivity types under the KLI framework [14], there has been
little empirical work investigating the optimal sequencing of
topics in a fractions curriculum, and no work to our knowl-
edge examining how the optimal sequencing of activity types
may vary across topics.

We develop a general-purpose method for leveraging log data
to evaluate and compare different ways of sequencing activ-
ities. We believe our method for evaluating sequencing con-
straints can be utilized to discover how to sequence activities
in a variety of learning environments. We tested our method
on log data from our fractions tutor and found results that
countered our initial hypotheses on how to order both topics
and activity types. We also found that the optimal ordering
over KLI activity types may vary from topic to topic, but
that for the most part, these orderings were consistent with
what was suggested by prior literature [14].

2. SEQUENCING CONSTRAINT
VIOLATION ANALYSIS (SCOVA)

We first describe our general method, and then present the
particular instantiations of our method that we used in our
analyses in Section 3. Sequencing Constraint Violation Anal-
ysis (SCOVA) is a method for analyzing different sequenc-
ing constraints and identifying which ones lead to the best
student performance. SCOVA takes as input a set of stu-
dent trajectories (which contains the sequence of problems
given to each student and the students’ responses to those
problems) and a cost function for each set of sequencing con-
straints that one wants to evaluate. The cost function is a
function over student trajectories that specifies how often a
particular set of sequencing constraints is violated; in par-
ticular, it assigns to each student’s sequence a number of
violations up to the total length of the sequence.

Many different types of sequencing constraints can be con-
sidered. For example, one sequencing constraint could be
that a student must be given at least one instance of prob-
lem type X before the student is given problem type Y . For
this constraint, whenever problem Y is presented to a stu-
dent before any instance of problem X, that student trajec-
tory incurs one violation. Another constraint could be that
problem X should always appear immediately before prob-
lem Y , so whenever a student sees problem Y without seeing
problem X right before it, that sequence incurs a violation.
For such constraints, the cost function is simply the number
of problems where the constraint is violated. However, an-
other sequencing constraint could suggest that a student’s
trajectory should match a particular desirable sequence, and
our cost function in that case could be the Levenshtein dis-
tance1 between the student’s sequence and the desirable se-
quence. We can also consider sets of more than one sequenc-
ing constraints: for example, the constraints could specify

1The Levenshtein distance, often referred to as edit distance,
is a standard measure of distance between two sequences,
measuring the smallest number of insertions, deletions, and
substitutions to change one sequence into another. It is a
valid cost function since it takes on a value between 0 and
the length of the sequences.

that problem X should come before problem Y and prob-
lem Y should come before problem X. In this case, the cost
function counts every time any constraint is violated.

Unlike many existing methods (e.g., [13, 21, 19]), SCOVA is
not limited to evaluating pairwise orderings. Indeed, SCOVA
can handle much more general constraints on order sequenc-
ing, such as blocking, interleaving, and spiraling. SCOVA
can also handle constraints that depend not just on the prior
history of problems given, but also on the student’s perfor-
mance and interactions (such as performance on prior activ-
ities, pretest score, or measures of affect).

Given the cost functions and student trajectories, SCOVA
proceeds as follows for each set of sequencing constraints
that we want to evaluate. We first use the cost function
to compute the proportion of violations for every student’s
sequence by dividing the cost of the sequence by the length
of the sequence. We next use the proportion of violations
as an input variable in a linear regression model that pre-
dicts some measure of student performance (e.g., within-
tutor performance, posttest score, or learning gains), and
fit the parameters that maximize the log likelihood of the
resulting model.

To evaluate the impact of a particular set of sequencing
constraints, we look at two measures. First, we compute
the Bayesian Information Criterion (BIC) of the linear re-
gression model fit for violations of those constraints. This
provides us with a way to compare different sequencing con-
straints; a model with a lower BIC score provides a better fit
of the student data (as evaluated by log likelihood, adjusted
for the number of parameters of the model). However, BIC
alone simply measures predictive fit, not whether the se-
quencing constraints are beneficial for students or harmful.
To understand whether the sequencing constraints may have
a positive or negative impact on the outcome variable, we
look at the sign of the coefficient of the violation variable in
the fit linear model. We limit our attention to models where
the proportion of violations has a negative coefficient—that
is, models where violating the sequencing constraints is asso-
ciated with worse student performance. Among these mod-
els, we can then compare the sequencing constraints by com-
paring the BICs of their models.

Recall that SCOVA can handle multiple sequencing con-
straints conjunctively (e.g., example problem X should come
before Y and Y before Z). This makes the most sense when
the different sequencing constraints are mutually exclusive,
i.e., we cannot incur more than one violation on any partic-
ular problem. However, we may want to consider different
sequencing constraints that can occur simultaneously and
perhaps constrain different aspects of student trajectories
(e.g., for example one might constrain the ordering of topics
and the other might constrain the ordering of activity types).
SCOVA can be extended to simultaneously consider the im-
pact of these different sequencing constraints disjunctively.
To do so, we learn a predictive linear regression model with
one input variable for each set of sequencing constraints.
When we have more than one set of sequencing constraints
in our model, we focus our attention on models that have
negative coefficients for every predictor corresponding to vi-
olations of sequencing constraints. If the BIC of a model
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that takes two sequencing constraints into account is lower
than that of each of the models that consider just one of
the sequencing constraints individually, it suggests that both
ordering constraints are important but capture different as-
pects of student performance. We can also compare the
relative effects of violating different sequencing constraints
by comparing the coefficients within the same model.

3. EVALUATION DOMAIN
As a concrete example, we now describe how we used our
proposed approach to evaluate the impact of ordering on
student learning and performance when using an online frac-
tions tutor for fourth and fifth grade fractions topics [6]. The
tutor covers topics emphasized in the Common Core, a set of
non-binding national standards for mathematics education
in the US: making and naming fractions on the number line
(MN), fraction equivalence and ordering (EQ), and fraction
addition (ADD).2 The tutor was originally developed to in-
vestigate the potential benefits of using a broader range of
instructional activity types than is typical of an ITS. Tutor
activities were designed to promote each of the 3 categories
of learning mechanisms posited under the KLI framework
[9]: sense-making (SM), induction and refinement (IR), and
fluency-building (F). The tutor’s curriculum includes activ-
ities targeting each of these categories of learning mecha-
nisms, for each of the main topics.

Under KLI, SM processes correspond to “explicit, verbally
mediated learning in which students attempt to understand
or reason” [9], IR processes are defined as non-verbal learn-
ing processes that improve the accuracy of knowledge, and
fluency processes are non-verbal processes that strengthen
memory and enable students to apply their procedural knowl-
edge faster and more fluently. As such, SM activities in our
tutor were designed to promote conceptual understanding
through an interleaving of brief instructional videos with ex-
ercises intended to support self-explanation. By contrast, IR
activities in our fractions tutor were designed to emphasize
procedural learning and practice via fine-grained task de-
composition and step-level guidance – as is typical of ITSs
[20]. Finally, fluency-building activities were designed to
promote the development of fluent performance on mini-
mally decomposed problem-solving exercises. A more de-
tailed description of our operationalization of these three
activity types can be found in [6].

3.1 Sequencing Constraints
We consider a variety of sequencing constraints over both
topics and activity types in our analyses. Since we have
three topics and three activity types there are six poten-
tial orderings of each. For each of the following constraints
(aside from the baselines at the end) we consider them with
respect to each of the six possible orderings (for either topics
or activity types).

2In the fractions tutor, activities within each of these three
broad topics broke down further into multiple subtopics.
For example, fraction equivalence and ordering activities in-
cluded activities on finding common denominators, reducing
fractions, and identifying equivalent fractions using number
lines, among other subtopics. In addition, individual activ-
ities typically targeted a number of finer-grained skills.

3.1.1 Exposure-Based Constraints
Exposure-based constraints stipulate that students be ex-
posed to (i.e., carry out) one topic/activity type a certain
number of times before being exposed to the next. Every
time the student receives a problem before being exposed
to its “prerequisite” enough times, a violation is incurred.
We define two categories: Exposure-based topic constraints
require that students do at least one problem of a topic be-
fore seeing a problem of the next topic. Exposure-based type
constraints require that within each topic, students should
do one problem of an activity type before seeing the next ac-
tivity type, without constraining the order of topics. Note
that we can have the ordering over activity types fixed for
every topic, or we can let it vary. If we let it vary, there are
63 = 216 possible exposure-based varying type constraints.

3.1.2 Performance-Based Constraints
Performance-based constraints stipulate that students
should reach a certain level of within-tutor performance on
a topic/activity type before being exposed to the next. Ev-
ery time the student receives a problem when their recent
performance on its “prerequisite” is not beyond some thresh-
old, a violation is incurred. Notice that even though such a
constraint may be satisfied for a given student at a certain
point in time, it is possible that it will no longer be satisfied
later on, if the student’s performance drops. Performance-
based topic constraints require that students’ performance
on the last 10 steps of the topic should be beyond some
topic-specific threshold before they receive problems for the
next topic. (These steps may be from one problem or span
over several problems.) By contrast, performance-based type
constraints require that within each topic, students’ perfor-
mance on the last 10 steps on a particular activity type
should be beyond some threshold specific to that topic-type
pair before they receive problems of the next activity type
(for the given topic). As before, in addition to the six type
constraints that are fixed per topic, we have 216 possible
performance-based varying type constraints.

We selected thresholds to detect a basic level of competency
with problems of a particular activity type within a topic—a
lower bar than mastery. The thresholds shown in Table 1
were obtained by taking the average student performance
on the last 10 steps upon doing two problems of the given
topic or topic-type pair

3.1.3 Blocking and Interleaving-N Constraints
To show the flexibility of the SCOVA method in consider-
ing sequencing constraints beyond straightforward prerequi-
site relationships, we consider whether topics and activity
types should be interleaved or blocked with respect to top-
ics/types. We measure violations in terms of Levenshtein
distance from a particular sequence. The blocking topic con-
straint stipulates that for every student, the first third of
their sequence (rounding up) should correspond to the first
topic, the second third (rounding up) should correspond to
the second topic, and the last third should correspond to
the last topic. This is not a sequence we would typically
be able to assign in practice, because we do not generally
know how many problems a student will do ahead of time,
but it represents a pure form of blocking while guaranteeing
students see all of the activity types. The interleaving-N
topic constraints, for N = 1, . . . , 6, require sequences that
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MN EQ ADD MN/SM MN/IR MN/F EQ/SM EQ/IR EQ/F ADD/SM ADD/IR ADD/F

0.453 0.360 0.206 0.415 0.514 0.125 0.356 0.547 0.308 0.262 0.158 0.269

Table 1: Thresholds used for performance-based topic and type constraints. Notice that for the type con-
straints, we have distinct thresholds for each topic. The thresholds were obtained by taking the average
student performance on the last 10 steps upon doing two problems of the given topic or topic-type pair.

give N problems of the first topic followed by N problems of
the second topic followed by N problems of the third topic.
However, if a student did less than 3N problems in total, we
instead use the sequence used for the blocking constraint, in
order to check whether they get reasonable exposure to all
three topics.

3.1.4 Proportion-Only Baselines
To see if ordering topics or activity types actually matters,
we compare to baselines that just use the proportions of top-
ics or activity types in the sequence as predictors to predict
within-tutor performance. Note that our two baselines each
have two predictors (e.g., for activity types, we have one for
proportion of SM and proportion of IR; the proportion of
fluency-building activities is linearly dependent on the first
two and so it is not needed in the model).

3.2 Hypotheses
We started data analysis with several hypotheses about the
best order of topics and activity types. We note however
that in order to illustrate our method, the specific hypothe-
sized best order does not matter, although it does matter in
illustrating that the method can produce unexpected (but
reasonable) results.

3.2.1 Topic Dependencies
Our first hypothesis is that in early fractions learning, top-
ics build on each other in the following way. MN helps stu-
dents build a basic representation of fractions as numbers
that have a magnitude, represented by their place on the
number line. This representation is hypothesized to help in
building an understanding of the notion of equivalence and
the notion that fractions can be compared and ordered in
terms of their magnitude. Moreover, equivalence would ap-
pear to be a strict prerequisite for addition of fractions with
unlike denominators, because fractions with unlike denom-
inators need to be converted to equivalent fractions before
they can be added. Thus, the hypothesized best topic order
is MN-EQ-ADD. Topics may not need to be fully blocked
(i.e., presenting all MN activities before any EQ activities,
and all EQ activities before any ADD activities), but it may
be better for students to initially be exposed to topics in
this order and perhaps continue to see the different topics
in an interleaved fashion (as interleaving has been show to
be beneficial [1, 17]).

3.2.2 Type Dependencies
As mentioned, the KLI framework distinguishes between
three distinct classes of learning mechanisms, SM, IR, and
F. It does not, however, make any claims regarding the or-
der in which these processes might be most effective or even
whether each class of mechanisms is needed when learning in
a complex domain (such as fractions). There has been little

prior work investigating how instructional activities target-
ing each of the KLI activity types can best be sequenced to
maximize student learning and performance. However, [14]
previously found that presenting students with SM activi-
ties before presenting them with fluency-building activities
is beneficial when teaching connection making between mul-
tiple graphical representations of fractions. Given the dearth
of prior work in this area, we do not have very strong expec-
tations regarding the best order of these different activity
types within a topic. However, in line with the work by [14],
our hypothesis is that SM-targeting activities should come
first, then IR-targeting activities, and finally, F-targeting ac-
tivities. A second reason to expect that it is effective to do
IR activities before F activities is that in our tutors, IR ac-
tivities provide more elaborate scaffolding than F activities.
As before, we do not mean to suggest a fully blocked or-
dering may be best, but also consider orders that interleave
activity types with the hypothesized SM-IR-F order strictly
observed early on.

3.3 Data
We collected data from 347 students using our ITS (in 20
classrooms across four different schools). The data was
initially collected for a randomized control trial compar-
ing three adaptive problem selection policies and two non-
adaptive policies. The three adaptive policies had quite a
bit of variation in the kinds of trajectories given to stu-
dents; they thus provide data that is a good fit for SCOVA.
However, the non-adaptive policies resulted in trajectories
that were identical in how they sequenced topics and ac-
tivity types, so we did not use data from those policies in
our analyses (leaving 211 students). Students were given a
pretest, followed by using the tutor for typically four class
periods, and were finally given a posttest that was identi-
cal to the pretest. Each student worked at their own pace
and completed as many problems as they could during the
allotted time, resulting in a tail of students who did many
more problems than average. This could present a confound
in our analysis since students who do many problems are
more likely to be high performing students, as well as vio-
lating sequencing constraints less than others (because they
are likely to do many problems after satisfying all sequenc-
ing constraints). We thus limited our analyses to students
who did 60 or fewer problems (197 students).

3.4 Modeling
In the SCOVA framework, we fit a linear regression model
with predictors corresponding to the proportion of violations
of one or more sets of sequencing constraints. The outcome
variable we used was the within-tutor performance of stu-
dents on all problems of the tutor with each topic-type pair
having an equal weight (e.g., each student’s performance on
MN/SM problems has an equal weight to their performance
on EQ/F problems). If a student received no problems of a

Proceedings of the 9th International Conference on Educational Data Mining 73



Topic Constraints

Exposure Performance

MN-EQ-ADD -236.28 -299.69
EQ-MN-ADD -244.39 -319.13
MN-ADD-EQ -201.04 -274.17
EQ-ADD-MN -201.26 -254.75
ADD-MN-EQ -193.81 -199.80
ADD-EQ-MN -205.73 -193.84

Proportion-Only -233.48

Type Constraints

Exposure Performance

SM-IR-F -226.16 -236.84
IR-SM-F -208.59 -218.94
SM-F-IR -193.39 -200.89
IR-F-SM -196.85 -217.20
F-SM-IR -202.91 -224.57
F-IR-SM -192.97 -200.32

Proportion-Only -201.77

Table 2: Comparison of BICs of individual exposure-based and performance-based constraints as well as
proportion-only baselines. Aside from the proportion-only baselines, BICs corresponding to models where
the coefficient of the predictor is negative are shown in bold. The smallest BIC in each column is underlined.

SM-IR-F IR-SM-F SM-F-IR IR-F-SM F-SM-IR F-IR-SM

MN-EQ-ADD -246.09 -232.81 -232.95 -231.28 -231.11 -234.97
EQ-MN-ADD -249.30 -251.63 -242.24 -247.12 -240.24 -239.11
MN-ADD-EQ -224.69 -208.31 -197.71 -198.37 -202.08 -196.00
EQ-ADD-MN -223.54 -217.35 -201.94 -203.99 -200.60 -197.16
ADD-MN-EQ -225.26 -205.57 -188.94 -191.63 -197.83 -188.64
ADD-EQ-MN -227.92 -219.54 -200.48 -208.98 -210.61 -201.07

Table 3: Comparison of BICs of models combining exposure-based topic and type constraints. BICs corre-
sponding to models where the coefficients of both predictors are negative are shown in bold. The smallest
BIC is underlined.

topic-type pair, then the average is only over the topic-type
pairs they received. One could also add other predictors to
improve the model fits and potentially control for other con-
founds. We add the student’s pretest score as a predictor to
all of our models as this improved the model fit.

4. RESULTS
Table 2 shows the BICs of models with only a single order-
ing constraint predictor corresponding to performance-based
and exposure-based topic and type sequencing constraints
in addition to BICs of the two proportion-based baselines.
First, we notice that the lowest BIC models using exposure-
based and performance-based ordering constraints have a
better fit than the baseline models, which, as mentioned,
only consider the proportion of activities given for either
topic or activity type. This suggests that ordering of top-
ics and activity types makes a difference beyond just the
frequency with which they appear.

Second, we find that the lowest BICs for the sequencing
constraints over topics are lower than the lowest BICs for
sequencing constraints over activity types, especially for the
performance-based constraints. This suggests that sequenc-
ing over topics might be more important than activity type
ordering. This is also supported by the coefficients in the
fitted linear regression models; for example, the coefficient
for the best fitting performance-based topic constraints is
-0.37, whereas for the best fitting performance-based type
constraints, it is -0.23.

Third, for both the exposure-based and the performance-
based constraints, the models for EQ-MN-ADD have the
lowest BICs among all the topics models and the models for
SM-IR-F have the lowest BICs among all the types models.

We also find that the models that put fractions addition
first either have the worst BICs or have positive coefficients
(i.e., violation of constraints correlates with increased stu-
dent performance), which makes sense, as we really do not
think students should be doing addition (potentially with
unlike denominators) before fraction equivalence. Likewise,
the models with the best BICs and largest negative coeffi-
cients are the ones that put ADD last.

Finally, we find that the performance-based constraints have
lower BICs than the exposure-based constraints. This rea-
sonably seems to suggest that students’ within-tutor perfor-
mance can be predicted more accurately when we take into
account the extent to which individual students reached a
basic level of competence on one topic/type before being
exposed to the next topic/type. We must note, however,
that for the performance-based metric, the number of vio-
lations is impacted by a student’s performance, and is thus
related to the outcome variable in a confounded way. For
example, a student who does very well on the tutor would
be more likely to get fewer performance-based violations for
any sequence than a student who does poorly on the tutor,
partially explaining the lower BICs for performance-based
models than exposure-based models. While we cannot con-
clude that performance-based constraints are better than
exposure-based constraints from this analysis, we hypoth-
esize that the relative ranking of different orders of top-
ics/types may not be impacted severely by this confound.

To start to understand the interaction of type and topic or-
dering constraints on within-tutor student performance, we
fit linear regression models that used two prerequisite viola-
tion input variables: one for one of the six topic orderings,
and one for one of the six type orderings. Table 3 shows

Proceedings of the 9th International Conference on Educational Data Mining 74



SM-IR-F IR-SM-F SM-F-IR IR-F-SM F-SM-IR F-IR-SM

MN-EQ-ADD -319.39 -297.22 -301.80 -298.25 -299.90 -296.39
EQ-MN-ADD -328.84 -330.35 -314.33 -336.70 -330.46 -317.38
MN-ADD-EQ -300.02 -285.10 -270.36 -283.20 -286.98 -269.96
EQ-ADD-MN -269.67 -280.47 -249.80 -279.55 -261.14 -250.23
ADD-MN-EQ -239.09 -215.61 -203.15 -214.25 -220.07 -199.02
ADD-EQ-MN -233.34 -213.69 -196.73 -211.92 -219.29 -195.28

Table 4: Comparison of BICs of models combining performance-based topic and type constraints. BICs
corresponding to models where the coefficients of both predictors are negative are shown in bold. The
smallest BIC is underlined.

Exposure-Based Performance-Based

Coefficient p-value Coefficient p-value

Intercept 0.37 < 2 ∗ 10−16 0.45 < 2 ∗ 10−16

Pretest 0.025 3.45 ∗ 10−8 0.023 4.77 ∗ 10−10

Topic Violations -0.20 8.07 ∗ 10−7 -0.36 < 2 ∗ 10−16

Type Violations -0.17 4.20 ∗ 10−6 -0.22 2.27 ∗ 10−10

BIC -260.77 -355.00
Adjusted r2 0.39 0.62

Table 5: Best fitting models incorporating both topic constraints and varying type constraints. The lowest
BIC model according to exposure-based constraints suggests IR-SM-F for EQ, SM-IR-F for MN, and F-IR-
SM for ADD, and the lowest BIC model according to performance-based constraints suggests the ordering
IR-SM-F for EQ, SM-IR-F for MN, and IR-SM-F for ADD.

the BICs for all 36 models that have pairs of violations of
exposure-based topic and type constraints as predictors, and
Table 4 shows analogous results for pairs of performance-
based constraints. We find that both for exposure-based
and performance-based constraints, the model with the low-
est BIC uses the EQ-MN-ADD ordering over topics, but for
exposure-based constraints the ordering over activity types
is IR-SM-F, while for performance-based constraints it is
IR-F-SM. Note that this is different from the lowest BIC
ordering of activity types when using only type constraints
(SM-IR-F, see Table 2). However, we find that for many
other orderings over topics (e.g., MN-EQ-ADD and MN-
ADD-EQ), the model with the lowest BIC is the one with
the SM-IR-F ordering over activity types. This suggests that
the best ordering over activity types may depend on how we
sequence the topics.

Indeed, the best ordering over activity types might vary from
topic to topic (e.g., to maximize student performance it may
be best to give IR first for EQ but SM first for MN). To test
this possibility, we searched for the lowest BIC model with
a predictor corresponding to some varying type constraints
and a predictor for one of the six topic constraints3. The low-
est BIC model according to exposure-based constraints sug-
gests the ordering IR-SM-F for EQ, SM-IR-F for MN, and F-
IR-SM for ADD (although several models were within three
BIC points including ones that suggests IR-SM-F for ADD),
and the lowest BIC model according to performance-based
constraints suggests the ordering IR-SM-F for EQ, SM-IR-
F for MN, and IR-SM-F for ADD (although, again, several
models were within three BIC points including ones that

3This results in 1296 models to search over, as there are
63 = 216 different varying type constraints and six different
topic constraint orderings

suggests IR-F-SM for ADD). Table 5 shows the coefficients
and fits for both of these lowest BIC models. Notice that
the coefficients for the topic constraints have larger magni-
tudes than those for the varying type constraints (although
not much larger in the exposure-based model), suggesting
again that sequencing over topics is more important than
sequencing over activity types. Moreover, the coefficients
of the topic and activity type constraints violation variables
in Table 5 are not only highly significant (i.e., significantly
different than 0), but also their magnitudes are quite sub-
stantial given the outcome variable is bounded between 0
and 1. This suggests that students who receive activities
in an order that has a large proportion of sequencing con-
straint violations would be expected to have considerably
worse performance on the tutor problems.

Finally, we turn to models based on blocking and inter-
leaving constraints. Table 6 shows the results comparing
interleaving-N constraints and blocking constraints for all
six orderings over topics. Again we find that the model cor-
responding to the EQ-MN-ADD order has the lowest BIC,
but interleaved in chunks of four problems. This agrees with
our hypothesis that one should not simply present the top-
ics in a blocked fashion. Interestingly, most of the other
models, including ones corresponding to fully interleaving
or blocking, have equally bad BICs, regardless of the topic
order.

5. DISCUSSION
Our novel method for evaluating activity sequences led to
a number of interesting findings about sequencing topics
and activity types in our tutor, illustrating the utility of
the method. We found that all of the models fit using vari-
ous topic sequencing constraints unanimously suggested that
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Interleaving-1 Interleaving-2 Interleaving-3 Interleaving-4 Interleaving-5 Interleaving-6 Blocking
MN-EQ-ADD -193.09 -201.03 -198.85 -198.33 -197.80 -195.52 -195.63
EQ-MN-ADD -195.89 -197.01 -198.89 -211.94 -202.93 -194.93 -193.91
MN-ADD-EQ -194.04 -193.27 -195.00 -194.00 -193.01 -195.47 -193.01
EQ-ADD-MN -194.75 -193.81 -194.06 -196.07 -194.03 -193.08 -194.08
ADD-MN-EQ -193.49 -193.14 -192.97 -194.11 -194.62 -193.34 -193.50
ADD-EQ-MN -193.62 -193.04 -192.96 -196.66 -203.76 -197.92 -195.97

Table 6: Comparison of BICs of models with interleaving-N constraints and blocking constraints. BICs
corresponding to models where the coefficient of the predictor is negative are shown in bold.

EQ-MN-ADD is the best way to sequence topics (suggest-
ing that students should at least have some exposure to EQ
before MN and some exposure to MN before ADD). This
challenges our initial hypothesis that MN-EQ-ADD is the
optimal ordering for learning. This result seems to indicate
that, in contrast to our hypothesis, learning to make and
name fractions (MN) on the number line may be facilitated
by knowledge and skill regarding fraction equivalence and
ordering (EQ), more so than the other way around. This re-
sult may suggest that an understanding of relationships be-
tween multiple fractions can help with learning about mak-
ing and naming individual fractions on the number line, to a
greater degree than previously realized. However, we cannot
rule out alternative explanations. For example, it could be
that our tutor activities are not successful in helping stu-
dents learn knowledge that transfers to other topics. We
note that in the MN activities, students used the number
line extensively, whereas they did not in the EQ activities;
in the latter they almost exclusively used the symbolic no-
tation of fractions. It may be that if both topics had used
the number line, the work on making and naming fractions
might have facilitated learning about equivalence and order-
ing more. Thus, our method for evaluating sequences raises
questions about tutor design, which, if and when resolved,
could potentially lead to a more effective tutor.

The results on sequencing of activity types were not as un-
equivocal. We found that the best sequence over activity
types may well vary for topics, which is itself an interest-
ing result. For MN and EQ, the models suggest SM should
precede F. This result agrees with prior literature on how
to order sense-making and fluency activities [14]. However,
the relative ordering of SM and IR is not as clear, with it
possibly being advantageous to give IR activities before SM
activities in many cases, challenging our initial hypothesis.

One may wonder if our results can simply be explained in
terms of ordering topics and activity types from easiest to
hardest. However, this does not seem to be the case. Note
that the performance thresholds in Table 1 provide a mea-
sure of difficulty for each topic and each topic-type pair.
Based on this measure of difficulty, MN would be classi-
fied as easier as EQ, but we saw that our models suggest
EQ should come before MN. Furthermore, according to this
measure of difficulty, ADD/IR problems would be classified
as the most difficult for fraction addition; however, our low-
est BIC types models suggest that IR should either come
first or second for fraction addition.

Despite the strengths of our method over some prior ap-
proaches, the current analysis has several limitations that

should be taken into consideration. First, when adaptive
problem selection algorithms assign problems to students
based on their performance on past problems, the student’s
performance can itself impact the proportion of violations of
sequencing constraints; thus, SCOVA provides correlational,
not necessarily causal, information about the impact of or-
derings. We can avoid this confound by using data with ran-
domized sequences of problems rather than sequences gener-
ated from adaptive policies. However, in many cases (as was
the case here) we may not have access to randomly gener-
ated sequences, and randomized data can often be difficult to
collect ethically if we believe that a random sequence could
have negative effects on student learning. To test the de-
gree to which this confounds affects our results, we checked
if student’s pretest scores are correlated with the proportion
of violations of various sequencing constraints, which would
indicate that students with more prior knowledge tend to
adaptively be assigned problems that either obey or violate
certain sequencing constraints more than students with less
prior knowledge. While we did find such correlations for cer-
tain sequencing constraints, the coefficients of the pretest
score variables used to predict sequencing constraint vio-
lations were less than 0.05 in magnitude, and seemed to
indicate that higher-performing students tended to receive
ADD earlier and EQ later than lower performing students,
which is contrary to the sequences we found most predic-
tive of within-tutor performance! Thus we do not think this
confound had a worrisome impact on our results.

Second, ideally we would like to see how sequencing con-
straints impact student learning as measured via posttest
scores rather than just within-tutor performance. However,
we were unable to find strong correlations between the pro-
portion of violations of sequencing constraints and the posttest
scores of students. This is likely due to the fact that the
posttest was comprised of only 16 items and as a result is
only a noisy measure of a student’s knowledge and does not
capture the diversity of concepts taught on the tutor. Note
that this is not however a limitation of SCOVA; in theory,
SCOVA could be used to compare how various sequencing
constraints impact posttest performance.

6. CONCLUSION
We have shown how SCOVA can be used to test a
much broader range of sequencing constraints than exist-
ing methods (e.g., [13, 21, 19])—including exposure-based,
performance-based, interleaving, and blocking constraints.
Furthermore, we have shown that when analyzing all of
these results in conjunction with each other, a few trends
can emerge that can inform practitioners about how to se-
quence problems. In the case of our fractions tutor, our re-
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sults suggest presenting students with fraction equivalence
before making and naming on the number line, and pre-
senting the latter before fraction addition. In addition, our
results suggest that we should not present the topics in a
fully blocked fashion, but rather present four problems of
each topic at a time. As for activity types, our results sug-
gest that sense-making should typically come before fluency-
building, in agreement with prior literature [14], but that
the optimal ordering of activity types may vary for certain
fractions topics.

These results suggest just some of the use cases of the SCOVA
framework. SCOVA can easily be used to test a broader
variety of sequencing constraints, as well as informing old
debates about sequencing. For example, prior literature has
suggested benefits of interleaving in some cases and of block-
ing in others [2]. From such results, one may be led to won-
der “what is the optimal form of interleaving, and under
which circumstances?” While it may be difficult to immedi-
ately address such a question in an experimental study, due
to the sheer size of the space of sequencing constraints, we
can easily analyze such a question using SCOVA.

SCOVA can be of benefit to researchers and practitioners in
several ways. First, it can lead to refining hypotheses and
determining which questions to test empirically (e.g., test-
ing whether EQ should actually precede MN). Second, it can
lead to improving the design of tutor problems (e.g., making
EQ problems that use the number line and hence build off
of the problems that cover making and naming fractions).
Finally, it can help with the construction of adaptive policies
(e.g., by determining the order of topics in a mastery learn-
ing policy as suggested by performance-based constraints).
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ABSTRACT
Level creation is a creative game-play exercise that resembles
problem-posing, and has shown to be engaging and helpful
for players to learn about the game’s core mechanic. How-
ever, in user-authoring environments, users often create lev-
els without considering the game’s objective, or with entirely
different objectives in mind, resulting in levels which fail to
afford the core gameplay mechanic. This poses a bigger
threat to educational games, because the core gameplay is
aligned with the learning objectives. Therefore, such lev-
els fail to provide any opportunity for players to practice
the skills the game is designed to teach. To address this
problem, we designed and compared three versions of level
creators in a programming game – Freeform, Programming,
and Building-Block. Our results show that a simple-to-use
building-block editor can guarantee levels that contain some
affordances, but an editor designed to use the same core me-
chanic as gameplay results in the highest-quality levels.

Keywords
User-created Content, Educational Game, Educational Data
Mining, Learning Analytics

1. INTRODUCTION
In previous work with our programming game, BOTS, we
demonstrated that user-created levels in our game frequently
contain appropriate gameplay affordances, which reward spe-
cific, desired patterns of gameplay related to the game’s
learning objectives. Such levels demonstrate the creator’s
understanding of those learning objectives, and offer other

players opportunity to practice using those concepts. How-
ever, alongside these high-quality submissions there also ex-
ist various negative patterns of user-generated content, four
of which we specifically defined in previous work: Sandbox,
Griefer, Power-Gamer, and Trivial levels. In various ways,
these are levels which ignore or replace the game’s core learn-
ing objectives and challenges.

Figure 1: Gameplay screenshot from the BOTS
game showing a complex puzzle and partial solution.

In order to implement user-created levels into the game it-
self, an additional filtering and evaluation step is needed to
identify and remove these low-quality submission. Our ini-
tial attempt at filtering these levels, a “Solve and Submit”
procedure, was effective at reducing the number of these
types of levels which were published, and additionally was
somewhat effective at reducing the number of these levels
created to begin with; however, some users created fewer
levels under this condition, indicating that the barrier after
level creation discouraged further creation. Our next step is
to make further improvements to the content authoring tools
in order to increase the overall quality of submitted content.
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In order to do so, we will investigate three versions of the
game’s level editor. The initial, free-form editor, and two
constrained editors employing different types of constraints.

Previous work has shown that players are engaged when
constraints are posed that are restrictive enough to encour-
age demonstration of the game’s target learning concepts,
but not so restrictive as to require them, lest players feel as
though they are unable to create what they want to create.
We propose to evaluate level editors with two different forms
of constraint added. The Programming Editor, where the
length (in lines of code) of the solution is constrained, simi-
larly to the Point Value Showcase in Bead Loom Game. Sec-
ond, where the construction of the level itself is constrained
by providing authors with a limited selection of “Building
Blocks”. For this work, we hope to answer (or gain insight
into) the question: Does providing game-like scaffolding, in
the form of objectives and points related to elements of high-
quality content, result in better user authored content?

2. BACKGROUND
User-generated content has been revolutionizing gaming, and
the potential applications in educational games are intrigu-
ing. Commercial games such as Super Mario Maker[20] and
Little Big Planet[19] rely almost entirely on user-submitted
levels to provide an extendible gameplay experience, with
the creation process itself serving as the meat of the built-
in gameplay. Creative gameplay avoids many of the mo-
tivational pitfalls of educational games, such as relying on
competitive motivators, that may make the intervention less
successful for non-males, who may have a more social orien-
tation towards gameplay, or may have less experience with
traditional video games [13, 14, 5].

Creating exercises, in the form of problem-posing, is a com-
mon educational activity in many STEM domains. In Math-
ematics in particular, Problem-posing has been promoted as
a classroom activity and as an effective assessment of stu-
dent knowledge [23, 7]. Games and ITSs such as Animal-
Watch[4] and MONSAKUN[17] have users creating exercises
for from expert-selected “ingredients.” Work with systems
such as “MONSAKUN”, “AnimalWatch” and the Peer-to-
peer learning community “Teach Ourselves” has shown that
systems that facilitate problem creation by students can pro-
vide benefits beyond those of systems without this feature.

MONSAKUN [17] is a system which facilitates problem-
posing for elementary arithmetic problems. The authors
wanted to influence students to produce word problems whose
structure was different from the structure of the mathemat-
ical solution. In order to build the word problem, students
are given segments of a word problem such as “Tom has 3
erasers” or “Tom buys several pencils” which they arrange
in order to construct their problem.

Animal Watch [1, 4] is a pre-algebra tutor which uses data
about exotic animals as the theme for the problems pre-
sented. The tutor covers topics such as finding average me-
dian and mode, converting to different units, and so on.
While the tutor contains around 1000 problems authored by
the developers, the authors of this paper noted that even
with a large number of problems the system can “run out”
of appropriate problems to give a student. The pilot mostly

investigated student attitudes towards problem posing, find-
ing that students were excited about sharing content with
their peers, and proud that content they had created would
be online and accessible to others. At the same time, stu-
dents reported a low self-assessment of learning, and felt
that it was easy once they got started.

Later work by Carole Beal, “Teach Ourselves,” investigated
these effects further [3], incorporating aspects of gamifica-
tion. Players earn rewards for solving and creating that are
displayed on a leaderboard, and can get “+1” from peers for
creating good content in the form of problems and hints.
Problems created by students were of usable quality, with
an average quality score of 7.5/12 on a scale developed by
the system’s designers. Teachers who used the system ob-
served increased motivation in their students, and believed
that the system encouraged higher-order thinking. Even
simple problem-posing interventions have been shown to be
effective. In Chang’s work with a problem-posing system
to teach mathematics, it was demonstrated that when the
posed problems were to be used as content for a simple quiz-
show-like game, low performing students experienced signif-
icantly greater learning gains from the activity, and students
reported being more engaged with the activity [8].

3. DESCRIPTION OF BOTS
BOTS (bots.game2learn.com) is a puzzle game designed to
teach fundamental ideas of programming and problem-solving
to novice computer users. BOTS was inspired by games such
as LightBot and RoboRally, as well as the syntax of Scratch
and Snap [9, 11, 26]. In BOTS, players take on the role of
programmers writing code to navigate a simple robot around
a grid-based 3D environment. The goal of each puzzle is to
press several switches within the environment, which can be
done by placing an object (or the robot itself) on top of
them. Within each puzzle, players’ scores depend on the
number of commands used, with lower scores being prefer-
able. For example, in the first tutorial level, a user could
solve the puzzle by using the “Move Forward” instruction 10
times. This is the best score possible without using loops
or functions. Therefore, if a player wants to make the robot
walk down a long hallway, it will be more efficient to use a
loop to repeat a single “Move Forward” instruction, rather
than to simply use several “Move Forward” instructions one
after the other. These constraints, based on the Deep Gam-
ification framework, are meant to encourage players to op-
timize their solutions by practicing loops and functions.

Previous work with BOTS focused on how to restrict play-
ers from constructing negative design patterns in their levels
[16], and how to automatically generate low-level feedback
and hints for user-generated levels without human authoring
[22, 10]. Our next steps with this game are to further im-
prove the level authoring tools to increase the quality of the
levels which don’t exhibit these negative design patterns.

3.1 Gameplay Affordances
The term Affordance has its origins in psychology, where it
is defined by Gibson as “what [something] offers the animal,
what it provides and furnishes” [25]. This concept was later
introduced to HCI, where Norman defined affordance as“the
perceived or actual properties of the thing, primarily those
fundamental properties that determine just how the thing
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could possibly be used” [21]. Norman’s definition centers on
users’ perspectives. If a user does not read an action with an
object possible, then the object does not afford that action.

With respect to affordances in games, James Paul Gee wrote
that games create a match between affordances and what he
calls “effectivities” [12]. In his writing, effectivities are de-
fined as the abilities of the player’s tools in the game; for ex-
ample a character in a platforming game may be able to run,
climb, and jump. On the other hand, affordances describe
relationships between the world and actors, or between tools
and actors. Other work taxonomizing level design patterns
in video games also referred to the desired gameplay pro-
duced by these types of structures. For example, in Hullet
and Whitehead’s work with design patterns in single-player
First-person shooter (FPS) levels, the Sniper Location de-
sign pattern is a difficult to reach location with a good view
of the play area, occupied by an enemy [18]. This pattern is
described as forcing the player to take cover. The presence
of other gameplay elements such as Vehicles and Turrets
herald similar gameplay changes [2].

In BOTS, the primary educational goal is to teach students
basic problem solving and programming concepts such as us-
ing functions and loops to handle repetitive patterns. Stu-
dents (with the robot as their tool) must look at puzzles
in terms of opportunities for optimization with loops and
functions. Thus, affordances in BOTS come in the form of
objects or patterns of objects which both provide and com-
municate the presence of, these optimization opportunities.

Though the objects in BOTS signal gameplay patterns, play-
ers building levels in BOTS frequently place them in mis-
leading or irrelevant ways, where the gameplay decisions in-
formed do not lead to a correct or successful solution. For
example, a player can place an extra crate, which communi-
cates that the “Pick Up” command may be used. However,
when the optimal solution to the puzzle does not require this
crate, the affordance of the crate is meaningless and distract-
ing. Similarly, a player could construct a repetitive structure
which affords the use of a ”Function” command to navigate,
but if ignoring or avoiding the structure entirely results in
a better solution, this affordance is also unwanted. Thus,
our primary focus is on the subsets of affordances which in-
volve the core mechanisms in question relating to problem
solving and solution optimization, and through which play-
ers can improve their gameplay outcome in terms of final
score. These are referred to as “Gameplay Affordances” in
remaining sections.

3.2 Level Editors
Specific discussion of the design principles behind the two
level editors used for this study can be found in our previous
work [15]. For the sake of space, we will only generally
discuss those design principles here, instead focusing on the
tools available to users in the different designs.

In all versions of the level editor, levels consist of a 10x10x10
grid, where each grid square can be populated by a terrain
block or an object. Levels must contain at minimum a start
point and goal, and can optionally contain additional goals
which must be covered with movable boxes before the level
will be completed.

Figure 2: The Programming editor interface.

In the Free-Form drag-and-Drop editor, players will be asked
to create a level in a Free-Form editor which uses controls
analogous to Minecraft. Players can click anywhere in the
world to create terrain blocks, and can select objects from
a menu such as boxes, start points, and goals, to populate
the level with objectives. At any point during creation, the
player can save the level (which must, at minimum, contain
a start point and a goal.) The player must then complete the
level on their own before the level is published and available
to other users. In early versions of the Free-form editor,
levels began with a 10x10 floor. However, to partially inhibit
canvas-filling, this was later changed so that the editor now
begins with an entirely blank canvas.

In the Programming Editor (inspired by the Deep Gamifi-
cation framework [6]) players will be asked to create a level
by programming the path the robot will take. To inhibit
canvas-filling, players will be constrained to using a limited
number of instructions. This is analogous to the level cre-
ation tools in BeadLoom Game where players created levels
for various “showcases” under similar constraints. This type
of constraint has been shown to be effective for encourag-
ing players to perform more complex operations in order to
generate larger more interesting levels under the constraints.
One challenge with this approach is that since simple solu-
tions are still permitted, and nearly all programs are syntac-
tically correct, users who are experimenting with the level
creation interface with no goal in mind may create levels
that they themselves do not understand.

In the Building-Block editor, we constrain level creation
by providing meaningful chunks to authors in the form of
“Building Blocks.” This is inspired by problem-posing ac-
tivities as presented in systems like MONSAKUN [17] and
AnimalWatch [1, 4] in which players are asked to build a
problem using data and problem pieces provided by experts.
In this version of the level editor, players will be asked to
create a level only using our “Building Blocks” which are
pre-constructed chunks of levels. These “Building Blocks”
will be partial or complete examples of the patterns iden-
tified in previous work [15], specific structures which corre-
spond to opportunities to use loops, functions, or variables.
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Figure 3: The Building-Block editor interface.

Again, to inhibit canvas-filling, the player is limited to a
small number of blocks, regardless of those blocks’ size. We
hypothesize that this may lead to better levels because it
explicitly promotes the inclusion of these patterns, which
will lead to opportunities for players to use more complex
programming constructs like loops and functions. We also
believe that this will encourage students to think about op-
timizing the solution to the level while they are making the
level. One potential challenge with this approach is that
students may find these constraints too restrictive, which
might reduce engagement for creatively-oriented players [6].
By evaluating these two versions of a gamified level editor
against each other, we will determine which practices best
suit our game. In particular, which version of the activity
leads to the production of better content for future users.

4. DATA
This paper reports gameplay data from 181 unique user IDs
(48 in the Programming condition, 61 using Block Editor,
72 using Free-Form Editor) across all classes/workshops that
used the BOTS game as part of their activities. In total, 243
levels were created by these players (91 Block / 59 Program-
ming / 93 Free-Form). Of these levels, 9 Block levels and 6
Programming levels were excluded due to bugs in the early
versions of the editors rendering them unplayable after their
creation, and 3 additional levels (1 Block level, 1 Program-
ming level and 1 Free-Form level) were removed due to other
errors, reducing the total number of levels in the sample to
225 levels (81 / 52 / 92). 175 (49 / 33 / 92) of these levels
were published and made public. Additionally, after publi-
cation the game continually enforces a minimum ideal solu-
tion length of 5, automatically setting levels which meet this
criteria to be unplayable. After removing these levels, the
final count of levels examined by our zero-inflation model
was 197 (73, 44, and 80) puzzles, created by 54, 42, and
64 authors. These participants were participants in STEM
workshops organized through SPARCS or other outreach ac-
tivities. Only anonymized game-play data was used for this
analysis, to protect participants. For the Free-Form edi-
tor, levels from previous experiments were used, as well as
anonymous data from other outreach use of the tool, where
the same 90 minute session structure was followed.

The additional data was collected in 90 minute sessions, in
which all students followed the same procedure. First, each
student created a unique account in the online version of
the game. Players then completed the Tutorial up to the
final challenge level which functions as sort of a ”collector”
stage; Players aren’t expected to complete this level with op-
timum score, but exploring this level allows faster students
to continue practicing while the rest of the class catches
up. During the tutorial segment, instructors were told to
prompt players to reread the offered hints for their current
level carefully, if they became stuck, and only to offer more
guidance after the player had carefully read the instructions.
This part of gameplay took 45 minutes. Data collected with
the Free-form editor used an older version of the game with
a longer tutorial. We account for this difference between
groups by including tutorial completion in our models.

For the remaining 45 minutes, students were instructed to
build at least one level in their version of the level editor
interface. After collecting this level, players could continue
creating levels, or could play levels created by their peers.

The way the level editor was selected varied per data col-
lection. In the first set of data collections, (data collected
prior to the implementation of the new editors) all students
used the “Free-Form” level editor to create their levels. To
publish their levels, some students were then required to
submit a solution to their level before it became public, how-
ever this filtering step took place outside of the level editor
and after level creation. Therefore, in this data we make
no distinction between published or unpublished levels in
this condition. One subsequent data collection used only
the “Programming” level editor; this data was initially used
to evaluate some graphical elements the interface design of
that editor. In the remaining data collections, students were
randomly assigned an interface between the “Programming”
editor and the “Building-Block” editor.

To analyze the differences between created levels, we played
each level to find the shortest-path solution from start to
goal, and used a solver to find the shortest program to pro-
duce this optimal solution. As the actual process of solving a
BOTS puzzle would be as complicated as that of a Light-Bot
puzzle [24], we used an algorithm which instead, based on
student solutions, finds the best optimization of the short-
est discovered path in the level. The algorithm used by
the optimization solver is a simple: First, a program that
recreates the shortest-path using only simple commands is
constructed. Then, sets of repeated commands are identi-
fied in this program by treating the commands as words and
identifying repeated n-grams. Then, recursively, each possi-
ble combination of optimization on these n-grams is applied:
either replacing the -gram with a subroutine identifier wher-
ever it appears, or replacing adjacent -grams with a single
instance of that -gram, wrapped in loop commands. After
each step, the program is recursively re-evaluated, until the
shortest, most optimal version of the solution is found. The
shortest-path solution itself is the naive solution which uses
only simple commands such as moving and turning. The op-
timized shortest-path solution is the expert solution which
uses loops and subroutines to optimize the shortest path so-
lution. The difference between these solutions, in terms of
lines of code, is used as a measurement of how well the level
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affords the use of those game mechanics.

5. METHODS AND RESULTS
In this section, we describe our analyses, both to identify any
differences in the presence of gameplay affordances, and to
identify differences in how experts tagged the created levels
across conditions.

5.1 Overview of level Improvement
In figure 4 we present the box-plot for score improvement be-
tween expert and naive solutions. The light and dark-grey
sections are a typical boxplot, showing the median and quar-
tiles of the data. From this, we can see that the zero-value
levels are certainly over-distributed (especially in the Free-
Form condition) which will impact which statistical methods
we use to evaluate this measurement. Additionally, the pink
area shows the mean value and the 95% confidence interval
around it. From visually inspecting this, we can see that
these confidence intervals for the Programming Editor and
Free-Form editor do not overlap, implying that the Program-
ming Editor achieves better results. We will confirm this
with later analysis.

5.2 Expert Tagging
We compared puzzles across three versions of level editors,
with the hypothesis that the more meaningful the level edi-
tor’s construction unit, the higher quality the puzzles. Here,
we assume that “Building Blocks” from version 3 and pro-
grams from version 2 are more meaningful than terrain blocks
in version 0. We also hypothesize that the Programming
editor will result in more reusable puzzles from a player per-
spective, and that the Building Block editor is more likely
to encourage loops and functions.

We used an expert, blind to which editor was used to create
the puzzle, tag puzzles, and identify the presence or absence
of these negative design patterns. We used the defined puz-
zle design patterns as identified in our previous work: “Nor-
mal” levels which contained few (or no) negative design pat-
terns, and four categories of levels characterized by specific
negative design patterns: Griefer, Power-Gamer, Sandbox,
and Trivial levels, as described in previous work [16].

We measured a puzzle’s quality based on previously identi-
fied patterns of negative content, which were used as tags for
this study. The following criteria were used to assign tags:

• a) it is readily apparent that a solution is possible

• b) a solution actually is possible

• c) the solution can be improved with loops or functions

• d) patterns in the level design call out where loops or
functions can be used

• e) the expert solution can be entered in reasonable time

• f) the naive solution can be entered in reasonable time

We decided on these criteria because the pedagogical goal of
LOGO-like games, such as BOTS, is to teach students ba-
sic problem solving and programming skills. Thus, a good

Figure 4: Plot comparing the distribution of levels
between the three conditions. Each point in this plot
represents the difference in number of commands
between a naive and expert solution. In this chart,
this is represented as a percentage of the expert so-
lution.

quality puzzle should help players focus on the problem, and
should encourage the use of fundamental flow control struc-
tures like loops and functions. Levels which are impossible,
or simply tedious, are among the most common negative
traits identified in previous designs, so updated versions of
the level editor specifically addressed these two criteria via
hard constraints on the placements of goals and size of levels.

Table 1: Categories of Puzzles Created by Three
Versions of Level Editors

FF Program Block
normal 66 43 66
Power-Gamer 9 1 13
griefer 2 0 0
sandbox 10 0 0
trivial 5 8 2
TOTAL 92 52 81

Table 4 reports the number of puzzles in each category, cre-
ated by the three level editors. Fisher’s Exact Test showed
a significant difference (p<.01) in the category distributions

Proceedings of the 9th International Conference on Educational Data Mining 82



between each pair of the three level editors.

The Programming editor has the highest proportion of Nor-
mal puzzles. Moreover, the Building Block and Free-Form
editors created a higher proportion of Power-Gamer levels
compared with the Programming editor. These levels are
characterized by extreme length and a high number of ob-
jectives. The Free-Form editor is the only level editor in
which users created Sandbox puzzles, though since our cri-
teria for Sandbox levels include placing off-path objectives
and structures (which is quite difficult in the new editors)
this is unsurprising. Finally, the Programming editor has
the highest proportion of Trivial puzzles.

Since players in the two new editors used a shorter tuto-
rial than players in the free-form condition, we decided to
investigate if student performance in this tutorial had an
impact on which level editor was more effective. We consid-
ered whether or not the authoring player had completed the
new tutorial levels during the allotted time. This analysis
is again performed on the reduced data set, with levels with
solutions less than 5 steps long removed.

5.3 Direct Measurement of Improvement
To further evaluate the differences between levels on a direct
measure of possible improvement (the difference in length
between a naive solution and an expert solution) we em-
ployed a Zero-Inflation model. This type of model is used
for modeling variables with excessive zeros and it is usually
for overdispersed count outcome variables. Furthermore, it’s
used when theory suggests that the excess zeros are gener-
ated by different process from the other values, and can
therefore be modeled independently. Our data indeed has
an excess of zeroes, due to the measurement in question,
number of lines improved, being a minimum of zero. Addi-
tionally, in this case, a level with zero improvement contains
no affordances, while a level with only a small improvement
may still contain affordances that, though present, are less
directly rewarding to the player.

Table 2: Count model coefficients (poisson with
log link) comparing the two editors to the baseline,
Freeform editor

Est. Std. Err. z value Pr(>|z|)
(Intercept) 1.905 0.054 35.132 < 0.001 ***
Prog. Editor 0.356 0.076 4.697 < 0.001 ***
Block Editor -0.031 0.074 -0.413 0.679

Table 3: Zero-inflation model coefficients (binomial
with logit link): comparing the two editors to the
baseline, Freeform editor

Est. Std. Err. z value Pr(>|z|)
(Intercept) -0.568 0.233 -2.436 0.015 *
Prog. Editor -1.098 0.474 -2.317 0.021 *
Block Editor -1.067 0.394 -2.705 0.007 **

Presented here are the results of fitting a Zero-Inflated Pois-
son model on our data. We can look at the two tests sep-
arately: the binomial model relates to whether a level will
have zero or non-zero results, and the Poisson model relates
to the size of the non-zero results. From the binomial model,

we can see that the Building-Block editor and Programming
editor are more likely than the baseline condition (Freeform
Editor) to produce a non-zero result for Difference. This
makes sense because, of the Building Blocks available to
students, only the very simplest ones offer no affordances,
and in fact, the blocks are built out of instances where pre-
vious levels contained affordances. So in order to construct
a zero-valued level, a Building-Blocks student would need to
use only the simplest blocks, though indeed this appears to
have been the case in several of the constructed stages. In
the Programming editor, the number of commands available
are limited, so to make a larger level (as authors tend to do)
use of functions or loops is required, and thus the solution
to the level will include those same improvements.

Looking at the Poisson model, we see that considering the
non-zero results, the Programming editor is likely to have
a higher value of Difference than either other condition. In
the Building-Blocks editor, each block contains only a small
affordance since the blocks themselves are only 3 to 4 com-
mands long. If blocks are not repeated, this pattern will
persist in the repeated level. However, in the Programming
editor, we observed players exploring more, wrapping code
in functions and loops to see what would happen, and chang-
ing their code until the level looked how they wanted it to
look. Levels generated in this manner will have much larger
differences between the naive solutions and expert solutions,
than levels generated from multiple unique Building Blocks.

Using a zero-inflated Poisson distribution model, we were
able to examine the differences between levels created under
our various conditions. We used this zero-inflation model
because the model looks for two separate effects: first, the
effect that causes the dependent variable to be zero or non-
zero, and second, the effect that causes the value of the
dependent variable to change in the non-zero cases. This
is important because the structural elements for levels with
zero affordance for advanced game mechanics are very differ-
ent from those with only a small affordance—in other words,
we would expect the free editor to have more zero-values for
the difference between the naive and expert solutions, and
the other two editors to have more non-zero values for this
difference. Zero-affordance levels tend to be trivially short
or entirely devoid of patterns, while small-affordance levels
may contain patterns but with small changes between them
which limit how advanced game mechanics may be used to
optimize the solutions.

To summarize these results, by using this model, we were
able to observe the following effects. We first verified our ex-
pected result, that both the Programming editor and Building-
Block editors are more likely to produce a non-zero result,
statistically significantly more likely than the baseline (free-
form) condition. The second result is that the Programming
editor is likely to have a higher-value difference between and
naive and expert solutions, indicating that it promotes puz-
zles that allow for more optimization.

To investigate if completing the new shorter tutorial had an
impact on which level editor was more effective, we consid-
ered whether or not the player completed the tutorial levels
during the allotted time. The results are presented below:
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Table 4: Count model coefficients (poisson with log
link) on model, including tutorial completion

Est. Std. Err. z value Pr(>|z|)
(Intercept) 1.905 0.0542 35.132 < 0.001***
Programming 0.320 0.0813 3.938 < 0.001***
Building-Block -0.060 0.078 -0.769 0.442
Tut. Complete 0.100 0.078 1.293 0.196

Table 5: Zero-inflation model coefficients (binomial
with logit link) including tutorial completion

Est. Std. Err. z value Pr(>|z|)
(Intercept) -0.568 0.233 -2.436 0.015 *
Programming -1.117 0.515 -2.169 0.030 *
Building-Block -1.083 0.424 -2.556 0.011 *
Tut. Complete 0.054 0.544 0.098 0.922

With this more complex model we see similar results: fin-
ishing the shorter tutorial does not have a statistically sig-
nificant effect, but the coefficient for the magnitude portion
of the model is still relatively large. Finishing the tutorial
seems to have no compelling impact on the zero portion of
the model.

To summarize these results, by using this model, we were
able to observe the following effects. First, the Building
Block editor is most likely to produce a non-zero result, sta-
tistically significantly more likely than either other condi-
tion. Second, the Programming editor is likely to have a
higher-value of difference for the non-zero results that are
created.

6. DISCUSSION
The results seem to confirm that the Freeform editor is the
least likely to result in levels with gameplay affordances for
using loops and functions. The Freeform editor resulted in
the lowest proportion of Normal puzzles, but high propor-
tions of Sandbox puzzles and Power-Gamer puzzles. Addi-
tionally, they created fewer puzzles that can be improved by
loops or functions, or which have obvious patterns for using
loops or functions. Players using this editor are less likely to
consider the gameplay affordances of their levels, adding el-
ements regardless of their effect on gameplay. Additionally,
the Freeform editor is the only level editor where users cre-
ated Sandbox puzzles. This may be because Sandbox levels
are characterized by the presence of extraneous objects, and
the new editors operate by creating the robot’s path, so de-
signers would have to deliberately stray from their intended
path to place extraneous objects.

On the other hand, the Programming Editor resulted in a
high proportion of Normal puzzles and the lowest proportion
of Power-Gamer puzzles. This makes sense because a Power-
Gamer puzzle is typically a puzzle which takes a short time
to create but a long time to complete. Since this editor uses
the exact same mechanic for creation as completion, this is
quite difficult to do. However, these users also built a lower
proportion of puzzles that can be improved with loops and
functions than the users of the Building Block editor, and
the highest proportion of Trivial puzzles whose solutions are
too short to afford the use of loops or functions. This editor

is the most complex to use, so players with little patience for
learning the interface may create Trivial puzzles. Addition-
ally, trying options at random to see what they do in the
programming editor is likely to result in the creation of a
Trivial level. We hypothesize that in the other editors, ran-
dom behavior results in different level types: Power-Gamer
levels in the Building Block editor, and Trivial levels in the
Programming editor.

Lastly, the Building-Block Editor has a high proportion of
normal puzzles, and is slightly more likely to generate a
non-zero result than the Programming editor. The build-
ing blocks used to create levels are subsections of previously
created levels selected specifically because they afford the
use of loops or functions. The Building-block editor cre-
ated the highest proportion of Power-Gamer puzzles. This
may be because of the ease of use; adding a block takes one
click but may require 5–10 commands from the player who
later solves the puzzle. We previously observed that players
tended to fill the space available to them in the Freeform
editor, so Building-block puzzle creators may also be trying
to fill the available space. In both other editors, it takes
longer to solve the puzzle than to create it, but the pro-
gramming editor minimizes this difference, thereby making
the creation of Power-gamer levels less likely.

7. CONCLUSIONS AND FUTURE WORK
In conclusion, including Deep Gamification elements in Level
Editors (in the form of creative constraints, building blocks,
or integration with gameplay mechanic) did result in an
overall improvement in level quality. In both the Program-
ming editor and Building-Block editor were more effective
than a Freeform editor at encouraging the creation of levels
which contain gameplay affordances. The Programming ed-
itor was most effective at ensuring a non-zero improvement
between expert and naive solutions, but perhaps trivially so,
as the building blocks themselves were selected as to contain
small improvements. The Programming editor is less likely
to ensure a non-zero improvements, but levels created under
this condition contain larger improvements, which may be
more obvious or more rewarding to players than numerous
small improvements.

Our next steps are to investigate how players react to levels
created under these conditions. We know that these levels
contain opportunities for users to practice, but if the users
don’t recognize or simply don’t take advantage of the oppor-
tunities, the improvement is lost. Additionally, we noticed
several patterns of negative design that are unique to these
new editors, with regards to canvas-filling behaviors. This
results in shifting “Sandbox” design into Power-Gamer or
Trivial levels. For the new editors, this seems to be mostly
negative, resulting in overlong, unrewarding levels. How-
ever in the Programming editor, this behavior sometimes
resulted in interesting levels created when the author was
experimenting with loops and nested functions rather than
creating with an end-goal in mind. Similar experimental
usage of the previous level editor was treated as negative,
with the output levels being low-quality. In the Program-
ming editor, that is not always the case, so re-evaluation of
how these levels are identified is needed.
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ABSTRACT 
Mind wandering (MW) is a ubiquitous phenomenon characterized 
by an unintentional shift in attention from task-related to task-
unrelated thoughts. MW is frequent during learning and 
negatively correlates with learning outcomes. Therefore, the next 
generation of intelligent learning technologies should benefit from 
mechanisms that detect and combat MW. As an initial step in this 
direction, we used eye-gaze and contextual information (e.g., time 
into session) to build an automated MW detector as students 
interact with GuruTutor – an intelligent tutoring system (ITS) for 
biology. Students self-reported MW by responding to 
pseudorandom thought-probes during the tutoring session while a 
consumer-grade eye tracker monitored their eye movements. We 
used supervised machine learning techniques to discriminate 
between positive and negative responses to the probes in a 
student-independent fashion. Our best results for detecting MW 
(F1 of 0.49) were obtained with an evolutionary approach to 
develop topologies for neural network classifiers. These 
outperformed standard classifiers (F1 of 0.43 with a Bayes net) 
and a chance baseline (F1 of 0.19). We discuss our results in the 
context of integrating MW detection into an attention-aware 
version of GuruTutor. 

Keywords 
eye-gaze, intelligent tutoring systems, mind wandering, attention-
aware learning 

1. INTRODUCTION 
It is safe to say that most of us have had the experience of reading 
a text or listening to a lecture and then suddenly realizing that our 
thoughts have drifted to completely unrelated things, such as an 
upcoming vacation. This phenomenon, known as mind wandering 
(MW), refers to the unintentional shift of attention away from the 
current task towards internal task-unrelated thoughts [32]. MW is 
a ubiquitous phenomenon, estimated to occur as much as 50% of 
the time depending on the individual, task, and environment [16]. 

Not only does MW occur frequently, it can have detrimental 
influences on performance, especially during educational 
activities. Indeed, a recent meta-analysis  revealed a negative 
correlation between MW and performance across a variety of 
tasks, such as lower recall in memory tasks and poor 

comprehension in reading tasks [24]. It is prudent to point out that 
MW is not always harmful and the tendency to day-dream has 
been shown to aid in certain types of tasks, such as creative 
problem solving [20]. However, research consistently shows that 
MW impairs performance in tasks requiring concentrated 
attentional focus and integration of information from the external 
environment as is the case with many learning activities [21].  

Considering the negative influence of mind wandering on learning 
[27, 29, 30], it is important to take steps towards developing 
intelligent systems that help reorient attention to assuage the 
negative effects of MW. This requires  an ability to monitor the 
locus of attention, detect students’ current attentional state, and 
provide a stimulus to direct focus back to the learning task [10].  
Detecting MW is no easy task however. Although MW is related 
to other forms of disengagement, such as boredom, behavioral 
disengagement, and off-task behaviors [1, 2, 9, 18, 36], it is 
inherently distinct because it involves internal thoughts rather than 
overt expressive behaviors. This raises two challenges. First, 
while other disengaged behaviors often involve detectable 
behavioral markers (e.g., yawns signaling boredom), mind 
wandering is an internal state that can look similar to on-task 
states. Secondly, the onset and duration of MW cannot be 
precisely measured because MW can occur outside of conscious 
awareness.  

Despite these challenges, there has been some progress toward 
automatic detection of mind wandering during reading (discussed 
as related works in Section 1.1). However, almost all of the 
current MW detectors focus on reading tasks, so their 
effectiveness is unclear during complex interactive tasks, such as 
learning with advanced learning technologies. Here, we explore 
for the first time, automated approaches for MW detection during 
learning with intelligent tutoring systems (ITS). 

1.1 Related Work 
In an early study attempting to detect MW in the context of 
learning [11], students were asked to read a paragraph about 
biology aloud, followed by either self-explanation or 
paraphrasing. Students self-reported how frequently they zoned 
out on a scale from 1 (all the time) to 7 (not at all). A supervised 
machine learning model trained on acoustic-prosodic features to 
classify low (1-3 on the scale) and high (5-7 on the scale) zone 
outs achieved an accuracy of 64%. However, it is unclear whether 
this detector could generalize to new students as the validation 
method did not ensure student-level independence across training 
and testing sets. 

Some researchers have built MW detectors based on information 
readily available in log files collected during the reading (e.g., 
reading time, complexity of the text). For example, [19], 
attempted to classify whether students were MW while reading a  
screen of text using reading behaviors and features of the text, 
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such as text difficulty. They were able to classify MW at 21% 
greater than chance using a leave-one-subject out cross-validation 
method. Similarly, another study [12] also attempted to predict 
MW during reading using textual features, such as word 
familiarity, difficulty, and reading time. However, rather than 
using supervised machine learning, they used a set of researcher-
defined thresholds to ascertain if participants were “mindlessly 
reading” based on difficulty and reading time.  

More recent studies have explored additional techniques to detect 
MW during self-paced computerized reading [5, 7, 12, 19]. In 
these studies, MW was measured via thought probes that occurred 
on pseudo-random screens (i.e. screen of text similar to a page of 
text). Participants responded either “yes” or “no” based on 
whether they were MW at the time of the probe. Supervised 
classification models were trained to discriminate the two 
responses using physiological features (e.g., skin conductance, 
temperature) [7] or eye-gaze [9], achieving accuracies ranging 
from 18% to 23% above chance and validated in a manner that 
generalized to new students. Further, combining the two 
modalities led to a 11% improvement in detection accuracy above 
the best individual modality  [3]. 

Previous attempts to detect MW from eye-gaze are of particular 
relevance to the current paper.  Eye tracking offers a unique 
possibility to automatically detect MW due to well-known 
relationships between visual attention and eye-movements. For 
example, MW has been associated with longer fixation durations 
[26] and more blinking in reading [33]. These and other 
relationships have been leveraged to build MW detectors during 
reading [4, 6] with moderate levels of success. However, it is 
unclear if  these findings and corresponding detectors generalize 
to other activities, particularly activities where eye-gaze does not 
have the predictable patterns found in reading text. 

1.2 Current Study and Novelty 
The primary focus of this paper is to detect MW during learning 
with an ITS called GuruTutor.  Previous work suggests that MW 
occurs, on average, once every two minutes during interactions 
with GuruTutor and is negatively correlated with learning gains 
[17], highlighting the importance of detecting MW in this context. 

There are a number of novel aspects with this work. First, we 
study MW detection in an interactive context– an ITS with 
conversational dialogues and other embedded activities. Detection 
of MW during interactions with an ITS provides additional 
challenges compared to reading. In reading tasks, it is generally 
clear where the reader should be looking if they are engaged in the 
task and the eyes move across the screen in a predictable manner. 
However, in complex environments such as an ITS, there are far 
more paths the eyes may take, resulting in fewer predictable 
patterns, rendering MW detection more difficult.   

Second, GuruTutor includes multiple activities, such as lecturing, 
scaffolded dialogue, concept mapping, and Cloze task completion. 
Each has a different visual layout, level of interactivity, and 
learning goal, presumably engendering different gaze patterns and 
levels of MW. By requiring our MW detector to work across a 
range of activities, we hope to have a solution that will generalize 
to additional learning technologies that may support quite 
different activity types. 

Third, while researchers have typically used standard 
classification algorithms (e.g., Naïve Bayes, decision trees), we 
explore the use of a genetic algorithm (GA) to evolve neural 
networks (both topologies and connection weights) for detecting 

MW.  This approach evolves the weights and topology 
concurrently, thereby implicitly integrating feature selection and 
feature weighting. Further, MW detection suffers from a data-
imbalance problem in that the standard classifiers are skewed 
towards predicting the majority class, which is typically the class 
associated with Not MW. We address this issue by considering 
various GA fitness functions that focus on balancing the precision 
and recall of the minority MW class. 

Fourth, we use a low-cost consumer-grade eye tracker to collect 
gaze data from participants as they interact with Guru. Research 
grade eye trackers can cost upwards of $40,000, so the use of 
affordable equipment (less than $150) increases the scalability of 
the detector for eventual deployment in real world learning 
environments such as computer-enabled classrooms.  

2. DATA COLLECTION 
We adopted a supervised classification approach for MW 
detection, which entailed collection of training and validation 
data. 

2.1 Participants 
Participants were 105 undergraduate students (69.5% female, 
average age 19.14) from a mid-sized, private university in the 
Midwest. Participants received extra credit or course credit for 
participating in the study.  

2.2 GuruTutor 
GuruTutor (Guru) is an ITS designed to teach biology topics 
through collaborative conversations in natural language. It is 
modeled after interactions with expert human tutors [22]. Guru 
engages the student through natural language conversations with 
an animated tutor agent that references a multimedia workspace, 
animating content relevant to the conversation (see Figure 1). 
Students type in responses in a conversational style that Guru 
analyzes using natural language processing. Guru maintains a 
student model which it uses to tailor instruction to individual 
students. Guru has been shown to be effective at promoting 
learning and retention at levels similar to human tutors [22]. 

 
Figure 1. Example of Guru during CGB Phase 

Guru presents biology topics aligned with state curriculum 
standards (e.g., cellular respiration), typically lasting between 15 
to 40 minutes each.  Each topic contains sets of interrelated 
concepts and facts (e.g., proteins help cells regulate functions). 
Guru begins each new topic with a brief preview to introduce it to 
the student, followed by a five phase session that encourages 
students to build and articulate their understanding of the 
concepts.  These five phases are described below.   

Common-Ground-Building Instruction (CGB Instruction).  
Biology lessons often involve specialized terminology that needs 
to be well understood before it is possible to move on to more 
collaborative knowledge building activities. Therefore, Guru 

Proceedings of the 9th International Conference on Educational Data Mining 87



begins with a collaborative lecture phase that covers basic 
information and terminology relevant to the topic. Intermittent 
Summaries (Summary). Following CGB, students generate 
summaries using natural-language to describe the content covered. 
These summaries are automatically analyzed to determine which 
concepts to target throughout the remainder of the session. 
Concept Maps. For the target concepts, students complete 
skeleton concept maps, node-link structures that are automatically 
generated from concept text.  Scaffolded Dialogue. Next students 
complete a scaffolded natural language dialogue in which 
GuruTutor uses a Prompt → Feedback → Verification Question 
→ Feedback → Elaboration cycle to cover target concepts. If a 
student shows difficulty mastering particular concepts, a second 
Concept Maps phase is initiated followed by an additional 
Scaffolded Dialogue phase. Cloze Task. The session concludes 
with a cloze task requiring students to complete an ideal summary 
of the topic by filling in blanks to connect key words to related 
concepts.  

 
Figure 2.  Example of Guru during Concept Maps 

2.3 Procedure 
All experimental procedures were reviewed and approved by the 
university’s ethics board. After signing an informed consent, 
participants were seated at a desk in front of a 15-inch laptop. A 
Tobii EyeX eye-tracker was positioned directly under the laptop 
screen using a magnetic strip based on the guidelines provided by 
Tobii. 

Participants were asked to sit comfortably with the chair pulled up 
to the desk. Next, participants were given an explanation of MW 
and were given detailed instructions for how to respond to the 
mind wandering probes (see below) during learning with Guru. 
Specifically, MW was defined as “when you realize that you are 
no longer paying attention to what you’re supposed to be doing, 
for example, instead of thinking about the biology, you may be 
thinking about something else altogether.”   

After receiving initial instructions, a 60 second calibration process 
occurred before beginning the learning session. Participants were 
dynamically instructed about their seating and head position in 
order for the eye tracker to pick up their eye gaze.   

Then, one of six biology topics from Guru was assigned to each 
participant: Interphase, Osmosis, Biochemical Catalysts, 
Carbohydrate Function, Protein Function, or Facilitated Diffusion. 
Following a pretest on the assigned topic, participants began the 
Guru tutoring session. Afterwards, participants completed a 
posttest and were fully debriefed.  

2.4 Mind Wandering Probes 
Mind wandering was measured during learning with Guru using 
auditory thought probes, which is a standard approach in the 
literature [31]. Participants were probed at pseudo-random 
intervals with probes occurring every 90-120 seconds, this was 

based on previous work investigating how often MW occurs[17].  
If the tutor was speaking at the time the probe was triggered, the 
probe was paused until the tutor finished speaking so as to not 
interrupt the conversation flow. Probes consisted of an auditory 
beep that automatically paused the tutoring session. An opaque 
overlay would then appear on screen, instructing the participant to 
press the “N” key if they were not mind wandering, the “I” key if 
they were intentionally (deliberately) mind wandering, or the “U” 
key if they were unintentionally (spontaneously) mind wandering. 
In this study, we do not differentiate between intentional and 
unintentional mind wandering, and “I” and “U” responses were 
coded as “MW” to indicate mind wandering occurred. Participants 
encountered an average of ten probes over the course of the 
session. We obtained a total of 1104 reports to thought probes, 
17% of which corresponded to episodes of MW. 

3. MODEL BUILDING 
Supervised machine learning models were built to detect MW 
using eye-gaze data and contextual information from Guru.  

3.1 Feature Engineering 
We calculated features from a short window of time preceding 
each auditory probe, exploring window sizes ranging from 3 to 30 
seconds.  We did not consider windows shorter than 3 seconds, as 
they most often did not contain sufficient gaze data. We discarded 
windows where not all the eye-gaze features could be computed, 
such as cases when the face was occluded or the student was 
looking down at the keyboard. For the smallest window (three 
seconds) 418 instances were removed, lowering the MW rate to 
15.5%. A total of 156 instances were removed for all other 
window sizes, leaving the average MW rate unaffected (17%).  

Table 1. Eye-gaze  features 

Fixation Duration  duration in milliseconds of fixation 
Saccade Duration  duration in milliseconds of saccade 

Saccade Length distance of saccade 
Saccade Angle Absolute angle in degrees between the x-axis 

and the saccade 
Saccade Angle Relative angle of the saccade relative to 

previous gaze data. 
Saccade Velocity Saccade Length / Saccade Duration 

Fixation Dispersion root mean square of the distances 
from each fixation to the average 
fixation position in the window 

Horizontal Saccade 
Proportion 

proportion of saccades with angles 
no more than 30 degrees above or 
below the horizontal axis 

Fixation Saccade Ratio ratio of Fixation Duration to 
Saccade Duration 

Note. Bolded cell indicates that the total number, mean, median, 
min, max, standard deviation, range, kurtosis, and skew of the 
distribution of each measurement were used as features. 

Gaze Features. Eye movements are measured by fixations (i.e. 
points in which the gaze was maintained on the same location) 
and saccades (i.e. the movement of the eyes between fixations). 
We calculated fixations and saccades from the raw eye-gaze data 
using the Open Gaze and Mouse Analyzer (OGAMA) [35], an 
open source package for eye tracking analysis. Next, gaze  
features were computed for each from the fixations and saccades 
(see Table 1) in that window.  We considered six general 
measures based on fixations and saccades. For these gaze 
measures, we calculated the number, mean, median, min, max, 
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standard deviation, range, kurtosis, and skew of the distributions 
of each measure across the time window, yielding 54 features. We 
also included three other features (listed in Table 1), yielding a 
total of 57 gaze features. 

Contextual Features. The gaze features were complemented with 
eight contextual features that provide a snapshot of the student-
tutor interaction context during each window. One feature was the 
assigned biology topic. A second encoded participants’ pretest 
scores on that topic. The next three of these features describe 
participants’ progress within Guru, such as the current phase of 
the session (e.g., cloze, concept map, etc.), the amount of elapsed 
time into the session, and the amount of elapsed time into the 
current phase. The last three context features focused on 
participants’ overall interaction with Guru, measured by the 
amount of positive, neutral, and negative feedback received.  

3.2 Addressing Class Label Imbalance 
Only 17% of the 1104 thought probes were reports of MW, 
thereby leading to substantial data skew. This imbalance between 
the class labels poses a challenge as some supervised learning 
methods tend to bias predications towards the majority class label. 
To compensate for this concern, synthetic oversampling was 
applied to provide a more balanced class distribution on the 
training set only. The SMOTE algorithm [8] creates synthetic 
instances of the minority class by interpolating feature values 
between an instance and randomly chosen nearest neighbors. No 
SMOTING was done on the testing set in order to ensure validity 
of the predictions.  

3.3 Classification Models 
We evaluated five classifiers frequently explored for the detection 
of MW [6, 7]. These included Bayesian networks, logistic 
regression classifiers, multilayer perceptrons (MLP), random 
forests, and support vector machines (SVM) using 
implementations from the WEKA data mining software [14].   

We also considered a neural network trained using a genetic 
algorithm (GA), which is a type of evolutionary algorithm for 
optimization and search problems that uses techniques loosely 
inspired by biological natural selection. GAs maintain a 
population of candidate solutions (phenotypes), each with a set of 
properties (genotypes).  These individual solutions evolve over 
time guided by a fitness function. At each generation, the fitness 
function is used to rank the candidate solutions, allowing 
elimination of inferior solutions and selection of the best 
candidates to the new generation. New candidate solutions are 
created at each generation through the mechanisms of mutation, a 
pseudo-random perturbation of an individual’s genotype, and 
cross-over, the combination of aspects of the genotypes of 
multiple fit individuals.  

NEAT Algorithm. In this study, we used a GA to evolve an 
artificial neural network for MW detection. We used the 
NeuroEvolution of Augmenting Topologies (NEAT) algorithm to 
evolve the topology of neural network alongside an evolution of 
the network weights [34]. Because NEAT evolves both the 
weights and topology of the network, it must implement the 
genetic operators of mutation and crossover in a unique way to 
handle differences between network topologies. NEAT uses 
population speciation to track individuals with similar topologies, 
restricting crossover to individuals with similar network 
topologies to ensure the resulting new topology is coherent.  
Mutation of the topology occurs in two ways, either by the 
creation of a hidden node or the addition or removal of a link 

between nodes. As the size of the networks may grow larger in 
each new generation, constraints are imposed to penalize large 
networks that exceed a complexity threshold.  

To encourage innovation in new generations, NEAT implements 
speciation by grouping networks that share similar topologies into 
the same population. The populations are determined by a 
distance metric that computes the distance of a topology of an 
individual from the initial topology of the species. New 
populations are created as new networks that are dissimilar from 
any existing population evolve. This strategy allows the 
generation of new individuals by applying genetic operators on 
similar individuals in order to maintain viable network topologies 
without hindering the ability of the GA to develop new and 
unique networks.  

Using NEAT for MW Detection.  We used SharpNeat, a popular 
implementation of the NEAT algorithm in the C# language [28].  
We tuned the evolution variables on our data in preliminary 
experiments. We used a population of 150 individuals and ran the 
algorithm for 500 generations. We also determined a complexity 
threshold to prune overly complex networks.  Because 
evolutionary algorithms are non-deterministic, we ran these 
classifiers over multiple iterations in each experiment.   

The effectiveness of an evolutionary algorithm depends on the 
evaluation of individuals using the fitness function. We 
considered three different fitness functions that were informed by 
[13]. The first function evaluates candidate networks using the 
overall accuracy (recognition rate) of the model. The second 
function evaluates the networks considering the F1 measure for 
the class label of interest, which in our case is MW (denoted as 
F1-MW).  The third evaluates the networks using the Youden’s J-
statistic, (a variation on Cohen’s Kappa, sometimes called 
“informedness” [23]) which is defined as sensitivity + specificity 
– 1 of MW.  

3.4 Cross-Validation 
All experiments were conducted using leave-several-participants-
out cross-validation. For each iteration of the classifier, instances 
from 66% of the participants were assigned to a training set and 
the remaining instances of the other 33% participants were 
assigned to a test set.  This process ensures that no instances of 
any individual participant could appear in both the training and 
test sets within a fold. This process was repeated for 15 folds, and 
the results accumulated. We selected 15 iterations in order to 
balance time taken to build the models (as evolutionary 
approaches are slow) and reliability by testing multiple 
training/testing set pairs. Minority oversampling (SMOTING) 
occurred within each fold and on the training set only.  

4. RESULTS 
We report the F1 measure in our evaluation of our results.  This 
measure is common in information retrieval tasks and provides a 
balance between precision and recall.  Because our intention is to 
detect instance of MW, we focus on the F1 score of the MW label 
as our key metric. This is a very strict evaluation criterion as the 
base rate of MW is only 17% in our data. To facilitate 
comparisons with previous (and future work), we also reported the 
F1 score for the majority Not MW class (83% of instances), as 
well as the weighted F1 score. 

4.1 Comparing Window Size 
In our first experiment, we explored the influence of various 
window sizes ranging from 3 to 30 seconds. As we are interested 

Proceedings of the 9th International Conference on Educational Data Mining 89



in general trends, we average results of the five standard 
classifiers and the three NEAT classifiers. (see Figure 3). These 
results illustrate a general trend of improved performance for the 
larger windows, although these differences may not be overly 
large. In the remainder of this work, we considered a 30 second 
window in our experiments as it generally resulted in the highest 
F1 scores.  

 
Figure 3. Comparison of different window sizes. 

4.2 Comparison of Classifiers 
In Table 3 we report the results of the classifiers considering a 30 
second analysis window, informed by our experiment in Section 
4.1.  The highest F1 for MW is denoted in bold for both the 
common classifiers and NEAT implementations that varied by 
fitness function. For comparison, a chance-level baseline was 
created by randomly assigning a class label to each instance based 
on the observed MW rate of 17%. We note that all of the 
classifiers showed an improvement in detecting the target 
minority class of MW over the chance model. 
 

Table 2. MW detection results by classifier for 30 second 
window 

  F1 of 
MW 

F1 of  
Not MW 

Overall 
F1 

Standard Classifiers    
 Bayesian Network 0.43 0.73 0.68 
 Logistic 

Regression 
0.38 0.79 0.72 

 MLP 0.30 0.83 0.74 
 SVM 0.37 0.76 0.70 
 Random Forest 0.23 0.86 0.75 
     
NEAT Classifiers    
 Fitness: Accuracy  0.36 0.76 0.69 
 Fitness: F1-MW  0.49 0.58 0.57 
 Fitness: Youden J  0.44 0.69 0.65 
     
Baseline  0.19 0.83 0.73 
 

Among the common classifiers, Bayesian network achieved the 
highest F1 score for MW. This was also the case in previous MW 
eye-gaze detectors in other domains [6].  The overall F1 score for 
the Bayesian network was lower than for other classifiers, 
ostensibly because the other classifiers tend to over predict the 
majority class. For NEAT, using the F1-MW score as the fitness 
function resulted in the overall best F1 score for MW. NEAT with 
Youden’s J- statistic as the fitness function did yield a slightly 
more balanced detector with an increase in F1 of Not MW. 
Importantly, the best NEAT classifier outperformed the Bayesian 
network at detecting MW, which is our target class of interest. In 

Table 3 we show the confusion matrices for the three classifiers 
that obtained the highest F1 score for MW: the Bayesian network, 
NEAT-F1-MW, and NEAT-Youden. NEAT-F1-MW yielded a 
substantially higher hit rate than the other two classifiers, but also 
suffered from a high false positive (FP) rate.  The Bayesian 
network and  NEAT-Youden had similar patterns of errors in that 
they had both lower hit rates as well as FP rates. Based on these 
results, we consider NEAT-F1-MW and the Bayesian network in 
subsequent analyses. 

Table 3. Confusion matrices for the three best classifiers 

Actual Predicted 

Bayes Net MW Not MW 

MW 0.52 (hit) 0.48 (miss) 

Not MW 0.34 (false pos.) 0.66 (correct rej.) 

   
NEAT-F1-MW MW Not MW 

MW 0.69 (hit) 0.31 (miss) 

Not MW 0.54 (false pos.) 0.46 (correct rej.) 

   
NEAT-Youden MW Not MW 

MW 0.55 (hit) 0.45 (miss) 

Not MW 0.41(false pos.) 0.59 (correct rej.) 

4.3 Gaze only vs. Gaze + Context Features 
We investigated the utility of contextual features over the gaze 
features alone (see Table 4). The addition of contextual features 
improved the F1 score for the minority class of MW for NEAT 
and correspondingly for the majority Not MW class for the 
Bayesian network. Overall, the improvements in performance 
were small, suggesting that the gaze features were more important 
to the detection of MW compared to the contextual features.  

Table 4. Gaze (G) vs. Gaze + Context (G+C) features 

Classifier Feature F1 of 
MW 

F1 of  
Not MW 

Overall 
F1 

Bayesian network G 0.45 0.69 0.65 
 G+C 0.43 0.73 0.68 
     
NEAT-F1-MW G 0.44 0.58 0.56 
 G+C 0.49 0.58 0.57 

 

4.4 Oversampling vs. No Oversampling 
In Section 3.2, we discussed the imbalance between instances of 
MW and Not MW in the dataset, and addressed this difficulty by 
supplementing the training data with the SMOTE oversampling 
technique. To study the effect of SMOTE, we compared the 
Bayesian network and the best NEAT classifier on datasets with 
and without these synthetic training instances (see Table 5). We 
confirmed that synthetic oversampling indeed improved the 
classification of the MW (the minority class) for NEAT at the cost 
of detecting the majority class. Thus, SMOTING played a critical 
role in reducing the tendency to over predict to the majority class. 
SMOTING had no notable effect for the Bayesian network, which 
seemed to be more impervious to data skew. 
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Table 5. Results with and without oversampling. 

 Classifier SMOTE F1  
of MW 

F1 of 
Not MW 

Ove all  
F1 

Bayesian net No 0.41 0.75 0.70 
 Yes 0.43 0.73 0.68 
     
NEAT-F1-MW No 0.42 0.75 0.79 
 Yes 0.49 0.58 0.57 

4.5 Analysis of Features 
Neural networks use a mathematical approach to transform and 
combine input features to useful output. Thus, we can learn more 
about the structure of our MW detector by investigating the 
topologies formed during the evolutionary process. For example, a 
network with a densely connected hidden layer would be 
performing a large amount of internal calculations compared a 
sparsely connected layer. 

To better understand our MW detector’s structure, we examined 
each of the 15 iterations of the NEAT-F1-MW model and 
investigated the networks that survived to the final generation in 
each case.  Across the networks the mean number of hidden nodes 
in the network is 1.6 (min 0, max 3), the average number of inputs 
actually used in the final network is 17.133 (min 8, max 36) and 
the average number of connections is 21.46 (min 9, max 44). The 
number of hidden nodes here is low, but considering the large 
number of inputs to a small number of outputs, this is to be 
expected. The algorithm also biases towards smaller networks to 
avoid bloat. 

Developing neural network topologies also provides inherent 
feature selection that takes place as the network structures evolve 
to subsequent generations. This provides an opportunity to 
explore which features were most useful in detecting MW. Seven 
features appeared in at least half of the final networks as shown in 
Table 6. 

Table 6. Cohen's d of most commonly used features 

Feature Cohen’s d 
Fixation Duration Skew -0.27 

Minimum Fixation Duration 0.17 
Mean Saccade Duration 0.32 

Saccade Duration Kurtosis -0.16 
Saccade Duration Skew -0.17 

Minimum Saccade Velocity -0.15 
Fixation to Saccade Ratio -0.17 

Pre Test Score -0.18 
We compared these seven features across the MW and not MW 
instances using an effect size measure (Cohen’s d).  An effect size 
measure is appropriate for this comparison in order to evaluate the 
direction and magnitude of the differences between the two 
classes. Positive values depict higher values for instances of MW 
(see Table 6). In general, the differences reported in this paper are 
consistent with previous work examining eye gaze surrounding 
MW episodes during reading [4]. Two of the seven features had 
differences across the MW and not MW classes consistent with 
small effect sizes (|d| > .2). The largest difference was seen for 
mean saccade duration (d = .32). This finding suggests that 
participants tend to have longer gaps between fixations leading up 
to a MW episode as opposed to more rapid eye movements 
between fixations. A similar effect size was found for fixation 
duration skew (d = -.27), which suggests that there is a higher 
probability that participants would have shorter fixations before a 
MW episode occurs compared to when their attention is on task.  

It is important to point out that the low Cohen’s d values (< |.2|) 
are not entirely surprising given the nature of neural networks. 
The network employs a combination of features and the 
combination sets that prove to be most effective for MW detection 
may not be consistent with the overall largest mean differences. 
Instead, the important thing to note is that these seven features 
were the most consistent across all iterations. 

It is also worth mentioning that only one context feature was 
present in over half of the final networks: pre-test score. Instances 
of MW were associated with lower pre-test scores, indicating that 
when participants were more likely to mind wander if they did not 
understand the topic well to begin with.  

5. GENERAL DISCUSSION 
Mind wandering occurs frequently during learning and has a 
negative impact on learning outcomes [21]. An attention-aware 
learning technology [10] that can automatically detect MW could 
intervene to re-engage learners, assuaging the cost of MW on 
comprehension to improve learning. However, MW is a covert, 
internal state with no obvious behavioral markers, making it 
difficult to detect. Although strides have been made to detect MW 
in the context of self-paced reading, MW detection has not yet 
been attempted in the context of an ITS – a challenge we 
addressed in the current paper. In the remainder of this section, we 
discuss our main findings, consider potential applications, and 
discuss limitations and future work. 

5.1 Main Findings 
MW detection during reading tasks is supported by decades of 
research on MW and eye movements [25]. However, more 
complex learning interfaces, such as the ITS used here, are not 
afforded such predictable patterns of eye movements. Despite 
these challenges, we demonstrated the ability of a neural network 
trained using a GA to detect MW in the context of learning with 
an ITS. We were able to accurately classify MW with an F1 of 
0.49 at detecting the minority MW class. Although this result is 
modest, it is an important first step in detecting MW in this novel 
domain.  

In most machine learning tasks, a large imbalance in the 
distribution of class labels results in a degraded performance at 
predicting the minority class label [15]. This is a major issue for 
MW detection as its rate of occurrence is around 20% to 40% in 
learning contexts [27] and in our case it was 17%.  We addressed 
the data imbalance by using a synthetic oversampling technique 
and by tweaking the fitness function of the GA in order to help the 
classifiers in detecting the minority class of MW. We believe that 
this combined approach might be beneficial for other 
classification problems when there is severe data skew. 

Since MW detection in the context of learning from an ITS is still 
in its infancy, it was important for us to adopt a method that will 
generalizable for future work in this area. The eye gaze feature set 
was limited to eye movements that were independent of the 
specific content being displayed on the screen. This enabled our 
models to operate across Guru’s multiple instructional activities, 
each with very different visual displays.  

In addition to the gaze features, a second set of features included 
the context of the learning session. A comparison of model 
performance with and without contextual features revealed that 
contextual features added a small, but not substantial, 
improvement in detection accuracy. This finding further illustrates 
the idea that eye gaze can be a powerful signal of attention, 
regardless of the learning context.   
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An analysis of the most consistent features in the model point to 
seven important features, six of which are gaze features. MW 
episodes had a longer mean saccade duration, yet smaller fixation 
duration skew. The longer mean saccade duration preceding MW 
is consistent with prior research, which suggests that MW signals  
a breakdown at very basic levels of perceptual processing [30]  – 
in this case, being slower to direct your eyes form one point to 
another. Most of the effect sizes (d’s) reported are objectively 
small effects; however, we feel that obtaining a sense of 
consistent features and how the relate to MW is a major 
contribution at this stage in the of MW detection. 

All data was collected using low-cost, consumer-grade eye 
trackers (less than $150). This is a marked contrast compared to 
many research-grade trackers that can cost tens of thousands of 
dollars. Our goal is eventual deployment of our models at scale, 
thereby allowing us to test generalizability in more diverse 
contexts. For this reason, it was important to ensure that our 
models were validated in a student-independent manner, which 
increases our models’ ability to generalize to new students. Taken 
together, these results increase our confidence that the models will 
generalize more broadly, though this claim requires further 
empirical validation. 

5.2 Applications 
The key application of this work is to develop an attention-aware 
version of Guru that detects and combats MW in real-time. Once 
the goal of MW detection is realized, Guru has a number of paths 
to pursue to re-engage attention. 

At an immediate level, one initial effect of MW is that the student 
simply fails to attend to a unit of information or a salient event in 
the learning environment. The unattended information, question, 
or event is needed to construct an adequate mental model so that 
subsequent knowledge can be assimilated or the student will be 
left behind. Thus, a simple direct approach is to reassert the 
missed information (“e.g., Mary, let me repeat that…..”) or 
highlight the information by directing attention to specific areas of 
the display (e.g., “Mary, you might want to look at the highlighted 
image showing the chromosomes duplicating”). Taking a 
somewhat different approach, Guru can also launch a sub-
dialogue where it asks a content-specific question (e.g., “Mary, 
what happens to the chromosomes when they duplicate”) or asks 
the student to complete a mini-activity (e.g., “Mary, we now have 
a simulation of the first phase in mitosis. Can you….”). Guru can 
also ask the student to self-explain when MW is detected. 

Additional measures might be needed if MW persists despite 
these intervention strategies. One option is to simply change to a 
new activity. Guru might even suggest changing topics or offering 
a choice for what students would like to do next. If all else fails, 
Guru might even suggest that the student take a break.  

It is important to note that the proposed intervention strategies 
rely on MW detection, which is inherently imperfect. The detector 
might inaccurately assert that a student is MW when they are not 
(false alarms) or it might assert that a student is actively attending 
when they are in fact MW (misses). MW detection does not need 
to be perfect as long as we account for this in MW interventions. 
For example, Guru can adopt a probabilistic approach where the 
MW detector provides an estimate of the likelihood that the 
student is MW. This likelihood will guide whether an intervention 
is launched (i.e. if the likelihood of MW is 70%, there is a 70% 
chance that an intervention will be triggered). Second, 
interventions can be designed to be “fail-soft” in that there are no 
harmful effects if delivered incorrectly.  

5.3 Limitations and Future Work 
There were several limitations with this study.  One key limitation 
pertains to the moderate MW detection accuracy. Although, we 
detected MW above chance levels using several different 
classifiers, these results leave room for improvement.  Ongoing 
work seeks to reduce the false positive rate while increasing the 
hit rate for our MW models by expanding our feature set and 
incorporating temporal information in the machine learning.   

We designed our approach to include a low-cost eye tracker, 
however, these consumer models have a lower sampling-rate, 
limiting the accuracy of the eye-gaze data compared to research-
grade eye trackers.  Furthermore, although we desire to eventually 
deploy our system in noisy classroom environments, we only 
tested our system in a quiet lab setting.  

This work is also limited by the features used in the supervised 
learning process, which were a small and potentially restrictive 
subset of gaze features.  We also did not model temporal patterns 
of eye movements, such as examining if the participant revisited 
an area of the screen they had previously viewed. Additionally, 
we only used a small number of contextual features. Future work 
may consider a utilizing log files from the tutoring session more 
extensively to create more in-depth context features (e.g., content, 
timing, and length of student responses, etc.). 

The results of this study invite several avenues for improvement 
which we will explore as future work.  First, we will explore 
additional eye-gaze features, such as those that track localized 
regions of interest but at a level of abstraction that does not limit 
generalizability to additional interfaces. Informed by our 
observation that the inclusion of contextual features improved 
detection of MW, we will explore additional contextual features 
from the ITS, again with an eye for more generalizable features 
(e.g., response time).  Furthermore, it is possible to build multiple 
MW detector specialized for different phases in the Guru tutoring 
sessions, although this would require a large amount of data and 
would make these detectors less able to generalize to other ITSs. 
Finally, we will collect data in the real-world context of a 
computer-enabled classroom where 20-30 students interact with 
Guru on individual computers while their gaze is being tracked. 
Indeed, preliminary data collection on this front is already 
underway. 

5.4 Concluding Remarks 
Attention is a crucial part of learning. An attention-aware ITS that 
can detect a student’s attentional state as well as redirect their 
attention to better engage them in the learning task could be very 
beneficial for engagement and learning. Attention-awareness, 
however, requires monitoring of attention, which has historically 
been limited to the lab. However, advances in consumer-grade 
eye-tracking have opened up the possibility of gaze tracking 
during learning with ITSs and other technologies, thereby 
enabling a new generation of attention-aware cyberlearning. 
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ABSTRACT
In theoretical cognitive science, there is a tension between
highly structured models whose parameters have a direct
psychological interpretation and highly complex, general-
purpose models whose parameters and representations are
difficult to interpret. The former typically provide more
insight into cognition but the latter often perform better.
This tension has recently surfaced in the realm of educa-
tional data mining, where a deep learning approach to pre-
dicting students’ performance as they work through a series
of exercises—termed deep knowledge tracing or DKT—has
demonstrated a stunning performance advantage over the
mainstay of the field, Bayesian knowledge tracing or BKT.
In this article, we attempt to understand the basis for DKT’s
advantage by considering the sources of statistical regularity
in the data that DKT can leverage but which BKT cannot.
We hypothesize four forms of regularity that BKT fails to
exploit: recency effects, the contextualized trial sequence,
inter-skill similarity, and individual variation in ability. We
demonstrate that when BKT is extended to allow it more
flexibility in modeling statistical regularities—using exten-
sions previously proposed in the literature—BKT achieves
a level of performance indistinguishable from that of DKT.
We argue that while DKT is a powerful, useful, general-
purpose framework for modeling student learning, its gains
do not come from the discovery of novel representations—
the fundamental advantage of deep learning. To answer the
question posed in our title, knowledge tracing may be a do-
main that does not require ‘depth’; shallow models like BKT
can perform just as well and offer us greater interpretability
and explanatory power.

1. INTRODUCTION
In the past forty years, machine learning and cognitive sci-
ence have undergone many paradigm shifts, but few have
been as dramatic as the recent surge of interest in deep
learning [16]. Although deep learning is little more than
a re-branding of neural network techniques popular around
1990, deep learning has achieved some remarkable results

thanks to much faster computing resources and much larger
data sets than were available in 1990. Deep learning under-
lies state-of-the-art systems in speech recognition, language
processing, and image classification [16, 26]. Deep learning
also is responsible for systems that can produce captions for
images [29], create synthetic images [9], play video games
[19] and even Go [27].

The ‘deep’ in deep learning refers to multiple levels of rep-
resentation transformation that lie between model inputs
and outputs. For example, an image-classification model
may take pixel values as input and produce a labeling of
the objects in the image as output. Between the input and
output is a series of representation transformations that con-
struct successively higher-order features—features that are
less sensitive to lighting conditions and the position of ob-
jects in the image, and more sensitive to the identities of the
objects and their qualitative relationships. The features dis-
covered by deep learning exhibit a complexity and subtlety
that make them difficult to analyze and understand (e.g.,
[31]). Furthermore, no human engineer could wire up a so-
lution as thorough and accurate as solutions discovered by
deep learning. Deep learning models are fundamentally non-
parametric, in the sense that interpreting individual weights
and individual unit activations in a network is pretty much
impossible. This opacity is in stark contrast to parametric
models, e.g., linear regression, where each of the coefficients
has a clear interpretation in terms of the problem at hand
and the input features.

In one domain after the next, deep learning has achieved
gains over traditional approaches. Deep learning discards
hand-crafted features in favor of representation learning, and
deep learning often ignores domain knowledge and structure
in favor of massive data sets and general architectural con-
straints on models (e.g., models with spatial locality to pro-
cess images, and models with local temporal constraints to
process time series).

It was inevitable that deep learning would be applied to
student-learning data [22]. This domain has traditionally
been the purview of the educational data mining community,
where Bayesian knowledge tracing, or BKT, is the dominant
computational approach [3]. The deep learning approach to
modeling student data, termed deep knowledge tracing or
DKT, created a buzz when it appeared at the Neural Infor-
mation Processing Systems Conference in December 2015,
including press inquiries (N. Heffernan, personal communi-
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cation) and descriptions of the work in the blogosphere (e.g.,
[7]). Piech et al. [22] reported substantial improvements in
prediction performance with DKT over BKT on two real-
world data sets (Assistments, Khan Academy) and one
synthetic data set which was generated under assumptions
that are not tailored to either DKT or BKT. DKT achieves a
reported 25% gain in AUC (a measure of prediction quality)
over the best previous result on the Assistments bench-
mark.

In this article, we explore the success of DKT. One approach
to this exploration might be to experiment with DKT, re-
moving components of the model or modifying the input
data to determine which model components and data char-
acteristics are essential to DKT’s performance. We pursue
an alternative approach in which we first formulate hypothe-
ses concerning the signals in the data that DKT is able to
exploit but that BKT is not. Given these hypotheses, we
propose extensions to BKT which provide it with additional
flexibility, and we evaluate whether the enhanced BKT can
achieve results comparable to DKT. This procedure leads
not only to a better understanding of how BKT and DKT
differ, but also helps us to understand the structure and
statistical regularities in the data source.

1.1 Modeling Student Learning
The domain we’re concerned with is electronic tutoring sys-
tems which employ cognitive models to track and assess stu-
dent knowledge. Beliefs about what a student knows and
doesn’t know allow a tutoring system to dynamically adapt
its feedback and instruction to optimize the depth and effi-
ciency of learning.

Ultimately, the measure of learning is how well students are
able to apply skills that they have been taught. Conse-
quently, student modeling is often formulated as time series
prediction: given the series of exercises a student has at-
tempted previously and the student’s success or failure on
each exercise, predict how the student will fare on a new
exercise. Formally, the data consist of a set of binary ran-
dom variables indicating whether student s produces a cor-
rect response on trial t, {Xst}. The data also include the
exercise labels, {Yst}, which characterize the exercise. Sec-
ondary data has also been incorporated in models, including
the student’s utilization of hints, response time, and char-
acteristics of the specific exercise and the student’s partic-
ular history with related exercises [2, 30]. Although such
data improve predictions, the bulk of research in this area
has focused on the primary measure—whether a response is
correct or incorrect—and a sensible research strategy is to
determine the best model based on the primary data, and
then to determine how to incorporate secondary data.

The exercise label, Yst, might index the specific exercise,
e.g., 3 + 4 versus 2 + 6, or it might provide a more general
characterization of the exercise, e.g., single digit addition.
In the latter case, exercise are grouped by the skill that
must be applied to obtain a solution. Although we will use
the term skill in this article, others refer to the skill as a
knowledge component, and the authors of DKT also use the
term concept. Regardless, the important distinction for the
purpose of our work is between a label that indicates the
particular exercise and a label that indicates the general skill

required to perform the exercise. We refer to these two types
of labels as exercise indexed and skill indexed, respectively.

1.2 Knowledge Tracing
BKT models skill-specific performance, i.e., performance on
a series of exercises that all tap the same skill. A separate in-
stantiation of BKT is made for each skill, and a student’s raw
trial sequence is parsed into skill-specific subsequences that
preserve the relative ordering of exercises within a skill but
discard the ordering relationship of exercises across skills.
For a given skill σ, BKT is trained using the data from each
student s, {Xst|Yst = σ}, where the relative trial order is
preserved. Because it will become important for us to dis-
tinguish between absolute trial index and the relative trial
index within a skill, we use t to denote the former and use i
to denote the latter.

BKT is based on a theory of all-or-none human learning
[1] which postulates that the knowledge state of student s
following the i’th exercise requiring a certain skill, Ksi, is
binary: 1 if the skill has been mastered, 0 otherwise. BKT,
formalized as a hidden Markov model, infers Ksi from the
sequence of observed responses on trials 1 . . . i, {Xs1, Xs2,
. . . , Xsi}. BKT is typically specified by four parameters:
P (Ks0 = 1), the probability that the student has mas-
tered the skill prior to solving the first exercise; P (Ks,i+1 =
1 |Ksi = 0), the transition probability from the not-mastered
to mastered state; P (Xsi = 1 | Ksi = 0), the probability of
correctly guessing the answer prior to skill mastery; and
P (Xsi = 0 | Ksi = 1), the probability of answering incor-
rectly due to a slip following skill mastery. Because BKT is
typically used in modeling practice over brief intervals, the
model assumes no forgetting, i.e., K cannot transition from
1 to 0.

BKT is a highly constrained, structured model. It assumes
that the student’s knowledge state is binary, that predicting
performance on an exercise requiring a given skill depends
only on the student’s binary knowledge state, and that the
skill associated with each exercise is known in advance. If
correct, these assumptions allow the model to make strong
inferences. If incorrect, they limit the model’s performance.
The only way to determine if model assumptions are correct
is to construct an alternative model that makes different
assumptions and to determine whether the alternative out-
performs BKT. DKT is exactly this alternative model, and
its strong performance directs us to examine BKT’s limita-
tions. First, however, we briefly describe DKT.

Rather than constructing a separate model for each skill,
DKT models all skills jointly. The input to the model is the
complete sequence of exercise-performance pairs, {(Xs1, Ys1)
...(Xst, Yst)...(XsT , YsT )}, presented one trial at a time. As
depicted in Figure 1, DKT is a recurrent neural net which
takes (Xst, Yst) as input and predicts Xs,t+1 for each possi-
ble exercise label. The model is trained and evaluated based
on the match between the actual and predicted Xs,t+1 for
the tested exercise (Ys,t+1). In addition to the input and
output layers representing the current trial and the next
trial, respectively, the network has a hidden layer with fully
recurrent connections (i.e., each hidden unit connects back
to all other hidden units). The hidden layer thus serves to
retain relevant aspects of the input history as they are use-
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(student	knowledge	state)

Figure 1: Deep knowledge tracing (DKT) architec-
ture. Each rectangle depicts a set of processing
units; each arrow depicts complete connectivity be-
tween each unit in the source layer and each unit in
the destination layer.

ful for predicting future performance. The hidden state of
the network can be conceived of as embodying the student’s
knowledge state. Piech et al. [22] used a particular type
of hidden unit, called an LSTM (long short-term memory)
[10], which is interesting because these hidden units behave
very much like the BKT latent knowledge state, Ksi. To
briefly explain LSTM, each hidden unit acts like a mem-
ory element that can hold a bit of information. The unit
is triggered to turn on or off by events in the input or the
state of other hidden units, but when there is no specific
trigger, the unit preserves its state, very similar to the way
that the latent state in BKT is sticky—once a skill is learned
it stays learned. With 200 LSTM hidden units—the num-
ber used in simulations reported in [22]—and 50 skills, DKT
has roughly 250,000 free parameters (connection strengths).
Contrast this number with the 200 free parameters required
for embodying 50 different skills in BKT.

With its thousand-fold increase in flexibility, DKT is a very
general architecture. One can implement BKT-like dynam-
ics in DKT with a particular, restricted set of connection
strengths. However, DKT clearly has the capacity to en-
code learning dynamics that are outside the scope of BKT.
This capacity is what allows DKT to discover structure in
the data that BKT misses.

1.3 Where Does BKT Fall Short?
In this section, we describe four regularities that we conjec-
ture to be present in the student-performance data. DKT
is flexible enough that it has the potential to discover these
regularities, but the more constrained BKT model is simply
not crafted to exploit the regularities. In following sections,
we suggest means of extending BKT to exploit such regular-
ities, and conduct simulation studies to determine whether
the enhanced BKT achieves performance comparable to that
of DKT.

1.3.1 Recency Effects
Human behavior is strongly recency driven. For example,
when individuals perform a choice task repeatedly, response
latency can be predicted by an exponentially decaying av-
erage of recent stimuli [12]. Intuitively, one might expect
to observe recency effects in student performance. Con-

sider, for example, a student’s time varying engagement.
If the level of engagement varies slowly relative to the rate
at which exercises are being solved, a correlation would be
induced in performance across local spans of time. A stu-
dent who performed poorly on the last trial because they
were distracted is likely to perform poorly on the current
trial. We conducted a simple assessment of recency using
the Assistments data set (the details of this data set will
be described shortly). Similarly to [5], we built an autore-
gressive model that predicts performance on the current trial
as an exponentially weighted average of performance on past
trials, with a decay half life of about 5 steps. We found that
this single parameter model fit the Assistments data reli-
ably better than classic BKT. (We are not presenting details
of this simulation because we will evaluate a more rigorous
variant of the idea in a following section. Our goal here is
to convince the reader that there is likely some value to the
notion of recency-weighted prediction.)

Recurrent neural networks tend to be more strongly influ-
enced by recent events in a sequence than more distal events
[20]. Consequently, DKT is well suited to exploiting recent
performance in making predictions. In contrast, the gener-
ative model underlying BKT supposes that once a skill is
learned, performance will remain strong, and that a slip at
time t is independent of a slip at t+ 1.

1.3.2 Contextualized Trial Sequence
The psychological literature on practice of multiple skills in-
dicates that the sequence in which an exercise is embedded
influences learning and retention (e.g., [24, 25]). For exam-
ple, given three exercises each of skills A and B, presenting
the exercises in the interleaved order A1–B1–A2–B2–A3–B3

yields superior performance relative to presenting the exer-
cises in the blocked order A1–A2–A3–B1–B2–B3. (Perfor-
mance in this situation can be based on an immediate or
delayed test.)

Because DKT is fed the entire sequence of exercises a stu-
dent receives in the order the student receives them, it can
potentially infer the effect of exercise order on learning. In
contrast, because classic BKT separates exercises by skill,
preserving only the relative order of exercises within a skill,
the training sequence for BKT is the same regardless of
whether the trial order is blocked or interleaved.

1.3.3 Inter-Skill Similarity
Each exercise presented to a student has an associated la-
bel. In typical applications of BKT—as well as two of the
three simulations reported in Piech et al. [22]—the label in-
dicates the skill required to solve the problem. Any two such
skills, S1 and S2, may vary in their degree of relatedness.
The stronger the relatedness, the more highly correlated one
would expect performance to be on exercises tapping the two
skills, and the more likely that the two skills will be learned
simultaneously.

DKT has the capacity to encode inter-skill similarity. If each
hidden unit represents student knowledge state for a partic-
ular skill, then the hidden-to-hidden connections encode the
degree of overlap. In an extreme case, if two skills are highly
similar, they can be modeled by a single hidden knowledge
state. In contrast, classic BKT treats each skill as an in-
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dependent modeling problem and thus can not discover or
leverage inter-skill similarity.

DKT has the additional strength, as demonstrated by Piech
et al., that it can accommodate the absence of skill labels.
If each label simply indexes a specific exercise, DKT can
discover interdependence between exercises in exactly the
same manner as it discovers interdependence between skills.
In contrast, BKT requires exercise labels to be skill indexed.

1.3.4 Individual Variation in Ability
Students vary in ability, as reflected in individual differences
in mean accuracy across trials and skills. Individual varia-
tion might potentially be used in a predictive manner: a
student’s accuracy on early trials in a sequence might pre-
dict accuracy on later trials, regardless of the skills required
to solve exercises. We performed a simple verification of this
hypothesis using the Assistments data set. In this data set,
students study one skill at a time and then move on to the
next skill. We computed correlation between mean accuracy
of all trials on the first n skills and the mean accuracy of all
trials on skill n+1, for all students and for n ∈ {1, ..., N−1}
where N is the number of skills a student studied. We ob-
tained a correlation coefficient of 0.39: students who tend
to do well on the early skills learned tend to do well on later
skills, regardless of the skills involved.

DKT is presented with a student’s complete trial sequence.
It can use a student’s average accuracy up to trial t to pre-
dict trial t + 1. Because BKT models each skill separately
from the others, it does not have the contextual information
needed to estimate a student’s average accuracy or overall
ability.

2. EXTENDING BKT
In the previous section, we described four regularities that
appear to be present in the data and which we conjecture
that DKT exploits but which the classic BKT model cannot.
In this section, we describe three extensions to BKT that
would bring BKT on par with DKT with regard to these
regularities.

2.1 Forgetting
To better capture recency effects, BKT can be augmented
to allow for forgetting of skills. Forgetting corresponds to
fitting a BKT parameter F ≡ P (Ks,i+1 = 0 | Ksi = 1), the
probability of transitioning from a state of knowing to not
knowing a skill. In standard BKT, F = 0.

Without forgetting, once BKT infers that the student has
learned, even a long run of poorly performing trials cannot
alter the inferred knowledge state. However, with forgetting,
the knowledge state can transition in either direction, which
allows the model to be more sensitive to the recent trials:
A run of unsuccessful trials is indicative of not knowing the
skill, regardless of what preceded the run. Forgetting is
not a new idea to BKT, and in fact was included in the
original psychological theory that underlies the notion of
binary knowledge state [1]. However, it has not typically
been incorporated into BKT. When it has been included in
BKT [23], the motivation was to model forgetting from one
day to the next, not forgetting that can occur on a much
shorter time scale.

Incorporating forgetting can not only sensitize BKT to re-
cent events but can also contextualize trial sequences. To
explain, consider an exercise sequence such as A1–A2–B1–
A3–B2–B3–A4, where the labels are instances of skills A and
B. Ordinary BKT discards the absolute number of trials be-
tween two exercises of a given skill, but with forgetting, we
can count the number of intervening trials and treat each as
an independent opportunity for forgetting to occur. Conse-
quently, the probability of forgetting between A1 and A2 is
F , but the probability of forgetting between A2 and A3 is
1− (1− F )2 and between A3 and A4 is 1− (1− F )3. Using
forgetting, BKT can readily incorporate some information
about the absolute trial sequence, and therefore has more
potential than classic BKT to be sensitive to interspersed
trials in the exercise sequence.

2.2 Skill Discovery
To model interactions among skills, one might suppose that
each skill has some degree of influence on the learning of
other skills, not unlike the connection among hidden units
in DKT. For BKT to allow for such interactions among
skills, the independent BKT models would need to be in-
terconnected, using an architecture such as a factorial hid-
den Markov model [6]. As an alternative to this somewhat
complex approach, we explored a simpler scheme in which
different exercise labels could be collapsed together to form
a single skill. For example, consider an exercise sequence
such as A1–B1–A2–C1–B2–C2–C3. If skills A and B are
highly similar or overlapping, such that learning one pre-
dicts learning the other, it would be more sensible to treat
this sequence in a manner that groups A and B into a sin-
gle skill, and to train a single BKT instantiation on both
A and B trials. This approach can be used whether the
exercise labels are skill indices or exercise indices. (One of
the data sets used by Piech et al. [22] to motivate DKT has
exercise-indexed labels).

We recently proposed an inference procedure that automati-
cally discovers the cognitive skills needed to accurately model
a given data set [18]. (A related procedure was indepen-
dently proposed in [8].) The approach couples BKT with
a technique that searches over partitions of the exercise la-
bels to simultaneously (1) determine which skill is required
to correctly answer each exercise, and (2) model a student’s
dynamical knowledge state for each skill. Formally, the tech-
nique assigns each exercise label to a latent skill such that a
student’s expected accuracy on a sequence of same-skill ex-
ercises improves monotonically with practice according to
BKT. Rather than discarding the skills identified by ex-
perts, our technique incorporates a nonparametric prior over
the exercise-skill assignments that is based on the expert-
provided skills and a weighted Chinese restaurant process
[11].

In the above illustration, our technique would group A and
B into one skill and C into another. This procedure col-
lapses like skills (or like exercises), yielding better fits to the
data by BKT. Thus, the procedure performs a sort of skill
discovery.

2.3 Incorporating Latent Student-Abilities
To account for individual variation in student ability, we
have extended BKT [14, 13] such that slip and guess prob-
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abilities are modulated by a latent ability parameter that is
inferred from the data, much in the spirit of item-response
theory [4]. As we did in [14], we assume that students with
stronger abilities have lower slip and higher guess probabil-
ities. When the model is presented with new students, the
posterior predictive distribution on abilities is used initially,
but as responses from the new student are observed, un-
certainty in the student’s ability diminishes, yielding better
predictions for the student.

3. SIMULATIONS
3.1 Data Sets
Piech et al. [22] studied three data sets. One of the data
sets, from Khan Academy, is not publicly available. Despite
our requests and a plea from one of the co-authors of the
DKT paper, we were unable to obtain permission from the
data science team at Khan Academy to use the data set. We
did investigate the other two data sets in Piech et al., which
are as follows.

Assistments is an electronic tutor that teaches and eval-
uates students in grade-school math. The 2009-2010 “skill
builder” data set is a large, standard benchmark, available
by searching the web for assistment-2009-2010-data. We
used the train/test split provided by Piech et al., and fol-
lowing Piech et al., we discarded all students who had only
a single trial of data.

Synthetic is a synthetic data set created by Piech et al. to
model virtual students learning virtual skills. The training
and test sets each consist of 2000 virtual students perform-
ing the same sequence of 50 exercises drawn from 5 skills.
The exercise on trial t is assumed to have a difficulty char-
acterized by δt and require a skill specified by σt. The ex-
ercises are labeled by the identity of the exercise, not by
the underlying skill, σt. The ability of a student, denoted,
αt varies over time according to a drift-diffusion process,
generally increasing with practice. The response correctness
on trial t is a Bernoulli draw with probability specified by
guessing-corrected item-response theory with difficulty and
ability parameters δt and αt. This data set is challenging
for BKT because the skill assignments, σt, are not provided
and must be inferred from the data. Without the skill as-
signments, BKT must be used either with all exercises asso-
ciated with a single skill or each exercise associated with its
own skill. Either of these assumptions will miss important
structure in the data. Synthetic is an interesting data set
in that the underlying generative model is neither a perfect
match to DKT or BKT (even with the enhancements we
have described). The generative model seems realistic in its
assumption that knowledge state varies continuously.

We included two additional data sets in our simulations.
Spanish is a data set of 182 middle-school students prac-
ticing 409 Spanish exercises (translations and application of
simple skills such as verb conjugation) over the course of a
15-week semester, with a total of 578,726 trials [17]. Statics
is from a college-level engineering statics course with 189,297
trials and 333 students and 1,223 exercises [28], available
from the PSLC DataShop web site [15].

3.2 Methods

We evaluated five variants of BKT1, each of which incor-
porates a different subset of the extensions described in the
previous section: a base version that corresponds to the clas-
sic model and the model against which DKT was evaluated
in [22], which we’ll refer to simply as BKT ; a version that in-
corporates forgetting (BKT+F ), a version that incorporates
skill discovery (BKT+S), a version that incorporates latent
abilities (BKT+A), and a version that incorporates all three
of the extensions (BKT+FSA). We also built our own im-
plementation of DKT with LSTM recurrent units2. (Piech
et al. described the LSTM version as better performing, but
posted only the code for the standard recurrent neural net
version.) We verified that our implementation produced re-
sults comparable to those reported in [22] on Assistments
and Synthetic. We then also ran the model on Spanish
and Statics.

For Assistments, Spanish, and Statics, we used a single
train/test split. The Assistments train/test split was iden-
tical to that used by Piech et al. For Synthetic, we used
the 20 simulation sets provided by Piech et al. and averaged
results across the 20 simulations.

Each model was evaluated on each domain’s test data set,
and the performance of the model was quantified with a dis-
criminability score, the area under the ROC curve or AUC.
AUC is a measure ranging from .5, reflecting no ability to
discriminate correct from incorrect responses, to 1.0, reflect-
ing perfect discrimination. AUC is computed by obtaining
a prediction on the test set for each trial, across all skills,
and then using the complete set of predictions to form the
ROC curve. Although Piech et al. [22] do not describe the
procedure they use to compute AUC for DKT, code they
have made available implements the procedure we describe,
and not the obvious alternative procedure in which ROC
curves are computed on a per-skill basis and then averaged
to obtain an overall AUC.

3.3 Results
Figure 2 presents the results of our comparison of five vari-
ants of BKT on the four data sets. We walk through the
data sets from left to right.

On Assistments, classic BKT obtains an AUC of 0.73, bet-
ter than the 0.67 reported for BKT by Piech et al. We are
not sure why the scores do not match, although 0.67 is close
to the AUC score we obtain if we treat all exercises as asso-
ciated with a single skill or if we compute AUC on a per-skill
basis and then average.3 BKT+F obtains an AUC of 0.83,

1https://github.com/robert-lindsey/WCRP/tree/forgetting
2https://github.com/mmkhajah/dkt
3Piech et al. cite Pardos and Heffernan [21] as obtain-
ing BKT’s best reported performance on Assistments—
an AUC of 0.69. In [21], the overall AUC is computed by
averaging the per-skill AUCs. This method yields a lower
score than the method used by Piech et al., for two reasons.
First, the Piech procedure weighs all trials equally, whereas
the Pardos and Heffernan procedure weighs all skills equally.
With the latter procedure, the overall AUC will be dinged
if the model does poorly on a skill with just a few trials, as
we have observed to be the case with Assistments. The
latter procedure also produces a lower overall AUC because
it suppresses any lift due to being able to predict the rela-
tive accuracy of different skills. In summary, it appears that

Proceedings of the 9th International Conference on Educational Data Mining 98



0.72

0.75

0.78

0.81

0.84

0.87

0.90

0.93

AU
C

Assistments

BK
T

BK
T+

A BK
T+

F

BK
T+

S

BK
T+

FS
A

D
KT

0.61

0.64

0.67

0.70

0.73

0.76

0.79

0.82
Synthetic

BK
T

BK
T+

A

BK
T+

F

BK
T+

S

BK
T+

FS
A

D
KT

0.72

0.75

0.78
Statics

BK
T BK

T+
A

BK
T+

F BK
T+

S

BK
T+

FS
A

D
KT

0.82

0.85

0.88
Spanish

BK
T

BK
T+

A

BK
T+

F

BK
T+

S

BK
T+

FS
A

D
KT

Figure 2: A comparison of six models on four data sets. Model performance on the test set is quantified by
AUC, a measure of how well the model discriminates (predicts) correct and incorrect student responses. The
models are trained on one set of students and tested on another set. Note that the AUC scale is different for
each graph, but tic marks are always spaced by .03 units in AUC. On Assistments and Synthetic, DKT results
are from Piech et al. [22]; on Statics and Spanish DKT results are from our own implementation. BKT=
classic Bayesian knowledge tracing; BKT+A= BKT with inference of latent student abilities; BKT+F= BKT
with forgetting; BKT+S= BKT with skill discovery; BKT+FSA= BKT with all three extensions; DKT=
deep knowledge tracing

not quite as good as the 0.86 value reported for DKT by
Piech et al. Examining the various enhancements to BKT,
AUC is boosted both by incorporating forgetting and by in-
corporating latent student abilities. We find it somewhat
puzzling that the combination of the two enhancements,
embodied in BKT+FSA, does no better than BKT+F or
BKT+A, considering that the two enhancements tap differ-
ent properties of the data: the student abilities help predict
transfer from one skill to the next, whereas forgetting facil-
itates prediction within a skill.

To summarize the comparison of BKT and DKT, 31.6% of
difference in performance reported in [22] appears to be due
to the use of a biased procedure for computing the AUC
for BTK. Another 50.6% of the difference in performance
reported vanishes if BKT is augmented to allow for forget-
ting. We can further improve BKT if we allow the skill
discovery algorithm to operate with exercise labels that in-
dex individual exercises, as opposed to labels that index the
skill associated with each exercise. With exercise-indexed la-
bels, BKT+S and BKT+FSA both obtain an AUC of 0.90,
beating DKT. However, given DKT’s ability to perform skill
discovery, we would not be surprised if it also achieved a sim-
ilar level of performance when allowed to exploit exercise-
indexed labels.

Turning to Synthetic, classic BKT obtains an AUC of 0.62,
again significantly better than the 0.54 reported by Piech et
al. In our simulation, we treat each exercise as having a dis-
tinct skill label, and thus BKT learns nothing more than the
mean performance level for a specific exercise. (Because the
exercises are presented in a fixed order, the exercise identity
and the trial number are confounded. Because performance
tends to improve as trials advance in the synthetic data,
BKT is able to learn this relationship.) It is possible here
that Piech et al. treated all exercises as associated with a
single skill or that they used the biased procedure for com-

inconsistent procedures may have been used to compute per-
formance of BKT versus DKT in [22], and the procedure for
BKT is biased to yield a lower score.

puting AUC; either of these explanations is consistent with
their reported AUC of 0.54.

Regarding the enhancements to BKT, adding student abil-
ities (BKT+A) improves prediction of Synthetic which is
understandable given that the generative process simulates
students with abilities that vary slowly over time. Adding
forgetting (BKT+F) does not help, consistent with the gen-
erative process which assumes that knowledge level is on
average increasing with practice; there is no systematic for-
getting in the student simulation. Critical to this simulation
is skill induction: BKT+S and BKT+FSA achieve an AUC
of 0.80, better than the reported 0.75 for DKT in [22].

On Statics, each BKT extension obtains an improvement
over classic BKT, although the magnitude of the improve-
ments are small. The full model, BKT+FSA, obtains an
AUC of 0.75 and our implementation of DKT obtains a
nearly identical AUC of 0.76. On Spanish, the BKT exten-
sions obtain very little benefit. The full model, BKT+FSA,
obtains an AUC of 0.846 and again, DKT obtains a nearly
identical AUC of 0.836. These two sets of results indicate
that for at least some data sets, classic BKT has no glaring
deficiencies. However, we note that BKT model accuracy
can be improved if algorithms are considered that use exer-
cise labels which are indexed by exercise and not by skill.
For example, with Statics, performing skill discovery using
exercise-indexed labels, [17] obtain an AUC of 0.81, much
better than the score of 0.73 we report here for BKT+S
based on skill-indexed labels.

In summary, enhanced BKT appears to perform as well on
average as DKT across the four data sets. Enhanced BKT
outperforms DKT by 20.0% (.05 AUC units) on Synthetic
and by 3.0% (.01 AUC unit) on Spanish. Enhanced BKT
underperforms DKT by 8.3% (.03 AUC units) on Assist-
ments and by 3.5% (.01 AUC unit) on Statics. These
percentages are based on the difference of AUCs scaled by
by AUCDKT−0.5, which takes into account the fact that an
AUC of 0.5 indicates no discriminability.
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4. DISCUSSION
Our goal in this article was to investigate the basis for the
impressive predictive advantage of deep knowledge tracing
over Bayesian knowledge tracing. We found some evidence
that different procedures may have been used to evaluate
DKT and BKT in [22], leading to a bias against BKT. When
we replicated simulations of BKT reported in [22], we ob-
tained significantly better performance: an AUC of 0.73 ver-
sus 0.67 on Assistments, and an AUC of 0.62 versus 0.54
on Synthetic.

However, even when the bias is eliminated, DKT obtains
real performance gains over BKT. To understand the basis
for these gains, we hypothesized various forms of regularity
in the data which BKT is not able to exploit. We proposed
enhancements to BKT to allow it to exploit these regulari-
ties, and we found that the enhanced BKT achieved a level
of performance on average indistinguishable from that of
DKT over the four data sets tested. The enhancements we
explored are not novel; they have previously been proposed
and evaluated in the literature. They include forgetting [23],
latent student abilities [14, 13, 21], and skill induction [17,
8].

We observe that different enhancements to BKT matter for
different data sets. For Assistments, incorporating forget-
ting is key; forgetting allows BKT to capture recency effects.
For Synthetic, incorporating skill discovery yielded huge
gains, as one would expect when the exercise-skill mapping
is not known. And for Statics, incorporating latent student
abilities was relatively most beneficial; these abilities enable
the model to tease apart the capability of a student and
the intrinsic difficulty of an exercise or skill. Of the three
enhancements, forgetting and student abilities are compu-
tationally inexpensive to implement, whereas skill discovery
adds an extra layer of computational complexity to infer-
ence.

The elegance of DKT is apparent when one considers the ef-
fort we have invested to bring BKT to par with DKT. DKT
did not require its creators to analyze the domain and de-
termine sources of structure in the data. In contrast, our
approach to augmenting BKT required some domain exper-
tise, a thoughtful analysis of BKT’s limitations, and distinct
solutions to each limitation. DKT is a generic recurrent neu-
ral network model [10], and it has no constructs that are
specialized to modeling learning and forgetting, discovering
skills, or inferring student abilities. This flexibility makes
DKT robust on a variety of datasets with little prior analy-
sis of the domains. Although training recurrent networks is
computationally intensive, tools exist to exploit the parallel
processing power in graphics processing units (GPUs), which
means that DKT can scale to large datasets. Classic BKT
is inexpensive to fit, although the variants we evaluated—
particularly the model that incorporates skill discovery—
require computation-intensive MCMC methods that have a
distinct set of issues when it comes to parallelization.

DKT’s advantages come at a price: interpretability. DKT is
massive neural network model with tens of thousands of pa-
rameters which are near-impossible to interpret. Although
the creators of DKT did not have to invest much up-front
time analyzing their domain, they did have to invest sub-

stantive effort to understand what the model had actually
learned. Our proposed BKT extensions achieve predictive
performance similar to DKT whilst remaining interpretable:
the model parameters (forgetting rate, student ability, etc.)
are psychologically meaningful. When skill discovery is in-
corporated into BKT, the result is clear: a partition of exer-
cises into skills. Reading out such a partitioning from DKT
is challenging and only an approximate representation of the
knowledge in DKT.

Finally, we return to the question posed in the paper’s title:
How deep is knowledge tracing? Deep learning refers to the
discovery of representations. Our results suggest that rep-
resentation discovery is not at the core of DKT’s success.
We base this argument on the fact that our enhancements
to BKT bring it to the performance level of DKT without
requiring any sort of subsymbolic representation discovery.4

Representation discovery is clearly critical in perceptual do-
mains such as image or speech classification. But the domain
of education and student learning is high level and abstract.
The input and output elements of models are psychologically
meaningful. The relevant internal states of the learner have
some psychological basis. The characterization of exercises
and skills can—to at least a partial extent—be expressed
symbolically.

Instead of attributing DKT’s success to representation dis-
covery, we attribute DKT’s success to its flexibility and gen-
erality in capturing statistical regularities directly present in
the inputs and outputs. As long as there are sufficient data
to constrain the model, DKT is more powerful than clas-
sic BKT. BKT arose in a simpler era, an era in which data
and computation resources were precious. DKT reveals the
value of relaxing these constraints in the big data era. But
despite the wild popularity of deep learning, there are many
ways to relax the constraints and build more powerful mod-
els other than creating a black box predictive device with
a vast interconnected tangle of connections and parameters
that are nearly impossible to interpret.
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ABSTRACT
The extraction of student behavior is an important task in
educational data mining. A common approach to detect sim-
ilar behavior patterns is to cluster sequential data. Standard
approaches identify clusters at each time step separately and
typically show low performance for data that inherently suf-
fer from noise, resulting in temporally inconsistent clusters.
We propose an evolutionary clustering pipeline that can be
applied to learning data, aiming at improving cluster stabil-
ity over multiple training sessions in the presence of noise.
Our model selection is designed such that relevant cluster
evolution effects can be captured. The pipeline can be used
as a black box for any intelligent tutoring system (ITS). We
show that our method outperforms previous work regard-
ing clustering performance and stability on synthetic data.
Using log data from two ITS, we demonstrate that the pro-
posed pipeline is able to detect interesting student behavior
and properties of learning environments.

Keywords
Evolutionary Clustering, Markov Chains, Sequence Mining,
Distance Metrics

1. INTRODUCTION
The extraction of student properties is a central element in
educational data mining. On the one hand, the identification
of student abilities and behavior patterns allows us to draw
conclusions about human learning. On the other hand, the
extracted properties can be used to improve the adaptation
of the underlying intelligent tutoring system (ITS).

Clustering of sequential data is a common approach to de-
tect similar behavior patterns and has been successfully ap-
plied to a variety of applications such as reading compre-
hension [22], online collaboration tools [24], table-top en-
vironments [19], web browsing [25], physics simulations [4]
or homework assignments [11]. Furthermore, a variety of
different student behavior has been investigated. [20] identi-
fied students that impose challenges for the student models.
Other work studied the relation between interaction patterns
and the performance of students [3, 14] and the relation be-
tween student action sequences and their affective states [3].

Common techniques for the analysis of sequential data in-
clude sequence mining [1, 19], differential pattern mining [11]

or Hidden Markov models (HMM) [5, 6]. Sequential pat-
tern mining techniques have been contextualized using piece-
wise linear segmentation [14]. Others have employed semi-
supervised graph clustering using the predictions from a
student model as additional constraints [20]. Clustering
sequential data employing similarity measures on state se-
quences was used in [4, 8]. These state sequences can be
aggregated into Markov Chains modeling the state tran-
sitions [17]. HMM have been employed to extract stable
groups from temporal data by joint optimization of the model
parameters and the cluster count [18].

While the previous work discussed above analyze student
clusters at a given point in time, a temporal analysis would
allow to identify how interaction patterns change over time
and how groups of similar students evolve. Temporal effects
of cluster evolution have been analyzed in [15], based on
static clustering at each time step. Static approaches are
sensitive to noise in the data and may result in temporally
inconsistent clusters. Evolutionary clustering methods [7]
address this problem as they consider multiple subsequent
time steps. The temporal smoothing increases the resulting
cluster stability notably and allows for a better analysis of
the clusters, i.e., the student properties and interaction pat-
terns. Recently, an evolutionary clustering approach called
AFFECT [27] has been introduced that smooths proximities
of students over time followed by static clustering. AFFECT
was shown to outperform static clustering algorithms.

In this paper, we present a complete processing pipeline for
evolutionary clustering that can be used as a black box for
any ITS. We incorporate a variation of the AFFECT method
into our pipeline and demonstrate that temporal smoothing
has beneficial properties for extracting student behavior and
groups from educational data. We propose several exten-
sions of the original method tailored towards learning data.
Our approach is articulated in four steps. In a first step, we
extract action sequences from ITS log data and aggregate
them using Markov Chains. We show that the Markov Chain
representation of the actions is superior to direct sequence
mining techniques [4, 17] with respect to noise cancellation
and the ability to identify groups of students with similar
behavior. The second step consists of computing pairwise
similarities between the Markov Chains. While the proposed
pipeline provides flexibility in the choice of similarity mea-
sure, the Hellinger distance outperforms other metrics that
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are frequently used in the educational data mining litera-
ture [4, 17]. Based on the obtained similarities, evolutionary
clustering [27] is performed in the third step. The temporal
aspect of the student data leads to changing behavior pat-
terns, i.e., we expect the number of clusters and cluster sizes
to change over time. Therefore, capturing cluster evolution
events, such as merging, splitting, dissolving and forming of
clusters, is crucial in order to analyze sequential data. To
capture these events automatically, we compute the optimal
cluster count for each time step using the AICc criterion.

Using synthetic data, we demonstrate that our method ex-
hibits a higher performance and is more robust to noise than
previous work [4, 17]. We further show that our pipeline is
able to extract stable clusters over time and reliably detects
all cluster events. In an exploratory analysis on real-world
data, we apply our pipeline to log data from two differ-
ent ITS: One for spelling learning and one for mathematics
learning. Finally, we present a set of visual tools that are
powerful to analyze temporal data and student clusters.

2. METHOD
Our method for student clustering is designed to address two
challenges when clustering temporal data. First, the method
provides temporally consistent clusters. Second, our pipeline
is able to capture changes in cluster sizes as well as in the
number of clusters. Four cluster events are of particular in-
terest in the context of educational data mining: merging,
splitting, dissolving and forming of clusters. If the behavior
of students from two different clusters becomes more simi-
lar over time, we expect the clusters to merge (this could
mark a training effect). If on the other hand the behavior
of students in a cluster sufficiently diverges clusters might
split (this could mark the development of different learning
strategies). If a distinct behavior disappears within a group
of students, we assume the cluster will dissolve, meaning stu-
dents will uniformly change to other clusters. In contrast,
forming clusters have the potential to mark the development
of distinct strategies within students.

The resulting clustering pipeline addressing these challenges
is illustrated in Figure 1. The only input required are action
sequences extracted from student log data. These action se-
quences are transformed into Markov Chains for every ses-
sion and pairwise similarities between these chains are com-
puted. Students are clustered based on these similarities
while enforcing temporal consistency over consequent train-
ing sessions. Finally, we compute the optimal number of
clusters for each training session.

Action Sequences. In a first step we extract action se-
quences Atu = (a0, a1, . . . , an) for every session t of a user
u. To do so, we map events in the log files of an ITS (e.g.
correct/incorrect inputs or help calls) to the actions ai. As
the particular actions depend on the ITS, the extraction of
actions has to be changed depending on the ITS.

Action Processing. While action sequences provide rich
temporal information about the exact ordering of actions,
we expect that they exhibit a considerable amount of noise.
We therefore transform the action sequences into an aggre-
gated representation using Markov Chain models, similar
to [17]. Markov Chains provide an aggregated view of the
pairwise transition probabilities of actions and can be fully
described by these transition probabilities ti,j := paj |ai from

any state ai (in our case an action) to any other state aj .
Markov Chains can be extracted using maximum likelihood
estimates of the transition probabilities ti,j .

Similarity Computation. To cluster student behavior, a
suitable similarity (or distance) measure between students
has to be defined. In educational data mining, popular
choices for measuring distances between action sequences
are the longest common subsequence (LCS) and the Leven-
shtein distance (see e.g. [4]). LCS measures the length of
the largest set of characters that appear in left-to-right or-
der within the string, not necessarily at consecutive places.
The Levenshtein distance computes the number of inser-
tions, deletions and replacements needed to transform one
string into the other. Instead of computing distances di-
rectly on action sequences we can apply the computation to
the aggregated values of Markov Chains. Previous work [17]
has been using the Euclidean distance between the transi-
tion probabilities of two Markov Chains. A potential disad-
vantage of the Euclidean distance is that it is not designed
for the comparison of probabilities. Therefore, we propose
to use metrics that are specifically designed for comparing
probability distributions. Since the conditional probabilities
describing a Markov Chain do not form a proper probability
distribution (the entries of the transition probability matrix
do not sum up to one), we compute the expected transi-
tion probabilities using the stationary distribution over the
actions and compare these expected transition frequencies
t̄i,j instead of the conditional probabilities ti,j . We use two
common metrics: the Jensen-Shannon Divergence and the
Hellinger distance [21] to compute the distances between the
expected transition frequencies t̄i,j of the Markov Chains.

Clustering. Using the measures defined above we com-
pute a pairwise similarity matrix W t for every session t of
the training (entries of the matrix measure how similar two
students are during that particular training session). These
similarity matrices can then be clustered by any standard
clustering method. However, clustering students for each
session individually does not make use of the temporal in-
formation available. Recently, a method for clustering evo-
lutionary data has been proposed that accurately tracks
the time-varying similarities of objects over discrete time
steps [27]. The method assumes that the observed simi-
larities W t are a linear combination of the true similarity
between students Ψt and random noise N t:

W t = Ψt +N t. (1)

Instead of performing clustering directly on W t, a smoothed
similarity matrix Ψ̂t is proposed, given as

Ψ̂t = αtΨ̂t−1 + (1− αt)W t, (2)

where αt controls the amount of smoothing applied to the
observed similarity matrix W t. Under some assumptions
(detailed in [27]) an optimal choice for αt is

αt =

∑
i

∑
j var(ntij)∑

i

∑
j (ψ̂t−1

ij − ψtij)2 + var(ntij)
. (3)

This means that the optimal αt is based on a trade-off be-
tween the estimated noise in W t and the amount of new in-
formation that W t contains compared to previous similarity
matrices. If W t exhibits a lot of noise we more heavily rely
on previous observations (high αt) but if we observe large
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Figure 1: Overview of our clustering pipeline. Action sequences are extracted from log data and transformed
into Markov Chains per session. Pairwise similarities between students are computed for every session.
Clustering is performed using evolutionary clustering [27]. Finally, the AICc criterion selects the best model.

discrepancies between the previous similarity estimates and
the current ones (e.g. some students show a novel behav-
ior) we emphasize the similarities from the current session
(low αt). Finally, we use the standard clustering algorithm

K-Means to cluster the smoothed similarity matrices Ψ̂t.

Model Selection. The assumption of temporal consistency
in the pairwise similarities between students does not pro-
hibit evolution of clusters if students change their behavior
over the course of the training. Such long-term drifts lead
to growing and shrinking of clusters eventually, and even to
dissolving and forming of clusters over time. In contrast to
the original AFFECT method [27], we therefore compute
the optimal number of clusters in every time step. Deciding
on the number of clusters is a variant of the model selec-
tion problem, for which various different criteria exists. The
Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) are among the most common criteria
for model selection. The main difference between BIC and
AIC is that the BIC penalizes the number of clusters more
strongly than AIC. AICc corrects the AIC criteria for finite
sample sizes. For our experiments, we used AICc as it po-
tentially reveals more clusters, which is important for our
exploratory analysis of learning data. To compute the AICc
the log likelihood (LL) of the model is needed. According
to [23], the LL for K-Means can be formulated as

LL =
∑

i

log(
Nc(i)
N

φ(xi|µc(i), σ)), (4)

where N denotes the number of samples, c(i) the cluster
index of sample xi and Nc(i) the number of samples in clus-
ter c(i). The likelihood of a sample xi that was assigned
to cluster c(i) can be computed using the probability dis-
tribution φ(xi|µc(i), σ), where µc(i) denotes the centroid of
the cluster and σ the empirical variance of the data. In our
case (as suggested by [23]), the probability distributions φ
are identical spherical Gaussians. To compute the LL, we
embed our data points in a Euclidean space in which the dis-
tances between the points match the similarities extracted
from the action sequences. To perform this embedding, we
use the method presented in [12] that transforms N objects
with pairwise similarities to a D = N − 1 dimensional Eu-
clidean space.We then estimate the effective dimensionality
D̂ of our data set as the sum of eigenvalues λi of the covari-
ance matrix divided by the largest eigenvalue λ1 (see [16]):

D̂ =
∑
i λi/λ1. This means that the effective number of

parameters P for the K-Means clustering is P = (D̂ + 1)k,
where k is equal to the number of clusters (see e.g. [23] for
a derivation). Based on the LL and the estimated effec-

tive dimensionality of our data D̂, we calculate the AICc as
−2LL+ 2P + (2P (P + 1))/(n− P − 1).

3. SYNTHETIC EXPERIMENTS
We analyzed the properties of our clustering algorithm us-
ing synthetic data and we compared the performance and
stability of our method to previous algorithms for clustering
sequential educational data. Finally, we also validated our
model selection step.

Experimental setup. We simulated student actions for
80 students over 50 sessions in a simulated learning environ-
ment. Students needed to solve 20 tasks per session. Student
abilities θ and task difficulties d were simulated as part of
a Rasch model [26]. Student abilities for all students were
sampled from a normal distribution with mean µ and vari-
ance σ. Task difficulties were sampled uniformly from the
range [−3, 3] in agreement with the common range of task
difficulties [10]. Each task y consisted of eight steps sj that a
student had to complete to finish the task (this could e.g. be
letters of a word to spell, performing steps of a calculation
or solving a physics problem). The probability of a student
correctly solving a task was then given by the Rasch model
as p(y) = (1 + e−(θ−d))−1. In our simulation (in accordance
with many ITS) a task was correctly solved if all the sub-
steps are correctly solved, which defines the probability of

correctly solving a step of a task sj to be p(sj) = (p(y))
1
8 .

Finally, a student could request help at any point in time
during the training. Whether the student asked for help
was sampled from a Bernoulli distribution with pH . Based
on the described sampling procedure we emitted the follow-
ing actions for a student: new task, help, correct, incorrect,
correction, task completed. The number of sampled actions
per student and session depended on the performance of the
student (e.g. a student who gets every step of a task cor-
rect completes a task after eight correct actions, whereas
another student who requests help and commits an error
requires more actions to complete the task).

For our experiments we simulated student groups with dif-
ferent behavior. For the chosen range of task difficulties,
student abilities are found to be normally distributed with
mean µ = 0 and variance σ = 1 (see [10] for details). We
simulated good performing students by setting θ = 1 and
bad performing students by setting θ = −1. According
to [2], the most frequent form of help abuse are multiple
consecutive help requests. We simulated this behavior by a
large probability pH = 0.2 to ask for help instead of work-
ing on the task, while normal help seeking behavior has a
smaller probability for requesting help pH = 0.05. Based on
these different properties we simulated four groups of 20 stu-
dents as follows. Group A contains bad performing students
(θ = −1) that rarely ask for help (pH = 0.05). Group B con-
sists of bad performing students (θ = −1) that frequently
use the help system (pH = 0.2). Group C and D consist of

Proceedings of the 9th International Conference on Educational Data Mining 104



Bergner et.al.
Koeck et.al.
Ours (Hellinger)
Ours (Shannon)
Ours (Euc. Koek.)
Ours (Euclidean)

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Student ability variance (σ)

Clustering quality (Agreement)
Clustering performance for increasing variance

Bergner et.al.
Koeck et.al.
Ours (Hellinger)
Ours (Shannon)
Ours (Euc. Koek.)
Ours (Euclidean)

2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Cluster count

Clustering quality (Agreement)
Clustering performance at σ = 2

LCS_KM
MC_EUC_KM
Ours_HD
Ours_SD
Ours_EUC

2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Cluster count

Clustering quality (Agreement)
Clustering performance at σ = 8

Figure 2: Comparison of clustering methods over increasing noise levels (left) and over different numbers of
clusters for fixed noise levels σ = 2 (middle) and σ = 8 (right). Our method (Ours HD, Ours SD, Ours EUC)
shows less degradation of clustering quality (agreement with ground truth) for increasing noise levels.

good performing students (θ = 1) with rare (pH = 0.05) and
frequent (pH = 0.2) help requests, respectively.

Our proposed pipeline offers flexibility in the choice of the
similarity measure (see Section 2). We used the Jensen
Shannon divergence [21], the Hellinger distance [21] and the
Euclidean distance for our experiments, and refer to these
approaches as Ours SD, Ours HD, and Ours EUC. To mea-
sure the influence of the different elements of the pipeline on
the overall performance, we compared the proposed method
to previous work on clustering of action sequences. The
first approach [4] works directly on the action sequences and
uses the longest common subsequences (LCS) as similarity
measure. Clustering is performed using an agglomerative
clustering. However, to be able to better compare cluster-
ing results we used the proposed similarity measure together
with K-Means. We refer to this pipeline as LCS KM. Sim-
ilar to our method, the second approach used for compar-
ison [17] computes the similarities between students using
Markov Chains. Similarities are measured using the Eu-
clidean distance and clustering is performed using K-Means.
The pipeline for this approach is denoted by MC EUC KM.

Clustering Quality & Robustness. In a first experi-
ment, we computed the clustering quality of the different
approaches with increasing noise levels. The performance
P was measured using the cluster agreement in compari-
son to the ground truth labels. The different noise levels
were simulated by increasing the variance in student abil-
ities σ for the sampling of the data. Figure 2 (left) illus-
trates the performance of the different approaches with in-
creasing noise. Note that the performance was computed
using the correct cluster count of k = 4. Our pipeline (col-
ored in green, red, and brown) exhibits the highest perfor-
mance over all noise levels. The average agreement of our
best performing pipeline (POurs HD) is substantially higher
than the average agreement of the best previous approach
(PMC EUC KM ), both for a low variance (POurs HD,σ=1 =
0.82, PMC EUC KM,σ=1 = 0.53) and for noisy data
(POurs HD,σ=10 = 0.45, PMC EUC KM,σ=10 = 0.34).

To investigate these differences between the approaches, we
measured their performance over different numbers of clus-
ters at preset noise levels. Figure 2 (middle) illustrates the
results for data with a relatively low noise level (σ = 2),
while Figure 2 (right) shows the clustering quality of the
different pipelines on noisy data (σ = 8). In the case of
small noise in the data, all methods exhibit the best per-
formance for the correct number of clusters (k = 4), which

is a desirable property. The results demonstrate that us-
ing Markov Chains (PMC EUC KM,k=4 = 0.44) instead of
working directly on action sequences (PLCS KM,k=4 = 0.40)
leads to a higher clustering quality. A further increase in
performance is achieved by our proposed algorithm: The
variations of our pipeline exhibit a substantially higher clus-
tering quality (POurs EUC,k=4 = 0.66, POurs HD,k=4 = 0.70,
POurs SD,k=4 = 0.70) than the previous work. This sub-
stantial increase in performance (∆Pk=4 = 0.26 compared to
MC EUC KM) is due to two changes in the pipeline. First,
the proposed pipeline uses the AFFECT method for cluster-
ing leading to an increase in performance of ∆Pk=4 = 0.20.
Second, while MC EUC KM computes the similarity mea-
sure directly on the transition probabilities, we use the ex-
pected transition probabilities as a basis for the similarity
computations (see Section 2) accounting for an improve-
ment in performance of ∆Pk=4 = 0.06. Within our ap-
proach, the choice of similarity measure has only a small
impact on the clustering quality. Figure 2 (right) demon-
strates that our proposed method is more robust to noise
than previous work [17, 4]. The best variation of our pipeline
(colored in green) still achieves a reasonable performance
(POurs HD,σ=8 = 0.54). At these noise levels, the choice
of action processing (Markov Chains vs. direct processing
of action sequences) does not significantly influence perfor-
mance (PLCS KM,k=4 = 0.34, PMC EUC KM,k=4 = 0.35).
The choice of the clustering algorithm on the other hand is
important. The increased performance of our method can be
attributed to the use of AFFECT for clustering: AFFECT
takes into account data from previous time steps to perform
the clustering. Interestingly, the pipeline using the Jensen
Shannon divergence (Ours SD) seems less robust to noise
than the other pipelines (Ours HD and Ours EUC).

Stability. When clustering student actions over time, tem-
poral consistency of clusters is essential. We measured the
temporal stability of our method by computing the clus-
ter size over the 50 simulated sessions (see Figure 3). We
compared the best performing pipeline from the first exper-
iment (Ours HD) to the previous approaches (LCS KM ,
MC EUC KM) using again k = 4 clusters. As can be
seen from Figure 3 (left), our method provides a smooth
temporal clustering with stable cluster sizes over time. The
clusters found by MC EUC KM (Figure 3 (middle)) and
LCS KM (Figure 3 (right)), on the other hand, are unsta-
ble: cluster sizes vary significantly over time. These results
are as expected, as static clustering approaches identifying
groups of students at each point in time are very sensitive to
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Figure 3: Relative cluster sizes (for k = 4 clusters) over 50 simulated sessions. Our method performs best in
extracting temporally stable clusters.

noise. The proposed method solves this problem by apply-
ing an evolutionary clustering algorithm and therefore takes
into account multiple time steps.

Interpretability. Since we are clustering student behav-
ior over multiple sessions, we expect the number of clusters
and the cluster sizes to change over time. We expect clus-
ters to merge, split, dissolve and form (see Section 2 for
details). We evaluated the Ours HD pipeline on four sce-
narios using synthetic data. Note that these scenarios are
artificial and are used only to demonstrate that the pipeline
can capture the described events; we will show real-world
examples of these events in Section 4. In the first scenario
(Figure 4 (top left)), group A consisting of bad performing
students with rare help calls (colored in dark green) merges
into group B (colored in dark blue), i.e. the students of
group A also start abusing the help. In our simulation, we
start the cluster merge after t = 20 sessions and let group
A completely vanish after t = 50 sessions, a behavior that is
nicely captured by our method. The second scenario (Figure
4 (top right)) starts with only three groups (B, C, and D),
assuming that all bad performing students frequently use
the help. Over time, the bad performing students split into
a group abusing the help (group B, colored in dark blue) and
a cluster consisting of students with rare help calls (group
A, colored in dark green), i.e. in the simulation some of the
bad performing students stop abusing the help over time. In
the third scenario (Figure 4 (bottom left)) a dissolving clus-
ter is simulated: Over time, group B (colored in dark blue)
completely dissolves and the students are distributed to the
other three clusters. The fourth scenario (Figure 4 (bot-
tom right)), finally, simulates a forming cluster event. The
simulation starts with only three clusters (groups A, C, and
D). With an increasing number of sessions, a fourth cluster
forms (group B, colored in dark blue) and students from the
other three clusters slowly switch to the new cluster until all
the groups have equal size (after t = 50 sessions). This event
is again correctly captured by our method. The presented
experiments demonstrate that the proposed pipeline is able
to reliably identify changing cluster numbers and sizes. The
results also demonstrate the validity of the model selection
step of the pipeline: The AICc correctly identifies the num-
ber of clusters for all scenarios.

4. EXPLORATORY DATA ANALYSIS
We applied our method to clustering of student interactions
from two different ITS, focusing on the identification and
interpretation of cluster events.

Experimental Setup. The first data set contains log data
from 106 students and was collected using Orthograph, a
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Figure 4: Simulated examples of four types of clus-
ter events. Our pipeline correctly identifies cluster
merges/splits as well as dissolving/forming clusters.

computer-based training program for elementary school chil-
dren with dyslexia [9]. Orthograph consists of one main
learning game, where children have to type a dictated word.
The second data set contains data from 134 students and
was collected from Calcularis, an ITS for elementary school
children with difficulties in learning mathematics [13]. Cal-
cularis consists of different games for training number rep-
resentations and calculation. For all students, we extracted
the first 15 training sessions with a minimal duration of t = 5
minutes from each student.
All results have been computed using our pipeline Ours HD
(see Section 2), applying the Hellinger Distance to measure
similarities between Markov Chains of different students.

Navigation Behavior. In a first experiment, we extracted
actions describing the Navigation Behavior of children in
Orthograph. Navigation Behavior captures all events that
cause the displayed content to change. During game play,
children collect points for correct responses as well as for
time spent in the training in general. These points can be
used to buy different visual perks for the game in the shop.
Children can also analyze their performance (e.g. progress
in the current module) in the progress view. The resulting
Markov chain (see Figure 5) consists of three possible states:
Game, Shop, and Performance.

Figure 6 shows the relative cluster sizes for the Navigation
Behavior Markov Chain over the first 15 sessions of the
training. The different colors denote different clusters. At
the beginning of the training (t = 0), our pipeline detects
seven different clusters, however, three of these clusters (col-
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Figure 6: Relative cluster sizes based on the Navi-
gation Behavior extracted from Orthograph.

ored in pink, brown, and orange) die within the first three
training sessions. Children in these clusters spent more than
50% of their time browsing the shop and checking their per-
formance (orange: 46% Game, 31% Shop, 23% Performance;
brown: 43% Game, 22% Shop, 35% Performance; pink: 40%
Game, 32% Shop, 28% Performance) at the beginning of the
training. We therefore hypothesize that children in these
clusters tried out and played with the different views before
getting used to the navigation possibilities of the system.

After t = 5 time steps, a further cluster (colored in green)
dissolves before the clustering stabilizes to three main groups
(colored in blue, red, and purple). Figure 7 (top) shows the
transition probabilities of the Markov Chains for the differ-
ent clusters before the clusters dissolve (after t = 3 sessions).
Children in the blue cluster are very focused on training,
they spend 82% of their time in the Game. Once in the
Shop or Performance state (18% of their time) they tend to
select the following view with equal probabilities. Children
in the red cluster like to browse the shop, a behavior that
is visible from the high transition probabilities to the Shop
state (Game→Shop: 0.41; Performance→Shop: 0.39), re-
sulting in 34% of the training time spent browsing the shop.
The purple cluster consists of children, who like to navigate
to the shop and performance overview between solving the
different tasks (Game→Shop: 0.41, Game→Performance:
0.44). However, these tend to be shorts visit as they will
return to playing the game right after with high probability
(Performance→Game: 0.58, Shop→Game: 0.77). Finally,
children in the green cluster tend to select the next view
randomly when playing the game. Once in the Performance
state, they have a probability of 0.30 to browse the shop
right after. The analysis of this time step illustrates that the
different clusters differentiate well between focused children
not making use of the navigation possibilities (blue cluster),
children who frequently (but reasonably) use the different
views (purple and green cluster), and distracted children
who spend long amounts of time off-task (red cluster).

After t = 6 training sessions, the green cluster dissolves and
students from this cluster change to the red and blue clus-
ters. The transition probabilities of the Markov Chains for
these stable main clusters are illustrated in Figure 7 (bot-
tom). The children in the blue cluster are still focused on
training, spending 76% of their time solving tasks. However,
they also check their training progress from time to time
(14% of the time spent in the Performance state). After
checking training progress, they tend to also browse the shop
(Performance→Shop: 0.27). The children in the purple
cluster have stopped navigating to the performance overview
between different tasks (Game→Performance: 0.17) and in-
stead visit the shop more frequently (Game→Performance:
0.58) and longer (35% of time spent in the Shop state). The
red cluster still consists of children who like browsing the
shop, a behavior that is visible from the high transition
probabilities to the Shop state (Game→Shop: 0.33; Per-
formance→Shop: 0.31). However, they also tend to spend
time checking their progress, resulting in 47% of the training
time spent off-task. Students from the green cluster there-
fore changed their behavior from frequent, but short off-task
navigation to a more focused training style (change to blue
cluster) or to being completely distracted and spend long
amount of times off-task (change to the red cluster).

Input & Help Seeking Behavior. Our method can be
used as a black box for any ITS and therefore also allows for
comparison of behavior patterns across different ITS. The
only user input needed is the definition of possible actions.
To illustrate this possibility, we extracted two different sets
of actions Input Behavior and Help Seeking Behavior from
data collected with Orthograph and with Calcularis.

Input Behavior captures all possible inputs. Implicitly these
actions capture the performance of students, as e.g. a bad
performing student is likely to commit more mistakes. In
Orthograph, children train spelling by writing words that are
played back by the system. Therefore, the Input Behavior
Markov Chain for Orthograph (see Figure 8) consists of four
states: Children can type a letter (Input), correct themselves
by deleting a letter (Backspace), provide invalid input such
as typing a number (Invalid Input), or submit their solution
(Enter). For Calcularis, we investigated calculation games.
In these games, children need to solve different mental ad-
dition and subtraction tasks. We again define four states
for the Input Behavior Markov Chain (see Figure 8): chil-
dren can type a digit (Input), correct themselves by deleting
a digit (Correction), provide invalid input such as random
mouse clicks (Invalid Input), or set their answer (Enter).

Figure 9 shows the relative cluster sizes for the Input Be-
havior action set from Orthograph over 15 training sessions.
Our method identifies three stable clusters. Investigating
the stationary distributions of the Markov Chains reveals
that students in the orange cluster show the highest proba-
bilities for committing invalid inputs over all sessions (t=3 :
0.15; t=7: 0.23; t=13: 0.16). The green cluster consists of
focused students who consistently produce a low percentage
of invalid inputs (t=3: 0.06; t=7: 0.04; t=13: 0.05). Stu-
dents in the blue cluster also tend to show low probabilities
for invalid inputs across the different sessions (t=3: 0.11;
t=7: 0.09; t=13: 0.08). The orange cluster is an example
of a forming cluster growing in size over the course of the
training. We hypothesize that this event marks the increas-
ing difficulty of the tasks and is caused by a downwards drift
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of students from the clusters with good performing students
to the clusters with students showing worse performance.
Further analysis of cluster transfers reveals that students
indeed are never switching directly from the green (best per-
formance) to the orange cluster (worst performance).

For Calcularis, the Input Behavior clusters are relatively sta-
ble over the course of the training (see Figure 9). There is
one distinct dissolve event in the first four sessions: the or-
ange cluster is dissolving into the blue and green clusters. In-
vestigating the stationary distributions of the Markov chains
of the three clusters reveals that all clusters have a relatively
low probability for invalid inputs (t=2: 0.17 (blue), 0.12 (or-
ange), 0.08 (green)). However, students belonging to the
blue cluster tend to perform multiple consecutive corrective
actions in a row (Correction→Correction: 0.25 (blue), 0.13
(orange), 0.13 (green)). Students in the orange cluster are
most likely to enter a valid input after a correction (Correc-
tion→Input : 0.68 (orange), 0.57 (blue), 0.65 (green)).

In Orthograph, differences in Input Behavior are mainly ex-
pressed by the percentage of invalid inputs provided. We
observe a more distinct picture for Calcularis. While the
invalid inputs are still an important indicator, children also
exhibit different corrective behaviors.

Help Seeking Behavior captures the use of hints available
in the training environment. In Orthograph, children can
re-play the given word (Hear Word), play the melody of
the word (Play Music) and show the correct spelling of the
word (Show Word). The according Markov Chain is dis-
played in Figure 8. The states New Task and Input denote

the play-back of a new word and a user input (keyboard),
respectively. The development of the relative cluster sizes
for these action sequences (see Figure 9) reveals a surpris-
ingly large variance in student behavior (the clustering al-
gorithm finds nine different clusters in the first two training
sessions). However, the diversity in student behavior disap-
pears through a large cluster merge after t=3 sessions. In-
vestigating the transition probabilities between the different
actions, we observe that while students are experimenting
with the three different help systems at the beginning of the
training, the final cluster of students gave up on using the
help functions. This drop in the frequency and diversity of
help usage indicates that the help functionality provided in
Orthograph is not useful for most of the students.

Calcularis provides a limited help functionality. Children
can require explanations for games (Help). Furthermore,
they can directly require the solution of a task (Empty), if
the task seems too difficult. Further states of the Markov
Chain (displayed in Figure 8) are the setting of a complete
answer (Regular) and the abortion of a task (Incomplete).
We again observe a large cluster merge at the beginning of
the training leading into two stable clusters. Investigating
the stationary distributions of the Markov Chains of the two
clusters reveals that students in the orange cluster are more
likely to perform a help request compared to the blue cluster
(t= 6: 0.03 (blue), 0.13 (orange)).

The Help Seeking Behavior of the children is more difficult
to compare across different ITS, because the available hints
are very different. However, our experiment shows that both
learning environments do not provide ideal help options.
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Help Seeking Behavior (right) for students training with Orthograph and Calcularis.

5. CONCLUSIONS
We presented a complete pipeline for the evolutionary clus-
tering of student behavior. This pipeline can be used as a
black box for any ITS, requiring only the extraction of ac-
tion sequences as input. We demonstrated that enforcing
temporal coherency between consecutive clusterings is ben-
eficial for the detection of student behavior as well as the
stable detection of cluster events. Our method outperforms
previous work on synthetic data regarding clustering quality
and stability. We applied our pipeline to different types of
action sequences collected from two different ITS. The ex-
ploratory analysis demonstrates that our method is able to
reveal interesting properties about the behavior of students
and potential deficiencies of the learning environments.

Acknowledgments. This work was supported by ETH
Research Grant ETH-23 13-2.

6. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In Data Engineering. IEEE, 1995.

[2] V. Aleven, B. McLaren, I. Roll, and K. Koedinger.
Toward meta-cognitive tutoring: A model of help
seeking with a cognitive tutor. IJAIED, 2006.

[3] J. M. L. Andres, M. M. T. Rodrigo, R. S. Baker,
L. Paquette, V. J. Shute, and M. Ventura. Analyzing
Student Action Sequences and Affect While Playing
Physics Playground. In AMADL, 2015.

[4] Y. Bergner, Z. Shu, and A. A. Von Davier.
Visualization and Confirmatory Clustering of
Sequence Data from a Simulation-Based Assessment
Task. In Proc. EDM, 2014.

[5] G. Biswas, H. Jeong, J. S. Kinnebrew, B. Sulcer, and
R. ROSCOE. Measuring self-regulated learning skills
through social interactions in a teachable agent
environment. RPTEL, 2010.

[6] K. E. Boyer, R. Phillips, A. Ingram, E. Y. Ha,
M. Wallis, M. Vouk, and J. Lester. Characterizing the
Effectiveness of Tutorial Dialogue with Hidden
Markov Models. In Proc. ITS, 2000.

[7] D. Chakrabarti, R. Kumar, and A. Tomkins.
Evolutionary clustering. In Proc. KDD, 2006.

[8] M. Desmarais and F. Lemieux. Clustering and
visualizing study state sequences. In Proc. EDM, 2013.
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ABSTRACT
A growing subset of the web today is aimed at teaching
and explaining technical concepts with varying degrees of
detail and to a broad range of target audiences. Content
such as tutorials, blog articles and lecture notes is becoming
more prevalent in many technical disciplines and provides
up-to-date technical coverage with widely different levels
of prerequisite assumptions on the part of the reader. We
propose a task of organizing heterogeneous educational re-
sources on the web into a structure akin to a textbook or a
course, allowing the learner to navigate a sequence of web-
pages that take them from point A (their prior knowledge)
to point B (material they want to learn). We approach this
task by 1) performing a shallow term-level classification of
what concepts are explained and assumed in any given text,
and 2) using this representation to connect web resources
that explain concepts to those web resources where the same
concepts are assumed. The main contributions of this pa-
per are 1) a supervised classification approach to identifying
explained and assumed terms in a document and 2) an algo-
rithm for finding optimal paths through the web resources
given the constraints of the user’s goal and prior knowledge.

Keywords
web resources; optimizing learning

1. INTRODUCTION
No scholar is born at the frontier of knowledge — early learn-
ing and lifelong learning both play a defining role in shaping
the research vector of an academic [7]. More alarming, recent
research [6] demonstrates that the pre-career idle time of an
up-and-coming researcher has been on the steady rise during
the last century, attributing to the “burden of knowledge”
phenomenon — the inflation of the body of prerequisite prior
knowledge to be mastered before being able to contribute to
the field with original research. The hypothesis of [9, 10] is
that facilitating effective early and lifelong learning practices
is a viable way for easing the “burden of knowledge”.

While physical textbooks and classrooms traditionally as-
sumed the role of knowledge curators, they also present
a bottleneck in today’s rapidly growing web of up-to-date
technical and academic content — peer-reviewed articles,
lecture notes, tutorials, slides etc — from academics and
“citizen scientists” alike. An automatic approach for “weav-
ing” natural curricular progressions through the web of such
heterogeneous academic/educational content, we believe, will
catalyze early and lifelong learning by creating more effi-
cient and goal-oriented curricula targeted to the level of the
audience.

The web is the only collection of resources today where
attempting this task becomes meaningful and promising.
The reason for this is that the web contains an extensive
amount of diversity in its content, i.e. content that explains
the same concepts but in many different ways. Naturally
this diversity reflects the diversity of the people who create
this content, their backgrounds, styles of learning and ways
of thinking about complex concepts, which would naturally
match learners with similar characteristics. We believe that
this diversity can be leveraged to create learning pathways
that are not bound to the traditional curricula that are
often constrained for no better than a historical reason. We
propose instead to optimize a curriculum directly for what
you want to know given what you already know.

We propose to tackle the problem of curriculum mining on the
web, which broadly, involves linking technical resources on
the web to other resources that explain a subset of concepts
that are assumed in the original document. We propose to
decompose the task into 1) understanding what is explained
and assumed in a document on the part of the the reader
and 2) use this document-level representation to sequence
documents that guide the learner from their current state of
knowledge towards their goal, for example, understanding a
specific research paper or a set of lecture notes.

We propose a term-centric approach for inducing curricular
relations between any pair of documents. Naturally, under-
standing a technical concept is more than being familiar with
its surface term, and in this view an approach that operates
at the level of individual terms may appear to be näıve. Af-
ter all, to explain a new concept is to put together existing
concepts in a novel way [13], and in the process introduce
convenient nomenclature. However, we hypothesize, that by
the virtue of seeking the shortest sequence of documents that
“cover” (explain) multiple terms at once, the resulting bottle-
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neck will implicitly “prefer” to link to prerequisite documents
that introduce and explain whole concepts, i.e. groups of
terms, as opposed to introducing terms one document at a
time (an extreme example would be presenting a sequence
of pages from a dictionary, each document defining a term
independence; this is clearly undesirable). It will be our
running assumption, that there exists a correlation between
the knowledge of the terms and the understanding of the
overarching concept.

Thus, to a first-order approximation, we model technical doc-
uments as “bags of terms”, and in the interest of tractability
set forth the following set of modeling assumptions:

• Assumption 1 A document is a bag-of-technical-terms
(multiset) that is further partitioned into two multisets:
E (Explained), A (Assumed) — corresponding to the role
(aspect) of the term within the document:

Explained: The terms appear in the context that fur-
thers the understanding of the concept corresponding
to the term.

Assumed: The concept corresponding to the term is
assumed to be familiar, and is required for understanding
the context in which it appears.

• Assumption 2 The degree of reliance on the knowledge
of a particular term in the document is proportional to
the frequency of the term in the Assume multiset, i.e.
which concepts are fundamental to the understanding of
the document, and which are auxiliary is reflected in the
number of occurences of the corresponding terms.

As an illustration, consider the following excerpt from Christo-
pher Bishop’s classic textbook Machine Learning and Pattern
Recognition from the chapter that introduces the concept of
Expectation Maximization:

Expectation Maximization
An elegant and powerful method for finding maximum
likelihood solutions for models with latent variables
is called the expectation maximization algorithm, or
EM algorithm.

In the excerpt above, we solid–underline the terms that ap-
pear in the Explained aspect and dash–underline terms that
appear in the Assumed aspect. Understanding the concept of
Maximum likelihood is a prerequisite for understanding Ex-
pectation Maximization. It is no surprise that most resources
that introduce the concept of Expectation Maximization im-
plicitly assume that the reader is familiar with Maximum
Likelihood. Academic and educational literature is fraught
with such implicit assumptions that may be challenging to
unravel for a learner especially new to the area. Note that on
the surface it may seem that detecting instances of explained
terms in the text is an equivalent task to finding instances of
term definitions – a well studied task – but it is not so. Espe-
cially in technical disciplines, explaining a concept requires
much more than giving a definition. A document defining a
term, may or may not actually explain the concept behind it.
For example, a document may define a term to refresh the

reader’s memory but otherwise assume the reader’s familiar-
ity with it. On the other hand, a document may explain a
term without ever giving a one-sentence definition.

Finally, the proposed dichotomy may appear as a gross over-
simplification, ignoring the entire continuum of pragmatics
between the two extremes. We argue that while binary term-
level classification alone may not capture the fine-grained
aspect of any one term, combining it with the context of the
entire document, will enable us to unravel the prerequisite
relationships between documents.

2. RELATED WORK
Evidence of information overload in traditional text-
books Formal study of textbook organization conducted
by [1] on a corpus of textbooks from India quantitatively
addresses the issue known as the “mentioning problem” [12],
where “concepts are encountered before they have been ad-
equately explained and forces students to randomly ’knock
around’ the textbook”. The work of [1] suggests that many
traditional textbooks suffer from the resulting phenomenon
of “information burden” and provide diagnostic metrics for
evaluating it. A user study conducted by [2], though limited
to electronic textbooks, demonstrated the utility of a naviga-
tional aid that links concepts and terms within a textbook
and allows the user to navigate according to own preferences.
This suggests the potential utility of tools that expand such
“navigational ability” outside textbooks.

Attempts at manual curriculum curation There have
been at least two efforts that we are aware of, that attempts
to manually create “paths” between a selected set of resources
on the web — two educational start-ups, Metacademy [5], and
Knewton [4]. While motivated by the same goal, we believe
that manual web-scale curriculum curation is akin to the
manually-curated directory of the web (not too different from
the original Yahoo directory from the 1990s), i.e. offering
poor scaling capability in the dynamic, growing landscape of
educational content on the web.

Attempts at automatic curriculum curation Most rel-
evant to our task is the work of [11] that attempt to infer
prerequisite relationships between a pair of Wikipedia ar-
ticles. They frame the problem of prerequisite prediction
as “link-prediction” between a pair of pages using primarily
graph-derived (e.g. hyperlink structure) and some content-
derived features (e.g. article titles). In contrast to their
approach, we do not assume any existing structure connect-
ing the web resources (e.g. within Wikipedia), as the majority
of the educational content on the web is unstructured. Our
approach also naturally facilitates a scalable assimilation of
new content, as we require only a document-scoped term-
level classification, without needing to explicitly construct
or update a prerequisite graph. Furthermore, we develop an
approach for optimizing curricular paths using the proposed
representation. More recent work of [8] develop a method
that does not rely on a manual annotation of the prerequisite
relations as in [11], and instead uses the statistics of concept
reference in a pair of pages to determine the prerequisite
relation between them. Similar to [11], their focus is on the
pairwise link prediction, in contrast to our goal of globally
optimizing a learning curriculum.
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(a) (b)

Figure 1: (a) ROC curves for the task of binary aspect
classification. (b) AUC (left y-axis) of aspect classification
for terms with a maximum document rank given on x -axis.
Shaded region shows the number of terms up to the given
maximum rank (right y-axis).

3. MODEL
3.1 Modeling explanations
We model the problem of identifying the explained and as-
sumed terms in a document as a term-level binary classifica-
tion task, i.e each term in the document is classified into one
of the two categories. Although simple from an implemen-
tation perspective, this task is made difficult by the lack of
annotated data in this domain. In this work, we rely on (i)
manual annotation of the term aspects performed by us for
one of the textbooks (Rice University’s statistics text) and
(ii) explicit annotations from the index of Bishop’s Pattern
Recognition and Machine Learning textbook that were made
by the author of the text (the annotation is in the form of a
location in the text where a particular concept is explained).

The Rice University’s Online Statistics Education: An In-
teractive Multimedia Course of Study textbook, from hereon
referred to as statsbook consists of a total of 112 units,
with a median of 12.5 unique technical terms per unit, for
a total of 339 different technical terms in the book. We
scrape the text content of the book from the web, replace
all mathematical formulae and symbols with special tokens,
and manually annotate each technical term mention with its
representative form from the index, i.e. normally distributed
with normal distribution. Manual term annotation obviates
the need for introducing a word-sense disambiguation com-
ponent and additional errors. We process the PRML dataset
in an identical manner.

Each technical term in every unit of the book was annotated
with the binary {explain, assume} aspect, following the defi-
nitions outlined on the previous page. While for most terms,
the application of these definitions is fairly unambiguous, for
a significant number of term mentions, the aspects are not
mutually exclusive, i.e. the term may be construed to belong
to both aspects simultaneously. Often, in using (assuming)
a term to explain a related concept, something about the
assumed term is also explained as a side effect. The degree
to which the explanation is distributed between the terms
is difficult to judge objectively, and may vary between dis-
tinct mentions of the terms in different parts of the same
document. We adopt a simple strategy for “breaking ties” in
such cases: if we a judge a term as having been intended to
be explained in the given context by the author, we mark
it with the explain aspect, otherwise, the term is assumed

to be assumed. In total across the entire statsbook corpus,
1878 terms were annotated for their aspect (note that the
same term appears in multiple documents with potentially
different aspects), with a class ratio of 537 terms belonging to
the explain and 1341 terms belonging to the assume aspect.

The PRML dataset contains a total of 3883 annotated terms,
with 222 terms belonging to the explain and 3661 terms
belonging to the assume aspect. The aspect of the term
was determined from the index of the book, which explicitly
specifies the pages where a term is explained.

A logistic regression model (LIBLINEAR [3] with default
regularization parameter) was trained to predict a binary
aspect of the terms and evaluated with 10-fold stratified
cross-validation. A set of lexical and dependency features
describing the context of each term (within a 1 sentence
window), positional features describing the location of the
term’s mention within the document and sentences in which
the term appeared, and the frequency rank of the term within
the document were employed. We compare the performance
of a classifier that uses all of these features with the one that
uses only the rank. A classifier that is given rank as the
only feature, will essentially learn a rank “threshold” that
will decide the aspect of the term within the document, i.e.
predict all terms above a certain rank as explained.

Figure 1(a) summarizes the performance of aspect prediction
with the classifier trained using both linguistic and rank
features (Rank+Text, AUC=0.76) versus a classifier trained
using only the rank (Rank only, AUC=0.66) for the stats-
book corpus. As expected, rank is predictive of the aspect,
but contextual linguistic cues provide a significant boost.

Keeping our end goal in mind, under Assumption 2 stated in
the introduction, we hypothesize that the frequency rank of
the term in a document correlates with the degree to which a
term is either assumed or explained in that document. In the
downstream task of linking documents to their prerequisites,
getting the aspects of the more frequent terms correct is
arguably more important than of the terms that only appear
once or twice. We evaluate the performance of our aspect
classifier as a function of the term’s rank. Figure 1(b) il-
lustrates predictive performance (AUC) on a subset of the
data stratified by the term’s frequency rank. We observe
a favorable trend in increased predictive performance for
higher ranked terms. An obvious explanation is that more
frequent terms accumulate a larger set of features describing
them (since each mention of the term contributes its context
features), effectively decreasing variance in the predictions.

3.2 Optimal learning paths
Consider now that we have a large collection of documents
(e.g. tutorials, papers, textbook chapters). Each such docu-
ment explains some concepts but also assumes the reader’s
knowledge of other concepts (e.g. a tutorial may explain the
concept of normal distribution, but may assume the knowl-
edge of probability and distribution). We will now consider
that we can reliably classify each term in each document into
either the Explained or Assumed category. Consider that we
also have a user who is interested in understanding a specific
(target) document (or a set of target documents). The goal
is to give a user a self-contained sequence of documents of
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Figure 2: Each document is represented by a blue shaded
region: the top part corresponds to the explained set Ei and
the bottom part corresponds to the assumed set Ai. Red
dots correspond to terms. This is an example of a feasible
solution, where each document is covered.

minimal length that explains all of the concepts needed to
understand the target document.

Formally each document di in our collection is a set of two
sets of terms: the explained terms Ei = E(di) and the
assumed terms Ai = A(di). A term in any document is
either explained or assumed, but not both, i.e. Ai ∩ Ei = ∅.
We say that the document di is covered by a prerequisite set
of documents Pi when:

Ai ⊆
⋃

dj∈Pi

E(dj)

In other words the document is covered when every one of
its assumed terms is explained by at least one document in
the prerequisite set. For any prerequisite set that covers this
document, the documents in the prerequisite set need to be
covered as well, recursively until all documents have been
covered. We assume the existence of documents with no
prerequisites (leaves), i.e. those documents for which A· = ∅.
The goal is to find a smallest self-contained set of documents
P , i.e. a set of documents such that all the documents in
P are covered and d0 ∈ P , where d0 = {A0, E0} is the
target document of interest to the user. Figure 2 illustrates a
feasible solution to an example problem. Without additional
restrictions, solutions to this problem can contain cyclical
dependencies. Such cycles don’t make sense in our setting.
Thus an important restriction is that the the set of documents
P can be ordered such that every document in the sequence
is covered by the preceding documents in the sequence. Let
p be a sequence of documents of length K, where pk is the
kth document in the sequence, then we seek:

minimize |p|

s.t. ∀k : A(pk) ⊆
k−1⋃

k′=0

E(pk′)

d0 ∈ p (1)

ILP formulation
We formulate an Integer Linear Program (ILP) that finds
a minimum length self-contained sequence p of at most K
documents such that it covers a user’s document of interest

d0. Consider that we have a total of D documents. We define
the following variables:

xki ∈ {0, 1} document di is in kth position in the sequence

We define the following constants:

eij ∈ {0, 1} Term j is explained in document i
aij ∈ {0, 1} Term j is assumed in document i

Each assumed term in a document in position k must be
explained by at least one document up to (but not including)
the document in position k. This can be expressed via the
following constraint:

k−1∑

k′

D∑

i

eijx
k′
i ≥

D∑

i

aijx
k
i ∀j∀k

Each position in the sequence contains at most 1 document:

D∑

i

xki ≤ 1 ∀k

User’s preference of covering a document of interest d0 is an
additional constraint:

K∑

k

xk0 = 1 ∀k

Finally, the objective is to minimize the number of documents
in the sequence:

minimize

K∑

k

D∑

i

xki

The above formulation also allows us to directly incorporate
the user’s prior knowledge into this optimization problem. If
we represent a user as a set of explained terms, i.e. terms that
the user is assumed to have mastered, then the constraints
corresponding to these terms may simply be dropped from
the formulation.

In the most general case, this formulation has D2 variables
and O(D2 × V ) constraints, where V is the number of terms
in the vocabulary. In practice, however, we will often limit
the maximum allowable sequence length to a fairly small
constant (e.g. 10, as done in our experiments), reducing
the order of the problem to O(D) variables and O(D × V )
constraints.

While in extremely large settings (hundreds of thousands of
documents), even with a small K, solving this ILP directly
is infeasible, in practice, we find that that we can can obtain
exact solutions using LP relaxation and a vanilla Branch
and Bound (using GLPK1) within several seconds, even
with a many as 1,000 documents and hundreds of terms.
Developing an approximation algorithm based on rounding
the LP solution is our ongoing work.

1https://www.gnu.org/software/glpk/
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Figure 3: Term aspect classification is useful at the task of re-
covering prerequisites for units within a textbook. The y-axis
is the average AUC at the task of predicting whether a par-
ticular unit is a prerequisite of another unit, based on three
metrics. The metric that incorporates the Explain/Assume
classifier performs best (solid line).

4. EVALUATION

4.1 Prerequisites
In order to evaluate the Explain/Assume classifier in an
end-to-end setting, we employ the output of this classifier in
the task of predicting prerequisites in a dataset where the
prerequisites have been explicitly annotated. One such re-
source is Rice University’s Online Statistics Textbook, which
in addition to the text content, provides an explicit depen-
dency graph annotating prerequisite relations between pairs
of units (units are at the level of chapter sections). We pro-
pose a metric for scoring a pair of units according to their
prerequisite relationship based only on the terminology of
both units and the output of the Explain/Assume classifier.
The proposed “prerequisite score” is defined as follows:

P (da → db) =

∑
ti∈db n

a
i 1[ti assumed in db ∧ explained in da]
∑

tj∈da n
a
j1[tj explained in da]

where na
i is the number of occurrences of term i in document

da. Since the above score is guaranteed to be in the [0, 1]
range, we can interpret it as a probability P (da → db), a
probability that document a is a prerequisite of document
b. There is an intuitive interpretation to the above score:
a document can be considered a strong prerequisite of a
target document when it explains all of the assumed terms
in the target document and nothing more. We can convince
ourselves that in this case the score as defined above will be
equal to 1. A document that explains too many unrelated
concepts will suffer a penalty with respect to its prerequisite
score to another document. Furthermore, we consider the
relative frequency of the explained term in the prerequisite
document as an additional signal of that term’s importance.
We find that this additional information increases the perfor-
mance of prerequisite classification (discussed at the end of
this section).

Because the output of the Explain/Assume classifier is a
probability, rather than a class, we can relax the above score

to directly incorporate the uncertainty in the classification:

P (da → db) =
∑

ti∈db

na
i P (ti explained in da)∑

tj∈da n
a
jP (tj explained in da)

(2)

Note that in addition to relaxing the requirement of an ex-
plicit Explain or Assume label, we also drop the requirement
that only the assumed terms need to be explained to count
towards the prerequisite score. This distinction is optional,
but it encodes an important assumption on the kinds of
“prerequisites” that this score will discover. This also brings
up the importance of being precise about the definition of a
prerequisite. A document a is a strict prerequisite of docu-
ment b, if document a explains a subset of the assumptions
in document b. However, we can relax this definition by
not requiring that the terms explained in the prerequisite
(a) are strictly assumed in the target (b). In other words, a
document that explains a subset of the terms also explained
in the target and nothing else, will have a score of 1 according
to the above equation. In practice this corresponds to docu-
ments that explain the same concepts but in a simpler way
(since they explain only a subset of the explained concepts in
the target), and this is often a desired behavior in a learning
sequence. For example, before reading a more advanced arti-
cle on Support Vector Machines, the learner might want to
read a more basic introduction to Support Vector Machines,
although from the perspective of term classifications, both
documents explain the same concept.

4.1.1 Reconstructing prerequisites
Rice University’s Online Statistics Textbook provides a valu-
able resource for evaluating the effectiveness of the Ex-
plain/Assume classification at the task of predicting prereq-
uisite relations between documents. The textbook consists
of 112 units at the granularity of chapter sections, annotated
as a directed graph, i.e. specifying a directed edge between
a pair of units if one unit is considered a prerequisite of an-
other unit. We process the raw HTML files of the textbook
by removing markup, segmenting sentences and extracting
terminology (obtained from the index) features as described
in Section 3.1. We pose the problem of prerequisite rela-
tion prediction as a standard binary classification task, i.e.
predicting for each pair of units in the book whether one
unit is a prerequisite of another, where we consider a pair of
units to be in a gold-standard prerequisite relation if there
is a directed path between them in the graph. AUC is a
convenient metric for evaluating performance in this pre-
diction task, as the output of our scoring metric (Equation
2) is already scaled between 0 and 1. Note that the model
trained only on the PRML corpus was used for term-aspect
classification in this task. Figure 3 illustrates the results
for three different models, as a function of the prerequisite
depth, i.e. stratifying the classification results for a pair of
units by the maximum distance between them in the graph.
The three models evaluated are as follows:

• Model Prerequisite score is computed with Equation 2.

• Baseline 1 Prerequisite score is computed with Equation
2, but with all na

i , na
j and P (t· explained in ·) set to 1.

This baseline is equivalent to a ratio between the number
of overlapping terms between a pair of documents and the

number of terms in the prerequisite, i.e. |da∩db||da| .
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• Baseline 2 Prerequisite score is computed with Equation
2, but with P (t· explained in ·) set to 1.

Each baseline illustrates the effect of not including a com-
ponent of the scoring function in Equation 2. Our first
conclusion from the results in Figure 3 is that the output of
the Explain/Assume classifier provides an important signal in
predicting the prerequisite relationship between documents.
Furthermore, the relative frequency of the explained terms
in the prerequisite document provides an additional gain in
performance. This can be explained by Figure 1(b): the
performance of the Explain/Assume classifier is greater in
the higher term-frequency regime; discounting low-frequency
terms (that are also likely less important to the content) re-
duces the classification noise and boosts the performance at
the prerequisite prediction task. An additional observation
is that the performance of the pairwise prerequisite classifica-
tion improves for pairs of units that are closer in the graph,
i.e. with less units in between. This is easily explained:
units that are farther apart typically share less terminology,
making the estimates based on terminology overlap noisier.

It is also interesting to note that the simplest baseline that
considers only the ratio of overlapping terms between a pair
of documents to the total number of terms in the prerequisite
document does surprisingly well, especially well for pairs of
documents closer together. This can be explained as follows:
in a sequence of units like those in a textbook, units that
are prerequisites tend to be less advanced, i.e. have less
terminology, since less of it was introduced up to that point.
Thus, units that are prerequisites, at least in a textbook,
would be fairly predictable from the relative frequency of
overlapped terms alone.

4.2 Scaling to the web
We collect and release two web corpora of educational con-
tent in the areas of Machine Learning and Statistics. Both
corpora were collected using Bing Search API, by querying
for short permutations of terms collected from the index
of the Pattern Recognition and Machine Learning and Rice
University’s Online Statistics Textbook. The two corpora
contain 42,000 and 1,000 documents respectively – a mix-
ture of HTML and PDF files, pre-processed and converted
to plain text. The difference in size of the two corpora is
due to a smaller set of keywords used in the query set, and
used primarily to rapidly validate the proposed model for
path optimization. Consequently, because of a smaller term
vocabulary, the smaller corpus is significantly less noisy (less
irrelevant documents). The union of the terminology from
the index of both textbooks was used as the vocabulary in
processing each document. Additionally, terminology vari-
ations and abbreviations were consolidated using the link
data from Wikipedia, e.g. terms EM, E-M, Expectation-
Maximization, are all mapped to the same concept of EM in
the terminology extraction stage.

Following the extraction of terminology from each webpage,
each term is classified using the Explain/Assume classifier
trained on the Pattern Recognition and Machine Learning
textbook. We train this classifier in a fully supervised set-
ting using all of the annotated data. In the next several
sections, we present the analysis of the two web corpora and

demonstrate the effectiveness of the proposed approach to
connecting educational resources on the web.

4.3 Diversity of assumptions
The web is a unique setting, that unlike a traditional text-
book or a course, offers a multitude of diverse explanations of
the same concept. This diversity potentially enables the level
of personalization that is not possible in traditional resources.
We can analyze the diversity in the educational content on
the web by looking at a slice of the web resources that share
the same topic, but differ in their underlying assumptions
and explanations. Figure 4 illustrates two articles that are
both on the topic of Expectation Maximization. However,
the two articles differ significantly in their assumptions on
the background of the reader. Article 1 (left in Figure 4) is
a very basic introduction to the topic and does not assume
the knowledge of even the concept of maximum likelihood,
which under most traditional curricula is assumed to be the
prerequisite. Article 2 (right in Figure 4), however, assumes
the knowledge of many more concepts such as posterior prob-
ability, likelihood function and maximum likelihood. This
difference in the distribution of the underlying assumptions
is explained by the fact the Article 1 s a very basic intro-
duction to the topic, intended for an audience not in the
area of statistics or machine learning. Article 2, however,
is a significantly more thorough and a more technical in-
troduction to the concept of the Expectation Maximization
algorithm and thus assumes significantly more prerequisite
background in the areas of statistics and machine learning.
It’s important to note that this distinction between the two
documents cannot be easily made from their titles, or other
surface cues: both documents are approximately the same
length and their titles do not give away the level of technical
detail. Their text content, however, provides the necessary
cues to this information.

4.4 Fundamental prerequisites
Figure 5 illustrates the result of optimizing a learning path
over the web corpus of 1,000 documents for the target web-
page on the topic of “Maximum Likelihood Estimation”. Se-
quences were optimized using the ILP formulation described
in Section 3.2 using the GLPK Branch and Bound solver.
Red rectangles correspond to terms for which the predicted
label is assumed in the given document, and blue otherwise.
In addition to the term-coverage diagram, we also illustrate
the prerequisite dependencies extracted from the term cov-
erage data: a directed edge is drawn to a document from
the closest prerequisite in the sequence that covers at least
one assumed term in the document. In the example in Fig-
ure 5, the target web-page is a fairly technical article on
Maximum Likelihood Estimation that assumes the reader’s
understanding of the concepts such as the likelihood function
which is pivotal for understanding the concept of maximum
likelihood. As a consequence, the web-page that is placed
immediately before in the optimal sequence are slides which
consist of a more basic introduction to the maximum likeli-
hood. Furthermore, the original target article assumes the
reader’s familiarity with Generalized Linear Models (which is
in fact the previous section of the lecture notes of that series,
indicating it as a prerequisite). The resulting sequence also
contains an additional prerequisite on this topic. Finally, an
interesting observation is that while the target article is fairly
advanced in its assumptions about the reader’s knowledge of
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Figure 4: An example of two different web-pages about
the same topic: Expectation Maximization, together with
each page’s terminology and its classification into either the
Explained class (green) or the Assumed class (red). Observe
that the two pages, while about the same topic, are different
in what they assume about the reader. The article on the
left is a very basic introduction to this topic, while the article
on the right is written for experts.

probability, it actually goes into surprising depth in explain-
ing the concept of a derivative and maximizing a function
using derivatives from scratch, which is another important
prerequisite to the concept of maximum likelihood. This is
highly unconventional in traditional textbook and course
curricula. This again underlines the advantage of working
with the assumptions at document-level, allowing to leverage
the diversity in explanations to find “shortcuts” through the
learning paths.

Figure 6 provides additional insightful examples of the gen-
erated sequences extracted from the term-coverage data of
each sequence. Figure 6(d) is another example where the
target document is a fairly advanced introduction to the topic
(Expectation Maximization), which is preceded by a more
gentle introduction to the same topic, as well as an addi-
tional prerequisite (Maximum Likelihood) which is a common
prerequisite for this topic. Note, however, that while Maxi-
mum Likelihood is traditionally considered as a prerequisite
for learning about Expectation Maximization, it is not the
case for the more basic introduction to this topic (What is
the Expectation Maximization algorithm), as that particular
introduction aims to bring a very high-level understanding
of the topic without burdening the reader with additional
prerequisite requirements. Therefore, in that particular se-
quence, the reader is first given a gentle introduction to the
topic, then the necessary prerequisite (Maximum Likelihood)
for understanding the more advanced introduction.

4.4.1 Error analysis
The extracted sequences are not without errors. These errors
stem from several potential sources, as a fairly involved
pipeline lies between the raw document and the resulting
optimal sequence, providing an opportunity for errors to

propagate through the different stages. We break down these
errors by their source to give a better understanding of how
these problems need to be addressed in future work:

Terminology extraction: The greatest source of errors
stems from errors in terminology extraction. There are two
types of errors involved in terminology extraction: false
negatives (missing terms) and false positives (term sense
disambiguation errors). False negatives are more difficult to
detect and often result in missing prerequisites; missing terms
are especially difficult when relying on a finite vocabulary.

Explain/Assume classification: The second greatest source
of errors are the mistakes made by the aspect classifier. Clas-
sifying an explained term as an assumed term creates un-
necessary prerequisites, while the reverse results in missing
potentially important prerequisites.

Path optimization: because we solve the optimization
problem exactly (i.e. find a global optimum), there are no er-
rors stemming from the optimization itself (this will become
a potential source of errors, however, when an approximation
scheme, e.g. LP rounding, is used to obtain an approximate
solution). However, the formulation of the optimization prob-
lem can be improved so as to introduce robustness to the
errors in the earlier stages of the pipeline. As path opti-
mization is the final stage that produces the final output, its
sensitivity to the errors in terminology extraction and term
aspect classification are directly reflected in the resulting
output. Introducing robustness to these errors directly in
the formulation of the optimization problem is potentially
the most effective way to address the issues in the earlier
stages of the pipeline. One issue with the current formu-
lation is its inability to incorporate the relative frequency
of the term into the optimization objective: ideally terms
that appear less frequently in a document should have a
lesser precedence for coverage than those that appear more
frequently (Assumption 2 in the Introduction). The exam-
ple in Figure 5 demonstrates the lack of robustness in the
third document, where the appearance of the term integral
creates an additional sequence of documents that cover this
concept. From our earlier analysis is Section 3.1, we have
shown that the errors in the Explain/Assume classifier are
directly related to the relative frequency of the terms, and
thus a way to incorporate these frequencies as weights into
the optimization would potentially be the most effective way
to deal with this noise.

5. CONCLUSION
We developed what we believe is the first end-to-end ap-
proach towards automatic curriculum extraction from the
web, relying on the following pipeline: 1) extracting what
is assumed vs. what is explained in a single document and
then 2) connecting these documents into a sequence ensuring
that the progression builds up the knowledge of the learner
gradually towards their goal. We developed algorithms that
addressed both of these components: 1) a semi-supervised
approach for learning a term aspect classifier from a very
small set of annotated examples and 2) an optimization prob-
lem for learning path recommendation based on the user’s
learning goals. To the best of our knowledge, we for the
first time demonstrate and leverage the most unique charac-
teristic of the web in the domain of learning: diversity, i.e.
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presence of content that explains the same concepts but in
many different ways and from many different angles. This
property of the web opens the doors to personalizing learning
sequences that leverage the differences in explanations to find
the most effective paths and shortcuts through the Internet.
Finally, we outlined a set of important challenges that need
to be addressed in order to make this task a practical reality
at web-scale. We hope that this work, in addition to the
datasets that we release, will serve to inspire interest from

the community in what we believe is a challenging and an
important task.
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ABSTRACT
Peer-grading is widely believed to be an inexpensive and
scalable way to assess students in large classroom settings.
In this paper, we propose calibrated self-grading as a more ef-
ficient alternative to peer grading. For self-grading, students
assign themselves a grade that they think they deserve via
an incentive-compatible mechanism that elicits maximally
truthful judgements of performance. We show that the stu-
dents’ self-evaluation scores obtained via this mechanism
can be used to perform classic item response theory (IRT)
analysis. In order to obtain unbiased estimates of the IRT
parameters, we show that the self-assigned grades can be
calibrated with a minimum amount of input from instructors
or domain experts. We demonstrate the effectiveness of the
proposed calibrated self-grading approach via simulations
and experiments on Amazon’s Mechanical Turk.

Keywords
Assessment, self-grading, item response theory (IRT).

1. INTRODUCTION
A significant bottleneck in scaling traditional classrooms
to hundreds or thousands of students is the challenge of
enabling efficient mechanisms of assessment. Peer-grading,
hailed as a solution to this “scaling problem,” has received
significant attention, both from the education [12, 5] and
machine learning [10, 11] communities. Broadly speaking,
peer-grading can be thought of as a relaxation of the tra-
ditional teacher/student roles in the classroom: An expert
instructor is replaced by several “noisy” students having the
task of estimating performance of other students. Virtually
all of the existing statistical models for peer-grading aim
to estimate the student’s true performance from such noisy
measurements, under some metric of optimality.

Self-grading constitutes a special case of peer-grading: The
student is their own only “peer” and is solely responsible for
assigning a score based on the judgement of their own work.

Depending on the student’s honesty in self-evaluation, self-
grading is appealing for at least two reasons: (i) Students can
provide a richer signal towards their internal state of knowl-
edge by explicitly revealing confidence in their answers—a
signal that can be exploited during assessment; (ii) because
every student is their own grader, potentially no additional
peer-grading efforts are required to perform assessment. Self-
grading, however, introduces two unique challenges not faced
in traditional peer-grading: (i) Designing mechanisms for
eliciting honest judgement of performance and (ii) accounting
for individual biases in self-evaluation. The first challenge
in self-grading fundamentally requires an explicit mecha-
nisms for eliciting truthful judgements.1 The second chal-
lenge is addressed in peer-grading by appealing to statistics
and assuming that the population of graders is—at least on
average—unbiased.

In this work, we propose calibrated self-assessment to ad-
dress both of the above challenges. Our approach combines
self-assessment with a small number of instructor-graded
items, which provides a simple, incentive-compatible mecha-
nism of eliciting self-assigned scores, and yields assessments
of comparable or superior quality to a setting with signifi-
cantly more instructor-graded items and no self-scoring. As a
consequence, calibrated self-assessment enables a significant
reduction in effort of instructors, domain experts, or peers.

2. RELATED WORK
We focus our review on two research directions that our work
aims to bring together: (i) self-assessment as a method for
summative assessment and (ii) decision-theoretic mechanism
design for judgement elicitation.

Self-grading and Peer-grading in education: Self-
assessment is often seen by teachers as a valuable tool in
classrooms [17], who cite self-assessment as a viable way to
reduce the instructor’s effort, elicit additional information
from students (e.g., their effort and confidence), and provide
an additional learning opportunity in the process. More re-
cently, in addition to peer-grading, self-grading was deployed
in massive open online courses (MOOCs) [5]. Self-grading as
a tool for summative assessment, however, is controversial,
with its validity questioned on the basis of students’ internal
biases. In fact, studies indicate that bias is often a function
of one’s ability [17, 16]. Studies that compare peer-grading
and self-grading differ in their findings, with self-grading and

1This is also a potential problem in peer-grading when con-
flicts of interest are present.

Proceedings of the 9th International Conference on Educational Data Mining 119



peer-grading performance excelling in different conditions
(classrooms, age-groups, etc.), but both are heavily influ-
enced by the underlying assessor biases (see [16] for a survey
of the studies). A study carried out in four middle-school
science classrooms found that peer-grading and self-grading
have a high correlation with instructor grades, with grading
bias patterns that are consistent with other studies [12]. In
addition, they found that the process of self-grading resulted
in learning gains, whereas peer-grading did not. A recent
study carried out at the university level, however, found that
both peer-grading and self-grading results in learning gains
as a side-effect of grading [8].

The existing literature on self-grading points to the significant
effect of bias in self-scoring, with most studies concluding
that students of lower ability tend to inflate their grades
more. As a consequence, we argue for the importance of
an incentive-compatible mechanism that is designed to elicit
maximally truthful judgements, and a calibrated model that
is able to explicitly de-bias the individuals by incorporating
a subset of instructor-graded items.

Judgement elicitation: The literature on truthful judge-
ment elicitation through scoring functions dates back to the
fifties, when the so-called “quadratic scoring rule” was pro-
posed for the task of weather forecasting [2]. Since then, a
number of generalizations of the quadratic scoring rule and
other incentive-compatible scoring rules have been proposed
and analyzed [3, 14, 7, 13] and found application in forecast-
ing weather, sports, and finance. Analysis of the behavior
of non-risk neutral agents in scoring-rule-based mechanisms
has received only limited attention [9], with lottery-based
payoffs being the most well-known solution for encouraging
risk-neutral behavior. Lottery-based payoffs had received
mixed results in experimental evaluations [4, 15], and in the
context of education a reward system based on a lottery is
not a reasonable solution. In this work, we rely on heavily
limited instructor input in order to correct for individual
biases, which includes under- and over-confidence, as well as
non-risk-neutral behavior.

To the best of our knowledge, the only work that applies
a scoring rule mechanism in the context of education that
we are aware of is [1]. The focus of this work is in ana-
lyzing the effect of different scoring functions on the self-
assessment behavior of students. Our primary contribution
in this work is in developing a principled statistical model for
calibrated summative assessment that integrates self-scoring
and instructor-scoring within the classic IRT framework.

3. MODEL
Self-grading without a proper incentive mechanism may lead
to dishonest behavior. In the setting of self-grading, a “mech-
anism” is a scoring rule that specifies the rules by which the
points are assigned to the student as a function of their own
judgement and the outcome (i.e., whether their answer was
correct). A mechanism is called incentive compatible when
the student’s optimal strategy with respect to his or her own
utility function results in a truthful elicitation of information,
e.g., truthful judgement of their own work.

We consider the following scoring function:

pij =

{
θij if correct
− 1

2
θ2ij if wrong,

where θij ∈ [0, A] is a score provided by student i in answering
question j, where A is some fixed upper bound. If the student
provides a correct answer, they get the θij points that they
proposed; if they provide an incorrect answer, they lose
exactly half of that value squared. This scoring function is
known as a quadratic scoring rule and was first proposed
in [2].

For this scoring function, the expected payoff is

E[pij ] = θij π̂ij − 1

2
θ2ij(1− π̂ij), (1)

where π̂ij is the ith student’s estimate of the probability that
they will get question j correct. This expression is maximized
when

θij =
π̂ij

1− π̂ij
. (2)

Equation 2 is exactly the student’s own belief about the
odds of them answering the question correctly. Consider
that the student estimates their chances of answering any
question correctly, by simultaneously estimating their own
ability and the difficulty of the question. Let us now define
that probability to be the standard IRT Rasch likelihood, but
defined with respect to the student’s own estimate of their
ability, ŝi and their estimate of the question’s difficulty q̂j :

π̂ij =
1

1 + exp(−(ŝi − q̂j))
.

Given the student’s estimate of their own ability ŝi and of
the difficulty of the question q̂j , we can now derive their
optimal proposed score (assuming they act rationally and are
risk-neutral) for that problem θij (or rather its logarithm):

log(θij) = ŝi − q̂j ,
which follows from the fact that log-odds of a logistic model
is a linear function of its parameters. We will assume that the
student is risk-neutral and is unbiased in his or her estimates
of own ability and question difficulty, but we will relax both
assumptions later. On any given question, however, the
student’s estimate of their ability to answer that particular
question may deviate from their true ability. Assuming that
the student’s own estimates are normally distributed around
their true values, we get:

ŝi − q̂j ∼ N (si − qj , σ2),

where si and qj are the true student ability and question dif-
ficulty parameters respectively. As a consequence, it follows
that log(θij) is normal distributed and θij is log-normal dis-
tributed. Consider a dataset D consisting of the self-assigned
scores log(θij) submitted by each student for each question
that the student answered. We can write the conditional
likelihood of the entire dataset as follows:

P (θ | s,q) =
∏

(i,j)∈D
N (log(θij) | µ = si − qj , σ2).

Here, s and q are the vectors comprising the student ability
and question difficulty parameters, respectively, and θ is
the vector of student-submitted scores. Maximizing the
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likelihood of all observations gives a straightforward least-
squares solution for the parameters si and qj , given all the
user-provided scores θij . Note that σ2 is assumed to be a
constant variance in students’ estimates of their own ability.
In practice this variance is likely user-specific and corresponds
to the students’ ability in self-assessment. We will address the
issues of bias and variance in self-assessment in Section 3.2.

3.1 Parameter estimation
It is interesting to note that we can solve for the IRT param-
eters (student abilities and question difficulties) using the
above formulation with no outcome information, i.e., without
knowing which students answered which questions correctly.
In fact, the above approach does not even require that the
students who are self-grading know what the correct answer
is; students’ confidence in their answers elicited through the
quadratic scoring rule is all that is needed to learn the pa-
rameters of the model. Of course, this observations relies on
two fundamental assumptions: (i) students are risk-neutral
and (i) students are unbiased in estimating their chance of
answering a question correctly. In Section 3.2, we will ac-
count for the individual biases and non-risk-neutral behavior
by explicitly introducing a bias parameter into the model
and estimating it from an additional set of instructor-graded
responses. However, in order to gain a better understanding
of the model, it is insightful to first analyze the solution to
the problem where both of these assumptions hold.

The solution for the model parameters can be obtained in
closed-form using a standard pseudo-inverse solution to a
least-squares problem. Alternatively, the solution can be
obtained iteratively, without requiring to explicitly invert
any (potentially large) matrices. In particular, one can
repeatedly evaluate the following two steps:

si =
∑

j∈Qi

qj
λ+ niq

+
∑

j∈Qi

log(θij)

λ+ niq

qj =
∑

s∈Sj

si

λ+ njs
−
∑

i∈Sj

log(θij)

λ+ njs
.

Here, si is the ability of student i and qj is the difficulty of
question j. To guarantee a unique solution, we introduce
a non-negative regularization parameter λ, which we will
discuss in more detail in the next paragraph. The constants
niq and njs are the number of questions that student i an-
swered and the number of students that answered question j
respectively. Note that the above iterative solution has an
intuitive interpretation: The ability of the student is the sum
of the average of the (log-transformed) self-assigned scores
to a set of questions that the student answered and the av-
erage difficulty of those questions. In turn, the difficulty of
a question is the negative of the average (log-transformed)
score that students assigned to themselves for that question
plus the average ability of the students who answered that
question. Intuitively, if students with high ability self-assess
themselves to have done poorly on a specific question, that
question will have a large difficulty parameter.

In the case where there is no missing data, i.e., each stu-
dent answers each question, the solution for student ability

parameters simplifies to:

s =




∑
i∈S log θi1
λ+Ns

...∑
i∈S log θiNq

λ+Ns


+O(1/λ)1,

where O(1/λ) is a function that grows proportional to 1/λ. In
other words, the student’s ability is simply the average of the
(log-transformed) scores that the student assigned to them-
selves plus a constant that is identical for each student. This
solution also illustrates the role of the regularization parame-
ter λ. Because the solution for s and q is location-invariant,
without an explicit prior, the likelihood is maximized by scal-
ing all parameters to infinity. This is equivalent to setting λ
to 0, in which case the above solution will tend to infinity,
as expected. Note, however, that the relative ranking of the
student abilities in this solution will be consistent, regardless
of λ. As obtaining the ranking of the students is our primary
focus, we can thus set λ to zero in the above solution, and
simply consider the average self-assigned (log-transformed)
score as the the ability parameter of the student. The same
argument applies to question difficulty parameters.

3.2 Calibrating the model
There are two issues in relying on students’ self-given score
for ranking students via the IRT model: (i) Students may
be prone to over- or under-estimating their ability and (ii)
because there is uncertainty involved in both answering and
grading, some students may be more or less inclined to
“gamble” with their self-assigned score (i.e., some students
are more or less risk-averse/risk-loving). We subsume both
effects (as it is impossible to tell them apart) into a general
student “bias” in self-grading, and model it explicitly as

log(θij) = ŝi − q̂j + bi,

where bi ∈ (−∞,∞) is a student-specific bias. We assume
that this student bias is drawn from a normal distribution
bi ∼ N (0, σ2

b ), where the above distribution stipulates that
the average of the student population is unbiased. It is
impossible to estimate bi using self-grading alone, as without
actual observations of correctness of students’ responses, the
model will conflate si and bi into a single parameter. Imagine
that we do grade a student’s responses on a small subset of
the answered questions (which they also self-grade). Let the
set of instructor-graded questions be Qg ⊆ Q, where Q is the
set of all questions. As the observations of instructor- and
self-assigned grades are all conditionally independent given
the student and question parameters, the overall likelihood
of both self- and instructor-given scores is a product of
these likelihoods. We can then express the log-likelihood of
the entire dataset as a sum of the self-graded response log-
likelihoods and instructor-graded response log-likelihoods:

logP (θ,y | s,q,b) =
∑

si∈S

( ∑

qj∈Q
(log θij − (si + bi − qj))2

︸ ︷︷ ︸
self-graded responses

+
∑

q′j∈Qg

log(1 + exp(−yij(si − q′j)))

︸ ︷︷ ︸
instructor-graded responses

)
.
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Here, yij ∈ {−1, 1} is the instructor-grade for question j
answered by student i and y is the response vector for all
students (yij = +1 corresponds to a correct response and
yij = −1 otherwise). Observe that the “bias” parameter only
appears in the self-graded part of the likelihood. This allows
us to calibrate the model via instructor-graded questions as
a “training set” to separate the effects of the bias and true
ability. Note that, unlike in the previous case that relied
entirely on students’ self-scores, like with the traditional
Rasch IRT model, we are unaware of a closed form solution
for this formulation. In all of our experiments, we use the
L-BFGS algorithm [18] for learning model parameters.

3.3 Consequences of students’ awareness of the
mechanism

The assumption that the learner is optimizing a utility func-
tion based on the expected test score:

E[pij ] = θij π̂ij − 1

2
θ2ij(1− π̂ij) (3)

fundamentally assumes that the student believes that each
question will be graded, as otherwise there would be no pos-
sibility of getting a question wrong and losing points. In
practice, our goal for self-grading may be motivated by the ef-
fort to reduce the instructor’s involvement in grading, and, in
general, as a way to scale assessment to potentially very large
classrooms, such as massive open online courses (MOOCs).
Having each submission be graded by an instructor (or your
peers) defeats the purpose of self-grading. If, however, the
student is aware of the fact that not every question is graded,
we can expect that their utility function, and thus their opti-
mal strategy, will be affected by this knowledge. If the test is
administered once, of course, the students could be deceived
into believing that every question is graded. In a real course,
however, a more realistic assumption is that the students
possess the knowledge that not all of the questions are graded
and if the assignments are returned, we can expect that the
students’ estimates of the fraction of graded questions will
improve over time. If, however, the student believes that a
random subset of their submissions is graded by someone
else, but if the student does not know which subset is graded,
then we should still expect the student’s optimal behavior
to be maximizing a utility function similar to the one above.
The utility function will not be the same, as we now have to
account for the student’s belief about how many problems
are graded by someone else. Let us assume that the student
has a prior belief that each problem has a probability ρ of
being graded. Then, the expected score the student i receives
on question j is given by

Egr [E[pij | graded]] = ρ(θij π̂ij − 1

2
θ2ij(1− π̂ij)) + (1− ρ)θij ,

where we take an additional expectation with respect to the
student’s belief that the problem is graded. Note that when
a problem is not graded, the expected score that the student
receives is just θij , i.e., their self-assigned score, regardless
of whether the student answers correctly. This is because
when a problem is not graded, there is no possibility of losing
points. We can show that the student’s optimal self-assigned
score log(θij) has the following approximate relationship to
their ability and question difficulty (the approximation is a
piece-wise linear approximation to the true strategy that is
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Figure 1: The optimal strategy for providing a self-assessment
score log θij for a student with ability si on a question of
difficulty qj , assuming the student’s knowledge that a random
fraction ρ of the questions will be graded. The optimal
strategy is approximately piece-wise linear as a function of
the student’s relative ability si − qj . In the regime of low
relative ability, the student’s optimal strategy is to report
a fixed score that is a function of ρ, regardless of his or her
relative ability.

asymptotically accurate):

log(θij) = max

{
log

(
1

ρ
− 1

)
, (si − qj)− log ρ

}
.

The optimal strategies for different values of ρ are illustrated
in Figure 1. The student’s knowledge of the mechanism is
reflected by the appearance of a lower-bound on the self-
assigned score in a region where the student is likely to
do poorly (low values of si − qj). This is expected: If the
student is aware that the chance of a particular question to be
graded is low enough, it would make sense to take advantage
of those odds and “bet” a small, but a non-zero amount, even
if the student does not know the correct answer. From a
practical perspective of implementing a system that solicits
self-assessment scores, it would not make sense to provide the
user with the ability to provide a self-assessment score lower
than their optimum. From the model inference perspective,
this introduces a complication: Observations that correspond
to the lowest possible self-score do not correspond to any
specific si − qj , but rather an entire range. This problem is
known generally as censored regression. and can be solved
using the same approach as for the original problem, but with
the modified likelihood function that accounts for this “kink.”
Note that a similar restriction on the likelihood (but as an
upper-bound) is introduced when the maximum attainable
score for a problem is incorporated into the scoring function.

4. EXPERIMENTS
4.1 Simulations
It is insightful to study the effect of bias in the population of
students on the quality of the learned parameters in the IRT
model: student ability parameters and question difficulty
parameters. We perform a simple simulation of a classroom
with 50 questions and 30 students (question difficulties and
student abilities are sampled from a zero-mean normal distri-
bution with a standard deviation of 3), where each student
answers each question (a total of 1,500 responses). In this
simulation, each student submits their self-grade log(θij) for
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Figure 2: Simulation results. Rank correlation across students obtained using three models for different variance of self-grading
bias (σ2): (i) black : a model that uses student self-scores and the correctness of their response to a subset of graded questions
(number of graded questions on x-axis), (ii) solid gray : a model that uses correctness of their response to a subset of graded
questions only (number of graded questions on x-axis) and (iii) dashed gray : a model that uses only the students’ self-score.

each question by optimizing their utility according to the
utility function in 3. We repeat the simulation for four dif-
ferent populations of students, each with a different variance
σ2
b of the bias parameter. To evaluate the quality of the in-

ferred student parameters, we compute the rank correlation
(Kendall Tau) between the true ordering of the students (by
their true parameters) and the ordering obtained by sorting
the students based on the inferred parameters. The Kendall
Tau metric is defined as follows:

KendallTau(s, ŝ) =
Ncorrect

pairs −Nwrong
pairs

Npairs

where s and ŝ are the true and inferred student ability param-
eters, respectively, and Ncorrect

pairs and Nwrong
pairs is the number

of student pairs that are ordered correctly in the inferred
ranking (with respect to the true ranking) and the number of
pairs that are ordered incorrectly, respectively. Kendall Tau
is equal to +1 when the rankings are consistent and to −1
when the rankings are inverted. The corresponding results
are shown in Figure 2.

Three models were evaluated:

• Self-grading only: Only students’ self-submitted scores
log(θij) are used in fitting the Rasch model parameters.

All students submit their self-scores for all questions.
The correctness of students’ responses is not used in
fitting the Rasch parameters.

• Instructor-grading only: Only the correctness of
the responses is used for fitting the Rasch model pa-
rameters; this is a classic Rasch model. We vary the
number of questions used in fitting the model parame-
ters (x-axis in Figure 2).

• Self-grading + instructor-grading: A combination
of self-scores submitted by all students for all questions
and the correctness of a subset of submitted questions
is used for fitting the Rasch model parameters (number
of questions used is the x-axis in Figure 2).

In the case where the students in the class are relatively un-
biased (low σ2

b ) (top left in Figure 2), self-scoring achieves a
better rank-correlation than the traditional IRT Rasch model,
even when many questions are instructor-scored. Interest-
ingly, in the regime of low bias, including actual instructor-
graded responses actually negatively affects the correlation
(this is due to over-fitting caused by a small number of instruc-
tor grades—introducing additional bias variables requires a
sufficient number of observations to infer them reliably; this
performance drop eventually disappears when a sufficient
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Figure 3: Screenshot of one question from the Mechanical
Turk task. A subject answers a math question and provides
a self-assessment score by adjusting a slider. The student
sees the number of points that they will gain if they answer
the question correctly (green) and the number of points they
will lose if they answer the question incorrectly (red).

number of questions is included). As the bias of the popu-
lation increases, the performance of the self-scoring model
decreases but still exceeds the performance of the instructor-
only Rasch IRT, especially in situations where only a few
questions are scored.

4.2 User study
To evaluate the efficacy of the proposed self-grading approach,
we conducted a user-study on Amazon’s Mechanical Turk.
We solicited 206 subjects to participate in a task titled “Do a
short math quiz and earn bonus!”. The subjects were asked to
answer 30 math questions of varying difficulty levels ranging
from basic arithmetic to pre-calculus. The questions from
the dataset introduced by [6] were used in our experiment.
All questions were multiple choice and included a “none
of the above” option, included in order to minimize the
probability of getting a right answer through a process of
elimination. Although in practice, multiple-choice questions
mostly defeat the purpose of self-grading, we use multiple
choice questions for the ease of evaluation and the lack of
subjectivity that would be otherwise present in free-response
questions. Figure 3 illustrates a single question from the
task. The subjects were asked to mark what they believed
to be the correct answer, and then to assign themselves the
number of points that they would receive if they answered
the question correctly. The input was provided through a
slider. Moving the slider automatically displayed the number
of points that the subject would gain if they answered the
question correctly (green), and the number of points they
would lose if they answered the question incorrectly (red).
The points were then converted to currency (1 point = $0.01),
and paid through a “bonus” mechanism in Mechanical Turk.
We chose to use real currency as a reward to to ensure that
the subjects had a stake in their performance, and thus there
is incentive to think carefully about their self-assigned scores.

We follow the same evaluation scheme that we described
in the previous section. Recall, that we are interested in
the quality of the assessment derived from the students’
self-evaluation. In the simulation study, a “gold-standard” as-
sessment was available and allowed us to use rank correlation
between the “gold-standard” ranking and the inferred ranking
as an evaluation metric. In this user-study, we consider the

ranking inferred by the IRT model that relies on the com-
plete dataset, as a proxy for the “gold-standard” ranking. We
then repeat the evaluation scheme described in the previous
section: (i) vary the number of instructor-graded questions
from 0 to all questions (30) and combine that with the self-
assigned scores for every question, (ii) infer the ranking using
the proposed model, and (iii) compare it to the ranking that
is derived from “gold-standard” proxy.

We find that the results are comparable to those obtained
in the simulation (Figure 4(a)). Self-scoring is already able
to obtain a reasonable correlation with the “gold-standard”
ranking even without any instructor-graded question. Incor-
porating instructor-grades for additional questions improves
the performance. Rank correlation metrics, such as Kendall
Tau, while convenient for summarizing the results with a
single quantity, often fail to distinguish regimes where the
model might perform differently. It is instructive to consider
the performance of rank-correlation in the different segments
of the ranking. Figure 4(b) decomposes the results by quar-
tiles. We employ a more intuitive metric, Precision@Quartile,
defined as follows:

Precision@Qi =
|ŜQi ∩ SQi |
|ŜQi |

where SQi is the set of students in the ith quartile of the

“gold-standard” ranking, and ŜQi is the set of students in the
ith quartile of the inferred ranking. This metric captures the
ability of the model to perform within a particular segment
of the ranking. For example, looking at Precision at the first
quartile, measures the ability of the model to predict top
students. From Figure 4(b) we can conclude that the model is
significantly better at distinguishing the top-ranked students
(first quartile) as compared to the lower-ranked students
(second quartile). By using the self-scoring signal without
any instructor-graded questions, we are able to recover nearly
60% of the top quarter of all students. The performance in
the second quartile is significantly lower, but follows the same
trend: incorporating the students’ self-reported scores in the
regime of zero to several questions significantly improves
performance over the baseline of instructor-graded questions
alone. This observation leads to the conclusion that, at least
in this study, better students were better at estimating their
ability. We look into the effect of self-estimation performance
in more detail in the next section.

4.3 Self-assessment and bias
The performance of the model that relies on self-assessment
depends fundamentally on the model’s estimates of the stu-
dents’ biases as well as the ability of the students to self-assess
reliably (self-assessment variance). In our model, we infer
only the individuals’ biases and assume constant variance in
the self-assessment likelihood (these could in principle be esti-
mated as well. Figure 6 illustrates the individual inferred bi-
ases for each student (averaged across multiple folds), sorted
in an increasing order. The resulting distribution illustrates
the skew in the bias distribution towards “under-confidence,”
i.e., most students tend to under-estimate their ability (act
conservatively). The importance of estimating bias is under-
lined in Figure 4(a), where we include an additional baseline
Self-Scored + Graded (no bias) (light solid line). This
baseline combines self-assessment and instructor-grades but
does not incorporate the explicit student-bias parameter. As
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Figure 4: User study results. Rank correlation across students obtained using three different models (i) Self-scored: a model
that relies entirely on student-submitted self-assessments, (ii) Graded: a model that relies entirely on instructor-provided
grades, as a function of the number of graded questions (x-axis), and (iii) Self-scored + Graded: a model that aggregates
students’ self-assessment scores on all questions and a variable number of instructor-graded questions (x-axis). (a) Computes
rank correlation across all students using Kendall Tau, and (b) decomposes rank correlation across the first two quartiles
using the Precision@Quartile metric. The model that combines self- and instructor-assigned scores is significantly better at
predicting the top-performing students (first quartile). Combining instructor grades with self-assessment significantly improves
both rank measures, especially when only a few questions are graded. Note that the total number of questions in the study
was 30; we display the results up to 15, as the differences between both models is not substantial beyond that.
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Figure 5: Bias vs. ability (centered). Both parameters were
inferred using all of the available data. Each point in the
scatter-plot corresponds to one student. A weak, but signifi-
cant correlation between bias and ability exists.

evident from the graph, estimating bias is critical for com-
bining self-grading and instructor-grading: without the bias
parameter, the model is not able to leverage the benefits of
both signals.

It is potentially insightful to investigate the relationship
between self-assessment bias and ability. We consider the
inferred bias parameter after incorporating instructor-grades
for all questions, and compare it to the inferred ability pa-
rameter of each student. The result is illustrated in the
scatter-plot in Figure 5. While the relationship between the
two is not strong, there exists a negative correlation between
ability and self-assessment bias (Pearson’s correlation: 0.17,
p-value = 0.013). Students that are more able tend to under-
estimate their ability, and students that are less able tend
to inflate their ability. This finding is consistent with the
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Figure 6: Inferred bias parameter of each student (sorted in
an increasing order). The bias parameter was inferred using
all of the available data.

literature in self-assessment [17, 16].

5. CONCLUSION AND FUTURE WORK
In this work, we have developed a novel approach for per-
forming calibrated, summative self-assessment by combin-
ing (i) student’s self-evaluations obtained via an incentive-
compatible scoring mechanism and (ii) a minimal number
of instructor-graded responses. We have shown that when
the scoring rule is quadratic, the standard IRT Rasch model
reduces to standard linear regression. We have demonstrated
that the quality of the inferred assessment using self-scoring
alone without additional instructor input is, on-average, com-
parable to the performance obtained using the standard
IRT that requires significant instructor effort. Furthermore,
by incorporating a minimum number of instructor-graded
responses, we have shown that our approach substantially
improves the estimates of the students’ abilities and the
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questions’ difficulties. Finally, we have addressed the long-
standing issue of applying scoring rules in practice: dealing
with the consequences of individuals’ biases and non-risk-
neutrality. We have proposed to explicitly model the com-
bined effect of these two factors within the standard IRT
framework, allowing the model to effectively de-bias these
individual differences.

Our results open an interesting direction of inquiry: are there
other scoring functions that are more efficient at estimating
IRT parameters, and if so, can the scoring functions be
adapted to individual students and questions, improving the
efficiency of adaptive testing? In order to facilitate further
research in this direction, we release all code and data used
in this study.
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ABSTRACT
The advent of Massive Online Open Courses (MOOCs) has
led to the availability of large educational datasets collected
from diverse international audiences. Little work has been
done on the impact of cultural and geographic factors on
student performance in MOOCs. In this paper, we analyze
national and cultural differences in students’ performance in
a large-scale MOOC. We situate our analysis in the context
of existing theoretical frameworks for cultural analysis. We
focus on three dimensions of learner behavior: course activ-
ity profiles; quiz activity profiles; and most connected forum
peer or best friends. We conclude that countries or associ-
ated cultural clusters are associated with differences in all
three dimensions. These findings stress the need for more
research on the internationalization in online education and
greater intercultural awareness among MOOC designers.

1. INTRODUCTION
Over the past decade there has been a substantial increase in
the study of cross-cultural behaviors in e-learning systems.
Prior researchers have shown that learners from different
cultures behave differently when using educational systems,
particularly in terms of their off-task behaviors [25, 21], help-
seeking [21], and collaboration [22, 16]. The cultural differ-
ences uncovered in these studies suggest that designers of
future e-learning platforms would benefit from a better un-
derstanding of their distinct target populations and distinct
cultures.

Large-scale MOOCs typically attract diverse international
audiences. The course we discuss here, for example, at-
tracted students from 172 countries on 5 continents. Despite
this acknowledged diversity, most MOOCs take a one-size-
fits-all approach to designing and structuring the course.
The materials are typically offered in a single format and
language, or via direct translations that preserve the struc-
ture, pacing, and content.

Prior researchers have shown that country of origin affects
students’ performance in MOOCs. Nesterko et al. [19] found
that non-American students were more prone to complete
MOOCs and to seek certification than their U.S. counter-
parts. Guo and Reinecke [12] found that a student’s country
of origin significantly predicted the amount of content that
they would cover and the amount of time that they spent re-
viewing prior course content. Kizilcec [17] found that there
was a significant correlation between a country’s level on
the Human Development Index and the number of students
from that country who completed a majority of the assign-
ments. In each of these studies, however, nationality was
treated as a single independent factor. No substantive com-
parisons were made between countries or cultures, nor did
the authors frame their conclusions in the context of prior
theoretical work on cultural differences in learning.

A deeper understanding of how students differ both within
and across cultures will help us to design and deploy more
effective, and truly international MOOCs. And this under-
standing will be enriched by relating these differences to
the rich existing literature on cross-cultural education such
as Hofstede’s cultural dimensions theory [13] and the Cul-
tural Dimensions of Learning Framework (CDLF). In this
paper we will address this need through our analysis of cross-
cultural student behaviors in an existing MOOC. This was
an open course with a total enrollment of 29,149 students
drawn from 172 countries and 5 continents. We found clear
inter-country and inter-cultural differences in the observed
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student behaviors and in the distribution of user categories.
We also found that these differences can be evaluated in the
context of existing theoretical frameworks and that they are
consistent with prior educational literature.

2. LITERATURE REVIEW
2.1 Culture & Educational Technology
Advances in educational technology have enabled educators
to incorporate technologies at larger scale and to collect
richer and more diverse educational data than ever before.
This has, in turn, substantially increased interest in study-
ing variations in the use of e-learning tools across cultures.

One approach to understanding the impact of culture on
learning is through field observation. Rodrigo et al. [25]
coded U.S. and Filipino students’ on- and off-task behaviors
when using three ITSs. They found that Filipino students
spent more time on task than their U.S. counterparts on all
three systems. They also found that the Filipino students
gamed some systems more than others. Similarly, Ogan et
al.[22] coded the on-task behaviors and interaction of similar
students in Chile. They found that the Chilean students had
a higher proportion of on-task interactions than the U.S.
students studied previously.

Another approach is through educational data mining. Ogan
et al. [21] generated student models from ITS logs collected
in three countries: Costa Rica, The Philippines, and the
U.S. Their goal in this work was to predict effective help-
seeking behaviors. They found that it was possible to gener-
alize the U.S. model to Filipino students but not to students
from Costa Rica. Saarela and Karkkainen [27] applied a hi-
erarchical clustering algorithm to data collected from the
PISA, a worldwide assessment of 15-year old students cov-
ering reading, mathematics, and science. They found that
students’ performance on the test clustered by country, sug-
gesting cultural influences.

While these studies found interesting cross-cultural differ-
ences, we have little understanding of why these differences
occur, or of how they relate to more general cross-cultural
variation. Learning behaviors are influenced by a complex
set of factors and cross-cultural comparisons may help us
deepen our understanding of this phenomenon and highlight
ways to remediate or accommodate it. In this paper, we ex-
plore the logs of student activity in a MOOC, with an eye
toward how culture may relate to differences in behavior.

2.2 MOOC Research
MOOCs represent both opportunities and challenges for ed-
ucators. On the one hand they involve large numbers of
users working in highly instrumented systems which can, in
turn, provide deep insights. On the other hand, however,
MOOCs have high dropout rates, wide variation in levels of
engagement, and MOOC users have extremely diverse mo-
tivations and demographic backgrounds. Thus any insights
are qualified by the noisy nature of the data. Researchers
have therefore focused their efforts on better understanding
MOOC users and their differing behavior patterns.

One approach to understanding MOOC students is to build
predictive behavior models based upon their clickstream data,
such as mining sequences of actions for analysis [29, 5].
These induced models are highly accurate but are not always
readily interpretable. Other work has focused on improving
our understanding of engagement and dropouts by detecting
key subgroups. In this work, researchers have used hierar-
chical clustering to identify groups of students with similar
patterns of engagement, such as those who viewed many lec-
tures but rarely attempted quizzes, and those who balanced
their activities equally [17, 10, 4, 1]. Kizilcec et al. [17]
and Ferguson et al. [10], for example, clustered students by
engagement factors such as the number of lectures viewed
and quizzes attempted. Anderson et al. [1] likewise used
lecture views and considered the ratio of lectures to assign-
ments while Bergner et al. [4] focuses solely on assignments
attempted. These studies served to highlight the distinct
behavioral patterns of different subgroups.

Researchers have also begun to study students’ diverse back-
grounds through voluntary surveys with the goal of under-
standing how their incoming motivation [28, 2] and demo-
graphic features [19, 17, 12] affect their observed behaviors.
Both Nesterko [19] and Deboer [9] found that participation
(as indicated by survey responses) and certificate attainment
rates differed across countries, continents, and genders; they
did not, however, delve deeper into students’ in-system be-
haviors as logged by the learning environment. Wang and
Baker [28], by contrast, found that learners receiving course
certificates tended to be more interested in course content,
while students not receiving certificates often stated that
they were seeking a new type of learning experience.

Few of these researchers however, have focused on the rela-
tionship between geographic information and observed be-
haviors. Guo and Reinecke [12] applied linear regression to
correlate some demographic features such as years of ed-
ucation to geographic data. They found that a students’
country of origin was significantly related to their coverage
of the course content overall and the extent to which they re-
viewed prior content, called backjumps. They attributed this
diversity to varying student-to-teacher ratios. They found
that countries with a higher ratio had a higher frequency of
backjumps suggesting more time on review. In related work
Kizilcec focused on partitioning countries into tiers based
upon the Human Development Index (HDI). They found
that as the HDI tier increased, so to did the proportion of
students who completed the course. While these results are
instructive, however, the authors made no attempt to situ-
ate these results in the context of existing theoretical models
of cross-cultural learning.

Thus the results from prior MOOC research show that un-
derstanding students’ diverse backgrounds can be essential
to the development of effective educational interventions,
and to providing useful support for student engagement and
participation. Geographical location, considered as a set of
economic, cultural, and educational differences, may play a
crucial role in understanding, supporting, and appealing to
the increasing population of MOOC users.
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2.3 Theoretical Frameworks
MOOCs and educational technologies allow us to collect ro-
bust information about cross-cultural differences in user be-
haviors. Yet we face challenges in interpreting and explain-
ing these results in a consistent theoretical framework.

Prior educational researchers have worked to identify related
cultural dimensions and values, and to examine how they
vary across cultures. One common framework is Hofstede’s
Cultural Dimensions Theory [13, 14]. Hofstede analyzed a
set of 117,000 attitude surveys collected by IBM from their
international workforce and synthesized a set of 7 general
cultural dimensions: a) power distance; b) collectivism vs.
individualism; c) femininity vs. masculinity; d) uncertainty
avoidance; e) long/short term orientation; and f) indulgence
vs. restraint. Hofstede then calculated scores for each cul-
ture within these dimensions.

Hofstede’s dimensions have been used to analyze and ex-
plain differences in collaboration across cultures [16], as well
as differences in help-seeking and off-task behavior in ed-
ucational technology [21, 25]. However these studies have
suggested that the cultural dimensions framework has some
limitations in explaining these findings. Many of the key
differences in the observed behaviors do not correspond to
the differences that Hofstede’s theory suggests. In particu-
lar, variations in collectivism and collaboration/help-seeking
strategies do not seem to relate well to Hofstede’s underly-
ing dimensions. Therefore we will combine this with the
Cultural Dimensions Learning Framework (CDLF).

The CDLF framework, designed by Parrish et al. in 2010
[24], defines eight cultural parameters regarding social rela-
tionships, epistemological beliefs, and temporal perceptions,
and how they manifest in learning situations. The CDLF
has been used to guide the design and analysis of e-learning
across cultures [23, 15]. For the purposes of our analysis we
will focus on the intersection of the CDLF and the Hofst-
ede dimensions. We will use this hybrid framework to group
countries into cultural clusters, and to interpret the observed
behavioral differences between them. Table 3 provides an
overview of the shared dimensions.

While these frameworks may help to explain observed be-
haviors, it is worth noting that learner behaviors in MOOCs
can be affected by many other factors such as personal mo-
tivation. Wang and Baker [28], for example, surveyed the
motivations of incoming students on a later version of the
course we study here and found that learners who obtained
course certificates tended to be more interested in course
content than those who took the MOOC in order to test the
learning experience. While this highlights the importance
of individual differences, our analysis below we will focus on
inter-country differences and cultural factors.

3. DATA
The data used in this study was collected from Big Data
in Education (BDE), an 8-week long MOOC offered by the
Teacher’s College at Columbia University on the Coursera
platform [28]. The BDE curriculum included video lectures,
discussion forums, and 8 weekly assignments or quizzes. The
lectures covered key methods for educational data analysis.
The assignments required students to analyze existing data

Table 1: Intersection of Hofstede Dimensions and
the Cultural Dimensions of Learning Framework.

Hofstede Dimension
[13]

Selected Interpretations
in CDLF [24]

Power Distance: the ex-
tent to which the less
powerful members ex-
pect and accept un-
equal/unfair situations

Countries with high power
distance view teacher as an
unchallenged authority and
the primary communicator,
not as a fallible peer.

Individualism: the de-
gree of interdependence
a society maintains
among its members

Highly individualist stu-
dents are more prone to
speak up in class, to value
diverse opinions in learning,
and to be motivated by
personal gain.

Masculinity: the degree
to which a culture is mo-
tivated by competition
(instead of life quality)

More masculine cultures are
associated with increased
levels of competition and a
heavier pursuit of recogni-
tion.

Uncertainty Avoidance:
The extent to which
a culture feels threat-
ened by ambiguous or
unknown situations and
tries to avoid these

Students who avoid uncer-
tainty tend to focus more
on getting the right answer
from authoritative sources
and from the structured
learning activities.

(typically real data collected from educational settings) and
to answer questions about their results. All of the assign-
ments were automatically graded via numeric or multiple-
choice questions. Students were given between 3 and 5 at-
tempts to complete each assignment with the best score be-
ing counted. Students were required to complete their as-
signments within 2 weeks of it being released. In order to
obtain a certificate students were required to obtain an aver-
age grade of ≥ 70% over all 8 assignments. High performing
students could receive a certificate with distinction. 638 stu-
dents completed the course and obtained a certificate.

Data from this course has been previously used to study
motivation [28], negativity [7], student communities [6], the
relationship between linguistic quality of forum posts and
completion[8], as well as longitudinal behavior patterns[31].

For the purposes of our analysis we analyzed clickstream
data containing user IDs, IP addresses, URLs and times-
tamps for 29,149 students. This data included all 638 stu-
dents who received a certificate as well as 750 who posted on
the forum. After classifying students by behavior type we
found that a total of 1,591 students were actively engaged
with the course while the remaining 27,588 were ‘bystanders’
who enrolled but did not do any significant work. We as-
signed users to regions based upon their most frequent IP
address as has been done in prior work [17, 9, 12]. The top
15 countries by registration are shown in Figure 1.

We then analyzed the URLs located in the clickstream data
to identify the following major activities: view lecture (VL),
attempt or submit quiz (AQ, SQ), and read or make a post
in forum (RP, MP). We then generated activity sequences
from this data using an n-gram approach consistent with
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Figure 1: Number of Registrants from the Top 15
Countries with Most Registrants

prior research [29, 5]. Note that this data does not con-
tain information about how long the student spent view-
ing a URL. The data only records individual mouseclicks.
Therefore it functions as a record of student access but not
a reliable indicator of engagement.

4. METHODS AND RESULTS
We hypothesize that students from different countries or cul-
tures will behave differently in the course. We chose to
examine four research questions: RQ1. (Course Activity
Profiles, CAPs) What are the primary categories of stu-
dents based upon the frequency (both total and relative)
with which they accessed different course activities? RQ2.
(CAPs by Country) Does the proportion of student cat-
egories differ by country? RQ3. (Quiz Activity Profiles,
QAPs) When do students in each category access the dif-
ferent types of course activities and how is that correlated
with quiz submissions? RQ4. (QAPs by Culture & Coun-
try) How do quiz-based activity profiles and countries relate
to the four overlapping Hofstede/CDLF cultural dimensions
of: power distance, individualism, masculinity, and uncer-
tainty avoidance? RQ5. (Forum best friends) Is a student’s
most frequent forum partner in the same country/culture?

For RQ1, we used hierarchical clustering to identify five
course activity profiles (CAPs) (e.g. students who focused
solely on quizzes). For RQ2, we clustered countries by the
proportion of students who fit each CAP in order to de-
termine whether or not students from a given country are
more likely to fit one CAP over another. For RQ3, we parti-
tioned the course data by quizzes and examined whether or
when students in each CAP accessed the lectures, quizzes,
and forum content. This led to the development of Quiz
Activity Profiles (QAPs). For RQ4, we then clustered stu-
dents based upon their cultural dimensions and compared
the QAPs by culture and student category (CAP). For RQ5,
we performed a χ2 analysis to investigate whether the stu-
dents’ most frequent interlocutor on the forums were more
likely to be drawn from the same country/culture. In each
section below, we will present the methods and results for
each of these questions in greater detail.

4.1 RQ1: Course Activity Profiles, CAPs
What are the primary categories of students based upon the
frequency (both total and relative) with which they accessed

different course activities? Prior researchers have used hi-
erarchical clustering to discover meaningful subgroups such
as: users who viewed many lectures but rarely attempted
quizzes and users who balanced the number of lectures viewed
and quizzes attempted [17, 10, 4, 1].

In this work we applied hierarchical clustering to classify stu-
dents based upon the proportion of activities that they en-
gaged in over the course. These included: lectures accessed,
quizzes attempted, and form posts made or accessed. We
found that clustering students by the the number of lectures
that they accessed and quizzes attempted yielded five inter-
pretable clusters which we designated solvers (generally take
more quizzes), viewers (generally watch more lectures), all-
rounders (balance both), samplers (watch some lectures and
do a quiz), and bystanders (do very little). Table 2 shows
the CAP clusters with average silhouette widths (ASWs)
in excess of 0.68, which indicates that they are well-chosen
classifications [26]. These CAPs closely resemble the stu-
dent types described by Anderson et al. [1] who clustered
MOOC students based upon the ratio of lectures viewed to
assignments completed. In this case we used attempts in
place of submissions.

Table 2: Course Activity Profile Clusters: size,
#lectures viewed, #quiz attempts, and perfor-
mance.

% Certificate
CAP Lectures

viewed
(max:54)

Quiz
Attempts
(max:7)

Distinct Normal

Solver (n=388,
ASW=0.72):
mainly attempt
quizzes

M:5.30
Sd:7.15

M:7.67
Sd:0.77

41.10% 0.07%

Viewer (n=107,
ASW=0.72):mainly
view lectures

M:49.57
SD:2.95

M:0.55
SD:0.96

0% 0%

All-rounder
(n=519,
ASW=0.68):balance
lectures & quizzes

M:45.23
Sd:8.3

M:7.58
Sd:0.89

79.19% 8.29%

Bystander
(n=27558,
ASW=0.84):do
little

M:1.87
Sd:2.72

M:1.25
Sd:1.43

0% 0%

As Table 2 shows, the all-rounders have the highest rate of
certificate completion. For the rest of our analysis we will
focus on three categories: viewer, solver, and all-rounder.

4.2 RQ2: CAPs by Country
Does the proportion of student categories differ by country?

After identifying the meaningful CAP clusters, we compared
countries based upon the proportion of CAPs observed. We
again applied hierarchical clustering on countries with more
than 15 users from the viewer, solver, and all-rounder stu-
dents. In this case we found that three clusters yielded the
highest ASW values. These clusters are shown in Figure 2.
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Figure 2: Hierarchical clusters of countries by pro-
portion of user categories. For each country, the
proportion of user categories is plotted as stacked
bar, and the sample size is given in parentheses

This clustering grouped countries with a high proportion
of solvers in Cluster 1. This includes developing countries,
Russia, and Singapore. The proportion of solvers present
in Cluster 1 is significantly higher than that of cluster 3:
χ2(1, N = 740) = 34.95, p < 0.001.

4.3 RQ3. Quiz Activity Profiles, QAPs
When do students in each category access the different types
of course activities and how is that correlated with quiz sub-
missions?

After identifying the CAPs and examining their relative pro-
portion within countries, we proceeded to analyze the inter-
country behavioral differences within each CAP. It is our hy-
pothesis that students from different countries will behave
differently given the different Hofstede/CDLF dimensions.
In order to assess this hypothesis we analyzed the behavioral
differences among users with regards to the course content
accessed in the three learning phases described below.

Figure 3: Illustration of the three learning phases

In order to better understand when students engaged in
different learning activities we segmented the activity se-
quences into three phases based upon the quiz attempts.
These phases are shown in Figure 3. For each phase we
counted average number of lectures viewed (VL), forum posts
made (MP), and posts read (RP). For the first quiz sub-
mission, and for the subsequent submission phases, we also
counted the average number of times that a student at-
tempted and submitted the same quiz (AQ, SQ). We ex-

Figure 4: Quiz Activity Profiles for Solvers and All-
rounders in Three Learning Phases.

cluded viewers from this analysis as they made little to no
attempts at the quizzes.

The relative QAP values for solvers and all-rounders in this
analysis are shown in Figure 4. We then conducted a series of
pairwise Kruskal-Wallis tests [20] with Benjamini-Hochberg
correction [3] comparing the performance by group and learn-
ing phase to a baseline of the course average. We found that
the solvers and all-rounders viewed significantly more lec-
tures between the quizzes and read more posts during sub-
sequent quiz submissions than in the other learning phases.

4.4 RQ4. QAPs by Culture
How do quiz-based activity profiles and countries relate to
the four overlapping Hofstede/CDLF cultural dimensions of:
power distance, individualism, masculinity, and uncertainty
avoidance?

In order to assess this question we applied hierarchical clus-
tering on countries with more than 15 all-rounders, solvers
or viewers, based on the four shared dimensions. This pro-
duced three clusters with ASWs above 0.46. For our analysis
we treated the first cluster as the baseline as it contains
the majority of the student population. Then, for each
course activity in the learning phases, we conducted a se-
ries of Kruskal-Wallis tests comparing each QAP by CAP
and Cluster with the course average baseline. We applied
Benjamini-Hochberg correction to correct for the multiple
tests as above. The results are shown in Figure 5.

Countries in cultural cluster 1 (Australia, Canada, the U.S.
and U.K. cluster) have the lowest average power distance
and the highest average individualism. In our analysis we
found that solvers in clusters 2 (Russia, Spain, Brazil, &
France) and 3 (China, India, & Singapore) read and made
more posts during multiple learning phases. These differ-
ences were significant or marginally-significant. Moreover,
solvers in cluster 3, whose countries are characterized by
the highest average power distance and lowest average in-
dividualism, viewed significantly fewer lectures between the
quizzes. All-rounders in cluster 3 also viewed significantly
fewer lectures during the first quiz submission and made
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Figure 5: Cultural clusters based on Hofstede-CDLF
values with statistically-significant values (p ≤ 0.05
bolded) and marginally significant (p ≤ 0.1) QAP
differences as compared to baseline behaviors.

more submissions per quiz, this difference was marginally
significant.

We found a high degree of overlap between the cultural clus-
ters and the CAP clusters described in section 4.2. Cul-
tural cluster 1 is a subset of the all-rounder CAP cluster,
by country, and cultural cluster 3 is a subset of the solver
CAP cluster. These results suggest that students from coun-
tries with higher individualism and lower power distance are
twice as likely to be all-rounders, while students from coun-
tries with higher power distance and lower individualism are
more prone to focus on evaluations. However, cultural clus-
ter 2 includes students that were evenly split between solvers
and all-rounders. These findings suggest that the cultural
dimensions are directly connected to some aspects of the stu-
dents’ observed behaviors, but other personal motivations
may also dominate student behaviors.

4.5 RQ5. Forum “Best Friend”
Is a student’s most frequent forum partner in the same coun-
try/culture?

For this analysis we identified each students’ “best friend”
based upon their forum interactions. In a prior study, we
tested whether we can predict students’ performance in the
course based upon their implicit social relationships in the
forum [6]. In this case we constructed a similar relationship
graph for the 750 forum users based upon that work and the
work of Fire et al. [11]. Edges in the graph were weighted
based upon the number of times that a user had replied to a

thread that the other used had posted in. We then defined
a students’ “best friend” as the individual with the highest-
weighted edge between them.

Then, for each of the top 15 countries and the 3 cultural
clusters defined in the prior section we performed a χ2 test
with the proportion of “best friends” within the cluster as
the dependent variable. Our goal was to test whether or not
the cluster was a significant predictor of the proportion of
individuals with “best friends” in their cluster. The results
are shown in Table 3. We found that for all three cultural
clusters, the students are significantly more likely to have a
best friend within their own country.

Table 3: Groups whose “best friends” are signifi-
cantly more likely to be from the same group
Clusters &
Countries

% IN this
group
with best
friends in
this group

% NOT IN
this group
with best
friends in
this group

p

Cluster1(n=381):
Australia,
Canada,U.S.,U.K.

64.04% 54.09% 0.0065

Cluster2(n=83):
Russia, Spain,
Brazil, France

36.60% 5.93% <0.001

Cluster3(n=91):
China, India,
Singapore

19.78% 10.13% 0.0066

China (n=19) 26.32% 1.99% <0.001
Brazil (n=38) 63.16% 1.31% <0.001

5. DISCUSSION
In this study, we conducted an exploratory analysis on three
dimensions of MOOC behavior by country and culture. We
first identified five Course Activity Profiles (CAPs) based
on the number of lecture views and quiz attempts: viewers,
solvers, all-rounders, samplers, and bystanders. We found
that the all-rounder students were most likely to obtain a
certificate of completion, followed by the solvers. This in-
dicates that the behavior profiles exhibited by these groups
are a good indicator of students who are working toward
certification.

We then studied the distribution of CAPs over countries.
To that end we clustered countries with 15 or more stu-
dents in the solver, viewer, or all-rounder categories based
upon their CAP distributions. Interestingly we found that
the developing countries in our dataset all contained a sub-
stantially higher proportion of solvers than other countries.
We then clustered the same set of countries using the Hofst-
ede/CDLF cultural frameworks [13, 24]. We found that the
resulting cultural clusters also aligned with the observed stu-
dent types. Our first cultural cluster, which included Aus-
tralia, Canada, the U.S., and the U.K., was dominated by
all-rounders while our third cluster, which included China,
India, and Singapore, was dominated by solvers. This dis-
tinction may reflect differing educational traditions, as Asian
countries are historically more test-centric [18, 30]. It may
also reflect differences in the professional environments of
the countries as certificates may be more valuable for ca-
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reer advancement in Asian nations. Indeed, it may be the
case that the solvers are studying offline and are using the
MOOC as a certification system.

Following that we focused on the students’ quiz-centric be-
havior. We defined the Quiz Activity Profiles (QAPs) based
upon the students’ major activities between quizzes and be-
fore subsequent quiz attempts. We found that, regardless of
the student’s CAP, they typically viewed lectures between
quizzes, and then turned to forum posts after their initial
submission and before any resubmission. This resembles
some traditional classroom settings where students attend
lectures before doing homework and then only turn to the
office hours or peers after they face some difficulty.

When clustering the countries by cultural dimensions we also
found that two of our clusters were dominated by countries
with higher power distances and lower individualism (cluster
2: Russia, Spain, Brazil, and France; cluster 3: China, In-
dia, & Singapore). Students in these clusters were less likely
to interact on the forum in most of the learning phases than
the students in cluster 1 which was dominated by countries
with low power distance and high individualism. This find-
ing is consistent with other work on the CDLF which found
that students in countries with high power distance tend to
treat the teacher as the unchallenged communicator versus
students in countries with low power distance who place a
higher value on dialogue and discussion in the learning pro-
cess. This framework, however, does not explain the other
observed variations in cultural cluster 3, notably their ap-
parent focus on work between quiz attempts. We believe
that the explanation may lie in the educational culture of
this cluster. As noted above this cluster consists entirely of
Asian nations which are historically test-driven. We believe
that this educational culture may cause the students to view
quizzes as the primary goal, leading them to focus their ef-
forts on viewing lectures and forums after they have seen
the quiz. Moreover, this cultural emphasis on exams may
be the primary reason that Asian students were more prone
to re-submit quizzes rather than moving on to new material.

Finally, we analyzed students’ “best friends” on the forums.
We found that students are more likely to have a “best
friend” [6, 11] from countries in the same cultural cluster
as their own. Chinese and Brazilian students, in particular,
are more likely to have “best friend” from their own country.
This close connection may be explained by several factors.
First, students from the same country may have the same
motivations and overall view of the course which would lead
them to join forums that fit their shared needs. Second, stu-
dents may face difficulties in communicating with individu-
als from other nations due to language barriers, thus making
them more connected to their neighbors. And third, the ob-
served relationships in the forums may reflect real offline
relationships among students who joined the class together
and are collaborating offline. In the absence of additional
data we cannot distinguish among these alternatives.

Ultimately we conclude that students from different coun-
tries and cultures do exhibit different learner behaviors on
the BDE MOOC. These differences may be explained by
country, cultural dimensions, and educational differences.
We believe that the students’ observed behaviors are driven

in part by their own goals and their unique cultural back-
ground. Students who come from countries that value dis-
cussion are more prone to interact on the forums. Stu-
dents who come from countries that are test-centric are more
prone to focus on improving their quiz scores and will struc-
ture their efforts around that. These findings contribute
to our understanding of the role that culture and coun-
try play in MOOC learner behaviors. They also suggest
some culturally-influenced behaviors that MOOC designers
should consider when designing their materials.

5.1 Conclusions & Future Work
Our goal in this study was to increase general understand-
ing of behavioral differences in MOOC populations, and the
possible role that country and culture may play. We found
interpretable inter-country and intercultural differences in
students’ observed activities, both across the whole course
and when segmented by quizzes. We also found that fo-
rum users were most strongly connected to individuals from
their own country or from culturally-related countries. We
analyzed these findings in the context of a hybrid Hofst-
ede/CDLF cultural framework and found that our observed
clusters were consistent with the theoretical literature.

This paper is one of the first to explore the relationship be-
tween observed behaviors and learners’ country or culture.
In future work we plan to examine the generality of these
findings by analyzing other related MOOCs. Our present
dataset includes 29,149 accounts identified from the click-
stream data, only 1,591 of which were non-bystanders, and
only 750 of whom participated in the forum. While this is
consistent with other MOOCs, it is also somewhat skewed
and contains relatively small samples for many countries.

As we build a better understanding of the interactions be-
tween culture, behavior, and MOOC performance, new ques-
tions arise for MOOC designers. Should e-learning platform
designers intervene to change cultural behaviors? For exam-
ple, should they encourage students to use forums more or to
communicate across cultural lines? Or should they consider
supporting many separate groups by providing language-
specific forums and tailored tracks? If so, how can we assess
the impact of such interventions? It may be worthwhile to
conduct more user-centered research so that we can better
understand the unique needs of diverse populations. This
type of work may help us to better understand how to ad-
dress the diverse needs of such unprecedented student pop-
ulations.
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ABSTRACT 
Time has become a standard feature used in EDM models, and 
is used in models of meta-cognitive strategies to models of 
disengagement. Most of these models consider whether a 
student action is “too fast” or “too slow”. However, an open 
question remains on how we define and select these cut-offs. 
Moreover, it is not clear that the same cut-offs are appropriate 
across different situations. Some students may generally 
respond faster than others; more difficult items may take 
different amounts of time. In this paper, we consider whether 
absolute or relative indicators of time are more appropriate as 
cut-offs, and whether simple transformations (such as log time) 
are useful when representing time. We do so through 
visualizing student performance in relation to general student 
ability, item difficulty, and different ways of representing time. 
We find that student knowledge and item difficulty should be 
taken into account when choosing cut-offs, and that there are 
advantages to representing duration in terms of standardized 
log-time. 
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1. INTRODUCTION 
Over the decade since the Educational Data Mining 
community began to coalesce, one of the most common ways 
to interpret student behavior has been to look at the amount of 
time taken to respond to questions. Early work by Aleven, 
Baker, and Beck tried to determine whether a response was 
“too fast”, indicating gaming the system, help abuse, try-step 
abuse, or disengaged behavior [1, 2, 3]. Soon, work began to 
consider whether a response was “too slow” as well [4]. 
Researchers noted that performance seemed to degrade when 
behavior reached either of these two extremes. This theme of 
trying to identify behavior as “too fast” or “too slow” 
continues to this day [5, 6]. Actions that are “too fast” or “too 
slow” are seen as components in a range of EDM models, 
including contemporary models of gaming the system [7], off-
task behavior [8, 9], carelessness [10, 11], and self-
explanation [12].  

However, one of the interesting aspects of this body of 
literature is how remarkably inconsistent it is, as noted by [5]. 
Despite their conceptual simplicity, researchers do not agree 
what “too fast” or “too slow” means. This inconsistency may 
not be a major concern when these parameters are empirically 
fit using training labels, but is somewhat more concerning 
when cut-offs are rationally defined.  

Part of the reason for inconsistency, of course, is that “too 
fast” and “too slow” are inherently contextual. Interfaces 
matter. A student completing division problems by typing in 
answers is likely to respond faster than a student chasing down 
a skeleton and hitting the right divisor key [13]. Ability 
matters. A 7-year old solving arithmetic problems is likely to 
perform more slowly than a 38-year old. Difficulty matters. 
Even for the same user interface and an experienced adult, “49 
/ 7” will be solved more quickly than “602 / 7”.  

For this reason, it is unlikely there is a universal answer to 
how fast is too fast, and how slow is too slow. Nor will it be 
easy to find a simple formula or set of formulas that can 
predict this. Mathematical models based on memory [14] can 
make predictions about speed in some situations, but are 
incomplete for many of the complex types of problem-solving 
and the activities surrounding problem-solving in modern 
learning environments. At the same time, there exist simple 
psychometric models that can predict a considerable amount 
of variance in performance, which may be useful in 
investigations of this nature. 

One solution, as discussed above, is to empirically select a 
single cut-off, but part of the challenge is that even within a 
learning environment, cut-offs both vary contextually, and 
exist on a continuum. In this paper, we will examine this 
continuum in a visual fashion, across different situations 
within a single online learning environment. Specifically, we 
will analyze how the relationship between time and 
performance varies when students vary in knowledge, and for 
items of different overall difficulty. 

We will also investigate whether the most commonly used 
way to represent time (number of seconds) is the best 
representation for understanding these issues, or whether 
standardizing or transforming time makes it easier to 
understand the relationship between time and performance.  
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By better understanding these relationships, we will be able to 
select more appropriate cut-offs, and develop more precise 
models for discovery with analysis and interventions.  

2. DATA SET 
We investigate these issues in the context of one of the world’s 
most widely used digital learning environments, McGraw-Hill 
Education’s Connect system [16, 17]. Connect is currently 
actively used by approximately two million students and 
25,000 instructors. Within Connect, instructors select questions 
from question banks and the system then administers them to 
the student as homework, quiz, exam, or practice assignments. 
Most items are auto-graded by the system, and immediate 
feedback is provided when relevant (e.g. not during exams). 
Within homework and practice assignments, students can make 
multiple attempts to answer each question, based on the 
policies set up by the instructor. In this paper, we use item and 
questions interchangeably.  
Connect is organized into courses; each course is tied to a 
McGraw-Hill book title, and question banks are organized in 
relation to book chapters. In this paper, we focus on a single 
textbook in order to avoid including radically different material 
together in the same analysis (for example, one might expect 
calculus problems to take longer to solve than questions about 
the factual aspects of history). We analyze a data set from 173 
courses that utilize the title McGraw-Hill's Taxation of 
Individuals and Business Entities, 6th Edition, by Brian 
Spilker, a medium-sized data set with relatively consistent item 
design, involving a course text with items selected as a focus 
for enhancement within McGraw-Hill at the time this research 
was being conducted. Within this textbook, there were multiple 
types of items: multiple choice items where single responses 
were correct, multiple choice items where multiple responses 
were correct, fill-in-the-blank items, matching questions, and 
ungraded essays (removed prior to analysis). 
Within this textbook, within the period between August 2014 
and November 2014, 3,882 students (working with 86 
instructors) answered 2,947 distinct questions. In total, this set 
of students attempted to answer questions 536,520 times, an 
average of 138.21 attempts per student.  
Prior to analysis, we removed all ungraded questions from the 
data set (as assessing correctness is outside the scope of this 
paper). We also removed attempts where the student timed-out 
due to inactivity within the system for 60 minutes, and where 
the student’s response time was not collected or had impossible 
values (due to logging errors). For this specific analysis, we 
removed students’ second and subsequent attempts to answer 
questions, focusing on their performance and time taken on 
their first attempt. Although second and subsequent attempts 
are relevant to issues of modeling student behaviors such as 
off-task behavior and gaming the system, these times are 
strongly influenced by the time taken on the first attempt, and 
are relatively more complex to consider. As such, we leave 
analysis of second and subsequent attempts to future work. The 
resultant cleaned data set involved 3,632 students answering 
2,689 distinct questions, attempting to answer items 365,302 
times, an average of 100.58 attempts per student.  

Within these items, scores were distributed between 0 and 1, 
with 76% of items receiving a fully correct score of 1. 
However, partial credit was assigned by instructors and, as a 
result, is somewhat non-uniform; different items had different 
partial credit assigned for different responses. As such, the 

partial credit information was less useful for analysis than in 
other systems where it is assigned in a consistent fashion [15, 
18]. To avoid having our results impacted by this 
inconsistency, we assigned a value of 0 (incorrect) to any 
student response that was not fully correct. Only 7.9% of the 
problem attempts were affected by this modification.  

 

2.1 Tagging with Question Difficulty and 
Student Ability 
In order to understand how student knowledge and item 
difficulty influence the relationship between time taken and 
performance, we annotated the data with a well-known 
psychometric model: the Rasch Model [19, 20]. 
The Rasch Model is one of the most widely used models in the 
history of psychometrics. It relates performance to student 
ability (treated here as overall knowledge of the domain) and 
item difficulty. More recent and advanced models from the 
psychometrics and student modeling literature consider change 
in knowledge over time, group items into latent skills, 
explicitly model the probability of guess and slip, and use 
different uncertainty functions for students and items [21, 22, 
23, 24, 25]. However, the Rasch model is appropriate for the 
analysis here, as assesses student knowledge and item 
difficulty (which is what we focus on in the analyses below), it 
is known to function well when different students answer 
different items [19], and has high stability and reliability [20].  
The equation for the Rasch model is given as follows [19]: 

P(θ ) = 1
1+ e−1(θ−b)  

where b is the question difficulty parameter, θ is the student 
ability (knowledge) level, and P(θ) is the probability that the 
student will answer the current item correctly. Within this 
model, if a student’s ability is equal to the item’s difficulty (θ = 
b), the probability that the student will answer the question 
correctly is 50%. As the student’s ability becomes higher or the 
item’s difficulty becomes lower, the probability of correctness 
increases and finally is approximately equal to 1; 
correspondingly, as ability becomes lower or difficulty 
becomes higher, the probability of correctness approaches 0.  
As is standard [19], we use Maximum Likelihood Estimation, 
in this case converging after seven iterations, to estimate the 
values of θ and b for each student and item based on actual 
data. After fitting and applying the model, all student attempts 
are tagged with a difficulty parameter and an ability parameter. 
This model achieves an R-squared value of 0.322, and an A’ 
(mathematically equivalent to AUC but easier to calculate) of 
0.852, calculated using the A’ calculator available at 
http://www.columbia.edu/~rsb2162/computeAPrime.zip . 
 

3. Analysis  
We analyze the research questions discussed above through a 
set of visualizations, created in Python’s matplotlib library. 
Each of the visualizations will place some variant of the time 
taken by the student to give a response on the X axis, and 
place the percentage of times when the student response was 
correct (percent correct) on the Y axis. In the visualizations, 
item responses are binned to one-second grain-size. For that 
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bin, we find the percent correct and plot a dot there; if there 
are more items in the bin, the dot is made larger.  

 

3.1 Baseline Graph 
In the first visualization, Figure 1, we consider the baseline 
relationship between time taken and percent correct. Item 
difficulty according to the Rasch model is also included in the 
visualization as color, with darker colored dots representing 
easier items and lighter dots representing harder items (e.g. if a 
dot is dark, the items composing that dot were on average 
easier).[12] 
 

 
Figure 1: The relationship between the time taken to respond to 

an item, and correctness. Color is used to denote item 
difficulty. 

As Figure 1 shows, students who spend very little time on an 
item typically achieve low percentage correct. As the time 
taken increases, performance improves, curving up from 0 
seconds to about 12 seconds; this range of the graph is denoted 
“A”. Percent correct remains stable from 20 seconds to 60 
seconds; this range of the graph is denoted “B”. As students 
spend over 60 seconds, their performance somewhat declines 
again; this range of the graph is denoted “C”. This graph shows 
a similar qualitative pattern to the pattern seen in other 
systems, but with the shifts occurring at different points. For 
example, Beck [3] finds that performance improves up until the 
student has spent 4 seconds, remains stable under 7 seconds, 
and drops gradually after that. 
It is worth noting that despite these shifts, it is non-trivial to 
find cut-offs. 12 seconds is approximately the inflection point 
where performance shifts to being stable, but it probably 
contains more positive behavior than would be desired. It 
might still be desirable to pick a lower cut-off point for “too 
fast”. Similarly, the difference between 60 seconds and 100 
seconds for “too long” is relatively minimal. 
One limitation to Figure 1 is that fewer and fewer data points 
are seen as the times get longer, making it difficult to show all 
the data in a relatively limited horizontal space. This limitation 
can be addressed by switching from absolute time in seconds, 
to a logarithmic scale for time, shown in Figure 2. By 
switching to a logarithmic scale, the long tail of long response 
times is compressed to a small section of the plot and we can 
show more data while maintaining the essence of the graph. 
The log scale thus makes it easier to present our full data.  
The log scale also makes it easier to see that there are more 
inflection points than Figure 1 showed. The same ranges (0-12 
seconds, 20-60 seconds and 60+ seconds) are marked in Figure 
2 as in Figure 1, to enable comparison. Note that between 0-12 
seconds (range A), there is a secondary inflection point around 
3.5 log time taken where performance shifts from improving 
slowly to improving quickly. This might be a better cut-off for 
“too fast” than 12 seconds. Similarly, the decline in 

performance can be seen to begin around 4.75 log time taken 
but to accelerate after 5.5 log time taken, suggesting a 
potentially better “too slow” cut-off. While these cut-offs are 
somewhat harder for a reader to interpret directly from the 
numbers, they allow us to make more sophisticated distinctions 
than were possible just from absolute time. 

 

 
Figure 2: The relationship between the time taken (log scale) to 

respond to an item, and correctness. Color is used to denote 
item difficulty. 

 

3.2 Standardization 
One common decision seen in many models that measure 
student time [26, 27] is to represent student time in terms of 
standard deviations faster or slower than the average time, 
calculated as a Z-score, and referred to as standardized time or 
unitized time. This transformation, which assumes that time is 
normally distributed, uses the formula  

𝑍 =  
𝑇𝑖𝑚𝑒 −𝑀𝑒𝑎𝑛(𝑇𝑖𝑚𝑒)

𝑆𝐷 (𝑇𝑖𝑚𝑒)
 

The logic is that this approach accounts for the fact that 
different items need different amounts of time to answer them, 
allowing fairer comparison of student time on different items.  
Figure 3 shows the results of applying this transformation to 
our data.  
 

 
Figure 3: The relationship between the standardized time taken 

to respond to an item, and correctness.  
 

As this graph shows, most of the data is now clumped together. 
Notably, the center of the data is not at 0 SD; instead the 
median is somewhere around -0.5 SD. Though 0 SD is by 
definition the average value, it is clearly not the median value. 
This is a common limitation to using standardization, and one 
that the authors have observed in previous data sets as well. As 
such, using standardization is vulnerable to skewness and 
outliers in the original data, making it broadly unsuitable for 
use across data sets – or indeed, for cases where the magnitude 
of the long time outliers may vary over time. This can occur, 
for example, when the original data set has a small number of 
students with extremely high outlier times, or when the system 
time-out may change over time. This suggests that standardized 
time is undesirable for use in cut-offs, since the cut-off points 
may vary depending on the exact outliers in the data set. This 
could be addressed by ignoring the outliers when computing 
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the SD value (i.e. truncating the values of extreme outliers 
[28];) but doing so will only incompletely address a second 
problem; the data is highly compressed relative to the previous 
visualizations we have examined. Most of the data points occur 
in a fairly small range. In this case, 64.4% of the data is 
clumped between Z= -1 and Z = 0. If the data were distributed 
according to assumptions, 68% of data would be clumped 
between Z= -1 and Z= 1, double the range. This clumping 
makes it difficult to see the inflections in performance for rapid 
student responses; although the graph’s clumping does allow us 
to see that there is some rise in performance for very high 
response times (a set of outliers outside of bounds for the 
earlier representations). 
One alternative, shown in Figure 4, is to use [29] modified Z-
score, which is computed as: 

𝑀! =  
0.6745 (𝑇𝑖𝑚𝑒 −𝑀𝑒𝑑𝑖𝑎𝑛 𝑇𝑖𝑚𝑒 )

𝑀𝐴𝐷 (𝑇𝑖𝑚𝑒)
 

where MAD stands for Median Absolute Deviation. 
 

 
Figure 4: The relationship between the modified Z-score 

standardized time taken to respond to an item, and correctness.  
 
This approach centers the data better, but does not solve the 
problem of the data being compressed.  
Another alternative is to conduct standardization on time 
transformed to a logarithmic scale, shown in Figure 5. As we 
saw in the previous section, using a logarithmic scale spread 
out the data better and allowed us to see inflection points more 
clearly.  
 

 
Figure 5: The relationship between the standardized log-

transformed time taken to respond to an item, and correctness.  
 

As Figure 5 shows, standardizing using a logarithmic scale 
centers the data as well as using modified Z-score, but spreads 
the data out better. The data is broadly centered on Z = 0, with 
most of the data (68.82%) between Z = -1 and Z = 1 (almost 
exactly the amount that one would expect for normally 
distributed data). The same inflection points visible at the left 
side of Figure 2 are visible at the left side of Figure 5. At the 
same time, while the logarithmic nature of the transformation 
does compress the right tail somewhat, we nonetheless can see 
the same rise in performance at very high time taken that we 
saw in Figure 3. As such, this representation helps us in 
understanding the data and choosing cut-offs, while gaining the 
benefit of comparability that standardizing variables gives us. 

 

3.3 Studying Item Difficulty 
One factor that is worth considering is that the time taken 
appears to be associated with how difficult the items are. 
Figures 1 and 2 each show difficulty in terms of color, with 
blue representing easier items (according to the Rasch model 
discussed above) and white representing harder items. 
In Figure 1, we can see that the hardest items are found at the 
two ends of the spectrum; the briefest times taken, and the 
longest times taken. It is unsurprising that students take longer 
on hard items. The connection between difficulty and brief 
responses is also reasonable; students are more likely to 
become disengaged and engage in behaviors such as gaming 
the system and carelessness when encountering hard items [30]. 
The same pattern is seen in Figure 2, although whether the 
lowest difficulty is seen for higher or lower times varies 
between graphs. This is simply a result of the fact that Figure 2 
shows more of the data set than Figure 1, due to the use of a 
logarithmic scale.  
This leads to the question of how we should expect the 
relationship between the student’s time taken and their 
performance to change based on item difficulty. In particular, 
does the same amount of time taken mean different things for 
easy items versus difficult items? It is plausible to hypothesize 
– for example – that rapid responses on easy items may imply 
fluent knowledge [31] but rapid responses on difficult items 
may imply disengagement [3].  
We examine this by grouping items, based on their difficulty 
according to the Rasch model b parameters, into 5 bands, 
shown in Table 1, and displayed in Figures 6 and 7. 
 
Table 1: The difficulty groups shown in Figures 6 and 7, based 

on b in the Rasch model. Items with b below -3 look very 
similar to items with b from -1 to -3, so they are included in the 

same group. 

Difficulty < -1 Dark Blue 

Difficulty 0 to -1 Light Blue 

Difficulty 0 to 1 Light Yellow 

Difficulty 1 to 3 Yellow 

Difficulty > 3 Red 
 

 
Figure 6: The relationship between the log-transformed time 
taken to respond to an item, and correctness, for each of the 

difficulty bands shown in Table 1. 
 

As Figure 6 shows, the pattern for dark blue and light blue (the 
lower-difficulty items) is largely the same as in Figure 2. 
Correctness increases fairly rapidly when students spend more 
time, leveling off and then slowly declining for high amounts 
of time spent. However, the amount of time needed for high 
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levels of correctness is higher for the light blue items (b 
between 0 and -1) than for the dark blue items (b below -1).  
This suggests that the same cut-off for “too fast” is not 
appropriate for items with different difficulty.  

 

 
Figure 7: The relationship between the standardized log-

transformed time taken to respond to an item, and correctness, 
for each of the difficulty bands shown in Table 1.  

 
As Figure 7 indicates, this difference between the time needed 
for the lowest-difficulty items (dark blue) and the moderately 
low-difficulty items (light blue) cannot be controlled for, 
simply by switching to standardized log time. Even after we 
switch to standardized log time, more time is needed for the 
moderately low-difficulty items than for the lowest-difficulty 
items, to reach high levels of correctness.  
The decline in performance for students who spend too much 
time (possibly going off-task, or asking for help) is seen for 
both of these two item difficulty groups, in both the log-time 
graph and the standardized log-time graph. 
Interestingly, the patterns seen are different for the higher-
difficulty items. Focusing on yellow and red, we can see that 
there is no clear inflection point where spending more time is 
associated with worse performance, or even a clear leveling off 
in performance. For yellow (b between 1 and 3), there is a 
range between -1 and -1.5 standardized log time where 
performance may be leveling off or mildly dropping, but it is at 
best a minor and brief shift, compared to the lower-difficulty 
bands. For yellow, “too fast” cut-offs could be placed within 
the -1 to -1.5 SD range, somewhat higher than for lower 
difficulty (it is hard to identify any good place for a cut-off in 
the non-standardized graph). For red (b above 3), there is 
essentially no range where increasing time does not improve 
performance. For neither of these bands is there a clear “too 
slow” range, where performance worsens once too high a time 
spent is reached. 
These graphs show that time cut-offs should not be considered 
independently of item difficulty. We are not aware of any 
models of gaming the system, carelessness, off-task behavior, 
or related constructs that explicitly consider item difficulty. 
Our results suggest that this omission is lowering the quality of 
these models. 
 

3.4 Studying Student Knowledge 
Finally, we consider how the student’s knowledge of the 
domain impacts their time spent. Figures 8 and 9 each show 
knowledge in terms of color, with green representing more 
knowledgeable students (according to the Rasch model 
discussed above) and white representing less knowledgeable 
students. Note that this color scheme corresponds to the color 
scheme used for difficulty – students are less likely to produce 
correct answers for white dots. 

Figure 8: The relationship between the time taken to respond to 
an item, and correctness. Color is used to denote student 

overall domain knowledge, assessed using the ability parameter 
in the Rasch model.  

 

 
Figure 9: The relationship between the log transformed time 
taken to respond to an item, and correctness. Color is used to 
denote student overall domain knowledge, assessed using the 
ability parameter in the Rasch model. 
 
Figures 8 and 9 show a different pattern than Figures 1 and 2. 
Whereas those earlier figures indicated that short and long 
times were seen for hard items, Figures 8 and 9 indicate that 
brief times are seen for the least able students while long times 
are generally seen for knowledgeable students. This result 
suggests that less knowledgeable students appear to be more 
likely to engage in behaviors such as gaming the system and 
carelessness, but there does not seem to be a similar pattern for 
off-task behavior.   
Figure 10 shows the same item difficulty bands as were seen in 
Figure 7, but colored in terms of student ability rather than item 
difficulty. We can see that regardless of question difficulty, if 
the response time is too fast relative to the average for the item, 
the student is likely to be of low ability. However, we can also 
see from box T1 that this low ability is also seen for longer 
response times for harder items. For the easiest items, lower 
ability is seen below -2 SD for time; for the hardest items, 
lower ability is seen below -1.2 SD for time. As such, this 
figure indicates that the behavior of answering too fast is seen 
across questions with different difficulties, though the cut-off 
should differ. 
For higher difficulty items, longer time taken is associated with 
better students, as shown in T2. But this effect only manifests 
for the higher difficulty items; these items are more 
discriminative in terms of the relationship between student 
ability and longer time taken. Finally, most of the examples of 
responses that are relatively much longer than other responses 
occur on the easier items – it is harder to distinguish responses 
that are genuinely too long for harder items. 
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Figure 10: The relationship between the log-transformed time 
taken to respond to an item, and correctness, for each of the 
difficulty bands shown in Table 1, but colorized in terms of 

student ability. 
 
Given these results, we can reasonably ask: how should we 
expect the relationship between the student’s time taken and 
their performance to change based on the student’s general 
knowledge of the item? In particular, does the same amount of 
time taken mean different things for knowledgeable students 
versus not knowledgeable students? Correspondingly, with the 
above, it is plausible to hypothesize – for example – that rapid 
responses by knowledgeable students may imply fluent 
knowledge but rapid responses by struggling students may 
imply disengagement [14].  
We examine this by grouping students, based on their 
knowledge level according to the Rasch model θ parameters, 
into 5 bands, shown in Table 2, and displayed in Figure 11. 
 
Table 2: The difficulty groups shown in Figure 11, based on b 
in the Rasch model. Items with θ below -3 look very similar to 

items with θ from -1 to -3, so they are included in the same 
group. 

Knowledge < -1 Dark Red 

Knowledge 0 to -1 Brick Red 
Knowledge 0 to 1 Pink 

Knowledge 1 to 3 Light Green 

Knowledge > 3 Green 

 

 
Figure 11: The relationship between the standardized log-

transformed time taken to respond to an item, and correctness, 
for each of the student knowledge bands shown in Table 2.  

 
As Figure 11 shows, the pattern for brick red, pink, and light 
green (the medium-knowledge students) is largely the same as 
in Figure 9. Correctness increases fairly rapidly when students 
spend more time, leveling off, declining, and then coming back 
up a little for the highest amounts of time spent. The pattern is 
different for the highest-knowledge students. 
The highest-knowledge students (green) essentially do not have 
any very rapid responses and show similarly high performance 
across the spectrum of time taken. This can be interpreted in at 
least three ways. Perhaps the highest-knowledge students do 

not become disengaged; alternatively, perhaps the students who 
never become disengaged perform better, and appear to have 
the highest knowledge. Or perhaps being classified by the 
Rasch model as having the highest knowledge requires both 
having the highest knowledge and never becoming disengaged.  
The lowest-knowledge students (dark red) have very poor 
performance for low amounts of time spent. However, their 
performance never flattens out, although the rate of 
improvement slows. The more time these students spend, the 
better they do. Despite that, these students’ performance never 
reaches a very high level.  
One other thing that is visible in the graph is that the amount of 
time needed for asymptotic levels of correctness is lower for 
the higher knowledge students (θ above 1) than for the lower 
knowledge students (θ below 0). See the line B-D in the 
Figure, which links the asymptotic point for high-knowledge 
students to the near-asymptotic point for low-knowledge 
students. This suggests that the same cut-off for “too fast” is 
not appropriate for students with different ability.  
 

4. DISCUSSION AND CONCLUSIONS 
In this paper, we have investigated how the relationship 
between the time taken by students and their performance is 
mediated by student general knowledge and item difficulty. We 
also investigate whether different ways of representing time 
(standardized or non-standardized; log-transformed or non-
transformed) impact our ability to recognize cut-offs and 
inflections in student performance. We analyze these questions 
by visualizing the relationship between time taken and 
performance under each of these different conditions.  
We find that using a logarithmic scale allows for showing more 
data while making it easy to present the full data range while 
standardization allows for a fairer comparison of student time 
on different items. We find that the combination of these 
approaches facilitates identifying cut-offs and infection points 
in student performance. 
We find that students who spend very little time on an item 
typically achieve low percent correct and as the time taken 
increases, performance improves. However, as students spend 
over a certain time, their performance somewhat declines 
again. The amount of time needed for very successful 
performance is different for easier and harder items and is 
higher for the easy items compared to very easy items.  Hence, 
we suggest that the same cut-off for “too fast” is not 
appropriate for items with different difficulty levels.  
Student performance declines when students spend too much 
time on easy and very easy items. The patterns seen are 
different for the higher-difficulty items. For the difficult and 
very difficult items, we do not observe any clear inflection 
point where spending more time is associated with worse 
performance. 
As such, we can conclude that time cut-offs should not be 
considered independently of item difficulty. We are not aware 
of any models of gaming the system, carelessness, off-task 
behavior, or related constructs that explicitly consider item 
difficulty. Our results suggest that this omission is lowering the 
quality of these models. 
In terms of student overall domain knowledge, we find that the 
most successful students seldom respond in very short amounts 
of time. As discussed above, this may reflect in part the fact 
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that very quick responses make the student appear generally 
less successful within the Rasch model. However, we also see 
that the generally knowledgeable students show consistently 
high performance for most the span of time taken, whereas the 
less generally knowledgeable students’ performance does not 
level off to the same degree. 
For higher difficulty items, longer time taken is associated with 
better students. However, this effect only manifests for the 
higher difficulty items; these items are more discriminative in 
terms of the relationship between student ability and longer 
times taken. In future work, we will try to correlate these 
longer times with students’ usage of other online materials 
during. At present we do not have access to this level of 
detailed data. 
These results suggest overall that models that consider student 
time taken during online learning, and select time cut-offs, 
should take student general knowledge and item difficulty into 
account. However, the exact cut-offs will probably differ 
between systems and also possibly differ with content. 
It would be useful to investigate whether the findings seen here 
are general across other contexts. In our future work, we will 
investigate their generality to other textbooks, and whether the 
findings also generalize to other online learning platforms. It 
would also be useful to examine existing models depending on 
time cutoffs, and see whether measures of general student 
knowledge (perhaps average correctness so far across skills) 
and item difficulty can produce more accurate models of 
constructs like gaming the system and off-task behavior. 
Ultimately, this type of model may enhance the effectiveness 
of behavior detection, leading to more effective interventions 
to struggling and disengaged students. One of our upcoming 
steps will be to use these analyses to develop behavior 
detectors for our platform, that can be used to help to students 
who are answering too fast or who are struggling and 
responding slowly. We will then measure the impact of these 
changes on learning outcomes, to see the degree to which these 
approaches can enhance student learning.  
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ABSTRACT 
This research combines work in memory, retrieval practice, and 
depth of processing research. This work aims to identify how the 
format and depth of a retrieval practice item can be manipulated to 
increase the effort required to successfully recall or formulate an 
answer, with the hypothesis that if the effort required to answer an 
item is increased there will be more benefit to learning. This 
hypothesis stems from work on desirable difficulties and the 
effortful retrieval hypothesis. Our data source was an experiment 
that used a 2 (question depth: factual, applied) x 2 (answer format: 
multiple choice, short answer) between-subjects design to 
investigate the effects of these conditions on retrieval practice 
performance. The experiment was delivered online though 
Mechanical Turk (n = 178). A logistic regression predicting 
performance during practice indicates that participants get more (in 
terms of an increase in future predicted success) from successful 
retrievals of items that fall within the more difficult level of both 
the format and depth factors (i.e., short answer and applied). There 
is also some support that the benefit from multiple choice items 
may be increased by asking deeper, more applied questions. The 
application of these results to scheduling effective practice is 
discussed. 

Keywords 

Retrieval practice, application, difficulty, multiple choice, short 
answer, modeling, depth of processing 

1. INTRODUCTION 
The testing effect is the well-replicated benefit of retrieval practice 
(i.e., “testing yourself”), typically over the course of several 
repetitions [e.g., 1; 7; 16; 30; 33]. Experiments often compare the 
benefit of active retrieval against re-reading or re-studying written 
material and much of the early work in this field utilized a more 
traditional cognitive psychology experimental setup (e.g., using 
word lists/pairs or isolated facts, controlling for prior knowledge, 
and post testing with verbatim items repeated from practice). This 
design, however, does not well represent how retrieval practice 
would be implemented in authentic educational settings. For 
implementation in classrooms, issues that have real-world 

importance to educators, such as the format of the questions and the 
ease of administration, should be considered. 

The effect of answer format has long been of interest not only to 
educational researchers (e.g., comparing multiple choice, fil-in-the-
blank, essays, etc.), but also to cognitive psychologists (e.g., 
comparing recognition, cued or free recall, etc.). Research has 
shown a continuum in terms of performance/difficulty ranging 
from recognition, to cued recall, to free recall which translates 
roughly in educational terms to multiple choice, short answer, and 
essay questions. This ordering is found consistently in research and  
is summed up nicely by Glover’s [13] work which reported the 
effectiveness of three formats used during retrieval practice 
(referred to as intervening tests): free recall, cued recall, and 
recognition (see Experiment 4). After reading a passage and having 
intervening tests in one of the three formats, participants took a 
retention test after four days. The free recall intervening test was an 
open-ended format, with participants writing what they 
remembered from the passage. The cued recall intervening test was 
a fill-in-the-blank format, using sentences paraphrased from the 
text. The recognition intervening tests required the participants to 
identify which of several sentences they had read previously in the 
text. The final retention test included items in each of the three 
formats (across the posttests in Experiments 4a, 4b, and 4c). A very 
clear pattern emerged: the fewer cues there were available during 
practice (e.g. free recall provided the fewest cues), the better 
participants performed on the final retention test. Those who had 
intervening tests in a free recall format out-performed participants 
in the cued recall condition on the final retention test (statistically 
significant difference), who in turn outperformed those who 
practiced with a recognition task (not statistically significant). 
Perhaps most importantly, this advantage held regardless of the 
format of the retention test, which included all three formats [13]. 

There are several other studies which show us the benefit of using 
fewer cues (e.g., short answer format) during retrieval practice. 
Kang, McDermott, and Roediger III [18] had participants read 
several journal articles. After reading each article, participants 
completed one of four possible tasks- a multiple choice test, a short 
answer test, reading relevant facts from the text, or a questionnaire 
(i.e., filler task). When feedback was provided during the practice 
tests, those items that had been practiced in short answer format had 
significantly higher scores on the final test. Results also indicated 
that practice with multiple choice testing was no better than re-
reading relevant facts. The researchers concluded with a 
recommendation for practice testing with short answer items. 
Similar results were found in work by McDaniel, Anderson, 
Derbish, and Morrisette [22], which indicated that weekly practice 
tests were more effective in increasing final test performance when 
the weekly practice was in the form of short answer questions 
compared to multiple choice items. Since the final test was only in 
multiple choice format, it suggests another benefit of short answer 
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practice is the ability to overcome transfer-appropriate-processing 
effects, which would predict that the final test performance would 
be highest when it matched the conditions of earlier practice [24]. 
In other words, short answer may be a better alternative to multiple 
choice regardless of how you assess it. 

One possible reason for why practice with short answer often 
outperforms multiple choice on final outcome measures is the 
amount of effort required for retrieval [18]. This general benefit of 
effortful retrieval has been referred to as the retrieval effort 
hypothesis, which was motivated by Bjork’s [4; 5] desirable 
difficulty framework and Craik and Lockhart’s [11] depth of 
processing research. The retrieval effort hypothesis, as defined by 
Pyc and Rawson [29], claims that there is more memorial benefit 
from successful retrieval practice when it is difficult than when it 
is less difficult. This follows from the desirable difficulty 
framework, which suggests that practice which is made more 
difficult (up to a certain point) will lead to more durable and 
generalizable learning [4]. The desirable difficulty framework sets 
a theoretical upper bound on the level of difficulty appropriate for 
effective learning, which can depend on several individual 
differences including prior knowledge and working memory 
capacity. This is similar to the assistance dilemma [19], which 
suggests there is an optimal middle-ground in terms of how difficult 
a task should be, and/or how much assistance should be offered to 
a student during a learning task. 

The goal of the current work was to generate data to further 
investigate the effect of effortful retrieval practice, and specifically, 
how we can equate the effort required to successfully answer 
multiple choice items with the effort required for short answer 
items. One way to address this is to increase the effort required to 
correctly answer a multiple choice question, and the way to do so 
may lie within the depth of processing required to respond to the 
question. By asking a deeper, more applied question, rather than the 
more common text-based factual question, perhaps we can 
encourage deeper processing so as to increase the effort required 
for multiple choice questions. 

The depth of processing framework suggests that information 
which is processed on a deeper level will be encoded in a more 
elaborate and durable manner, with depth referring to greater 
semantic or cognitive processing [11]. Craik [10] further defines 
depth as “the qualitative type of processing carried out on the 
stimulus…” (p. 307). Questions that require more cognitive 
processing to successfully answer have also been referred to as 
deep-reasoning questions. Deep-reasoning questions rely on a 
student’s logic and reasoning abilities and are thought to tap into 
more complete and coherent understanding [14]. Deep-reasoning 
questions are embedded in the deeper levels of cognition in Bloom's 
[6] taxonomy, and both have been shown to be positively correlated 
with final examination scores [14]. In the current work we attempt 
to increase the difficulty of multiple choice items by asking deeper, 
more applied questions, and mine our data to compare the benefit 
that we see from these more difficult multiple choice items with 
typical benefit from asking factual short answer items. 

The interaction of answer format and depth of processing has been 
investigated to some degree in work by Smith and Karpicke [31], 
which compared three answer format conditions :multiple choice, 
short answer, and hybrid conditions which consisted of short 
answer-multiple choice pairings. Question type during retrieval 
practice (i.e., factual and inference questions) was a within-subjects 
factor (Experiments 1, 2, and 3), but this factor was collapsed in the 
analyses of final assessment performance. They concluded that 
practice with short answer could lead to higher performance on the 

final assessment (compared to practice with multiple choice 
questions), if students achieve a high proportion of correct short 
answer responses during practice. Smith and Karpicke therefore 
attempted to equate the initial practice performance between the 
short answer and multiple choice conditions. Those results are 
discussed in more detail in their paper [31], but of importance to 
the current work is that they attempted to raise performance on 
short answer questions up to the performance on multiple choice 
items. The current work will essentially attempt the opposite- 
increasing the difficulty (or lowering the performance) of multiple 
choice in an attempt to “equate” it to short answer. Therefore, the 
design of the current data collection was partially inspired by that 
of Smith and Karpicke, in an attempt to get more fine-grained 
information about the interaction between format and depth during 
practice, and their effect on different format and depths at posttest. 

In theory, the multiple choice questions in Smith and Karpicke’s 
work were more difficult when the multiple choice was an 
inference item, rather than factual, but the nature of their inference 
questions appears to be fairly straightforward, without requiring 
much more effort than the factual questions. Specifically, the 
inference items required participants to combine different facts they 
had previously read in order to draw a conclusion/answer that had 
not been explicit in the text. However, for most (if not all) of the 
inference items, the facts required to answer them were presented 
within a single paragraph. This is not inherently problematic, but it 
is important to take note of if your objective is to increase the effort 
required to answer a multiple choice item, since it brings into 
question the level of difficulty of the inference questions. For 
example, an inference would be more difficult to make if it required 
retrieving and combining more than two facts, or if those facts were 
presented further apart from each other in the text. Further, the 
answer options in Smith and Karpicke’s multiple choice items only 
included a single option that appeared in the text- the correct answer 
option. Thus, these questions become purely a measure of memory 
(of a previously read text), rather than understanding or learning. In 
other words, the students wind up asking themselves, “Which of 
these answer options did I see in/ matches with the text I read 
earlier” rather than, “Which of these options make sense and 
accurately reflects what I read?” This only serves to further reduce 
the difficulty of multiple choice practice. To alleviate this, the 
multiple choice answer options for the current work were all 
feasible, text related answers that underwent several iterations, 
described in detail in the materials section. 

1.1 The Current Study 
The current study focuses on two ways to increase the difficulty of 
retrieval: through the amount of retrieval cues available (i.e., the 
answer format: multiple choice or short answer) and through the 
depth of processing required to successfully answer the question 
itself (i.e., the question depth: factual or applied). We attempt to 
mine our data to determine whether or not the difficulty of multiple 
choice be increased by asking a deeper question, and whether 
difficulty created through varying amounts of retrieval cues (i.e., 
the answer format) is similar to the difficulty created through the 
depth of the question. 

The purpose of this paper is to investigate the effect of question 
format, depth, and individual differences during retrieval practice. 
Although the experiment tested several types of transfer at the 
posttest (e.g., format, depth, and unpracticed information), this 
paper is predominantly focused on dissecting the mechanisms at 
play during practice. In order to do this, we employed a method of 
model-based discovery [3] in which previously developed models 
are adapted to fit the particular research questions and data being 
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mined. In order to create a more complete picture, however, some 
descriptive information regarding posttest performance is provided, 
although it is not the main focus of this paper. 

2. METHODS 
2.1 Design 
The experiment manipulated difficulty of retrieval practice through 
a 2 (question depth: factual, applied) x 2 (answer format: multiple 
choice, short answer) between-subjects design. The difficulty of the 
posttest was also manipulated with a 2 (posttest question depth: 
factual, applied) x 2 (posttest answer format: multiple choice, short 
answer) x 2 (concepts: practiced, unpracticed) fully factorial 
within-subjects design. This resulted in four between-subjects 
retrieval practice conditions (Factual MC, Applied MC, Factual 
SA, or Applied SA), and posttest questions in each of those four 
conditions, allowing for measures of transfer to a different depth 
and format, as well as transfer to previously unpracticed concepts. 
Prior knowledge was assessed by a 6-item pretest on factual 
questions, half randomly assigned per participant to multiple choice 
and half to short answer format. This experiment did not include a 
control condition with no retrieval practice. This was a conscious 
decision since the testing effect is widely accepted as a reliable 
phenomenon, and the current design allows for a more tractable, 
and fine-grained investigation of specific components of retrieval 
practice. 
2.2 Participants 
One hundred ninety-three participants were recruited through the 
Mechanical Turk (MTurk) online data collection platform. The 
only requirements were for the participants to be at least 18 years 
of age, a native English speaker, from the United States or Canada, 
and be a reliable MTurk worker. The last requirement was defined 
as a worker who had completed at least 50 MTurk tasks with at least 
a 95% approval rate. Data for 10 participants were removed due to 
the participants having ten or more time-outs during the experiment 
and five participants’ data were removed due to glitches in the 
system (n=178, 58% male). Within this sample, 45% were in the 
age range of 26-34 years, 31% were in the age range of 35-54 years, 
30% were between 18-25 years, and 4% were between 55-64 years. 
Most participants reported that their highest level of completed 
education was “Some college” (37.2%), followed by “High school/ 
GED” (17.7%), “Graduate degree” (6.6%), and “Less than high 
school” (<1%). Each MTurk worker was paid $5.00 for 
participation 

2.3 Materials1 
2.3.1 Text 
The experimental text was 995 words in length and pertained to the 
circulatory system. It was compiled from texts used in previous 
research [15; 35], and is estimated to be at a Flesch-Kincaid 6th 
grade reading level (https://readability-score.com). 

2.3.2 Factual and Applied Items 
Sixteen concepts were extracted from the text to be used for the 
creation of factual and applied questions. These concepts represent 
what we believe to be the crucial components in the text, and are 
aligned with, and expanded from, the factual questions previously 
used with these materials [23; 35]. The first author, along with 
another graduate student familiar with this line of research, created 
a factual and an applied question based on each of the 16 key 

 
1 Experimental materials are available upon request; please contact 

the first author. 

concepts. The factual versions for the 16 concepts are taken directly 
from the text. For example, the text states, “The heart is a pump. Its 
walls are made of thick muscle. They can squeeze (contract) to send 
blood rushing out.” The factual question for this concept asks, 
“Which component of the circulatory system acts as a pump?” 
Answer: the heart. 
For each of the 16 concepts, we also created an applied question 
through brainstorming sessions by asking ourselves the questions, 
“Why is this fact or component important to the circulatory 
system?” or “What would happen if this component was not 
functioning properly?” In most of these cases, the 16 applied 
questions reference the consequence of the factual relationship 
(described in the text) not holding true. For example, many applied 
questions require participants to predict outcomes given a certain 
component not functioning normally. The key principle for the 
applied questions is that participants must retrieve the necessary 
fact or facts from memory (presented previously in the text) and 
apply them in a new way. Importantly, the text only discusses the 
normally functioning circulatory system, and presents the material 
at the factual level, without much elaboration. Therefore, the 
applied questions are not presented explicitly in the text, but can be 
answered by processing and recombining the facts contained within 
the text. For the previous example, the concept of the heart acting 
as a pump, the applied question is, “Why doesn't oxygen rich blood 
flow directly from the lungs to the rest of the body?” Answer: 
Because blood requires a pump, the heart, to push it through the 
body. 

2.3.3 Multiple Choice Answer Options 
Each question, both factual and applied, required three (incorrect) 
answer options for the multiple choice format. The incorrect answer 
options were created based on common misconceptions about the 
circulatory system. Information on misconceptions was gathered 
through past research [e.g., 32] and pilot testing (common incorrect 
responses to the questions in short answer format). Once three 
answer options (in addition to the correct answer) were created for 
each of the factual and applied questions, additional pilot testing 
confirmed that the frequencies of responses for each of the three 
incorrect answer choices were not substantially different from each 
other. This method for creating the answer options was specifically 
done in an attempt to not lessen the effort required to answer a 
multiple choice item by using answer options that were unrelated 
or too easy for a participant to exclude as a possible answer. 

2.4 Procedure 
The experiment consisted of four portions (pretest, reading, 
retrieval practice, and posttest) within a single session delivered 
online through Amazon’s Mechanical Turk web service using the 
MoFaCTS online tutoring system 
(http://mofacts.optimallearning.org/) [27]. The entire experiment 
took an average of approximately 60 minutes for participants to 
complete. After obtaining informed consent, participants 
completed a pretest consisting of six factual questions. For each 
participant, half of the questions were randomly assigned to short 
answer format and the other half to multiple choice. These six 
questions were created from the text in the same way as those for 
retrieval practice, but did not overlap with the 16 concepts covered 
in retrieval practice to reduce the possibility of priming. No 
corrective feedback was given during the pretest.  
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Next, the participants were asked to read the Circulatory System 
text which was displayed on a single screen (with a scroll bar). For 
this portion, participants were instructed to not take notes while 
they read the text. Participants read at their own pace without a time 
limit. The average time spent reading was approximately seven 
minutes. 
Following the reading portion, participants began retrieval practice. 
Each participant was randomly assigned to practice with either 
factual MC, applied MC, factual SA, or applied SA questions. 
Retrieval practice consisted of eight questions (each representing a 
different concept covered in the text), repeated four times each. 
These eight items were randomly selected for each participant from 
the list of 16 concepts. The order of the eight questions was 
randomized for each of the four “blocks” of repetition. Corrective 
feedback was given immediately after participants entered their 
responses. Correct responses allowed the participant to 
immediately move on to the next item; incorrect responses were 
followed by a review period of 10 seconds, during which the correct 
response was shown on the screen. This feedback procedure not 
only provided the correct answer for the participant to review, but 
also provided an incentive for participants to try their best, since 
correct answers allowed the participant to “skip” the mandatory 10-
second review period. In other words, participants would quickly 
realize that random guessing or poor effort would only increase the 
length of the experiment. 
The final portion of the experiment was the posttest, which was 
given after a delay of approximately one minute. During this delay 
the participants were instructed to complete a “current emotion” 
survey discussed below. The eight concepts studied during retrieval 
practice were included in the posttest, but each was randomly 
assigned to be tested in one of the four format/depth conditions. 
Each participant also answered an additional eight posttest items 
(two in each of the format/depth conditions) which reference the 
eight remaining concepts that were not randomly selected for 
retrieval practice. This allowed us to see how well each practice 
condition transferred to similar but previously untested material. 
Each of the 16 posttest questions were presented once, in random 
order, without corrective feedback. 
At three different points in the experiment, participants responded 
to a set of six “current emotion” questions. The three time-points 
were: before the retrieval practice to obtain a baseline, immediately 
after retrieval practice to look for an effect of practice condition on 
affect, and immediately after posttest to determine if the change in 
format and depth at posttest had an adverse effect on affect. 
Specifically, participants were asked to rate on a scale of 1 
(Strongly Disagree) to 5 (Strongly Agree) how much they agree 
with the statement, “Currently, I am feeling _____.” This question 
was asked six times, with a different affect provided in the blank. 
The six affects were: anxious, bored, confused, discouraged, 
frustrated, and unfocused/distracted. Demographic information 
was also collected at the conclusion of the experiment. 

2.5 Scoring 
All questions were scored immediately by the system and received 
a score of 1 or 0 (although this value was not explicitly displayed 
to the participant). MoFaCTS (the online drill-trial problem 
authoring and deployment platform we used) scored short answer 
items by matching words in the participants’ responses to key terms 
necessary to answer the question correctly. Pilot testing revealed 
common (acceptable) synonyms and alternative words that we 
incorporated into the system to allow for slight variation in what 
was considered a correct response. For example, the (complete) 
correct answer for the (factual) question, “Where is the heart 

located in relation to the lungs?” is “The heart is located between 
the lungs.” The system scored the responses to this item based on 
whether or not it contained the word “between” or “middle.” The 
use of regular expressions embedded in the MoFaCTS 
programming allowed for any of the following responses to be 
counted as correct: “between the lungs”, “the heart is between the 
lungs”, or “the heart’s in the middle of the lungs.” The regular 
expressions in the system also accounted for ordering when 
applicable; for example, ordering is essential for the (factual) 
question, “Which gas do the cells of the body require to function 
and which gas do they expel as waste?” Participants received 
corrective feedback (either “Correct” or “Incorrect. The correct 
response is _______”) after each item in the retrieval practice 
portion, but not during the pretest or posttest. 

3. RESULTS AND DISCUSSION 
3.1 Overall Performance 
Before we discuss the results of mining our retrieval practice data, 
it may be helpful to review the broader results of the experiment. 
Table 1 provides an overview of the average scores for the practice 
(8 items with 4 trials each), the portion of the posttest containing 
the eight concepts previously practiced, each randomly assigned to 
one of the four format/depth conditions, (total of 8 trials), and the 
portion of the posttest which consisted of eight previously 
unpracticed concepts, each randomly assigned to one of the four 
format/depth conditions (total of 8 trials). 
The average performances during retrieval practice, provided in 
Table 1, support the general ordering of performance we expected 
for each condition. Namely, the Factual MC condition was the least 
difficult, with the highest performance during practice, the Applied 
SA was the most difficult condition as indicated by the lowest 
performance during practice, and the Applied MC and Factual SA 
fall in between in terms of performance during practice. A between-
subjects Analysis of Variance (ANOVA) indicated significant 
differences between the four conditions, F (3,174) = 28.49, p<.001. 
Post hoc pairwise comparisons indicate that the only two conditions 
that are not significantly different from each other are the Applied 
MC and Factual SA conditions (p = .19). All other conditions are 
significantly different from each other (all p’s < .05). 
 

Table 1. Means and Standard Deviations for Practice and 
Posttest Performance by Condition 

Retrieval 
Practice 

Conditions 

Average 
Practice 

Performance 

Average Posttest Scores†  
Practiced 
Concepts 

Unpracticed 
Concepts 

Factual MC 
(n = 46) .85 (.12) .65 (.17) .45 (.23) 

Applied MC 
(n = 42) .77 (.17) .70 (.21) .45 (.24) 

Factual SA 
(n = 47) .73 (.15) .69 (.14) .50 (.19) 

Applied SA 
(n = 43) .55 (.18) .68 (.20) .47 (.21) 

Note: † collapsed across all format/depth posttest conditions. 
Standard deviations in parentheses. 
 
Table 1 also displays posttest performance for each condition on 
the eight concepts they had been tested on during practice, as well 
as on eight concepts they had read about in the text, but had not 
actively practiced. Between-subjects ANOVA’s showed no 
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significant differences between conditions for performance on 
either posttest. Note that the drop in performance from practice to 
the practiced concepts posttest is due to the within-subjects nature 
of the posttest conditions. In other words, the eight concepts were 
only practiced in one condition, but were then randomly assigned 
to be tested in one of the four depth/format conditions in the 
posttest, meaning that participants had two items in the posttest of 
practiced concepts that were in a different format, two that were in 
a different depth, and two that were in a different format and depth. 
These different types of transfer in the posttest for the practiced and 
unpracticed concepts therefore resulted in lowered overall 
performance. Although not significant, we do see that the Factual 
MC condition was most affected by these transfer items for the 
posttest on practiced concepts. 
While the ANOVA’s offer us a broad view of overall performance, 
in order to truly answer our research questions we will need a finer-
grained analysis. Mining our data and creating a model of learning 
will give us a more in depth look at what is taking place during 
retrieval practice. 

3.2 Modeling Retrieval Practice 
A logistic mixed-effects regression was created to model learning 
during retrieval practice. Since retrieval practice conditions 
differed in the question depth and answer format factors according 
to the result above, this model is meant to dissect the differential 
learning caused by each type of question. The model is based on a 
Performance Factors Analysis (PFA) where performance is 
predicted on subsequent trials as a function of the performance on 
prior trials [26]. Unlike Additive Factors Modeling (AFM) [8], 
PFA captures prior performance by two parameters, differentiating 
the effect of prior incorrect (unsuccessful) and correct (successful) 
trials. We chose to use PFA to separate these components because 
it would allow us to look into the difference in predictive ability 
between successful versus unsuccessful prior retrievals. This 
comparison would indicate if the benefit of retrieval practice is 
dependent on successful retrieval, or if the mere attempt at retrieval 
(i.e., incorrect trials) also results in better performance. 
Modeling the data included several iterations guided by our 
hypotheses concerning the effects of format, depth, and prior 
knowledge. We began with the basic components of a PFA model: 
two parameters to capture the count of prior correct and incorrect 
trials. We also included pretest score and a random effect of subject, 
all of which were significant. 
We then added in features we suspected would affect performance 
based on the cognitive and educational research discussed above, 
namely, the format and depth of the practiced items. We used one 
parameter to capture the format of the current item and one to 
capture the depth of the current item. We also tried adding measures 
of response time (e.g., time spent reading the text prior to practice, 
average time spent on all previous trials, and average time spent on 
previous trials with the specific item, etc.) but none were significant 
in the model. Next, we added interactions between all factors that 
had proven significant at that point (e.g., count of prior correct by 
depth, count of prior incorrect by pretest, depth by format, etc.) 
Only two of these interactions were significant: count of prior 
correct by format and count of prior correct by depth, which were 
retained in the final model. Finally, several measures of affect were 
added to the model (i.e., the affective score). 
The final additions to the model included measures of affect. 
Remember that our measure of affect consisted of six questions 
which each used a 5-point Likert-item (1- Strongly Disagree to 5- 
Strongly Agree) for participants to rate how much they agreed with 
the statement: “Currently I am feeling _____” for each of the six 

different affects (anxious, bored, confused, discouraged, frustrated, 
and unfocused/distracted). Ratings for each of these six affects 
were collected before and after retrieval practice (and after posttest, 
but that was not relevant to modeling the learning during practice). 
We tested the model using six parameters of the affects before 
practices, and then six parameters to capture the affect after 
practice. We decided to try to approximate participants affective 
states during practice by averaging the self-reported levels of affect 
reported before and after practice. It should be noted that there was 
not much change in affect from before to after retrieval practice, 
and each of the three measures (the “before” ratings, the “after” 
ratings, and the average of the two) performed similarly in the 
model. Confusion (averaged to capture affect during practice) was 
the only affect factor that improved the fit of the model. The last 
step was adding in interactions between this confusion measure and 
the count or prior correct and incorrect trials, of which only the 
latter was significant. The final model, summarized in Table 2, 
retained each of the parameters that achieved significance 
throughout our modeling process. 
The final model had an R2 of .359, with 5,696 total observations 
from 178 participants. The AIC was 4838.2, the BIC was 4904.6, 
and the Log Likelihood was 4818.2. Table 2 summarizes the fixed 
effects parameter values of the final model. Not included in Table 
2 is the random effect of Participant (SD = 0.669). For the format 
and depth parameters, a value of 0 was assigned to the less difficult 
level (i.e., MC and Factual) and a value of 1 was assigned to the 
more difficult level of each factor (i.e., SA and Applied). For each 
of the parameters involving the count of prior correct or incorrect 
trials, the log of (1 + the prior count) was taken to account for 
diminishing marginal returns expected from the power law of 
practice [25]. Figure 1 also illustrates the fit of the model (left) to 
the participants’ data (right). 
Ten runs of a 10-fold cross-validation revealed that the model 
retained validity when comparing the training folds (R2 = .336) to 
the testing folds (R2 = .329). The CV proportion (training folds R2 
divided by testing folds R2) for the model indicated that 97.9% of 
the validity of the model was retained in the held out data. 
 

Table 2. Summary of Fixed Effects for Logistic Regression 
Model Predicting Future Success 

Parameter Parameter 
Estimate 

SE Z- 
value 

Intercept -0.11 .19 -.56 
Pretest 1.95 .30 6.50 
Count of Prior Correct 1.82 .16 11.72 
Count of Prior Incorrect 1.47 .15 9.88 
Format -1.22 .14 -8.93 
Depth -0.82 .13 -6.06 
Prior Correct x Format 1.13 .19 5.93 
Prior Correct x Depth 0.36† .19 1.93 
Prior Incorrect x Confusion -0.18 .05 -3.78 

Note: † p < .05; all other parameters are significant at the p < .001 
level. For the Format and Depth parameters, MC and factual are 
coded as 0, and SA and applied are coded as 1, respectively. 
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3.3 Model Interpretation 
One of the first things the data mining reveals is that correct 
retrieval (specifically recall) is important for learning. However, 
the current model also indicates a benefit from unsuccessful 
retrieval, although to a smaller degree. It is worth noting the model 
also shows a (lesser) benefit from unsuccessful trials. When 
comparing just the effect of prior correct and incorrect practice 
trials, it appears that they offer almost equivalent additions to the 
prediction/model (1.47 vs 1.82). However, the count of prior 
correct also interacts with the depth and with the format. For three 
out of the four practice conditions, these increase the predictive 
ability of previous successful practices. Therefore, taken all-
together, there is much more of a positive effect of previous correct 
trials than incorrect trials. For example, in the Applied SA 
condition with one previous correct trial and one previous incorrect 
trial, successful practices is more than twice as impactful on future 
performance as previous unsuccessful practices when taking the 
interactions into account. This difference between the influence 
from previous correct versus incorrect trials is made even greater if 
the student has a higher level of confusion (as indicated by the 
negative estimate for the confusion*incorrect count parameter). 
This result adds to the building body of research that suggests it is 
successful retrieval, and not just the attempt to retrieve, that is 
beneficial to learning [20; 21; 29]. Thus, when it comes to 
supplying challenging questions for retrieval practice, we must be 
sure that the questions are at an appropriate difficulty-level for the 
student, so the student can be successful enough to gain from such 
practice. 
Our model also shows how the format and depth of a practice item 
influence performance. First we see that the average performance 
for multiple choice practice is significantly higher than practice 
with short answer (as indicated by the overall performance of the 
multiple choice conditions during practice in Table 1 and the -1.22 
estimate for short answer practice in Table 2 and), which indicates 
that multiple choice is the better option in terms of allowing for a 
higher percentage of successful practice. However, we also saw in 
the model above that there is more gained from successful short 
answer practice than is gained from successful multiple choice 
practice (the Prior Correct x Format parameter). This result are 
aligned with prior work which suggests that the short answer format 

may not be universally “better,” especially if students are not 
getting a sufficient amount of those questions correct [31]. Based 
on these results, it is reasonable to suggest that in order to schedule 
effective practice, students should be given questions that have a 
higher likelihood of being answering correctly. If we assume that 
for the most part, students have a lower level of prior knowledge at 
the beginning of practice/learning a topic, multiple choice item may 
permit learning by boosting success. However, since successful 
short answer practice offers more of a benefit (than multiple 
choice), it seems that students should eventually transition into 
short answer practice as they become more proficient. In other 
words, practice should begin with the less effortful item-type and 
transition to the more effortful (and more beneficial) item once 
students reach some level of mastery. 
The same may be said for practice with the deeper applied items, 
over the more text-based factual questions, in that students will get 
the factual items correct more often, but there is more gained from 
successful applied practice than from successful factual practice. 
Again, students might benefit most from beginning with the easier 
depth (factual/ text-based) and finishing retrieval practice with 
more difficult, applied questions. The goal it seems, should be to 
get students to a point where they can get many successful retrieval 
attempts with SA and/or applied items. This suggestion aligns with 
ideas in several areas of education research including scaffolding 
[17], zone of proximal development, and concreteness fading [34]. 
Determining the optimal level of mastery is an important 
component though, since increased redundancy during learning 
(repeated practice of known information) has been shown to offer 
decreasing marginal returns [9; 28]. Our model also illustrates the 
importance of taking prior knowledge into account when designing 
tutoring systems and practice schedules. Some students might be 
able to begin right away with more difficult items (e.g., applied 
short answer) and others would benefit from beginning practice 
with factual multiple choice questions and progress from there. 

3.3.1 Affect in the Model 
The work concerning affect in the current study is exploratory in 
nature and was meant to give us an indication of which affective 
states might be the most important to investigate further in future 
experiments. Our measure of affective states indicated that the most 
influential affect was confusion. The interaction between the count 

 
Figure 1. Side by side comparison of the model’s predicted performance (left) and the participants’ actual performance (right) 

during the four trials of retrieval practice. 
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of prior unsuccessful trials and self-reported confusion level in our 
model shows that when a learner answers more questions 
incorrectly, higher confusion predicts a much larger negative effect 
than if a learner has higher confusion but is still having mostly 
successful practice. This preliminary result appears to align with 
previous findings which suggest that confusion can be an important 
component during learning, and is beneficial when students 
identify that confusion and work to clarify it (i.e. start to produce 
correct responses), but detrimental when the confusion is 
overwhelming or the student fails to remedy it [12].  
Unlike previous work by Baker, et. al., [2] we did not find any 
significant impact of frustration or boredom (nor for the other 
affective states we asked participants about: anxiousness, 
discouragement, and distractedness). As the current work was 
meant to serve only as an exploration of affect during retrieval 
practice, this is an area that we may investigate further in the future. 
In future work we may implement pop-up/immediate questions 
concerning the participant’s current affective, or specifically their 
level of confusion, after more than one incorrect response to 
measure affect/ changes in confusion during bouts of unsuccessful 
practice. 

3.4 General Conclusions 
Our model of performance during retrieval practice indicates a 
benefit for successful retrieval of short answer over multiple choice 
items. Likewise, there is a benefit from successful retrieval of 
applied items over factual items which supports the effortful 
retrieval hypothesis, that successful trials with more difficult items 
are better than success on less difficult items. Our hypothesis that 
the difficulty of multiple choice items could be increased (and 
equated with difficulty of factual short answer items) by asking 
applied questions, could potentially be supported by the non-
significant difference in practice performances, although more 
analyses will be necessary before making this conclusion. 
However, format appears to be a more powerful predictor of future 
success than depth. This may suggest that the difficulty of 
retrieving information from memory created from less cues (short 
answer items), is more beneficial than difficulty created through the 
effortful processing and reasoning with retrieved information 
(applied items). We recognize that the construct of retrieval effort 
could be considered too broad of an explanation for our results. 
While retrieval effort may not capture all the nuances involved in 
understanding retrieval, we believe it offers a parsimonious general 
framework under which several mechanisms are captured. 
Understanding the role that effort plays in retrieval practice will 
benefit from future work that investigates the differences in more 
fine-grained mechanisms such as individual difference in strategy 
use and/or cognitive processes involved in practice with each 
question type. 
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ABSTRACT
While Educational Data Mining research has traditionally
emphasized the practical aspects of learner modeling, such
as predictive modeling, estimating students knowledge, and
informing adaptive instruction, in the current study, we ar-
gue that Educational Data Mining can also be used to test
and improve our fundamental theories of human learning.
Using the Apprentice Learner architecture, a computational
theory of learning capable of simulating human behavior in
interactive learning environments, we generate two models
that embody alternative theories of human learning: (1) that
humans perfectly recall previous training during learning
and (2) that humans only recall a limited window of experi-
ence. We evaluate which of these models is better supported
by data from two fractions tutoring systems. In general, we
find that the model with a complete memory better fits the
data than a model recalling only the previous training ex-
perience (data-drive theory development). Additionally, we
demonstrate that both models are able to predict student
performances, as well as, reproduce the main effects of an ex-
perimental paradigm without being trained on student data
(theory-driven prediction). These results demonstrate how
the Apprentice Learner architecture can be used to close the
loop between learning theory and educational data.

1. INTRODUCTION
One branch of Educational Data Mining (EDM) research
leverages data to improve our theoretical understanding of
how people learn [28, 3]. Analogous to how data from the
Large Hadron Collider can be used to gain insights into phys-
ical laws, educational data can be used to provide insights
into the unobservable mechanisms underlying student learn-
ing. Surprisingly, little EDM research has explored this di-
rection, rather, the main trends in research center on how
statistical models can be used to perform latent knowledge
estimation and domain-structure discovery (i.e., knowledge
component discovery) [3]. While these research directions
are important, we argue that the availability of educational
data makes the EDM community well poised to contribute
substantially towards our theoretical understanding of hu-
man learning.

Although many of the widely used predictive models of learn-
ing, e.g. Bayesian Knowledge Tracing [5], and Additive Fac-
tors Model [4], rely on existing theories of human learning,
such as the power law of practice [22], researchers rarely
apply these models to educational data with the aim of im-
proving the underlying theory of learning. Further, there
are a number of barriers to using educational data for this
purpose. First, many EDM models are only loose approx-
imations of the theories they are based on. For example,
the Additive Factors Model predicts that improvements in
human performance will follow a single logistic function,
whereas the power law of practice states that the improve-
ments should follow a power function [6]. Second, EDM
models do not reflect the current state of learning theory.
For example, recent studies of skill acquisition actually sug-
gest that improvements should follows three distinct power
functions, one for each phase of cognitive skill acquisition
[30], rather than a single logistic function. This disconnect
between theories and models makes it difficult to draw infer-
ences about the underlying theories given the fit of models
to data. By more tightly connecting our EDM models to
theory, we can leverage educational data to improve our un-
derstanding of the mechanisms behind human learning and,
in turn, use these theories to improve our abilities to predict
student behavior.

Figure 1: A depiction of how theories, models, and
behavior relate. Theories are used to generate mod-
els, which can be used to simulate behaviors. Simu-
lated behavior can be compared to human behavior
and differences inform future models and theories.
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To more tightly link a theory to models, researchers can
develop a computational theory [17, 21]. Unlike a theory
that only specifies the abstract relationships between con-
structs (e.g., that an increase in spatial skills leads to an
increase in learning with graphical representations [26]), a
computational theory represents a complete description of
the mechanisms that produce observed phenomena. Within
this paradigm, a model presents as a specific algorithmic
implementation of these mechanisms that can be executed
to simulate behavior, which then can be compared with ob-
served behavior in order to test both the model and the
underlying theory. A key component of this approach is
not to explain or “fit” a relationship in observed data, but
rather, to predict that a relationship will be present before
any data is observed. Figure 1 shows the iterative relation-
ship between theories, models, and behaviors. We argue
that this approach complements existing approaches in the
EDM literature.

In the current work, we present the Apprentice Learner ar-
chitecture, a computational theory of learning in interac-
tive learning environments, such as tutoring systems. Un-
like prior models of student performance, such as Additive
Factors Model and its variants, Apprentice Learner models
seek to explain the mechanism students use to acquire new
knowledge from instruction. This mechanical description al-
lows us to simulate learner behavior within an instructional
environment and use these simulations to predict human
behavior. Rather than arriving at a general conclusions like
students learn differently from positive and negative feed-
back this approach lets us explore possible explanations for
the mechanisms driving these results. In presenting this
computational theory we make two claims:

1. The Apprentice Learner architecture can be used to
predict student behavior and experimental results be-
fore collecting any student data (purely theory-driven
prediction).

2. The Apprentice Learner architecture can leverage data
to improve learning theory through the creation and
testing of different models of learning.

To support these claims, we explore different assumptions
about memory and its effect on human learning in intelligent
tutoring systems. We leverage the the Apprentice Learner
architecture to instantiate two models of human learning,
one that hypothesizes perfect memory and another that as-
sumes a more limited window of memory. We apply these
models in two different fractions tutoring systems. In both
cases, we generate datasets of simulated learner behavior
that have high agreement with the patterns of behavior ob-
served in human students. Additionally, we show that our
models reproduce the main effects of a problem sequencing
experiment without first being fit to student data. In gen-
eral, we find that the model with perfect memory better
fits the fractions data than the model with limited memory;
these findings provide an initial demonstration of how our
computational theory can be refined in response to data.

In the following sections, we first present the Apprentice
Learner architecture and describe the theoretical commit-
ments that it makes. Next, we describe our overarching

simulation approach, the particular computational models
that we investigate, and the results of our simulation studies
in (1) fraction addition and (2) fraction arithmetic. Finally,
we discuss the implications of our results and directions for
future work.

2. THE PROPOSED ARCHITECTURE
In 2006, VanLehn published his seminal paper describing
the step-level behavior of tutoring systems [31]. Although
not commonly cited within the EDM literature, VanLehn’s
description of the general two-loop structure of tutoring sys-
tems (i.e., an inner loop for step-level feedback and an outer
loop for problem selection) has direct relevance to many re-
cent advances in EDM research. For example, researchers
have used knowledge component discovery to create a bet-
ter understanding of domain tasks [4, 13], so that the in-
ner loop feedback can be improved. Other researchers have
used latent knowledge estimation to improve outer loop in-
structional policies [27]. While VanLehn’s theory promotes
common ground between similar thrusts of work in EDM, it
can only serve as half the picture of a computational theory
of the tutoring process.

The Apprentice Learner architecture, shown in Figure 2, is a
computational theory of human learning that aligns with the
step-level interactions described by VanLehn. The theory
embodied in the Apprentice Learner architecture states that
students acquire skills by interactively solving problems in
a tutored paradigm, receiving correctness feedback on their
actions. In the event that the student does not know how
to proceed, they can request a hint from the tutor, which
provides the student with a demonstration of how to take
the next problem-solving step.

The Apprentice Learner architecture uses a base of prior
knowledge to induce new skills from its observed demon-
strations and feedback. The first kind of knowledge consists
of functions for manipulating data (e.g., adding two values,
appending two strings together, etc.). The second kind of
knowledge consists of features for recognizing different el-
ements in the interface (e.g., recognizing numbers, mathe-
matical symbols, etc.). Depending on the domain, different
kinds of background knowledge may be appropriate. For ex-
ample, Apprentice Learner models in equation solving might
have features for recognizing polynomials, whereas models in
stoichiometry might have different features for recognizing
chemical symbols.

The Apprentice Learner architecture posits three learning
mechanisms to induce new skills from prior knowledge and
observed demonstrations and feedback. When given a demon-
stration, the how learning mechanism uses function knowl-
edge to search for a sequence of functions that can explain
the observed demonstration. After discovering a function se-
quence, the where learning mechanism acquires general per-
ceptual patterns for recognizing the elements used in the
discovered sequence. Finally, the when learning mechanism
uses the tutor state, augmented with feature knowledge, to
identify the conditions under which the discovered sequence
should be executed. The combination of the components
discovered by how, where, and when learning mechanisms
constitutes a skill. Apprentice learners apply learned skills
in subsequent problem solving.
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Figure 2: The Apprentice Learner architecture and its interactions between the work environment and
expert tutor. The architecture possesses three learning mechanisms (how, where, and when) to generalize
demonstrations and feedback into skill knowledge that can be used for problem solving.

In order to apply learned skills, the Apprentice Learner ar-
chitecture posits that learners use a basic Recognize-Act cy-
cle [32]. When presented with a problem, learners first query
their skill knowledge to determine if any known skills are ap-
plicable. If an applicable skill is found, the learner executes
it. The learner passes correctness feedback on the result-
ing action to its when learning mechanism, which uses the
feedback to refine the conditions under which the skill can
be executed. In the event that no skills are applicable, the
learner requests a demonstration that is passed to the how,
where, and when learners to produce a new skill.

Given the computational theory described by our architec-
ture and our data-driven theory development approach (see
Figure 1), our goal is to develop a theory that is consistent
with available educational datasets, such as those found in
DataShop [7] and other similar repositories. To pursue this
goal, we propose a research program wherein different mod-
els of human learning are generated within the framework
of the Apprentice Learner architecture, i.e., specific algo-
rithms are implemented for each of the components of the
architecture. These Apprentice Learner models can then
be connected to the same intelligent tutoring systems that
generated the data found on Datashop. Next, the behav-
ior of these models can be compared to human behavior.
Based on the differences between the models and humans,
we can revise our theory (e.g., replacing a perfect memory of
previous demonstrations and feedback with a memory that
only recalls a window of experience), generate new models,
and then simulate the revised models to determine if bet-
ter agreement between models and human behavior can be
demonstrated.

3. SIMULATION STUDIES
We make two key claims about the Apprentice Learner ar-
chitecture: (1) it can be used to predict student behavior
without data and (2) it can be used to improve theory by
facilitating the exploration of different models. To demon-
strate the potential of the architecture and to support our
key claims, we conducted simulation studies with two tutor-
ing systems in the domain of fractions [33, 14, 24].

For these simulations, we created an initial model of human
learning by implementing each of the components of the Ap-
prentice Learner architecture in computer code. This model
was given two features, isPlusSign and isMultSign, which
can be used to determine if a string is a plus or multiply sign
(i.e., + or ×). It was also given six functions: Add(X,Y),
Subtract(X,Y), Multiply(X,Y), Divide(X,Y), CopyPasteStr-
ing(X), and GenerateCheckMark(). The Add, Subtract,
Multiply, and Divide functions returned the result of ap-
plying their respective arithmetic operations to their argu-
ments. The CopyPasteString function returns a copy of the
string that is passed to it. Finally, the GenerateCheckMark
takes no arguments and returns a check mark that can be
used to fill checkboxes in the tutor interface. This prior fea-
ture and function knowledge represents the basic interface
and arithmetic knowledge that students would be expected
to know before using a fractions tutor.

Given this prior knowledge, we implemented three machine
learning algorithms for the three learning mechanisms out-
lined in Figure 2. For how learning, we used a variation
of Langley’s BACON algorithm [9] to discover an explana-
tion of expert demonstrations using the provided functions.
For where learning, we used a variation of Mitchell’s Version
Space algorithm [20] to discover perceptual patterns for rec-
ognizing relevant interface elements. Finally, for when learn-
ing, we used Quinlan’s FOIL algorithm [25] to learn the con-
ditions under which the learned skills can be executed. More
details of our algorithmic implementations can be found in
previous work, which refers to this particular combination
of learning algorithms as the SimStudent model [18, 11].

In this initial model, the skill knowledge acquired from the
three learning mechanisms is stored in the form of produc-
tion rules (i.e., IF-THEN rules). The perceptual patterns
learned from the where learner and the conditions acquired
by the when learner constitute the IF part of the rule. The
function sequence discovered by the how learner constitutes
the THEN part of the rule. An example of a human-readable
version of a production rule discovered by one of our mod-
els might be: IF there are two fractions with denomina-
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Figure 3: The Fraction Arithmetic Interface.

tors and a sign between them (i.e., the perceptual pattern
is present) AND the sign is a plus sign and the denomi-
nators are equal (i.e., the conditions are satisfied) THEN
copy one of the denominator values and put the result in
the answer denominator box (i.e., perform the function se-
quence). During problem solving, the models check if they
have any applicable production rules (i.e., skills) and if a
match is found, then they take the prescribed action.

This initial model, which we refer to as the full-memory
model (also the SimStudent model in previous work), has
been used to model ordering effects [10], as a teachable agent
[18], and for authoring cognitive models [16, 12]. In these
previous studies, the full-memory model has been found to
regularly outperform human students. One hypothesis is
that this model outperforms human students because it re-
vises its skill knowledge using a complete memory of all pre-
vious training examples [15]. To explore this hypothesis, we
created a second model that duplicates our initial model,
with the exception that it only recalls the previous training
example during skill learning. This model, which we refer
to as the one-back-memory model, instantiates an extreme
version of the hypothesis that learners only recall a limited
amount of their past experience during learning.

3.1 Data
To test the full-memory and one-back-memory models, we
use data from two intelligent tutoring systems available on
DataShop. In both tutors, students were asked to solve frac-
tion arithmetic problems using a variation of the interface
shown in Figure 3. The first dataset came from the control
condition of a fraction addition study [33]. The dataset con-
sisted of 24 students solving 20 fraction addition problems.
The tutoring system used in this dataset omitted the “I need
to convert these fractions before solving” checkbox and re-
quired students to convert fractions to common denomina-
tors, even if this meant copying fractions that already had
the same denominators. Additionally, the tutor allowed stu-
dents to use multiple approaches to find a common denomi-
nator; they could either multiply the denominators or com-
pute the least common denominator. To allow our models to
use this second approach, we added the LeastCommonMul-
tiple(X,Y) function to the prior knowledge of both models,
under the assumption that students utilizing this approach
know how to compute the least common multiple.

The second dataset came from an experiment testing whether
blocking or interleaving different types of fraction arithmetic
problems was better for learning [24]. This dataset contains
79 students solving 24 fraction addition problems (10 with
same denominators and 14 with different denominators) and
24 fraction multiplication problems. The tutor used in this
study required students to check the “I need to convert these
fractions before solving” box before making the fields nec-
essary for converting visible. Additionally, on fraction ad-
dition problems with different denominators, students were
only allowed to compute common denominators by multiply-
ing denominators. Thus, the LeastCommonMultiple(X,Y)
function was not included in the models for this dataset.

The experimental manipulation of the second datasets di-
vided students into two conditions, blocked and interleaved.
The students in the blocked condition received three blocks
of problems: fraction addition problems with same denom-
inators, then fraction addition problems with different de-
nominators, and then fraction multiplication problems. The
order of the problems within each block was randomized for
each student. In contrast, the students in the interleaved
condition received a random ordering of all problems. This
experiment showed that students in the blocked condition
have a lower overall error rate than students in the inter-
leaved condition. Additionally, the error rates of students in
the blocked condition increased when transitioning between
different types of problems.

3.2 Method
For each dataset, we tested our full-memory and one-back-
memory models of learning by creating instances of each
model for each student and connecting these instances to the
appropriate tutoring systems. The tutoring systems then tu-
tored the instances through the same order of problems that
the respective human students received. In each dataset,
we compared the first attempt correctness on each step be-
tween the two models and their respective humans. For each
model, we computed how often the first attempt correct-
ness agreed with the respective human’s first attempt cor-
rectness, i.e., accuracy, to quantitatively measure the agree-
ment between model and educational data. We report the
mean accuracy and its accompanying 95% confidence inter-
val (95% CI) for each model. Next, for each dataset we plot-
ted overall learning curves comparing the first-attempt per-
formance of the humans to each of the two models. For these
learning curves, we used a knowledge component model that
labeled each step as exercising a skill corresponding to the
field that was updated in the interface. These learning curve
graphs demonstrate how the Apprentice Learner architec-
ture can be used to generate theory-driven learning curve
predictions. Because each model instance has the same prior
knowledge, our simulation studies do not take into account
the individual differences in students’ prior knowledge. To
determine if taking into account student-level effects impacts
which model better fits the data, we fit a random-effects
logistic regression model with a fixed effect for the model
prediction and random effect for the student. We report the
Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC) scores to determine which of our two
models better fits the data in each case. Note, AIC and BIC
values on one dataset are not comparable to the AIC and
BIC values on another dataset, they can only be used to
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Figure 4: The fraction addition learning curves for
the human students, the full-memory model, and
the one-back-memory model.

rank model fits on the same dataset. For a given dataset,
lower values of AIC and BIC are better, and a difference of
more than 3 in either measure is usually viewed as strong
evidence to prefer one model over another.

3.3 Fraction Addition Results
After simulating the the 24 students in the fraction addition
dataset, we found both models were significantly predictive
of students’ correctness on the 2,432 first attempts (p < 0.01
via a χ2 test). The full-memory model correctly predicted
74.05% (95% CI : 72.26, 75.79) of first attempts, whereas
the one-back-memory model correctly predicted only 70.93%
(95% CI : 69.08, 72.73) of first attempts. This significant
difference in accuracy (p < 0.01 via Mcnemar’s test) sug-
gests that the full-memory model more closely agrees with
the fraction addition data than the one-back-memory model,
when not taking into account differences in students prior
knowledge.

Next, we plotted the learning curves comparing both mod-
els’ performance to the human performance, see Figure 4.
The opportunity counts for these learning curves were de-
termined by how many times each student had practiced
filling in the relevant interface field (each field is roughly
analogous to the skill used to update that field). Both sim-
ulated models initially start off without any skills, so their
error rate is 100% on the first step. However, the models
quickly converge to human-level performance. Although the
full-memory model achieves a lower overall error, the one-
back memory model appears to have variation that is more
equally distributed around the human performance.

To test which model best fits when taking the differences
between students’ prior knowledge into account, we fit two
mixed-effect logistic regression models that had a single fixed
effect for the respective simulation prediction (full-memory
or one-back-memory) and a random effect for student. We
found that the one-back-memory model better fit the stu-
dent data (AIC=1727, BIC=1744) than that full-memory
model (AIC=1754, BIC=1772), suggesting that students in

the fraction addition dataset have differences in their over-
all performance that might correspond to differences in prior
knowledge. Further, these results suggest that the one-back
memory model better fits student performance when taking
these differences into account.

3.4 Fraction Arithmetic Results
Similar to the previous dataset, we found both models were
significantly predictive of the 79 students’ 18,589 first at-
tempts (p < 0.01 via a χ2 test). We also found that the full-
memory model (Accuracy : 84.04%, 95% CI : 83.5, 84.56)
was more predictive of students’ first attempts than the one-
back-memory model (Accuracy : 80.24%, 95% CI : 79.66,
80.81). Similar to our previous fraction addition results,
this significant difference in accuracy (p < 0.01 via Mcne-
mar’s test) suggests that the full-memory model more closely
agrees with the fraction arithmetic data than the one-back-
memory model, when not taking into account differences in
students prior knowledge.

Figure 5 shows the learning curves comparing the perfor-
mance of the two models to the human data. Similar to the
fraction addition dataset, the opportunity counts for these
learning curves were determined by how many times each
student had practice filling in the relevant interface field
(again, fields are roughly analogous to the skills used to up-
date them). However, in this dataset we plotted separate
learning curves for students in the two experimental condi-
tions, blocked and interleaved.

Similar to the fraction addition learning curves, the full-
memory and one-back-memory models initially start off with
an error rate of 100% on their first steps and quickly con-
verge to human-level performance. However, in this dataset,
we can see that both models seem to emulate key differ-
ences in the two conditions. First, the human students in
the blocked condition have lower error than those in the
interleaved condition (z = −6.136, p < 0.01 via a logistic
regression). Both the full-memory (z = −9.598, p < 0.01)
and the one-back-memory (z = −4.626, p < 0.01) models
correctly predict this main effect of condition. Second, the
human students in the interleaved condition slowly converge
to asymptotic performance, whereas the human students in
the blocked condition achieve lower initial error but then
have drastic increases in error when transitioning between
problem types (e.g., around opportunity 12). The simu-
lated data from both models appears to mirror these effects.
While both models experience a spike in error around op-
portunity 25 when transitioning to multiply problems, the
human students, surprisingly, do not show a similar increase.
This difference might be explained by the fact that the hu-
man students have prior experience multiplying numbers,
and fraction multiplication is arguably easier than fraction
addition with different denominators (i.e., students have to
use multiplication to compute common denominators). In
contrast, both the full-memory and one-back-memory mod-
els have no experience with multiplication prior to opportu-
nity 25, so they have a 100% initial error on the first multi-
plication step. This suggests that future work is needed to
explore how to populate models with initial training expe-
riences (e.g., teaching the model to do whole-number multi-
plication before fraction multiplication).
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Figure 5: The fraction arithmetic learning curves for the human students, the full-memory model, and
the one-back-memory model. The left graph shows the learning curves for the blocked condition and the
right graph shows the learning curves for the interleaved condition. The spikes in error rate in the blocked
condition occur when students transition from fractions with same denominators to fractions with different
denominators (opportunity 12) and to fraction multiplication (opportunity 25).

Finally, we again fit two mixed-effects logistic regression
models to determine if taking individual student differences
into account would change which of the two models better
fit the data. In contrast to the fraction addition results,
we found that the full-memory model better fit the student
data (AIC=10849, BIC=10872) than that one-back-memory
model (AIC=11013, BIC=11036). These results show that,
for fraction arithmetic, the full-memory model better fits
the student data regardless of whether or not overall stu-
dent differences are taken into account.

4. GENERAL DISCUSSION
We argue that our simulation studies in fraction addition
and fraction arithmetic provide strong evidence in support
of our two key claims about the Apprentice Learner architec-
ture. First, our analysis shows that the behavior generated
by both models agrees with the human behavior in both frac-
tions datasets; i.e., the full-memory model, which fits best,
achieves 75% agreement in the fraction addition dataset and
84% agreement in the fraction arithmetic dataset. Further-
more, we show that both of the models predict the main
experimental effect for the fraction arithmetic dataset; i.e.,
both models correctly predict that the overall performance
in the blocked condition will be better than the overall per-
formance in interleaved condition. To our knowledge, these
two results are the first example in the EDM literature of
how student performance can be precisely predicted in a
completely theory-driven way without having to fit the mod-
els to the student data first.

Although our models have a reasonably high agreement with
the student data, there are still some key differences between
the models and the humans. In particular, the models al-
ways have 100% first-attempt error on novel skills. While
these exaggerated error rates might be useful for detecting
transitions between skills (e.g., when using learning curve
analysis to develop knowledge-component models [5]), they
also suggest an opportunity to improve our underlying the-

ory and models. In future studies we should explore ap-
proaches for initializing both prior knowledge (e.g., using
students’ pretests to choose prior features and functions) and
skill knowledge (e.g., pretraining models in a whole-number
arithmetic tutor).

Our second key claim was that the Apprentice Learner ar-
chitecture can be used to improve our underlying theory of
human learning using educational data. We argue that our
simulation results provide strong evidence supporting this
claim. In particular, we tested two different models that op-
erationalize two alternative theories of human learning: the
full-memory model, which posits that humans have perfect
recall of prior demonstrations and feedback when learning
skills, and the one-back-memory model, which is an extreme
version of the theory that humans only recall a limited win-
dow of prior demonstrations and feedback during skill learn-
ing. In our analysis, we showed that the full-memory model
better fits both fractions datasets, suggesting that it is a
better model of human learning. Next, we used a mixed-
effects logistic regression analysis to take into account stu-
dent differences. Using this approach, we showed that the
one-back-memory model better fit on the fraction addition
dataset and the full-memory model better fit on the fraction
arithmetic dataset.

In general, these results suggest that the full-memory model
better fits the fractions datasets than the one-back-memory
model (in three out of four cases). However, our results leave
open the possibility that, when taking into account overall
student differences, a hybrid model might be best (e.g., an
n-back model). Further, the full-memory model best fits the
educational data, but seems to have better asymptotic per-
formance than the human students. The original inspiration
for the one-back-memory model was to decrease this asymp-
totic performance to bring it into closer alignment with the
human performance, but our results suggest that we should
consider alternative approaches for decreasing performance.
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One possibility would be to replace the when learner with an
incremental machine learning algorithm, such as TRESTLE
[15]. This approach would let apprentice learners leverage
existing theories of interference effects [2] to improve their
fit with educational data. In summary, our simulation stud-
ies provide strong evidence to support our claims that the
Apprentice Learner architecture can be used perform theory-
driven prediction and to improve theory based on differences
between model and human behavior.

5. FUTURE WORK
The results of our studies have been encouraging, however,
we do not wish to leave the impression that the Appren-
tice Learner architecture is a complete computational the-
ory of learning. Instead, we present the theory as an initial
framework that is flexible enough to support new hypotheses
about learning. In future work, we plan to explore several
variations of the current theoretical structure and invite the
community to extend the theory to explain phenomena in
their own work.

One affordance of the Apprentice Learner architecture is
that it facilitates a search among alternative theories and
models. Not unlike existing techniques for searching the
space of domain models [4], a search among alternative Ap-
prentice Learner models would let us explore several hy-
potheses of human learning. For example, it is questionable
whether how, where, and when are the correct combina-
tion of internal learning mechanisms. It may be that the
FOIL algorithm, currently used for when learning, could be
used to model both the where and the when learning. This
would suggest that the current distinction between where
and when learning is artificial and that a single mechanism
might produce more human-like simulated data. Alterna-
tively, it could be argued that the architecture is biased by
having features provided as prior knowledge, rather than
learning features from experience. This argument implies
that some mechanism for acquiring new features, effectively
a what learner, could be included in the architecture [11].
Beyond adding or merging learning mechanisms each indi-
vidual mechanism could be represented by several underly-
ing algorithms. For example, our implementation of the Ver-
sion Space algorithm conducts a specific-to-general search
for perceptual patterns, but another possible variation would
be to conduct a general-to-specific search. Exploring all of
these possibilities could be framed as a search task over dif-
ferent parametrizations of the architecture for models that
generate the most human-like simulation data.

In the current work, we compare model and human error
rates, but the Apprentice Learner architecture allows for
finer-grained evaluation. Rather than compare simulated
and human learners on whether they performed a step cor-
rectly, we could compare learners in terms of their literal
response on a step. This opens up the ability to evaluate
theories of student misconceptions and how they might af-
fect the particular responses students make [19]. Similarly,
in this study we only compared performance on first step
attempts, because this is a common convention in EDM,
but the high-fidelity simulation data can be used to exam-
ine learner behavior beyond the first attempt. Ultimately a
unified theory of apprentice learning should account for all
of the behaviors learners exhibit on their path to mastery.

As we have stated previously, we view the current state of
the Apprentice Learner architecture as incomplete. There
are several aspects of learning that the model does not cur-
rently account for, such as the effects of delayed feedback
[29], the impacts of metacognition [1], and the behavior of
collaborative learners [23]. Crucially, however, the theory is
not fundamentally incompatible with these ideas. For exam-
ple, a reinforcement learning paradigm could be employed
to back-propagate correctness from delayed feedback. The
role of metacognition could be accounted for with a more
nuanced variation on the recognize-act cycle that takes into
account metacognitive decisions. Finally, instantiating mul-
tiple Apprentice Learner models within the same environ-
ment and allowing them to generate demonstrations for each
other could serve as an initial computational model of col-
laborative learning. These are just a few examples of how
the structure of the architecture can be augmented to incor-
porate and test additional learning theories.

Finally, in future work we would like to explore how the the-
oretical tenets of our architecture align with those made by
other architectures, such as ACT-R or SOAR [8]. These ar-
chitectures, which primarily focus on problem solving, have
mechanisms for learning skill conditions and for compiling
commonly executed sequences of skills into macro-skills. It
would be interesting to investigate the extent to which these
learning mechanisms align with the when (condition) and
how (function sequence) learning mechanisms of the Ap-
prentice Learner architecture. By investigating how these
computational theories might be aligned, we hope to provide
for learning science, and more generally cognitive science,
the kinds of unified theories that have been so successful in
physics and the other hard sciences.

6. CONCLUSIONS
In this paper, we have taken the first steps toward a com-
plete computational theory of learning in interactive envi-
ronments, such as tutoring systems. Not only do we be-
lieve that EDM is capable of improving our fundamental
theories of learning, but that is uniquely positioned to do
so. Using a computational theory approach, it is possible
for every tutored learning dataset in the canon of EDM
to test and advance learning theories. We hope that other
EDM researchers will also see the potential of the Apprentice
Learner architecture and the computational theory paradigm,
and we look forward to working together to further develop
our collective understanding of human learning.
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ABSTRACT 
Effective mining of data from online submission systems offers the 
potential to improve educational outcomes by identifying student 
habits and behaviours and their relationship with levels of 
achievement. In particular, it may assist in identifying students at 
risk of performing poorly, allowing for early intervention. In 
this paper we investigate different methods of following the 
development of student behaviour throughout the semester using 
online submission system data, and different approaches to 
analysing this development. We demonstrate the application of 
these methods to data from a junior computer science course 
(N=494) and discuss their usefulness in understanding the common 
behavioural strategies of students in this course and how these 
develop over time. Finally, we draw links between behaviour in 
weekly coding tasks and student performance in the final exam and 
discuss whether these methods could be applicable midway through 
the semester. 

Keywords 

Clustering student behaviour; autograding system; assessment and 
feedback. 

1. INTRODUCTION 
Autograding submission systems are valuable tools in a modern 
teaching environment. By automatically assessing a student’s 
submission, feedback can be returned to the student immediately 
without increasing the burden of marking for the teacher. Students 
are empowered to repeatedly improve their submission before a 
final deadline. However, such systems are only likely to improve 
the student’s learning experience if the student allocates time to use 
feedback for subsequent submissions. 

Teachers know from observation that students adopt a range of 
approaches to learning exercises, especially when outside the 
classroom. At one extreme, an ideal student will attempt an 
exercise immediately, and make increasingly better submissions 
based upon the feedback received. At the other extreme a student 
may make their first attempt just prior to the submission deadline, 
leaving no opportunity to improve or even make a decent first 
attempt. These behaviours, and many in between, may be due to 
deeply ingrained habits or external factors such as other time 
commitments. Using online submission systems in our teaching 

provide us with the opportunity to exploit the historical data of 
students’ attempts.  In this work, we investigated techniques of 
identifying and following the development of student behaviour 
over the semester, with specific focus on the application of these 
techniques to a junior computer science course. We were interested 
in the most common behaviours of students, whether these 
behaviours changed over time, and relationships between these 
behaviours and final exam outcomes. We were also interested in 
how applicable these methods were midway through the semester. 

This paper is structured as follows. We first give an overview of 
the related work on the use of autograding systems and on mining 
student behaviour in these systems. Section 3 explains the context 
in which our data was captured. Section 4 is the main part of the 
paper: it presents our clustering-based approach to detecting and 
tracking students’ behaviours. We finally conclude with a 
discussion on these different approaches. 

2. RELATED WORK 
The use of autograding systems in computer science courses have 
been reported in [1-6], with the majority of studies focusing on 
analysing the effectiveness of the autograding systems as opposed 
to understanding student behaviours. Sherman et al. [1] introduced 
Bottlenose, an autograding system used in a first year programming 
course in C, and compared the student behaviour on the same 
assignments when using Bottlenose and when not using it. The 
results showed that the number of submissions per student per 
assignment was significantly higher when using the autograding 
system, which was attributed to students making use of the 
feedback to improve their programs. Enström et al. [2] developed 
Kattis, an automated assessment system used at KTH in Sweden 
for teaching programming and algorithms courses. The use of 
Kattis resulted in improved student motivation (increased number 
of submissions) and also in higher student satisfaction in the course 
evaluation survey. The autograding system Autolab [3] was 
developed at Carnegie Mellon University and used in a first year 
programming course in C. Its real-time scoreboard, which shows 
the class performance on the assessment task, was found to create a 
healthy competition encouraging students to improve their 
assignments, and do this quicker. 
There has also been some recent work on mining log data from 
autograding systems [4-6]. Gramoli et al. [4] analysed the impact 
of autograding and instant feedback using the system PASTA in 
various computer science courses, from first to fourth year. They 
found that the instant feedback was beneficial not only for courses 
focusing on programming but also for courses that use 
programming as a tool to solve subject specific problems. The 
relation between the student performance and the chosen 
programming language and the time when the students start and 
finish their assignment submissions was also studied. Koprinska et 
al. [6] investigated whether students at risk of failing in a first year 
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programming course can be detected early in the semester, using 
information from three sources: the autograding system PASTA, a 
discussion board and assessment marks. They built a decision tree 
that was able to achieve 87% accuracy in predicting the exam mark 
from information available in the middle of the semester. It was 
also shown that using the information from the autograding system 
improved the accuracy, compared to only using the assessment 
marks. In [5], data from the same sources was used to define the 
characteristics of high, average- and low-performing students and 
predict their performance.  
More broadly, the related work also includes mining log data from 
student submissions in computer science courses. Perera et al. [7] 
analysed behavioural data from online group collaboration logs in a 
software development project. The goal was to identify patterns 
and behaviours associated with positive and negative outcomes. 
Clustering was applied to find similar students and similar teams, 
and sequential pattern mining was used to extract sequences of 
frequent events. Student behavioural data from a high school 
computer science MOOC was analysed by Tomkins et al. [8]. They 
characterised the performance of high and low achieving students 
based on the student behaviour in the course and discussion board, 
and built a predictive model using support vector machines to 
predict if a student will pass or fail an exam, conducted after the 
course has finished.  
In this paper we extend the previous work on mining log data from 
autograding systems in computer science courses. Our goal is to 
study the evolution of student behaviour during the semester, with 
a view that this could assist in early intervention in future course 
offerings or provide guidance for course restructuring. We propose 
different clustering methods and demonstrate their application in 
the context of a large first year computer science course. We 
discuss the effectiveness of these techniques for extracting and 
understanding behavioural patterns, and how these patterns 
develop over time. 

3. DATA 
PASTA is an autograding system for computer programming 
courses developed in our school [9]. Students submit their solution 
(programming code) to an assessment task. Then PASTA checks 
this solution by running a set of tests designed by the teacher and 
provides immediate feedback to the student about the passed and 
failed tests. Students can then correct their mistakes and resubmit 
the solution until all tests are passed. PASTA can be configured in 
different ways - the number of allowed attempts can be limited or 
unlimited, some tests can be hidden (i.e. not available for 
immediate feedback, only available after the deadline) and teachers 
can also add manual comments to complement the automatic 
feedback. It supports several languages (e.g. Java, C, C++, Python 
and Matlab) and has been used for various courses – introductory 
programming, data structures, algorithms, formal languages, 
artificial intelligence, databases and networks. 

PASTA has received positive feedback from students due to the 
instant feedback and multiple attempts features. Its use has resulted 
in better student engagement, and also transparent and fair marking 
as the same tests are used for all students. For each student and 
task, the PASTA data contains: all submission attempts, the tests 
that were passed and failed, the time stamps and the mark obtained. 

The data used in this paper comes from a junior unit of study on 
data structures [10], which ran in Semester 2 of 2015 with 494 

students enrolled. Students were using PASTA on a weekly basis to 
submit exercises, over a period of 11 weeks. The exercises were 
made available just after the lecture related to the topic (say 
Hashing) and constitute the core material of the tutorials (2 hour 
computer-based practical sessions, with a ratio of one teacher to 20 
students). Each week, one exercise was flagged for assessment and 
was due the following week, i.e. 12 days after release. The number 
of attempts allowed was unlimited. 

4. ANALYSIS OF STUDENT BEHAVIOUR 
There are many ways students work towards their weekly exercises 
and use PASTA. For instance, students may start early and submit 
several attempts until their submission is 100% successful; some 
may start late and have time to submit only once a half-done 
attempt; others may not submit anything at all; and so on. Our 
approach to follow students’ behaviour on their weekly work is to 
first cluster behaviours on all submissions, for all students (section 
4.1). Then we explore several ways of tracking students’ behaviour 
during the semester (sections 4.2 to 4.5). 

4.1 Submission clustering: typical behaviour 
on one submission  
In order to determine the types of approaches students take when 
completing weekly tasks, we performed a clustering on all the data 
available. For each given student and week, we created a vector 
containing information about the student’s behaviour on that 
week’s submission. We chose features which related to student 
submission times as an indication of their approach to the task. We 
also included features relating to student marks, number of 
attempts and number of compile errors, which provided an 
indication of performance. In total there were 5434 vectors (11 
weeks, 494 students), each representing a submission (possibly 
non-existent) by one student. Table 1 describes the features used in 
this initial clustering. 

Table 1. Features used in initial clustering 

Feature Description 

percent_early Percentage of attempts made three days or more 
before the due date 

percent_normal Percentage of attempts made that were neither early 
nor late. 

percent_late Percentage of attempts made on the due date 

num_compile_errors Number of attempts involving compilation errors. 

first_mark Percentage of tests passed on first attempt. 

last_mark Percentage of tests passed on last attempt. 

num_attempts Number of attempts not involving compilation 
errors. 

time_taken 

Indicator for the time between the first and last 
submission. 
0: student only made 1 submission (time between 
the first and last submission not relevant); 
0.5: student took less than 26.45 minutes to 
complete their task; 
1: student took more than 26.45 minutes to 
complete their task; 
-100: student did not attempt the task; (forces 
students who did not submit into their own cluster) 

single_attempt 
Specifies whether the student made no attempts 
(“none”), a single attempt (“yes” or multiple 
attempts (“no”). 
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We note that the features, percent_early, percent_normal and 
percent_late are dependent. However, removing one would lead to 
different results depending on which feature was removed, so all 
were included to preserve symmetry. 

We then clustered these 5434 vectors (with k-means algorithm) 
into six groups, with centroids are summarised in Table 2. Since 
these clusters would be used to perform further clustering, in which 
the distance between all clusters would be assumed to be equal, it 
was important that there were not two similar clusters, or one 
cluster comprised of what should be two clusters. We experimented 
with various numbers of clusters in the range of 4-7, and found that 
6 clusters best satisfied these criteria. 

Table 2. Cluster centroids of submissions clustering 
  Cluster Number (Number of Vectors) 

Feature 

 

Full 
Data 

0  

(5434) 

1  

(488) 

2 

 (1017) 

3  

(903) 

4 

(719) 

5 

(607) 

% early 0.30 0.55 1.00 0 0.39 0.00 0.00 

% 
normal 0.22 0.19 0.00 0 0.43 0.99 0.01 

% late 0.17 0.27 0.00 0 0.18 0.01 0.99 

num 
compile 
errors 

0.14 0.79 0.08 0 0.06 0.17 0.21 

first 
mark 0.57 0.65 0.96 0 0.68 0.93 0.88 

last mark 0.64 0.76 0.98 0 0.96 0.96 0.90 

num 
attempts 0.44 0.59 0.52 0 0.94 0.54 0.52 

time 
taken -31* 0.78 0.07 -100* 0.74 0.17 0.18 

single 
attempt yes no yes none no yes yes 

 

The features typical of each of the clusters allow us to interpret the 
general behaviour captured in these clusters. These are summarised 
in Table 3 and discussed in more detail below. Note that we refer to 
the following five grade categories from here on: High Distinction 
(HD), mark of 85 or above; Distinction (D), mark between 75 and 
84; Credit (CR), mark between 65 and 74; Pass (P), mark between 
50 and 64; Fail (F), mark below 50. 

Table 3. Brief description of submissions clusters 

Cluster Typical Behaviour for the submission 

0 Early start, steady improvement from CR to D. 

1 Early start, strong first attempt. 

2 No submission made 

3 Normal start, steady improvement from CR to HD. 

4 Normal start, strong first attempt. 

5 Late start, strong first attempt. 
Cluster 0: Attempts in this cluster were started early and 
progressed for a long and had a high number of compile errors in 
the attempts. They contained a medium number of attempts, and 

their improvement was moderate: attempts began with around a 
credit and improved to a distinction. (9% of vectors were in this 
cluster). 
Clusters 1, 4 and 5: these represent cases where students 
performed well in the weekly task and began early, neither early nor 
late, and late respectively. Students, when in any of these three 
clusters, on average began with an initial and final mark of HD. 
However, Cluster 1 students had the highest average mark in both 
cases (96-98), followed by Cluster 4 (92-96), then Cluster 5 (88-
90).  These students usually made a medium number of attempts 
with a small number of compilation errors over a small amount of 
time. (19, 13 and 11% of instances respectively). 
Cluster 2: This cluster represents cases where students did not 
attempt the task. (31% of cases). 
Cluster 3; The high number of submissions and time taken 
suggests students, when in this cluster, put in the most effort. 
Improvement was typically large – from around a low credit (68) to 
an HD (96). The majority of these students’ attempts were not late, 
and there were a low number of compilation errors. (17% of 
instances). 
Intuitively, we would describe Clusters 0 and 3 as the behaviours 
that make best use of the autograding system, by making use of the 
feedback to achieve a significantly higher final grade. 
Clusters 1, 4 and 5 are interesting because these behaviours are 
unlikely to benefit from being able to make multiple attempts, since 
early attempts are already of a high quality. It might be that 
students who found a task easy to complete in one week may not 
feel the need to invest time early in subsequent. 
Figure 2 shows the general distribution of behaviours each week. 
We can see that many students were in Cluster 1 in the first week, 
probably due to the simplicity of the task, and that the number of 
students who did not submit at all (Cluster 2) is similar from week 
2 to week 8, but increasing towards the end of the semester, 
especially in weeks 9, 10 and 11. This can be explained by the fact 
that these weeks are heavy in assignment deadlines in all the 
courses, including this course. 
 

 
Figure 1. Number of students in each submission cluster each 
week. Order of clusters follows order discussed in Section 4.4. 

4.2 Evolution of students with different exam 
grades 
Figure 3 shows the relationship between the submission clusters 
each week and the final exam grades of students corresponding to 
those clusters. 
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We chose to study the relationship of the submission clusters with 
the final exam since it is the main and most comprehensive 
assessment component in the course. It is worth 60% of the final 
mark, covers all topics and is highly correlated with the final mark 
for the course. Here we use the same grade categories as 
previously: HD, D, CR, P, F. NA denotes students who did not sit 
the exam. There is a minimum requirement policy of scoring at 
least 40% in the final exam to pass the course: this means that even 
if students scored very high during the semester (say, 100% of 40), 
they would fail the course if they scored less than 40% at the final 
exam (say 30% of 60), even though their raw mark would be above 
a pass (58%). 

 

 
Figure 3. Percentage of submissions in each submission cluster 
each week with the submitting student’s final exam grade  
 
We can see that the students who obtained HD and D in the exam 
were often in Cluster 1 during the semester and also sometimes in 
Clusters 4 and 3. These clusters corresponding to the best 
performing students during the semester, with Cluster 1 containing 
the students who start early with a very high initial mark, Cluster 4 
– the students who start normally with a high mark and Cluster 3 – 
the students who start early or normally from an average mark and 
work very hard to improve their submissions.  

The students who obtained CR and P at the exam did not show a 
predominant behavioural pattern during the semester when 
completing the weekly tasks – they belonged to all clusters. 
However, more P than CR students were in Cluster 2 (the cluster of 
students who did not submit), for all weeks.  In contrast, very few 
of the CR students were in Cluster 2 in the early weeks although 
this number increased after week 8.  

A large proportion of the students who failed the exam were in 
Cluster 2 during the semester, but there are failing students in all 
behavioural clusters. The students who did not sit the exam are 
predominantly from Cluster 2 and, from Figure 1, their number is 
relatively stable from week 2 to week 12, which shows that most 
likely these students dropped out early in the semester. 

4.3 Evolution of students from a given cluster  
We can also follow the evolution of the students from a given 
cluster from a specific week. For example, starting with the six 
clusters from Week 3, we can analyse each cluster separately and 
investigate where the students from each cluster go in the 
subsequent weeks, as shown in Figure 2.  

 

 

 

 
Figure 2. Analysing the six clusters from week 3 separately -  
percentage of students and each each cluster in subsequent 

weeks 
The graphs show that the students from Cluster 0 in week 3 were 
mainly in Clusters 1 and 3 in the following weeks, i.e. they were 
able to achieve a higher mark on the weekly tasks compared to 
week 3. The students from Cluster 1 in week 3 mainly stayed in the 
same cluster or moved to Cluster 3, i.e. had to put more effort to 
maintain high marks. The students from Cluster 2 in week 3 (the 
non-submitting students) stayed in the same cluster with very few 
exceptions. The students from Clusters 3 and 4 together stayed in 
these clusters, and the students from Cluster 5 in week 3 moved 
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between Clusters 3, 5 and 2 during the semester, i.e. they were not 
always able to achieve high mark, possible because they started 
late, and also did not submit in some weeks, e.g. week 10.  

We can clearly say that extracting patterns based on visual analysis 
of the graphs is difficult. This motivated our second clustering of 
behavioural data described in the next section. 

4.4 Comparing the clusters in the middle and 
end of the semester 
To better understand the stability of the clusters over time, we 
conducted clustering in the middle of the semester (after week 7) 
using the same method as described in Sec 4.1. We then compared 
the new clustering to the old clustering, described in Sec 4.1, to 
determine whether the end-of-semester clusters had already formed 
midway through the semester. Note that the clustering in both cases 
is done using all the available data at that time point, i.e. the mid-
semester (early) clustering uses the data from week 2 to week 7, 
and the end-of-semester (end) clustering uses the data from week 2 
to week 12.  
In both cases, we followed the same clustering procedure – one 
example represents one submission. We paired each early cluster 
with a corresponding end cluster, seeking to maximize the overlap 
between the matched clusters.  
More precisely, we considered the bijection, m, from the set of end 
clusters to the set of early clusters which minimized the distances 
between the centroids of each late cluster ci and the paired early 
cluster m(ci). We then defined the accuracy of m on an early cluster 
m(ci) to be the proportion of submissions in end cluster ci that were 
also in early cluster m(ci). That is, 

)(
)())((

))((
icS

icSicmS
icmaccuracy


  

where i is an integer from 0 to 5, )(xS  denotes the set of 
submissions assigned to the cluster x, and |X| denotes the number 
of elements in set X.  
The chosen bijection gives the accuracies shown in Table 4. We 
can see that the accuracy of the mapping of four of the end clusters 
(1, 2, 3 and 5) is very high (≥90%). This is to be expected of 
Cluster 2 as all non-attempts are forced into their own cluster. 
However, this is not the case for Cluster 1, Cluster 3 and Cluster 5, 
and the high accuracy indicates that these clusters had already 
formed midway through the semester. End Cluster 4 had also 
emerged in week 7, as evident by relatively high accuracy of the 
mapping to it (76%), but had not stabilized yet. The mapping of 
end Cluster 0 had a low accuracy, indicating that this cluster had 
not yet been formed in week 7. A closer examination shows that the 
students in early Cluster 0 used strategies typical not only of end 
Cluster 0 but also of end Clusters 1 and 4, as well as end Clusters 5 
and 3, to a lesser extent. 

Table 4. Accuracy of each cluster in the middle of the semester 
(week 7) relative to the end of the semester (week 12) 

End cluster 
(week 12) 0 1 2 3 4 5 

Accuracy in 
week 7 13% 90% 100% 91% 76% 97% 

 
In summary, the comparison of the end clusters from week 12 

with the early clusters from week 7 shows that most of the end 

clusters had already formed or emerged in the middle of the 
semester. We can use these results to provide feedback to students 
in the middle of the semester and devise appropriate early 
intervention.  

4.5 Behavioural evolution in time 
The submission clustering in section 4.1 gave us clusters capturing 
behaviour per student per weekly task. An interesting question is 
how each student’s behaviour evolved during the semester in 
regards to their weekly task. In order to explore this question, we 
performed an additional clustering to identify groups of students 
with similar submission behaviours over the weeks. The features 
used for this clustering try and capture the variety and frequency of 
behaviours (in terms of submission clusters found in 4.1). Note that 
features, c0-c5 count, are dependent, since the number of weeks are 
fixed. However, as previously, we maintain all to preserve 
symmetry. These features are described in Table 5. K-means 
clustered students into 6 groups, where the number of clusters was 
determined empirically. The centroids of this new clustering, which 
we call behavioural clustering, are shown in Table 6. 

Table 5. Features used in behavioural clustering 

Feature Description 

num_clusters Number of submission clusters a student’s 
submission belonged to over the semester  

c0_count Number of weeks where a student’s submission 
belonged to behavioural cluster 0 

c1_count Number of weeks where a student’s submission 
belonged to behavioural cluster 1 

c2_count Number of weeks where a student’s submission 
belonged to behavioural cluster 2 

c3_count Number of weeks where a student’s submission 
belonged to behavioural cluster 3 

c4_count Number of weeks where a student’s submission 
belonged to behavioural cluster 4 

c5_count Number of weeks where a student’s submission 
belonged to behavioural cluster 5 

 
Before we describe these clusters, we also examined the 
relationship between final exam marks and a student’s behavioural 
cluster. Figure 3 shows the percentage of students in each 
behavioural cluster receiving each of the possible exam grades: 
HD, D, CR, P, F and NA, where NA indicates that a student did not 
sit the final exam. The behavioural clusters in this figure have been 
ordered from lowest to highest based on the percentage of students 
passing the final exam in those clusters (i.e. behavioural clusters 3, 
4, 1, 5, 2, then 0). We see in general that the proportion of passing 
students that receive higher bands increases, as well as the 
proportion of students who sit the final exam.  

Table 6. Behavioural cluster centroids 
  Behavioural Cluster Number 

Feature 
Full 
Data 0 1 2 3 4 5 

num_clusters 3.92 4.17 5.13 4.41 1.31 3.48 4.42 
s0_count 0.99 1.00 1.51 1.49 0.14 0.66 0.83 
s1_count 2.06 5.26 1.44 2.21 0.11 0.93 1.48 
s2_count 3.44 0.69 2.12 0.72 10.65 7.20 0.63 
s3_count 1.83 2.22 1.61 4.49 0.04 0.52 2.14 
s4_count 1.46 1.42 1.43 1.31 0.03 0.41 4.52 
s5_count 1.23 0.42 2.90 0.77 0.04 1.28 1.41 
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Figure 3. Exam performance of students in behavioural 

clusters, ordered in increasing proportion of students passing 
their final exam 

We note that over 80% of students in Behavioural Cluster 0, which 
comprised 20.4% of the cohort, passed the final exam – the highest 
percentage of all the secondary clusters. In addition, over 50% of 
students in this behavioural cluster received at least a credit.  
Behavioural Cluster 2 had the next highest pass rate of around 
70%. The proportion of students receiving high bands in this 
cluster was lower than Behavioural Cluster 1, but greater than in 
other clusters.  
Using the cluster centroids in Table 6, the weekly behaviours 
typical of different behavioural clusters are summarised below, in 
the cluster order used in Figure 3. 

Behaviour Cluster 3: These students belonged to an average of 1.3 
different clusters throughout the semester. 96.8% of the time they 
were assigned to Submission Cluster 2, indicating that they almost 
never completed their weekly tasks. These students may have 
dropped out of the course during the semester. (16.2% of students). 
Behavioural Cluster 4: These students oscillated between an 
average of 3.5 clusters throughout the semester. 65.4% of the time, 
they fell into submission Cluster 2, indicating that they frequently 
did not complete their weekly tasks. However, these students 
belonged to submission Cluster 5 11.6% of the time, suggesting 
they sometimes started late but still performed well. From this, we 
see that these students are possibly quite capable, but do not put 
much effort into their weekly tasks.   
Behavioural Cluster 1: These students were in an average of 5.1 
submission clusters over the semester. Cluster 5 was the most 
common submission cluster, which students were in 26.3% of the 
time, followed by Cluster 2 (19.3%), Cluster 3 (14.6%), Cluster 0 
(13.8%), Cluster 1 (13.1%) and Cluster 4 (13.0%). Thus these 
students often started late but did well, but also often didn’t submit 
at all. These students sometimes worked hard and achieved high 
marks, sometimes worked hard without achieving high marks, 
sometimes began early and did very well and sometimes began 
neither early nor late and did well. These students displayed 
inconsistent behaviour over the weeks, sometimes putting in a great 
amount of effort and sometimes not trying at all. (24% of students). 
Behavioural Cluster 5: These students belonged to an average of 
4.4 different clusters over the semester. They fell into submission 
Cluster 4 the most often - around 41.1% of the time – followed by 
submission Cluster 3 (19.5%), Cluster 1 (13.5%) and Cluster 5 

(12.8%). Thus these students very often started their weekly tasks 
neither early nor late and did well, commonly started early and 
worked hard until they did well, sometimes started early from a 
high mark and sometimes started late from a high mark. (13 % of 
students) 
Behavioural Cluster 2: These students belonged to an average of 
4.4 different submission clusters over the semester, with Cluster 3 
being the most common (40.8%), then Cluster 1 (20.1%), Cluster 0 
(13.6%) and Cluster 4 (11.9%). Thus, these students commonly 
began early with a medium mark, worked hard and achieved good 
marks. They also often started early from a high mark, sometimes 
worked hard without achieving a high mark and sometimes started 
neither late nor early with a high mark. These are hard-working 
students who often found the tasks challenging, but still did fairly 
well in them. 
Behavioural Cluster 0: Finally, in the behavioural cluster with the 
highest final exam pass rate, students oscillated between an 
average of around 4.2 clusters in the course of the semester. They 
were in submission Cluster 1 47.8% of the time, Cluster 3 20.2% 
of the time, Cluster 4 12.9% of the time and cluster 0 9.1% of the 
time. This suggests these students started early with high marks 
around half the time. They often started early with medium marks, 
but worked hard until they achieved a high mark and sometimes 
started neither late nor early, achieving high marks. Occasionally 
they worked hard without achieving high marks. (20% of students). 
These students often did well on their first submission but, when 
they didn’t, they worked hard to achieve high marks.  
 

   
Figure 4. For each behavioural cluster, the percentage 

submissions in each submission cluster (s0, s1, s2, s3, s4, s5) 

4.5.1 General Trends 
By analysing behavioural clusters and the most common 
submission clusters the students’ submissions were in, we noticed 
general trends as the final exam pass rate increased. For example, 
submissions in Submission Cluster 2, characterised by no 
submission attempt, were most common in students in behavioural 
clusters with the lowest pass rate. On the other hand, Submission 
Cluster 1 (early start, strong first attempt) was most common in 
behavioural clusters with higher pass rates. We used these trends to 
order the submission clusters: Submission Clusters 2 and 5, being 
the most and second most common submission clusters in poorly 
performing behavioural clusters, were placed on the bottom of the 
scale. Of the remaining four submission clusters, Submission 
Cluster 0 was least common in the top three behavioural clusters, 
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and so came next on the scale. This was followed by Submission 
Clusters 4, 3 and then 1, which became more prevalent in higher 
performing behavioural clusters. Figure 4 shows the percentage of 
submissions in each behavioural cluster that fell into each 
submission cluster. The behavioural clusters are ordered based on 
pass rate, and the submission clusters are ordered as described 
above. The prevalence of each submission cluster in different 
behavioural clusters is summarised in Table 7. 
 

Table 7. Submission Clusters Typical of each Behavioural 
Cluster  

Submission 
Cluster 

Common in 
Behavioural 
Clusters with 

Submission Cluster 
Description 

0 Many different 
pass rates 

Average students, medium/high 
effort. 

1 High pass rates Excellent students who started 
early from a very high mark. 

2 Low pass rates Did not submit. 

3 High pass rates Hard working students – from 
CR to HD. 

4 Medium pass rates Good students who started 
neither early nor late from a 
mid HD. 

5 Low pass rates Good students who started late 
from a low HD and improved 
slightly. 

 
4.5.2 The median 
We can also visualise the evolution of student behaviour over the 
semester in a meaningful way. We looked at the weekly behaviour 
of students in each behavioural cluster each week and found the 
“median” behaviour. This was achieved by taking the median of 
each original feature for these students, such as the first mark, last 
mark, time taken and percentage of early submissions. We then 
used this to create a median vector, and found which submission 
cluster the vector belonged to. We repeated this for all behavioural 
clusters and plotted the results. This can be seen in Figure 5. Note 
that submission clusters were previously ordered so the higher the 
submission cluster the more typical it is overall of the behavioural 
clusters with the highest pass rate. 
 

 
Figure 5. Changing student behaviour over the semester. Each 
colour represents a behavioural cluster. The median behaviour 

of students each week (i.e. the median submission cluster) is 
shown. The submission clusters are ordered so that higher 

corresponds to better performance. 

Rather than the secondary clusters slowly diverging over time, we 
notice a clear separation from as early as week 3. The secondary 
clusters with the lowest (secondary clusters 3 and 4) and highest 
(secondary cluster 0) pass rates are already distinguishable from 
the other clusters at this time. This early separation of behaviours 
could facilitate early identification of students at risk of failing or 
performing poorly, allowing for intervention.  
 

5. DISCUSSION 
The scheme in our analysis can be separated into two parts: 
(i) A submission clustering, where the approach and performance 

of each student in each weekly submission is treated as 
independent and then clustered to give typical task-level 
behaviours.  

(ii) A behavioural clustering, where students are clustered based 
on the submission clusters they were in over the entire 
semester. 

Through the example of a junior computer science course, we 
demonstrated the usefulness of this double-clustering method in 
allowing us to identify some important approaches students in this 
course took to their weekly tasks. We found that many students 
started sufficiently early and invested time to improve their 
attempts based upon instant feedback they received from the 
autograding system, benefiting from a significant improvement in 
the quality of their final attempts (Clusters 0 and 3, 26%). We also 
found that students often found the task sufficiently easy and that 
further improvements were of little value (Clusters 1, 4 and 5, 
totaling 43%), and that it was also common for students to not 
attempt the tasks at all (Cluster 2, 31%). A broader application of 
this analysis over multiple units of study and across multiple 
offerings of the same course would be useful in understanding how 
common such behaviours are in general as opposed to this specific 
offering. 
Through the behavioural clustering, we were able to identify 
common behavioural patterns over the entire semester, and to draw 
links between these patterns and final exam outcomes. In 
particular, we identified behavioural patterns associated with high 
and low final exam grades. For example, students in behavioural 
clusters with high pass rates tended to consistently start early with 
a high mark, or start early and work hard until a high mark was 
achieved.  Conversely, students in behavioural clusters with low 
pass rates often did not submit their tasks at all. Knowledge of the 
relationship between behavioural patterns and exam performance is 
essential in the identification of students at risk of performing 
poorly and important in the structuring of a course to maximise 
student learning and performance. 
We compared submission clusters that used all data up to week 12 
with submission clusters that used all data up to week 7, and found 
that they were quite similar. This suggests that the typical task-
level behaviours of students did not vary much at the end of the 
semester and that, as a consequence, these behaviours could be 
identified early on in the semester. Moreover, we saw that the term-
long behavioural clusters we found did not slowly diverge over 
time, but rather there was an immediate difference from as early as 
week 3. This suggests that both the submission and behavioural 
clustering could be performed early in the semester, with 
potentially similar results to the end of semester, allowing for early 
identification of students at risk of performing poorly and early 
intervention. We suggest an avenue of future research could be to 
apply this technique midway through the semester and evaluate its 
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effectiveness in facilitating interventions that could improve 
student outcomes. 
We also suggest investigating how effective this method can be in 
general, by applying it to courses with different assessment 
structures and content, and also to compare the results obtained 
through these clustering methods to traditional measures of 
behaviour and engagement, such as tutorial attendance and 
feedback surveys, to evaluate how well they corroborate. 
Although the reported analysis is for data from a system for 
assessing computer code submissions, it could just as readily 
applied to other systems in which students can make multiple 
submissions in response to feedback. For instance, many Learning 
Management Systems provide multiple-choice style questions for 
which students can receive feedback about their choices, and this 
style of question could be used in any discipline. Our analysis 
depends only upon records of the time and quality of each 
submission. While we include details such as number of compile 
errors as one measure of quality, this could readily be substituted 
with other measures. 

6. CONCLUSION 
In this paper we have presented a method for analysing student 
behaviour and the evolution of this behaviour over the semester, 
using data from autograding system logs. We have shown that this 
method can be useful in identifying common weekly behaviours of 
students, and following the changes of such behaviours over the 
semester. We have discussed the relationship between these 
behaviours and final exam results, and demonstrated how these 
behaviours might be detectable early enough in the semester for 
instructors to intervene. As such, we believe that the techniques 
discussed here may be implemented and improved upon to realise 
the full potential of increasingly common autograding systems in 
facilitating real improvement in student outcomes. 
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ABSTRACT 
During the semester break, 36 second-grade students accessed a set 
of resources and completed a series of online math activities 
focused on the application of the model method for arithmetic in 
two contexts 1) addition/subtraction and 2) multiplication/ 
division. The learning environment first modeled and then 
supported the use of a scripted series of steps for solving 
mathematical word problems. As students completed the activities, 
the learning environment captured their event-related data. We then 
used a combination of Affinity Propagation, an automated form of 
clustering, and sequential pattern mining to convert the activity logs 
into interpretable activity sequences. Analysis of the activity 
sequences identified distinct patterns of behavior that strongly 
predicted which students would transit from the familiar 
addition/subtraction word problem activity to the unfamiliar 
multiplication/division word problem activity. Students who 
showed the greatest and least compliance with the script were the 
least likely to attempt the multiplication/division activity. Students 
who showed more of a schematic problem solving process were 
more likely to continue to the multiplication/division activity.  

Keywords 

Sequential pattern mining, affinity propagation, cognitive models 

1. INTRODUCTION 
1.1 Mathematics Learning via the Model 
Method 
In Singapore, early-elementary students are taught to solve 
arithmetic word problem via the model method [1]. This systematic 
approach is based on Polya’s problem solving techniques [2]. The 
method can be broken into five steps known as the RIGHT 
sequence. When applying the RIGHT sequence, students 1) read 
the word problem, 2) identify the nouns, numeric values, and 
unknown variable to be solved, 3) graph these values in a box 
diagram, 4) indirectly perform the appropriate calculation by 
reasoning through the diagram, and 5) review their work.  

The RIGHT sequence, as a learning mnemonic, provides students 
with a script for executing the model method. Scripts are collections 
of discrete actions that, when followed, achieve a goal or specific 

outcome [3]. Ordering food at a restaurant serves as the classic 
example of following a cognitive script [3]. In most dining 
establishments, the same set of steps, with some allowance for 
minor deviations, will lead the patron to receive a meal. Similarly, 
following the RIGHT sequence will lead students to the correct 
answer to a word problem. Scripts have been found to reduce 
cognitive load for novice learners by lessening the mental resources 
needed for planning and completing the plan. Scripts also lead to 
greater expressions of automaticity by experts [4]. However, 
cognitive psychologists also view scripts as the most nascent form 
of schemas [5]. The application of scripts is contextually bound and 
rather inflexible. Schank and Abelson [6] refers to scripts as event 
schemas which are task specific and order dependent. The previous 
restaurant script may work for purchasing food at most dining 
establishments, but it could not be used successfully to purchase 
food at a supermarket. To negotiate the supermarket, one would 
need to apply either a different script or rely on a more 
generalizable schema. 

Generalizable schemas consolidate the steps of an event schema 
under a larger label [7]. Rather than simply ordering a meal at a 
restaurant, a generalizable schema for acquiring food would 
include all of the known methods of gaining nourishment. What 
generalizable schemas sacrifice in terms of automaticity, they make 
up with flexibility [5].  

Returning to the original example of the model method, the intent 
behind introducing students to using box diagrams to solve 
algebraic word problems is to give them a generalizable schema for 
solving real-world problems [1]. In practice, students often 
instantiate the schema in the form of a word problem solving script 
[8]. When looking at problem solving accuracy, teachers cannot 
diagnose whether a student has internalized the model method as a 
generalizable schema or as a problem solving script because both 
strategies work in the short term. However, only the generalizable 
schema prepares students to flexibly transfer the model approach to 
new situations. In this study, we sought to generate an algorithm to 
classify students as exhibiting script-like or generalizable schema-
like behaviors in the context of a series of online math enrichment 
activities. We then tested whether script-like behaviors, 
generalizable schema-like behaviors, or problem solving 
accuracies were more predictive of students seizing future learning 
opportunities. 

1.2 Machine Learning and Temporal 
Sequencing 
In the context of this paper, we define an action as a single line item 
in a log file and action sequences as the collection of actions that 
can be described with a more general semantic label. For instance, 
entering a number into a text box constitutes an action. All of the 
various combinations of actions that lead to the calculation of that 
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number being entered into the text box constitute a single action 
sequence.  

When attempting to identify meaningful action sequences while 
preserving the temporal relationships between those actions, 
educational data miners use techniques like process mining and 
sequential pattern mining. With process mining, the learning 
pathways students take within a learning environment are identified 
and visualized [9, 10]. Deviations in these pathways from the 
intended pathways can then be analyzed for meaning [9, 10]. 
Alternatively, sequential pattern mining identifies frequently 
occurring subsequences within a temporal dataset for further 
analysis. Recently, Ye et at. used a hierarchical variant of SPAM to 
analyze data collected from Betty's Brain OELE [11]. The analysis 
illustrates the importance of using temporal relationships between 
user activities to make predictions about future learning behaviors 
[11]. Veeramachaneni, Adl, and O'Reilly [12, 13] also highlight the 
significance of incorporating a range of temporal dependencies into 
features when predicting student traits. Applying a crowd sourcing 
technique, they obtained lists of complex features that, when 
divided, seem obvious to experienced teachers and data scientists. 
However, neither group could have generated the entire list of the 
features on its own [12]. 

When extracting frequent patterns from unstructured data, 
sometimes the patterns are composed of short sets of actions which 
actually belong to longer action sequences. These algorithms have 
a tendency to obscure the temporal relationships between the 
extracted features. Additionally, sequencing combinations of 
actions and filtering out rare patterns rather than using the complete 
action sequences can result in the loss of rare action combinations 
that achieve a common action sequence [14]. The potential for 
losing rare actions belonging to common action sequences is 
magnified in learning environments populated by novice learners. 
Novice learners who are introduced to a learning environment have 
the dual task of learning to navigate the environment as well as 
gaining competency with the concepts central to the learning 
activities. In such situations, data mining techniques that analyze 
learner actions more schematically, rather than in scripted terms, 
may actually yield more parsimonious models. 

With the goal of aligning our data mining techniques with learners' 
mental schemas, we propose conceptually reframing individual 
actions as words and action sequences as sentences. With this 
recasting, we can apply a combination of string distance measures 
that take into account the vocabulary and word order within the 
sentences to make pair-wise comparisons. We used an Affinity 
Propagation (AP) [15] algorithm to recover distinct action 
sequences that translated to learning behaviors and the sequence 
exemplars are referred to as action sequences archetypes (ASAs). 
Sequential pattern mining is applied to cluster members to 
summarize the temporal deviations within each cluster. The 
described method preprocesses the data for analysis and 
interventions to steer learners towards desired educational 
outcomes. 

AP is useful for our particular context because it simultaneously 
considers all data points in relation to a shared preference to 
determine a suitable number of output clusters. This structure 
independence lends AP to situations where there is no a priori 
expectation about the output cluster size or number [15]. In our 
case, the number of sequences within the dataset varies greatly 
between sessions. Beyond accommodating this variability, the 
algorithm’s input, a similarity matrix defined by the pairwise 
similarities between two sequences, is not limited to symmetrical 
pairwise similarities. This freedom creates opportunities to 

differentiate the discrete ordered lists using different distance 
measurements. We augmented the AP algorithm with a tree-based 
sequential pattern mining algorithm for its ability to handle 
multiple minimum supports and rare item filtering [14]. The 
algorithm is used to extract maximal sequences, which are longest 
sequences that satisfy the minimum frequency threshold, for each 
cluster.  

2. Data Collection 
36 second grade students completed the first phase of activities in 
the online learning environment during the school holidays. The 
activities were part of an ``out of school" enrichment opportunity. 
At the onset of data collection, all of the invited participants had 
previously received formal instruction from their teachers on using 
the model method to solve addition and subtraction word problems. 
The students had not yet received instruction within the school 
curriculum on using the model method with multiplication and 
division word problems.  

The online learning environment offers two phases of content. 
During Phase 1, students’ complete addition and subtraction 
activities. In Phase 2, students encounter multiplication and 
division activities. Each content phase is divided into four sets of 
activities: 1) video tutorials, 2) structured activities, 3) unstructured 
activities, and 4) multiple choice questions (MCQ). The video 
tutorials explain the RIGHT sequence and the use of the model 
method in a pen-and-paper context. After each video, students 
receive a set of practice exercises related to the content of the video 
tutorial. Additional video segments at the start of each practice 
question introduce the recommended sequence of steps to solve the 
word problems using the model method and the representational 
supports found within the learning environment. The 
representational supports include using the highlighted noun blocks 
and the RIGHT checklist while answering the word problems. 

The structured activity focuses on the “G” in the RIGHT sequence. 
Each question in the activity is presented with a practice word 
problem. The problem is displayed with four multiple choice 
options showing different bar diagrams and a checklist in the right 
corner of the workspace. The checklist shows the first three steps 
of the RIGHT sequence. Students are advised to tick off the 
respective check boxes as they complete each step in the RIGHT 
sequence. In the structured activity, the checklist is limited to the 
first three steps of the RIGHT sequence as students are not expected 
to take their model to completion.  

After students identify the model they think matches the content of 
the word problem, they are given feedback about their choice 
before moving on to the next question. They are presented with 
options to review, ask for hints or proceed to the next question. 
Choosing to review the question returns students to the last 
snapshot of the question before the answer submission. Requesting 
a hint provides students with a partially completed model as a 
guide. Hints are given progressively until the complete model is 
revealed. Two hints can be requested for each question. If a student 
chooses to proceed to the next question without reviewing errors 
after submitting an error, the learning environment logs the action 
as ignoring an error.  

In the unstructured activity, students solve the problems using the 
RIGHT sequence. A snapshot of the learning environment for this 
activity prior to any attempt is shown in Figure 1. Model templates 
for all four arithmetic operations are made available for students to 
complete with the correct numerical values. Nouns mentioned in 
the problem are also presented as colored blocks for labeling the 
relevant model. Students can drag and drop the blocks to their 
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selected model. Students may also enter mathematical expressions 
in the provided text boxes. Alternatively, students may forego 
performing any or all of these actions. However, they must submit 
a final answer before receiving feedback about their answer and 
proceeding to the next question.   

For the MCQs, students are presented with a page containing ten 
multiple-choice questions. Each question requires inputting a 
numerical answer into a textbox. Students again have the option of 
using the RIGHT checklist that floats in the right margin of the 
screen. The checklist resets whenever a student interacts with a 
different question. Students must complete all of the activities 
before proceeding to Phase 2. 

3. Data Preprocessing 
Only clickstream and navigation information occurring within the 
online module was recorded to the log file as students worked 
through the activities. Beyond navigation and interface information 
like mouse clicks and text entries, off-task behavior like leaving the 
learning environment by activating another browser tab and 
returning to the online module was also collected. A total of 23233 
log entries were collected. Table 1 lists the recorded actions.  

The log entries were preprocessed to indicate the use of the 
different learning resources within the learning environment. For 
example, highlighting a keyword within a question is recorded as 
one log entry per keyword. However, only the first instances of 
highlighting and canceling of highlights are retained for each 
question attempt to signal that the highlighting resource was used. 
In addition, while learners navigate through the model template 
selection, we only analyze the final template selection instead of 
considering all of the navigation activity within the selection area. 
Filtering out these events greatly reduces the amount of variability 
within the action sequences and makes them more schematic. To 
identify revision of answers, first selections for the MCQs are 
labelled as mcq_select. Additional selections are labelled as 
mcq_alter. Following the described procedure reduced the size of 
the dataset to 9918 entries, or 275 entries per student. The 
maximum number of analyzed actions for a student was 868. The 
final list of actions for each type of activity is shown in Table 1. 

In the reduced dataset, each action sequence is identified and 
labelled. For videos, an action sequence constitutes the actions 
taken from the start of a video to terminating the video either by 
completing the video or navigating away from the current page. For 
the exercises, the action sequences span from the initiation of a 
question until the user proceeds to the next question.  

4. Techniques 
4.1 Distance Measures 
To differentiate action sequences as one would differentiate 
sentences, it is necessary to consider the vocabulary (actions) of 
each action sequence and the order of those words. Our proposed 
distance measure includes four components, a modified version of 
the common word order measure [16], Jaccard distance, length 
difference, and vocabulary rarity. The features capture different 
aspects of action sequences for differentiation. The distance 
measure between two action sequences 𝑆1 and 𝑆2 is given by the 
weighted sum of all four features. In this paper, a constant weight 
is assigned across the four features. 

 𝑑𝑖𝑠𝑡(𝑆1, 𝑆2) = 𝑤1 ∗ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐷𝑖𝑠𝑡(𝑆1, 𝑆2) 
                +𝑤2 ∗ 𝐶𝑊𝑂(𝑆1, 𝑆2) 

                +𝑤3 ∗ max (𝑖𝑑𝑓𝑡𝑗∉𝑆1∩𝑆2(𝑡𝑗 , 𝐷)) 

                +𝑤4 ∗ 𝑎𝑏𝑠(𝑙𝑒𝑛𝑔𝑡ℎ(𝑆1) − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆2)) 

(1) 

where  
 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 1 (2) 

Table 1: List of all log actions 
Action Video Structured Unstructured MCQ 
leave_page    

return_to_page    

phase_start    

phase_stop    

video_start     
video_stop     
video_pause     
video_scrub_ 
foward1     

video_scrub_ 
back1     

video_end1     
video_end_full1     
video_replay     
video_select_ 
same     

video_select_ 
diff     

attempt_qn    

highlight    

undo_highlight    

check_checklist    

mcq_select2    

mcq_alter2    

confirm_model2    

mouse_drag2    

label_model2    

label_eq    

submit2    

review_error    

ignore_error    

show_hint    

1 Actions are inferred from clickstream data due to limitation of 
YouTube’s application programming interface (API). 
2 Actions are recorded but filtered out for the purpose of this 
analysis. 

 
Figure 1: Workspace for unstructured activity. 
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Jaccard distance defined by  

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐷𝑖𝑠𝑡(𝑆1, 𝑆2) = 1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚(𝑆1, 𝑆2) (3) 
where  

 
JaccardSim(S1, S2) =

|S1 ∩ S2|

|S1 ∪ S2|
 (4) 

captures the degree of dissimilarity between two sequences through 
the number of unique terms that are not common to both. The 
Jaccard distances are derived from Jaccard similarity which 
determines the ratio of unique common actions between two action 
sequences. Jaccard similarity and distances are bounded between 
zero and one. 

In our context, the common word order measure reflects the 
similarity of the order in which actions appear between two action 
sequences. The measure equals zero when the common actions of 
two sequences occur in the same order and reaches a maximum of 
one when the common actions appear in reverse order. Given two 
sequences 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑚} composed 
of l common action, where 𝑙 ≤  𝑛 ≤  𝑚. Retaining only the 
common actions, sentence 𝐴 = {𝑎1, 𝑎2, . . , 𝑎𝑙} is transformed into a 
numerical representation 𝑋 = {1,2,… , 𝑙} by substituting the actions 
with its indices. The same actions in 𝐵 are replaced with the same 
numerical indices to form 𝐵. The common word order measure can 
then be computed by 

 CWO(S1, S2)

=

{
 
 

 
 1 −

(2∑ |𝑥𝑖 − 𝑦𝑢|
𝑙
𝑖=1 )

𝑙2
, 𝑖𝑓 𝑙 𝑖𝑠 𝑒𝑣𝑒𝑛

1 −
(2∑ |𝑥𝑖 − 𝑦𝑢|

𝑙
𝑖=1 )

𝑙2 − 1
, 𝑖𝑓 𝑙 𝑖𝑠 𝑜𝑑𝑑

1, 𝑖𝑓 𝑙 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑙 = 1

 (5) 

The common word order measure is designed for sentences where 
a bag-of-words representation has a large number of words, most 
of which have low frequencies. Due to the constraints of the 
learning environment, our data set contained many actions with 
high frequencies. Retaining the common terms within action 
sequences may result in substrings of inequivalent lengths. 
Therefore, there may exist more than one combination of mapping 
between these sentences. To remedy this possibility, we adapted the 
concept of a common word order measure to obtain a distance 
estimate for the action sequences by first filtering the reduced 
sequences to remove actions occurring at a specific position that do 
not contribute to the distance metric. We then match the remaining 
actions based on their position within the reduced sequence.  

The vocabulary rarity is defined as the maximum of the inverse 
document frequency (idf) [17] of terms that are not common to both 
sentences. This measure allows us to distinguish sequences that 
have actions that are less likely to occur from sequences involving 
trivial navigational patterns. The inverse document frequency of 
each term 𝑡𝑖 in a set of documents 𝐷 is computed by the logarithmic 
inverse of the ratio of document counts containing 𝑡𝑖 to the total 
number of documents in the document set 𝐷. 

 
𝑖𝑑𝑓(𝑡𝑖 , 𝐷) = log

|𝐷|

{|𝑑 ∈  𝐷: 𝑡𝑖 ∈  𝑑|}
 (6) 

4.2 Affinity Propagation 
The AP algorithm [15] is a message passing clustering algorithm 
used in image recognition, text comparison and gene clustering. 
Unlike centroid-based clustering like k-means clustering, AP does 
not require users to pre-specify the number of clusters and it is less 
sensitive to parameter initialization [15]. The algorithm takes a 

pair-wise similarity matrix and a set of shared preferences as inputs 
to determine the suitability of data points as cluster centroids. 
Without prior knowledge of the centroids, shared preferences may 
be set uniformly across all items. When shared preferences are 
assigned to the minimum value of the pairwise similarity, the 
number of resulting clusters will also be at its lowest. The inverse 
is also true. The number of clusters generated by the different 
shared preference values for the structured activity are shown in 
Figure 2.  

 

For our purposes, clusters are determined by passing messages 
between data points (action sequences) to simultaneously 
determine their suitability as cluster centroids. The provided 
similarity matrix may contain unknown pair-wise similarities. 
However, messages are passed only between points with known 
similarities. There are two types of messages passed between data 
points -- responsibility and availability. Responsibility 𝑟(𝑖, 𝑘), sent 
from data point 𝑖 to data point 𝑘, dictates the amount of evidence 
that 𝑘 is suitable to serve as the exemplar for 𝑖, while availability 
𝑎(𝑖, 𝑘), sent from 𝑘 to 𝑖, determines the appropriateness for point 𝑖 
to choose point 𝑘 as its exemplar. Availabilities are initialized as 
zeroes and the messages are updated iteratively using 

 𝑟(𝑖, 𝑘) = 𝑠(𝑖, 𝑘) − max
𝑘′≠𝑘

{𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)}, (7) 

 
𝑎(𝑖, 𝑘) = min {0, 𝑟(𝑘, 𝑘) + ∑ 𝑚𝑎𝑥{0, 𝑟(𝑖′, 𝑘)}

𝑖′∉{𝑖,𝑘}

} (8) 

 𝑎(𝑘, 𝑘) = ∑ max{0, 𝑟(𝑖′, 𝑘)}

{𝑖′≠𝑘}

 (9) 

At the end of each iteration, exemplars are determined from  

 𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟(𝑖, 𝑘) = argmax
𝑘

{𝑎(𝑖, 𝑘) + 𝑟(𝑖, 𝑘)} (10) 

Pairs (𝑖, 𝑘) identified from equation (10) state that either data point 
𝑖 will serve as an exemplar for data point 𝑘 or vice versa. The 
algorithm terminates only when either a predefined number of 
iterations is completed or the changes in the messages falls below 
a certain threshold.  

Essentially, the AP algorithm seeks to identify action sequence 
archetypes (ASA) around which to cluster the remaining action 

Figure 2: Number of generated clusters based on shared 
preferences for structured activity. 
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sequences. After identifying the ASAs, the similar cluster 
sequences inherit the index of their closest archetype. 

4.3 Sequential Pattern Mining 
The position coded pre-order linked web access pattern tree mining 
(PLWAP) algorithm with multiple minimum supports (MMS) [14] 
is a tree-based sequential pattern mining algorithm. A PLMS-tree 
is constructed from the logs by adding actions for each learning 
opportunity sequentially. Each node holds four variables, the label, 
the frequency count, a binary position code, and a minimum 
multiple item support (minMIS).  

The binary code is similar to Huffman coding as it uniquely 
identifies nodes and subtrees. The root node of the tree is labelled 
as 0. The leftmost child of any node has a position code of 1 
appended to the back of the position code of the node. The position 
codes of other children are derived from the position codes of their 
nearest sibling to the left by appending a 0 to the position code.  

The support determines the lower bound for frequencies that 
sequences must satisfy to qualify as a frequent pattern. For multiple 
minimum support, a minimum support is computed for each unique 
item in the dataset. In the case of our action sequences, the items in 
sequential pattern mining correspond to actions in the action 
sequences. The global minimum support is dictated by the smallest 
of the minimum supports. Each node maintains its minMIS which 
defines the support required by itself and the suffix tree to qualify 
as frequent.  

As the nodes are added to the tree, a header table is maintained. The 
header table contains the unique node labels with a list of 
corresponding binary code of nodes for the same label within the 
tree. The table is then sorted by order of decreasing frequencies. An 
example of the PLMS-tree and its corresponding header table is 
shown in Table 2 and Figure 3. 

Once the tree is populated, it can be traversed to mine the sequential 
patterns in the dataset. The mining algorithm proceeds as follows:  

1. For each of the entries in the header table, the nodes are 
identified from the tree using the position codes and the 
total occurrences is consolidated from the counts of 
individual nodes. A 𝑘-sequence is an ordered list of 𝑘 
items.  

a. If this sequence satisfies its minMIS, it qualifies as a 
1-sequence. 

b. If the frequency of this node satisfies the global 
minimum but not its minMIS, the label qualifies as a 
1-sequence candidate. Candidates are kept as 
candidates for mining because a subsequent item of 
lower minMIS may qualify these sequences as 
frequent sequences.  

2. The algorithm proceeds to identify the next item in the 
sequence by scanning the header table. 

3. Position codes in the header table containing the position 
code of the last found node as its prefixes are identified 
as descendants for that node.  

4. The frequencies of the newly identified nodes are 
aggregated and a new minMIS is updated to be the lower 
of the minMIS from previous nodes and the identified 
node.  

5. The algorithm proceeds to search for possible extensions 
and validates the frequency of these sequences against 
the minMIS.  

6. The algorithm terminates when no more descendants are 
identified from the header table or if the frequencies of 
the newly identified nodes are less than the value of the 
global minimum support.  

5. Clustering 
Sequences of attempts for each of the four activities are clustered 
with the AP algorithm. The shared preferences of AP are set to the 
maximum of the similarity matrices. We use the R package AP for 
this analysis. PLWAP is then used to retrieve a descriptive 
summary for each cluster. We restrict the algorithm to only identify 
contiguous sequences.  

We manually merge the clusters into ASAs based on their 
compositions. The compositions are determined by indicators 
signaling the use of certain actions between defined checkpoints, 
similar to the process mentioned in [10]. During the merging 
process for each archetype, we consider the actions spanning from 
the onset of a question to the first submission of the question 
attempt. Descriptions of the ASAs identified in the video, 
structured and unstructured activities are presented in Table 4, 
Table 5, and Table 6 respectively. 

Table 2: Header table example for Figure 3 

Label Support Position Code 
video_start 10 {01} 
video_end_full 6 {011}, {0110001} 

video_end 4 {0110}, {011001}, 
{011000101} 

video_pause 2 {011000} 
video_scrub_back 1 {01100010} 
video_scrub_forward 1 {01100} 

 

 
Figure 3: Example of a PLMS-tree for the video activity. 

Table 3: Action Sequence Profiles 

Activity No. of 
Attempts 

No. of 
Profiles 

Video 89 10 

Structured 286 11 

Unstructured 303 11 

MCQ 33 12 
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Because the MCQ activity presents multiple word problems on the 
same page, students may freely switch between the problems 
without signaling their intent. This freedom of choice yields ASAs 
with indefinite boundaries. The nebulousness of the ASAs 
associated with each question provides little inferential utility and 
will not be addressed in the following section beyond attempting to 
use each student's MCQ accuracy to predict the probability of 
persisting to Phase 2. 

6. Results 
6.1 Score-based Prediction of Persistence 
We calculated the percentage of questions students correctly 
answered for the structured, unstructured, and MCQ activities. As 
shown in Table 7, only a student's MCQ performance is associated 
with persisting into Phase 2. Knowing students' performances for 
the structured and unstructured activities leads to a prediction 
accuracy level similar to that of assuming no student persists from 
Phase 1 to Phase 2. 

As a caveat, the deterministic appearance of the association 
between MCQ performance and persisting to Phase 2 is misleading. 
The high correlation is due to the MCQ activity being a prerequisite 

for Phase 2. The mere presence of an MCQ submission, rather than 
the score itself, is predictive of persisting to Phase 2. Students who 
do not make an MCQ submission effectively earn a score of zero 
for the activity and do not have the possibility to continue to Phase 
2. Additionally, all students who do persist to Phase 2 must have 
scored above a zero on the MCQ activity. 

6.2 Sequence-based Prediction of Persistence 
We converted the frequency of each ASA into a percentage of a 
student's total action sequences. We then used a classification and 
regression tree (CART) algorithm to predict which students 
continued on to Phase 2 based on their ASA values. The decision 
trees associated with progressing based on ASAs from the video, 
structured and unstructured activities are presented in Table 4, 
Table 5 and Table 6 respectively. 

While persistence cannot be reliably predicted based on video 
ASAs, it can be accurately predicted by the structured and 
unstructured ASAs. The predictability of these features is 

Table 4: Action sequence archetypes for the video activity 

ASA Description 

V1  Offtask  

V2  Pre-mature termination  

V3  Complete video without other actions 

V4  Complete video with pauses  

V5  Complete video with off-task  

V6  Complete video with pauses and off-task  

V7  Complete video with pauses and scrub back  

V8  Incomplete video  

V9  Incomplete video with pauses  

V10  Incomplete video with scrub forward  
 

Table 5: Action sequence archetypes for the structured activity 

ASA  Description  

S1 Pre-mature termination  

S2 Direct answer with off-task  

S3 Direct answer  

S4 Direct answer with alter of choice  

S5 Answer with highlights  

S6 Answer with highlights and alter of choice  

S7 Answer with checklist  

S8 Answer with checklist and highlights  

S9 Answer with highlights and alter of choice and 
checklist  

S10 Submission with checklist and highlights but no answer 

S11 Submission without answer  
 

Table 6: Action sequence archetypes for the unstructured 
activity 

ASA Description  

U1 Attempts with no submission  

U2 Attempts with off-task and no submission  

U3 Submission without attempts  

U4 Submission without answer  

U5 Submission with answer and highlights  

U6 Submission without highlights and drags  

U7 Submission without highlights  

U8 Submission without drags  

U9 Submission without drags with one change of model 
template  

U10 Submission without drags with multiple change of 
model template 

U11 Submission without drags with off-task  

U12 Suggested steps  

U13 Suggested steps with one change of model template 

U14 Suggested steps with multiple change of model 
template  

U15 Suggested steps with off-task  
 

Table 7: Mean activity scores for students who stop during 
Phase 1 and persist to Phase 2 

 Accuracy 

Activity Stop-out Persist 

Structured 53.08% 55.23% 

Unstructured 54.56% 69.81% 

MCQ 0% 91.84% 
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determined using a logistic regression classifier for each activity. 
The results are presented in Table 8. 

 
The stop-out prediction accuracy increases as more activity scores 
are included in the logistic regression models. The accuracy of 
these models is highly dependent on the inclusion of the MCQ 
activity scores. The MCQ activity is the last activity students must 
complete before proceeding to Phase 2. 

The decision tree for the video activity, as shown in Figure 4, 
identify premature termination (ASA V2) as the best criterion for 
determining if students are likely to stop the activities. Prematurely 
terminating attempts at a frequency higher than 25% of the student's 
attempts is predictive of stopping the activity 83% of the time. In 
addition, a low compliance with incomplete video watching by fast-
forwarding (ASA V10) and completing the video without 
additional actions (ASA V3) are indicative of students who stop out 
of the learning environment. 

For the structured activity, a high compliance with the 
recommended process but without submitting an answer (ASA 
S10), answering questions with highlighting of keywords (ASA S5) 
and answering questions with the scripted steps, as shown in Figure 
5, all indicate students who are likely to proceed to Phase 2. 
Students who tend not to provide an answer for these attempts are 
likely to not proceed to Phase 2. 

While the unstructured activity gives more freedom to participants, 
the number of splitting criteria is minimal. Learners who do not 
proceed to Phase 2 are characterized by submitting more than 13% 
of their questions without any attempt to solve them (ASA U3). 
Also students who complied more than with the scripted steps more 
than 56% of the time also tended to stop out (ASA U12). We note 
that the lower compliance with the RIGHT sequence in 
unstructured activity in Phase 1 is associated with 86% probability 
of learners proceeding to Phase 2.  

7. Conclusions 
In this study, we presented a framework for converting clickstream 
data into action sequence archetypes. ASAs provide insight into 
how students approach learning activities by consolidating similar 
plans of action under a common label. For us, having a common 
label to refer to different patterns of actions facilitates discussion 
and interdisciplinary collaboration between the computer sciences 
and the learning sciences. This collaboration led us away from 
trying to analyze learning outcomes with click counts and time on 
task measures and toward ASAs. ASA frequencies identify how 
often a learner attempts to reach a goal via a particular method. 

Table 8: Logistic regression classification for stop-out 
prediction. 

Variable Set Variables Accuracy Kappa 
Statistics 

Score-based 

Structured 48.00% -0.06 
Structured + 
Unstructured 66.67% 0.43 

MCQ 100.00% 1.00 

Sequence-
based 

Videos 75.00% 0.48 

Structured 81.48% 0.61 

Unstructured 81.82% 0.63 

MCQ 82.35% 0.56 
 

 
Figure 4: Decision tree for the video activity. 

 
 
 

 
Figure 6: Decision tree for the unstructured activity. 

 
 

 
Figure 5: Decision tree for the structured activity. 
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Looking at our decision trees, ASAs can be used to quickly identify 
whether a learner is using on-task or off-task behaviors. However, 
they also can also be used to separate different approaches to 
achieving the same goal.  

In our case, students whose action sequences aligned more strongly 
to the archetype representing the RIGHT sequence presented in the 
online videos were less likely to persist to the second phase of 
activities. In one sense, it is counterintuitive to suggest that students 
who follow a taught script more closely would be less likely to 
persist in an activity. However, if script use is a way of minimizing 
cognitive load, novices who consistently exhibit script-like 
behaviors could be indicating more routinization and less 
assimilation of new concepts. What these students may have 
learned from their classroom instruction and the online material is 
a series of steps for completing the structured and unstructured 
activities and not the generalizable schema that underlies those 
activities. 

Using the ASAs to separate script users from generalizable schema 
users gives us a method of predicting a student's likelihood of 
persisting through the first phase of activities and attempting the 
second phase composed of unfamiliar math models. This method 
of prediction identifies students who are likely to stop out before 
the second phase much earlier than looking at how accurately the 
students solve the word problems. By the end of the second activity, 
our model could predict with high accuracy whether a student 
would continue on to Phase 2. Using a more traditional method of 
performance assessment and analyzing accuracy levels to predict 
future behavior required students to complete all of Phase 1 before 
the model could accurately predict whether the student would 
persist. In short, using ASAs to analyze how students approach the 
activities is more diagnostic of future performance than looking at 
past performance measures.   

Finally, it is not lost on us that we developed an algorithm that 
converts action sequences (scripts) into action sequence archetypes 
(schemas) to measure students' use of scripts and generalizable 
schemas. For this project, the machine learning goals and the 
students learning goals happened to overlap. We plan to continue 
developing the parallels by integrating our ASA analysis into a 
student feedback engine that can shift students away from off-task 
behaviors and toward on-task behaviors. We also seek to lead on-
task students toward more productive action sequences that foster 
the development of generalizable problem solving schemas rather 
than specific problem solving scripts. 
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ABSTRACT
User clustering algorithms have been introduced to analyze
users’ learning behaviors and help to provide personalized
learning guides in traditional Web-based learning system-
s. However, the explicit and implicit coupled interactions,
which means the correlations between user attributes gener-
ated from learning actions, are not considered in these algo-
rithms. Much significant and useful information which can
positively affect clustering accuracy is neglected. To solve
the above issue, we proposed a coupled user clustering algo-
rithm for Wed-based learning systems. It respectively takes
into account intra-coupled and inter-coupled relationships
of learning data, and utilizes Taylor-like expansion to repre-
sent their integrated coupling correlations. The experiment
result demonstrates the outperformance of the algorithm in
terms of efficiently capturing correlations of learning data
and improving clustering accuracy.

Keywords
Web-based learning, coupled interactions, user clustering,
user behavior analysis

1. INTRODUCTION
Information technology and its application have brought
great changes to all aspects of human, especially education
area. Web-based learning is a significant and advanced way
of education, meaning to utilize computer network technolo-
gy, digital multimedia technology, database technology and
other modern information technology to learn in digital en-
vironment. Compared with traditional learning, Web-based
learning can efficiently meet learners’ needs of learning any-
time and anywhere. Meanwhile, it takes advantage of vari-
ous online resources and helps learners to expand their hori-
zons and discover interests.

Recently Web-based learning systems are studied by many e-
ducation institutions and researchers, and a large number of
online learning communities and virtual schools arise [1]. As
an emerging online learning system, MOOC (Massive Open
Online Courses) was initiated by America’s top universities
in 2012. It had a participation of more than 6 million of stu-
dents from around 220 countries within one year [2]. Some
of Web-based learning systems apply user clustering algo-
rithms to analyze learning behaviors and provide personal-
ized learning services. Fu and Ofoghlu put forward a new
clustering algorithm; it can extract clusters which can be
described by overlapping layered concept in dense space [3].
According to the feedback of basic clustering method, Mon-
tazer et al. proposed a hybrid clustering algorithm, which
considered clustering issues from different perspectives, and
kept the simplicity of basic clustering algorithm [4]. An-
other matrix-based improved clustering algorithm was put
forward by Zhang et al., and it is much more efficient when
comparing with K-means [5]. Lin et al. came up with a kind
of intuitionistic fuzzy kernel clustering algorithm (KIFCM),
combining intuitionistic fuzzy sets and fuzzy kernel cluster-
ing algorithm, and applied it in learner behavior analysis
[6].

With the above algorithms utilized in Wed-based learning
systems, learners’ attribute information is extracted by an-
alyzing their behaviors, and finally used for user clustering.
However, these algorithms generally neglect the explicit and
implicit coupling relationships of user attributes and this
may lead to massive significant information loss. For ex-
ample, table 1 presents an evaluation index system based
on information provided by a specified Web-based learning
system. With common sense, we think that user attribute
of “Average correct rate of homework” has a positive impact
on “Comprehensive test result”. Generally, if the “Average
correct rate of homework” is better, the“Comprehensive test
result” is better. Students who behave this way are catego-
rized in “normal” group. However, there are also students
who can either get a better ”Average correct rate of home-
work” with a worse “Comprehensive test result”, or a better
“Comprehensive test result” with a worse “Average correc-
t rate of homework”; they are categorized in “unnormal”
group. These unnormal situations are caused by irregular
correlations of user attributes, but they are often ignored.
This will certainly have negative effect on user clustering
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Table 1: Comprehensive evaluation index system
First-
level
index

Second-level index

Times of doing homework
Average correct rate of homework

Number of learning resources
Total time length of learning resources

Autonomic Times of daily quiz
learning Daily average quiz result

Comprehensive test result
Number of collected resources
Times of downloaded resources

Times of making notes
Times of asking questions

Times of marking and remarking
Times of answering classmates’ questions
Times of posting comments on the BBS

Interactive Times of interaction by BBS message
learning Times of sharing resources

Average marks made by the teacher
Average marks made by other students

Times of marking and remarking made by
the student for the teacher

Times of marking and remarking made by
the student for other students

accuracy.

Nowadays an increasing number of researchers are study-
ing the interactions between object attributes with special
attention and have been aware that the independence as-
sumption on attributes often leads to a mass of informa-
tion loss. In addition to the basic Pearson’s correlation [7],
Wang et al. put forward the intra-coupled and inter-coupled
interactions of continuous attributes [8]. An innovative cou-
pled group-based matrix factorization model for discrete at-
tributes of recommender system was addressed by Li et al.
[9]. Jakulin and Bratko proposed an algorithm to detect
interactions between attributes, but it is only applicable in
supervised learning with the experimental results [10]. For
unsupervised learning, the coupled nominal similarity to ex-
tract new relationships between entities was addressed by
Wang et al., but it is only for categorical data [11]. We
rarely find any methods applied in Web-based learning sys-
tems, that consider coupling relationships of user attributes
in user clustering.

This paper proposed a coupled user clustering algorithm for
Web-based learning systems, namely CUCA. It studies the
coupling relationships of user attributes. With the help of
Taylor-like expansion, we use a spectral clustering algorithm
to cluster users. When it is applied in Web-based learning
systems, it can efficiently capture learners’ behavior features
and analyze the information behind them, especially that of
“unnormal”group of learners, and finally use them to provide
personalized learning services. To verify the outperformance
of CUCA, we compare its clustering result with that of 3
other algorithms, respectively from 3 dimensions of learning
attitude, learning effect and the integrated dimension.

The rest of the paper is organized as following. The clus-
tering algorithm model is proposed in section 2. Section
3 introduces the formalization and exemplification of the
clustering algorithm. In section 4, experiments and results

analysis are demonstrated. Section 5 concludes the paper
and discusses some potential applications of the proposed
algorithm in the future.

2. CLUSTERING MODEL
Evaluation model usually plays the core role in user eval-
uation framework [12]. In this section, the coupled user
clustering model is illustrated. This model captures cou-
pling relationships of user attributes through online behavior
analysis, and uses spectral clustering algorithm to improve
clustering accuracy.

User Learning Behavior Analysis

Intra-
coupled

User Attributes

Integrated Coupling Representation

Personalized Services

Customized
Learning Strategies

Learning
Guidance

Learning Resource
Recommendation

Attribute 1

Attribute 2

Attribute n

...

Inter-
coupled

Extract

Spectral Clustering Algorithm

Integrate

Compute

Apply

 

Figure 1: The coupled user clustering model

The model is composed of user learning behavior analysis,
coupled interactions computation of user attributes, inte-
grated coupling representation and spectral clustering algo-
rithm, illustrated in figure 1. As the basis, data for user
learning behavior analysis needs to be collected, consolidat-
ed and normalized. From the data, user attributes infor-
mation is extracted. With the extracted user attributes,
the intra-coupled interaction within an attribute and inter-
coupled interaction among different attributes are respec-
tively captured. Then all the interactions are integrated
and represented using Taylor-like expansion. Finally we use
a spectral clustering algorithm - NJW to cluster users. This
model is consequently applied in various Web-based person-
alized services, like Learning guide customization, tutoring
and learning resources recommendation.

3. CLUSTERING ALGORITHM
Based on the model illustrated in section 2, this paper pro-
posed an online coupling user clustering algorithm. It is
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Table 2: A fragment example of user attributes
HHHHHU

A
a1 a2 a3 a4 a5 a6

u1 0.61 0.55 0.47 0.72 0.63 0.62

u2 0.75 0.92 0.62 0.63 0.74 0.74

u3 0.88 0.66 0.71 0.74 0.85 0.87

u4 0.24 0.83 0.44 0.29 0.21 0.22

u5 0.93 0.70 0.66 0.81 0.95 0.93

suitable for network education, not only applicable to us-
er clustering analysis in Web-based learning systems, but
also to enterprise training, performance review and other-
s with users participation and behaviors recording. This
section describes the details of the proposed coupled user
clustering algorithm. Firstly, it collects user learning be-
havior information and extracts user attributes from them.
Secondly, it calculates and represents users’ intra-coupled
and inter-coupled relationship. Thirdly, the intra-coupled
and inter-coupled interactions are integrated to be a cou-
pled representation. Finally, it clusters users based on the
processed attributes, using NJW algorithm.

3.1 User learning behavior analysis
When students login a Web-based learning system, the sys-
tem will record their activity information, such as number
of learning resources, total time length of learning resources
and average correct rate of homework, which can be used
to build an evaluation index system. We refer to a Web-
based personalized user evaluation model [13] and utilizes
its evaluation index system to extract students’ attributes
information. This index system is with evaluation standards
of America K-12 (kindergarten through twelfth grade) [14]
and Delphi method [15], which is a hierarchical structure
built according to mass of information and data generated
during general e-learning activities. It defines 20 indicators
and can comprehensively represent the students’ attributes,
as shown in table 1.

Generally attributes are with various data types and units,
we formalize them by creating the table 2.

3.2 Intra-coupled and inter-coupled represen-
tation

In this section, we represent intra-coupled and inter-coupled
interactions of user attributes. And with a few examples,
the application of CUCA is demonstrated. We choose 5
students and 6 of the 20 attributes in table 1, which are
“Average correct rate of homework”, “Times of doing home-
work”, “Number of learning resources”, “Total time length of
learning resources”, “Daily average quiz result” and “Com-
prehensive test result”. The 6 attributes are respectively
signified by a1, a2, a3, a4, a5 and a6 in table 2.

Here we use a tetrad S = ⟨U, A, V, f⟩ to represent user at-
tributes information. U = {u1, u2, . . . , um} means a finite
set of users; A = {a1, a2, . . . , an} refers to a finite set of
attributes; V =

∪n
j=1 Vj represents all attributes value sets;

Vj = {aj ·v1, . . . , aj ·vtj } is the value set of the j-th attribute;
f =

∪n
i=1 fj , fj : U → Vj is the function for calculating a

certain attribute value. For example, the information ta-
ble 2 above contains 5 users {u1, u2, u3, u4, u5} and 6 at-
tributes {a1, a2, a3, a4, a5, a6}; the first attribute value of u1

is f1(u1) = 0.61.

The common way to calculate the interactions between 2
attributes is Pearson’s correlation coefficient [7]. The us-
er attributes from the Table 1 are continuous variables and
approximate to Normal distribution, meeting the constrain-
t condition of the Pearson’s correlation coefficient. Thus
we use it to help to calculate attributes interactions in this
paper. For instance, the Pearson’s correlation coefficient be-
tween ak and aj is formalized as:

Cor(aj , ak) =

∑
u∈U (fj(u) − µj)(fk(u) − µk)√∑

u∈U (fj(u) − µj)2
∑

u∈U (fk(u) − µk)2

(1)

Where µj , µk are respectively mean values of aj , ak.

The Pearson’s correlation coefficient helps to calculate the
attributes interactions, but it fits for linear relationship on-
ly, which is not sufficient to fully capture pairwise attributes
interactions. Therefore we converts the original data at-
tributes into a higher dimensional feature space to extract
more attribute information [16].

Firstly, we use a few additional attributes to expand inter-
action space. Then there are L attributes for each origi-
nal attribute aj , including itself, namely ⟨aj⟩1, ⟨aj⟩2, . . . ,
⟨aj⟩L. Each attribute value is the power of the attribute,
for instance, ⟨aj⟩3 is the third power of attribute aj , ⟨aj⟩p

(1 ≤ p ≤ L) is the p-th power of aj . In table 3, the deno-
tation aj and ⟨aj⟩1 are equivalent; the value of ⟨aj⟩2 is the
square of that of aj . For simplicity, we set L=2.

Secondly, the correlation between pairwise attributes is cal-
culated. It captures both local and global coupling relations.
We take the p-values for testing the hypotheses of no correla-
tion between attributes into account. p-value here means the
probability of getting the maximum correlation observed by
random chance, while the true correlation is zero. If p-value
is smaller than 0.05, the correlation Cor(aj , ak) is signifi-
cant. The updated correlation coefficient is as:

R Cor(aj , ak) =

{
Cor(aj , ak) if p-value<0.05,

0 otherwise.
(2)

Here we do not consider all relationships, but only takes the
significant coupling relationships into account, because al-
l relationships involvement may cause the over-fitting issue
on modeling coupling relationship. This issue will go against
the attribute inherent interaction mechanism. So based on
the updated correlation, the intra-coupled and inter-coupled
interaction of attributes is proposed. Intra-coupled interac-
tion is the relationship between aj and all its powers; inter-
coupled interaction is the relationship between aj and pow-
ers of the rest attributes ak (k ̸= j).
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Table 3: Extended user attributes
HHHHHU

Ã ⟨a1⟩1 ⟨a1⟩2 ⟨a2⟩1 ⟨a2⟩2 ⟨a3⟩1 ⟨a3⟩2 ⟨a4⟩1 ⟨a4⟩2 ⟨a5⟩1 ⟨a5⟩2 ⟨a6⟩1 ⟨a6⟩2

u1 0.61 0.37 0.55 0.30 0.47 0.22 0.72 0.52 0.63 0.40 0.62 0.38

u2 0.75 0.56 0.92 0.85 0.62 0.38 0.63 0.40 0.74 0.55 0.74 0.55

u3 0.88 0.77 0.66 0.44 0.71 0.50 0.74 0.56 0.85 0.72 0.87 0.76

u4 0.24 0.06 0.83 0.69 0.44 0.19 0.29 0.08 0.21 0.04 0.22 0.05

u5 0.93 0.86 0.70 0.49 0.66 0.44 0.81 0.66 0.95 0.90 0.93 0.86

Definition 1 Intra-coupled interaction. The intra-coupled
interaction within an attribute is represented as a matrix.
For attribute aj , it is an L × L matrix RIa(aj). In the
matrix, (p, q) is the correlation between ⟨aj⟩p and ⟨aj⟩q

(1 ≤ p, q ≤ L).

RIa(aj) =




α11(j) α12(j) · · · α1L(j)
α21(j) α22(j) · · · α2L(j)

· · · · · ·
. . . · · ·

αL1(j) αL2(j) · · · αLL(j)


 (3)

Where αpq(j) = R Cor(⟨aj⟩p, ⟨aj⟩q) is the Pearson’s corre-
lation coefficient between ⟨aj⟩p and ⟨aj⟩q.

For attribute a1 in table 3 above, we can get the intra-

coupled interaction of it as RIa(a1) =

(
1 0.986

0.986 1

)
,

which means that the correlation coefficient between at-
tribute “Average correct rate of homework” and its second
power is as high as 0.986. There is close relationship between
them.

Definition 2 Inter-coupled interaction. The inter-coupled
interaction between attribute aj and other attributes ak

(k ̸= j) is quantified as an L × L ∗ (n − 1) matrix as:

RIe(aj |{ak}k ̸=j) =
(

RIe(aj |ak1) · · · RIe(aj |akn−1)
)

(4)

RIe(aj |aki) =




β11(j|ki) β12(j|ki) · · · β1L(j|ki)

· · · · · ·
. . . · · ·

βL1(j|ki) βL2(j|ki) · · · βLL(j|ki)




(5)

Here {ak}k ̸=j refers to all the attributes except for aj , and
βpq(j|ki) = R Cor(⟨aj⟩p, ⟨aki⟩q) is the correlation coeffi-
cient between ⟨aj⟩p and ⟨aki⟩q (1 ≤ p, q ≤ L).

For attribute a1 in the table 3 above, the inter-coupled inter-
action between a1 and others (a2, a3, a4, a5, a6) is calculated
as:

RIe(a1|{a2, a3, a4, a5, a6}) =

(
0 0 0.898 0.885 0.928 0.921
0 0 0.929 0.920 0.879 0.888

0.997 0.982 0.999 0.988
0.978 0.994 0.982 0.999

)

The p-values between a1 and others (a2, a3, a4, a5, a6) is cal-
culated as:

pIe(a1|{a2, a3, a4, a5, a6}) =

(
0.689 0.677 0.039 0.046 0.023 0.027
0.733 0.707 0.023 0.027 0.050 0.044

0 0.003 0 0.002
0.004 0.001 0.003 0

)

Based on the result, we can find that there is hidden cor-
relation between user attributes. For instance, all the p-
values between attribute a1 and a2 are larger than 0.05, so
the correlation coefficient is 0 based on Equation (2), indi-
cating there is no significant correlation between “Average
correct rate of homework” and “Times of doing homework”.
Meanwhile, the correlation coefficient between a1 and a5, a1

and a6 is quite close to 1; it indicates “Daily average quiz
result” and “Comprehensive test result” respectively have
close relationship with “Average correct rate of homework”,
which is consistent with our practical experiences. In conclu-
sion, comprehensively taking into account intra-coupled and
inter-coupled correlation of attributes can efficiently help
capturing coupling relationships between user attributes.

3.3 Integrated coupling representation
Intra-coupled and inter-coupled interactions are integrated
in this section as a coupled representation scheme.

In table 3 above, each user is signified by L∗n updated vari-

ables Ã = {⟨a1⟩1, . . . , ⟨a1⟩L, . . . , ⟨an⟩1, . . . , ⟨an⟩L}. With

the updated function f̃p
j (u), the corresponding value of at-

tribute ⟨an⟩p is assigned to user u. Attribute aj and all its

powers are signified as ũ(aj) = [f̃1
j (u), . . . , f̃L

j (u)], while the
rest attributes and all powers are presented in another vec-

tor ũ({ak}k ̸=j) = [f̃1
k1

(u), . . . , f̃L
k1

(u), . . . , f̃1
kn−1

(u), . . . ,

f̃L
kn−1

(u)]. For instance, in table 3, ũ1(a1) = [0.61, 0.37],

ũ1({a2, a3, a4, a5, a6}) = [0.55, 0.30, 0.47, 0.22, 0.72, 0.52,
0.63, 0.40, 0.62, 0.38].

Definition 3 Coupled representation. Attribute aj ’s cou-

pled representation is formalized as a 1×L vector uc(aj |Ã, L),
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where (1, p) component corresponds to the updated attribute
⟨aj⟩p.

uc(aj |Ã, L) = uIa(aj |Ã, L) + uIe(aj |Ã, L) (6)

uIa(aj |Ã, L) = ũ(aj) ⊙ w ⊗ [RIa(aj)]
T (7)

uIe(aj |Ã, L) = ũ({ak}k ̸=j) ⊙ [w, w, . . . , w]

⊗[RIe(aj |{ak}k ̸=j)]
T

(8)

where w = [1/(1!), 1/(2!), . . . , 1/(L!)] is a constant 1 × L
vector, [w, w, . . . , w] is a 1×L∗(n−1) vector concatenated by
n−1 constant vectors w. ⊙ denotes the Hadamard product,
and ⊗ represents the matrix multiplication.

Take an example in table 4, the coupled representation for

attribute a1 is presented as uc
1(a1|Ã, 2) = [3.85, 3.80]. The

reason we choose such a representation method is explained
below. If the above Equation (6) is expanded, for exam-
ple, we get the (1, p) element which corresponds to ⟨aj⟩p of

the vector uc(aj |Ã, L) as below, which resembles Taylor-like
expansion of functions [17].

uc(aj |Ã, L) · ⟨aj⟩p = αp1(j) · f̃1
j (u) +

n−1∑

i=1

βp1(j|ki)

1!
f̃1

ki
(u)

+
αp2(j)

2!
f̃2

j (u) +

n−1∑

i=1

βp2(j|ki)

2!
f̃2

ki
(u) + . . .

+
αpL(j)

L!
f̃L

j (u) +

n−1∑

i=1

βpL(j|ki)

L!
f̃L

ki
(u)

(9)

Finally we obtained the global coupled representation of all
the n original attributes as a concatenated vector:

uc(Ã, L) = [uc(a1|Ã, L), uc(a2|Ã, L), . . . , uc(an|Ã, L)] (10)

With the couplings of attributes, each user is represented as
a 1×L∗n vector. When all the users follow the steps above,
we then obtain an m × L ∗ n coupled information table. For
example, based on table 2, the coupled information table
shown in table 4, is the new representation.

3.4 User clustering
We obtained the global coupled representation in table 4.
Compared with the original representation, this one reflect-
s coupling interactions of attributes, and contains far more
coupling relationships. With these data, we can do user clus-
tering using NJW [18], which is a kind of spectral clustering
algorithm. Detailed clustering results are demonstrated in
experiment later.

4. EXPERIMENTS AND EVALUATION
In this section, we conduct experiments to verify the validity
and accuracy of the proposed algorithm. The data for the
experiments are collected from a Web-based learning system
of China Educational Television (CETV), named “New Me-
dia Learning Resource Platform for National Education”1.
As a basic platform for national lifelong education, which
started the earliest in China, and had the largest group of
users and provided most extensive learning resources, it met
the needs of personalization and user diversity through inte-
grating a variety of multi-network, terminals and resources.
So far, the number of registered users has reached more than
two million. The experiment is composed of 3 parts: user
study, user clustering and result analysis.

4.1 User study
In the experiment, we ask 220 users (signified by s1, s2, . . . ,
s220) to learn C programming language online. The whole
learning process, including recording and analyzing learning
activities information, is accomplished in CETV.

The public data sets regarding learners’ learning behaviors
in online learning systems are insufficient, and most of them
don’t contain labeled user clustering information. Mean-
while, because learners always behave with certain subjec-
tivity in online learning systems, to label learners with dif-
ferent classifiers based on their learning behaviors only, but
without the information behind, is not accurate. There-
fore, we adopt a few user study methods, including self-
assessment, peer-assessment and teacher-assessment [19], to
label online learners with classifiers. It is the basis for veri-
fying the accuracy of clustering.

Analyzing the 20 attributes extracted from table 1 using
user evaluation index system proposed in this paper, we
can easily find that they can be mainly divided into 2 cate-
gories. Some attributes belong to the category of “learning
attitude”, which refers to students’ learning initiatives, like
“Times of doing homework”, “Number of learning resources”
and“Total time length of learning resources”. While the rest
belong to the category of “learning effect”, which refers to
how well students receive knowledge, like “Average correct
rate of homework”, “Daily average quiz result” and “Com-
prehensive test result”. Accordingly, we can label learners
with these attributes from both categories. Each of the at-
tributes has 3 grades - high, medium and low. Consequently
every learner has 2 labels and each label has one grade of
high, medium and low. In total, there will be 9 different
combinations - high & high, high & medium, high & low,
medium & high, medium & medium, medium & low, low &
high, low & medium and low & low.

After the students had finished a learning phase, we asked
the 220 users to do a self-assessment using centesimal grade,
respectively from perspectives of learning attitude and learn-
ing effect. Then we requested teacher assessments in the
same way, meaning the teacher of the subject to review the
students’ performance. Finally, the students were asked to
do peer-assessments, which means students do an assess-
ment for each other. Each student will get the assessment
scores from the rest 219 students. We calculate the aver-

1http://www.guoshi.com/
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Table 4: Integrated coupling representation of user attributes
HHHHHU

Ã ⟨a1⟩1 ⟨a1⟩2 ⟨a2⟩1 ⟨a2⟩2 ⟨a3⟩1 ⟨a3⟩2 ⟨a4⟩1 ⟨a4⟩2 ⟨a5⟩1 ⟨a5⟩2 ⟨a6⟩1 ⟨a6⟩2

u1 3.85 3.80 0.70 0.70 2.20 1.46 3.24 3.23 3.35 3.70 3.76 3.81

u2 4.54 4.50 1.34 1.34 2.89 1.98 3.66 3.65 3.82 4.31 4.37 4.51

u3 5.51 5.46 0.88 0.88 3.54 2.44 4.46 4.45 4.66 5.22 5.28 5.47

u4 1.53 1.52 1.17 1.17 1.01 0.80 1.03 1.02 1.06 1.42 1.44 1.52

u5 5.94 5.89 0.94 0.94 3.73 2.49 4.95 4.94 5.17 5.68 5.75 5.90

Table 5: Transformation rule between score and
grade

Score range Grade Sample

80 ≤ X ≤ 100 high 95

50 ≤ X < 80 medium 75

0 ≤ X < 50 low 40

Table 6: The evaluation results of s1

learning
attitude

learning
effect

Self-assessment
(40%)

80.0 75.0

Teacher-assessment
(35%)

85.0 80.0

Peer-assessment
(25%)

82.7 79.2

Comprehensive
evaluation results

82.4 77.8

grade high medium
Class high & medium

age of the 219 scores. A student’s final score is obtained by
integrating the 3 assessments above. According to Expert
Investigation Weight Method [15], we did statistical analy-
sis and got approximate weights for the assessments, name-
ly 40% for self-assessment, 35% for teacher-assessment and
25% for peer-assessment. Each student’s final score will be
transformed into a grade value, “high”, “medium” or “low”.
The transformation rule between score and grade is shown
in table 5.

Take student s1 as an example, his 3 assessment scores and
transformed grades are shown in table 6.

4.2 User clustering
In Equation (9), the proposed coupled representation is strong-
ly dependent on how large L can be. Thus we conduct a few
experiments to study how the performance of L influences
the clustering accuracy of CUCA. The range of L value is
from L = 1 to L = 10. With the growth of L value, L!
value grows. When L = 10, it is large enough to capture
most of the information in Equation (9). The experiments
show that with the growth of L, the clustering accuracy will
be gradually improved. When L = 3, the accuracy change
reaches a comparatively stable status; when L > 3, the ac-
curacy change is extremely small. That means the accuracy

of when L = 3 and when L = 10 is quite similar. To guar-
antee the accuracy of experimental results and reduce the
complexity of the algorithm, we take L = 3 in the following
comparative experiments.

In the experiments, we utilize the attributes data gener-
ated from the 220 students’ learning process, as the basis
for clustering. Then we persistently collect data from the
process which reaches 30 hours by average. Respectively
with the help of K-means algorithm, Fuzzy C-means algo-
rithm(FCM), NJW algorithm and CUCA algorithm, we do
user clustering, getting 2 labels in terms of learning attitude
and learning effect for each student. In section 4.1, we clas-
sified each student with 2 labels based on user study result.
Then we compare the labels got from user study and us-
er clustering result. If only one label from each side is the
same, the clustering accuracy rate is 50%; if both the labels
are the same, the accuracy rate reaches 100%. For instance,
student s1 is labeled with “high & medium” in user study, if
he is classified to“medium & medium”cluster, the clustering
accuracy rate is 50%; if he is classified to “high & medium”
cluster, the accuracy rate reaches 100%.
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Figure 2: Clustering result analysis (30h)

4.3 Result analysis
We do comparison analysis on the clustering result respec-
tively from the 3 dimensions of learning attitude, learning
effect and the integrated dimension. The analysis result is
shown in figure 2. We can see the clustering accuracy of uti-
lizing CUCA is 89.4% for learning attitude, 87.3% for learn-
ing effect and 74.6% for integrated dimension, each of which
is higher than that with the other 3 algorithms. Especially,
CUCA obviously outperforms the rest on clustering accu-
racy of integrated dimensions. Compared with K-means,
which performs the worst, CUCA improves almost 30% on
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the clustering accuracy. The reason is CUCA fully takes
into account coupling relationships of users. In Web-based
learning systems, if the user attributes are more complicat-
ed, there will be more clustering dimensions and the clus-
tering accuracy will be improved more.
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Figure 3: Clustering result of different time phases

If we divide the process of extracting user attributes to 6
phases, namely 5h, 10h, 15h, 20h, 25h, 30h based on aver-
age learning length, we can get the correlation between av-
erage learning length and clustering accuracy, as shown in
figure 3. From the figure, we can see that while the learning
length grows, the clustering accuracy of the 4 algorithms
keeps improving, specifically for CUCA. With CUCA, the
clustering accuracy on integrated dimensions distinctly out-
performs that of the 3 other algorithms. It indicates that
with the increasing learning behavior data volume, CUCA
can find the hidden coupling relationships of user attributes
more easily, and the clustering accuracy is much better.

Besides, we can verify clustering accuracy through analyzing
user clustering results. The best performance of a clustering
algorithm is keeping the distance within clusters as small as
possible and the distance between clusters as large as possi-
ble. We use the evaluation criteria of Relative Distance (the
ratio of average inter-cluster distance upon average intra-
cluster distance) and Sum Distance (the sum of object dis-
tances within all the clusters) to present the distance. The
larger Relative Distance is and the smaller Sum Distance is,
the better clustering results are. From figure 4, we can see
that the Relative Distance for CUCA is larger than that of
the 3 other algorithms, while the Sum Distance for CUCA
is smaller. It indicates that CUCA outperforms the rest in
terms of clustering structure.
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Figure 4: Clustering structure analysis (30h)

5. CONCLUSION
A coupled user clustering algorithm (CUCA) for Web-based
learning systems is proposed in this paper to capture cou-
pling relationships of user attributes. The algorithm respec-
tively takes intra-coupled and inter-coupled correlation into
account in the application process, and utilizes Taylor-like
expansion to represent the coupling relationship. Finally,
with the usage of spectral clustering algorithm, CUCA is
applied to do user clustering. In the experiments, user s-
tudy, user clustering and result analysis are adopted to ver-
ify that CUCA outperforms traditional algorithm for user
clustering.

In this paper, the user attributes extracted from user learn-
ing behavior data are all numerical data, most of which are
continuous data. In reality, there are also categorical data,
which will be a significant study topic in the future.
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ABSTRACT
The first intelligent tutoring systems for computer program-
ming have been proposed more than 30 years ago, mostly fo-
cusing on well defined programming tasks e.g. in the context
of logic programming. Recent systems also teach complex
programs, where explicit modelling of every possible pro-
gram and mistake is no longer possible. Such systems are
based on data-driven approaches, which focus on the syn-
tax of a program or consider the output for example cases.
However, the system’s understanding of student programs
could be enriched by a deeper focus on the actual execution
of a program. This requires a suitable data representation
which encodes information of programming style as well as
its functionality in a suitable way, thus offering entry points
for automated feedback generation.

In this contribution we propose a representation of com-
puter programs via execution traces for example input and
demonstrate the power of this representation in three key
challenges for intelligent tutoring systems: identifying the
underlying solution strategy, identifying erroneous solutions
and locating the errors in erroneous programs for feedback
display.

Keywords
execution traces, data-driven tutoring systems, computer
science teaching, sequence alignment, sorting programs

1. INTRODUCTION
Teaching computer programming has been a long-standing
goal of intelligent tutoring systems research. The earliest
example, the LISP tutor, has been released in 1985 [1] and
since then many different approaches have evolved, such as
learning by examining and manipulating examples, by sim-
ulation and debugging, by dialogue with the system, by col-
laboration with peers or by feedback [7]. Most of these ap-
proaches rely on extensive domain knowledge about program

structure, typical mistakes (so-called buggy rules) and syn-
tactic concepts, which is expensive to obtain and difficult to
encode [5, 10]. In particular, such approaches get infeasible if
the space of possible programs (and mistakes) gets too large,
and if the goal of the computer program is ill-defined [8]. To
push the boundaries of intelligent tutoring systems towards
such scenarios, data-driven approaches have been developed
which provide feedback to students based on example pro-
grams handed in by other students, e.g. by highlighting the
difference of the student solution and a similar, correct pro-
gram [2, 16]. However, such approaches focus strongly on
the syntax of programs, which is problematic because the
relation between a programs functionality and its syntax is
highly non-linear.

As an example, consider the Java code shown in Figure 1.
The programs on the left and on the middle are both (cor-
rect) sorting programs, which have a very similar syntactic
structure. Both sort the array via two nested loops, com-
pare the current element to its successor and swap them if
the order is incorrect. However, the programs implement dif-
ferent algorithms, namely BubbleSort (left) and Insertion-
Sort (middle). Thus, minor syntactic changes correspond
to major changes in terms of function [14]. If an intelligent
tutoring system provides feedback based on a functionally
dissimilar example (e.g. a different underlying algorithm)
the system might recommend changes to the student’s pro-
gram which lead the learner away from her intended strat-
egy. Such feedback might be detrimental to the student’s
learning success.

This poses a challenge to educational datamining research.
How do we estimate the similarity between programs on a
functional level, without exceeding effort in knowledge en-
gineering? We propose to represent computer programs by
their execution traces, to compare such traces using sequence
alignment and to define the similarity between programs
based on the alignment distance. An execution trace is a
sequence of variable states for each step of the program’s
execution for some input. They are a usual representation of
computer programs for debugging purposes and can provide
insight into the dynamic behaviour of programs [6]. In par-
ticular, traces and alignments of traces have been success-
fully applied in educational programming environments to
offer students an alternative view on their own program for
self-reflection [17, 18]. We build upon this research by uti-
lizing the trace representation for educational datamining,
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public static int[] bubblesort(int[] A) {
  final int l = 0;
  final int r = A.length - 1;
  for (int i = r; i > l; i--) {
    for (int j = l; j < i; j++) {
      if (A[j] > A[j + 1]) {
        final int tmp = A[j];
        A[j] = A[j + 1];
        A[j + 1] = tmp;
      }
    }
  }
  return A;
}

public static int[] insertionSort(int[] A) {
  final int l = 0;
  final int r = A.length - 1;
  for (int i = l; i < r; i++) {
    for (int j = i - 1; j >= l; j--) {
      if (A[j] > A[j + 1]) {
        final int tmp = A[j];
        A[j] = A[j + 1];
        A[j + 1] = tmp;
      }
    }
  }
  return A;
}

public static int[] insertionSort(int[] A) {
  final int l = 0;
  final int r = A.length - 1;
  insertionSort(A, l, r);
  return A;
}
private static void insertionSort(int[] A, int l, int r) {
  if (l < r) {
    insertionSort(A, l, r - 1);
    insert(A, l, r);
  }
}
private static void insert(int[] A, int l, int r) {
  if (l < r) {
    if (A[r - 1] > A[r]) {
      final int tmp = A[r - 1];
      A[r - 1] = A[r];
      A[r] = tmp;
    }
    insert(A, l, r - 1);
  }
}

Figure 1: Three correct sorting programs in Java code. Important syntactic constructs and variable ini-
tializations are highlighted. The corresponding code parts between all three programs are visualized via
background highlighting. Left: An iterative BubbleSort implementation. Middle: An iterative InsertionSort
implementation. Right: A recursive InsertionSort implementation.

Bubble Insertion recursive

[4, 7, 2, 1] [4, 7, 2, 1] [4, 7, 2, 1]
[4, 2, 7, 1] [4, 2, 7, 1] [4, 2, 7, 1]
[4, 2, 1, 7] [2, 4, 7, 1] [2, 4, 7, 1]
[2, 4, 1, 7] [2, 4, 1, 7] [2, 4, 1, 7]
[2, 1, 4, 7] [2, 1, 4, 7] [2, 1, 4, 7]
[1, 2, 4, 7] [1, 2, 4, 7] [1, 2, 4, 7]

Table 1: The execution traces for the three pro-
grams from Figure 1 for the input array A = [4, 7, 2, 1].
Only the values for the variable A are shown and
intermediate steps that do not manipulate A have
been omitted.

that is, for automated classification and analysis of student’s
computer programs in order to provide helpful, automated
feedback.

As an example, consider the programs from Figure 1 again.
Their execution traces for the input array A = [4, 7, 2, 1] are
shown in Table 1. Despite the apparent syntactic similar-
ity, the implementations of BubbleSort and InsertionSort do
indeed map to different traces, while the iterative and recur-
sive implementation of InsertionSort map to the same trace.
This indicates that traces have a more direct relationship to
the semantics of the underlying program, making them a
promising representation for intelligent tutoring systems.

The main contributions of our work are as follows: First, we
introduce execution traces with the purpose to capture syn-
tactic as well as semantic aspects of the underlying program
(Section 3). Second, we provide an efficient methodology
for automatically comparing such traces via edit distances
and inferring a measure of similarity for further datamin-
ing applications (Section 4). Finally, we evaluate our ap-
proach in comparison with the state of the art in syntactic
representation in three key challenges for educational data
mining: 1.) identifying the student’s underlying algorith-
mic approach (Section 5.2), 2.) identifying erroneous im-
plementations (Section 5.3), and 3.) detecting the location
of errors for feedback (Section 5.4). To our knowledge, no

data-driven approach exists to date which tackles all three
challenges. Syntax-based representations have been success-
ful in identifying the programming strategy [11, 13] but fail
in identifying erroneous solutions as well as error locations
(as we will show later). On the other hand, test case-based
evaluations are very successful in identifying erroneous solu-
tions but treat programs as a black box and thus can make
no claims regarding the implemented strategy or the loca-
tion of the error [17].

2. BACKGROUND AND RELATED WORK

2.1 Tutoring Systems for Computer Program-
ming

In a review of AI-supported tutoring approaches for com-
puter programming, Le and colleagues found six categories
of approaches, namely: 1.) displaying examples of programs
in order to learn to construct programs of a similar type
or modify examples; 2.) simulating the execution of a pro-
gram in a micro-world and visualizing it to the user; 3.)
providing a dialogue environment in order to complete a
programming task in an interactive dialogue with the sys-
tem; 4.) presenting buggy example code in order to learn
via program analysis and debugging; 5.) providing feedback
to students during development of their program in order
to guide them towards a correct solution and detect errors;
and finally 6.) providing a collaborative work environment
in which students can help each other in developing a pro-
gram, guided by the system’s group model [7]. We note that
Le and colleagues do not yet consider recent data-driven ap-
proaches, which are mostly feedback-based systems, such as
the FIT Java Tutor [2], BOTS [4] and ITAP [16]. Our own
approach is targeted mainly at such feedback-based systems
working on examples. We analyze the execution trace of a
student’s program in order to find similar programs for feed-
back purposes and we intend to locate errors in the student’s
program to help her correct them. However, our approach
also bears similarity to simulation-based approaches as we
consider the execution of the program’s statements as the
main characteristic of a program.
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2.2 Representations of Computer Programs for
Data-Driven Systems

Most existing data-driven systems for computer program-
ming represent programs as abstract syntax trees, which
are subjected to some form of canonalization in order to
abstract from mere stylistic differences [15]. Recently, Piech
and colleagues have criticized this approach and judged syn-
tax trees not sufficiently discriminative to capture the strong
functional consequences of small syntactic changes [14]. In-
stead, they propose a neural network-based approach to infer
a vectorial representation of programs, such that standard
machine learning methods can be applied in the resulting
Euclidean space. Similar to our approach, Piech and col-
leagues intend to represent a programs function (or seman-
tics) in opposition to its syntax. However, they focus on a
direct mapping between input and output of program seg-
ments, while the trace representation provides more proce-
dural (or dynamic) insight into the programs function.

2.3 Edit Distances on Computer Programs
Computing similarities and dissimilarities between computer
programs is a crucial step towards data-driven intelligent
tutoring system [9]. Edit distances have been particularly
prominent in this regard. For example, Rivers and Koedinger
used tree edit distances to compute similarities between syn-
tax trees of Python programs to identify adjacent states [16].
Gross and colleagues similarly applied edit distances on syn-
tax trees to infer clusters of computer programs and select
the most similar sample solution for feedback [2, 3]. Finally,
Paaßen, Mokbel and Hammer have identified the underly-
ing algorithm of sorting programs using machine learning
techniques based on alignment distances and adapted the
parameters of those alignment distances to yield better clas-
sification results [11, 13]. Note that all these approaches rely
on alignment distances on program syntax, not on execution
traces. Striewe and Goedicke applied sequence alignment on
execution traces, but did not apply the alignment distances
for further datamining purposes [18].

2.4 Classification of Computer Programs
Recently, the value of classification methods for feedback
provision in intelligent tutoring systems for computer pro-
gramming has been recognized. Such machine learning meth-
ods enable tutoring systems to infer e.g. the underlying pro-
gramming strategy of a learner with explicit human labelling
only for a small example set [13]. Piech and colleagues report
multiplication factors of up to 214, that is, a human tutors
annotation for one program permits inference of said anno-
tation for up to 214 other programs [14]. Of course, such
approaches rely on a representation of computer programs
in a format that can be fed into machine learning methods,
such as pairwise similarities and dissimilarities [9, 13] or an
explicit vectorial embedding [14]. In this contribution, we
employ a classification paradigm to distinguish between dif-
ferent algorithmic approaches, as well as between erroneous
and correct solutions.

3. REPRESENTING COMPUTER PROGRAMS
VIA EXECUTION TRACES

In general, execution trace recordings can be defined as the
“detection and storage of relevant events during run-time,
for later off-line analysis” [6]. More specifically, we consider

executions of statements in the program as relevant events,
which we characterize by the value of variables of interest
after the statement has been executed. This is equivalent to
a step-wise execution of the program in a debugger, where we
record the state of an interesting variables in each step [17].
As an example, consider traces in Table 1 for the programs
in Figure 1.

Only modest technical requirements have to be fulfilled to
apply a trace representation. 1.) The programming lan-
guage has to offer a debugging environment which permits
monitoring of a program’s execution; 2.) a valid and non-
trivial example input for the task has to be available; and 3.)
the student’s program has to compile and execute without
errors on the example input [17]. Thus, the trace repre-
sentation is more demanding compared to the very flexible
syntactic representation of computer programs, but has less
prerequisites compared to extensive knowledge engineering.
In that sense, the trace representation can be seen as a“mid-
dle road” between entirely data-driven approaches and sys-
tems based on expert knowledge.

4. COMPARING EXECUTION TRACES
If a student’s program is analyzed via test cases, the output
is compared with the pre-defined reference value via a simple
equality test. However, such a strict equality test is not a
viable option for the comparison of execution traces. For
example, the traces on the left and the middle in Table 1
are not equal. But they are more similar to each other than
to an erroneous program that does not sort the input array
at all. Therefore, we require a more flexible measure of
similarity or dissimilarity between traces [9].

Similarities and dissimilarities on sequential data can be ob-
tained via alignment distances or edit distances. The over-
arching scheme is to extend both input sequences such that
there length becomes equal and similar elements of both se-
quences become aligned. The alignment distance is then de-
fined as the summed cost over all aligned elements [13]. The
choice of alignment algorithm depends on the extensions of
input sequences that should be permitted. In case of exe-
cution traces we intend to abstract from sequence elements
that leave the relevant variables unchanged. As an exam-
ple, consider lines two and three of the program in Figure 1
(left). These two lines could be removed from the program
without changing its function, if all expressions of r and l
are replaced by their value in the rest of the program. A
classic edit distance scheme would punish this with a higher
dissimilarity between the shorter and the longer version of
the program. Instead, we propose that the same state of the
relevant variables may be copied without cost. This corre-
sponds to the dynamic time warping dissimilarity DDTW for
speech processing, first introduced by Vintsyuk [20]. Given
two traces x̄ = (x1, . . . , xM ) and ȳ = (y1, . . . , yN ) as well as
a dissimilarity measure d(xi, yj) between the variable states
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[4,7,2,1]
[4,7,2,1]
[4,7,2,1]
[4,2,2,1]
[4,2,7,1]
[4,2,7,1]
[4,2,7,1]
[4,2,1,1]
[4,2,1,7]

[4,7,2,1]
[4,2,2,1]
[4,2,7,1]
[4,2,7,1]
[2,2,7,1]
[2,4,7,1]

d(xi,yj) = 0

d(xi,yj) = 0

d(xi,yj) = 0

d(xi,yj) = 0.5

d(xi,yj) = 1

Figure 2: An illustration of the dynamic time
warping distance between two traces. Aligned ar-
ray states are connected by yellow background.
Mismatching parts of the aligned variable states
are highlighted in red. The dissimilarity between
aligned array states is shown in the middle.

xi and yj , it is defined recursively as:

DDTW

(
(x1, . . . , xi),(y1, . . . , yj)

)
:= d(xi, yj) + min

{
(1)

DDTW

(
(x1, . . . , xi−1), (y1, . . . , yj−1)

)
,

DDTW

(
(x1, . . . , xi−1), (y1, . . . , yj)

)
,

DDTW

(
(x1, . . . , xi), (y1, . . . , yj−1)

)}

DDTW

(
(x1), (y1)

)
:= d(x1, y1) (2)

This can be calculated efficiently in O(M ·N) via dynamic
programming (DDTW is tabulated for all prefixes of x̄ and
ȳ).

An illustration of the dynamic time warping dissimilarity
between two example traces is shown in Figure 2. The first
three array states of the left trace are just repetitions and
thus are aligned with the first array state of the right trace.
This occurs again for the fourth to sixth array state of the
left trace. Only afterwards the array states differ and lead
to a non-zero dissimilarity between both traces. Note that
the explicit alignment of array states between two compared
traces in dynamic time warping can be retrieved efficiently
via backtracing in linear time.

As other edit distances, the dynamic time warping algorithm
crucially relies on a dissimilarity measure between variable
states. If prior knowledge regarding the interesting variables
is available, defining such a measure becomes fairly straight-
forward (e.g. a Hamming-distance on arrays, just counting
the number of unequal entries). In absence of such prior
knowledge, defining a dissimilarity on variable states be-
comes a challenge in itself. One has to infer a semantic
matching between the variables in both programs, deter-
mine their relevance (as some variables might be less central
to the semantic function than others) and then compute the
relevance-weighted distance between all matched variables.
As a first step in this direction, we propose a simple sum-
mary scheme. We build a histogram Hxi in each state xi
that counts the number of variables of each type t ∈ T , and
compare these histograms with a normalized L1 distance:

d(xi, yj) :=
1

|T | ·
R∑

t∈T

|Hxi(t)−Hyj (t)|
|Hxi(t)|+ |Hyj (t)| (3)

Note that we consider only types t which occur in both pro-
grams at least once.

5. EXPERIMENTS
Our experimental evaluation concerns three key challenges
for data-driven intelligent tutoring systems: 1.) Identifying
the underlying algorithmic approach, 2.) identifying erro-
neous programs, and 3.) detecting the location of an error,
once a program is identified as erroneous. We compare the
performance on these tasks between the trace representa-
tion (with dynamic time warping as dissimilarity measure)
and the state-of-the-art in terms of syntax representation:
syntax-trees with learned edit distance parameters via ma-
chine learning techniques [13]. As implementation of the
alignment techniques we applied the TCS Alignment Tool-
box [12].

5.1 Datasets
For our evaluation, we use two benchmark datasets. The
palindrome data set consists of 48 (correct) programs decid-
ing whether all words in an input sentence are palindromic,
using one of eight different programming strategies [9]. We
used the histogram-approach to define a dissimilarity be-
tween variable states and generated traces using the input
sentence “OTTO ANNA MOPS”. As this data set does not
contain erroneous programs, we only used it for the first
experiment.

The second dataset is an extended version of the sorting
dataset from [11]. It consists of 126 (correct) sorting pro-
grams collected from various web sources, each implement-
ing one of six sorting algorithms (35 BubbleSorts, 29 Inser-
tionSorts, 15 MergeSorts, 17 QuickSorts, 20 SelectionSorts
and 10 ShellSorts). For each of the programs we created an
erroneous counterpart, with one or more semantic errors,
that is, errors that are neither detected by the compiler nor
do they lead to a program crash (e.g. due to an index being
out of bounds). Thereby, we focused on errors that are non-
trivial to detect for technical systems. As a dissimilarity
between variable states we employed a Hamming distance
on the array to be sorted. As input we generated a uniform
random array of 10 integers in the range [0, 99].

Both datasets are available online at http://doi.org/10.

4119/unibi/2900666 and http://doi.org/10.4119/unibi/

2900684 respectively.

5.2 Classifying Programming Strategies
Our first experiment concerns the identification of the un-
derlying sorting algorithm. We assume that a human expert
has already labelled some example programs and want to in-
fer the correct label for some new, unlabelled program. We
evaluate the classification accuracy of an 1-nearest neighbor
classifier for the syntactic as well as the trace-based represen-
tation in a crossvalidation with 6 folds (for the palindrome
dataset) and 10 folds (for the sorting dataset) respectively.

The results are shown in Table 2. For the palindrome dataset,
the accuracy for the trace representation is more than 10%
higher compared to the syntactic representation. Yet, likely
due to the small sample size, this difference is not significant
(Wilcoxon rank-sum test). In case of the sorting data set,
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BubbleSort

InsertionSort

MergeSort

QuickSort

SelectionSort

ShellSort

Figure 3: The sorting dataset embedded in 2 dimensions via t-stochastic neighborhood embedding (t-SNE)
[19]. The sorting algorithms are indicated by color. On the left side, the embedding is shown for adapted, syn-
tactic edit distances [13]. On the right side, we show the embedding for dynamic time warping dissimilarities
on traces.

palindromes sorting
method acc. std. dev. acc. std. dev.

syntax 0.875 0.158 0.812 0.068
traces 0.979 0.051 0.954 0.040

Table 2: The mean classification accuracy and its
standard deviation of a 1-nearest neighbor classi-
fier distinguishing six different sorting algorithms.
Mean and standard deviation are calculated across
6 (for palindromes) and 10 (for sorting) crossvalida-
tion trials.

we gain an increase in accuracy of more than 14%, which
is highly significant (p < 0.01, Wilcoxon rank-sum test).
This is also reflected in the corresponding dissimilarities.
In Figure 3 we show 2-dimensional embeddings of the sort-
ing dataset according to syntax-based (left) and trace-based
(right) dissimilarities. The trace representation yields more
compact clusters corresponding to the correct class label,
thereby making classification easier. Interestingly, closer in-
spection of the misclassified data points for the trace rep-
resentation revealed that the 1-nearest neighbor classifier
correctly identified a BubbleSort implementation the pro-
grammers had wrongly labelled as an InsertionSort.

In order to apply a classification algorithm in praxis, labelled
data is required. To reduce human work, one would like to
reduce the amount of labelled data necessary. We tested the
required amount of labelled data experimentally, by reduc-
ing the number of labelled data points (and increasing the
number of unlabelled points). The results are displayed in
Figure 4. For the palindrome data set, only two data points
per class are sufficient to achieve good performance. For
the sorting data set, about 40 labelled programs suffice to
achieve a classification accuracy of 90% using the trace rep-
resentation, while the classification accuracy for the syntac-
tic representation saturates at 80% for about 60 programs.

5.3 Classifying Erroneous Programs
We phrase the identification of erroneous problems as a clas-
sification task as well: We assume that a human expert
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Figure 4: The classification accuracy on the strat-
egy classification task using the syntactic as well as
the trace-based data representation if the number
of available labelled data points is reduced and the
number of unlabelled points is increased. The upper
plot displays the result for the palindromes dataset,
the lower plot for the sorting dataset. The error-
bars mark the standard deviation across 6 and 10
crossvalidation trials respectively.

Proceedings of the 9th International Conference on Educational Data Mining 187



method Accuracy std. dev.

syntax 0.211 0.107
traces 0.861 0.086

Table 3: The mean classification accuracy and its
standard deviation of a 1-nearest neighbor classifier
distinguishing erroneous from correct sorting pro-
grams. Mean and standard deviation are calculated
across 20 crossvalidation trials.
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Figure 6: The classification accuracy on the error
classification task using the syntactic as well as the
trace-based data representation if the number of
available labelled data points is reduced and the
number of unlabelled points is increased. The error-
bars mark the standard deviation across 20 crossval-
idation trials.

has labelled a few example programs as correct and erro-
neous respectively. Then, we want to infer the label for new
programs. We evaluate the classification accuracy of an 1-
nearest neighbor classifier in a 20-fold crossvalidation.

The results are shown in Table 3. As expected, the syntactic
information is not at all sufficient to judge the correctness
of a program. The trace-based representation, on the other
hand, identifies correct and false solutions in most cases
(about 86% accuracy). Again, we can observe the difference
between both representation in 2-dimensional embeddings.
Figure 5 shows embeddings for the syntactic-based (left) as
well as the trace-based dissimilarities (right). While erro-
neous and correct solutions are almost indistinguishible for
the former representation, we observe a much clearer sepa-
ration of the classes for the latter representation.

We also tested the classification performance if less labelled
data is available (see Figure 6). Interestingly, the classifi-
cation accuracy of the syntactic representation decreases if
more labelled data is available. This is likely due to the fact
that we created the erroneous programs based on the cor-
rect ones, such that the nearest neighbor from a syntactic
point of view often was the respective counterpart solution,
such that errors get more prevalent if more of such neighbors
are available for classification (also refer to Figure 5). Con-
versely, the trace representation steadily increases in perfor-
mance and reaches 80% accuracy at about 50 labelled data
points.

5.4 Detecting Error Locations
As a final challenge, we try to locate the errors within the
erroneous programs. More precisely, the challenge is to iden-
tify a set of lines of code in an erroneous program, such that
all errors are included, but few other lines are included. Such
a set of lines can then be utilized in an intelligent tutoring
system. The identified lines can be highlighted such that
the student is able to find the error in her program. We
apply two strategies based on alignment algorithms, one on
the syntactic representation and one on the trace represen-
tation.

Syntax-Based Error Detection. We select the nearest cor-
rect neighbor and retrieve a syntactic alignment of the er-
roneous program and the correct program via backtracing.
Thereby we obtain the contribution of each line of code in
the erroneous program to the overall alignment distance. In
order to identify contributing neighbors as well, we apply
Gaussian blur to this distribution and then select the line of
code with the highest contribution as well as its neighbors,
if their contribution is sufficiently high (at least half as high
compared to the maximum).

Trace-Based Error Detection. Our trace-based strategy
is similar to the syntax-based one. We again select the near-
est correct neighbor and retrieve a trace alignment of the
erroneous program and the correct program via backtrac-
ing. However, we can apply additional domain knowledge.
We assume that an erroneous program has the wrong out-
put given the input. The output of the program includes
the value of the relevant variables at the end of the trace.
Therefore, we can start from the end of the trace alignment
and work back until the state of the relevant variables is
equal to the state in the correct program. This is the point
where the error in the program influences the programs ex-
ecution negatively. However, it is not sufficient to highlight
this particular line of code, because the actual error might
be earlier in the code (e.g. a wrongly set index). Therefore,
we select not only this line, but the most frequently exe-
cuted five lines of code until the last change of the relevant
variables.

Further, we included three trivial baseline strategies for com-
parison: 1.) Selecting a line of code at random, 2.) selecting
a line of code at random according to its distribution in the
trace, and 3.) selecting all lines in the program that occured
in the trace.

We evaluated all five strategies in a 20 fold crossvalidation.
For each erroneous program, we excluded the correct coun-
terpart from the available neighbors in order to make the
scenario more realistic.

The results are shown in Table 4. We report the classic
pattern recognition measures precision (how many of the se-
lected lines of code contain an error?), recall (how many of
the erroneous lines of code have been selected?) and F1-
score (harmonic mean of precision and recall). In terms of
F1-score, the trace-based error detection method clearly out-
performs the syntax-based one (p < 10−4, Wilcoxon rank-
sum test). Further, as expected, both random baseline meth-
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Correct

Erroneous

Figure 5: The sorting dataset including erroneous solutions embedded in 2 dimensions via t-stochastic neigh-
borhood embedding (t-SNE) [19]. The correctness of each program is indicated by color. On the left side,
the embedding is shown for adapted, syntactic edit distances [13]. On the right side, we show the embedding
for dynamic time warping dissimilarities on traces.

method precision std. dev. recall std. dev. F1 score std. dev.

traces 0.183 0.071 0.520 0.211 0.269 0.104
syntax 0.103 0.086 0.134 0.100 0.115 0.091
traces random 0.157 0.122 0.119 0.098 0.134 0.107
syntax random 0.121 0.116 0.095 0.095 0.105 0.103
traces all 0.103 0.022 0.976 0.050 0.186 0.037

Table 4: The mean classification accuracy and its standard deviation of a 1-nearest neighbor classifier dis-
tinguishing erroneous from correct sorting programs. Mean and standard deviation are calculated across 20
crossvalidation trials.

ods seldomly select an erroneous line, thereby limiting the
recall. However, selecting all lines of code occuring in a trace
provides a strong baseline to compete with (F1 = 0.186).
Still, the trace-based error location method performs signif-
icantly better (p < 0.01, Wilcoxon rank-sum test).

6. DISCUSSION
In this contribution we introduced an alternative representa-
tion of computer programs for classification and error detec-
tion in intelligent tutoring systems (ITSs), namely execution
traces. On two example data sets we have demonstrated
that this representation can improve upon state-of-the-art
syntax-based representation in terms of strategy classifica-
tion, error classification and error detection. In a full-blown
ITS for computer programming, the trace representation can
thus be applied to help students in solving programming
tasks. As soon as a student has managed to reach a working
state (without syntax errors and program crashes) we can
generate a trace and compare it with the traces of differ-
ent programs. The resulting (dis-)similarity measure can be
used to identify possible partners for peer-review and peer-
tutoring by matching students that apply the same approach
in their solution attempt. Further, the trace representation
can be applied to identify erroneous programs, enabling an
ITS to detect whether a student has finished a task or still
needs to continue. Further, as not only the end result is
checked but the whole execution, the trace representation
can be utilized for detecting unusual or deceptive solutions
that are geared towards the test cases without actually im-
plementing the desired function. Finally, if an error is still

present in a student’s program but the error is not obvious,
the trace representation may help to identify and highlight
the location of the error in the program code, thereby pro-
viding scaffolding to students that get stuck in searching for
their error.

Overall, the trace representation appears to be highly useful
for data-driven ITSs on computer programming. However,
important challenges remain. If no a priori knowledge re-
garding the relevant variables in the program is available,
computing a dissimilarity on variable states is not trivial.
We have suggested a first attempt using a histogram of vari-
able types. This representation, however, disregards the
content of variables and thus is likely not sufficiently power-
ful in many applications where differences in variable values
are important markers of program semantics. A solution
might be to match variables probabilistically according to
the alignment distance a certain matching produces. This is
an interesting direction to pursue in further research.

Finally, we note that the trace representation does not have
to be the sole source of information for an ITS. A syntactic
representation is necessary when a program does not yet
compile or crashes and wherever the high level of abstraction
applied by a program trace is not helpful (e.g. when teaching
certain syntactic constructs). Fusing the strengths of both
representations is likely to lead to the best learning outcomes
for students.
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ABSTRACT
Intelligent Tutoring Systems (ITSs) have shown success in the
domain of programming, in part by providing customized hints
and feedback to students. However, many popular novice pro-
gramming environments still lack these intelligent features. This
is due in part to their use of open-ended programming assign-
ments, which are difficult to support with existing hint gener-
ation techniques. In this paper, we present a new data-driven
algorithm, based on the Hint Factory, to generate hints for
these open-ended assignments. We evaluate our algorithm on
historical student data and show that it can provide hints that
successfully lead students to solutions from any state, help stu-
dents achieve assignment objectives, and align with the student’s
future solution.

1. INTRODUCTION AND BACKGROUND
Intelligent Tutoring Systems (ITS) have shown much promise
in the domain of computer programming [3, 14, 16, 22], with
studies arguing that students using an ITS perform as much as
two standard deviations higher than those who receive conven-
tional instruction [3]. A key feature of any ITS is the ability to
give students context-sensitive feedback during problem solving,
often in the form of hints. In the domain of programming, this
feedback has been shown to improve students’ performance,
both inside the tutor and on subsequent assessment [4].

Despite positive empirical evaluations, these specialized ITSs
are not generally used in introductory programming classes. In
particular, new introductory Computer Science (CS) curricula,
such as CS Principles1 and Exploring CS2 are turning to pro-
gramming environments designed specifically for novices, such as
Scratch [19], Snap [8] and Alice [5], which engage students in cre-
ating open-ended projects, such as games, stories and simulations
[25]. These environments have features specifically designed for
novices, such as drag-and-drop, block-based interfaces that im-
prove student performance by minimizing the challenges of syn-
tax [18]. They offer improved outcomes over traditional instruc-
tion, such as increased retention [11] and improved test scores [5].

Unfortunately, aside from some preliminary research [2], little
effort has been made to bring the intelligent features of ITSs
to these novice programming environments. This is due in part
to the large investment of time required by domain experts to
create these systems, which has been estimated as high as 300
hours to create one hour of intelligent content [12]. Further,
the use of open-ended programming assignments, which makes

1www.csprinciples.org
2www.exploringcs.org

these environments so appealing to students and teachers, also
serves as a major barrier to providing intelligent, adaptive feed-
back. These assignments often have multiple, loosely ordered
objectives, which cannot be assessed automatically, making it
difficult to apply automatic hint generation techniques that rely
on test cases (e.g. [15, 22, 23]).

Data-driven tutors have the potential to overcome these barriers.
The Hint Factory is an algorithm that has been used to generate
data-driven hints from historical student data, originally in
the domain of logic proofs [1]. The Hint Factory is like a
recommender system that uses student data as a basis for
automatic hint generation, making it easy to scale up without
additional expert involvement. The Hint Factory has been
successfully adapted to the domain of programming in a variety
of ways [14, 9, 22]. However, data-driven hints have not been
evaluated on open-ended assignments in novice programming
environments, and may not be well equipped to handle them [17].

In this paper we present an extension of the Hint Factory
specifically designed to provide hints to students working on
open-ended programming assignments. The algorithm is fully
data-driven, requiring no reference solution or test cases, and
presents hints that represent real student actions. It is designed
to be programming language and system agnostic, with the
intention of making it applicable to a variety of novice program-
ming environments. We evaluate this algorithm on historical
student data from an open-ended assignment in a novice pro-
gramming environment, and show that it is capable of providing
hints that successfully lead students to solutions from any state,
help students achieve assignment objectives, and align with the
student’s future solution.

1.1 The Hint Factory
The Hint Factory [24] is an algorithm for generating next-step
hints for students working on multi-step problems. It operates
on a data-structure called an interaction network [6], which is
built from log data of the interactions between students and a
learning environment for a given problem. The interaction net-
work is a directed graph, where each vertex represents a state of
the problem. In programming a state corresponds to a snapshot
of the student’s current work (code). States are connected by
edges, which represent student actions, such as adding, editing
or deleting code, which transform one state into another. Each
student attempt is traced from a start state to its final state
and is added to the interaction network. If this final state is a
correct solution, we label it as a goal state. By combining all
students’ attempts into a single network and weighting edges
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with the number of attempts that passed through them, the
interaction network forms a compact representation of student
problem solving strategies for a given problem.

The Hint Factory uses the interaction network for a given prob-
lem to generate hints for new students working on that problem.
When a student requests a hint, the algorithm matches that
student to an existing state in the network and then calculates
the best path from that state to a goal state. The Hint Factory
uses a Markov Decision Process (MDP) to calculate this solution
path [1], but other techniques can also be used, which are more
effective in some contexts [16]. Once a solution path is calculated,
it is typically used to provide a next-step hint, which points the
student towards the next state in the solution path. The exact
method of suggesting this state as a hint is system-dependent.

1.2 Hint Generation in Programming
The domain of computer programming presents a serious chal-
lenge for automatic hint generation, especially for data-driven
systems. Even for simple programming problems, the space of
possible solutions is quite large, often infinite, and there may be
little overlap among student solutions [17, 20]. Many automated
hint generation algorithms search through this space, attempting
to transform a student’s current program into a solution state
using some sort of program generation or synthesis [10, 15, 22,
23, 26]. These techniques require an expert-supplied reference
solution and/or set of test cases to ensure that generated pro-
grams are correct. To facilitate this transformation, algorithms
often represent a student’s program using an Abstract Syntax
Tree (AST), a directed, rooted tree where each node represents
a program element, such as a function call, control structure
or variable, and the hierarchy of the tree represents how these
elements are nested together.

Zimmerman and Rupakheti [26] use a pq-Gram tree edit distance
algorithm to match a student’s program to its closest counterpart
in a database of target solutions, as well as to identify the set of
insertions, deletions and relabelings that will directly transform
the student’s AST into this solution. Rather relying on a fixed set
of solutions, Singh et al. [23] use program synthesis to generate
a new solution from the student’s current program. They do
so using an expert-provided Error Model, which defines a set of
potential transformations to a student’s code for a given problem.
Other techniques are data-driven like the Hint Factory, using
previous student solutions to provide hints. Perelman et al. [15]
also employ program synthesis to search for a solution program,
using a Domain-Specific language (DSL) to define possible
program transformations; however, they show that this DSL
can be automatically generated from previous student solutions.
Our approach also works to transform a student’s program into
a solution, but rather than using an automated technique like
program synthesis, we use edits from actual students. Lazar
and Bratko [10] employ a similar approach, applying single-line
edits observed in previous student work to transform a student’s
program into a solution; however, their technique requires a set
of test cases to evaluate generated programs, and ours does not.

The Hint Factory has also been adapted to the domain of
programming, with modifications to address the large state
space and lack of overlap among student solutions. Rivers and
Koedinger [22] extend the Hint Factory using a strategy called
path construction to generate a path from a student’s current
state to a previously observed goal state, rather than relying on

observed student paths. They compute a change vector of all
edits needed to transform the student’s current state into the goal
state and test to see if any closer solutions are discovered along
the way. Peddycord III et al. [14] applied the Hint Factory to a
programming game called BOTS, but rather than representing
a student’s state using an AST (a codestate), they used the
state of the game world after running the student’s program
(a worldstate). The authors found considerably more overlap
among worldstates than codestates, allowing more hints to be
generated; however, these hints may be more challenging to apply.
Fossati et al. [7] used a similar approach to the Hint Factory
to generate both reactive and proactive data-driven feedback in
the iList linked list tutor. They found that with this feedback,
iList produced equivalent learning gains to a human tutor.

Most methods for hint generation benefit from overlap among
student programs. This overlap can be increased through canon-
icalization, which standardizes the syntax of programs, while
maintaining their semantic meaning. For example, the expres-
sion a>b can be rewritten b<a without changing its meaning.
Rivers and Koedinger [20] present a comprehensive technique
for canonicalization, which standardizes programs in a variety
of ways, such as normalizing arithmetic and boolean operators,
removing unreachable and unused code and inlining helper func-
tions. Jin et al. [9] take a different approach, representing a
student’s program as a Linkage Graph, where each vertex is a
code statement, and each directed edge represents an ordering
dependency. This removes some semantically unimportant or-
dering information from the program, allowing for more overlap.

2. THE CTD ALGORITHM
In this section we present the Contextual Tree Decomposition
(CTD) algorithm for hint generation, our extension of the Hint
Factory to the domain of open-ended programming problems.
Existing hint generation techniques are effective on traditional
programming assignments with single objectives that are easily
assessed with test cases. Open-ended assignments, by contrast,
may have multiple, loosely ordered objectives that do not lend
themselves to automated assessment, as they often deal with
user interaction or graphical output. As such, we cannot rely
on the program generation techniques discussed in Section 1.2
to create hints. Instead, we take a fully data-driven approach,
using student data, rather than automated search, to construct
a path to a goal state. Not only does this approach make hint
generation feasible for open-ended assignments, it also has the
advantage of presenting hints that correspond to real student
actions, which should be understandable to other students.

2.1 An Example Assignment
To illustrate the CTD algorithm, we will use an assignment
called the “Guessing Game” as a running example throughout
this section. In the Guessing Game, students are asked to create
a program that stores a random number and then repeatedly
asks the player to guess it until they are correct, informing
them if they have guessed too high or too low. To begin, the
game should welcome the player and greet them by name. The
assignment requires the use of loops, conditionals, variables and
various arithmetic operators. A common implementation of the
Guessing Game is presented in Figure 1.

Note that this is one of many possible solutions to the problem.
For example, we could use three if statements, rather than
an if/else block. Now consider a student, Alice, working on
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GuessingGame :

Say( "Welcome to the Guessing Game !" )

answer ← Ask( "What is your name ?" )

Say( Join( "Hello ", answer ) )

number ← Random( 1, 10 )

doUntil ( answer == number ):

answer ← Ask( "Guess a number" )

if ( answer == number ):

Say( "Correct !" )

else:

if ( answer > number ):

Say( "Too high !" )

if ( answer < number ):

Say( "Too low !" )

Figure 1: An example solution to the Guessing Game
assignment.

GuessingGame :

number ← 8

Say( "Welcome !" )

answer ← Ask( "Who ’s playing ?" )

Say( Join ("Hi ", answer ) )

doUntil ( answer == Random( 1, 10 ) ):

answer ← Ask( "Guess a number" )

Figure 2: An example of a partial, flawed solution
attempt from a student, Alice.

the Guessing Game with code presented in Figure 2. Alice has
added the first few lines of code in a different (but correct) order;
however, she does not understand how to store and use the ran-
dom number for the guessing game. A hint could demonstrate
the correct behavior for her.

2.2 Generating Hints
In the CTD algorithm, as in previous work, we represent a
student’s state using an AST. Borrowing from Rivers and
Koedinger’s work [20], we also use basic canonicalization to
increase overlap among ASTs. In our ASTs, we use a single
label for all variables (var) and for all literals (literal). The
arguments of commutative operators (e.g. ==, +, *) are given
a fixed ordering, and we rewrite any greater than expression
x>y as a less than expression y<x. A canonicalized AST for
the code presented in Figure 1 is shown in Figure 3.

Most data-driven hint generation algorithms attempt to answer
the question, “Given a student’s current state, what should their
next state be?” Rather than trying to answer this question for a
student’s entire program, we try to answer it for the children of
each node of a student’s AST. For example, if Alice were to re-
quest a hint, we might tell her to assign a different value to num-

ber, compare different values using == or add code to the body
of doUntil. By breaking the student’s program down into a set
of smaller pieces, we can more easily match it to the programs
of previous students, as suggested in previous work [10, 21].

To generate hints from student data, we build a set of contextual
interaction networks (CINs), which each model how students
edit a subsection of the program over time. We build one CIN for

Figure 3: A partial AST for the code shown in
Figure 1. A root path r is outlined in bold blue, with
its current state (Cg) in dashed green.

Figure 4: The contextual interaction network
CIN({script, doUntil, ==}) with goal state Cg. Edge
thickness represents transition frequencies.

each unique root path observed in all students’ ASTs (including
ASTs from intermediate code snapshots). A root path (RP) for
a node n in an AST is the path from the root node to n. Figure 3
highlights an example RP for the (==) node: {script, doUn-

til, ==}. Some nodes have the same root path, such as the two
(Say) nodes, which have the RP {script, Say}. Each RP r
corresponds to a unique CIN, denoted CIN(r), which functions
just as the interaction networks described in Section 1.1. How-
ever, CIN(r) only models changes to the immediate children of
the last node in r. For example, CIN({script, doUntil, ==}),
shown in Figure 4, models changes to the children (operands)
of the (==) node. Each state in CIN(r) is a list of the children
of the last node in r, and each edge represents an edit to those
children. Figure 3 highlights Cg, the list of children of the (==)

node, which corresponds to a state in the CIN shown in Figure 4.
Because the AST shown in Figure 3 is a correct solution, Cg is a
goal state in CIN({script, doUntil, ==}). Given that Alice’s
current state in this CIN is [var, Random], to get to the goal
state Cg we would recommend that she delete her (Random)

node and then replace it with a (var) node.

The procedure for building the CINs from previous data is shown
in Algorithm 1. We represent a student’s work as a sequence
of ASTs, T , where each tree ti in the sequence is a snapshot
of the student’s work at time i, and the last tree represents the
submitted solution attempt. For each sequential pair of trees, ti
and ti+1, we find all pairs of AST nodes (ni,ni+1) that represent
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the same code element in both trees, and therefore have the same
RP r. We examine the lists of child nodes Ci of ni and Ci+1 of
ni+1 in their respective ASTs. If Ci and Ci+1 are different, we
add the states Ci and Ci+1 to CIN(r) (if they do not already
exist) and add an edge from Ci to Ci+1. This edge represents
how the student has edited the code in this part of the AST
from time i to time i+1. Algorithm 1 runs in O(|T ||tm|2) time
for a given student, where |T | is the number of ASTs recorded
for that student and |tm| is size of the largest recorded AST.

Algorithm 1 Add a Student to the CINs

Require: A sequence of student ASTs T
Ensure: Student data has been added to relevant CINs

for all ti,ti+1∈T do
for all (ni,ni+1)∈ MatchingNodes(ti, ti+1) do

r← RootPath(ni)
Ci← Children(ni)
Ci+1← Children(ni+1)
if Ci 6=Ci+1 then

AddEdge(CIN(r), Ci, Ci+1)
end if

end for
end for

Once we have added student data to the CINs, we can generate
hints for new students, as shown in Algorithm 2. Because we
now have many CINs, rather than a single interaction network,
we also generate a set of hints. For each node n in a student’s
current AST, we calculate its root path r and find CIN(r). The
student’s current state in CIN(r) is C0, the list of children of
n. We then use the Hint Factory algorithm [1] to generate a
hint using the interaction network CIN(r) and the student’s
current state in the network C0. This hint will recommend a
new set of children C1 for n, which we can then display as a
suggestion to the student. Note that if C0 is already a goal
state the Hint Factory will recommend that the student stay
in that state, in which case C0=C1 and we present no hint for
n. Algorithm 2 runs in O(|t|2+|t||Sm|2) time 3, where |t| is the
size of the student’s AST and |Sm| is the number of states in
the largest CIN(r). In practice, |Sm| remains small, as a given
CIN models changes to only a small part of a student’s code.

Algorithm 2 Get Hints

Require: The student’s current AST t
Ensure: H is a set of node-hint pairs
H←{}
for all n∈ Nodes(t) do

r← RootPath(n)
C0← Children(n)
C1← HintFactoryHint(CIN(r), C0)
H←H ∪{(n, C1)}

end for

A classic challenge for the Hint Factory is how to provide hints
to states with no exact matches in the interaction network.
CINs break a program down into smaller parts to provide more
opportunities for matches, but this does not guarantee a match.
If no exact match is found for a state C0, we find the closest
state to C0 in the CIN and use it as a next-step hint. Because

3This assumes we use a constant bound on the number of
iterations allowed during the Hint Factory’s value iteration.

CIN states are lists of children, we can use a simple edit dis-
tance to determine the closest state. If the distance between
the current state and its closest pair in the CIN is beyond a
certain threshold (e.g. 3 edits), we assume the student is doing
something unknown, and we do not provide a hint for that state.

2.3 Goal States
In order to run on an interaction network, the Hint Factory
requires a reward function R(s), which is used by the MDP to
assign a reward to each state in the network [1]. Traditionally,
this value has been some large number (e.g. 100) for goal states
and 0 otherwise. However, in many open-ended programming
problems, we cannot automatically determine whether or not a
given program state satisfies the goal of the assignment. A sim-
ple solution is to assign a reward value to each state proportional
to the number of students who submitted a program in that
state. We accomplish a similar effect with CINs by finding each
node n and corresponding RP r in each student’s submitted
AST and marking the list of children of n as a goal in CIN(r).

One challenge with CINs is that two different parts of a program
may correspond to the same CIN. For example, recall that the
two Say statements in Figure 3 have the same RP, and thus
the same CIN, but ideally these two nodes should end up in
two different goal states. The first should end up with children
[literal], while the second should have children [Join]. Both
of these states will be marked as goals in the shared CIN, so how
can the algorithm determine when one goal should be chosen
over the other?

To address this, each time a node’s children are marked as a goal
state in a CIN, we also store that node’s context. This context
helps identify when a particular goal state might be applicable.
We define a node’s context using two lists, consisting of its left
and right siblings in the AST. For example, in Figure 3, the
first Say node has a context {[], [←, Say, ←, doUntil]},
while the second node has a context {[Say, ←], [←, doUn-

til]}. Rather than giving goal states a fixed reward value, we
determine this value individually for each hint request. For each
previous student attempt that finished in a given goal state, we
increase the reward for that state by a value inversely propor-
tional to the distance between the previous attempt’s context and
the current attempt’s context. Again, because the contexts con-
sist of lists, a simple edit distance can serve as a distance metric.

2.4 Smoothing Hints
The Hint Factory is typically used to generate a next-step hint,
which suggests the next state a student should achieve. The
advantage of the Hint Factory is that this action has been done
by a previous student, and is therefore likely to seem reasonable
to the current student. However, sometimes the path that a real
student takes to a solution can be circuitous. Students often add
code that they later delete, or add code in one place and later
move it to another. In these cases we use the entire solution
path generated by the MDP, rather than a single state, to make
suggestions that will not be contradicted by future hints. We
call this process “smoothing”, since it will make hints appear
more consistent.

We use Algorithm 3 to generate hints which follow real students’
paths, while avoiding unnecessary or contradictory edits. We
first calculate a full solution path from the student’s current state
to a goal state using the Hint Factory on the CIN, as described
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earlier. Recall that each state in this path is a list of child nodes
in the AST. We first reorder nodes in the student’s current state
to match the goal state ordering. We then insert any new nodes
from the next state in the solution path (like set union) and
reorder the nodes again to match the goal state. Finally, we
remove any nodes that are not in the goal state (like set inter-
section). If the resulting state is not different than the student’s
current state, we repeat the process with the next state in the so-
lution path. Using this“smoothing”process helps us avoid giving
hints that add code that will later need to be moved or deleted.

Algorithm 3 Get Smoothed Hint

Require: The MDP of a CIN and student’s state
Ensure: hint is a smoothed hint for the student
path← GetSolutionPath(state, MDP)
goal← Last(path)
hint←state
hint← Reorder(hint, goal)
for all si∈path do

hint←hint∪ si
hint← Reorder(hint, goal)
hint←hint∩goal
if hint 6=state then

return
end if

end for

3. METHODS
We evaluated the efficacy of the CTD algorithm using data
from real students working on the Guessing Game assignment
described in 2.1. Data was collected from an introductory under-
graduate computing course for non-CS majors during the Fall
of 2015, which had approximately 80 students. The first half of
the course focused on learning the Snap programming language
through a curriculum based on the Beauty and Joy of Comput-
ing (BJC) [8]. Snap is a visual programming environment that
allows users to create media-rich, interactive programs by drag-
ging blocks of code together to form scripts. Students worked on
the Guessing Game assignment during class for approximately
one hour, with a teaching assistant (TA) available to assist them
and the ability to discuss the assignment with nearby students.
We collected trace log data of all student interactions with the
programming environment. After each edit to a student’s pro-
gram, the complete program state (a snapshot) was recorded.
For the “Guessing Game” assignment, we collected 51 attempts,
consisting of 8666 total code snapshots.

Each of the final submissions was graded by two independent
graders. The graders used a rubric consisting of nine assignment
objectives, such as welcoming the player by name, storing a
secret number, and repeatedly asking the player for guesses.
The graders had an initial agreement of 94.5%, with Cohen’s
κ= 0.544, and after clarifying objective criteria and indepen-
dently re-grading this rose to 98.1%, with Cohen’s κ= 0.856.
Any remaining disagreements were discussed to create final
grades for each assignment. The students achieved on average
92.8% of objectives, with all students getting at least 4 out of 9.
The high grades can be attributed in part to the presence of TAs,
who helped struggling students to complete the assignment. Us-
ing the same criteria, an automatic grading program was created,
which manually checked code structure for objective completion.
The automatic grader was tested on the manually graded data,
achieving 100% accuracy on 7 of 9 objectives. On each of the

remaining two objectives, it incorrectly marked two submissions
as failing since they used atypical approaches. Note that this
grader was used in our evaluation but not for hint generation.

We generated and evaluated hints for each code snapshot of each
student in our dataset (n=8666), giving us a clear view of hint
performance across students and time. We evaluated the hints
using a number of criteria, detailed in Section 4. Because Snap
lends itself to a “tinkering” approach, code snapshots often con-
tain many extra scripts that students keep in their workspace for
later use. Since the Guessing Game uses only one script, these
extra scripts do not reflect the student’s primary work, and it
would not make sense to evaluate hints for them. Therefore, in
our analyses we considered only the largest script in a snapshot.

3.1 Hint Policies
To better evaluate the CTD algorithm, we generated hints using
four hint policies:

1. CTD All (CA): Hints are generated using CTD on all
student data (n=51).

2. CTD Exemplar (CE): Hints are generated using CTD
on data from only exemplar students, whose final submis-
sions achieved all assignment objectives (n=32).

3. Direct Expert (DE): Hints modify a student’s program
directly towards an expert solution using a single node
insertion, deletion or relabeling.

4. Direct Student (DS): Hints modify a student’s program
directly towards their own submitted solution, using a
single node insertion, deletion or relabeling.

The CA and CE policies both use the CTD algorithm, and
comparing them allows us to explore the effect of including
students with incorrect final solutions on the algorithm’s output.
The DE and DS policies both generate hints using a technique
outlined by Zimmerman et al. [26], which identifies the node
insertions, deletions and relabelings required to transform one
AST into another. Each of these modifications is treated as a
hint. The DE policy targets a single expert solution, while the
DS policy targets the student’s own future final solution, and
could not actually be implemented on real-time data. In many
ways, the DS policy represents an ideal hint policy for students
who achieve a correct final solution (which the majority of our
sample did), as it perfectly anticipates their solution strategies.

All policies generate a set of hints, where each hint represents
a small modification to a student’s program. When generating
hints for a given student using CTD, we did not include that
student in the dataset used to build the CINs, similar to leave-
one-out cross validation, since that student’s future data could
not be used in a real-time setting.

4. EVALUATION AND DISCUSSION
Our evaluation of CTD focused on the following research ques-
tions:

RQ1 Can CTD successfully lead students to a solution regard-
less of their current program?

RQ2 Can CTD hints help students complete objectives?

RQ3 How consistent are CTD hints with student actions?
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RQ1 asks whether CTD solves the challenge of generating hints
for an open-ended problem where there is little exact overlap
among student solution paths. RQ2 investigates whether these
hints are good in that they leads student to complete assign-
ment objectives. Lastly, RQ3 asks whether the hints that CTD
provides point students in what might be perceived as a rea-
sonable direction, so students will be inclined to use them. Our
evaluations for RQ2 and RQ3 compared the CA and CE policies
with the baseline DE and DS policies discussed in Section 3.1.

4.1 Providing Hints
RQ1 asks whether CTD can successfully generate hints for so-
lution attempts regardless of how much overlap they have with
other attempts in our dataset. Therefore, we first examined how
much overlap there was in our dataset. We recorded 8666 snap-
shots from 51 students; however, many students produced du-
plicate snapshots, for example by adding and then removing an
element of code. If we do not count duplicate snapshots from the
same student, we are left with 5103 snapshots. If we also ignore
all but the largest script from these snapshots (as is done in our
analyses), there are 3181 non-duplicate snapshots. Of these, 2714
(85%) were unique after canonicalization, meaning they showed
up in only one student’s data. In addition, 47 of 51 students had
unique final solution ASTs. We conclude that the state space is
quite sparse, with little overlap among student solution paths.

We evaluated hints from the CA and CE policies to determine
if they could get students to a solution despite this sparsity. To
align student attempts over time, and to balance our sample
evenly across students, we took 50 snapshots from each student,
spaced evenly throughout their progression, and called these
“slices.” For each student, we generated a hint chain from each
of these 50 snapshots to a final solution. A hint chain is the
sequence of program states that would result if the students
followed sequential “top-level” CTD hints from a given snapshot
to program completion. The top-level hint is that which comes
from the CIN(r) with the shortest RP r.

Both CA and CE policies were able to generate successful hint
chains for every slice, meaning the hint policies always had a
hint to provide and there were no hint cycles. Figure 5 shows
the average hint chain length for each slice. Both policies showed
a steady, near-linear decline in hint chain length over time. This
supports the notion that CTD makes good use of the student’s
existing work. On average, students took 175.8 steps to com-
plete the assignment, so both policies are more efficient than
the student until slice 46/50. As students converge on their
own solutions, however, the hints chains become less efficient,
as they often lead students to alternative solutions.

To understand the quality of solutions created using hint chains,
we evaluated the final solutions generated by the hint chains at
each slice using the automatic grader discussed in Section 3. The
CA policy solutions received grades averaging from 89.5-93.0%
across slices, while the CE policy averaged 98.5-100% across
slices. Upon closer inspection, we found that all imperfect CA
solutions were identical and satisfied 8 of 9 objectives (88.9%),
and all correct CA solutions were identical as well. The one
objective missed by the imperfect CA solution was also missed
by 12 of 51 students (23.5%), indicating that a frequent enough
mistake in student data will be reflected in CTD hints. The
CE policy produced 3 unique, correct solutions and 2 unique,
incorrect solutions, which both satisfied the same 8 out of 9
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Figure 5: The average CA and CE hint chain length
across all snapshot slices. The shading indicates
standard error.

objectives. These results suggest that both CTD policies can
lead students to high-quality (though sometimes imperfect) fi-
nal solutions, but exemplar data may be required to generate
consistently correct solutions. It is important to note that CTD
operates without test cases, and therefore cannot guarantee
correctness 100% of the time.

4.2 Objective Satisfaction
To address RQ2, we tested how frequently an available hint
would complete an assignment objective before the student did.
Figure 6 shows, for each policy in Section 3.1, the percentage
of students who had an objective completing hint available for
each objective. All hint policies perform fairly well, with at least
45% of students having a completion hint available for objectives
3-9. The CTD policies perform much worse on Objective 2,
but otherwise they generally keep pace with the Direct policies.
Since these Direct policies offer all edits towards their target
solution as hints, they should discover most of the possible
completing hints. However, it is important to remember that it
is not always possible to complete an objective before a student
because hints cannot add more than one node to the AST at
a time, while a student’s edit might change many nodes at once
by dragging and dropping code.

It is not sufficient for a hint policy to generate good hints; it is
equally important that it not generate bad hints. To evaluate
this second facet of RQ2, we tested how frequently hints from
each policy undid an objective, meaning the objective was satis-
fied before applying the hint, but it became unsatisfied afterward.
Figure 7 compares each policy, showing the percentage of stu-
dents who received a hint that would undo each objective. Pre-
dictably, the DS policy, which anticipates a student’s final solu-
tion, performs well across the board. However, the difference be-
tween the DE and CE policies is clear. The CE policy stays below
40% on all objectives, and performs as well or better than the DE
policy on all but one objective, often by a factor of 2 or more. The
CA policy performs slightly worse than the CE policy on most
objectives, most notably Objective 1. This can be attributed to
the fact that many students did not in fact complete Objective 1,
leading the CA policy to suggest removing the code that did so.
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Figure 6: The percent of students who received a hint
that completed an objective before the student did
under each policy.
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Figure 7: The percent of students who received a hint
that undid an objective under each policy.

We do not make the claim that a good hint always completes
an assignment objective, nor that undoing an objective always
constitutes a bad hint. Still, these criteria serve as good baseline
standards for a hint policy. While all policies are fairly success-
ful at suggesting hints that move students toward completing
objectives, the CTD and DS policies avoid undoing objectives
much better than the DE policy.

4.3 Alignment with Student Actions
RQ3 asks whether or not CTD produces hints which are con-
sistent with a student’s solution path. Ideally, a hint policy
should not only provide hints which lead to a good solution;
as much as possible, these hints should also make sense to the
student receiving them. While the comprehensibility of a hint is
impossible to measure without user data, we can approximate
this by asking whether or not a hint gets the student closer to
their future final solution. Presumably, such hints will seem
reasonable to the student, as the student eventually went in
that direction on their own.

To answer this question, we examined each hint generated with
each policy across all code snapshots and calculated whether or

Policy Closer SD
CTD All 35.47% 17.50%
CTD Exemplar 32.52% 15.88%
Direct Expert 21.49% 10.02%
Direct Student 39.37% 13.60%
Student Next 60.97% 8.42%

Table 1: The percent of hints under each policy that
would bring the student closer to their final solution,
averaged over students. Student Next refers to the
student’s actual next action.

not each hint would get the student closer to their final solution
than their original state. We used the Robust Tree Edit Distance
algorithm [13] to measure the distance between snapshot ASTs.
This metric counts the number of insertions, deletions and
relabelings required to transform one AST into another. As a
baseline, we also calculated this measure for the student’s own
next state, to determine how frequently a student’s actions got
them closer to their own final solution state. The results for
each policy, averaged over students, are presented in Table 1.

As a baseline, we see that the student’s own next step got closer
to their final solution 60.95% of the time. The DS policy, which
attempts to directly transform the student’s state into their
solution state, achieves only 39.37%, in part because its hints will
often delete useful code and later add it again in a better location.
However, the DS policy’s performance might be seen as a high
target, as it requires future knowledge of the student’s actions.
In comparison, we see that the CTD policies both approach the
DS policy and far outperform the DE policy. The CE policy gets
students closer to their final objective 53.4% as frequently as the
student’s own actions and 82.6% as frequently as the DS policy,
and the CA policy performs even better. Post hoc paired t-tests
showed that the difference between the CA and DS policies was
not significant (t(50) =−1.63; p= 0.109), while the difference
between the CA and DE policies was significant (t(50)=6.96;
p<0.001). Interestingly, the difference between the CA and CE
policies was also significant (t(50)=2.67; p=0.010), suggesting
that restricting data to exemplar students makes CTD hints less
reflective of real student behavior. While all policies present some
hints that move the student farther away from their final solution,
the CTD and DS policies seem to minimize this behavior.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel algorithm called CTD
for generating next-step hints for students working on open-
ended programming assignments. Using data from 51 students
working on one such assignment, we have shown that the hints
generated by the CTD hint policies can get a student to a
high-quality solution from all observed states. We have also
shown that the hints are capable of helping students accomplish
most assignment objectives before they would otherwise do so,
without presenting many hints which undo these objectives.
Further, CTD produces hints which get students closer to their
final solutions relatively frequently. We have also compared the
CA policy, which uses all student data, to the CE policy, which
uses exemplar data only. While both policies perform well, the
CA policy aligns closer with real student actions, while the CE
policy produces higher quality final solutions and is less likely
to suggest undoing assignment objectives.
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Despite these positive initial results, much work remains to be
done to improve CTD. A major limitation of this work is the
reliance on a single assignment for evaluation. Future work
will explore the efficacy of CTD with a variety of assignments.
One challenge that will be presented by larger assignments is
ensuring that the contextual goal matching features discussed
in Section 2.3 work for programs with multiple scripts. Ad-
ditionally, while CTD incorporates some of the strategies of
the other hint generation algorithms discussed in Section 1.2,
such as canonicalization, there are others, such as Rivers and
Koedinger’s path construction [22], which could also be incorpo-
rated. Because the CINs are simply small interaction networks,
any advances to the Hint Factory can also be applied to them.
Lastly, we have already incorporated our hints into the Snap en-
vironment, and future work will investigate how they impact real
students. We will explore the effect of CTD hints on students’
performance on assignments, as well as their learning gains.
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ABSTRACT 
To succeed in STEM, students need to learn to use visual repre-
sentations. Most prior research has focused on conceptual 
knowledge about visual representations that is acquired via ver-
bally mediated forms of learning. However, students also need 
perceptual fluency: the ability to rapidly and effortlessly translate 
among representations. Perceptual fluency is acquired via non-
verbal, implicit learning processes. A challenge for instructional 
interventions that focus on implicit learning is to model students’ 
knowledge acquisition. Because implicit learning is non-verbal, 
we cannot rely on traditional methods, such as expert interviews 
or student think-alouds. This paper uses similarity learning, a 
machine learning method that can assess how people perceive 
similarity between visual representations. We used this approach 
to model how undergraduate students perceive similarity between 
visual representations of chemical molecules. The approach 
achieved good accuracy in predicting students’ similarity judg-
ments and expands expert predictions of how students might 
perceive visual representations of molecules.  

Keywords 
Perceptual knowledge, implicit learning, visual representations, 
similarity learning methods, chemistry. 

1. INTRODUCTION 

 
Figure 1. Visual representations of chemical molecules: a: 

Lewis structure; b: ball-and-stick model; c: space-filling mod-
el; d: electrostatic potential map (EPM) of water. 

Visual representations are ubiquitous instructional tools in sci-
ence, technology, engineering, and math (STEM) domains [1, 2]. 
For example, instructors use the visual representations shown in 
Figure 1 to help students learn about chemical bonding. Yet, to a 
novice student, these visual representations may not be helpful 
because the student may not know how to interpret the representa-
tions. For instance, does the red color in the ball-and-stick figure 
(Figure 1-b) mean the same thing as in the electrostatic potential 
map (EPM; Figure 1-d)? (It does not.) 
Instructors often ask students to use visual representations that 
they have never seen before to make sense of concepts that they 
have not yet learned about [3, 4], an issue known as the represen-
tation dilemma [5]. Hence, to succeed in STEM, students need 
representational competencies that enable them to use visual 
representations to make sense of and solve domain-relevant prob-
lems [6, 7]. One crucial representational competency is the ability 
to interpret visual representations; that is, to map visual represen-

tations to the abstract concepts they depict [6, 8]. For example, 
students need to understand how the representations in Figure 1 
show information about the molecule. For the Lewis structure 
(Figure 1-a), the student may map the unbonded electrons shown 
as dots to conceptual knowledge about how polarity in chemical 
molecules and infer that the water molecule has a local negative 
charge by the Oxygen atom. 
Educational technologies are particularly suitable to support rep-
resentational competencies because they can provide adaptive 
support while students solve domain-relevant problems [9, 10]. 
Such adaptive support relies on a cognitive model that infers 
whether the student has learned target skills based on her/his 
interactions with the technology. Research shows that adapting 
instruction to students’ representational competencies can enhance 
those competencies [11] and learning of domain knowledge [12].  
However, educational technologies for representational compe-
tencies have two critical limitations. First, they typically focus on 
one set of representational competencies: students’ conceptual 
understanding of representations (e.g., the ability to explain how 
visual features depict concepts). This focus mimics education 
psychology research’s focus on conceptual learning [6, 13]. Con-
ceptual knowledge is invariably intertwined with a second type of 
representational competency: perceptual knowledge [14, 15]; the 
ability to rapidly and effortlessly recognize conceptual infor-
mation based on visual features of the representations. This ability 
results from implicit forms of learning. For example, expert chem-
ists simply “see” that the molecules depicted in Figure 1 have a 
local negative charge by the Oxygen atom, without having to 
make a an effortful conceptual inference. 
Second, of the few educational technologies that enhance percep-
tual fluency, their adaptive capabilities are limited and their per-
ceptual supports rely solely on performance measures (e.g., accu-
racy, response times) to adapt to students’ representational com-
petencies [15, 16]. They do not use a cognitive model of the latent 
skills that students acquire through perceptual learning. As a re-
sult, they cannot provide specific feedback when students make 
mistakes. Decades of research showing that cognitive models can 
dramatically increase the effectiveness of educational technolo-
gies [10, 17] suggest that we must address this limitation and 
create adaptive instruction for perceptual knowledge.  
These limitations likely result from cognitive modeling’s tradi-
tional focus on explicit, verbally accessible knowledge. To devel-
op cognitive models, researchers analyze how students think 
about target skills [9, 18]. We typically ask students to verbalize 
their problem-solving steps [19, 20]. Yet, verbalization is not 
suitable for assessing perceptual learning processes, which are 
implicit and not verbally accessible [14, 21]. Therefore, instruc-
tional designers have to rely on “educated guesses” as to which 
visual features students may pay attention to. These educated 
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guesses are based on the novice-expert literature, which docu-
ments the fact that novices tend to rely on surface features; that is, 
easily perceivable visual cues such as color and shape, to judge 
the similarity between stimuli items. By contrast, experts rely on 
visual features that are conceptually relevant and hence make 
more refined distinctions between visual features. Thus, to create 
adaptive perceptual supports, we need to develop cognitive mod-
els for perceptual learning. 
Our research takes a first step towards developing a cognitive 
model for perceptual learning by assessing students’ perceptual 
knowledge of a common visual representation in chemistry. In 
particular, we investigate research question 1: Which visual fea-
tures do students focus on when presented with visual representa-
tions? To address this question, we asked hundreds of students to 
judge the similarity between visual representations of molecules. 
We then used similarity learning—a machine learning method that 
provides a formal approach to investigating how people perceive 
similarity among visual stimuli. This method allowed us to esti-
mate latent factors that account for the perceived similarity rela-
tionships between representations. Because we can map these 
latent factors to the visual features in the representations, this 
approach allows us to investigate which visual features are most 
salient to students’ perceptions of similarity. Comparing these 
visual features to “educated guesses” allowed us to test research 
question 2: Do the visual features we identified as salient via 
metric learning correspond to visual features that students are 
expected to attend to based on the expert-novice literature on 
perceptual learning? In addition, we investigated a methodological 
research question 3: How many similarity judgments we need to 
assess students’ perceptual knowledge? 
Although we address these questions in the context of a particular 
domain with a particular visual representation, this paper makes 
two important broader contributions. First, it provides an empiri-
cal validation of the “educated guesses” that developers of percep-
tual learning technologies typically rely on. Second, it establishes 
a methodology to assess perceptual knowledge that can serve as a 
basis for a cognitive model of perceptual learning. These contribu-
tions build the foundation for the development of adaptive instruc-
tion for perceptual knowledge and other implicit knowledge. 

2. EXPERIMENT 
2.1 Visual Representations of Molecules 
For our experiment, we selected visual representations of chemi-
cal molecules common in undergraduate instruction. Lewis struc-
ture representations are the most commonly used visual represen-
tations in undergraduate chemistry textbooks. We reviewed text-
books and online instructional materials and listed the frequency 
of all occurring molecules using their chemical names (e.g., H2O) 
and common names (e.g., water). For our experiment, we chose 
the 50 most common molecules.  
First, we created educated guess features (Figure 2, yellow) that 
correspond to expert assessments of which visual features students 
may attend to when making similarity judgments. To obtain these 
educated guesses, we reviewed the literature on chemistry exper-
tise [22, 23] and on perceptual learning [14, 24], and conducted 
learner-centered interviews with undergraduate and PhD students 
in chemistry [25]. We identified 6 educated guess features: num-
ber of total letters, number of distinct letters, number of total 
bonds, number of single bonds, number of unbonded electrons, 
and molecule geometry (linear, planar, tetrahedral). 
To investigate which visual features drive students’ similarity 
judgments, we quantitatively described the visual features of the  

 
Figure 2. Example features for H2O and CO2 molecule repre-
sentations with educated guess features in yellow, feature 
vectors in red, and molecule vectors in blue. 

 
Figure 3. Example of a similarity judgment task: given the 
molecule on the top, students were asked which of the two 
molecules at the bottom is most similar.  
molecule representations. To this end, we created feature vectors 
for each of the molecules (see Figure 2, red) that describe which 
visual features the representation contains (e.g., bond angles, the 
numbers of specific atoms, or the numbers of different atoms 
present). The feature vectors of our corpus of molecule represen-
tations contained a total of 110 features. The 50 feature vectors 
collectively form matrix ܺ ൌ ሾݔଵ, ,ଶݔ ,ଷݔ … ,  , is theݔ ହሿ, whereݔ
feature vector for the ith molecule.  
We aggregated each element of the feature vectors into molecule 
vector for individual features (Figure 2, blue). Each molecule 
vector consisted of 50 values describing how many times the 
feature occurred in each representation. As molecule vectors make 
up the rows of our matrix of 110 features by 50 molecules shown 
in Figure 2, we will refer to the molecule vector for the jth feature 
as rj. Thus, feature vectors provide a numeric description of the 
visual information present in each representation, whereas mole-
cule vectors provide a numeric description of overall patterns of 
visual features in the dataset for all representations. 

2.2 Similarity Judgment Tasks 
Students completed similarity judgment tasks that were presented 
as triplet comparisons (see Figure 3). Given a representation of a 
molecule (the “target-molecule”), students were asked to choose 
molecules”) was most similar to the given one. For each task, the 
student chose between one of the two choice-molecules that 
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he/she perceived to be more similar to the target-molecule. After 
each task, another triplet was generated uniformly at random from 
our corpus of molecule representations.  
We delivered the similarity judgment tasks via NEXT; a cloud-
based machine learning platform [26]. NEXT allows users to 
upload their own content and query participants to perform judg-
ment tasks. It uses machine learning algorithms to automate data 
collection and analyze results. More information about the plat-
form can be found at http://nextml.org. In NEXT, students first 
received a brief description of the study and then worked through 
a sequence of 50 similarity judgment tasks. Students were in-
structed that these tasks are not a test and that there is right or 
wrong answer, but that we they are simply asked about their per-
sonal perceptions of similarities among molecule representations. 

2.3 Dataset 
Undergraduate students enrolled in an introductory chemistry 
course at a large U.S. university were invited to participate in a 
survey on learning with visual representations. The course had an 
enrolment of 781 students. Participation was voluntary. Altogeth-
er, we collected 26,180 responses from 563 (possibly non-unique) 
students. 61.6% of the students completed all 50 similarity judg-
ment tasks. On average, students completed 46.5 tasks. Each 
similarity judgment in response to a triplet comparison task was 
associated with the feature vectors (xi) and molecule vectors (rj) of 
the three molecule representations, as described in 2.1.  

3. ANALYSIS  
In the following, we describe how we used similarity learning to 
investigate which visual features drive students’ similarity judg-
ments. We first provide a brief introduction into the metric learn-
ing method in general. Then, we describe how we applied this 
method to our dataset in particular. 

3.1 Introduction to Similarity Learning 
In general, the goal of similarity learning is to learn a similarity 
function f that agrees with students’ similarity judgments in the 
following sense: if item i is judged to be more similar to j than to 
k, then f(i,j) < f(i,k). The function f can be thought as quantifying 
the perceived distance or dissimilarity between pairs. Alternative-
ly, the function could quantify the perceptual similarity (inverse 
distance) between pairs, in which case f(i,j) > f(i,k).  
People are better at providing ordinal (i.e., comparative) responses 
than at providing fine-grained quantitative judgments or ratings 
[27]. For example, when asked to compare the visual representa-
tions in Figure 3, people find it easier to judge whether the target 
molecule is more similar to the left or the right choice molecule 
than to judge their similarity on a rating scale. However, it is 
challenging to machine-learn embeddings from comparisons due 
to the sheer number of possible triplet comparisons that could be 
made; the number of distinct triplets is proportional to n3. For 
example, in our case of n=50 molecule representations, there exist 
nearly 125,000 distinct triplets. Researchers have observed that 
while triplet comparisons are easy to answer, they can become 
tedious and boring after extended sessions [28]. Since we hypoth-
esize that perceived dissimilarities can be accurately represented 
in d-dimensional space, it is reasonable to conjecture that if the 
embedding dimension is low (i.e., d ≪ n), then there will be a 
high degree of redundancy among the triplet comparisons. In fact, 
researchers have observed that a small subset of these triplet com-
parisons often suffice to learn a reasonably accurate embedding, 
lending support to this conjecture [29-31].  

3.2 Similarity Learning Approaches 
We applied two similarity learning approaches in this paper: simi-
larity learning by ranking [32] and non-metric multi-dimensional 
scaling. In both cases, we modelled the perceptual similarity be-
tween molecules i and j as  

. 
Here A is a symmetric matrix that parameterizes the model.  The 
k,lth element of the matrix, denoted by ܣ represents the im-
portance of the interaction of feature k and feature l in the model.  
Since we assume A is symmetric, ܣ =ܣ  and ܵ  = ܵ.Before 
introducing these approaches, let us define some notation. There 
are N triplet comparisons. For the nth triplet, let in denote the 
target-molecule and let jn and kn denote the two choice-molecules. 
Let yn denote the student’s judgment, specifically yn = +1 if the 
student decided jn was more similar to in and yn = -1 otherwise. 
Each of the  ൌ 50	diagrams also has m associated features (e.g., 
numbers of different atoms, bonds, etc.). Arrange the features for 
each molecule representation into an m x 1 molecular feature 
vector, and the m x 1 feature vectors into a m x p matrix, X. The 
ith column of X, denoted xi, contains the m features for molecule i. 
The jth row of X, denoted rj, is a molecule vector for feature j 
containing the value of feature j for all 50 representations. 

3.2.1 Approach 1: Similarity Learning by Ranking 
This approach learns matrix A in our model of perceptual similari-
ty directly from triplet responses via linear regression. 

 
where xi and xj are m x 1 dimensional feature vectors of the m 
features of molecule representations i and j. The matrix A is m x 
m, and the metric learning problem is to estimate A that minimizes 
the number of disagreements between the ranking predictions for 
each triple (i.e., either ܵ  ܵor vice-versa) and the comparative 
judgments collected from the students, as proposed by [32]. 
The first step in this analysis was to estimate A. Formally, the 
estimation of A can be written as the following optimization prob-
lem.  Let ॺbe the set of all m x m symmetric matrices. Solve for 
A that minimizes: 

 
where the superscript T denotes the vector transposition. The 
matrix A that minimizes the sum of squared errors weights the 
similarities between the diagram features so as to predict percep-
tual similarity judgments. In general, the solution A will place 
some weight on all m features. We anticipate that the visual fea-
tures that are not salient do not strongly affect students’ similarity 
judgments and therefore have lower weights in A. 
Taking this thinking a step further, we could consider many dif-
ferent optimizations of the type above, where in each case we use 
different subsets of the features, in order to determine which are 
most predictive of student judgments. Indeed, some features may-
be totally irrelevant and worsen, rather than help, the prediction of 
students’ similarity judgments. Unfortunately, searching over all 
possible subsets of features is computationally infeasible, so we 
instead consider the following optimization that approximates this 
search problem called sparse COMET [33]. 
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This optimization method uses a cost function that consists of two 
terms. The first term represents least squares data-fitting cost in 
the previous optimization. The second term is a Group LASSO 
penalty, which encourages solutions that have many columns 
equal to 0. If a column in A is all zero, then the corresponding 
feature is not used for prediction. The number of zero-valued 
columns in the solution depends on  > 0. Note that we recover 
the previous optimization when  = 0. Larger values of  produce 
sparser solutions that effectively use fewer features. Features 
crucial for prediction are excluded only if  is exceedingly large.  

The second step in this analysis was to tune the parameter  and 
then to assess the prediction accuracy of our method. To this end, 
we used 10-fold cross validation. Specifically, we randomly split 
the complete dataset into 10 equal sized subsets. We removed 2 
random subsets as hold-out data and kept the remaining data as 
training data. We then solved the optimization above with the 
training data over a range of different  values. For each , we 
scored prediction accuracy on one set of hold-out data to select 
the optimal value. Then, using our chosen  value, we solved the 
optimization again to obtain a final A using 9/10 of the data, and 
assessed the prediction accuracy on remaining 1/10 of the data. 
The final step was to rank the features based on the weights in 
matrix. Due to the Group LASSO penalty in the loss function, 
many of the columns in the resulting matrix are zero. To get the 
aggregate weight of each relevant feature, we computed the length 
(norm) of each non-zero column and ranked accordingly.  

3.2.2 Approach 2: Ordinal Embedding 
In this approach, rather than directly making predictions of simi-
larity based on feature vectors and triplet responses, we first used 
students’ similarity judgments to learn an embedding that spatially 
represents the similarity of molecule representations as distances 
in 2-dimensional space. We then identified molecule vectors that 
account for the distribution of molecule representations in the 
embedding space.  
The first step in this analysis was to learn an embedding. We 
applied non-metric multidimensional scaling (NMDS) to the 
26,180 triplet comparison responses collected from the experi-
ment to learn an embedding of the 50 molecule representations in 
a two-dimensional space [22]. Embedding in two dimensions 
allows visualizing the perceived similarity computed by NMDS. 
The embedding reflects the consensus among students as to which 
molecular representations were more or less similar. We created 
50 different embeddings, using multiple random initializations per 
embedding in order to account for the non-convexity of NMDS. 
The second step was to validate the embedding. To this end, we 
computed a distance matrix for each embedding. To validate the 
distance matrices, we used the following cross-validation proce-
dure. We selected 6000 triplet comparison responses uniformly at 
random to serve as a hold-out dataset. From the remaining triplets, 
we randomly selected training sets of different size, ranging from 
1000 to 20,000 triplet comparison responses. We computed 
embeddings for each training set. We then used these embeddings 
and the associated distance matrices to predict students’ similarity 
judgments. Next, we used the distances in the embedding as a 

predictor of judgments in the hold-out set; the prediction errors 
quantify how well the embedding reflects the judgments. We 
repeated this procedure for training sets of different size. We 
performed 50-fold cross validation to calculate average prediction 
error on the learned embeddings. This procedure allowed as-
sessing how prediction performance relates to the training set size 
(i.e., how many triplets were used to compute an embedding).  
The third step in our analysis, after validating our embedding 
procedure, was to compute an embedding and corresponding 
distance matrix from the full set of triplets. Since the distance 
between points in the embedding corresponds to their perceived 
dissimilarity, we computed a similarity matrix defined as the 
element-wise inverse of the distance matrix, scaled from 0 to 1.  
The fourth step was to identify which features, represented by the 
feature vectors, drive students’ similarity judgments. Because the 
embedding was performed in 2 dimensions, we can consider the 
problem of only choosing 2 feature vectors to combine and com-
pare combinations of pairs of feature vectors to the similarity 
matrix. For each possible pair, we performed a least squares opti-
mization to find the ideal uniform scaling to match an outer prod-
uct of our feature vectors to the similarity matrix.  

 
subject to ܣ௦௧ ൌ 0 for all s,t not equal to k,l or l,k.  In other words, 
only let the k,l elements of A be non-zero and optimize these. This 
equates to fitting S to the molecule vectors for features k and i. 
Here, ܵrepresents the value of the perceptual similarity between 
molecules i and j from the embedding. The magnitude of resulting 
value of ܣ tells us how important the interaction of features k 
and l is in representing the similarity.  This is basically a correla-
tion coefficient, and it only gauges the marginal value of this 
interaction (i.e., in isolation of all other interactions). In each case, 
after learning a matrix ܣ_ we computed the corresponding residual 
value between similarity matrix S and our combination of 2 fea-
tures. After performing all possible combinations of pairs of fea-
tures, we ranked pairs of features in ascending order of residual 
values, with the smallest residuals being the best approximation of 
our observed similarity matrix. To evaluate the feature rankings, 
we used 10-fold cross-validation by performing identical tests on 
10 different similarity matrices computed from different 
embeddings based on equal numbers of triplets to ensure that the 
original embedding and the non-convexity of NMDS was not a 
factor in the final ranking of feature pairs.  

4. RESULTS 
4.1 Identifying Important Visual Features 
To address research question 1, we used the two similarity learn-
ing approaches just described to identify which visual features 
account for students’ similarity judgments. 

4.1.1 Approach 1: Similarity Learning by Ranking 
Recall that the first approach entailed learning a similarity func-
tion that describes students’ perceived similarity between mole-
cule representations. This approach yielded an average 69% pre-
diction accuracy of students’ similarity judgments (assessed via 
10-fold cross validation). This finding indicates that there was 
consensus over which representations were more or less similar, 
but also that there were some disagreements among students’ 
similarity judgments.  
To identify which visual features account for students’ similarity 
judgments, we estimated the weights for each feature in the ma- 
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Table 1. Top 10 features from the ranking of features with 
strong weights obtained by Approach 1. 

Feature Avg weight 
Distinct letters 4.50% 
Single bonds between Oxygen and Hydrogen 3.45% 
180-degree angle in Hydrogen-Carbon-Fluorine 3.16% 
Double bonds between Oxygen and Nitrogen 3.03% 
Number of Nitrogen atoms 2.99% 
Double bonds between Carbon and Oxygen 2.78% 
120-degree angle in Hydrogen-Carbon-Hydrogen 2.73% 
Number of Oxygen atoms 2.64% 
180-degree angle in Carbon-Carbon-Oxygen 2.62% 
Single bonds between Carbon and Oxygen 2.37% 
 
chine-learned matrix A. The stronger a feature’s weight in A, the 
more this feature affected students’ similarity judgments. Hence, 
the feature’s weight corresponds to its saliency in students’ per-
ception of molecule representations.  
Table 1 shows the 10 most important features, as determined by a 
ranking of features according to their aggregate weight computed 
from matrix A. These results show that the most highly ranked 
feature is the number of distinct letters, which corresponds to an 
aggregate educated guess feature. Specific visual features that are 
relevant to organic molecules were also ranked highly (e.g., the 
number of single bonds between Oxygen and Hydrogen atoms, 
the number of bonds between Carbon and Oxygen, the number of 
Nitrogen and Oxygen atoms). These specific visual features were 
present in many of the molecules in our dataset. Several visual 
features also included geometric aspects, specifically bond angles. 
These features indicate the presence of chemical functional groups 
that are relevant to predicting molecule’s reactive behaviors.  

4.1.2 Approach 2: Ordinal Embedding  
Recall that approach s learns an embedding that represents the 
similarity of molecule representations as distances in a d-
dimensional space, from which we then extracted the most im-
portant features. First, we established how many dimensions we 
need to consider (i.e., which d to choose in representing similarity 
of molecule representations in a d-dimensional space). Using the 
process of 50-fold cross validation described above, we calculated 
unit through 20 dimensional embeddings of perceptual similarity. 
We used 20,000 triplets in this computation to ensure that the 
number of triplets did not affect the prediction accuracy as the 
dimension became large. Figure 4 shows that there is no drop in 
prediction accuracy when embedding in low dimensions versus 
high, suggesting that perceptual similarity can be accurately rep-
resented in a low dimensional subspace, and that there is a high 
degree of redundancy in the data. This result shows that students’ 
responses agreed on the relative similarity about 70% of the time.  
Next, we generated a 2-dimensional embedding that describes 
students’ perceived similarity between the molecule representa-
tions. Figure 5 shows this embedding, illustrating that molecules 
naturally form clusters based on their perceptual similarity. These 
clusters correspond to specific chemical properties shared among 
the molecules, such the presence of a particular type of bond or a 
functional group. We color-coded and labeled some of these clus-
ters to illustrate these characteristics of students’ perceptions. This 
illustration lends face validity to our embedding approach.  
From this embedding, we extracted an ordered list of the feature 
pairs that best capture students’ similarity judgments, shown in 
Table 2.  The feature pairs in this table were ranked based on how 
well they approximate the similarity matrix computed from the  

 
Figure 4. Prediction accuracy on hold-out set by number of 

dimensions in embedding. 
Table 2. Top 10 feature pairs from Approach 2. Each row 
corresponds to a pair of feature vectors ranked in accordance 
with how accurately they described the observed similarity 
structure from the embedding. 

Rank Feature pairs
1 Distinct letters & Distinct letters 
2 Total letters & Distinct letters 
3 Distinct letters & Single bonds 
4 Total bonds & Distinct letters 
5 Distinct letters & Carbons 
6 Hydrogens & Distinct letters 
7 Total letters & Total letters 
8 Total letters & Single bonds 
9 Total letters & Unbonded electrons 
10 Distinct letters & Single Carbon-Hydrogen bonds  
 
embedding in Figure 5. The same feature may appear twice in a 
pair to account for the possibility that a weighted combination of a 
feature with itself better reflects the observed similarity structure 
than does a pair of features. In sum, these results show that the 
most highly ranked features are general visual features, which 
correspond to the aggregate educated guess features (e.g., number 
of letters, number of lines). Specific visual features that are rele-
vant to hydrocarbon molecules were also ranked highly (e.g., the 
number of Carbon and Hydrogen atoms). These specific features 
were present in many of the molecules in our dataset. 

4.1.3 Comparing the Similarity Learning Approaches  
While both methods agreed upon the top ranked feature, the simi-
larity learning by ranking approach ranked structural features of 
the representations that were relevant to hydrocarbons and organic 
molecules more highly. As the ranking from this method follow 
predictive power, this ranking indicates that students’ judgments 
of similarity can best be predicted, and therefore explained, 
through a combination of the number of different letters and the 
structural features involving Carbon, Hydrogen, and Oxygen.  

4.2 Comparison with “Educated Guesses” 
To address research question 2 (do the visual features we identi-
fied as salient via metric learning correspond to visual features 
that students are expected to attend to?), we compared the results 
from the similarity learning approaches to the educated guess 
features that we had determined based on the expert-novice litera- 
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Figure 5. 2-dimensional similarity embedding from Approach 2. Distances between molecule representations correspond to stu-

dents’ perceptions of dissimilarity (i.e., molecule representations that are depicted close to one another are perceived to be similar).  

 
Figure 6. Prediction accuracy on hold-out set by number of 

triplet comparison judgments used in the training set. 
ture on perceptual learning. Overall, the results from both metric 
learning approaches agree with the educated guesses: aggregate 
features that describe general visual features were ranked to be 
most important by both metric learning approaches. The similarity 
learning by ranking approach also yielded a number of visual 
features that are specific to the types of molecules in our corpus; 
in particular, visual representations that are highly relevant for 
comparing organic molecules. 

4.3 Number of Similarity Judgments Needed 
We addressed our methodological research question 3 (how many 
similarity judgments we need to assess students’ perceptual 
knowledge) with the ordinal embedding approach. Specifically, 
we tested how many triplet comparisons are required to compute a 

representative embedding of the underlying similarity. Figure 6 
shows that gains in prediction accuracy of the embedding were no 
longer statistically significant beyond 7000 triplet comparisons. 

4.4 Differences Between the Two Approaches 
The two methods are different and potentially complementary.  
There is no definitively correct way to fit the common model 
ܵ ൌ ࢞

 to data.  The main differences in the final rankings	࢞ࢀ
they produce stems from how we are learning matrix A and the 
restrictions we put on its structure. In approach 1 we are directly 
working with triplet responses which are perhaps noisy due to 
disagreements in students’ individual judgments of perceptual 
similarity, but we are placing fewer restrictions on the learned 
matrix, allowing for more feature interaction. In approach 2, 
NMDS is useful for capturing perceived similarity in aggregate, 
but we enforce much stronger restrictions on the structure of A, 
namely that only two features may interact at once, giving a clear-
er picture of the importance of a pair of features.  
If we had to recommend one approach, we prefer the regression 
approach (approach 1) because it optimizes prediction error, 
which is an objective measure of model quality. The embedding 
approach (approach 2) has its own potential virtues:  The low-
dimensional embedding provides an implicit form of regulariza-
tion that may be helpful especially if the amount of response data 
is small.  Also, the embedding provides a visual representation of 
perceptual similarities which is helpful for model interpretation.  

5. DISCUSSION 
We applied similarity learning approaches to assess which visual 
features students focus on when presented with visual representa-
tions. We compared two approaches, one that allows us to assess 
the predictive power of the identified features, and one that allows 
representing the perceived similarity in a d-dimensional space. 
Both approaches yield similar results as to which visual features 
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are salient to students. Hence, both approaches address research 
question 1: Which visual features do students focus on when 
presented with visual representations? We found that students’ 
similarity judgments of Lewis structures appear to be driven by 
general visual features such as the number of total and distinct 
letters, as well as by visual features specific to the types of mole-
cules in our dataset (e.g., number of Hydrogen / Carbon atoms). 
Our results also address research question 2: Do the visual fea-
tures we identified as salient via similarity learning correspond to 
visual features that students are expected to attend to based on the 
expert-novice literature on perceptual learning? We found that the 
identified general visual features align with educated guesses 
based on the literatures on expertise and perceptual learning, 
which validates the common “educated guess” approach that 
instructional designers have to rely on in the absence of assess-
ments of perceptual knowledge. Our results also suggest that, in 
addition to these general features, students learn to pay attention 
to key visual features that are highly domain-specific; such as 
features that indicate the presence of functional groups that are 
predictive of chemical behaviors. Furthermore, our results show 
that a few key features predict students’ perceptions of similarity 
between visual representations with accuracy of about 70%.  
Finally, we addressed our methodical research question 3: How 
many similarity judgments we need to assess students’ perceptual 
knowledge? Our results show that about 7,000 responses to triplet 
comparison tasks are sufficient in assessing a population’s percep-
tual knowledge. Using a survey with 50 triplet comparison tasks 
(as in our experiment), that means an N of 140 participants will 
yield valid assessments of perceptual knowledge.  

6. LIMITATIONS 
Although both similarity learning approaches had rigorous theo-
retical backing, we made a few assumptions about our triplet 
comparison data that had inherent limitations of note. In both of 
these methods, we are not modelling individual students, but 
rather the population as a whole. Consequently, we assume that 
the triplets and therefore the judgments of similarity are inde-
pendent of one another. This assumption allows us to learn the 
rankings of features and feature pairs for the students’ collective-
ly, but it does not provide a ranking for an individual. Further, 
because judging similarity representations is a subjective task, 
students’ judgments may in certain cases conflict with one anoth-
er. Even with an extremely large number of similarity judgments, 
complete consensus is unlikely, and therefore, perfect prediction 
of student judgments is similarly difficult to achieve. Hence, 
future research needs to investigate how to expand the present 
approach to modeling individual perceptual knowledge. 
Another limitation pertains to the ordinal embedding procedure.  
For visualization purposes, we embedded the molecules into a 2-
dimensional space. Higher dimensional embedding may more 
accurately capture perceptual dissimilarities. Future research 
should explore this question.  

7. FUTURE DIRECTIONS 
We will expand our research to other types of visual representa-
tions typically used in chemistry instruction (see Figure 1). Fur-
ther, we will gather data from expert chemists and compare them 
to data from novices and advanced learners. Based on this com-
parison, we will identify a “perceptual knowledge gap” between 
students and experts. Specifically, we will identify visual features 
that experts attend to but students do not.  
Further, we will expand similarity learning so that it can assess an 
individual student’s perceptual knowledge in real time. The cur-

rent approach is limited in that it requires a large number of simi-
larity judgments to assess students’ perceptual knowledge, which 
is only feasible if we are interested in assessing perceptual 
knowledge of a population of interest (e.g., novices, advanced 
students, experts), and because we assume independence among 
similarity judgments. To address this limitation, we will combine 
our similarity learning approach with cognitive modeling methods 
(e.g., Bayesian knowledge tracing). For example, a similarity 
judgment survey may provide a prior for in a cognitive model, and 
students’ performance on perceptual learning tasks may inform 
the choice of representations for a small number similarity judg-
ment tasks interspersed in the learning activity.  
This expansion will provide the basis for the design of adaptive 
instruction for perceptual knowledge that can provide appropriate 
sequences of perceptual learning tasks that draw students’ atten-
tion to visual features they yet have to learn. Further, knowing 
which visual features students have not yet learned can serve as a 
basis for the design of visual feedback that highlights visual fea-
tures when students make mistakes on perceptual learning tasks.  
In sum, we will use the similarity learning approach described in 
this paper both to design instruction for perceptual learning and to 
assess perceptual knowledge as a learning outcome.  

8. CONCLUSIONS 
This paper described a new approach to assess students’ perceptu-
al knowledge. We used this approach to validate the “educated 
guesses” approach. In addition, we offer more formal pathways 
for instructional designers to create perceptual learning assess-
ments. Because developing adaptive instruction for perceptual 
knowledge relies on such assessments, this paper makes an im-
portant contribution to cognitive modeling research.  
This paper also makes important contributions to machine learn-
ing. We provide a new mathematical approach to quantify the 
accuracy of perceptual embeddings learned from similarity judg-
ments. Specifically, we derived bounds on the accuracy of 
embeddings learned from small numbers of comparative judg-
ments by adapting recently developed large-sample analysis 
methods [34]. This approach provided new algorithms for gener-
ating embeddings that are provably accurate. We investigated new 
methods for embedding based on spectral methods inspired by 
spectral ranking algorithms [35]. Our experiment yielded an em-
pirical validation with perceptual data from undergraduates, as 
well as new machine learning methods to assess how visual fea-
tures predict or encode perceptual similarity judgments. Specifi-
cally, we explored the application of group Lasso algorithms for 
automatically selecting the most perceptually salient features [36]. 
Our experiment empirically evaluated the group Lasso approach. 
In sum, our work provides a crucial stepping stone towards adap-
tive instruction for perceptual knowledge. Perceptual knowledge 
is by definition implicit and does not lend itself to the kinds of 
techniques used in traditional cognitive modeling approaches 
(e.g., think-alouds, interviews). We presented and evaluated two 
similarity learning approaches that can determine which visual 
features students attend to when perceiving visual representations.  
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ABSTRACT
The Cognitive Tutor Algebra I (CTAI) curriculum, which
includes both textbook and online components, has been
shown to boost student learning by about 0.2 standard de-
viations in a randomized effectiveness trial. Students who
were assigned to the experimental condition varied substan-
tially in how, and how much, the used the online component
of CTAI, but original analyses of the experimental data fo-
cused on estimating average effects, and did not examine
whether the CTAI treatment effect varied by the amount
of style of usage. This study leverages log data from the
experiment to present a more nuanced analysis. It uses the
framework of Principal Stratification, which estimates the
varying CTAI treatment effect as a function of “potential”
usage—either how students used the program, or how they
would have used it had they been assigned to the treatment
condition. With experimental data, Principal Stratification
does not require that we assume that all relevant variables
have been measured. With this framework, we find that stu-
dents who receive a medium amount of assistance from the
software (in the form of hints and error feedback) experience
the largest effects, with lower effects for students who receive
a lot or a little; and evidence that students who do not follow
the curriculum order experience smaller treatment effects.

Keywords
Causal Mechanisms, Principal Stratification, Intelligent Tu-
tors, Bayesian Hierarchical Models

1. INTRODUCTION
Intelligent tutors—computer programs designed to teach—
claim to improve student achievement via a number of mech-
anisms, including a reliance on cognitive modeling, instant
feedback, and individualized instruction. As the demand for
intelligent tutors grows, so does the demand for evidence of
their effectiveness, and the educational research community
has kept apace, with a number of randomized field trials
[e.g. 5, 9, 14]. Since intelligent tutors are computerized, it

is relatively easy for experimenters to collect student log
data, alongside traditional evaluation data. This paper will
provide a template for how to evaluate the log data from an
intelligent tutor experiment, to help elucidate the intelligent
tutors’ mechanisms and when and for whom they work.

A recent randomized study of Carnegie Learning’s Cognitive
Tutor Algebra I (CTAI) curriculum, under real-life condi-
tions, was reported in [8]. In the second year of the experi-
ment, in high school classrooms, the study found, that CTAI
boosts student learning by about 0.2 standard deviation, on
average. However, in the first year of the experiment CTAI’s
effect was close to nil. Surely one explanation for this het-
erogeneity is that students and teachers used the curriculum
differently in the two years—but how? What aspects of stu-
dent usage predict a treatment effect?

The effectiveness trial produced extensive student usage data,
as the computer program logged students’ activity. In this
paper, we use this data—in particular, usage data from the
2nd-year high school sample that apparently experienced a
substantial CTAI effect—to explore the relationship between
student usage and causal effects. In future work, we will at-
tempt to use these findings to explain the difference between
the two years of the experiment.

A preliminary study, [17], argued that the best causal model
for the usage data relies on the “principal stratification”
framework [2, 7], under which students who used the CTAI
software in a particular way are compared to control stu-
dents who would have used it in the same way, had they
been assigned to treatment. This study is the first full study
that last year’s preliminary study promised. It provides two
sets of results exploring different aspects of CTAI’s mech-
anisms: an analysis of assistance, which is calculated from
the hints that students request and the errors they make,
and an analysis of the the order at which students work on
CTAI’s sections. The paper also includes a more detailed
discussion of the models, and a discussion of some issues
with the results in [17].

2. DEFINING THE QUESTION: HOW DOES
POTENTIAL USAGE MODERATE THE
CTAI EFFECT?

As in [17], in this paper we model student usage under
the principal stratification (PS) framework, a generaliza-
tion of the Neyman-Rubin Causal Model [15] of potential
outcomes. If Z is a binary treatment assignment, and Y
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is an outcome, each subject has two potential outcomes:
Y (Z = 1) and Y (Z = 0), the outcome she would present
under the treatment condition, and under the control con-
dition, respectively. Each of these is defined, though un-
observed, prior to treatment assignment Z. After subjects
have been assigned to treatment, exactly one of the potential
outcomes is observable for each subject: for treatment sub-
jects, the observed Y = Y (Z = 1), and for control subjects,
Y = Y (Z = 0).

[2] generalized the potential outcomes framework, introduc-
ing the concept of principal strata. A principal stratum is a
grouping of subjects based on potential values of intermedi-
ate outcomes. For example, if we call students’ usage values
U , each student has usage values U(Z = 1) and U(Z =
0)—the usage they would exhibit under the treatment and
control conditions, respectively. In the CTAI experiment,
U(Z = 0) = 0 for all subjects, since no control subjects had
access to the cognitive tutor. Say we model usage as a cat-
egorical value for K categories, U = 1, ...,K. Then there
are k principal strata: {U(Z = 1) = k, U(Z = 0) = 0} for
k = 1, ...,K. In this framework, principal stratum mem-
bership is observed for students in the treatment group—we
observe their usage once they are assigned to treatment, and
we know from the experimental design that they would not
have used the tutor had they been assigned to control. The
potential usage for students in the control group, however,
is unobserved, and must be estimated; the following section
will discuss this process in more detail.

For each stratum, we can define a “principal effect”: the av-
erage treatment effect τk = E[Y (Z = 1)− Y (Z = 0)|U(Z =
1) = k, U(Z = 0) = 0] for subjects in principal stratum k.
Although unobserved, these strata are defined prior to treat-
ment assignment—if assigned to treatment, what would a
student’s usage be? That is, observed usage U is an interme-
diate outcome, or a mediator, but potential usage U(Z = 0)
and U(Z = 1) is a pre-treatment covariate, or a moder-
ator. The principal effects are, then, subgroup effects, for
various levels of potential usage. Differences between princi-
pal effects are differences in the effect of CTAI for students
who use (or would use) CTAI differently. To put it more
precisely, consider the difference τj − τk. This is the dif-
ference in the effect of CTAI between the group of subjects
who, if given the opportunity, would exhibit usage in the
amount of j or the amount of k. While the effect estimates
τj and τk are themselves causal (due to randomization) the
difference between them could be due to the effect of usage,
or to pre-treatment differences between students in the two
groups. In other words, since usage values were not assigned
randomly, the difference in CTAI effect between two usage
principal strata are not necessarily causal. Still, estimating
principal effects, and their differences, along with differences
in the composition of principal strata, can shed light on the
mechanisms of CTAI.

In one of our analyses below, usage is measured as a contin-
uous, not categorical, variable, so the PS approach entails
discretizing usage scores. [4] suggested an alternative: mod-
eling potential usage as a continuous mediator, via an inter-
action in a regression analysis. They refer to this analysis as
a “causal effect predictiveness” or CEP curve. CEP curves
are directly analogous to principal strata effects, but with

continuous intermediate variables.

3. ESTIMATING PRINCIPAL EFFECTS AND
CEP CURVES

Estimating principal effects and CEP curves is a complex
process, since first we must estimate unobserved principal
strata membership or potential usage variables, and only
then to estimate treatment effects. In fact, principal effects,
in some circumstances, are only partially identified—even in
an infinite sample, a Bayesian credible interval for a princi-
pal effect may have a finite width. This is especially the case
when researchers attempt to estimate principal effects with-
out covariates, and while relaxing traditional instrumental
variables assumptions. However, in the presence of covari-
ates that predict usage variables, we may estimate informa-
tive effects.

This section describes the models that we use to estimate
principal effects and CEP curves. More details can be found
in [16].

3.1 The Model
In general, the central challenge in PS modeling is that prin-
cipal strata membership is unknown. In the CTAI experi-
ment, since control students had no access to CTAI software,
strata membership for the treatment group is known, but
must be estimated for the control group. The distribution
of the potential outcomes for Y , conditional on covariates,
p(Y (Z = 0)|Xi), can be decomposed into the probability
distribution of Y given Ui(Z = 1), which is the distribu-
tion of interest, times the distribution of p(Ui(Z = 1)|Xi),
which, due to random assignment, may be estimated from
the treatment group. Then, we may estimate the parameters
of p(Y (Z = 0)|U(Z = 1) = a,X) and compare them to the
analogous distribution p(Y (Z = 1)|U(Z = 1) = a,X) yield-
ing estimates of treatment effects within principal strata.

If we assume that outcomes are conditionally normally dis-
tributed, the result is a finite normal mixture model:

p(Yi(Z = 0)|Xi) =

K∑

k=1

Pr(Ui(Z = 1) = k|Xi)φ(µk(Z = 0) + fk(Xi), σk) (1)

and

p(Yi(Z = 1)|Xi, U(Z = 1) = k) =

φ(µk(Z = 1) + fk(Xi), σk) (2)

where φ(µ, σ) is the normal density with mean µ and stan-
dard deviation σ. Equations (1)-(2) additionally assume no
interaction between covariates and treatment status within
principal strata. The contribution of covariates Xi to the
mean of Yi(Z = 1) can vary from stratum to stratum, but
within stratum it does not vary with treatment status. In
practice, we estimate fk(Xi) as linear in covariates:

fk(Xi) = XT
i βk (3)

where we estimate a different set of slopes β in each stra-
tum k. The linearity assumption can be relaxed or adjusted
based on the model’s fit to the data. The effect of CTAI in
the kth principal stratum is τk = µk(Z = 1)− µk(Z = 0).
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The model to estimate a CEP curve is broadly similar to the
PS model, with one important difference. In the PS model,
usage was parametrized as a categorical variable, and dif-
ferent effects were calculated for each stratum. In the CEP
framework, usage is continuous, and its interaction with the
effect of treatment must be modeled. As the next section
will discuss, we chose to model the CTAI effect as quadratic
in usage, for instance. The CEP outcome model, then, is

p(Yi(Z = 0)|Xi) =

pU(Z=1)|Xi
(a)φ(fU|Z=0(a) + fX(Xi), σ). (4)

and

p(Yi(Z = 1)|Xi, U(Z = 1) = a) =

φ(fU|Z=1(a) + fX(Xi), σ). (5)

where pU(Z=1)|X(a) is the density of U(Z = 1) conditional
on X, fU|Z=0(a) and fU|Z=1(a) are parametric functions of
usage for treated and untreated subjects, respectively, and
fX(Xi) is a model for covariates. The CTAI treatment effect
is now a function of potential usage, U(Z = 1): τ(a) =
fU|Z=1(a)− fU|Z=0(a).

Models (1), (2), (4), and (5) all require a model for the
density of usage, as a function of covariates X. In our paper,
the usage model, p(U(Z = 1)|X), is also linear in X. When
the the usage variable is continuous, it is:

p(U(Z = 1)|X) = φ(Xγ, σU ) (6)

normal-theory linear regression. In PS models, when we
discretize U , we do so after fitting model 6.

When U is binary, we use a linear logistic regression to esti-
mate p(U(Z = 1)|X):

Pr(U(Z = 1)|X) = invLogit(Xγ) (7)

We fit all of the above models simultaneously with Markov
Chain Monte Carlo (MCMC), using JAGS and R [10, 11].
Since MCMC is a Bayesian technique, it required priors; we
put a normal prior with mean zero and standard deviation 3
on each of the model fixed effects—a prior that easily accom-
modates any plausible effect, but discourages outlandish es-
timates. We put a weakly-informative inverse-gamma(0.001,
0.001) prior on the variance parameters.

The models for assistance, described below in Section 5,
were fit with the Stampede Supercomputer at the Texas
Advanced Computing Center.

3.2 Some Potential Pitfalls
[17] presented a set of preliminary results from principal
stratification analyses. They were presented as a first at-
tempt at fitting principal stratification models, to illustrate
the technique and its potential for helping us understand
some of the factors behind CTAI’s effect. However, since
the EDM 2015 conference, a number of issues emerged with
the preliminary results in that paper. It is instructive to
discuss those results as an illustration of potential pitfalls in
principal stratification analysis.

3.2.1 Model Convergence

One of the first checks of a Markov Chain Monte Carlo model
is convergence. MCMC models (ideally) proceed through
two stages: first, in the “burn-in” stage, parameter estimates
fluctuate widely as the model converges on the posterior dis-
tribution for the parameters. After convergence, the algo-
rithm draws from the posterior distribution of the param-
eters. From these draws, we can estimate the posterior’s
mean—a point estimate for the parameters—standard devi-
ation, and quantiles. However, it is not always clear when
the burn-in period has ended, and the model has begun sam-
pling from the posterior. There are two principal ways of
checking this. Both methods rely on running the MCMC
separately in two or more chains. That is, start the Gibbs
sampler c separate times, with c sets of starting values for
the parameters, and let the c separate chains each take their
own course. Then, the results from the c chains may be com-
pared; if the model has converged, they should resemble one
another, since they each would have converged on the true
posterior distribution. One method of measuring whether
this is the case is the Gelman-Rubin R-hat statistic, which
compares the within-chain variance two the between-chain
variance; since, after the burn-in stage, the chains should all
be sampling from the same distribution, the between-chain
variance should be small. At convergence, the R-hat statis-
tic should be approximately one. Typically, values of R-hat
less than 1.1 are acceptable. Additionally, analysts may in-
spect “traceplots”: plots of the c chains for each parameter.
If the chains are each stationary—that is, not changing in
location or variance—and seem to share a location and scale
with each other, the model has most likely converged. If the
various chains converge on different distributions, the model
might be non-identified, or multi-modal—several different
estimates might be equally consistent with the data.

Some of the models in [17] may not have achieved conver-
gence. In this paper, all of the models had clearly achieved
convergence.

3.2.2 Gain-Score Modeling and Covariate Selection
A second concern with the model results from [17] emerged
from our use of gain-scores—the difference between a post-
test and a pre-test—as the outcome in the model, as op-
posed to the post-tests themselves. The problem with doing
so is that the usage model was linear in the pre-test, by
design. In the assistance model, for instance, assistance is
anti-correlated with pretests, so the the control subjects who
were estimated to have high levels of potential assistance
also had high pre-test scores. On the other hand, pre-test
scores are anti-correlated with gain scores, due to regression
to the mean. So the control subjects with high estimated
assistance will have lower gain scores on average. This can
lead to an overestimate of an effect in the high-assistance
stratum, especially if the usage model is misspecified. In
principle this is an easy problem to correct, simply by in-
cluding pre-test scores as a covariate in the outcome model
as well. However, doing so would undermine the rationale of
gain score modeling. For these reasons, we relied exclusively
on post-test modeling in this paper, with the pre-test as a
covariate in both the usage and outcome sub-models.

3.2.3 Student-Level Averages as Usage Variables
[17], and an earlier version of this manuscript, estimated
the variation of the CTAI effect as a function of the av-
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erage number of hints and errors each student requested
or committed (called “assistance”).1 These averages were
taken over all of each student’s worked problems. Subse-
quent analysis revealed a curious phenomenon: the students
with the most extreme average assistance values worked very
few problems–almost uniformly so. Interpreting the CEP
curve, in this case, becomes nearly impossible, since average
assistance is so closely related to the amount of usage. The
reason for the close relationship is straightforward: sample
averages are random variables, and the variance of a sample
mean is directly proportional to the sample size. The aver-
age assistance values for the group of students who worked
very few problems had a high variance; conversely, the vari-
ance of average assistance for students who worked a large
number of problems was much smaller.

The solution we chose for this issue was to run the model not
on student-level average assistance values, but on problem-
level data directly, adding another level into the multilevel
structure. That way, the model considers student-level usage
variables to be latent, as opposed to manifest (i.e. directly
observed). Extreme values of latent variables estimated from
a small number of problems enter into the model less as
students with extreme usage patterns, and more as students
whose usage is poorly-determined. In other words, from one
MCMC draw to another, the estimate for each low-usage
student’s assistance value would vary considerably, so low-
usage students would contribute little to the overall estimate
of the CEP curve. We discuss the problem-level assistance
model in Section 5.

3.2.4 Model Validation
The difficulty of constructing correct principle stratification
models, and the ease of constructing models that yield mis-
leading results, suggests that PS models should undergo rig-
orous specification checking before they are believed. [1], an
excellent example of careful principal stratification analysis,
provided guidance on how to validate a PS model, which
we followed. We conducted three types of checks with each
model:

• Estimating each effect with multiple different mod-
els and checking for concordance. In the assistance
analysis, we estimated MCMC models treating the us-
age variable as either categorical or continuous. In
both analyses we estimated both a normal-distribution
model, as discussed in in Section 3.1, and a “robust”
model, in which we substituted student’s t-distribution
for normal distributions in the model, allowing for out-
liers.

• Inspecting residual plots to assess model fit, for both
the usage model and the outcome model.

• Estimating models with made-up outcome data. We
did this primarily with a placebo outcome, generated
by adding random noise to the pre-test variable. We
then hoped not to find any treatment effects.

1The original manuscript also included an analysis of each
student’s average number of problems per section, which fell
prey to the same issues as the assistance analysis. We will
revisit the problem-per-section analysis in future work.

In this paper, due to space constraints, we included esti-
mates from alternative methods, but not residual plots or
placebo results; these, though, are available upon request.

Unfortunately, we cannot claim, at this point, that a method
or model exists that will always recover the correct answer
and never mislead—each model needs to be carefully tailored
to its data, and then validated.

4. THE DATA
The CTAI experiment is described in [8]. The study was con-
ducted in 73 high schools and 74 middle schools in 52 urban,
suburban, and rural school districts in seven states, encom-
passing nearly 18,700 high school students and 6,800 middle
school students. The schools were matched on a set of co-
variates prior to randomization, and were subsequently ran-
domized to treatment or control conditions within matched
pairs.

The study was an effectiveness trial, where the intervention
must be adopted in as naturalistic conditions as possible.
This means the study is supposed to capture common im-
plementation variation resulting from imperfect implemen-
tation or even refusal to implement certain instructional ma-
terials. The naturalistic design of the experiment is partic-
ularly important for our analysis of student usage—usage
patterns in the experiment plausibly correspond with what
we may expect in general.

For the current study, we used only data from the second
cohort in high schools. This is because that was the stra-
tum in which overall effects were detected at the 5% level.
Indeed, in the first year of implementation point estimates
for the effect were close to zero. It may be the case that
the difference in effect between the first and second years
(a difference which itself is statistically significant) is due to
different usage patterns. We hope that our larger project of
estimating treatment effect heterogeneity by usage will help
explicate the heterogeneity by cohort.

Software usage data is available for only a subset of the stu-
dents in the treatment group. Considering only students
who were present at post-test and are thus a part of out-
comes analyses, we have usage logs for 83%. Students not
present at post-test are considered to have attritted from
the study.

The percentage of non-attritted students for whom we have
usage data varies by school, from 0% (n=3 schools) to 100%
(n=20 schools). We assume that schools that have 0% cover-
age did not implement the CTAI curriculum, despite being
assigned to the treatment group. Carnegie Learning was
unable, for technical reasons, to retrieve software usage log
data for that school.

4.1 Imputing Missing Data
As described above, there were missing data values in the
covariates, as well as in the student log scores. We used the
missForest package in R [18, 11] to impute missing covariate
values. The out-of-box normalized root mean-squared-error
for the imputation was 0.02. Since this value is so low, since
there was a relatively small amount of missing data, and
since covariates play a merely predictive role in our analy-
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sis, we assumed that the uncertainty from other aspects of
the model would dominate the uncertainty due to covariate
imputation and only imputed one dataset, rather than a full
multiple imputation.

Missing usage data presents a more serious problem. First,
some schools in the CTAI study were not included in the
usage dataset. We deleted these schools from the analysis,
along with their matched pairs. Since a matched randomized
experiment is an aggregate of a randomized trial in each
matched pair, discarding the matched pairs with missing
data is nearly benign.

We classified within-school missing usage data into two groups:
some students did not have usage data because they did not
use the software. Since absolute software usage is driven
primarily by teachers, we calculated the proportion of stu-
dents with missing data for each teacher. If almost all of a
teacher’s students were missing from the usage dataset, we
assumed that they did not use the tutor in their classroom.

The rest of the missing student usage data was due to our in-
ability to match students to their records. We assumed that
these data were missing at random [6]—that their missing-
ness was ignorable conditional on their measured covariates.
The missingness was likely not missing completely at ran-
dom, since students who were difficult to match generally
did not fill out their student information thoroughly, and
thoroughness may correlate with post-test scores or usage
patterns. The imputation strategy for these missing data
points was identical to the imputation of unobserved poten-
tial usage for the control students. That is, the same model
that estimated densities for usage variables for control stu-
dents also estimated missing usage data for some treated
students. The missing data strategy in this case was, there-
fore, either full-information maximum likelihood or MCMC,
depending on the analysis.

5. HINTS AND ERRORS
5.1 Assistance Scores

#Errors=0 #Errors>0 Sum
#Hints=0 0.42 0.34 0.76
#Hints>0 0.01 0.23 0.24

Sum 0.43 0.57 1.00

Table 1: The proportions of problems in our dataset
in which students make at least one error or request
at least one hint.

[12] defined assistance as the sum of the number of hints
students request and the number of errors they make, which
together represent the feedback CTAI gives the students.
High assistance indicates that a student is struggling.

Hints and errors vary from problem to problem, from section
to section, and from student to student. Table 1 shows the
joint probability of requesting at least one hint and making
at least one error in our dataset. In 58% of worked problems,
the student requested at least one hint or one error. Fur-
ther, hints and errors tend to accompany each other: in only
1% of worked problems the student requested a hint without
making an error. In many problems, hints and errors occur
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Figure 1: The average number of hints and errors
requested for each student. The size of the plotted
points is proportional to the square root of the num-
ber of problems they completed—and hence to the
standard deviation of the plotted averages.

sequentially: a student will work part of the problem, per-
haps make an error and receive feedback, perhaps request
a hint, and then move on to the rest of the problem. It is
important to keep in mind, then, that hints do not always
precede errors—sometimes, they are the result of a prior
error made while working the same problem.

Figure 1 plots the average number of hints a student requests
as a function of the average number of errors he makes.
While most students request between 0 and two hints per
problem, and make between one and eight errors per prob-
lem, some students request far more hints or make far more
errors. Further, students who request more hints are much
more likely to make more errors. The size of the points
in Figure 1 is proportional to the square root of the num-
ber of problems they completed—and hence to the standard
deviation of the plotted averages. The extreme values in
the figure typically come from students who work very few
problems, as described in Section 3.2.3, complicating the in-
terpretation of a model that uses average hints or errors as
a mediator variable.

For that reason, we incorporated a problem-level sub-model
for assistance into our larger principal stratification model.
Rather than model the total number of hints and errors per
problem, which would necessitate a complex, and possibly
misspecified, count-data model, we modeled the probability
of a student requesting a hint or making an error (or both)
on each problem. The model was as follows:

Pr(Aip ≥ 1) = invLogit(Ui + δs[p]) (8)

Where Aip is the total amount of assistance, i.e. hints and
errors, that student i experiences from problem p. Ui is a
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random student effect, representing the student’s propensity
to receive assistance on a problem, and δs[p] is a section

random effect.2

The variable Ui, student i’s “assistance score,” is the medi-
ator that we use to predict her CTAI treatment effect.

Ui is itself predicted, in turn, by a set of covariates includ-
ing pretest scores, demographics, and teacher random effects
nested within school random effects. The results of this us-
age model are available upon request. They show that prior
test scores and “gifted” status are inversely correlated with
assistance scores—higher performing students are less likely
to make errors or request hints. Special education students
are more likely to receive assistance, and males are less likely
than females.
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Figure 2: Assistance model results: E[Y (Z = 1) −
Y (Z = 0)|U(Z = 1)], CTAI treatment effect as a
function of potential assistance U(Z = 1) quantiles.
Results are shown for an MCMC CEP normal-
distribution model that treats assistance as con-
tinuous, a “robust” CEP model based on the t-
distribution that allows for outliers, and a normal-
distribution PS model that breaks assistance scores
into high, medium, and low categories. To display
statistical uncertainty, we also plotted 500 draws for
the effect function from the CEP model, and 95%
credible intervals (error bars) for the three PS ef-
fects. The treatment effect is in effect size units.

Figure 2 shows the results for three models—a normal- dis-
tribution CEP model, a robust CEP model, and a normal-
distribution PS model—which roughly agree that treatment
effects are highest for students with assistance scores in the

2The conventional item response theory model in this case
would have a problem effect instead of a section effect. We
chose section effects rather than problem effects since there
are 5438 problems (that only appear once in the dataset,
making problem effects difficult to estimate.

center of the distribution, and lower for students who used
a high or low amount of assistance. The PS model, in
which assistance scores were discretized, reports more ex-
aggerated differences between treatment effects for students
with medium assistance scores and those with high or low
scores; these differences, moreover, are highly significant—
the probabilities that the average effect for medium students
is higher than that for low and high students are 1 and 0.987,
respectively. However, when the estimation error is taken
into account, it is apparent that the CEP and PS models do
not necessarily disagree.

There are a number of ways to interpret these results. The
results reflect varying CTAI effects for various usage pat-
terns. One of CTAI’s selling points is the instant feedback it
provides students as they work through and complete prob-
lems. Students who under-utilize this service—in the low
assistance stratum—are then likely to experience a smaller
CTAI effect. This may be because they began as excellent
students—assistance is anti-correlated with pretest scores—
and hence did not need the extra help that CTAI provides.
Alternatively, students with low assistance scores may be
under-utilizing the service for a different reason; perhaps
they feared that requesting too many hints, or making too
many mistakes, would slow their progress through the tutor,
so they were overly cautious.

Students who request hints or make errors quickly, with-
out slow deliberation, may not be able to learn from the
problems they work. Some students “game” the system, by
requesting hints until they are provided with the correct
answer, or they simply do not try very hard to figure out
the answer themselves. It may be that the students in the
CTAI experiment with very high assistance scores, experi-
ence lower treatment effects for some of these reasons Al-
ternatively, they might have struggled with the material in
general, and required more personalized help from a teacher,
as opposed to a computerized tutor.

However, students in the middle of the assistance distribu-
tion experienced large CTAI effects, suggesting an assistance
“sweet spot.” In future trials, teachers could be instructed
to encourage their students to use a medium number of
hints, and complete problems with a moderate amount of
caution—trying hard to answer problems correctly, but also
allowing themselves to make mistakes. If this strategy leads
to higher CTAI effects, it suggests that part of the CTAI ef-
fect heterogeneity across usage patterns is causal—that us-
ing the system differently leads to higher effects.

6. SKIPPING SECTIONS
An important part of the design of CTAI is the scaffolding
of skills and knowledge. The skills that students learn in
Algebra I build on each other, so the order in which students
learn material and master skills matters—at least in theory.
The design of CTAI accounts for this order, by insisting that
students master certain skills before moving on to others.
Indeed, that is the notion that lies behind the sections of
the CTAI curriculum.

We attempted to test the hypothesis that this scaffolding
matters—that is, do students who the CTAI curriculum
learn more from CTAI than students who do not? To answer

Proceedings of the 9th International Conference on Educational Data Mining 212



this question, we compared the order in which students in
the CTAI experiment worked on sections to the intended or-
der. About 80% of students worked on the sections in order.
However, 20% of students skipped at least one section. Did
the students who skipped one or more sections experience
the same CTAI effect as those who completed the sections
in the intended order? More precisely, is the CTAI effect the
same in the principal stratum of students who, if assigned to
CTAI, would complete the section in order, and in the prin-
cipal stratum of students who, if assigned to CTAI, would
skip at least one section?

A complication in estimating counterfactual stratum mem-
bership for control students in this case was that in the
CTAI setup, teachers, not students, control which sections
the students work on. Indeed, there were 38 teachers in
the treatment group for whom we had data on whether stu-
dents skipped a section. Of those 38 teachers, 17 teachers
did not have any students who skipped any sections at all,
while there were five teachers more than 80% of whose stu-
dents skipped sections. Since such a large proportion of the
variation in section-skipping occurred at the teacher level,
we included a set of teacher-level predictors in our usage
model. An anonymous reviewer alerted us to the threat of
over-fitting; hence, due to the small number of teachers in
the treatment group, we chose only two teacher level covari-
ates in the model: percent ESL, and average pre-test. The
small covariate-to-sample size ratio at both the student and
the teacher levels, combined with the informative priors [See
3], should alleviate concerns of over-fitting.

The usage model, whose results are available upon request,
was unsuccessful in estimating precise effects for any covari-
ate, but in aggregate was able to predict stratum member-
ship. One exception is that students with higher pretest
scores are more likely to skip sections, as are teachers whose
students have higher pretest scores on average.

Stratum Effect (Normal) Effect (Robust)
Do Not Skip 0.27 0.19

0.09 0.07
(0.06–0.44 ) (0.05–0.33)

Skip ≥ 1 If Treated -0.09 -0.07
0.13 0.11

(-0.33,0.17 ) (-0.28,0.48)
Difference -0.36 -0.26

0.12 0.11
(-0.59,-0.12) (-0.48,-0.03)

Table 2: The CTAI effect in the two principal strata
defined by whether a not a student would skip a sec-
tion if they were assigned to the treatment. We esti-
mated principal effects with both an MCMC model
based on the normal distribution, based on the more
robust student’s t-distribution. Standard deviations
of the posteriors are in italics, and 95% credible in-
tervals (MCMC) are provided in parentheses under
the estimates.

The results of our analysis are in Table 2 and Figure 3. Both
models detect significantly greater treatment effects in the
principal stratum of students who would not skip sections if
assigned to the treatment, than in the stratum of students
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Figure 3: Estimates, and 95% credible intervals, for
the CTAI effect in the principle stratum of students
who would not skip sections, and in the stratum of
students who would. The results plotted for both
the normal and t-distribution (“robust”) models.

who would. This might be taken as evidence that the order
in which students complete sections plays a large role in the
effectiveness of CTAI. Alternatively, it may be that teachers
who tinker with the order of sections that their students
work are likely to tinker with other aspects of the CTAI
design as well, to deleterious effect (perhaps along the lines
of [13]). In either reading, the effect of CTAI is not merely
due to the practice it gives students, or immediate feedback,
but also to its underlying pedagogical and cognitive theory.

A third possibility is that the entire difference is driven by an
underlying teacher or student characteristic, such as ability;
students with higher pretest scores are more likely to skip
sections—perhaps the treatment effect is significantly lower
for them, as well.

7. DISCUSSION
We showed that without additional identification assump-
tions, researchers can use log data to form a deeper under-
standing of their software’s effect. However, we also dis-
cussed some of the difficulties in estimating these models
correctly.

We updated and clarified a result from our preliminary study
[17]. We find that the relationship between the amount of
assistance students receive from CTAI and the CTAI treat-
ment effect they experience is not monotonic. The highest
effects appear for the students who receive a medium amount
of assistance; those who receive much more or less experi-
ence smaller treatment effects, on average. This may be the
result of student attributes—that the students at the mar-
gins are either too advanced or gaming the software—or it
may be that certain modes of software usage are better than
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others.

Next, we investigated if students who skip a section in the
recommended curriculum, working on sections out of order,
may experience lower effects. The result may confirm part
of the motivating theory behind CTAI: that Algebra I skills
build on each other, so the order at which students work on
material can contribute or detract from their success.

Along those lines, we plan a number of future analyses. We
hope to update the preliminary study’s results that sug-
gested that the CTAI treatment effect increases with the
amount of usage, and to investigate the dependence of the
CTAI effect on students’ mastery of sections. Further along,
we hope to discover and define interesting multivariate prin-
cipal strata, perhaps as the result of a cluster analysis of the
high-dimensional usage data.

Finally, after cultivating a more complete understanding of
the usage patterns that lead to higher CTAI effects, we
can explore treatment-effect heterogeneity. In particular,
we may be able to answer why in the first year of implemen-
tation CTAI did not seem to boost test scores, but in the
second year it did. Was differential usage to blame?

In the meantime, this paper uses rigorous causal methods
to confirm some previous hypotheses about CTAI’s causal
mechanisms, and points a way forward for future work mod-
eling usage variables in experimental designs.
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ABSTRACT
Online educational videos have emerged as one of the most pop-
ular modes of learning in the recent years. Studies have shown
that liveliness is highly correlated to engagement in educational
videos. While previous work has focused on feature engineering
to estimate liveliness and that too using only the acoustic infor-
mation, in this paper we propose a technique called LIVELINET
that combines audio and visual information to predict liveliness.
First, a convolutional neural network is used to predict the visual
setup, which in turn identifies the modalities (visual and/or audio)
to be used for liveliness prediction. Second, we propose a novel
method that uses multimodal deep recurrent neural networks to au-
tomatically estimate if an educational video is lively or not. On the
StyleX dataset of 450 one-minute long educational video snippets,
our approach shows an relative improvement of 7.6% and 1.9%
compared to a multimodal baseline and a deep network baseline
using only the audio information respectively.

Keywords
Liveliness, Educational Videos, Recurrent Neural Network, Deep
Learning, LSTM, Engagement, Multimodal Analysis.

1. INTRODUCTION
The amount of freely available online educational videos has grown
significantly over the last decade. Several recent studies [1, 2, 3]
have demonstrated that when educational videos are not engag-
ing, students tend to lose interest in the course content. This has
led to recent research activity in speaking style analysis of educa-
tional videos. Authors in [4] used crowd-sourced descriptors of
100 video clips to identify various speaking-style dimensions such
as liveliness, speaking rate, clarity, formality etc. that drive stu-
dent engagement and demonstrated that liveliness plays the most
significant role in video engagement. Using a set of acoustic fea-
tures and LASSO regression, the authors also developed automatic
methods to predict liveliness and speaking rate. The Authors in [5]
analyze the prosodic variables in a corpus of eighteen oral presen-
tations made by students of Technical English, all of whom were

native speakers of Swedish. They found out that high pitch vari-
ation in speech is highly correlated with liveliness. Arsikere et
al. [6] built a large scale educational video corpus called StyleX
for engagement analysis and provided initial insights into the effect
of various speaking-style dimensions on learner engagement. They
also found out that liveliness is the most influential dimension in
making a video engaging. In this paper, we propose a novel mul-
timodal approach called LIVELINET that uses deep convolutional
neural networks and deep recurrent neural networks to automati-
cally identify if an educational video is lively or not.

A learner can typically perceive or judge the liveliness1 of an ed-
ucational video both through the visual and the auditory senses.
A lecturer usually makes a video lively by using several visual
actions such as hand movement, interactions with other objects
(board/tablet/slides) and audio actions such as modulating voice in-
tensity, varying speaking rate etc. In the proposed approach, both
visual and audio information from an educational video are com-
bined to automatically predict the liveliness of the video. Note that
a given lecture can also be perceived as lively based on the con-
textual information (e.g., a historic anecdote) that the lecturer may
intersperse within the technical content. We however don’t address
this dimension of liveliness in this work 2.

This paper is novel in three important aspects. First, the proposed
approach is the first of its kind that combines audio and visual infor-
mation to predict the liveliness in a video. Second, a convolutional
neural network (CNN) is used to estimate the setup (e.g., lecturer
sitting, standing, writing on a board etc.) of a video. Third, Long
Short Term Memory (LSTM) based recurrent neural networks are
trained to classify the liveliness of a video based on audio and
visual features. The CNN output determines which of the audio
and/or visual LSTM output should be combined for the liveliness
prediction.

We observe that there is a lot of variation in what is being displayed
in an educational video, e.g., slide/board, lecturer, both slide/board
and lecturer, multiple video streams showing lecturer and slide etc..
These different visual setups usually indicate to what degree the
audio and the visual information should be combined for predict-
ing liveliness. For example, when the video feed only displays the
slide or the board, the visual features do not play a critical role
in determining liveliness. However, when the video is focussed on

1defined as “full of life and energy/active/animated" in dictionary
2 Note that the human labelers who provided the ground truth for
our database [6] were explicitly asked to ignore this aspect while
rating the videos
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the lecturer, the hand gestures, body postures, body movements etc.
become critical, i.e., the visual component plays a significant role
in making a video lively. Hence, we first identify the setup of a
video using a CNN based classifier. Next, depending on the setup,
we either use both audio and visual information or use only the
audio information from a video for training/testing of the LSTM
networks. We train two separate LSTM based classifiers, one each
for audio and visual modalities, which take a temporal sequence
of audio/visual features from a video clip as input and predict if
the clip is lively or not. Finally, audio/visual features from a test
video clip are forward-propagated through these LSTMs and their
outputs are combined to obtain the final liveliness label.

We perform experiments on the StyleX dataset [6], and compare
our approach with baselines that are based on visual, audio and
combined audio-visual features. The proposed approach shows rel-
ative improvement of 7.6% and 1.9% with respect to a multimodal
baseline and a deep network baseline using only the audio modality
respectively.

2. RELATED WORK
In this section, we discuss the relevant prior art in deep learning
and multimodal public speaking analysis in videos.

Deep Learning: Recently deep neural networks have been exten-
sively used in computer vision, natural language processing and
speech processing. LSTM [7], a Recurrent Neural Network (RNN) [8]
architecture, has been extremely successful in temporal modelling
and classification tasks such as handwriting recognition [9], action
recognition [10], image and video captioning [11, 12, 13], speech
recognition [14, 15] and machine translation [16]. CNNs have also
been successfully used in many practical computer vision tasks
such as image classification [17], action recognition [18], object
detection [19, 20], semantic segmentation [21], object tracking [22]
etc.. In this work, we use CNNs for visual setup classification and
LSTMs for the temporal modelling of audio/visual features.

Multimodal Public Speaking Analysis: Due to the recent devel-
opment of advanced sensor technologies, there has been signifi-
cant progress in the analysis of public speaking scenarios. The
proposed methods usually employ use of multiple modalities such
as microphone, RGB camera, depth sensor, kinect sensor, Google
glasses, body wearables, etc. and analyse the vocal behaviour, body
language, attention, eye contact, facial expression of the speakers
along with the engagement of the audiences [23, 24, 25, 26]. Gan
et al. [23] proposed baseline methods to do the quantification of
several above mentioned parameters by analysing the multi-sensor
data. Nguyen et al. [24] and Echeverria et al. [25] used kinect sen-
sors to recognize the bodily expressions, body posture, eye con-
tact of the speaker and thereby, providing feedback to the speaker.
Chen et al. [26] presented an automatic scoring model by using ba-
sic features for the assessment of public speaking skills. It must be
noted that all these works rely significantly on the sensor data cap-
tured during the presentation for their prediction task and hence,
they are not applicable to educational videos that are available on-
line. Moreover, all these approaches use shallow and hand-crafted
audio features along with the sensor data. On the contrary, our pro-
posed method uses deep learning based automatic feature extrac-
tion method for both audio and visual modalities from the video,
and predicts the liveliness.

To the best of authors’ knowledge, this is the first approach that
uses a deep multimodal approach for educational video analysis.

3. PROPOSED APPROACH
In this section, we describe the details of the proposed approach.
We begin with the description of how a given video is modeled as
a sequence of temporal events, followed by the visual setup clas-
sification algorithm. Next, we provide the details of the audio and
visual feature extraction. Finally, the details of the proposed mul-
timodal method for liveliness prediction is described. The pipeline
of the proposed approach is shown in Figure 1. The input to the
system is a fixed length video segment of 10 seconds during both
training and testing (referred to as 10-second clips throughout the
paper). For any educational video of arbitrary length, 10-second
clips are extracted with 50% overlap between the adjacent clips
and the overall video liveliness label is determined based on the
majority voting. In Section 5.1 we provide further details regard-
ing extraction of these 10-second clips from the Stylex dataset.

3.1 Video Temporal Sequencing
Each 10-second clip is modeled as a temporal sequence of smaller
chunks. If the total number of chunks in a 10-second clip is T ,
then {v1, v2, ..., vt, ..., vT } and {a1, a2, ..., at, ..., aT } represent
the temporal sequence of visual and audio features corresponding
to each 10-second clip respectively. Note that, vt (Section 3.3) and
at (Section 3.4) are input to the visual and audio LSTM at time
instant t.

3.2 Visual Setup Classification
One of our objectives is to automatically determine if both audio
and visual information are required for liveliness prediction. If a
video displays only slide/board, the visual features are less likely
to contribute to the liveliness. However, if the camera displays that
the lecturer is in a sitting/standing posture or is interacting with
the content, the visual features could significantly contribute to the
video liveliness. Hence, we collect a training dataset and train a
CNN to automatically estimate the setup of a video. We describe
the definition of the labels, the data collection procedure and the
details of the CNN training in the next three subsections.

3.2.1 Video Setup Label Definition
We define five different categories which cover almost all of the
visual setups usually found in educational videos.

• Content: This category includes the scenarios where the video
feed mainly displays the content such as a blackboard or a slide
or a paper. Frames, where the hand of the lecturer and/or pens or
pointers are also visible, are included in this category. However,
the video clips belonging to this category should not include any
portion of the lecturer’s face. Since the lecturer is not visible
in this case, only the audio modality will be used for liveliness
prediction.
• Person Walking/Standing: In this scenario, the content such

as blackboard/slide are not visible. However, the lecturer walks
around or remain in a standing posture. The lecturer’s face and
upper body parts (hand/shoulder) should be visible. Both audio
and visual modality are used to predict liveliness in this case.
• Person Sitting: The content is not visible and the camera should

focus only on the lecturer in a sitting posture. Both audio and
visual modalities are considered for liveliness prediction.
• Content & Person: This includes all the scenarios where the up-

per body of the lecturer and the content both are visible. Frames,
where the lecturer points to the slide/board or writes something
on the board, are included in this category. Here also both the
modalities are used for liveliness.
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Figure 1: The overall pipeline of the proposed approach LIVELINET. The input to the system is a 10-second clip and output is the liveliness
prediction label.

• Miscellaneous: This category includes all other scenarios which
are not covered in the above four categories, e.g., two different
video feeds for professor and content, students are also visible,
multiple people (laboratory setups) are visible in the scene etc..
Since the frames from this category have significant intra-class
variation and noise, we use only the audio information for liveli-
ness prediction.

Some example frames from the above five categories are shown
in Figure 2. The intra-class variation clearly shows the inherent
difficulty of the setup classification task.

3.2.2 Label Collection
We used the StyleX dataset [6] for the liveliness prediction task.
Although the liveliness labels were available along with the videos,
video setup labels were not available. So we collect these additional
labels using Amazon Mechanical Turk. We asked the Mturkers to
look at the 10-second clips from StyleX and choose one of the five
labels defined above. Each video clip is shown to three MTurk
labellers and we assign the labels where at least two of the three
labellers agreed. Although in most of the clips, all frames belong
to only one of the above five categories, there were some 10-second
clips (around 5%) where frames from more than one categories
were present. In those cases, labellers were asked to provide the
label based on the label of the majority of frames.

3.2.3 CNN for Label Classification
We used a CNN architecture to classify the setup of a 10-second
clip. During training phase, all the frames belonging to a 10-second
clip are used as the samples for the corresponding clip category. For
this task, we use the same CNN architecture as used in [17]. In [17],

the authors proposed a novel neural network model called Alexnet
which improved the state-of-the-art imagenet classification [27] ac-
curacy by a significant margin. Researchers in the computer vision
community have often used the Alexnet architecture for other kinds
of computer vision applications [28, 29]. Deep neural networks
usually have millions of parameters. If the available training data
for a particular classification task is not large enough, then train-
ing a deep neural network from scratch might lead to over fitting.
Hence, it is a common practice to use a CNN which is already pre-
trained for a related task and fine-tune only the top few layers of
the network for the actual classification task.

We fine-tune the final three fully connected layers (fc6, fc7, fc8)
of Alexnet for visual setup classification. First, we remove the
1000 node final layer fc8 (used to classify 1000 classes form ima-
genet [17]) from the network and add a layer with only five nodes
because our objective is to classify each frame into one of the
five setup categories. Since, the weights of this layer are learned
from scratch we begin with a higher learning rate of 0.01 (same as
Alexnet). We also fine tune the previous two fully connected layers
(fc6 and fc7). However, their weights are not learned from scratch.
We use a learning rate of 0.001 for these layers while perform-
ing the gradient descent with the setup classification training data.
Once the Alexnet has been fine-tuned a new frame can be forward
propagated through this network to find the classification label. For
a test 10-second clip, we determine the setup label for each frame
individually and assign the majority label to the full clip. We refer
to this CNN as Setup-CNN.

3.3 Visual Feature Extraction
In this section, we describe the details of the visual features used
for predicting the liveliness of a video clip. The visual modality is
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Content
(Only Audio)
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Walking/Standing
(Audio and Visual 
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(Audio and Visual 
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(Audio and Visual 

both)

Miscellaneous
(Only Audio)

Figure 2: Example frames from different visual setup categories.
We also point out the modalities which are used for liveliness in
each of these setups.

used to capture the movement of the lecturer. We used a state-of-
the-art deep CNN architecture to represent the visual information
in the form of motion across the frames. Unlike the CNN model
used in Section 3.2.3 (where input to the model was an RGB im-
age comprising of 3 channels), the input to the CNN model in this
section is formed by stacking horizontal and vertical optical flow
images from 10 consecutive frames of a video clip. We refer to
this CNN model as Motion-CNN in the subsequent sections of the
paper.

For the Motion-CNN, we fine-tuned the VGG-16 temporal-net trained
on UCF-101 [30] action dataset. The final fully connected layers
(fc6, fc7, and fc8) of VGG-16 are fine-tuned with respect to the
liveliness labels of the videos. The activations of the fc7 layer are
extracted as the visual representation of the stacked optical flows
which were provided as the input to the model. Given a 10-second
clip, we generate a feature representation vt (Section 3.1) from the
corresponding 10 frame optical flow stack. We provide vt as an
input to LSTM module at time t to create a single visual represen-
tation for the full 10-second clip (Section 5.2).

Implementation Details: We use the GPU implementation of TVL1
optical flow algorithm [31]. We stack the optical flows in a 10-
frame window of a video clip to receive a 20-channel optical flow
image as an input (one horizontal channel and one vertical chan-
nel for each frame pair) to the Motion-CNN model. In Motion-
CNN model, we also change the number of neurons in fc7 layer
from 4096 to 512 before finetuning the model to get a lower di-
mensional representation of the 10 frame optical flow stack. We
adopt a dropout ratio of 0.8 and set the initial learning rate to 0.001
for fc6, and to 0.01 for fc7 and fc8 layers. The learning rate is
reduced by a factor of 10 after every 3000 iterations.

3.4 Audio Feature Extraction
We extract the audio feature at (Section 3.1) using a convolutional
neural network. For each t, we find a corresponding one second
long audio signal from the 10-second clip. We apply the Short-

Time Fourier Transformation to convert each one second 1-d audio
signal into a 2-D image (namely log-compressed mel-spectrograms
with 128 components) with the horizontal axis and vertical axis be-
ing time-scale and frequency-scale respectively. The CNN features
are extracted from these spectrogram images and used as inputs to
the LSTM. We finetune the final three layers of Alexnet [17] to
learn the spectrogram CNN features. We change the number of
nodes in fc7 to 512 and use the fc7 representation corresponding
to each spectrogram image as input to the LSTMs. The fine tuned
Alexnet for the spectrogram feature extraction is referred as Audio-
CNN. Learning rate and dropout parameters are chosen same as
mentioned in Section 3.3.

3.5 Long Short Term Memory Networks
The Motion-CNN (Section 3.3) and the audio-CNN (Section 3.4)
model only the short-term local motion and audio patterns in the
video respectively. We further employ LSTMs to capture long-term
temporal patterns/dependencies in the video. LSTMs map the ar-
bitrary length sequential information of input data to output labels
with multiple hidden units. Each of the units has built-in memory
cell which controls the in-flow, out-flow, and accumulation of in-
formation over time with the help of several non-linear gate units.
We provide a detailed description of LSTM networks below.

RNNs [8] are a special class of artificial neural networks, where
cyclic connections are also allowed. These connections allow the
networks to maintain a memory of the previous inputs, making
them suitable for modeling sequential data. Given an input se-
quence x of length T , the fixed length hidden state or memory of
an RNN h is given by

ht = g(xt, ht−1) t = 1, . . . , T (1)

We use h0 = 0 in this work. Multiple such hidden layers can be
stacked on top of each other, with xt in equation 1 replaced with
the activation at time t of the previous hidden layer, to obtain a
‘deep’ recurrent neural network. The output of the RNN at time t
is computed using the state of the last hidden layer at t as

yt = θ(Wyhh
n
t + by) (2)

where θ is a non-linear operation such as sigmoid or hyperbolic
tangent for binary classification or softmax for multiclass classifi-
cation, by is the bias term for the output layer and n is the num-
ber of hidden layers in the architecture. The output of the RNN
at desired time steps can then be used to compute the error and
the network weights updated based on the gradients computed us-
ing Back-propagation Through Time (BPTT). In simple RNNs, the
function g is computed as a linear transformation of the input and
previous hidden state, followed by an element wise non-linearity.

g(xt, ht−1) = θ(Whxxt +Whhht−1 + bh) (3)

Such simple RNNs, however, suffer from the vanishing and ex-
ploding gradient problem [7]. To address this issue, a novel form
of recurrent neural networks called the Long Short Term Memory
(LSTM) networks were introduced in [7]. The key difference be-
tween simple RNNs and LSTMs is in the computation of g, which
is done in the latter using a memory block. An LSTM memory
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block consists of a memory cell c and three multiplicative gates
which regulate the state of the cell - forget gate f , input gate i and
output gate o. The memory cell encodes the knowledge of the in-
puts that have been observed up to that time step. The forget gate
controls whether the old information should be retained or forgot-
ten. The input gate regulates whether new information should be
added to the cell state while the output gate controls which parts of
the new cell state to output. The equations for the gates and cell
updates at time t are as follows:

it = σ(Wixxt +Wihht−1 + bi) (4)

ft = σ(Wfxxt +Wfhht−1 + bf ) (5)

ot = σ(Woxxt +Wohht−1 + bo) (6)

ct = ft � ct−1 + it � φ(Wcxxt +Wchht−1 + bc) (7)

ht = ot � ct (8)

where � is the element-wise multiplication operation, σ and φ are,
respectively, the sigmoid and hyperbolic tangent functions, and ht

is the output of the memory block. Like simple RNNs, LSTM net-
works can be made deep by stacking memory blocks. The output
layer of the LSTM network can then be computed using equation 2.
We refer the reader to [7] for more technical details on LSTMs.
The details of the architecture used in this work are described in
section 5.2

3.6 Multimodal LSTM for liveliness classifi-
cation

In the proposed approach, LSTMs are used to learn the discrimi-
native visual and audio feature representations for liveliness. The
estimates from audio and visual LSTMs are combined to estimate
the overall liveliness of videos. For setup categories ‘Person Walk-
ing/Standing’, ‘Person Sitting’ and ‘Content & Person’ setup, both
the modalities are used for liveliness prediction. For the remaining
videos from ‘Content’ and ‘Miscellaneous’ categories, only the au-
dio LSTM representation is used to determine the liveliness label.
The details of the proposed approach are described below:

• Visual-LSTM: A multi-layer LSTM network is trained to learn
the discriminative visual features for liveliness. The number of
layers and the number of nodes in each layer in the LSTM net-
work are determined based on a validation dataset. The input
to the network at each time step t is a 512 dimensional visual
feature extracted as described in 3.3.
• Audio-LSTM: The approach for training an audio LSTM is sim-

ilar to that for training the visual LSTM. The only difference is
that the visual features are replaced by the audio features as de-
scribed in 3.4.
• Multimodal-LSTM: Once we learn the discriminative audio and

visual LSTMs, the next step is to combine their predictions to de-
termine the final liveliness. The visual and audio features from
each 10-second clip are now forward-propagated through the
visual-LSTM and audio-LSTM respectively. Once the features
corresponding to all the time-steps of a clip have been forward-
propagated, the liveliness prediction from each of these LSTM
networks are obtained. If the setup corresponding to a clip re-
quires combining audio and visual modality information, we as-
sign the clip a positive liveliness label if any one of the visual-
LSTM or Audio-LSTM network predicts the label of the clip as

positive. Otherwise, the audio-LSTM label is used as the final
label for the 10-second clip.

The proposed multimodal pipeline for liveliness prediction is called
LIVELINET and will be referred as that from now on.

4. BASELINE DETAILS
In this section, we describe several baselines which do not use any
deep neural network for feature extraction or classification. How-
ever, these methods have demonstrated state-of-the-art accuracy in
many video/audio classification applications. We wanted to eval-
uate how good these “shallow” methods perform on the liveliness
prediction task.

4.1 Visual Baseline
The visual baseline consists of training a SVM classifier on state-
of-the-art trajectory features aggregated into local descriptors. Im-
proved Dense Trajectories (IDT) [32] have been shown to achieve
state of the art results on a variety of action recognition benchmark
datasets. Visual feature points on the visual frames are densely
sampled and tracked across subsequent frames to obtain dense tra-
jectories. Once the IDTs are computed, VLAD (Vector of Locally
Aggregated Descriptors) encoding [33] is used to obtain a com-
pact representation of the video. We set the number of clusters for
VLAD encoding at 30 and obtain a 11880-dimensional represen-
tation for each video. SVM classifier with RBF kernel is used for
the classification. We compare this visual baseline against the pro-
posed approach.

4.2 Audio Baselines
We compare LIVELINET with two different audio baselines; the
first one uses bag of audio words and the second one uses Hid-
den Markov Models (HMM). The audio features are computed at
a frame rate of 10 ms. The features are computed using the open
source audio feature extraction software OpenSMILE [34]. Moti-
vated by the findings in [35] and [36], where the authors show su-
perior performance on various paralingustic challenges, our frame-
level features consist of (a) loudness, defined as normalized inten-
sity raised to a power of 0.3, (b) 12 Mel Frequency Cepstral Coef-
ficients (MFCCs) along with the log energy (MFCC0) and their
first and second order delta values to capture the spectral varia-
tion, and (c) voicing related features such as the fundamental fre-
quency (F0), voicing probability, harmonic noise ratio and zero
crossing rate. (Intensity and fundamental frequency features have
been found to be beneficial in liveliness classification in [4] also.)
Authors in [36] refer to these frame-level features as Low Level
Descriptors (LLD) and provide a set of 21 functionals based on
quartile and percentile to generate chunk level features. We use all
of these LLDs and the functionals for the audio feature extraction.
For every one second audio signal (obtained using the same method
as described in Section 3.4), these frame-level features are concate-
nated to form a (44 ∗ 100 = 4400) dimensional feature vector. The
dimensionality of the chunk-level audio feature is further reduced
to 400 by performing a PCA across all the chunks in the training
data.

The audio features from all the one second audio signals in the
training videos are clustered into 256 clusters. A nearest neighbour
cluster centre is found for each of these audio features. We then
create a 256-dimensional histogram for each clip based on these
nearest neighbour assignments. This approach, known as the bag-
of-words model is popular in computer vision and natural language
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processing, and is beginning to be extended to the audio domain
in the form of bag-of-audio-words (BoAW) (e.g., [37]). A SVM
classifier with RBF kernel is trained on this BoAW representation.

As a second baseline, two 3-state HMMs, one each for the posi-
tive and the negative class, are trained using the sequence of audio
features computed on these one second audio signals. Only left-to-
right state transitions are permitted with a potential skip from the
first state to the third state. Each state is modeled as 16-mixture
Gaussian Mixture Model. The 44 frame-level LLD are the inputs
to the HMM framework. The Scilearn implementation of HMM is
used.

4.3 Multimodal baseline
For combining the audio and video modalities we employ a clas-
sifier stacking approach. Stacking involves learning an algorithm
to combine the predictions of other classifiers. We first train two
SVM classifiers on audio and video features separately. The fea-
tures and kernels used here are the same as the individual audio
and visual baselines described earlier. Subsequently, another SVM
classifier (with RBF kernel) is trained on the predictions of the au-
dio and video classifiers to make the final prediction. We compare
this baseline against the proposed multimodal classifier.

5. EXPERIMENTAL RESULTS
In this section, we provide the details of the experimental results.
First, we describe the StyleX dataset followed by the details of the
proposed LSTM network architecture and setup classification re-
sults. Next, we provide the liveliness classification results using
the proposed multimodal deep neural network method. Finally, we
perform some preliminary quality analysis of the lively/not-lively
videos.

5.1 Dataset
We use the StyleX dataset proposed in [6] for our experiments.
StyleX comprises of 450 one-minute video snippets featuring 50
different instructors, 10 major topics in engineering and various
accents of spoken English. Each video was annotated by multi-
ple annotators for liveliness. The scores from all annotators (in
the range 0 − 100, where 0 implies least lively and 100 implies
most lively) corresponding to a particular video were averaged to
obtain the mean liveliness score. The bimodal distribution of the
mean liveliness scores were analyzed to estimate the threshold for
binary label assignment (lively and not-lively). All videos with
liveliness score above the threshold were assigned to the positive
class whereas the remaining videos were assigned to the negative
class. At a threshold of 54, we have 52% videos in the nega-
tive class (Thus, a simple majority-class classifier would lead to
52% classification accuracy). Out of the 450 StyleX videos, we
randomly choose 60% for training, 20% for validation and 20%
for testing while ensuring a proportional representation of both the
classes in each subset. Since the proposed method takes 10-second
clips as input during training and testing, we further split each one-
minute video into 10-second clips bookended by silence, with a
50% overlap across adjacent clips. Each of these 10-second clips
are assigned the same label as the actual one-minute videos and are
treated as independent training instances. Likewise, during test, the
10-second clips are extracted from one-minute videos. The label is
predicted for each 10-second clip and the label of the one-minute
video is determined based on the majority vote.

5.2 LSTM Architecture Details
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Figure 3: A comparison of results obtained from our proposed
Multimodal-LSTM (LIVELINET) approach and the baselines.

The parameters of the proposed visual-LSTM and audio-LSTM
were selected using the validation set. The learning rate was ini-
tialized to 10−4 and decayed after every epoch. Dropout rate of
0.2 was used for the activations of the last hidden layer. We tried
nine different combinations for the number of hidden layers (1, 2,
3) and number of units in each layer (128, 256, 512), for both visual
and audio modalities. Visual-LSTM with 2 layers and 256 hidden
units and audio-LSTM with 2 layers and 256 hidden units led to the
optimal performance on the validation set.

5.3 Setup Classification
In this section, we report the visual setup classification results ob-
tained using the framework proposed in Section 3.2. As discussed
in Section 5.1, the number of video clips used is 2700 for the train-
ing phase and 900 each for the validation and testing phase (all clips
are approximately 10 seconds long). The network is trained with
all the frames (∼ 300K) extracted from the training video clips. At
the time of testing, a label is predicted for each of the frame in a 10-
second clip and their majority is taken as the label of the full clip.
We evaluate 5-way classification accuracy of the video clips into
different visual setups. Our proposed CNN architecture achieves a
classification accuracy of 86.08% for this task. However, we notice
that for the task of liveliness prediction, we only require the classi-
fication of video clips into two different classes - (a) clips requiring
only audio modality, and (b) clips requiring both audio and video
modality for liveliness prediction. For this task of binary classifi-
cation (‘Content or Miscellaneous’ v/s ‘Person Walking/Standing
or Person Sitting or Content & Person’), our system achieves an
accuracy of 93.74%. Based on the visual setup label of a clip, we
use either both audio/visual or only audio modality for liveliness
prediction.

5.4 Liveliness Classification
In this section, we present the performance of proposed multimodal
deep neural network for liveliness prediction. Figure 3 depicts the
results of our experiments. We obtain an accuracy of 70.6% with
the Visual-LSTM, an absolute improvement of 6.2% over the vi-
sual baseline. The two audio baselines of HMM and BoAW meth-
ods lead to an accuracy of 60% and 63.3%, respectively. The
Audio-LSTM setup leads to 75.0% accuracy, an increase of 11.7%
over the best audio baseline. The proposed Multimodal-LSTM
method (LIVELINET) achieves an accuracy of 76.5% compared
to 71.1% obtained using the audio-visual baseline, an absolute im-
provement of 5.4% (relative improvement of 7.6%). We are also
relatively 1.9% better than using only the audio-LSTM. The boost
in accuracy when using both the modalities indicates that the infor-
mation available from audio and visual modalities are complimen-
tary and the proposed approach exploits it optimally.
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5.5 Qualitative Analysis
We also perform qualitative analysis of the videos that are predicted
lively/not-lively by LIVELINET. Our goal is to determine the gen-
eral visual and audio patterns that make a video lively. These is
the preliminary analysis of exemplar lively and exemplar non-lively
lectures. We continue to perform a more systematic and in-depth
qualitative analysis to understand two aspects: (a) patterns that the
proposed classifier identifies as representative of lively and of not-
lively, and (b) general audio-visual patterns that may have influ-
enced the human labelers in assigning the ‘lively or non-lively’
label . One of the current directions for extending this work is
to understand pedagogically-proven best practices of teaching and
codify that knowledge in the form of features to be extracted and
fed to the classifier. Some example frames from lively and not-
lively videos as predicted by LIVELINET are shown in Figure 4.
Some of our initial finding are: (a) Lecturers who alternate between
making eye contact with the audience and looking at the content
are perceived as more lively. (b) Similarly, voice modulations and
moving around in the classroom (as opposed to sitting in place)
and specific visual references (like pointing to written content) to
synchronize with the spoken content seem to positively influence
perceived liveliness.

6. CONCLUSION
We propose a novel method called LIVELINET that combines vi-
sual and audio information in a deep learning framework to predict
liveliness in an educational video. First, we use a CNN architec-
ture to determine the overall visual style of an educational video.
Next, audio and visual LSTM deep neural networks are combined
to estimate if a video is lively or not-lively. We performed experi-
ments on the StyleX dataset and demonstrated significant improve-
ment compared to the state-of-the-art methods. Future directions
include incorporating text-based features for a content-based live-
liness scoring. We also note that LIVELINET is going to be part of
our e-learning platform TutorSpace.
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ABSTRACT 
The creation of crowd-sourced content in learning systems is a 
powerful method for adapting learning systems to the needs of a 
range of teachers in a range of domains, but the quality of this 
content can vary. This study explores linguistic differences in 
teacher-created problem content in ASSISTments using a 
combination of discovery with models and correlation mining. 
Specifically, we find correlations between semantic features of 
mathematics problems and indicators of learning and engagement, 
suggesting promising areas for future work on problem design. 
We also discuss limitations of semantic tagging tools within 
mathematics domains and ways of addressing these limitations. 
 
Keywords 
Text mining, semantic analysis, problem features, engagement, 
learning, correlation mining, mathematics corpora 

1. INTRODUCTION 
As content is developed at scale for online learning systems, 
particularly systems that leverage content developed by large 
numbers of authors, it becomes important to distinguish between 
problems which are well-written and conducive to learning and 
those which are poorly worded or otherwise difficult to 
understand. Crowd-sourced content, where content is authored by 
a broader community [21], is a powerful and scalable method of 
content creation, which can be used to quickly develop and deploy 
new content and curricula ([46], [17]).  

For this reason, it is critical that an equally scalable method of 
analyzing problem quality be developed, to prevent learning 
platforms that leverage crowd-sourced content from becoming 
dominated by ineffective content. In other platforms such as 
Wikipedia the quality of crowd-sourced materials is improved 
through substantial coordination between contributors [20]. 
However, there is relatively little work evaluating crowd-sourced 
learning content at scale. In contrast with more traditional 

educational measurement (from tests), where determining items’ 
ability to discriminate student knowledge is a standard part of 
item analysis [11], there has been less attention to this problem for 
online learning systems. While some researchers have attempted 
to determine which hints are more effective [18], or which 
problems are associated with more learning [14], these efforts 
have focused on what, but not why, particular system features can 
impact student, limiting their degree of general use. A more 
theoretical approach was taken by [49] where a design space of 
over 70 features characterizing Cognitive Tutor lessons was 
distilled and correlated with an automated gaming the system 
detector. However, this work identified the characteristics of tutor 
lessons using hand-coding, a method that is infeasible for larger 
datasets, and was limited to the relatively narrow space of 
problems designed by professional educational developers. 

An alternative method for the analysis of the design of content in 
large-scale educational systems is text mining. There is a 
considerable amount of small-scale research on linguistic features 
that impact reading in mathematical contexts [47], but as [16] 
point out, many of the traditional readability indices used to study 
language at scale are limited in the features they consider. As a 
result, many early studies did not find a relationship between 
readability and performance in mathematics word problems [48].  

As more advanced linguistic tools have become available, large-
scale investigations of mathematics language have become more 
fruitful. For example, [44] have used LIWC [37] and CohMetrix 
[15] to study the effects of linguistic properties of mathematics 
problems ([44], [45]). [45] found that third-person singular 
pronouns (e.g., he, she) are significantly associated with correct 
answers and fewer hint requests in Cognitive Tutor problems. 
They found positive correlations between the use of work-related 
terms and learning, and negative correlations between the use of 
terms related to social constructs and learning.  These findings 
highlight the potential value of linguistic features for better 
understanding learning, as well as the need to explore a wider 
range of semantic categories in a broader range of mathematics 
content areas.  

In this paper, we use a discovery with models approach, 
generating prediction labels from automated detectors of student 
learning and engagement that were developed for the 
ASSISTments online learning system ([2], [32]). We build on 
[46]’s approach of using text mining software and text elements, 
such as HTML tags and Unicode characters, to distill features 
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from a corpus of mathematics problems. We then use correlation 
mining approaches to identify links between these features and 
our labels of student engagement and learning as a means for 
determining which combinations of linguistic features are 
associated with particularly effective problems. 

1.1 ASSISTments 
The current study uses data collected from the ASSISTments 
system. ASSISTments is an online intelligent tutoring system 
used by over 50,000 students annually for middle-school 
mathematics. It provides both formative and summative 
assessment as well as extensive student support (assistment) and 
detailed teacher reports. It also facilitates research using 
randomized controlled trials (RCTs) that allow researchers to 
conduct studies without interfering with instructional time [17].  

Within the system, students are assigned problem sets that may 
vary on several dimensions. Problem sets can be differentiated in 
terms of how problems are assigned: (a) In Complete All problem 
sets, problem order may be randomized; students must correctly 
answer all of the questions assigned and cannot advance to the 
next problem unless they have answered correctly. (b) In If-Then-
Else problem sets, students must correctly answer a specified 
percentage of questions correctly (default is 50%) in order to pass, 
or else they may be given additional problems. (c) Finally, in Skill 
Builder problem sets, students must get 3 consecutive correct 
answers in order to pass, thus allowing students who show 
mastery to move on quickly to new assignments while providing 
struggling students with extended practice. 

The purpose of the current study is to evaluate the semantic 
properties and HTML metadata (which may carry semantic 
meaning) of problems authored in ASSISTments. Many have 
been vetted by the ASSISTments expert team, but others (76% as 
of 2014) were created by teachers themselves [17]. ASSISTments 
provides scripted templates, which allow teachers to customize 
problem sets for specific topics. Therefore, finding ways to 
identify meaningful differences in teachers’ problem design is an 
important area of research. 

2. DATA & METHODS 
In this paper, we analyze 179,908 problems within the 
ASSISTments system, most developed by teachers. We study 
these problems using the features of the problems themselves, in 
combination with data from the log files of 22,225 students who 
used ASSISTments during the 2012-13 school year. We applied 
models from previous research on engagement and learning to 
these students’ log files in order to determine how these constructs 
are associated with features of the design of the problems, 
developed through linguistic analysis and other data about the 
problems. In doing this, we excluded from consideration features 
that had been previously used within the learning and engagement 
models described below, to prevent overfitting. 

2.1 Learning & Engagement Measures 
Learning and engagement were assessed automatically, using 
detectors or models of these constructs.  

2.1.1 Student Learning 
Student learning was assessed by fitting the moment-by-moment 
learning model to the data [2]. The moment-by-moment learning 
model (MBMLM) attempts to infer the specific effect of each 
learning opportunity on a student’s overall mastery. We used [2]’s 
look-ahead-two probabilistic approach, which assumes that 
learning can occur at multiple points along a student’s trajectory 

of learning a skill, rather than [43]’s approach which assumes a 
single moment of learning. We also choose this formulation 
because it explicitly analyzes future performance, allowing us to 
focus on cases where students perform better than expected after 
encountering a particular problem. Using the MBMLM allows us 
to isolate the average learning associated with specific problems 
within the data and compare these averages to other problems that 
either lack or have particular features of interest. 

2.1.2 Automated Detectors of Engagement 
Detectors of student engagement were developed using data from 
in situ classroom observations, conducted by experts certified in 
the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP 
2.0). The protocol is enforced by HART, an Android application 
designed specifically for the BROMP and freely available for 
non-commercial research [33], which enforces the protocol while 
facilitating data collection. 

Upon completion of the observations, data mining techniques 
were then employed to provide models of each construct that were 
cross-validated at the student level. In this paper, affective models 
developed for three different populations of students were applied, 
matching urban, suburban, and rural models to student data based 
on the location of their schools, in order to ensure population 
validity [32]. A detailed description of the features and algorithms 
used in these detectors is given in [32] and [34]. 

2.1.3 Applying Across-Student Measures of Learning 
& Engagement to Individual Problems 
In this paper, both the MBML model and the engagement models 
were used as indicators of problem effectiveness. This section 
describes how these models were aggregated across the 179,908 
problems and 22,225 students in this study. The formulation of the 
MBMLM in [2] is calculated once for each problem, at the time of 
the first attempt, and there is only one estimate per problem. 
Therefore, MBML was estimated for each student based on the 
sequence in which the problem was seen. Problem-level measures 
were then produced by averaging the MBML values across all 
students who saw a given problem. 
The affective models were applied by segmenting the data at 20-
second intervals (matching the original approach used to develop 
the detectors), and then applying each model to each segment. 
Confidence values for each detector was averaged twice at the 
problem level: first for each student (in order to avoid biasing the 
estimates in favor of the affect experienced by students who spent 
longer working the problem), then across all students who had 
seen that problem. This resulted in five measures per problem 
(average boredom, confusion, engaged concentration, frustration, 
and gaming), which we used, along with MBMLM outcomes, as 
our dependent variables.  

2.2 Feature Engineering 
A number of different design features may influence student 
learning and engagement. In this paper, we explore features of 
both the problem text and its meta-text. Specifically, we look at 
word counts, lexical category features generated by a semantic 
tagger, and features generated from the metadata connected to the 
problem, which provides us with a separate source of semantic 
data (e.g., the use of mathematical notation which would not be 
captured by a semantic tagger) as well as with information about 
its use of tables, images, formatting, bolded or emphasized text.  
2.2.1 Wmatrix Semantic Tags 
The semantic content of ASSISTments problems was analyzed 
with Wmatrix [39], a corpus analysis and comparison tool that 
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parses text at a word and multi-word level. As of 2004, this 
included 42,300 single word entries and over 18,400 multi-word 
expressions [38]. Wmatrix has been used in a number of analyses, 
including work to tag and identify lexical patterns in ontology 
learning [13] and work to study how students self-explain when 
learning science content [12]. Its semantic tagger uses a semi-
hierarchical structure where all known words and multi-word 
units are classified into one of 21 lexical fields, represented with 
letters by its tagging system. These lexical fields may (or may not) 
be further subdivided in up to three different levels, which are 
represented in what we will refer to as the base tag.  

Figure 1. WMatrix tagging system. 

 
Within the lexical tag, we will refer to the lexical field 
(alphabetical) and the 1st, 2nd, and 3rd order subfields (numeric) as 
the base tag. Additional information about antonyms (black vs. 
white), comparatives (better, worse, more confusing, etc.), 
superlatives (best, worst, most confusing, etc.), gender (masculine, 
feminine, and neuter), and anaphoric status (i.e., contextual 
reference), may or may not be appended to a base tag. Wmatrix 
documents 234 distinct base tags, and represents a large number 
of additional possible labels through appendices  

In the ASSISTments data, 442 distinct Wmatrix tags (base + 
appendices) were identified. These tags were most likely to fall 
under 7 lexical fields: General & Abstract Terms (A), Numbers & 
Measurement (N), Social Actions, States, & Processes (S), 
Psychological Actions, States, & Processes (X), Names & 
Grammatical Words (Z), Money & Commerce in Industry (I), and 
Time (T).  

2.2.2 Accommodating Known Wmatrix Limitations 
Although Wmatrix has been evaluated for its effectiveness in a 
range of genres, domains, and historical periods [38], semantic 
taggers can have a number of limitations when applied to highly 
specialized domains ([28], [24]; [36]; [30]; [27]). For example, 
research has shown that words which contain more than one unit 
of meaning create challenges for taggers that apply only one label 
per word [41]. As a result, semantic taggers which work 
specifically with scientific language have become an area of 
research interest ([1], [10]), but the language of mathematics has 
not yet been as prominent.  

As such, features generated by Wmatrix must be carefully 
checked within this data set and may need to be supplemented by 
domain-specific tags. For example, we found several Wmatrix 
tags that erroneously tagged high-frequency items that appeared in 
ASSISTment’s instructions to students, including problems that 
instructed students to enter fractions in a specific format in order 
to receive credit or which told students that they had 3 attempts 
left. Wmatrix treated many of these words (e.g., enter and left) as 
an indication of physical movement (M1, as in entering a building 
or turning left). A few erroneous tags also appeared to result from 
the development of Wmatrix as a tool for British English. For 
instance, ASSISTments users, who are primarily American 
English speakers, wrote a number of problems involving a person 

named Randy, whose name was automatically (and erroneously) 
tagged as involving sexual content. 
To mitigate this issue, significant correlations were carefully 
inspected individually. This approach has been found to be useful 
in previous studies where semantic taggers were applied to new 
domains [12]. While the large size of the ASSISTments corpus 
limits our ability to address this problem completely, thorough 
efforts were made to examine and understand relationships 
discovered through the use of Wmatrix. In instances where 
Wmatrix applied a tag involving the wrong sense of a word for the 
context in which it was used, we have specifically noted this 
difference and what sense of a word or words the tag is capturing 
within ASSISTments. 

2.2.3 Math Symbols and Other Textual Metadata 
In addition to generating features with Wmatrix, we also 
generated features based on the metadata of each problem. We 
were primarily concerned with identifying Unicode characters that 
are semantically meaningful in mathematics contexts. In the 
ASSISTments corpus, we labeled 68 symbols, such as those for 
integrals, mean, standard deviation, and exponents. These 
domain-specific symbols present unique challenges to the 
teaching and learning of mathematics [40], but are not detected by 
most lexical analysis tools, which have not generally been 
developed for mathematics domains. In addition, we identified 14 
HTML tags that were used to format ASSISTments problems, 
including tags used for boldface, italics, paragraph structure, and 
images. Because many of these functions can also alter the 
semantics of a problem, we also generated features that reflect 
these uses of HTML in problem metadata. These features were 
generated by counting the number of times that each HTML code 
was used in a problem, in parallel to the application of the 
Wmatrix tags discussed in previous sections. 

3. RESULTS 
To explore the relationship between these problem features and 
the BROMP-trained measures of engagement and learning, we 
correlated each problem feature to each predicted variable. We 
selected Spearman’s ρ as our correlation coefficient because of its 
increased robustness when correlating non-normal data as 
compared to other parametric coefficients such as Pearson’s R 
[50]. Additionally, with such a high number of comparisons being 
conducted it was necessary to adjust our significance criterion to 
account for the possibility of tests being incorrectly identified as 
significant. The Benjamini and Hochberg post-hoc procedure [4] 
was used to control for these false discoveries. A table of results 
by dependent variable is presented in Table 1, which also provides 
the average confidence level for each detector as a baseline 
measure for this data. 
 

Table 1. N of significant features by outcome measure. 

Outcome Measure 
Avg 

Conf. 
Total 
Sig 

Sig w/ 
|ρ| > 
0.05 

Sig w/ 
|ρ| > 
0.10 

Bored 0.16 118 16 0 
Engaged Concentration 0.46 251 62 14 
Confusion 0.03 285 60 5 
Frustration 0.04 216 36 7 
Gaming the System 0.02 257 43 5 

 

Of the possible 2730 correlations, 1127 (41.3%) were statistically 
significant after controlling for multiple comparisons using 
Benjamini & Hochberg’s post-hoc control. More features were 
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significantly correlated with confusion than any other outcome 
measure, but large numbers of features were also correlated with 
gaming the system, engaged concentration, frustration and 
MBML. Boredom was correlated with fewer features, overall, 
than either of the other outcome measures. These broad findings 
suggest the potential for finding semantic features that may help 
to provide templates for improving the design of word problems. 

3.1 Features associated with all outcome measures 
In the following sections, we examine the relationships between 
our features and the individual outcome measures, but in order to 
provide a broad summary of which types of features had the 
largest effects, the absolute value of Spearman ρ was averaged 
across all six outcome measures for each feature in this study. 
Among the 64 features that were signifcantly correlated with all 
six outcomes,  the 10 with the highest ρ average (shown in Table 
2) were drawn from 5 lexical fields: Grammatical Bin (Z), 
General Terms (A), Time (T), Speech Acts (Q), and Numbers & 
Measurement (N). One HTML tag (<p>, paragraph) was also 
significant. 

Table 2. 10 largest correlated features by average sig. |ρ| 

Tag	   Avg	  
|ρ|	  

M
BM

	  
Le
ar
ni
ng
	  

Bo
re
do

m
	  

Co
nc
en

tr
a-‐

tio
n	  

Co
nf
us
io
n	  

Fr
us
tr
at
io
n	  

G
am

in
g	  

Z5	   0.116	   0.193	   0.086	   -‐0.165	   0.084	   0.105	   0.060	  
Z5mwu	   0.104	   0.114	   0.034	   -‐0.040	   0.135	   0.162	   0.140	  
A12-‐	   0.101	   0.114	   -‐0.027	   0.030	   0.086	   0.153	   0.198	  

T3-‐	   0.091	   0.084	   -‐0.034	   0.055	   0.074	   0.144	   0.153	  

Q2.2	   0.080	   0.043	   0.083	   -‐0.162	   0.068	   0.071	   0.051	  

T1.1.2	   0.076	   0.076	   -‐0.051	   0.031	   0.067	   0.116	   0.116	  

<p>	  	   0.071	   0.149	   0.054	   -‐0.127	   0.015	   0.064	   -‐0.015	  

N1	   0.069	   0.061	   0.076	   -‐0.077	   0.082	   0.080	   0.035	  

A5.4+	   0.066	   -‐0.028	   0.059	   -‐0.130	   0.074	   0.038	   -‐0.069	  

Z6	   0.056	   0.108	   0.020	   -‐0.034	   -‐0.077	   -‐0.032	   0.071	  

Spearman’s ρ is also shown for individual outcome measures, 
allowing us to examine the effects of these features in greater 
detail. Table 2 shows that WMatrix’s Speech Acts tag (Q2.2, e.g., 
answer, account, or speak out) is correlated with small increases in 
learning, but is also positively correlated with increased boredom 
and gaming and decreased concentration. The Wmatrix features 
described as Grammatical Bin (words such as as, but, in order to) 
are also correlated with increased learning, boredom, and gaming. 
Correspondingly, they are also negatively associated with engaged 
concentration, illustrating the complicated interactions at play in 
this data and the importance of considering multiple outcomes 
when exploring design effects. 

4. Results by Outcome Measure 
While some interactions are complicated, we also see many 
features correlate in logical patterns. For example, features that 
are positively associated with boredom are often also negatively 
associated with engaged concentration, and vice-versa. Likewise, 
features associated with confusion are also associated with 
frustration. The remainder of this section discusses these patterns 
in greater detail, pairing outcome measures that are conceptually 
related (e.g., boredom and engaged concentration as well as 
MBML and gaming the system, which have shown to be inversely 
related in the past). Specifically, we will examine the ten features 
that are most negatively associated and the ten that are most 
positively associated with each outcome measure, discussing 
commonalities across outcome measures. 

4.1.1 Learning & Gaming the System  
The Spearman ρ values for the top ten features range from -0.078 
to 0.233 for MBML and from -.095 to 0.198 for gaming the 
system. Table 3 presents these results, highlighting features that 
correlate with both outcome measures. 

Table 3. Features most strongly associated with MBML and 
gaming the system 

Although gaming is an infrequent behavior, previous research has 
shown that it is linked to poorer learning ([7], [34]). Therefore the 
findings in Table 3 are somewhat surprising. We should expect 
gaming’s infrequency to limit overlap between the two categories, 
and expect them to show inverse relationships when present. 
Instead, A12- (words related to difficulty), Z5mwu (multiword 
grammatical units like as far as or for example), and N3.8+ 
(words related to higher speeds), are all associated with increased 
MBML and increased gaming behaviors. Likewise, semantically 
similar categories like N1mwu (multiword numbers) and N5+ 
(large quantities) are associated with lowered MBML and 
lowered rates of gaming behaviors.  
These anomalies might be due to the existence of problems that 
support learning but can be gamed relatively easily, or might 
suggest that particularly challenging problems lead to learning but 
also inspire gaming behavior. For example, A5.2+ (words 
associated with true) demonstrates the lowest correlation with 
learning, a result that is consistent with literature on the 
ineffectiveness of true/false questions [42]. Likewise Z8mwu 
(multiword pronouns, e.g., anything at all) is correlated with 
lower MBML, while Z8 (single word pronouns, e.g., it, my, and 
you) is correlated with increased gaming. These findings align 
with research showing that pronouns can be difficult to process 
cognitively (taxing working memory), as they require readers to 
infer their antecedents (the words that give them their meaning) 
from context ([25], [8], [22], [6]). This suggests that pronouns 
could inhibit learning by drawing mental resources away from 
mathematics task, perhaps inspiring some students to try to 
succeed with minimal cognitive effort.  

These findings highlight important considerations for researchers 
working to improve learning systems, including the need to 
consider multiple measures. For example, [44] found that 
pronouns are associated with correct answers and lowered hint 
use. It is highly likely that pronouns can have beneficial impacts 
on learning, particularly through [44]’s hypothesized mechanism 
of increased cohesiveness. However, if pronoun use in 
ASSISTments and Cognitive Tutor is comparable, our results 
suggest that some correct answers could have been achieved by 
guessing rather than by learning. 

TAG Semantic Description ρ TAG Semantic Description ρ
A5.2+ True/False -0.078 N5+ Quantities -0.095
S9 Religion & the supernatural -0.075 A10+ Open/Closed; Hiding/Hidden; Finding; Showing-0.092
A11.1+++ Important/Significant -0.066 X2.1 Thought/belief -0.084
A6.1+ Similar/Different -0.062 A2.1+ Modify, Change -0.082
G2.2+ General Ethics -0.059 S5+ Groups and affiliation -0.074
N3.2+++ Measurement: Size -0.059 N5.2+ Exceeding; waste -0.070
A3- Being -0.058 A5.4+ Authenticity -0.069
Z8mwu Pronouns etc. -0.054 T1 TIME GENERAL -0.069
N1mwu Numbers -0.051 N5 Quantities -0.067
X5.2+ Interest/boredom/excited/ennergetic -0.049 T2+ Time: Beginning and ending -0.067
A12- Easy/Difficult 0.114 A7+mwu Definite (+modals) 0.086
Z5mwu Grammatical bin 0.114 X2.4mwu Investigate/examine/test/search 0.087
Z99 Unmatched 0.114 N3.8+ Measurement: Speed 0.093
N3.3--- Measurement: Distance 0.115 Z8 Pronouns etc. 0.093
X2.2+ Knowledge 0.121 A12+++ Easy/Difficult 0.098
M7 Places (geographical & conceptual) 0.130 T1.1.2 Time: General: Present; Simultaneous 0.116
N3.8+ Measurement: Speed 0.142 X8+ Trying 0.140
<p>  HTML paragraph 0.149 Z5mwu Grammatical bin 0.140
Z5 Grammatical bin 0.193 T3- Time: Old, new and young; age 0.153
M1 Moving, coming, & going 0.223 A12- Easy/Difficult 0.198

LEARNING GAMING
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Furthermore, if students are more tempted to game the system 
when presented with challenging problems, even though these are 
exactly the sort of problems needed to improve learning, then 
further research should explore whether or not these findings 
reflect two distinct different groups of students. It may be that 
some students need additional cognitive scaffolding or a 
motivational intervention in order to complete these problems 
without gaming, allowing them to learn as well as other students 
who are working through the curriculum in a more appropriate 
way. However, research has also shown that in some cases high 
achieving students also game the system, and the independent 
application of these models could be picking up on that trend, 
where students guess something that they actually know, but then 
correct this behavior in subsequent problems, which could cause 
the MBML model to perceive learning.  

4.1.2 Confusion & Frustration 
Confusion and frustration show considerable overlap, in line with 
prior theory on the relationship between these constructs ([9], 
[26]). As Table 4 shows, half (10) of the semantic features most 
strongly associated with one are also strongly associated with the 
other, including N6mwu (frequency of occurrence) which is 
negatively associated with both confusion and frustration. This 
corresponds with [44]’s findings that clear demarcations of time 
in mathematics problems can improve student outcomes.  
Table 4. Features most strongly associated with confusion and 

frustration

 
Notable semantic features within this pairing include Z5 and 
Z5mwu. Both capture what are known as grammatical bin, which 
includes prepositions (of, to, after, amid), conjunctions (and, or, 
but), certain adverbs (e.g., as, so, which, than, when), the 
infinitival maker (to + verb), determiners (e.g., a and the) and 
certain auxiliary verbs (e.g., do). Previous research has suggested 
that the highly specific style of scientific language increases the 
use of these parts of speech, especially in the sort of definitional 
contexts that we might find in many learning contexts [3]. [29], 
for example, notes that students sometimes struggle with 
prepositions. In fact, this pattern is sometimes referred to as the 
stylistic barrier hypothesis [31], which suggests that differences 
between the language students use at home and the language used 
in the classroom may interfere with the learning process.  

HTML features that that correlate with confusion and frustration 
match findings in the literature. For example, [35] suggest that 
italics are difficult to read, and our findings show that they are 
correlated with higher confusion. Changes in font size, however, 
are associated with lower frustration; it is possible that teachers 
are using changes in font size to clarify visual hierarchy and 
problem meaning.  

Features associated with concreteness (N3.4, N3.3, A2.2, A1.5.1, 
N5+, I1.3, O4.1, T2++) correlate with lowered confusion and 
frustration, matching the literature on the concreteness effect, 
which shows that concrete words are not only processed faster 
than abstract words in many experimentally controlled studies 
[23], the two may operate in separate neurological pathways ([19], 
[5]). These findings are hypothesized to be an artifact of the word-
to-word mapping system the brain uses to process language, 
where concrete words may have stronger ties to more basic 
concepts. Interestingly, [23] have found evidence for similar 
pathways for emotion words, which are acquired early and 
considered quite basic to the human experience. While several of 
the Wmatrix categories that might correspond with [23]’s account 
of emotion words do not appear in this list (E3, E4, X4.1), X2.1, 
described as thoughts/beliefs, has the strongest negative 
associations with both frustration and confusion.  
Other features which correlate with increased confusion and 
frustration may reflect the sort of meta-instructions teachers use to 
support students working with complex mathematical problems. 
Consider, for example, the tags in the following examples:  
(1) You_Z8mf must_S6+ show_A10+ your_Z8 work_I3.1. 
(2) You_Z8mf have_A9+ three_N1 attempts_X8+  
(3) Often_N6+ it_Z8 helps_S8+ to_Z5 write_Q1.2[i1.2.1 

down_Q1.2 [i1.2.2 your_Z8 work_I3.1. 
(4) Keep_A9+ trying_X8+  
(5) Do_X8+[i1.3.1 your_X8+[i1.3.2 best_X8+[i1.3.3 
(6) Do_A1.1.1 the_Z5 difficult_A12- problems_A12- first_N4 

 
Several of these tags (as given in bold, above: I3.1 work; S6+ 
must; Z5 to, the; X8+ attempts, trying; A12- difficult; N6+ often) 
are correlated with increased confusion or frustration. This finding 
may reflect a preemptive scaffolding practice (e.g., teachers 
provide these additional instructions when students are working 
on problem types that they have struggled with in the past). 
However, it is important to rule out other possibilities. For 
instance, such additional instructions could distract or annoy the 
students. More seriously, it could also have priming effects.  

4.1.3 Engaged Concentration & Boredom 
Like confusion and frustration, we see considerable overlap in the 
features correlated with engaged concentration and boredom.  
However, unlike confusion and frustration, these two outcome 
measures are negatively associated with one another. Six of the 
features most negatively associated with concentration (N5-, 
N3.6, Z5, Q2.2, A4.1, and A5.4+) are among those most 
positively associated with boredom. Likewise, four of those most 
positively associated with concentration (A2.1+mwu, A6.1+++, 
T3, and A5.2+) are negatively associated with boredom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TAG Semantic Description ρ TAG Semantic Description ρ
X2.1 Thought/belief -0.149 X2.1 Thought/belief -0.110
Z6 Negative -0.101 N5+ Quantities -0.070
N3.4 Measurement: Volume -0.097 A11.1+++ Important/Significant -0.063
N3.3--- Measurement: Distance -0.079 N3.4 Measurement: Volume -0.061
N6mwu Frequency of occurance -0.079 A2.2 Cause, Connected -0.056
A2.2 Cause, Connected -0.077 N6mwu Frequency of occurance -0.052
A1.5.1 Using -0.076 X4.2 Means, method -0.051
N5+ Quantities -0.070 T2++ Time: Beginning and ending -0.050
I1.3 Money: price -0.068 A2.1+mwu Modify, Change -0.049
O4.1 General Appearance/Phys'l Properties-0.066  <font>  HTML font adjustment -0.049
Q1.2mwu Paper documents & writing 0.081 I3.1 Work & Employment: generally 0.089
N1 Numbers 0.082 X2.4mwu Investigate/examine/test/search 0.092
I3.2 Work & Employment: professionalism0.083 <span>  HTML span (grouping of items in one line)0.092
Z5 Grammatical bin 0.084 N6+ Frequency of occurance 0.093
A12- Easy/Difficult 0.086 Z5 Grammatical bin 0.105
<em>  HTML italics 0.087 T1.1.2 Time: General: Present; simultaneous 0.116
I3.1 Work & Employment: generally 0.094 T3- Time: Old, new and young; age 0.144
S6+ Obligation and necessity 0.105 X8+ Trying 0.148
X8+ Trying 0.115 A12- Easy/Difficult 0.153
Z5mwu Grammatical bin 0.135 Z5mwu Grammatical bin 0.162

CONFUSION FRUSTRATION
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Table 5. Features most strongly associated engaged 
concentration and boredom 

 
 

Interestingly, X2.1 (thoughts/beliefs) is not as closely related to 
boredom and engagement as it was to confusion and frustration, 
but two other features typically associated with language about 
humans show desirable associations with these two outcome 
measures. For instance S5+c (groups & affiliation) is associated 
with increased engaged concentration, while X2 (mental 
actions/processes) is associated with lowered boredom. Likewise 
A8, which tags words related to seem or appear (both mental 
processes typically ascribed to human subjects), also leads to 
lowered boredom.  

These semantic features, along with several others that correlate 
with lowered boredom (T2++mwu time demarcations and 
M6mwu location/direction) may also be indicators that problems 
with greater narrativity improve student engagement. However, 
we must still be cautious about interpreting lower boredom as a 
desirable effect in and of itself, since A5.2+ (words associated 
with true) is also associated with lower boredom. This type of 
item is unlikely to bore students, since they can answer and pass it 
quickly. However, readers may recall that this feature is also 
correlated with lower learning, as one might expect based on 
previous research on True/False questions [42].  

5. DISCUSSION AND CONCLUSIONS 
Our analyses of the ASSISTments corpus complements previous 
research on the relationship between learning and the language of 
mathematics problems, but extends this line of inquiry by 
including educationally relevant behaviors and affective states as 
part of the learning outcomes measured. As discussed, a number 
of linguistic features (e.g., pronouns, mental states, time, and 
concreteness) have been found to be significant in previous work. 
However, we were also able to examine the degree to which these 
relationships reflect expectations about how behavior, affect, and 
learning are related. 
For instance, some of the same features which were correlated 
with learning were also correlated with student frustration and 
gaming the system. While it might be hypothesized that frustrated 
students would be more likely to game the system, there is also 
evidence from within ASSISTments that frustration can be 
important for learning [26]. The MBML model used here is a 
look-ahead algorithm, which may optimize the opportunity to 
identify the problems that trigger learning even when learning 
process is causing student frustration. However, it’s also possible 
that these problems are triggering strong but distinct reactions in 
different students (e.g., students who persist vs. students who 

game the system when they become frustrated). Future work will 
hopefully shed more light on this unusual relationship. 
Overall, these results point to a number of promising avenues for 
further research within the ASSISTments system. One key future 
approach will be to conduct RCTs of the features identified in this 
study, re-designing problems to eliminate problematic features or 
incorporate positive features, in order to determine whether our 
findings can drive enhanced design. At the same time, it will be 
important to explore some of the interactions that may exist 
between different combinations of linguistic features, or between 
linguistic features and other behaviors or actions within the tutor. 
We also found several unusual patterns in our data, such as some 
features being associated with increases in both learning and with 
gaming the system. We believe this may be due to our dataset 
containing two different populations of students – those who are 
persistent in the face of challenging and difficult problems and 
those who are frustrated by these problems and attempt to game 
the system to avoid working through them. We hope to 
understand this relationship in greater detail through RCTs (as 
discussed below). Ultimately, we hope to use our findings to 
construct guidelines for teachers creating their own content in the 
system, which can be embedded directly into the authoring tools 
teachers use, providing useful feedback on their problem design. 

5.1 Randomized Controlled Trials 
Having found a set of features that are associated with differences 
in student engagement and learning, our next step will be to 
conduct a set of randomized controlled trials (RCTs) to test 
whether the effects we found are genuinely causal, and whether 
re-designing problems based on these findings can improve 
student outcomes. By determining which of these features are 
causal, we can expand scientific understanding of learning and 
engagement in online learning systems. By developing methods 
for concretely improving math problems, we can develop better 
guidelines and recommendations for the many instructors (and 
others) developing problems for the ASSISTments platforms. In 
the longer-term, we hope to make all of the problems in the 
ASSISTments platform engaging and educationally effective for 
each of the growing number of students who use ASSISTments to 
learn mathematics and other subjects. 

5.2 Continued Feature Engineering 
Another important area of future work will be to conduct further 
feature engineering, particularly in terms of text features specific 
to the language of mathematics. One of the shortcomings of the 
current study is that the language of mathematics is poorly 
modeled in existing tools. In addition to challenges cause by 
domain or context-specific uses of certain words, many semantic 
taggers rely on syntactic probabilities that may be difficult to 
capture when math problems are interspersed with text. Simply 
developing taggers that can identify embedded mathematics 
formulas (e.g., labeling ‘3+2’ as addition) could help to ameliorate 
this issue. We hope that, by developing more robust tools for the 
analysis of this particular corpus, we will be able to better predict 
and understand learning and engagement.  
As research progresses, features derived from combinations of 
Wmatrix tags will also become important since many of the sub-
categories within and across Wmatrix’s lexical fields may be 
semantically similar enough, or co-occur frequently enough, to 
warrant combining them within ASSISTments data. For example, 
Wmatrix treats deciding as separate from choosing, selecting, and 
picking, but this division may not be useful in mathematics 
learning corpora. Likewise, feature combinations may help to 

TAG SEMANTIC DESCRIPTION ρ TAG SEMANTIC DESCRIPTION ρ
N5- Quantities -0.182 T1.1.2 Time: General: Present; Simultan'us -0.051
N3.6 Measurement: Area -0.178 A5.2+ True/False -0.041
Z5 Grammatical bin -0.165 X2 Mental actions & processes -0.041
Q2.2 Speech Acts -0.162 A2.1+mwu Modify, Change -0.034
A4.1 Generally/kinds/ groups/examples -0.161 M6mwu Location & Direction -0.034
<em>  HTML italics -0.144 T3- Time: Old, new and young; age -0.034
A6.3+ Variety -0.143 A8 Seem/Appear -0.030
A5.4+ Authenticity -0.130 T2++mwu Time: Beginning and ending -0.028
 <p>  HTML paragraph -0.127 A11.1+++ Important/Significant -0.027
Z7 If -0.116 A6.1+++ Similar/Different -0.027
A4.2+ Particular/general; details 0.068 A5.4+ Authenticity 0.059
N3.5 Measurement: Weight 0.069 Z8c Pronouns etc. 0.061
N3.1 Measurement: General 0.074 A6.3+ Variety 0.063
S5+c Groups and affiliation 0.074 N1 Numbers 0.076
A2.1+mwu Modify, Change 0.075 S6+ Obligation and necessity 0.076
A6.1+++ Similar/Different 0.077 N5- Quantities 0.078
T3 Time: Old, new and young; age 0.082 Q2.2 Speech Acts 0.083
A2.1+ Modify, Change 0.083 A4.1 Generally/kinds/ groups/examples 0.085
Y1 Science/technology general 0.112 Z5 Grammatical bin 0.086
A5.2+ True/False 0.115 N3.6 Measurement: Area 0.093
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contextualize Wmatrix categories that are prone to incorrectly 
categorizing high-frequency words. For example, since many 
features in this study are highly correlated with M1,  combinations 
involving this tag may be used to differentiate its use in 
instructions to students (e.g., “You have 3 attempts left”) from its 
use in physical descriptions related to geometry (e.g., “Jill turns 
left and walks 3 more miles.”).  

5.3 Directions for Future Work 
In this paper, we discovered relationships between semantic 
elements of text in the ASSISTments system and learning, 
affective, and behavioral student outcomes. In doing so, this work 
contributes to the emerging body of research studying the design 
of mathematics problems at scale.  
Our findings show that a large number of semantically meaningful 
relationships exist, some of which correlate with a wide range of 
learner outcomes. These features provide insights that will help to 
develop guidelines for effective problem designs in ITSs. 
However, the existing suite of tools available for large scale 
textual analysis may not be optimal for tagging the specialized 
language of mathematics found in the ASSISTments system. Thus 
an additional area for future work includes the development of 
semantic taggers that are more appropriate for mathematics 
corpora. These efforts will help us to better understand how the 
linguistic properties of math problems influence student success at 
scale. In turn, by exploring potential relationships between 
persistence and student perceptions of challenge, we can work to 
design mathematics problems that are both more informative and 
more engaging.  
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ABSTRACT
The number of e-learning platforms and blended learning en-
vironments is continuously increasing and has sparked a lot
of research around improvements of educational processes.
Here, the ability to accurately predict student performance
plays a vital role. Previous studies commonly focused on the
construction of predictors tailored to a formal course. In this
paper we relax this constraint, leveraging domain knowledge
and combining a knowledge graph representation with ac-
tivity scopes based on sets of didactically feasible learning
objectives. Specialized scope classifiers are then combined
to an ensemble to robustly predict student performance on
learning objectives independently of the student’s individual
learning setting. The final ensemble’s accuracy trumps any
single classifier tested.

Keywords
educational data mining, student performance prediction,
ensemble methods, knowledge graph

1. INTRODUCTION
Performance prediction is one cornerstone of a fully person-
alized learning environment and also an important compo-
nent of the efforts to deliver quality education. Higher ed-
ucation institutes, for example, are striving to incorporate
predictive elements into their educational processes to better
support students. Online systems like Massive Open Online
Courses, Intelligent Tutoring Systems (ITSs) and increas-
ingly Learning Management Systems (LMSs) also look for
methods to compensate the lack of face-to-face interactions
with teachers and the resulting problems with student’s re-
tention, completion, and graduation rates. Knowledge engi-
neering and Educational Data Mining (EDM) methods and
tools have helped to increasingly sharpen the models of stu-
dent knowledge within these environments.

The foundations for performance prediction and student mod-
eling were introduced more than four decades ago with Knowl-
edge Tracing [1] and have since been constantly refined and
extended to build diverse student models [3, 7, 17]. Such
models are widely used in ITSs to allow for adaptive and
personalized behavior. Technological advancements and in-
novations enabled the development of more elaborate on-
line learning environments that reduce learning costs [8] and
overcome space and time limitations. Through the use of
such systems, previously inaccessible data about student’s
learning behaviors and their activities are now at hand. An-
alyzing student activities has become an important EDM
task [2].

Data mining and machine learning approaches are often em-
ployed for the student performance prediction task since
classification is one of the most frequently studied challenges
by data mining and machine learning researchers. Such an-
alyzes showed the ability to predict student’s performance
[15, 25] and even their drop out [14] in a broad range of edu-
cational technology environments. Usually, such prediction
efforts are centered around a rather formal course students
have to follow, like a university course or a structured online-
only course. In this paper, we focus on a learning technology
system that deliberately refrains from such a course struc-
ture.

This math learning system – called bettermarks – offers its
users, students and teachers alike, guidance without im-
posing a course on them. The learning platform supports
different curricula as well as flexible teacher interventions
and leads students to a particular learning objective at their
pace. The learning objectives range from introductory knowl-
edge to advanced concepts. For our work in this blended
K-12 learning environment where students either work in a
traditional school setting or on their own, we opted to focus
on performance data for the prediction task. We combine
measured performance data with a knowledge graph repre-
sentation of the platform’s learning objectives, without the
need for a strict course structure. Pursuing the prediction
problem from this angle fully utilizes the math content or-
ganization and thereby directly connects extensive domain
expertise and machine learning methods. The knowledge
graph models how learning objectives are interconnected via
pre-knowledge requirements. We use this graph to identify
didactically feasible activity scopes. Based on those, special-
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ized classifiers are trained and finally combined to predict
student performance on a learning objective in an ensemble.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review how student modeling is approached in
traditional ITSs and recent research on student performance
prediction in different environments. Section 3 introduces
the specific usage scenario of the bettermarks platform, its
distinct characteristics, and the dataset. The following Sec-
tion 4 describes our research method, including the genera-
tion of the classifier ensemble. Section 5 presents our find-
ings and Section 6 concludes the paper with a discussion.

2. STATE OF THE ART
For Intelligent Tutoring Systems, student modeling is one
major task which has been used for making assumptions
about student’s latent attributes. It uses observations of
student’s performance (e.g., correctness of given answers) or
student’s actions (e.g., the time a student spent on an exer-
cise) to estimate student’s hidden attributes, like knowledge,
preferences or even motivational state. Which usually can-
not be detected directly.

A well-established method for student modeling that has
been used in various fashions for more than 40 years now
is called Knowledge Tracing (KT). This technique was pio-
neered by Atkinson [1] and substantially developed by Cor-
bett and Anderson. Their variant is based on a 2-state
dynamic Bayesian network [7]. The observed variable is
the student performance, and the student knowledge is the
latent one which is estimated. Regarding student perfor-
mance, there are two additional parameters to account for
accidental and careless mistakes (slip) and solving an ex-
ercise despite not knowing (guess). The set of parameters
is completed with one for any prior knowledge a student
might already have and one for her learning rate. This stan-
dard KT model is often used for its abilities to provide skill
level diagnostics. In recent years, a range of extensions to
Knowledge Tracing have been proposed to mitigate some of
its shortcomings. A particularly noteworthy one is Baker
et al.’s contextual guess and slip model [3]. Recently, Par-
dos and Heffernan proposed an extension to the standard
model to incorporate item-level difficulty [17].

Besides KT, other approaches exist. A comparably new
option is called Performance Factor Analysis (PFA) which
was proposed by Pavlik et al. [19]. Their student model-
ing method uses a logistic regression model with a reconfig-
ured version of Learning Factor Analysis [6] whose skill vari-
able is replaced by one parameter per item (e.g., exercise,
question, knowledge component) and the student variable is
dropped entirely. The model estimates the individual item
difficulty as well as effects of prior successes and failures for
each skill. It predicts student performance based on item
difficulty and prior performances. Comparative analyzes of
KT’s and PFA’s performance showed that either of them
appear to be suitable for student modeling [4, 10, 19].

In learning environments without such semantically rich data
and a domain model, data mining, and machine learning
approaches are often applied for the performance predic-
tion task. The goals here remain mainly the same, with
additional emphasis on early warning and drop out predic-

tion. In general, student’s prior performances are used to
train different machine learning models to predict future
test or exam performance, similarly to PFA. However, not
all environments provide access to performance data. The
steadily growing number of LMSs, for instance, do not al-
ways collect such data. In such environments, one has to
resort to data about student’s activities. Hu et al. devel-
oped an early warning system based on student’s usage of
an LMS utilizing metadata captured while students interact
with the system [12]. The studied dataset includes informa-
tion like login counts, time spent logged in, and metadata
concerning homework assignments and was gathered dur-
ing two semesters of a fully online university course with
300 enrolled students. The course required students to at-
tend online classes and watch videos in specific time peri-
ods. To build their early warning system, the authors gen-
erated three datasets to create different periods to study
(4, 8 and 13 weeks) and applied three often used classifica-
tion techniques, C4.5, CART, and logistic regression. Ad-
ditionally, Hu et al. employed AdaBoost to achieve greater
prediction accuracy which led to the best performing clas-
sifier constructed from AdaBoost and CART. This classifier
achieved a prediction accuracy of at least 0.972 on each of
the three datasets. A similar scenario, yet more open, was
studied by Zacharis who investigated student performance
related to online activities in an LMS, which was used as
part of a blended learning university course [29]. 134 stu-
dents were enrolled in this course for one semester. To ac-
count for student-teacher and student-student interactions
which could not be observed, all of the captured online ac-
tivities were treated equally while searching for significant
correlations with the student’s final grades. Out of 29 vari-
ables, almost 50% were found to be important. A stepwise
regression yielded a model with four variables which were
used in a logistic analysis to discriminate between failing
and not at risk students. An overall classification accuracy
of 81.3% was achieved. Predicting student performance in a
timely fashion as done by Koprinska et al. underscores the
usefulness of performance data [13]. Their studied dataset
included submission sets, assessment information, and en-
gagement data from a discussion forum. All of the data was
gathered from different online systems used in a blended
university course. Koprinska et al. defined their classifica-
tion problem as a three class problem and divided the 224
participating students into high-, average- and low-level stu-
dents based on exam performance at the end of the course.
To predict the exam result, they employed a decision tree
classifier which achieved an accuracy score of 72.69% using
the complete course data. Using just the data from the first
half of the course led to an accuracy score of 66.52%. Here,
almost half of the used features are performance related.

Our work uses a similar approach to predict student perfor-
mance in a blended K-12 learning environment. The critical
difference between other datasets used in previous research
and ours is that students on the bettermarks platform nei-
ther attend nor follow a formal course. The system provides
teachers and students with “math books” for a term’s cur-
riculum. Since the learning platform is often used supple-
mentary to traditional lessons in class, teachers make use
of the learning material at their discretion. Likewise, stu-
dents in a self-regulated learning setting might pick a cou-
ple of learning objectives or decide to work through a whole
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book on their own. The resulting freedom for students and
teachers introduces a huge amount of diversity in the user
behavior and poses challenges for performance prediction al-
gorithms. To fully capture student behavior and overcome
the problem of fitting a single prediction model based on
diverse data sources, Essa and Ayad proposed a domain-
specific decomposition of different (online) learning related
aspects [9]. The final prediction would consequently con-
sist of an ensemble of classifiers specialized on each aspect’s
data. Hence, the resulting model should be more gener-
alizable and flexible than models build on single courses.
Building on this idea, we focused on learning objectives as
the common data underlying every user’s interaction and de-
composed the math content organization of the platform into
different activity scopes. Classifiers trained on those scopes
act as base classifiers for the developed ensemble which ro-
bustly predicts student performance independently of their
learning situation.

The particularly chosen focus on exercises (or learning objec-
tives, for that matter) in our research is a crucial distinction
to prior ensemble-based prediction works. Student perfor-
mance within an ITS as well as on a paper post-test was pre-
dicted by Baker et al. utilizing ensembles of different student
models (including the previously discussed BKT and PFA).
The achieved results let the authors conclude that ensem-
bling appeared to be only slightly better [4]. Looking fur-
ther into the previous results and concentrating exclusively
on post-test predictions did not yield better prediction re-
sults over the best individual models [18]. Again, different
student modeling approaches were combined to ensembles.
Gowda et al. found that ensembles build on large enough
datasets (about 15 times more data than used in the pre-
vious two studies) can very well yield superior prediction
performance, even with similar models as a base [11].

3. THE USAGE SCENARIO
The bettermarks system is an online math learning plat-
form with more than 100k interactive exercises, covering K-
12 math curricula (grades 4-10) in English, Spanish, Ger-
man and Dutch language. It is designed to be used in math
classes at school without implying a formal course structure.
Teachers can decide to teach math entirely with the system,
supplement their lessons with related bettermarks content
right in class, or assign exercises as homework. At any time,
teachers can be aware of their student’s progress through
detailed reports which present high-level performance aggre-
gation as well as every single solution attempt. The system
can also support and guide students working on their own in
a self-regulated learning setting without additional teacher
interventions. Each month, more than 100k students across
Europe and America use bettermarks.

Besides offering detailed textbook-like explanations of math
topics, the primary means of learning math on the better-
marks platform are math exercises. Exercises are grouped
into exercise series. Each series helps students achieve a
well defined and fine-grained learning objective. Examples
of such learning objectives are “Calculate the surface area
of a prism given the edge lengths and the height” or “Find
the zeros of linear and quadratic functions.” These series
are arranged into digital books based on curricular themes
and didactical concepts without imposing any curriculum

Figure 1: Small section of the entire knowledge
graph spanning more than 1,500 vertices

structure on the user. Each book is organized similarly to
a printed math book with chapters and series of exercises
within these chapters. Behind those books that are visible
to teachers and students lies a knowledge graph (not visi-
ble to users). This graph describes how learning objectives
relate to each other regarding required prior knowledge.

3.1 Knowledge Graph
The idea of a concept map was first introduced in the 1970s
by Novak. In his later work, he used this framework to or-
ganize and connect already acquired knowledge with new
knowledge [16]. The usefulness of maps related to the orig-
inal ideas for learning and assessment in technology-based
learning environments has already been shown [24, 27]. Build-
ing on these concepts, the underlying structure of the bet-
termarks content is called a knowledge graph. This graph
is built by connecting nodes concerning their pre-knowledge
requirements. Each of the graph nodes represents a learning
objective – a particular skill a student reaches once she suc-
cessfully finishes a series of exercises designed especially for
this skill. These objectives include introductory/elementary
skills as well as core knowledge and advanced skills. The
direction of an edge indicates which node is defined as the
required pre-knowledge for another node. A particular node
might have more than one pre-knowledge node. The en-
tire bettermarks knowledge graph contains more than 1,500
learning objectives in total. A small subset of them is shown
in Figure 1. A digital math book on the bettermarks plat-
form includes a number of these learning objectives. Usually,
not all of them are directly (or indirectly) related.
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3.2 Data
The analysis in this paper focuses on the particularly well-
frequented book “Calculating Percents” from the German
version of the bettermarks system. From this book’s learn-
ing objectives, we chose one with a relatively large amount of
required pre-knowledge as a classification target. It is called
“Calculate decreased and increased base values in context”
and located close to the end of the book. The data was gath-
ered during the entire year of 2015 and includes student’s
activities on the bettermarks platform 40 days before their
first attempt on the classification target. The 40 day period
allows students in a school setting to reasonably work their
way to this objective. In total, the dataset includes perfor-
mance measurements of 566 students on 903 different learn-
ing objectives which are the results of 10,363 solution at-
tempts by 6th - 10th-grade students from all over Germany.
A student is free to repeat an exercise series as often as she
wants. Since the system presents the student’s best solution
attempt to a teacher first, we also used this result for each
student and learning objective. Table 1 shows a randomly
chosen sample of the entire dataset with results on three
learning objectives (represented by identifiers). The results
correspond to the ratio of correctly solved exercises in a se-
ries. It is evident that not all learning objectives have been
addressed by the same amount of attempts. The last column
shows the highest success rate on the classification target
achieved by a student within 3 hours of starting the exercise
series for the first time. We noticed that students employed
different strategies involving repetitions while solving exer-
cise series which makes the success rate achieved in the first
attempt a bad indicator for the final result a student set-
tles on by continuing with the next series. Therefore, the
3 hours allow students some time to repeat the exercise se-
ries and also account for the fact that students might have
reached the classification target during their math lesson at
school and want to repeat the exercise series again at home.
These collected performance measurements are used as pos-
sible features in our classification models.

4. RESEARCH METHODOLOGY
Over the course of the following section, our research method
is discussed in detail, we were guided by a two-fold research
focus: (1) Can an ensemble of classifiers based on the decom-
posed math content organization accurately predict student
performance? (2) Given the usage scenario, is this approach
suitable for an “early prediction” setting? Since the bet-
termarks system offers its users lots of flexibility, an early
prediction task is different from a formal course’s early pre-
diction task. In our case, the early prediction challenge is
not transferable to a subset of the course’s allocated time
and exercises. Instead, we looked into students showing low
usage rates over the examined period. In our case (and in
contrast to online-only environments), a lack of activity does
not imply that students did not attend a regular math lesson
and progressed in school.

In a first step, the math content was decomposed into ac-
tivity scopes relating to the classification target. A follow-
ing pre-processing step used different aggregations to gain
better insights into the available dataset. The primary con-
cerns that governed this step refer to how much of the data
is missing and if the classifiers can learn from roughly bal-
anced classes created by the class split. The first question

is also relevant regarding the number of actually achieved
learning objectives by students within the different scopes
since those directly translate into the initial feature sets.
Afterwards, six different algorithms were evaluated on each
scope as base classifiers for the ensemble. The process is
described in the Ensemble Construction section which also
discusses the imputation and standardization strategies we
employed. Following the final model selection, the ensem-
ble’s weights were optimized. This step also concluded the
generation of the entire ensemble.

4.1 Activity Scopes
To reflect the flexibility the learning system offers its users,
we defined three activity scopes and constructed specialized
classifiers for them. All scopes center around a particular
subset of the knowledge graph’s vertices and thus decom-
pose the graph into relevant groups related to the classifica-
tion target. The subgraph spun by the classification target’s
vertice via the pre-knowledge relation serves as the binding
element between the three scopes.

The first scope includes all learning objectives that are part
of the classification target’s pre-knowledge in the knowledge
graph. These are all vertices connected directly or indirectly
to the classification target through pre-knowledge relation
edges. In total, those are 35 different learning objectives
for our chosen classification target “Calculate decreased and
increased base values in context.”

The classification target is located in the math book “Calcu-
lating Percents”. This book with all of its learning objectives
creates the second activity scope, the math book scope. Ex-
cluding the classification target itself, the set of potential
features for this scope contains 24 learning objectives. Since
the book was created with didactical considerations in mind,
the math book’s learning objectives are arranged similarly
to the knowledge graphs vertices. Still, this scope and the
pre-knowledge scope share only five learning objectives.

The final scope includes student’s activities on learning ob-
jectives that are not part of the math book’s scope. All of
these learning objectives are part of the knowledge graph
as well, but those are located in other math books. Never-
theless, the resulting set was not partitioned any further by
their books. This scope could share up to 30 learning objec-
tives with the first scope but does not include any from the
book’s scope. Those would be the learning objectives the
pre-knowledge scope does not share with the book’s scope.
The actual number depends entirely on the student’s activi-
ties during the examined period. With these defined scopes
we attempted to model the different paths teachers and stu-
dents might have taken to approach the classification target.

4.2 Pre-processing
In Germany, the bettermarks system is often used in math
classes to supplement regular lessons. Therefore, it is not
expected that students solve a vast amount of exercise series
over the chosen 40 days. Figure 2 shows that the median of
different exercise series per student is at 14.5 series with the
0.75 percentile at 23 series.

This result suggests that the amount of gathered perfor-
mance measures per learning objective could be rather sparse
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Table 1: Sample of user IDs with success rates on different learning objectives

user id
Learning objectives

classification target
PruZiPruZiRFo.LOB04 PruZiPruZiRDr.LOB06 ZUZUProp.LOB01 ...

369947 0.333 ... 0.675
92083 0.708 0.333 ... 0.921
5625246 0.708 0.333 0.429 ... 0.447
347284 0.208 0.500 ... 0.475
361389 0.417 0.333 ... 0.675
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Figure 2: Students solve a rather small number of
different series with the median at 14.5 series (indi-
cated as green vertical line)
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Figure 3: Data Sparsity

for the majority of series. In fact, 566 students worked on
903 different learning objectives with an average of almost
20 different series per student. Further examination reveals
that only 22 learning objectives had up to 70% of the data
missing. The data sparsity is illustrated in Figure 3. It is im-
portant to employ a suitable data imputation strategy and
apply feature selection means during the construction of the
different classifiers later to cope with this sparse dataset.

We decided to split the classes at a success rate of 0.75. One
class is composed of students with success rates lower than
0.75, whereas the second one contains students with success
rates of at least 0.75 which would translate to a separation of
top performing students from all other students. This class
split has the benefit of dealing with quite balanced classes.
Figure 4 shows the median success rate at 0.76 (red) and our
class split slightly left to it at 0.75 (green). The resulting
spread is 45.6% to 54.4% between both classes.
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Figure 4: Measured success rates at the classifica-
tion target. The red line indicates class split at 0.75
and the green one the median success rate at 0.76

The dataset does not contain the entire set of pre-knowledge
learning objectives. Out of 35 possible learning objectives,
only data for 16 is present. One possible explanation is
that pre-knowledge learning objectives are not always part
of a single term’s curriculum (but available for teachers to
choose from). Hence, it is not expected that students work
their way through the entire pre-knowledge of a particular
learning objective during a short period. All of the expected
24 book scope’s objectives are present in the dataset.

4.3 Ensemble Construction
An ensemble of classifiers blends predictions from multiple
models with a two-fold goal: The first intent is to boost the
overall prediction accuracy compared to a single classifier.
The second benefit is a better generalizability due to dif-
ferent specialized classifiers. As a result, an ensemble can
find solutions where a single prediction model would have
difficulties. A key rationale is that an ensemble can select a
set of hypotheses out of a much larger hypothesis space and
combine their predictions into one [22].

For our purposes, we started with a set of well-known clas-
sification algorithms and used nested cross-validation to de-
termine their performance. The algorithm with the high-
est average accuracy score in each scope is afterwards cho-
sen for final model selection. The performance of the best
model was evaluated on a hold-out dataset (30% of the entire
data). Once the model selection took place, the weights for
the ensemble were adjusted, again, with cross-validation and
the final ensemble’s performance evaluated on the hold-out
dataset. The following sections describe the whole process
in detail.
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Table 2: Average accuracy achieved in nested cross-
validation for each tested algorithm and scope

Algorithm Book Pre-
knowledge

Outside

Decision Tree
with AdaBoost

0.715 0.634 0.525

k-Nearest
Neighbors

0.629 0.609 0.546

Logistic Regres-
sion

0.682 0.659 0.538

Näıve Bayes 0.654 0.636 0.467
Random Forest 0.679 0.652 0.550
Stochastic Gra-
dient Descent

0.624 0.594 0.525

4.3.1 Selecting Algorithms
A set of six commonly used classification algorithms were
chosen as potential base models. The set consists of Ran-
dom Forest, Decision Tree with AdaBoost, Logistic Regres-
sion, k-Nearest Neighbors, Stochastic Gradient Descent and
a Näıve Bayes implementation. For each scope, a classifica-
tion pipeline was created.1 To impute missing data we opted
for filling missing values with the mean success rate of the
particular feature. Tests with the median and the mode did
not significantly influence later on achieved classification re-
sults. The data was robustly standardized by removing the
median and scaling the data according to the Interquartile
Range (IQR)2. Each pipeline used a scope-specific variance
threshold on the imputed data as feature selection mech-
anism. The actual threshold is determined during model
selection (0-60% of the feature’s variance). The purpose is
to remove features that do not meet the set threshold. This
applies to features with low variance due to rather uniform
student activities as well as to features with large amounts
of imputed data.

To get a conservative and thus fairly unbiased base estimate
of each classifiers performance [26], we used nested strati-
fied cross-validation with 10 folds on the outside and 5 folds
on the inside with randomized search [5] over the parameter
space. Depending on the algorithm, the search space was
limited to reasonable values such as restricting the number
of trees in a forest. The search included 100 sets of candi-
date parameters. Table 2 shows the results for each classifi-
cation algorithm and scope. The best performing algorithm
is highlighted in each column.

4.3.2 Model selection and Ensemble construction
AdaBoost on Decision Tree for the math book scope, Lo-
gistic Regression for the pre-knowledge scope and Random
Forest for the outside scope were picked for the final model
selection. It was done by 10-fold cross-validation and a ran-
dom search over 750 sets of candidate parameters. The best
performing model of each scope was afterwards chosen and
re-trained on the entire training set for the ensemble.

1The pipeline facility, as well as the used algorithms’ imple-
mentations are part of scikit-learn [20].
2The IQR is the range between the 1st quartile (0.25 per-
centile) and the 3rd quartile (0.75 percentile)

Table 3: Prediction accuracy on the test set
Classifier Prediction accuracy
Baseline 0.594
Pre-knowledge scope 0.682
Book scope 0.705
Outside 0.647
Ensemble 0.735

To construct the ensemble we opted for a soft voting strat-
egy rather than using hard voting. A soft voting strategy
has the significant advantage of weighing the three scopes
differently. The alternative would be to use a majority deci-
sion among the three classifiers where each classifier’s vote
weights equally. Instead, the ensemble uses soft voting to
classify students based on the argmax of the sums of each
classifier’s predicted probabilities. To determine the weights
to be associated with each classifier, we used random search
with 10-fold cross-validation on 3k parameter sets. The
emerged ensemble with tuned weights was then tested on
the hold-out part of the dataset.

5. RESULTS
To assess the performance of each classifier as well as of the
entire ensemble more thoroughly we also added a baseline
classifier. This simple classifier always predicts the majority
class. Table 3 shows each classifier’s prediction accuracy on
the hold-out dataset.

As before with the nested cross-validation results, the ac-
curacy ranking over the three scopes stayed the same – the
book scope’s classifier performed best (0.705) followed by
the pre-knowledge scope’s classifier (0.682). With a predic-
tion accuracy of 0.594, the baseline classifier scores below
all other approaches. The constructed ensemble achieved
the best prediction accuracy with 0.735.

Since the ensemble showed an improved accuracy on the test
set, we investigated the remaining classification errors fur-
ther. Table 4 displays the confusion matrix for the book
scope’s classifier which is the best single-scope classifier. As
a comparison, Table 5 shows the confusion matrix for the fi-
nal ensemble. Out of the two, the latter made slightly more
errors of type I. This is especially unfortunate because in our
case, false positive errors translate to students incorrectly
classified as top performers even though they could not reach
the required success rate threshold. In our setting, errors of
this type are arguably more expensive than classification er-
rors of type II where a student would be wrongly classified
as a low scoring student. If our prediction method would be
used to trigger human interventions a teacher might deter-
mine rather quickly if a student is able to pass a test or not.
However, if the system fails to notify the teacher in the first
place, she might not at all be aware of a potential problem
with the student’s performance. Thus, the problem would
be revealed after the student has aleardy failed.

Table 4: Book scope classifiers’s confusion matrix
Other students Top performers

Other students 51 18
Top performers 32 69
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Table 5: Ensemble’s confusion matrix
Other students Top performers

Other students 50 19
Top performers 26 75
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Figure 5: Ensemble’s accuracy gain over book
scope’s classifier per quartile

Lastly, to assess the ensemble’s ability to accurately predict
student performance in an early prediction task, the accu-
racy of the best single-scope classifier and the ensemble was
compared based on quartiles of student’s number of solved
exercise series. As described above, 50% of the students in
our dataset solved up to 14.5 different exercise series in the
examined period. To be used effectively in an early predic-
tion setting, a suitable classifier needs to be able to accu-
rately predict the right class with few data points. Figure 5
shows the accuracy difference between the book scope’s clas-
sifier and the entire ensemble for each quartile. In the first
three quartiles the ensemble predicts more students correctly
than the book scope’s classifier. These results lead to the
conclusion that our approach has the potential be used in
an early prediction setting.

6. DISCUSSION AND OUTLOOK
We investigated an approach that decomposes the math con-
tent structure underlying an online math learning platform,
trains specialized classifiers on the resulting activity scopes
and uses those classifiers in an ensemble to predict student
performance on learning objectives. Students using this par-
ticular math learning platform achieve learning objectives
without a formal course imposed on them which is quite
different from course-centered online-only or blended learn-
ing environments. We showed that looking closer at the
math exercises helped us build a robust classification model
that can cope with student’s notably diverse behavior due to
the lack of a strict course framework. Using the knowledge
graph to decompose the content domain enabled the individ-
ual prediction models to better grasp nuances of student’s
activities.

In general, the results suggest that our approach yields a ro-
bust performance prediction setup that can correctly classify
73.5% of the students in the dataset. This is an improve-
ment over every other classification approach we tested in
our study. Further examinations revealed that the ensemble

also outperforms the best single-scope classifier in an early
prediction or early warning setting. Students with lower lev-
els of activity would benefit the most from our ensemble ap-
proach since it clearly improves the prediction accuracy for
those students, as we have shown. However, the increased
prediction accuracy came with a price: a slight increase in
false positives where students are wrongly classified as top
performing students. Especially in our area of research, false
positive errors like this should be reduced as much as possi-
ble if we want to improve educational processes and make a
lasting impact on every stakeholder.

Looking closer at the classification errors, we found that in
12 cases the three scope classifiers unanimously attributed
the wrong class to a student. Hence, the ensemble was not
able to predict the class for these students correctly either.
The reason is a shortcoming of the ensemble’s soft voting
strategy which cannot overturn matching predictions among
its base classifiers. Rather than using a simple weighted en-
semble, it is possible to use stacking and thus introduce a
second stage classifier. This classifier takes the prediction
results of the ensemble’s base classifiers and employs them
as features to predict the final class. The whole concept
is known as stacked generalization and exists in different
flavors [28]. Gowda et al. have already shown the signifi-
cant benefits of more sophisticated ensemble methods in a
prediction task [11]. Additionally, a number of different en-
semble generation methods can be utilized to achieve better
diversity within the base classifiers [21]. Besides extending
the final ensemble with stacking and exploring the resulting
benefits, our future work will include more performance re-
lated data, like the number of attempts or the total time a
student has spent on a particular exercise series. These ef-
forts will go hand in hand with additional feature selection
strategies, and dimensionality reduction means to capture
more scope-related nuances of student’s performances.

We also plan to investigate whether student’s diverse se-
quences of learning objectives can be used to improve fea-
ture extraction and selection. Scheiter and Gerjets’ results
regarding the order of presented problems and performance
improvements point to a possible connection [23].

While some of the discussed extensions seem obvious, the
most important challenge is to develop our approach into a
strategy suitable for any learning objective in this scenario.
Our current approach uses a narrow set of learning objec-
tives and a specifically tailored ensemble. These constraints
reduce the cold start problem but require a good strategy
to cope with missing data, as we have described. Never-
theless, the ensemble cannot easily be repurposed at scale.
Hence, investigating different strategies leading to a broadly
applicable solution will be our primary focus.
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ABSTRACT
With the success and proliferation of Massive Open Online
Courses (MOOCs) for college curricula, there is demand for
adapting this modern mode of education for high school
courses. Online and open courses have the potential to fill
a much needed gap in high school curricula, especially in
fields such as computer science, where there is shortage of
trained teachers nationwide. In this paper, we analyze stu-
dent post-test performance to determine the success of a
high school computer science MOOC. We empirically char-
acterize student success by using students’ performance on
the Advanced Placement (AP) exam, which we treat as a
post test. This post-test performance is more indicative
of long-term learning than course performance, and allows
us to model the extent to which students have internalized
course material. Additionally, we analyze and compare the
performance of a subset of students who received in-person
coaching at their high school, to those students who took
the course independently. This comparison provides better
understanding of the role of a teacher in a student’s learn-
ing. We build a predictive machine learning model, and use
it to identify the key factors contributing to the success of
online high school courses. Our analysis demonstrates that
high schoolers can thrive in MOOCs.

Keywords
online education, high school MOOCs, student learning

1. INTRODUCTION
Massive Open Online Courses (MOOCs) have emerged as a
powerful mode of instruction, enabling access around the
world to high quality education. Particularly for college
curricula, MOOCs have become a popular education plat-
form, offering a variety of courses across many disciplines.
Now open online education is being deployed to high schools
worldwide, exposing students to vast amounts of content,
and new methods of learning. Even as the popularity of high
school MOOCs increases, their efficacy is debated [8]. One
challenge is that the large amount of self direction MOOCs
require may be lacking in the average high school student.

To understand the applicability of the MOOC model to high
schoolers, we analyze student behavior in a year-long high
school MOOC on Advanced Placement (AP) Computer Sci-
ence. This course is distinguished from traditional college-
level MOOCs in several ways. First it is a year-long course,
while college MOOCs average 8-10 weeks in duration. This
provides ample opportunity to mine student interactions for
an extended period of time. Secondly, while traditional
MOOCs have no student-instructor interaction, the high
school MOOC that we consider incorporates instructor in-
tervention in the form of coaching and online forum instruc-
tor responses. Evaluating the effectiveness of this hybrid
model allows us to investigate the effect of human instruc-
tion on high school students, a group which may particularly
benefit from supervision.

Finally, we introduce a post test as a comprehensive as-
sessment occurring after the termination of the course. A
valid post test should assess students’ knowledge on criti-
cal course concepts, such that students’ course mastery is
reflected in their post-test score. We treat the Advanced
Placement (AP) exam as a post test and consider students’
performance on this test as being indicative of long term
learning. Previous MOOC research evaluates students on
course performance [4]. While course performance can be
a good metric for evaluating student learning in the short
term, post-test performance is a more informative metric for
evaluating long-term mastery.

We propose and address the following research questions,
aimed at evaluating the success of MOOCs at the high school
level.

1. Can high school students learn from a MOOC, as evi-
denced here by their post-test (AP exam) performance?

2. How does coaching help students achieve better course
performance and learning?

3. How can we predict student’s post test performance
from course performance, forum data, and learning en-
vironment?

Our contributions in this paper are as follows:

1. We perform an in-depth analysis of student partic-
ipation and performance to evaluate the success of
MOOCs at the high school level. To do so, we identify
two course success measures: 1) course performance
scores, and 2) post-test performance scores.
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2. We evaluate the effect of two important elements of
this high school MOOC: discussion forums and coach-
ing, on student performance.

3. We use a machine learning model to predict student
post test scores. First constructing features drawn
from our analysis of student activities, then determin-
ing the relative predictive power of these features. We
show that this process can be used to draw useful in-
sights about student learning.

2. RELATED WORK
Research on online student engagement and learning, is ex-
tensive and still growing Kizilcec et al. [5], Anderson et al.
[1], and Ramesh et al. [11] develop models for understanding
student engagement in online courses. Tucker et al. [13] mine
text data in forums and examine their effects on student per-
formance and learning outcomes. Vigentini and Clayphan
[14] analyze the effects of course design and teaching effect
on students’ pace through online courses. They conclude
that both the course design and the mode of teaching influ-
ence the way in which students progress through and com-
plete the course. Simon et al. [12] analyze the impact of peer
instruction in student learning.

Particularly relevant to our findings is the impact of gaming
the system on long-term learning. Baker et al. [2] investi-
gate the effect of students gaming an intelligent tutor system
on post-test performance. In the high school MOOC set-
ting, we observe a similar behavior in some students achiev-
ing high course performance, but low post-test performance.
We identify plausible ways in which these students can be
gaming the system to achieve high course performance and
present analysis that is potentially useful for MOOC design-
ers to prevent this behavior.

There is limited work on analyzing student behavior in high
school MOOCs. Kurhila and Vihavainen [6] analyze Finnish
high school students’ behavior in a computer science MOOC
to understand whether MOOCs can be used to supplement
traditional classroom education. Najafi et al. [9] perform
a study on 29 participating students by splitting them into
two groups: one group participating only in the MOOC, and
another group is a blended-MOOC that has some instruc-
tor interactions in addition to the MOOC. The report that
students in the blended group showed more persistence in
the course, but there was no statistically significant differ-
ence between the groups’ performance in a post-test. In our
work, we focus on empirically analyzing different elements
of a high school MOOC that contribute to student learning
in an online setting. We use post-test scores to capture stu-
dent learning in the course and examine the interaction of
different modes of course participation with post-test per-
formance. Our analysis reveals course design insights which
are helpful to MOOC educators.

3. DATA
This data is from a two-semester high school Computer
Science MOOC, offered by a for-profit education company.
The course prepares students for College Board’s Advanced
Placement Computer Science A exam and is equivalent to a
semester long college introductory course on computer sci-
ence. In this work, we consider data from the 2014-2015
school year for which 5692 students were enrolled.

The course is structured by terms, units, and lessons. Lessons
provide instruction on a single topic, and consist of video
lectures and activities. The lessons progress in difficulty
beginning with printing output in Java, and ending with
designing algorithms. Each lesson is accompanied with ac-
tivities. These activities are not graded, instead students
receive credit for attempting them. Students take assess-
ments in three forms: assignments, quizzes, and exams, each
released every two weeks.

At the end of the year students take an Advanced Place-
ment (AP) exam. Students can use their AP exam per-
formance exam as a substitution for a single introductory
college course. The AP exam score ranges from 1 to 5. In
all, we have data for 1613 students who take the AP exam.
This number is a lower limit on the total number of students
who may have taken the course and the AP. The course pro-
vides a forum service for students, which is staffed with paid
course instructors. Approximately, 30% of all students who
created course accounts also created forum accounts, 1728
students in all.

This course is unique in that it provides a coach service
which high schools can purchase. This option requires that
the school appoint a coach, who is responsible for overseeing
the students at their school. The coach is provided with ad-
ditional offline resources, and has access to a forum exclusive
to coaches and course instructors. The average classroom
size is approximately 9 students with a standard deviation
of approximately 12 students. The largest classroom size
coached by a single coach is 72, while some coaches super-
vise a single student. Of all students who have enrolled in
the course, approximately, 23% (1290) are coached and 77%
(4402) are independent. From here on we refer to the stu-
dents enrolled with a coach as coached students.

We summarize the class statistics in Figure 1 below. The
majority of coached students sign up for the student forum,
and many persist with the course to take the final AP exam
at the end of the year.
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Figure 1: Student participation varies between coached
and independent students.

4. EMPIRICALLY CHARACTERIZING SUC-
CESS OF A HIGH-SCHOOL MOOC

In this section, we use post-test performance and course per-
formance to question the success of MOOCs for high school
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students. With an empirical analysis, we provide insights
on how to adapt high school MOOCs to benefit different
groups of students. To investigate this question, we focus
on the subset of students for whom we have post-test data.
To evaluate student success in the course, we identify three
measures of course participation in MOOCs that are rel-
evant to the high school population: overall score, course
completion, and post-test score.

Overall Score The overall score captures the combined score
across course assignments, quizzes, exams, and activities,
each of which contributes to the final score with some weight.
We maintain the same weights as those assigned by the
course, exams are weighted most heavily, activities the least.

Overall Score = .3*(Assignment Score + Quiz Score) +
.6*Exam Score + .1*Activity Score.

Course Completion The second success measure we use is
course completion. Course completion measures the total
number of course activities and assessments completed by
the student.

Course Completion =
Total Activities and Assessments Attempted

Total Number of Activities and Assessments

Post-Test Score This score captures student scores in the
post test that is conducted 2 weeks after the end of the
course. The score ranges from 1 to 5. This score captures
the advance placement (AP) score, hence we also refer to it
as the AP score.

To evaluate the effectiveness of the high school MOOC on
student performance, we first examine the relationship be-
tween course completion and course performance. We hy-
pothesize that as students complete a higher percentage of
the course, they should do better in the course assessments
leading to higher course performance scores and post-test
scores. Examining the correlation of course completion to
post-test performance, we find that they are positively cor-
related. This suggests that the course indeed helps students
in achieving good performance in the assessments. However,
we find that of the students that achieve an overall score of
90 or greater, only 70% pass the post test. Similarly, of the
students who complete 90% of the course, only 63% pass
the post test. These initial observations indicate the need
to perform a more detailed study in order to understand the
different student populations in the course.

Next, we examine the relationship between overall score and
post-test score, captured in Figure 2. From this plot, we see
a positive linear relationship between course performance
and post-test score. Notably, we observe that the average
post-test score of the students who achieve a 90% or higher
in the course is above a 4.0, and well above a passing score.

Students regularly complete three kinds of assessments: as-
signments, quizzes, and exams. Assignments are program-
ming exercises, testing students’ coding abilities. Program-
ming assignments are submitted online through an interface
capable of compiling programs and displaying error mes-
sages. Quizzes are multiple choice assessments on course ma-
terial, with an emphasis on recently covered topics. Exams
have a similar format to quizzes but are slightly longer. Both
quizzes and exams are timed and students cannot change

Figure 2: The dot sizes are proportional to the number of
students achieving the overall score.

their answers once they submit them. In all, there are 15
assignments, 8 quizzes and 6 exams in the course. We will
refer to them as A1:15, Q1:8, and E1:6, in the discussion be-
low.

In Figure 4, we present results of student performance across
assessments. Figures 4(a), 4(b), and 4(c) present average
student assignment, quiz, and exam scores for students who
passed/failed the post test, respectively. We find that stu-
dents who pass the post test do better on assessments. We
also observe that the scores across all assessments show a
decreasing trend as the course progresses. This signals that
the assessments get harder for both groups of students as
the course progresses. Another important observation is the
increase in scores for both groups at assignment 8, quiz 5,
and exam 4; these assessments are at the start of the second
term in the course, indicating that students may have higher
motivation at the start of a term.
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Figure 3: Students who pass are more likely to attempt
assignments than students who fail.

Additionally, some assessments show a greater difference be-
tween the two groups of students, and performance on these
assessments are more informative of student learning. In
Figure 4(c), we observe that for both passed and failed stu-
dents, we see the greatest dip in performance in the final
exam. As the final exam is the most comprehensive exam,
and possibly most related to the post test, analyzing why
students do so poorly on this exam is a worthwhile direction
of study in its own right.

Another important dimension is considering assignment com-
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(a) Average assignment scores of passed and failed
students
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(b) Average quiz scores of passed and failed students
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(c) Average exam scores of passed and failed stu-
dents

Figure 4: Passed students have higher average scores across
all assessments than failed students.

pletion rate of these two groups of students. In Figure 3, we
examine the relationship between attempting assignments
and course performance and find that students passing the
post test also attempt more assignments. This implies that
the high scores of these students are not only the product
of strong prior knowledge, but are also the result of learning
from the course.

5. FORUM PARTICIPATION AND
POST-TEST PERFORMANCE

In this section, we analyze forum participation of students
and examine it’s effect on course success. To do so, we an-
swer the following questions:

• Does participation in forums impact post-test perfor-
mance and learning?
• What are the key differences between participation

styles of students who pass the course and students
who do not?

We first look at the average score of students who use the
forum compared to the average score of students who do not
use the forum. Students who use the forum have a statis-
tically higher post test performance score of 2.77, whereas
students who do not use the forum obtain a score of 2.34,
(p < .001). It is not clear if the forum impacts learning, or if
instead, students with a high desire to learn are more likely
to use the forum.

To accurately evaluate forum participation of the two sub-
populations, we analyze them on different types of forum
participation. Forum participation comprises of different
types of student interactions: asking questions, answering
other student questions, viewing posts, and contributing to
conversation threads. Table 1 gives the comparison of stu-
dents who pass the post test against student who do not
across the various forum participation types. The different
types of forum participation types are referred to as: Ques-
tions, Answers, Post Views, and Contributions. We also
consider the number of days that a student was logged into
the forum, which is denoted by Days Online.

On average, students who pass the course make more con-
tributions than students failing in the course. They also
answer more questions. Both groups seem to spend roughly
the same amount of time online, to view the same number
of posts, and to ask the same number of questions. What
most distinguishes a student who passes, from one who fails
is whether they are answering questions and contributing to
conversations.

Forum Behavior Failed Mean Passed Mean Failed Median Passed Median
Questions 3 4 0 1
Answers 1 4 0 0

Post Views 147 140 73 62
Contributions 9 16 1 2

Days Online 19 21 11 13

Table 1: The average forum participation is significantly
more for students that pass the course. The behavior for
which there was a statistical significance difference between
the groups are highlighted in bold.

This analysis further demonstrates the importance of forums
to MOOCs. Answering questions and contributing to con-
versations are two behaviors indicative of strong post-test
performance. We hope that MOOC designers can use this
information to create appropriate intervention and incentive
strategies for students.

6. COACHING
In this section, we evaluate the effect of coaching on student
learning. We compare coached students to independent stu-
dents using their participation in course assessments and
forums. We conclude this section by looking at the subset
of students who have only one coach, in order to isolate the
effect of coaching from other classroom effects.

6.1 Course Behavior
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(a) Average assignment scores of coached and inde-
pendent students
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(b) Average quiz scores of coached and independent
students
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(c) Average exam scores of coached and independent
students

Figure 5: Coached students have higher average
scores than independent students.

We inspect the average assessment scores of coached and
independent students in Figure 5. Observing scores across
assignments, quizzes, and exams in Figures 5(a), 5(b), and
5(c), respectively, we find that coached students perform
better than independent students across all assessments.

Such differentially high performance in the course should
indicate higher performance in the AP exam for coached
students. However, we see that coached students fail to get
a high post-test score. The average post-test score for a
coached student is 2.43, while it is 2.59 for an independent
student. We test statistical significance using a t-test with
a rejection threshold of p < 0.05. In Section 6.2, we analyze

forum participation of students to understand this difference
in scores.

6.2 Forum Participation of Coached and In-
dependent Students

Analyzing forum participation of coached and independent
students, we find that there is a significant difference in
forum participation between coached and independent stu-
dents. Table 2 gives the comparison between coached and
independent students in forum participation. On average,
coached students ask more questions and answer fewer ques-
tions on the forums when compared to independent students.
Coached students exhibit more passive behavior by predom-
inantly viewing posts rather than writing posts, when com-
pared to independent students. This can be particularly
dangerous if the posts which are viewed contain assignment
code.

Forum Behavior Coached
Mean

Independent
Mean

Questions 2.81 1.90
Answers 1.45 1.72
Post Views 145.49 81.50
Contributions 8.10 7.33
Days Online 20.64 12.55

Table 2: Coached students view more posts and ask more
questions. The behavior for which there was a statistical
significance difference between the groups are highlighted in
bold.

In Table 3, we compare coached students who pass to coached
students who fail and see the same differences as those ob-
served between all students who pass, and all students who
fail. Students who pass are more likely to answer questions,
and contribute to conversations.

Forum Behavior Passed
Mean
Coached

Failed
Mean
Coached

Questions 3.97 2.87
Answers 3.04 0.56
Post Views 141.56 164.14
Contributions 14.19 5.93
Days Online 22.71 21.53

Table 3: The differences in forum behavior between
coached students who pass and who fail follow the same
trends in forum behavior exhibited by the general popula-
tion, and shown in Section 5. The behavioral features for
which there was a statistical significance difference between
the groups are highlighted in bold.

6.3 Coaches with Only One Student
To examine the effect of coaching class size on coached stu-
dents’ post-test performance, we examine coached students
in a classroom size of one. Comparing average post test
scores of coached students who are singly advised by their
coaches (classroom size of one) with independent students,
we find that the average post-test score for the coached stu-
dents is 3.6, while it is 3.2 for independent students. We
hypothesize that the lower score of coached students in class-
room size greater than one is due to the possibility of sharing
answers when students study together. This explains their
high overall score but lower post-test scores. This analysis
further suggests that the effect of coaching is confounded by
the effects of learning in a classroom with peers. To fully
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understand the effect of a coach guiding a student through
the learning process, the peer-effects of classmates should be
better understood and isolated. In Section 7, we take first
steps in this direction by proposing student types.

7. INSPECTING UNEXPECTED STUDENT
TYPES

In this section, we identify and analyze various types of stu-
dents in the course based on their performance in the as-
sessments. We classify students into two broad types based
on whether the overall scores and post-test scores are corre-
lated. Figure 6 gives the relationship between overall score
and post test score for all students. Two groups of stu-
dents emerge, students who exhibit a correlation between
overall scores and post test scores, and students who do
not. These two groups can be further broken down based
on whether they obtain a high score on the post test, yield-
ing four groups of students.

• Low learners: These students have low values for both
overall scores and post test scores.
• High learners: These student obtain high values for

both overall scores and post test scores.
• Unexpected low learners: These students obtain high

overall scores, but low post test scores.
• Unexpected high learners: These students obtain high

post test scores, but low overall scores.

Among these, the unexpected low learners and unexpected
high learners deviate from the rest of the students. To ana-
lyze these two groups, we delve deeper into other aspects of
the course such as forum participation and coaching.
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Figure 6: Four groups of students emerge: low learn-
ers, high learners, unexpected low and high learners. For
high course performance we choose a threshold of 60% as a
passing grade.

7.1 Unexpected Low Learners
Unexpected low learners are those students who perform
well on the course assessments (with an overall score of over
60%) but who do not earn a passing post-test score. We hy-
pothesize that this might be due to their not retaining infor-
mation from the course, or not arriving at high overall course
scores on their own. To understand their low post-test per-
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Figure 7: The majority of unexpected low learners are
coached, while the majority of unexpected high learners are
independent.

formance, we examine their forum behavior and coaching
environment.

As can be seen in Figure 7, approximately 91% of unex-
pected low learners are coached students. Most of these
students are part of large classrooms coached by the same
coach, increasing the possibility of getting answers from their
peers/coach. Plagiarism is a significant challenge in online
courses as proctoring students online is not as efficient as in
classroom courses.

Further, analyzing forum performance, we find that approx-
imately 76% of unexpected low learners use the forum. Of
those who use the forum, 91% are coached. Table 4 gives
the forum participation of coached and independent unex-
pected low learners. The forum participation of these stu-
dents have a strong similarity to failing students in Table 1,
participating passively in the course by viewing forum posts
and contributing to less answers. The coached students are
less active than the independent students on the forum in
every way, even in post views. While it was posited before
that active forum participation is indicative of learning and
high AP exam performance, this may not be the case in all
groups. For example, the small number of independent stu-
dents may be using the forum for social, rather than learning
purposes.

Forum Behavior Coached Mean Independent
Mean

Questions 3.5 9.2
Answers 0.5 15.0
Post views 195.0 293.0
Contributions 7.1 67.0
Days Online 25.6 35.2

Table 4: Forum behaviors for which there is a statistical
significance between groups are highlighted in bold.

7.2 Unexpected High Learners
Unexpected high performers earn an overall course score of
less than 60% but pass the AP exam with a 3 or above. Ap-
proximately 86% (357 out of 409) of unexpected high leaners
are independent and approximately 80% of the unexpected
high learners (323 out of 409) are not on the forums. That
this group can do so well on the post test, without either a
high amount of course or forum participation strongly sug-
gests that either these students have prior knowledge in com-
puter science or that they are not being primarily exposed to
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computer science through this course but are instead using
it to supplement another mode of instruction. A pre test of
students’ prior computer science knowledge would provide
further clarity.

8. PREDICTING PERFORMANCE FROM
STUDENT BEHAVIOR

In Sections 4 and 5, we see that students’ post-test per-
formance is affected by their course and forum behavior.
We construct features with which to model these different
characteristics of student behavior. These student models
are then used to predict post-test scores. By discovering the
relative rank of the student model features, we draw insights
about student behavior relevant to learning, and to course
design.

8.1 Student Model Features
We group the course features from student interactions into
four broad categories: 1) course behavior, 2) forum behav-
ior, 3) coaching environment, and 4) topic analysis of forum
posts. We extract features from student course behavior and
forum behavior, which we describe in Sections 4 and 5. The
two other feature categories are described below.

8.1.1 Coaching Environment
Students in the online course are either coached or inde-
pendent. Coaches are provided a separate discussion fo-
rum, apart from the student forum, where they can inter-
act with other coaches and instructors of the course. We
extract features that capture coaches’ prior knowledge and
their involvement in guiding students. Table 5 gives the list
of coaching related features extracted from the discussion
forum for coaches.

Feature Explanation
Coached Boolean feature capturing whether a stu-

dent is coached or independent
Coach Views # posts viewed by the coach
Coach Questions # questions posted by the coach
Coach Answers # answers posted by the coach
Coach Contributions # contributions in the forum

Table 5: Coaching related features

8.1.2 Posts Topic Distribution
For extracting topics of the post, we explore the topic model-
ing framework using Latent Dirichlet Allocation (LDA) [3].
Before using LDA we clean the text data by removing stop
words, stemming certain words, and removing all common
course words, such as code. To obtain the topic distribution
of posts, we use the Machine Learning for Language Toolkit
(MALLET) [7]. We use the following parameters for the
topic model: number of topics = 150, and optimize-interval
= 100, where the hyper-parameters required by LDA, α and
β, are set to the default values.

8.2 Predictive Model
We incorporate extracted features in a linear kernel Sup-
port Vector Machines (SVM) model, using the python pack-
age Scikit-learn [10]. Comparing this model with other ma-
chine learning algorithms such as logistic regression, decision
trees, and Naive Bayes we found the results to be compa-
rable. We filter our student pool to those who participated
in the forums and took the post test (approximately 16%

of all students who completed the post test). A subset of
features that are predictive of post-test performance were
selected using recursive feature elimination in Scikit-learn
[10]. Recursive feature elimination works by training a clas-
sifier which weighs features and then trims all features with
the lowest weights; this trimming allowed us to obtain the
best predictions, and to understand which features are most
predictive of student success.

8.3 Empirical Results
In this section, we present empirical results using the SVM
model defined above to predict post-test performance. To
evaluate the effectiveness of this model we compute the F-
measure, which is the harmonic mean of precision and recall.
F-measure is an optimal metric for a setting with unbalanced
classes such as ours, where accuracy may appear to be de-
ceptively high if a classifier reliably predicts the majority
class. Our model gives an F-measure of 0.81 for predicting
post-test performance. We validate our results with 10-fold
cross validation. In the next sections, we analyze the at-
tributes of student behavior which are most predictive of
performance.

8.3.1 Topics and Performance
The topics discovered by the topic model fall into four broad
categories: help requests, assignments, course material, and
course activities. In Table 6, we present the ten topics which
are most predictive of post-test performance. The first three
topics in the table fall into the help requests category. They
include words such as trouble, help, and fail. Four of the top
ten topics correspond to assignments, with top words which
are descriptive of assignments from the course. For example,
in assignment A4 students are asked to write a program to
count the number of hashtags, links, and attributions in a
tweet, and in the topic associated with this assignment we
see the words: hashtag, tweet, attributions, mentions, and
links. Two topics represent the concepts discussed in the
course: object oriented programming, and hash maps. The
hash maps topic is particularly interesting as hash maps are
not introduced in the course, but students still use them in
their projects, and discuss them on the forum. The other
prominent topics are topics related to course activities. For
example, the activity topic in the the table is an activity
given to students to print the location of a vehicle. This
is the most elaborate activity that students undertake in
the course, hence it appears in the top predictive topics for
predicting post-test performance.

Topic Label Top Words
Help requests trouble, don’t, perfectly, won, updated
Help requests hope, helps, change, find
Help requests fail, expected, updated, supposed

Assignment content (A4) hashtag, tweet, attributions, mentions, links
Lecture (hashmaps) Map, key, Getvalue, Hashmap, entry

Course Activity vehicle, location, backward, forward, GetLocation
Assignment content (A6) ArrayList, words, remove, equals, size
Assignment content (A10) strand, size, TurnOn, green, BurntOut
Assignment content (A14) sort, insertion, swap, insert, algorithm

Lecture (OOP and Methods) object, constructor, methods, parameter, returns

Table 6: Top predictive topics and the words in these topics

Figure 8 gives the distribution of passed and failed students
across the different ten most predictive topics given in Table
6. We observe that passing students post about the course
activity on vehicles more than failing students. Since ac-
tivities only contribute to a small portion of their grade,
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Figure 8: Students who pass post about different topics
than students who fail.

participation in activities is a good measure for students’
level of motivation and learning.

Additionally, we observe that failing students are far more
likely to write posts which fall in the help category. Look-
ing at some of the posts in this category, we find that these
posts are often short and use help words, but do not contain
detailed information about the specific assignment problem
in question. This finding suggests that analyzing the posts
for linguistic cues is helpful in understanding students’ mo-
tivation.

The third important take away from this analysis is that
this topic distribution can help discover patterns in student
behavior. For example, passing students post about assign-
ment A10 more than failing students. But, failing students
post more about assignment A4. As assignments tend to get
harder as the course progresses, the difference in behavior
can be attributed to failing students needing help on the
easier assignments, while the savvier students focus on the
harder assignments.

8.3.2 Critical Assessments
Here, we describe the most predictive assignments, quizzes
and exams that we use in the predictive model. We find
that assignments A4, A8, A9, and A10 are the most pre-
dictive assignments. These assignments are on core con-
cepts and hence may be the most critical assignments in
the course. This observation is bolstered by the fact that
these assignments are referenced in the forums more than
other assignments. Two of these assignments feature in the
top ten predictive topics given in Table 6. Pinpointing the
moment when a student needs help is not only predictive
of their success, but also critical in maintaining engagement
and understanding. Understanding which assignments are
discussed more in the forums can reveal important informa-
tion for initiating instructor interventions.

9. CONCLUSION
From this analysis we conclude that MOOCs are a viable
option for high school students. Forty-seven percent of stu-
dents who took the post test passed it. Four hundred and
sixty four of these students were to the best of our knowl-
edge self-directed. While we can say that MOOCs work for
some high school students, the particularities of this group
must be understood. It is not clear, for example, how the
students who achieve high course scores, but low AP exam
scores are able to do so. Are they receiving answers from
other students, or have they truly mastered the course con-

tent, but lack the ability to demonstrate this mastery on a
test? High school MOOC students are a unique group with
particular modeling demands.

We have developed models of these students, characteriz-
ing high and low learners by their course and forum behav-
ior, as well as by the topics that they post about. These
models have allowed us to differentiate the behavior of stu-
dents who pass from that of students who fail. In this
case study post-test performance was correlated with course-
performance, such that students who earned a high course
score also earned a high post-test score. Students who per-
formed well on the post test were more likely to contribute
to conversations, and to answer questions on the student fo-
rum. They were also more likely to post about ungraded
activities, and less likely to write posts asking for help.
Coached students were more likely to perform well in the
course, and spent more time on the forum. Understanding
the differences between students who excel and those who
do not is crucial in developing the courses that students, and
particularly high school students need.
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ABSTRACT
Tutorial dialogue is a highly effective way to support stu-
dent learning. It is widely recognized that tutor dialogue
moves can significantly influence learning outcomes, but the
ways in which tutor moves, student affective response, and
outcomes are related remains an open question. This paper
presents an analysis of student affective response, as evi-
denced by multimodal data streams, immediately following
tutor questions. The findings suggest that students’ affect
immediately following tutor questions is highly predictive
of end-of-session self-reported engagement and frustration.
Notably, facial action units which have been associated with
emotional states such as embarrassment, disgust, and happi-
ness appear to play important roles in students’ expressions
of frustration and engagement during learning. This line of
investigation will aid in the development of a deeper under-
standing of the relationships between tutorial dialogue and
student affect during learning.

Keywords
Tutorial dialogue, affect, frustration, engagement, facial ex-
pression

1. INTRODUCTION
Tutorial dialogue provides rich, natural language adap-

tation to students during learning. An understanding has
emerged about the role of interactivity in tutorial dialogue
[40, 6] and on dialogue strategies for most effectively sup-
porting students in task-oriented tutorial dialogues [29, 10].
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However, a pressing issue is developing an understanding
of how specific tutor dialogue moves impact students’ affect,
and in turn, what influence students’ affective responses may
have on outcomes.

The need for modeling affect during learning is widely rec-
ognized. Research has shown that suites of affect detectors
from sensors and log files can perform well but that there
are trade-offs depending on the goals of the affect detection
modules [22, 33]. Affect detectors have been investigated for
a wide variety of affective states including confidence, ex-
citement, frustration, and interest [41], and within tutorial
dialogue, for uncertainty [11]. There have also been great
strides in sensor-free affect detection which relies primarily
on log files [2]. This approach has shown promise during
cognitive tutoring [9] and for distinguishing frustration and
confusion [27].

Out of all of the affective phenomena that have been
examined during learning, two affective states are frustra-
tion and engagement. These states have been examined
in fine-grained analyses as tutoring unfolds, and also as
outcome measures regarding students’ perceptions of the
success of the tutoring session. Engagement and frustra-
tion have been predicted at above-chance levels using facial
expression-based affect detection even without the presence
of interactive events during text or diagram comprehension
[5]. Engagement and frustration have also been predicted
with nonverbal behaviors, including facial expression, af-
ter student task events during problem solving [16]. In a
compelling development, emerging evidence shows that fine-
grained affective events can have long-lasting relationships
with outcomes that may be far removed from those affective
events [36].

This paper advances the understanding of student emo-
tions in learning by examining students’ fine-grained affec-
tive responses to tutor questions during tutorial dialogue. It
investigates the hypothesis that students’ affective responses
immediately following tutor questions are related to self-
reported frustration and engagement at the end of the ses-
sion. The results indicate that several key facial expression
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features immediately following two different types of tutor
questions are highly predictive of end-of-session self-reported
engagement and frustration. This line of investigation rep-
resents a step forward in understanding the affective impact
of tutorial strategies.

2. RELATED WORK
Tutorial dialogue researchers have long studied what hu-

man tutors naturally do: how strategies differ between ex-
perts and novice tutors [12] whether Socratic or didactic ap-
proaches are most effective [35] and how tutors scaffold and
fade support during problem solving [4], among others. The
impact of particular tutorial dialogue moves has been the
focus of significant attention, with findings indicating that
positive and negative feedback have different impact based
on students’ self-efficacy level [3], that bottom-out directives
are not conducive to learning [29], and that adapting to stu-
dent uncertainty improves the effectiveness of tutorial dia-
logue [10]. However, this paper examines a different aspect
of these tutorial dialogue moves that is critical in learning:
students’ affective response as expressed on the face and as
embodied in gestures.

Multimodal features such as dialogue, facial expression,
posture, and task actions have been used to predict affective
states, such as boredom, confusion, excitement, and frustra-
tion, as those states occur during learning [23, 8, 7]. More-
over, multimodal features such as facial expression and ges-
tures can significantly predict frustration and engagement
reported at the end of tutoring sessions [17], and some differ-
ences have emerged in the extent to which upper and lower
facial expression features are associated with these outcomes
[15]. This previous work on utilizing multimodal features
for predicting frustration and engagement during human-
human tutoring has emphasized the important role that tu-
tor dialogue moves play in affective outcomes. Other factors,
such as student personality profile, can also contribute signif-
icantly to predicting these outcomes [39]. The present work
examines moment-by-moment affect as evidenced by mul-
timodal traces, and then analyzes the relationship between
these multimodal behaviors and the outcomes of frustration
and engagement as reported by students after the tutoring
session.

3. STUDY DATA
The present analysis investigates the multimodal behav-

ior of students during a computer-mediated tutorial session
in introductory computer science, and specifically in Java
programming [18, 30]. The tutorial interface, shown in Fig-
ure 1, is divided into four panes: the task description, the
student’s Java source code, the compilation and execution
output of the program, and the textual dialogue messages
between the tutor and the student. The tutor’s interactions
with the environment were constrained to progression be-
tween tasks and sending textual messages to the student.

Students (N = 67) were university students in the United
States enrolled in an introductory engineering course, with
an average age of 18.5 years (s = 1.5 years), whereas the hu-
man tutors (N = 5) were primarily graduate students with
previous experience in tutoring or teaching introductory pro-
gramming. The behavior of the student was collected using
a set of multimodal sensors, as shown in Figure 2, including

a Kinect depth sensor, an integrated webcam, and a skin
conductance bracelet. The following subsections detail the
modalities appearing significant in the present analysis.

Each student participated in six 40-minute sessions over
the course of four weeks; however, the present analysis only
examines data from the first lesson. Before and after each
lesson, students completed a content-based pretest and iden-
tical posttest; the tutoring sessions were found to be signif-
icantly effective in facilitating learning gains (p � 0.0001).
In addition to the posttest, students also completed a post-
survey, including the NASA-TLX workload survey [20] and
the User Engagement Survey [32]. The present analysis in-
vestigates self-reported frustration, taken from the Frustra-
tion Level item of the NASA-TLX workload survey, and en-
gagement, taken as an average of three sub-scales of the User
Engagement Survey: Focused Attention (perception of time
passing), Felt Involvement (perception of involvement with
the session), and Endurability (perception of the activity as
worthwhile).

3.1 Task Event and Dialogue Features
During the tutoring session, the interface described above

logged tutor and student dialogue messages, student typing
in the code window, and student progress through the task.
No turn-taking measures were enforced in the dialogue: stu-
dents and tutors could send messages to the other at any
point. All exchanged messages were automatically tagged by
a J48 decision tree classifier [37] with a dialogue act annota-
tion scheme created for task-oriented tutorial dialogue that
differentiates tutor questions, feedback, and hints, among
other dialogue moves [38]. In that work, the Cohen’s kappa
between two human annotators was 0.87 and the Cohen’s
kappa between human and the J48 decision tree classifier
was 0.786.

The analysis presented here focuses on two types of tutor
dialogue moves: inference questions and evaluative ques-
tions. (Although other question types were investigated,
student reactions to these were not found to have significant
predictive power.) Inference questions require the formation
of an action plan or reasoning about existing content knowl-
edge. For example, ‘How do you think this problem can be
solved?’, or ‘How can you fix this error?’ are considered to
be inference questions. On the other hand, evaluative ques-
tions aim to evaluate the student’s belief in his or her own
understanding of the material, e.g., ‘Does that make sense
so far?’, or ‘Do you understand?’ (see Figure 4).

Previous work has suggested that questions can stimu-
late cognitive disequilibrium in a student [34], which is often
considered to be a critical step in knowledge acquisition [13].
On the other hand, evaluative questions that ask a novice to
evaluate whether she understands material may not be par-
ticularly helpful pedagogically because novices often cannot
identify what they do not understand, or may be hesitant
to speak up even if they are aware that they are confused.
Nonetheless these questions occurred regularly in our corpus
with experienced (though not expert) human tutors. We in-
vestigate whether students’ affective response to these types
of tutor dialogue moves is significantly predictive of student
engagement and frustration as reported at the end of the
session.

3.2 Facial Expression Features
Student facial expressions were automatically extracted
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Figure 1: The web-based tutorial interface for Java programming.

using a state-of-the-art facial expression recognition tool-
box, FACET (commercial software preceded by a research
version known as the Computer Emotion Recognition Tool-
box, CERT) [26]. FACET tracks the frame-by-frame pres-
ence of several facial action units according to the Facial
Action Coding Scheme [25]. These action units include
movements such as AU6 Cheek Raiser, AU12 Lip Cor-
ner Puller, AU24 Lip Pressor, and AU26 Jaw Drop
(see Figures 5 and 6 for illustration). For each facial action
unit, the FACET software suggests an Evidence measure,
indicating the chance that the target expression is present.
This Evidence measure is on a scale where negative values
represent evidence of the absence of a facial expression and
positive values indicate evidence of the presence of one. The
more positive the measure, the more confident FACET is
that the feature is present.

3.3 Gesture Features
The Kinect depth camera also tracked hand-to-face ges-

tures made by the student during the tutoring session. An
algorithm developed to detect such gestures was developed
to recognize one or two hands touching the lower face. In
order to do this, the algorithm relies on surface propagation
from the center of the head, identifying round (i.e. a normal
head shape) or oblong shapes (i.e., shapes extending beyond
the normal head shape) based on distances from the center
of the head. This gesture detection algorithm was previously
found to be 92.6% accurate when compared against manual
labels [14].

4. ANALYSIS
The present analysis focuses on the affective response of

a student, as observed by multimodal traces of face and

gesture, after tutor inference questions and evaluative ques-
tions. We hypothesize that multimodal features after these
tutor questions can predict student engagement and frus-
tration. In particular, we examine three seconds after each
tutor dialogue move (a manually-determined interval). The
multimodal response of the student was characterized using
the following categories of features, all of which were pro-
vided to the predictive models. However, note that only the
first two of these categories of features (shown in bold below)
appear significantly predictive within the models.

1. Average evidence measure for each of the facial
expression action units during the interval (19
features)

2. Percentage of the interval in which a one-hand-
to-face or two-hands-to-face gesture was observed
(2 features)

3. Number of skin conductance responses identified dur-
ing the interval as measured by a skin conductance
response bracelet (1 feature)

4. Average student distance from the workstation during
the interval (1 feature)

5. Average difference between the highest and lowest points
of the student’s body from the workstation during the
interval, indicating leaning (1 feature)

We calculated the average value of each multimodal fea-
ture listed in the categories above across each tutoring ses-
sion. For each feature, we computed its conditional proba-
bility of occurring after the tutor moves of inference question
or evaluative question. We also provided the model with the
overall occurrence of that feature across the entire tutoring
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Figure 2: Multimodal instrumented tutoring session, including a Kinect depth camera to detect posture and gesture, a webcam
to detect facial expression changes, and a skin conductance bracelet to detect electrodermal activity.

Figure 3: Dialogue excerpt illustrating a tutor inference
question in context.

Student compiles the program, encounters an error.

Student Oh.

Tutor So how can we fix this?

Student Hmm.

Student Switch the prompt line with the response
line?

Tutor Okay, try it.

session in order to control for the influence of the feature
overall (rather than only after the tutor moves of interest).
Specifically, the features conditional on tutor moves were av-
erages of the form Avg(Feature|TutorQ) for each student
that completed the session. The session-wide average of each
feature, Avg(Feature) were also provided to the model for
each multimodal feature in all of the categories above.

Standardization was performed on each feature by sub-
tracting the mean and dividing by the standard deviation, so
that the regression coefficients would be more interpretable.
The standardized features were provided to a stepwise re-
gression modeling procedure optimizing for the leave-one-
student-out cross-validatedR2 value (the coefficient of deter-
mination), while at the same time requiring a strict p < 0.05
cut-off value after Bonferroni correction on significance val-
ues.

5. RESULTS AND DISCUSSION
For both types of tutor question, evaluative and inference,

Figure 4: Dialogue excerpt illustrating a tutor evaluative
question in context.

Student Do I need to set the player input before line
13?

Tutor The while tests that [variable]. You need to
be sure it enters the loop at least once.

Tutor Good.

Tutor Does that make sense?

Student Yeah.

Student But what happens if I don’t enter 1 or 2?

a predictive model was built to predict student frustration
and student engagement, resulting in a potential four mod-
els. Three of the four models uncovered significant predic-
tive relationships. The following subsections detail models
predicting frustration after tutor inference and evaluative
questions, and a model predicting engagement after tutor
evaluative questions.

5.1 Frustration
The results suggest that student facial expressions are sig-

nificantly predictive of self-reported end-of-session frustra-
tion. The predictive model for student frustration based
on tutor evaluative questions includes two features, both of
which are facial action units occurring in the three-second
interval following the tutor evaluative question (Table 1).

Two facial action unit features after tutor evaluative ques-

1The models reported in this paper were built as a part
of a larger exploratory analysis. As a result, the p-values
reported have been modified by a Bonferroni correction
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Table 1: Predictive model for standardized end-of-session
frustration after tutor evaluative questions (TutorQE).1

Frustration = R2 p

−0.7039 * AU12 after TutorQE 0.0764 0.014

−0.6279 * AU28 after TutorQE 0.2471 0.030

−0.1635 (Intercept) 1.000

Leave-One-Out Cross-Validated R2 = 0.3235

tions are significantly predictive of student frustration. Higher
intensity levels of of AU12 Lip Corner Puller (Figure 5b)
following a tutor evaluative question are negatively indica-
tive of frustration, as is the presence of AU28 Lip Suck
(Figure 5d). AU12 is associated with smiling, which is typ-
ically not associated with frustration although on occasion,
the two can go hand in hand [21].

AU 28 is a type of lower face movement sometimes as-
sociated with fidgeting, and this type of motion may be a
”self-manipulator” that is part of emotion regulation. It is
possible that students engaged in this challenging learning
task may exhibit this movement to alleviate negative emo-
tions related to frustration, resulting in lower self-reported
frustration at the end of the session. When students are
faced with a question that asks them to evaluate whether
they understand the material being tutored, these facial ex-
pressions may both reflect the presence of emotion regulation
that could mitigate the students’ overall feeling of frustra-
tion.

The next model examines student responses to tutor infer-
ence questions. In contrast to evaluative questions, inference
questions ask students to bring pieces of knowledge together
to infer the answer to a question and then to express a sub-
stantive answer. Two facial action unit features exhibited
following these questions appear as significantly predictive
of student frustration. The model shows that AU6 Cheek
Raiser (Figure 5a) after tutor inference questions is posi-
tively predictive of frustration, as is the overall session oc-
currence of AU20 Lip Stretcher (Figure 5c). The model
is displayed in Table 2.

Interestingly, AU6 has been related to pain expressions in
the literature on pain detection [28]. When asked to answer
an inference question, it is possible that students exhibited
a ”pained” expression that coincides with frustration. The
expression of AU20 has been observed to coincide with mo-
ments of embarrassment or awkwardness [24], when people
were embarrassed or amused in the period after doing di-
rected facial actions (the technique used to develop images
for the Facial Action Coding System). AU20 only occurred
among embarrassed participants in that study. When faced
with a tutor inference question, this expression may indicate
that the student is unsure, awkward, or embarrassed, which
may unsurprisingly be related to frustration. Deeper future
investigation of subsequent student dialogue moves will help
elucidate this phenomenon.

5.2 Engagement
Next we built models to predict student engagement based

on affective responses to tutor inference questions and eval-

p ≤ α/n, where n = 21 is the number of statistical tests
conducted in the larger analysis, in order to reduce the fam-
ilywise error rate to α = 0.05.

Table 2: Predictive model for standardized end-of-session
frustration after tutor inference questions.1

Frustration = R2 p

+0.5660 * AU6 after TutorIQ 0.2893 0.022

+0.3635 * AU20 0.0499 0.019

−0.0174 (Intercept) 1.000

Leave-One-Out Cross-Validated R2 = 0.3392

(a) AU6
Cheek Raiser + One Hand

to Face

(b) AU12
Lip Corner Puller

(c) AU20
Lip Stretcher

(d) AU28
Lip Suck

Figure 5: Sample frames from the student webcam illustrat-
ing the facial action unit features appearing in the predictive
models for student frustration, as identified by FACET.

uative questions. For inference questions, none of the fea-
tures provided to the model were predictive of engagement.
However, for affective response to tutor evaluative questions,
there were seven predictive features, three of which are spe-
cific to the interval following the event, and four of which
are session-wide (Table 3).

The model suggests that facial expression features ac-
count for most of the variance in predicting student engage-
ment; however, one session-wide gesture feature was also
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Table 3: Predictive model for standardized engagement after
tutor evaluative questions.1

Engagement = R2 p

+0.4422 * OneHTF 0.1815 < 0.001

−0.5989 * AU10 after TutorEQ 0.1831 < 0.001

+0.5770 * AU12 0.2280 < 0.001

+0.5097 * AU26 after TutorEQ 0.0514 < 0.001

−0.2941 * AU2 0.1923 0.003

+0.2467 * AU5 0.0295 0.002

+0.1792 * AU24 after TutorEQ 0.0566 0.018

+0.4100 (Intercept) 1.000

Leave-One-Out Cross-Validated R2 = 0.9224

selected. The more frequently a student was displaying a
OneHandToFace gesture, which may indicate thoughtful
contemplation, the more engaging the student reported the
experience at the end of the session.

Three more session-wide facial expression features were se-
lected as significantly predictive of student engagement. The
more intense the expression of AU12 Lip Corner Puller
(Figure 5b) or AU5 Upper Lid Raiser (Figure 6b), the
more engaged the student. For AU12 which is often asso-
ciated with smiling, a positive emotion is likely related to
higher engagement. In this task, AU5 is likely associated
with the student looking at the screen, possibly indicating
paying attention and focusing on the task (as opposed to
the opposite facial movement of blinking or shutting one’s
eyes). In contrast, AU2 Outer Brow Raiser (Figure 6a)
was predictive of lower engagement. This action unit is a
component of the “fear brow” (AU1+2+4) which has been
evidenced as a display of anxiety [19].

Narrowing down to the context of three seconds after tu-
tor evaluative questions, three facial expression features were
significantly correlated with student engagement. The more
that a student expresses AU26 Jaw Drop (Figure 6e), or the
more that the student expresses AU24 Lip Pressor (Figure
6d), the more engaged the student reported being at the end
of the session. Jaw drop is a dynamic action unit that may
occur when the mouth is closed or already partly open. In
either case, this action unit may be associated with focus on
the task, although it could also plausibly be associated with
a yawn (which we would not expect to coincide with higher
engagement). With respect to AU24, which is a prototypi-
cal component of anger, an important interplay of learning
and affect expression emerges. Some facial movements that
are part of prototypical displays of negative basic emotions,
such as anger, appear to be indicative of mental effort dur-
ing learning, rather than negative affect [31]. From this
perspective, it makes sense that this AU24 would be related
to engagement. On the other hand, the more that a student
expressed AU10 Upper Lip Raiser (Figure 6c) during this
interval, the less engagement reported by the student at the
end of the session. This action unit, which is a component of
prototypical disgust, is likely to run contrary to engagement.

6. CONCLUSION
Tutor dialogue moves in one-on-one human tutoring sig-

nificantly influence student outcomes, both cognitive and

affective. This paper has examined students’ affective re-
sponse to two types of tutor questions: inference questions
which require some reasoning to construct an answer, and
evaluative questions, which ask students to reflect on the
extent to which they understand the material. The re-
sults show that immediately after these tutor questions, stu-
dents’ affective displays—particularly with respect to facial
expression—are highly predictive of the outcomes of frustra-
tion and engagement. By detecting these affective displays
which have been associated in prior studies with emotions
such as embarrassment, disgust, or happiness, we can begin
to understand the moment-by-moment affective processes
that influence learning through tutorial dialogue, and relate
those fine-grained events to overall outcomes.

While these facial movements have been associated with
prototypical emotion displays in the literature, it is impor-
tant to further contextualize the moments in which these
expressions appear during tutoring. For instance, action
units typically associated with anger are likely indicators of
mental effort during learning. Similarly, an action unit asso-
ciated with disgust (e.g., AU10) may be related to students’
appraisal of the tutor’s question in the moment. Further re-
search seek to ground these interpretations more extensively
across salient moments of tutoring.

There are several additional directions for future work.
Detecting important moments during tutoring is an open
area of investigation, with evidence suggesting that moment-
by-moment affect may be related to distal outcomes [36, 1].
In future work, it will be important to expand our under-
standing of the identified non-verbal predictors for frustra-
tion and engagement more deeply. We must consider a wider
variety of contexts, and explore different widths of time af-
ter tutorial events to examine affective responses with longer
(or shorter) times to manifest. It is hoped that this line of
investigation will lead to richer affect models for tutorial
dialogue.
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(a) AU2
Outer Brow Raiser

(b) AU5
Upper Lid Raiser

(c) AU10
Upper Lip Raiser + One

Hand to Face

(d) AU24
Lip Pressor

(e) AU26
Jaw Drop

Figure 6: Sample frames from the student webcam illustrat-
ing the facial action unit features appearing in the predic-
tive model for student engagement, as identified by FACET.
Note that AU12 Lip Corner Puller (Figure 5b) also ap-
pears in these models.
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ABSTRACT
Graph data such as argument diagrams has become increas-
ingly common in EDM. Augmented Graph Grammars are a
robust rule formalism for graphs. Prior research has shown
that hand-authored graph grammars can be used to auto-
matically grade student-produced argument diagrams. But
hand-authored rules can be time consuming and expensive
to produce, and they may not generalize well to novel con-
texts. We applied Evolutionary Computation to automati-
cally induce empirically-valid graph grammars for argument
diagrams that can be used for automatic grading or provide
the basis for hints. Our results show that our approach can
generate more relevant rules than experts or other state of
the art algorithms, and that these evolved rules outperform
the alternatives.

Keywords
Evolutionary Computation, Augmented Graph Grammars,
Argument Diagramming, Feature Engineering

1. INTRODUCTION
Intelligent tutoring systems and computer-supported collab-
oration platforms have grown increasingly popular in recent
years. As they have grown in popularity they have also been
applied in increasingly complex domains such as argumen-
tation [14], legal reasoning [22] and writing [6]. MOOCs and
other online educational platforms have also grown in pop-
ularity yielding large repositories of user-system interaction
logs [10], and classical tutors and educational games have
grown more common in classrooms yielding large reposito-
ries of student data [13]. Much of this data can be repre-
sented as rich graph structures such as argument diagrams
[17] or interaction networks [7].

Despite the increasing prevalence of graph data, compara-
tively little work has been done on automatically evaluating
student-produced graphs or graph logs. In prior work we
demonstrated that hand-authored Graph Grammars can be

used as features to automatically grade student-produced
argument diagrams [16, 17]. But hand-authoring complex
rules is time consuming, expensive, and does not generalize
well to novel contexts. Other authors have developed an-
alytical tools tuned to path analysis [24, 3], however these
are tailored to a specific task. Other more general purpose
algorithms (e.g. [30, 5]) have limitations and are unsuited to
the induction of generalized rules that use negation or other
complex elements. Therefore it has not yet been shown that
it is possible to automatically induce complex, empirically-
valid, rules for rich graph structures that are comparable to
rules produced by domain experts.

In this paper we will describe our work on the automatic in-
duction of Augmented Graph Grammars for student-produced
argument diagrams. Our goal in this work is to explore ways
to automatically induce empirically-valid graph rules that
can be used as features for automatic grading and which
can provide the basis for hints. While our previous work
was focused on inducing positive rules in [33] and in [19],
in this work we applied Evolutionary Computation (EC) to
induce both positive and negative rules for student graphs
that incorporate more complex elements such as negation
and generalized types. Additionally, in our previous work we
compared the induced rules with a small number of expert
rules while in this work, we will compare our induced rules
to a full set of complex rules authored by domain experts
and rules produced by other the state of the art induction
algorithms.

2. BACKGROUND
2.1 Argument Diagrams
Argument diagrams are semi-formal graphical representa-
tions that reify key features of arguments such as hypothesis
statements, claims, and citations as nodes and the support-
ing, opposing, and clarification relationships between them
as arcs. Argument diagrams directly connect the syntax
of the argument representation to the underlying semantics
thus making it clear and computationally tractable. Argu-
ment diagrams can serve to make the often implicit structure
of an argument salient to students while also constraining
them to make relevant contributions [29]. Prior researchers
have shown that argument diagrams can be used to scaffold
students’ understanding of existing arguments [12, 8]; can
frame collaborative learning [26]; and can help to support
scientific reasoning [29].
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Figure 1: A student-produced Argument Diagram.

A sample student-produced diagram is shown in Figure 1.
The diagram includes a central research claim node, which
has a single text field indicating the content of the research
claim. A set of citation nodes are connected to the claim
node via supporting, opposing and undefined arcs colored
green, red, and blue respectively. Each citation contains two
fields: one for the citation information, and the other for a
summary of the work; each arc has a single text field explain-
ing what purpose the relationship serves. At the bottom of
the diagram, there is a single isolated hypothesis node that
contains two text fields, one for a conditional or IF field,
and the other for a consequence THEN field.

2.2 Augmented Graph Grammars
Graph Grammars are a graph-based representation for rules
about graphs that are analogous to string grammars. Graph
grammar rules are composed of standard graph elements
such as nodes and directed or undirected arcs. As with string
grammars they are defined by a finite alphabet of basic or
ground node and arc types as well as a set of production
rules for variable elements. A single graph rule defines a
space or class of matching graphs. Graph grammars can be
used to generate graphs from an initial seed via recursive
rule applications where each variable element expands to a
larger subgraph. They can also be used to match graphs
in a layered fashion by first mapping all ground elements to
individual nodes or arcs and then recursively matching the
sub-elements. Graph grammars have been used for analysis
and graph transformation in domains such as visual pro-
gramming [9] and mechanism analysis [27].

Augmented Graph Grammars are an extension of traditional
graph grammars that are allow us to match rich graphs with
complex node and arc types that contain sub-elements, text,
and other variable structures [15]. Augmented Graph Gram-
mars also support: negated elements which select for the
nonexistence of subgraphs; generalized node and arc types

t

a b

O S

¬ c

(ParedWcomp)





t.Type = “claim′′or“hypothesis′′

a.Type = “citation′′

b.Type = “citation′′

c.Type = “comparison′′





Figure 2: A simple augmented graph grammar rule
that detects uncompared counterarguments.

which match multiple items; complex element constraints
which allow us to compare individual elements; complex
graph expressions which allow for universal and existential
quantification; and the incorporation of NLP rules or other
external features. As such they are an ideal rule represen-
tation for the analysis of argument diagrams, user-system
interaction logs, and other educational data.

A sample rule is shown in Figure 2. This rule is designed
to identify cases of uncompared counterarguments, that is:
there is an opposing arc O from the citation a to the node t
and also a supporting arc S from the citation b to the node
t, however, there exists no comparison arc between the two
citations a and b. This is designated by the negated arc ¬c.
Here node t is either a claim or hypothesis. The variable
elements O and S are defined by recursive production rules
which are not shown. Those rules define supporting paths
as chains of supporting arcs and opposing paths as chains of
supporting arcs with any odd numbered (including single)
chain of opposing arcs.
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This example rule was designed by a domain expert in ar-
gumentation. It is designed to identify cases where a stu-
dent has presented conflicting background information but
has made no attempt at resolution. This is a critical struc-
tural flaw that is commonly found in student-produced ar-
guments. Students at all levels frequently absorb the lesson
that they must show conflicting citations but routinely fail to
explain those citations or to resolve the differences in a way
that clarifies their own argument. As we have shown pre-
viously such expert-designed rules can be empirically-valid
and predictive of student performance [16]. However manu-
ally designing rules can be both costly and inefficient.

Thus our goal is to automatically induce meaningful rules,
rules that highlight structural flaws or argumentation errors;
rules that generalize beyond basic types; and rules that in-
clude negated elements(detecting non-existing cases).

2.3 Graph Grammar Induction
Current grammar induction algorithms fall into one of two
broad categories: frequent subgraph matching, or graph
compression. Frequent subgraph algorithms include Yan
and Han’s gSpan algorithm [32], Inkokuchi’s AGM [1], and
the FSG algorithm [20]. These algorithms carry out con-
trolled graph walks to identify common structures. They
are quite effective, particularly in grounded domains such
as cheminformatics where the graphs, in this case molecu-
lar models, have low degree and exact matches are required.
However the algorithms do not support disjoint subgraphs,
negation, or generalized elements. While we can, in theory,
insert explicit negation arcs that would expand the size of
the graphs exponentially and thus make any search process
intractable. Similarly, while we could replace individual el-
ements with generalized forms that would simply force the
system to use a smaller range of types and would not al-
low for context-sensitive generalization of elements. These
algorithms are also ill-suited for identifying errors as the
search process is strictly unsupervised and finds frequently-
occurring structures without reference to external weights.

Graph compression algorithms such as Subdue take a differ-
ent approach to the problem. Subdue is a recursive beam-
search algorithm that generates a hierarchical grammar by
recursive collapse based upon the MDL principle [5]. Sub-
due operates by iteratively identifying the most frequently
occurring arc in the graph and then reducing it to a new
variable node. Unlike gSpan the resulting grammar is hier-
archical and the beam search process can be used for super-
vised learning given a suitable set of positive and negative
examples [11]. The candidate graphs are ranked according
to a normalized error metric:

(PosGraphsNotCovered+NegGraphsCovered)

TotalExamples

While Subdue is more flexible than the frequentist approaches
it too does not support generalized elements, negation, or
disjoint subgraphs.

2.4 Related Work
We have previously shown that domain experts can hand au-
thor augmented graph grammars that are empirically-valid
and which can be used as features in a regression model
to automatically grade student-produced diagrams [16, 17].

In more recent experiments we have also shown that it was
possible to apply EC to induce graph grammars that are
positively correlated with argument grades and that we can
apply χ2-filtering to select unique rules from the large space
of candidates [19]. We were also able to show that the in-
duced rules outperformed rules generated by both Subdue
and gSpan and outperformed similar expert rules that fit
into the limited rule space. The rules produced in that study,
however, were limited in scope. While they supported dis-
joint graphs, they did not identify errors, and did not sup-
port generalized elements or negation. In this work we will
build upon these results to include generalization and nega-
tion, and we will compare the resulting rules to a full set of
77 hand-coded expert rules.

3. METHODS
We conducted two experiments on the induction of Aug-
mented Graph Grammars using EC. First we applied EC to
induce graph rules composed of static node and arc types
that were both positively and negatively correlated with the
overall argument quality. That is, we sought to identify
ground rules that either highlighted good features of argu-
ments (positive) or matched structural flaws(negative).
We then compared them to expert-produced rules and to
rules induced by the Subdue and gSpan algorithms. In our
second experiment we applied EC to induce rules that also
incorporated generalized nodes as well as negated arcs (de-
tecting non-existing cases). We describe them below.

Evolutionary Computation is a general beam-search algo-
rithm based upon Natural Selection. The EC algorithm be-
gins with a population of candidate solutions in a shared
solution representation. This population may be randomly
generated or supplied by the user. The individual solutions
are then ranked by means of a fitness function which may
be an absolute performance metric or a form of tournament
selection. The next generation of the population is then
formed by a combination of fitness proportional selection,
crossover or recombination of candidate solutions, random
mutation of solutions, and elitist cloning. EC algorithms
proceed iteratively until a given fitness threshold is reached
or a fixed number of generations has passed. EC has been
used in a number of applications such as tuning Neural Net-
works [21], and evolving computer code [2].

EC has a number of advantages over other special-purpose
induction algorithms. Firstly, it is very flexible, the behav-
ior of the system is determined by the user-specified solution
representation and the genetic operators. This makes it easy
to tune the behavior of the system to include new types of
elements or to test out alternative inductive biases. Sec-
ondly, EC is very robust, the basic algorithm can be applied
in a wide range of domains and it can be used in areas where
the contours of the search space is unknown. There are a
number of widely-available EC systems. For the purposes
of this research we used pyEC an open-source EC engine
[18] coupled with AGG an engine for graph matching using
Augmented Graph Grammars [15].

The rules induced in Experiment I consisted entirely of ground
nodes and arcs while the rules induced in Experiment II in-
cluded generalized node types and negated comparisons as
shown in Figure 2. For both experiments we assessed the
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Figure 3: Canonical matrices for crossover.

fitness of the rules using the same nonparametric frequency
correlation that we discussed in Subsection 2.4 with the tar-
get values being maximized or minimized depending upon
the experimental goals.

Mutation in the EC algorithm is a general-purpose opera-
tion that is designed to promote exploration by introducing
heterogeneity into the population. For this set of experi-
ments we applied basic point mutation that added, deleted,
or modified individual graph elements (see [33, 19]). Here
mutation occurred with a small constant frequency when
individuals were added to each population.

For these experiments we employed stable matrix crossover
based upon the work of Stone, Pillmore, & Cyre [28] illus-
trated in in Figure 3. In this form of crossover we select
a pair of parent graphs using fitness-proportional selection
and represent them as adjacency matrices (P0). The nodes
are represented by letters on the rows and columns, while
the arcs are represented by the numbered cells within the
table. Empty cells indicate the absence of an arc. The order
of elements in the matrices is canonical and is determined
by the order in which the nodes were added to the rule.

On crossover we align the nodes and arcs in the parent ma-
trices and then randomly shuffle the nodes and arcs between
them based upon a series of coin tosses to produce the two
children (C0). Any constraints that are attached to an indi-
vidual element are copied with it. Matrix crossover always
produces two children that match the size of their parents
with all excess elements being copied directly to the larger
of the two offspring. Table 1 shows this crossover process at
the graph level. By design crossover is an adaptive process
that is designed to promote homogeneity and to preserve
good building blocks or partial solutions called introns [2].

4. DATA
Our experimental analysis was based upon two previously-
collected datasets. The first is a set of student-produced
argument diagrams for empirical research reports. The sec-
ond is a repository of hand-authored rules defined by domain
experts. Both datasets were collected as part of our prior
work on the diagnosticity of argument diagrams [16, 17].

A

B C

D

1

3

4

5(P0)

E

F G

7(P1)

E

B G

D

1

3

5(C0)

A

F C4

7(C1)

Table 1: Graphical representation for crossover.

4.1 Argument Data
Our repository of argument diagrams was collected at the
University of Pittsburgh in a course on Psychological Re-
search Methods. Students in the course learn about design-
ing, conducting, and reporting on empirical research. The
course has a significant writing component. Students com-
plete two research projects over the course of the semester
both of which result in a written report modeled on a confer-
ence publication. They are allowed to work on the projects
individually or as a team of two. For the purposes of our
study, the students were required to plan their written argu-
ments graphically before writing them. The diagrams were
authored using LASAD, an online tool for argument dia-
gramming and collaboration [14]. The diagramming ontol-
ogy contained four types of nodes: citation, claim, current
study and hypothesis; and four types of arcs: supporting,
opposing, comparison, and undefined. Currstudy nodes are
used to represent factual information about the study such
as the target population. Undefined arcs represent cases
where nodes provide clarification or concept definitions.

After removing dropouts and one diagram containing a sin-
gle node, we collected a set of 104 paired diagrams and es-
says from the course. These diagrams and essays were in-
dependently graded by an experienced TA according to a
parallel rubric with 14 questions that were focused on the
argument’s quality, coherence, use of citations, and other
criteria. In this work we will focus on the gestalt grades
for overall graph and essay quality. The gestalt grades were
assigned on an 11 point scale from -5 (worst quality) to +5
(complete, coherent, and persuasive) at 1

2
point intervals.

This same dataset was used in our prior work [19].

4.2 Expert rules
In parallel with data collection, we also collaborated with a
group of domain experts to define a set of 77 a-priori argu-
ment rules. These rules were designed to identify individ-
ual features of argument diagrams or sub-graphs that were
consistent with high quality argumentation or which repre-
sented structural flaws. Thirty-four of these rules focused on
basic features such as the size or order of the diagram, the
average number of parents and children, or the presence of
empty elements. The remainder were complex rules that de-
scribed the relationship between elements or matched larger
graph structures such as the uncompared counterarguments
shown in Figure 2. These rules included features that dealt
with the text inside the elements, appropriate grounding of
hypotheses or claims in citations, connectedness of the dia-
gram, and the appropriate use of individual elements.
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In prior work we evaluated whether or not these rules were
empirically-valid. That is whether or not they correlated
with the independently-assigned diagram grades and whether
or not they could be used to predict the paired essay grades
[16, 17]. In that work we assessed the validity of each indi-
vidual rule by testing the correlation between the observed
rule frequency on each diagram and the final graph or essay
grade. The strength of this correlation was assessed using
Spearman’s ρ a nonparametric correlation measure [31]. We
found that most, but not all of the rules were strongly cor-
related with the grades. We also found that some of the cor-
relations ran counter to the experts’ a-priori expectations.

5. EXPERIMENTS
In this work we induced sets of baseline rules using the Sub-
due and gSpan algorithms. We also conducted two sets
of evolutionary experiments designated EC-Base and EC-
General. The rules from each of these experiments were
compared to assess their overall performance.

Subdue: For these experiments we used Subdue V5 [4] in
supervised learning mode to induce rules that were positively
and negatively correlated with the overall graph and essay
grades. In order to induce positively correlated rules we
partitioned the graphs into positive and negative examples
based upon their graph or paired essay score. All graphs
with a grade of 0 or more were treated as positive exam-
ples, and all graphs with a negative grade were treated as
negative examples. We then ran the system to extract the
12 best rules. In order to induce negatively-correlated rules
we reversed the assignment with rules that were graded less
than or equal to 0 being treated as positive examples and
all others being treated as negative. We experimented with
more restrictive thresholds > 0 and < 0 and found the per-
formance did not improve.

gSpan: In this experiment we used gSpan v6 [34]. The soft-
ware runs in strictly unsupervised mode where it returns all
subgraphs whose frequency exceeds a user-specified thresh-
old. In this case we ran the software over our dataset and
collected all rules that exceeded a 1% threshold and then
ranked the candidate rules based upon their ρ value to iden-
tify the most positive and negative examples.

EC-Base: In this experiment, we conducted a series of
six evolutionary runs that were tuned to induce negatively-
correlated rules. Three of those runs used the graph grade
as a target and three used the essay grade. In each case
we used a fixed population size of 100 individuals and ran
the algorithm for 1,000 generations. In each generation, we
cloned the top 10 individuals directly into the next genera-
tion under elitism. We selected 10 individuals for point mu-
tation and the remaining 80 individuals for crossover, then
we copied the results over to the next generation. Fitness
values were assigned using a fixed measure of −ρ for each
individual rule. The initial populations were composed of
randomly-generated individuals containing 3 - 10 elements
each. The nodes and arcs were all ground elements and
were selected from a predefined ontology of basic types that
matched the types used in the argument diagrams.

Unlike standard EC we did not rely solely on the final popu-
lation of rules for our results. EC populations grow increas-

ingly homogeneous over time making the final population
virtual clones. In this case our goal was to induce a range of
potential rules. We therefore collected candidate rules from
each generation of the run by selecting every rule with a
ρ ≤ −0.1. The full set was used in our analysis.

EC-General: Here we conducted a series of twelve evolu-
tionary runs. Six of the experiments were tailored to induce
positively correlated rules while the rest were tailored to in-
duce negatively-correlated ones. As with EC-Base the popu-
lation size was 100, the algorithm ran for 1,000 generations,
and we used ±ρ as the basic fitness metric and the muta-
tion and crossover rate were the same as before. Unlike the
EC-Base study these rules also included negated comparison
arcs as well as two generalized node types: nodes that are ci-
tations or claims (CitOrClaim) and nodes that are hypothe-
ses or claims (HypOrClaim). These elements were chosen
for addition because they were used by the domain experts
when crafting their rules. As before we collected candidate
rules from the positive and negative runs with thresholds
of (ρ ≥ 0.18) and (ρ ≤ −0.1) respectively. These thresholds
were chosen based upon a series of exploratory runs in which
we found that the ρ values became statistically significant
after exceeding ±0.18.

6. RESULTS & ANALYSIS
Table 2 shows the number of positively and negatively corre-
lated rules for the Graph grades (columns 3 and 4) and the
Essay grades (columns 5 and 6) that were collected during
our experiments. Total designates the total number of rules
produced by each method or in the expert set, while Thresh-
old indicates the number for which ρ ≥ 0.18 or ρ ≤ −0.18
in the positive and negative cases respectively.

As Table 2 shows the EC approaches generated the largest
number of candidate rules in both the positive and negative
cases. Of the expert rules, most of them were positively
correlated with performance but less than half of them ex-
ceeded the cutoff thresholds. Indeed only two of the expert
rules did so for the essay grades. Both Subdue and gSpan
identified positively and negatively-correlated rules but only
a few of the positive rules exceeded the threshold. None of
the negative rules did so.

Next, we will describe the rules induced during our EC-Base

Table 2: Number of Positive and Negative Rules

Methods
Graph Essay

Pos Neg Pos Neg

Subdue
Total 12 2 8 10
Threshold 11 0 3 0

gSpan
Total 34 5 27 12
Threshold 12 0 6 0

Expert
Total 56 21 46 32
Threshold 25 6 0 2

EC-B
Total 82 256 172 160
Threshold 82 51 172 22

EC-G
Total 394 392 652 518
Threshold 394 193 652 30

? Threshold: number of rules with ρ ≥ 0.18 or ρ ≤ −0.18
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Table 3: Spearman correlation values for the best 3 rules in each experiment.

Positive-correlated Negative-correlated

Graph Essay Graph Essay
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Subdue .276 .270 .253 .281 .215 .181 -.050 -.022 NA -.173 -.167 -.164
gSpan .352 .314 .272 .300 .281 .261 -.137 -.063 -.05 -.123 -.102 -.075
Expert .427* .338 .329 .180 .138 .137 -.238 -.236 -.202 -.256 -.218 -.148
EC-B .371 .369 .362 .334 .334 .319 -.272 -.272 -.271* -.233 -.233 -.233

EC-G .396 .391* .385* .357* .357* .356* -.273* -.272* -.270 -.269* -.269* -.269*

? The best of results for Experiment I is in bold;
? ‘∗’ is for best of results across both Experiment I and II.

experiment and we will discuss how they compare to the
expert rules and the rules induced by Subdue and gSpan. We
will then discuss the EC-General rules and compare them to
our earlier results.

6.1 Experiment I: EC-Base
Rows 1-4 in Table 3 list ρ values for the three best rules
from the four methods. The bold values indicate the best
performing rule among the sets. As the table illustrates EC-
B outperformed both Subdue and gSpan across the board.
And it outperformed the expert rules in most cases. The
lone exception being the best positive case for the graph
grades and the best negative case for the essay grades.

The best positively-correlated expert rule for the graph grades
matched arcs with empty text fields. The best negatively-
correlated expert rule with the essay grade matched graphs
with no hypothesis nodes. Both of these rules relied on com-
plex grammar features, textual rules and expressions, that
were outside the scope of our current experiments.
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Figure 4: EC-Base: Strongest Positively-correlated
Rules Induced by EC.

Figures 4 and 5 illustrate the best positive and negative rules
induced by the EC-Base runs. In Figure 4 graph rule B-G-P
represents a rule that has 5-nodes, two of which are cita-
tions (c0 & c1) that support a shared claim node (k0). The
remaining nodes are a single claim (k1) and a hypothesis
(h) which may or may not be connected to the rest of the
structure. This reflects a graph where the authors identi-
fied at least two related citations that can be synthesized
to support a single claim and where they included both a
hypothesis and another claim. This is one of the structures

k0 k1

k2 k3

cs0 cs1
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{
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Figure 5: EC-Base: Stronges Negatively-correlated
Rules Induced by EC.

that students have been encouraged to make in their argu-
ments as it shows an ability to synthesize citations to form
a complex claim.

Interestingly, the best positive essay rule (B-E-P) is very
closely related to the expert rule shown in Figure 2. Here it
selects for the presence of a hypothesis node (h) that is di-
rectly connected to two citations (c0 & c1). Here c0 directly
supports h while c1 directly opposes it. Given that the al-
gorithm could not induce variable arcs it is not surprising
that it does not include paths. The absence of a comparison
arc, however, is interesting. As we noted above the students
were instructed to include one. The fact that this rule per-
forms so well despite lacking one suggests that the students
did not regularly do so.

Figure 5 shows the best negative rules. As stated above, we
expect that these rules will flag errors or persistent struc-
tural flaws. B-G-N consists of 4 claim nodes (k0 − k3) and
two currstudy nodes (cs0 & cs1) all of which may or may
not be connected to one-another. While this rule has a high
correlation with the grade, its semantic meaning is unclear.
It is possible that it is detecting is overly large graphs that
lack sufficient focus. In future work we will evaluate the
matching graphs with domain experts to assess this.

B-E-N is easier to interpret. In this case the rule contains a
single claim node (k) which is connected to a citation node
(c) via an undefined arc (u). This is a clear violation of the
semantic guidance that students were given. The students
in the experiment were instructed to use unspecified arcs
for definitions or clarifications only. Some students instead
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used them when they were unsure about the strength of their
evidence or did not understand the citation. The students
were also instructed to use citations to add information to
their claims, not the other way around. For a student to
use an unspecified arc in this way suggests that they were
unsure about the structure or content of the argument.

6.2 Experiment II: EC-General
The last row of Table 3 shows the performance of the EC-
General rules. These rules were compared against all of the
rules in Experiment 1. The best performing rules across
both experiments are in bold and marked *. As Table 3
shows EC-General produced better performing rules than
EC-Base. All but one of the ρ values on the final row exceeds
the corresponding value on the fourth, and the one that does
not do so falls behind by only 0.001. EC-General outper-
formed the best negative expert rule for the essay grades
(-0.269 vs. -0.256), despite the fact that the expert rule
relied on complex expressions. The best expert rule for the
graph grade still outperforms EC-General. Thus, our results
for EC are better than all other methods save for one expert
rule that relies on novel textual features.

Figure 6 shows the best positively-correlated rules for the
graph and essay grades. G-G-P matches cases where a sup-
porting arc has been drawn from a citation or claim to a
claim or hypothesis. In short, it matches correct uses of
supporting arcs. This is a good feature that indicates well-
supported arguments. G-E-P, by contrast, is complex and
selects for a graph with three claim nodes (k0−k2) and two
uncompared citations (c0 & c1), where c1 directly supports
a hypothesis or claim (hk) which in turn has an unspecified
arc to a citation or claim node (ck). The semantic meaning
of this rule is unclear and will require deeper analysis.

Figure 7 shows the strongest negatively-correlated rules. As
with G-E-P, G-G-N, is somewhat hard to interpret. It se-
lects for a number of disjoint nodes, and for the presence
of a currstudy node (cs0) as well as a claim (k3) which are
not connected via a comparison arc. Further analysis is re-
quired to determine why this rule holds. G-E-N, by contrast
represents a clear variation on B-E-N. Here we select for a
hypothesis or claim node (hk) that has an undefined arc to
a citation along with a separate hypothesis node that may
or may not be connected. This rule is interesting because
in part it will select a superset of the graphs matched by
B-E-N but the presence of the extra hypothesis node will
restrict that somewhat. This suggests that this rule may be
relatively specific to our dataset. We plan to examine the
matching graphs to assess its generality.

7. CONCLUSIONS
In this paper, we reported our work on the automatic induc-
tion of Augmented Graph Grammars for student-produced
argument diagrams through EC. In prior work we demon-
strated that hand-authored expert rules can be empirically-
valid and that those valid rules can be used for automatic
grading. We have now shown that it is possible to auto-
matically induce complex rules for argument diagrams that
match both positive and negative examples and which can
therefore be used as features for automatic grading. We have
also shown that the induced rules outperform all but one
of the expert rules and the rules induced by other general-
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purpose grammar induction algorithms. The strongest ex-
pert rule was outside the scope of this experiment.

In future work we plan to work with domain experts to eval-
uate these rules. Our goal will be to determine whether the
rules are semantically valid, and whether or not they can
serve as the basis for automatic hints. We will also assess
whether or not the rules can be used for data-driven grading
by using them as features in a regression model. And finally
we will expand the scope of our EC induction to include the
automatic induction of hierarchical rules with expressions
and complex element constraints.
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ABSTRACT
This paper proposes a new technique for analysing the be-
haviour of students on an online course. This work considers
a range of social learning behaviours supported in our re-
cently designed and implemented collaborative learning sys-
tem which supports students giving and receiving feedback
on each other’s developing work and practice. The course
was delivered to several thousand students on Coursera dur-
ing which students were directed onto our social learning
environment to take part in group work and assessment ac-
tivities. This work introduces a swarm intelligence tech-
nique, Stochastic Diffusion Search (SDS), and shows how
it can be adapted and applied to our data in order to per-
form classification tasks. The novelty of the approach is not
only in using this technique, but also applying it to data
linked to social behaviour (i.e. how students interact with
each other) which differentiates the work apart from many
clickstream analysis studies. This paper investigates what
combined activity is the best predictor of success or failure
in the course. The aim is to argues that the results ob-
tained using the proposed approach indicate the promising
potential of predicting students performance through apply-
ing swarm intelligence technique to social behaviours. This
work has a number of potential benefits including design-
ing better social learning systems, designing more effective
social learning and assessment exercises, and encouraging
disengaged students. In addition, this work is an important
step in addressing our long term goal of evidencing how crit-
ical student learning takes place as they give and receive
feedback to and from each other on work in progress.

Keywords
Social learning, swarm intelligence, education system mod-
elling, MOOC

1. INTRODUCTION
∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.
†Corresponding author

Increasingly researchers are focusing on the significance of
social learning and investigating its impact within the var-
ious online learning environments. Acknowledging the im-
portance of collaboration and ‘teamwork’, as an embedded
element in the Massive Open Online Courses (MOOCs), this
method of learning is desirable for many employers who rely
on highly collaborative and online-based works. Our pro-
gramme of work is concerned with designing a novel learning
technology, online courses and assessments, which provide us
with a range of data we can use to understand how learning
takes place through online social interaction. Our pedagogy
is influenced by our home institution’s “art-school” peda-
gogy across practice-based subjects (such as art, music and
design) where students learn by sharing “work in progress”
within tutor groups and giving and receiving feedback to
each other. The aim of this work is to use learning analytics
to build strong arguments for the adoption of social learn-
ing pedagogies supported by innovative technology. There-
fore this paper focuses on extracting information from social
learning activity logs, not the full range of more traditional
courseware access and activity logs. The objective is to gain
a better understanding if these activities have any measur-
able relation to learning, and if so which are the most impor-
tant activities and in which combinations. The analysis pre-
sented here is a first step in that direction, where the attempt
is to predict if students will pass or fail a course, using only
low level user interface telemetry data gathered from our so-
cial learning platform. Given the undeniable significance of
data classification in different and diverse scientific domains
(e.g. computer science, psychology, medicine), various tech-
niques have been proposed over the years. Nature-inspired
metaheuristic algorithms are among one of the categories
which aimed at providing solutions to this problem.

In this paper a novel method in addressing data classification
in the context of educational data is used where a swarm
intelligence algorithm is adapted for this purpose. A recent
review [2] details the extensive applications of this algorithm
in the last two decades in various fields (e.g. discrete and
global optimisation, pattern recognition, resource allocation,
medical imagining, etc).

Proceedings of the 9th International Conference on Educational Data Mining 264



The research questions which drive this paper are as follows:

1. How can the proposed swarm intelligence technique
(SDS) be applied to educational data?

2. What kinds of social learning activities, and what com-
binations of social learning activities are the best pre-
dictors?

3. Does social interaction data contain strong predictive
potential of student success?

4. How does an SDS analysis of social learning data help
us in designing and delivering learning activities, in im-
proving social/group learning activities, and in build-
ing better social learning systems?

In this paper, first Stochastic Diffusion Search (SDS) algo-
rithm is explained, detailing its behaviour and highlighting
one of its main features (i.e. partial function evaluation).
Then, an introduction is given to the classification problem
in general followed by a brief section on the nature of the
educational dataset used in this paper and the features avail-
able from the dataset. After elaborating on the data in the
datasets in the context of the work, the swarm intelligence
algorithm used is adapted for the purpose of the experi-
ments conducted in this paper and the results are reported.
A discussion on the behaviour of the proposed algorithm
is presented showing its potential in using all the available
features as well as identifying the most significant features.
Finally, the paper is concluded with the summary of the re-
search reported in the paper along with directions for future
research.

2. RELATED WORK
With the increasing use of online learning platforms, a large
number of researchers have been working on predicting grades
from students performance over the course of the studies.
This topic of research is of importance because, for exam-
ple, only in the United States several hundred thousand stu-
dents drop out of high school every year and perhaps inter-
ventions can provide the means to reduce the number of
those falling behind in their studies [1, 7]. With the growing
interest in MOOCs as alternative or adjunct learning plat-
forms, behaviour prediction has attracted the attention of
many educational data analyst, such as Brady et al. [15]
who used higher granularity temporal information for their
analytics work; in another work, Macfadyen et al. [8] ex-
plain the concept of “an early warning system” for educator,
aiming to provide the means for the educators to intervene
with an appropriate set of actions to improve the perfor-
mance of the weaker students; a similar work was presented
by Rogers et al. [11] which aims to identify students at rist
of failure. The predictive power of demographics versus ac-
tivity patterns in MOOCs are discussed by Brooks et al.
[3] focusing on whether it is possible to find a link between
performance and demographics. Other researchers, such as
Coleman et al. [4] or Elbadrawy et al. [6], have also been
exploring whether it is feasible to identify behavioural pat-
terns for prediction. In addition to attempting to improve
students performance, Yang et al. [14] have been focusing
on the concept of dropouts which is a critical challenge for
online courses. Considering the above recent work, it is ev-
ident that extracting useful knowledge from education data
should ultimately be incorporated in the design of the on-
line systems. In a recent work by researchers from Harvard

University and MIT, Whitehill et al. [13] emphasised on
the importance of intervention and especially automatic in-
tervention in MOOCs in order to take measures to reduce
the number of students quitting; they claim that their pro-
posed system might encourage students to return into the
course. In another work, by Rollinson and Brunskill, [12]
emphasis has been put on the importance of coupling pre-
dictive models with an alternative student model and policy
(which constitute the core of the Intelligent Tutoring Sys-
tems), focusing again on the importance of using predictive
models along with other tools. Having mentioned the above
research, it is important to state that arguably one of the
important features in MOOCs is enabling learners to discuss
their work with their peers and receive feedback. In a recent
research, Olsen et al. [9] direct the prediction power towards
collaborative learning environment; in their work, they ar-
gue that by adding collaborative learning features they were
able to enhance their understanding on the impact of collab-
orative learning. Tightly related to the mentioned work, the
importance of social centrality in the context of MOOCs is
discussed by Dowell et al. [5] where they adopt an approach,
which uses language and discourse as a tool to explore the
association with the existing and established measures re-
lated to learning (i.e. traditional academic performance and
social centrality). While this work does not endorse or reject
the impact of social learning, it clearly shows an increasing
interest in exploring the impact of collaborative learning.

3. STOCHASTIC DIFFUSION SEARCH
Stochastic Diffusion Search (SDS) [2] which was first pro-
posed in 1989 is a probabilistic approach for solving best-
fit pattern recognition and matching problems. SDS, as a
multi-agent population-based global search and optimisation
algorithm, is a distributed mode of computation utilising
interaction between simple agents. Its computational roots
stem from Geoff Hinton’s interest in 3D object classifica-
tion and mapping and its applications span from continu-
ous optimisation to medical imagining. The SDS algorithm
commences a search or optimisation by initialising its pop-
ulation and then iterating through two phases: the test and
diffusion phases. In the test phase, SDS checks whether the
agent hypothesis is successful or not by performing a hy-
pothesis evaluation which returns a boolean value. Once the
activity (i.e their status as being ‘true’ or ‘false’) of all the
agents are determined, successful hypotheses diffuse across
the population and in this way information on potentially
good solutions spreads throughout the entire population of
agents. In other words, each agent recruits another agent for
interaction and potential communication of hypothesis. The
spreading of information occurs during the diffusion phase.

In standard SDS (which is used in this paper), passive re-
cruitment mode is employed. In this mode, if the agent is
inactive, a second agent is randomly selected for diffusion;
if the second agent is active, its hypothesis is communicated
(diffused) to the inactive one. Otherwise there is no flow of
information between agents; instead a completely new hy-
pothesis is generated for the first inactive agent at random.
Therefore, recruitment is not the responsibility of the active
agents. In this work, activity of each agent is determined
when its fitness is compared against a random agent (which
is different from the selecting one); if the selecting agent has
a better fitness (smaller value in minimisation problems)
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Table 1: The list of features logged, along with examples
of the total figures for a single student. The last column
represents the grade correlation of each individual figure.

Description Example Corr
F1 Play video 199 0.41
F2 Delete a reply 16 0.12
F3 Open item in search result list 0 0.15
F4 Report problem with media 22 0.48
F5 Load media 7580 0.41
F6 Report problem with reply 24 0.26
F7 Delete an annotation 0 0.19
F8 Save after edit 0 0.15
F9 View my files 954 0.40
F10 View set of shared files 8865 0.41
F11 Save after edit 0 0.11
F12 Delete video 0 0.18
F13 Periodically log and comment

when video is playing
1928 0.30

F14 Play region and view thread 1313 0.53
F15 Save user profile 32 0.23

Course final grade 100 1.00

than the randomly selected agent, it will be flagged as ac-
tive, otherwise inactive. A higher rate of inactivity boosts
exploration, whereas a lower rate biases the performance to-
wards exploitation.

4. CASE STUDY AND DATASET
The analysis presented in this paper is based on a dataset
gathered during a seven week creative programming course
on Coursera which ran in Summer 2014. The course pre-
sented students with a series of worked example programs
written using Processing [10] that were either musical, graph-
ical or game based. It was assessed using weekly quizzes
and three, biweekly peer assessments. The peer assessments
required the students to select one of the tutor-supplied
worked examples and extend it in some way of their choos-
ing. They then had to create a five minute screencast video
wherein they explained the changes they had made from
the example code and demonstrated the running program.
This video was uploaded to our social learning system and
then a link to this was submitted to the main MOOC LMS.
Our system allowed them to place comments along the time-
line of the video and to view a range of suggested content
from other students, such as highly commented and uncom-
mented videos. Our system collects detailed logs of certain
interface elements that the user clicked on or moused over,
including a user id and a timestamp. The data set used in
this paper consists of these clickstream logs plus final grades
achieved on the course. There were a total of 993 students
who created logs on our system and gained a final grade
on the Coursera platform. The dataset spanned a period of
about seven weeks. Each student’s log data and final grade
was converted into a feature vector containing totals for all
of the observed log types taken over the entire time period
of the study. Table 1 shows an example of such a vector.
The research began by attempting to correlate individual
elements of the vector to final grade but individual corre-
lations were statistically insignificant to predict grades so
instead a multivariate classification approach is attempted,
the results of which form the remainder of this paper. The
main aim was to label students as pass (≥ 50) or fail (< 50).

5. APPLY THE SDS ALGORITHM
Here the process through which the SDS algorithm was adapted
to perform the classification tasks is detailed and the steps
taken during the test and diffusion phases are explained.
In order to apply this swarm intelligence algorithm to the
dataset the following are considered:

• Search space is the entire dataset
• SDS hypothesis refers to a student record
• Student attributes: Each student record has fif-

teen attributes or features (i.e. play, report media,
region block, etc; see Table 1).
• Micro-features: The fifteen features of each student

record are considered the micro-features of the hypoth-
esis. Therefore each SDS hypothesis has fifteen micro-
features referring to the attributes of the student.

Next, the phases used in SDS algorithm are highlighted and
each phase is described briefly in the context of the dataset
presented.

During the initialisation phase, one student is chosen ran-
domly from the dataset and is set as a model. Then each
agent is randomly associated with a student record from the
search space. During the test phase, each agent (which is
already allocated to a student) randomly picks one of the
fifteen micro-features and compares its value against that of
the model. If the difference between the two corresponding
micro-features is within a specific threshold, τd (where τ is
the threshold and d is the dimension) the agent becomes ac-
tive, otherwise inactive. The process in the diffusion phase
is the same as the one detailed in the algorithm description:
each inactive agent picks an agent randomly from the popu-
lation; if the randomly selected agent is active, the inactive
agent adopts the hypothesis of the active agent (i.e. they
refer to the same student as their hypothesis), otherwise the
inactive agent picks a random student from the dataset.

Categories, Classes and Termination The agents it-
erate through the test and diffusion phases again until all
agents are active. At this stage, the students referred to by
all the active agents are assigned to a category. Addition-
ally, the number of active agents on each student is logged.
Once a category is determined, the process is repeated from
the initialisation phase where agents are initialised through-
out the search space and the first student which has not
yet been assigned to any categories is set as the new model.
Then the algorithm iterates through the test and diffusion
phases until all students are allocated to a category. Finally,
categories form the classes, and when there exist students
that belong to more than one class, they will be allocated
to the one which has attracted a larger number of active
agents. The only tunable parameters for SDS is the swarm
size, N which is empirically set to N = 10, 000. Threshold,
~τ , which is the acceptable distance between the model and
other samples for each dimension, d, is calculated using the
following formula:

~τd =

c∑

t=1

∣∣∣∣∣∣

max
(
~Itid

)
− min

(
~Itid

)

c

∣∣∣∣∣∣
d = [1, 2, ..., 15] (1)

where c is the number of student types or classes in the
dataset (i.e. pass and fail); ~Itid represents the value of ith

student with type t and dimension d. There are 2 student
types (c = 2) and the dimensionality of the problem is 15
(see Table 1). Therefore the difference between the mini-
mum and maximum values in each band (e.g. pass and fail)
is calculated, then the sum of the differences in each dimen-
sion is averaged and used to calculate the threshold. Using
the formula above the threshold ~τ is calculated using the
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Table 2: Weekly breakdown of and fail/pass rate
Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7

Active students 245 974 629 683 488 528 265
Ratio 25% 98% 63% 69% 49% 53% 27%
% of fails 28% 39% 28% 16% 10% 5% 2%
% of passes 72% 61% 72% 84% 90% 95% 98%

training dataset. Using the threshold vector presented, if
the randomly picked model falls on the first class (e.g. the
fail class), it is likely that the active agents have a bigger
presence in this class. It is worth noting that while in some
iterations there is a high presence of active agents for some
students, in some other iterations there is a high number
of inactive agents on the same students. The reason why a
student record could make an agent active in one iteration
and inactive in another can be explained through SDS’s ran-
dom micro-features selection: each record consists of fifteen
micro-features (the same as the number of attributes for
each student), therefore if an agent picks one of the micro-
features that are within the threshold, the agent becomes ac-
tive, but if it randomly picks one of the other micro-features,
the agent becomes inactive. Deducing from this, it is evi-
dent that having more micro-features within the range of the
model results in more agents becoming (and staying) active,
and as a result forming a stable category.

6. EXPERIMENTS AND RESULTS
In this section, the results of several experiments are re-
ported along with a discussion on the relevance of the ex-
periments to the research questions. The total number of
students who used the online learning platform and obtained
a final grade was 993. The number of active students each
week and the fail/pass rate of students are detailed in Table
2, and the SDS algorithm is used as the classifier.

6.1 Experiment I: Weekly data analysis
The logged actions of all students who have participated in
the previous and current weeks are cumulated and fed into
the system for analysis.

One of the important elements in the cumulative data is the
distribution of fail and pass in each of the training and test
datasets. Fig. 1 shows this distribution in the test dataset.
Note that the training datasets will have the same distribu-
tion as the test dataset. As illustrated in the figure, other
than the first week, in the rest of the week, the cumulative
data shows 39% and 61% of the data belonging to the fail
and pass categories respectively. The classifier is trained and
the prediction accuracy of the classifier is evaluated on the
test datasets.

Table 3 and Fig. 2 show the weekly prediction-accuracy on
the test datasets. As expected, and due to the presence of
more data as students progress to the next weeks, there is
a gradual increase in the prediction accuracy of the swarm
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Figure 1: Pass / fail ratio in test datasets of cumulative data

Table 3: Weekly accuracy percentages
Mean Median StDev Min Max

Week1 38.40 39 3.67 32 46
Week2 46.97 47 1.59 45 53
Week3 59.93 60 2.83 49 64
Week4 72.07 74 6.44 54 80
Week5 74.37 78 8.83 47 83
Week6 82.30 84.50 5.67 59 87
Week7 80.67 84 9.47 50 88

intelligence classifier. Looking at the maximum value in Ta-
ble 3, the prediction accuracy rises to 88% on week 7. The
notable increase in the accuracy starts in week 4 (i.e. with
median accuracy of 74% and the maximum accuracy of 80%,
allowing the teachers to have a rough estimate about the stu-
dents who are likely to pass or fail. The results reported in
this paper are based on 30 runs for each experiment.

6.2 Experiment II: Analysis of feature vector
As highlighted before, one of the main purposes of analysing
the presented data is identifying weaker students as early as
possible and therefore finding ways of improving their per-
formance. However, there are many features collected from
the online learning platform and identifying the “more rele-
vant” features from the entire feature vector (of size 15) is of
importance. Therefore, each of the features, have been sin-
gled out and used both for training the swarm intelligence
classifier as well as the evaluation phase. The summary of
the solo performance of these features are reported in Fig.
3 and Table 4. For instance, feature 13 (F13 or ‘playing’)
in all weeks (except week 1, 2 and 3) is the most influential
feature and has returned the highest prediction accuracy.
While the grade correlation of this feature is only 0.41, this
finding highlights the role of watching videos in the learning
process. Knowing what the feature represents, its value is
evident and the algorithm proved capable of identifying this
important feature. Identifying the most influential features
would entail that the analysis could be focused on the n most
important features, instead of stretching the computational
power to consider all the input features for predication anal-
ysis. The results in this section demonstrate that there could
exist some individual features which would provide stronger
prediction power when used individually than along with the
other features.

6.3 Experiment III: Feature combinations
As shown in Table 4, in order to identify the important fea-
tures, the three most influential features in each week are
labelled 1-3 in brackets. The impact of each feature is cal-
culated by giving the weights of 6 to the most influential
feature (shown as (1) in the table), and 3 and 1 to the sec-
ond two influential features (shown as (2) and (3) in the
table). The impact of each feature is then calculated us-
ing the aforementioned weights. The six most important
features are listed below in the order of importance:
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Table 4: Analysing the impact of individual features (1-15).
Prediction accuracies are shown in percentages. The three
most influential features in each week are labelled 1-3. The
impact of each feature is calculated by giving the weights of
6 to the most influential feature (shown as (1)), and 3 and 1
to the second two influential features (i.e (2) and (3)). The
impact of each feature is calculated using the weights.

Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Impact

F1 32 39 49 74(2) 76(2) 84(1) 83(2) 15
F2 32 39 39 39 39 39 39
F3 34 45 42 44 45 46 47
F4 32 39 39 54 34 41 74
F5 45(3) 59 65(1) 71(3) 75(3) 73(3) 74 9
F6 32 39 39 41 39 39 39
F7 32 39 39 39 39 39 39
F8 32 39 39 39 39 46 45
F9 50(2) 61 (2) 57 68 70 78(2) 77 9
F10 58(1) 62(1) 65 (1) 69 71 72 73 18
F11 32 39 39 39 39 39 39
F12 32 39 39 39 39 39 39
F13 32 39 58(3) 82(1) 83(1) 84(1) 85(1) 25
F14 38 52(3) 60(2) 71(3) 74 78(2) 82(3) 9
F15 32 39 40 40 40 40 40

1. F13: Periodically log when video is playing
2. F10: View set of shared files
3. F01: Play video
4. F05: Load media
5. F09: View my files
6. F14: Play region and view thread.

The top six features include a combination of individual
learning activities (e.g. playing a video to watch, as well
as viewing the files saved by the student themselves) and
social learning activities (e.g. periodically making notes
and logging information while watching a video, which could
be uploaded by the student themselves or their classmates,
knowing that the logged items are visible to the rest of the
students) all contributing to the learning process. Inves-
tigating the above list, one of the interesting observations
is that the social learning activity (of interacting with the
posted video) has had the largest score (i.e. 25 as shown in
Table 4) and is identified as the most important feature.

In the first part of this experiment, the six highest impact
features shown before are selected as input to the system and
results are demonstrated in Table 5. While the results are
comparable to the previous experiment when all the features
where used, the outcome exhibits a slight reduction in the
prediction accuracy which could be due to some of the con-
flicting nature of the features (e.g. combining features which
are as diverse as having the impact of 25 and 9). Please note
that this hypothesis should be treated with caution as a more
in-depth analysis is required to verify this thought. In the
second experiment of this section (and in an attempt to ex-
plore the previous hypothesis), only two of most significant
features (which are the social learning features) are used;
the two features used are F13 (periodically log when video
is playing) and F10 (view set of shared files). As shown
in Table 6, the results demonstrate the highest prediction
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Figure 3: Impact of using individual features. Layers in this
diagram represents accuracy of features in each week.

accuracy found on this dataset from week 4 of the term.
The median prediction accuracy for week 4 is 83% which is
10% and 9% higher than when six most important features
and all features are used respectively (see Tables 3 and 5).
Comparing the prediction accuracy reported in Tables 3, 5
and 6 shows that while using the two most important so-
cial features, does not improve the prediction accuracy at
the very early stages of the term (week 1, 2 and 3), it does
enable a stronger prediction from the middle week (week 4)
onwards. While this may or may not be extendible to other
case studies, this finding highlights the usefulness of inves-
tigating the positive or negative nature of social features in
online learning environment.

6.4 Discussion
Here, the key research questions raised in Section 1 are dis-
cussed next and various aspects of the findings are anal-
ysed. As stated in the first research question, this paper
applies the Stochastic Diffusion Search (SDS) to classify ed-
ucational data. The potential and strength of the this al-
gorithm is demonstrated in the results and the flexibility of
the algorithm to deal with various feature vector is also high-
lighted. Given SDS’s existing ‘partial function evaluation’
feature (i.e. each micro-feature, or attribute, is used inde-
pendently of the others in the test phase), and the resulting
low computational cost of comparing samples, this algorithm
is likely to be particularly useful when applied to problems
with huge dimensionality, which is usually the case in ed-
ucational data analysis. In this context, the link between
cheap computational cost and scalability is the subject of
an ongoing research. To address the second research ques-
tion, three experiments are run (see Fig. 4). Neither of the
three experiments (using all features, 6 best features, and 2
best social features) are able to provide a reliable prediction
in the first three weeks (e.g. less than 60%) of this seven-
week course analysed in this paper; it is worth noting that
in the first three weeks, when the social features are solely
used in the analysis, the algorithm exhibits the worst out-
come, possibly due to the lack or reduced social interactions
among the students in the very first a few weeks. However,
looking at the performance of the algorithm in weeks 4-7,
it can be seen that while using all features or the six most
significant features are not causing a huge difference in week
4, the gap widens from week 5-7, showing that the use of
all features could prove better than the top six features. On
the other hand, having picked the two top features (which
are inherently social in nature and involve interactions with
other students), the algorithm outperforms the other con-
figurations and provides the prediction accuracy as high as
83% in week 4, and up to nearly 90% in week 7. To address
the third research question, the role of social features re-
flecting the social learning activities are investigated. These
features are shown to have played a significant role and as
highlighted in the fourth research question, identifying the
link between the social learning activities and the student
success in this dataset could give insight to course develop-
ers and educators with regards to designing and delivering

Table 5: Combining the most influential six features.
Mean Median StDev Min Max

Week 1 45.2 45.5 4.41 32 52
Week 2 52.5 52 2.21 48 57
Week 3 59.57 60 2.75 46 63
Week 4 72.67 74 6.22 62 82
Week 5 72.67 75 7.84 57 83
Week 6 78.43 82 8.03 55 86
Week 7 79.77 80.5 4.85 68 87
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Table 6: Combining two of the most influential features.
Mean Median StDev Min Max

Week 1 32 32 0 32 32
Week 2 39 39 0 39 39
Week 3 54.37 54 1.03 52 57
Week 4 81.4 83 4.00 66 84
Week 5 81.77 82.5 2.42 75 85
Week 6 87.4 88 1.00 85 89
Week 7 87.8 88 0.76 86 89

course activities. Having established a link between social
learning and student success, the results highlight the pos-
sibility of providing a more surgical feedback (based on the
important features verses all features) to the students who
are picked as likely to fail by the system. This study has
also shown the importance of the social features used which
could be of help when providing feedback to students.

7. CONCLUSIONS
The paper demonstrates the ability of the proposed swarm
intelligence classifier in dealing with the existing educational
data. The simplicity of this algorithm with one tunable pa-
rameter (i.e. agent size) makes it an attractive technique to
use. One of the key contribution of the paper is to provide
evidence that the data collected on our social learning plat-
form (delivered to several thousand students on Coursera),
which records the way in which students share, view and
comment on each other’s work, is related to performance.
Specifically, whilst predicting the final fail/pass of students
might be difficult on the first few weeks, the prediction ac-
curacy rises to 83% in week 4 and as high as 89% on week 7.
Given two of the social features are demonstrated to have
played an important role in the prediction accuracy of the
algorithm, as the work progresses, the authors will start to
look at questions such as what social behaviours are the
best predictors of performance? When can such predictions
be made? What kinds of social behaviour impact upon the
predicted grades of students? Is it possible to help design
interventions for students and tutors to help each other? Fi-
nally, after several years of building a system through par-
ticipatory design and concentrating on the user experience,
we are now in a position to use a data driven approach to
build systems to support communities of learners.
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ABSTRACT 
Predicting overall student performance and monitoring progress 
have attracted more attention in the past five years than before. 
Demographic data, high school grades and test result constitute 
much of the data used for building prediction models. This study 
demonstrates how data from a peer-assessment environment can be 
used to build student progress prediction models. The possibility 
for automating tasks, coupled with minimal teacher intervention, 
make peer-assessment an efficient platform for gathering student 
activity data in a continuous manner. The performances of the 
prediction models are comparable with those trained using other 
educational data. Considering the fact that the student performance 
data do not include any teacher assessments, the results are more 
than encouraging and shall convince the reader that peer-
assessment has yet another advantage to offer in the realm of 
automated student progress monitoring and supervision. 

Keywords 

Progress prediction; peer-assessment; learning analytics. 

1. INTRODUCTION 
Common examples of traditional student assessment methods are 
end-of-course examinations that constitute a very high proportion 
of final scores and other standardised and high stakes tests. 

There are, however, other student-centric, yet less practiced, forms 
of assessment. Formative assessment is a fitting example [7]. It is 
designed with the goal of helping students meet specified learning 
goals through continuous discussion, gauging and reporting of their 
performance. 

Peer-assessment is another form of assessment, which may be 
designed with summative or formative goals. It is a form of 
assessment where students evaluate the academic products of their 
peers [15]. 

Automated peer-assessment provides a rich platform for gathering 
data that can be used to monitor student progress. In such context, 
another dimension of peer-assessment emerges – its potential to 
serve as a foundation for building prediction models on top of. 

In this study, we demonstrate how this potential can be exploited 
by building linear regression models for predicting students’ 
weekly progress and overall performance for two undergraduate-
level computer science courses that utilised an automated peer-
assessment. 

The rest of this paper is organised as follows. The next section 
discusses recent advances in student performance prediction. 
Section 3 presents a brief overview of the web-based peer-
assessment platform using which the data was collected. Section 4 
discusses details of the data and the features that were selected to 

build the prediction models. Section 5 provides two interpretations 
of student progress and details how these interpretations determine 
which data shall be used for building the models. Section 6 
introduces the reader to how the prediction models are trained and 
provides details of the prediction performance evaluation metrics 
reported. Section 7 discusses the first interpretation of progress 
prediction and demonstrate the respective prediction models. 
Section 8 builds upon the second interpretation and follows the 
same procedure as section 7. Section 9 provides a short discussion 
and conclusion of the study. 

2. PREVIOUS WORK IN PREDICTING 
STUDENT PERFORMANCE 
Earlier studies in student performance prediction investigated the 
correlation between high school grades and student demographic 
data and success in college education as evidenced by successful 
completion of studies [1, 6]. 

Unsurprisingly, many of these studies were conducted by scholars 
in the social sciences and involved the use of common correlation 
investigation methods such as linear and logistic regression. The 
large majority of recent studies have, however, been conducted in 
the computer science discipline. These studies use data from 
courses administered as part of either computer science or 
engineering programmes at the undergraduate level. Of these, many 
focus on predicting performance of freshman and second year 
students enrolled in introductory level courses. 

A generic approach to student performance prediction is to predict 
overall outcome such as passing or failing a course or even 
forecasting successful completion of college as marked by 
graduation [9, 13, 14]. A further step in such an approach may 
include predicting the classification of the degree or achievement 
[8]. 

More fine-grained and sophisticated approaches involve predicting 
actual scores for tests and assignments as well as final scores and 
grades for an entire course. 

Due to the varying nature of the courses and classes in which such 
experiments are conducted and advanced machine learning 
techniques that are readily available as parts of scientific software 
packages, the number distinct, yet comparable, studies in 
performance prediction has been growing steadily. Another factor, 
the proliferation of MOOCs, has fuelled this growth with the 
immense amount of student activity data generated by these 
platforms. 

Examples of studies that utilise information from students’ 
activities in online learning and assessment platforms in predicting 
performance include [2, 10, 11]. 
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Apart from predicting end-of-course or end-of-programme 
performance, prediction models may be used to provide continuous 
predictions that help monitor student progress. When used in this 
manner, such prediction models could serve as instruments for 
early detection of at-risk students. Information provided by these 
models could then serve the formative needs of both students and 
teachers. Studies that demonstrate how prediction models can be 
used to provide continuous predictions and may serve as tools of 
early intervention include [5, 10]. 

The most common algorithms in recent literature that are used for 
making performance predictions are Linear Regression, Neural 
Networks, Support Vector Machines, Naïve Bayes Classifier, and 
Decision Trees. 

Studies that follow less common approaches include those that use 
smartphone data to investigate the correlation between students’ 
social and study behaviour and academic performance [16] and 
those that perform Sentiment Analysis of discussion form posts in 
MOOCs [4]. 

Two studies that present algorithms developed for the sole purpose 
of student performance prediction are [12] and [17]. 

3. THE PEER-ASSESSMENT PLATFORM 
In 2012, an experimental web-based peer-assessment system was 
introduced into a number of undergraduate level courses at an 
Italian university. Using this peer-assessment system, students 
completed three sets of tasks during each week of the course. The 
weekly cycle started with students using the online platform to 
submit questions about topics that were recently discussed in class. 
These questions were then reviewed by the teacher, who would 
select a subset and assign them to students, asking them to provide 
answers. The assignment of the questions to students was 
automatically randomised by the system, which guaranteed 
anonymity of both students who asked the questions and those who 
answered them. Once this task was completed, the teacher would 
assign students the last task of the cycle, in which they would rate 
the answers provided by their peers and evaluate the questions in 
terms of their perceived difficulty, relevance and interestingness. 

Eight cycles of peer-assessment were carried out in two 
undergraduate-level computer science courses, IG1 and PR2. 
Participation in peer-assessment activities was not mandatory. 
However, an effort to engage students in these tasks was made by 
awarding students with bonus points at the end of the course in 
accordance with their level of participation and the total number of 
peer-assigned marks they had earned for their answers. The design 
and development of the peer-assessment platform and the 
theoretical motivations for it are discussed in [3]. 

4. THE DATA 
Because participation in peer-assessment tasks was not mandatory, 
there was an apparent decline in the number of participants towards 
the end of both courses. In order to minimise noise in the resulting 
prediction models, only peer-assessment activity data of those 
students who completed at least a third of the total number of tasks 
and for whom final grades were available were selected for building 
the models. This led to the inclusion of 115 student records for IG1 
and 114 for PR2. 

In a previous study [2], a linear regression model for predicting 
final scores of students using the same data was discussed. 
Experiments in that study revealed that predicting the range within 
which a score would fall was more accurate than predicting actual 
scores. Indeed, this is tantamount to predicting grades. During the 

experiments in that study, although attempts were made to build 
classification models that predicted grades in a multiclass 
classification manner, the results were found to be much better 
when actual scores were predicted using linear regression and those 
scores were mapped to grades according to mappings which were 
specified beforehand. Hence, the authors decided to apply those 
techniques in this study as well. 

Grades are arguably the ideal approach to judging the performance 
levels of students because they usually span a wider range of scores, 
within which a student’s scores are likely to fall if the student sits 
the same exam in relatively quick successions. Consequently, 
scores predicted by the linear regression models were transformed 
into grades. 

The parameters used to build the linear regression models are: 

Tasks Assigned (TA) – The number of tasks that were assigned to 
the student 

Tasks Completed (TC) – The number of tasks that the student 
completed 

Questions Asked (QAS) – The number of ‘Ask a Question’ tasks 
the student completed 

Questions Answered (QAN) – The number of ‘Answer a 
Question’ tasks the student completed 

Votes Cast (VC) – The number of ‘Rate Answers’ tasks the student 
completed 

Questions picked for answering (QP) – The number of the 
student’s questions that were selected by the teacher to be used in 
‘Answer a Question’ tasks 

Votes Earned (VE) – The number of votes the student earned for 
their answers 

Votes Earned Total Difficulty (VED) – The sum of the products 
of the votes earned for an answer and the difficulty level of the 
question, as rated by students themselves, for all answers submitted 
by the student 

Votes Earned Total Relevance (VER) – The sum of the products 
of the votes earned for an answer and the relevance level of the 
question, as rated by students themselves, for all answers submitted 
by the student 

Votes Earned Total Interestingness (VEI) – The sum of the 
products of the votes earned for an answer and the interestingness 
level of the question, as rated by students themselves, for all 
answers submitted by the student 

Selected Q total difficulty (SQD) – The sum of the difficulty 
levels of the student’s questions, as rated by students themselves, 
which were selected to be used in subsequent tasks 

Selected Q total relevance (SQR) – The sum of the relevance 
levels of the student’s questions, as rated by students themselves, 
which were selected to be used in subsequent tasks 

Selected Q total interestingness (SQI) – The sum of the 
interestingness levels of the student’s questions, as rated by 
students themselves, which were selected to be used in subsequent 
tasks 

Details of the linear regression model, possible justifications for its 
prediction errors and experiments comparing its performance to 
baseline predictors are provided in [2]. 
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5. TWO INTERPRETATIONS OF 
PROGRESS PREDICTION 
Monitoring student progress using prediction models requires 
making predictions using evolving student data at several intervals. 
Continuous peer-assessment data are the ideal candidate for 
building such prediction models. 

Through years of experience, teachers are usually able to make 
educated guesses about how student are likely to perform at end-
of-course exams by studying their activities throughout the course. 
Prediction models that use data from previous editions of the same 
course adopt and formalise such experience with greater efficacy. 

Indeed, prediction models can be used not only to make one-off 
predictions of student performance at the end of a course, but also 
at several intervals throughout the course. While continuous 
predictions focus on determining student progress by evaluating 
performance at different stages, one-off predictions put more 
importance on whether a student would finally pass a course on not. 

This study focuses on the former, making continuous predictions to 
measure student progress and provides two interpretations of 
student progress. 

One interpretation compares a student’s standing at any point in the 
course to the standings of students at the same point but from 
previous editions of the course. For instance, in a previous edition 
of a course, if student performance data at every week of the course 
were collected and if these data were complemented with end-of-
course grades, in subsequent editions of the course, a student’s 
performance at any week would be compared to the performances 
of students at that specific week in the previous edition of the 
course and the respective grade for the student’s level of 
performance could be predicted. In favour of brevity, this 
interpretation of progress will be referred to as Progress Type A. 

The other interpretation focuses on evaluating how far a student is 
from achieving goals that they are expected to achieve at the end of 
a course. In a fairly simplified manner, this evaluation may be made 
by comparing the expected final grade of student at any point 
during the course to what is deemed to be a desirable outcome at 
the end of the course. For instance, predicting a student’s end-of-
course grade in the second week of an eight-week course and 
comparing that predicted grade to what is considered to be a 
favourable grade at the end of the course, which is usually in the 
range A+ to B-, can provide information about how far the student 
is from achieving goals that are set out at the beginning of the 
course. In favour of brevity, this interpretation of progress will be 
referred to as Progress Type B. 

6. TRAINING AND MEASURING THE 
PERFORMANCE OF THE PREDICTION 
MODELS 
Peer-assessment data collected during the course were divided into 
weekly data according to the three sets of tasks completed every 
week. The final score of each student for the course was then 
converted into one of four letter grades. 

The data for each week incorporate the data from all previous 
weeks. In this manner, the prediction model for any one week is 
built using more performance data than its predecessors. Naturally, 
the data used to build the model for the first week would be modest 
and the data for the final week model would be complete. In 
general, the performances of models from consecutive weeks were 
expected to be better. 

A common metric used in measuring the performance of linear 
regression prediction models is the Root Mean Squared Error 
(RMSE). While RMSE provides information about the average 
error of the model in making predictions, the conversion of 
numerical scores to letter grades enables using more informative 
performance evaluation metrics. 

The conversion of numerical scores to letter grades transforms this 
prediction into a classification problem, with grades treated as class 
labels. Although multiclass classification algorithms were not 
applied due to their relatively low performance for this specific 
task, transformation of predicted scores into grades permitted the 
application of any of the classification performance evaluation 
metrics. Therefore, performance is reported in terms of precision, 
recall, F1, False Positive Rates (FPR) and True Negative Rates 
(TNR). 

When evaluating student performance prediction models, the two 
questions that are more critical than others are: 

- How many of the students the model predicted not to be 
at-risk were actually at-risk and eventually performed 
poorly (False Positives) and 

- How many of the students that the model predicted to be 
at-risk of failing were indeed at-risk (True Negatives). 

A prediction model with a high FPR largely fails to identify 
students who are at risk of failing. Conversely, a model with a high 
TNR identifies the majority of at-risk students. The ideal prediction 
model would have a very low FPR and, consequently, a very high 
TNR. 

The prediction models are evaluated at two levels. The first level is 
their performance in making exact prediction of grades. The second 
is their performance in making a prediction that is within a one 
grade-point range of the actual grade. 

For the purpose of this study, the performance metrics are defined 
as follows. 

Grade – Any of the letters A, B, C, D – A and B denote high 
performance levels and C and D, otherwise. Although C is usually 
a pass grade, it is generally not favourable and considered to be a 
low grade. 

Positive – A prediction that is either A or B 

Negative – A prediction that is either C or D 

True – A prediction that is either the exact outcome or falls within 
a one grade-point range of the actual outcome 

False – A prediction that is not True 

Any combination of positive or negative predictions with true or 
false predictions yields one of the following counts – True Positive 
(TP), True Negative (TN), False Positive (FP), and False Negative 
(FN). 

Important statistics that use these counts are Precision (P), Recall 
(R) and, inherently, F1 scores. 

It should be noted that FPR and TNR provide two interpretations 
of the same outcome and that they are inversely proportional. 
Indeed, FPR = 1 – TNR. 

7. MODELLING PROGRESS TYPE A 
This type of progress monitoring compares a student’s current 
progress at any week during the course to the progresses of past 
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students at the same week of the course. The question that such an 
approach aims to answer is: ‘Compared to how other students were 
doing at this stage in the past, how well is this student doing now?’ 
‘How well’ the student is doing is predicted as follows. First, a 
linear regression model is built using data collected from the first 
week to the week of interest. This data comes from a previous 
edition of the course and the predicted variable is the final score or 
grade, which is already available. Then, the student’s performance 
at the week in question, represented using the parameters in section 
4, is fed to the model to make a prediction. Such weekly 
information shall provide insight into whether the student is likely 
to fall behind other students or not. 

The prediction errors for the course PR2 gradually decreased for 
successive weeks, as expected. For IG1, however, early decreases 
were followed by increases and a slight decrease in the final week. 
The average RMSE for PR2 for the eight models was 3.4 while it 
was 3.6 for IG1. The scores predicted were in the range 18 to 30 
Figure 1 shows the weekly prediction errors for each course. 

 
Figure 1. Prediction Errors for the models of each course over 

eight weeks 

Low performance levels were recorded for exact grade prediction 
of the models for both courses. Specifically, High false positive 
rates persisted throughout the eight-week period. 

 
Figure 2. Exact grade prediction performance for PR2 

 
Figure 3. Exact grade prediction performance for IG1 

As expected, performance levels of the models for both courses 
significantly increased for within one grade-point predictions. Low 
FPR and, consequently, high TNR were recorded even in the first 
week and performance increased gradually for both courses over 
the eight-week period. 

The models that made within-one-grade-point predictions 
performed well from the very first week of the course. Although 
predictions are not made on exact grades, the wider range helps 
lower the rate of false positives and increase true positives. The 
same consideration may lead to an increase in false negatives, and 
hence, a decrease in true positives. However, the high precision and 
recall values for these models attest that this is not so in this case.  

 
Figure 4. Within-one-grade-point prediction performance for 

PR2 

 
Figure 5. Within-one-grade-point prediction performance for 

IG1 

8. MODELLING PROGRESS TYPE B 
The focus of this type of measuring progress can be informally 
described as measuring the gap between a student’s performance 
now and what it is expected to be at the end of the course. 
Modelling this type of progress only requires building a single 
linear regression model using the entire data from previous editions 
of the same course. Then, a student’s performance data at any week, 
which is represented by an instance of the values for the parameters 
discussed in section 4, is fed to the linear regression equation to 
compute the expected score of the student. This score is then 
transformed to a grade. Such weekly information would help keep 
track of a student’s progress towards closing this gap and achieving 
the desired goals. 
The prediction errors of this model for the eight weeks are reported 
in Figure 6. The prediction errors for both courses were 
significantly lower than those for Progress Type A, with the model 
for PR2 having an average RMSE of 3.0 and the model for IG1 
scoring a higher average RMSE of 3.5. Moreover, prediction errors 
for both courses consistently decreased throughout the eight weeks. 
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Figure 6. Prediction errors of the model of the two courses 

over an eight-week period 

Exact grade prediction performance, although better than that of 
Progress Type A, was still low for both courses. 

 
Figure 7. Exact grade prediction performance for PR2 

 
Figure 8. Exact grade prediction performance for IG1 

Similar to the models of Progress Type A, this model had very high 
levels of performance in predicting grades that fell within one 
grade-point of the actual grades. Prediction performance was very 
high in the first week and consistently increased, albeit by small 
amounts, throughout the remaining weeks for both courses. 
Missing FPR and TNR values for both courses in the beginning 
weeks imply that predictions of the model were distributed over TP 
and FN values. However, high precision values during those weeks 
indicate that FN values were very low. 
Overall, the model for Progress Type B outperformed the models 
that from Progress Type B, for both courses. 

 
Figure 9. Within-one-grade-point prediction performance for 

PR2 

 
Figure 10. Within-one-grade-point prediction performance for 

IG1 

9. DISCUSSION AND CONCLUSION 
From peer-assessment tasks that were conducted over an eight-
week period in two courses, data were used to build several 
prediction models according to two distinct interpretation of 
performance prediction. While the first interpretation focused on 
comparing the performance of a student at any week during the 
course to those of past students’ performance levels obtained in the 
same week, the second focused on measuring how far a student is 
from achieving the desired level of performance at the end of a 
course. 

The approach of using data from previous editions of the same 
course may raise doubts as to whether different editions of the same 
course are necessarily comparable. However, the extents to which 
the prediction models discussed here performed should convince 
the reader that this is indeed possible. Performance of the models is 
in fact expected to improve with increase in the number of previous 
editions of the course used as input for making predictions. Indeed, 
the long-term consistency in the number of below-average, average 
and above average students over many editions of a course is how 
many teachers usually measure the overall difficulty level of 
questions that they include in exams. 

Although exact grade predictions did not produce satisfactory 
levels of performances for either approach, high levels of 
performance were obtained for both interpretations of student 
progress when making within-one-grade-point predictions. This 
signifies the promising potential of carefully designed peer-
assessment and the prediction models built using data generated 
from it as tools of early intervention. 

While the statement that a student’s performance at the end of a 
course can be fairly predicted as early as the first weeks of the 
course from their peer-assessment activity may be construed as 
simplistic, it is worth noting that the experiments were carried out 
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in two computer science courses and that the results suggest 
otherwise. 

While a comparison between the performances of the models for 
the two courses may be made, the reasons behind one model 
outperforming the other may be latent at this stage and require 
detailed investigation. Hence, the authors decided to defer making 
such comparisons until a later stage. 
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ABSTRACT 
With a goal of better understanding the online discourse within 
the Massive Open Online Course (MOOC) context, this paper 
presents an open source visualisation dashboard developed to 
identify and classify emergent discussion topics (or themes). As 
an extension to the authors’ previous work in identifying key 
topics from MOOC discussion contents, this work visualises 
lecture-related discussions as a graph of relationships between 
topics and threads. We demonstrate the visualisation using three 
popular MOOCs offered during 2013. This work facilitates the 
course staff to locate and navigate the most influential topic 
clusters as well as the discussions that require intervention by 
connecting the topics with the corresponding weekly lectures. 
Further, we demonstrate how our interactive visualisation can be 
used to explore correlation between discussion topics and other 
variables such as views, posts, votes, and instructor intervention.  

Keywords 

Visualisation, learning analytics, topic model, MOOC, online 
discourse, discussion forum. 

1. INTRODUCTION 
Within the educational context, visualisation of learning 
analytics, often known as ‘visual analytics’, provides insights for 
many end users including teachers, learners, researchers, 
educational platform developers, and institutions. According to 
Thomas and Cook [1], visual analytics focuses on analytical 
reasoning facilitated by interactive visualisation interfaces. In 
the educational context, visual analytics support teachers in 
identifying at-risk students, analysing students’ engagement and 
performance of the course, social collaborations, and developing 
analytics on the students’ online discourse. Visualisation 
dashboards also support self-evaluation for students in reflecting 
on their own learning process, setting goals and monitoring 
progress to achieve these goals.  

Visual analytics are often useful in large to massive classrooms 
such as Massive Open Online Courses (MOOCs), facilitating the 
understanding of interesting patterns in large volume of 
students’ data, which is challenging to observe using statistical 
analysis. Visualising the patterns of student engagement (e.g. 
lecture/forum view), behavior, social interactions and their 
relationship with final grade/performance has being a focus of 
many studies [2-4]. 

Even though the system-generated analytics on students’ 
engagement and behavior are important to identify patterns that 
positively correlate with the successful learning outcomes or 
attrition, it is likely that these can generate some inconsistencies. 
For instance, a download of a lecture does not necessarily imply 
student engagement. Similarly, it is uncertain whether an up-

vote of a forum post means the learner has an interest in the 
content or, alternatively, that they have problems associated with 
the topic discussed in the post. Therefore, the analysis of 
learner-generated online discourse (i.e. content) facilitates the 
interpretation of learners’ cognitive processes as well as 
situating learner behavior in context. According to Mercer [5], 
the sociocultural perspective highlights “the possibility that 
educational success and failure may be explained by the quality 
of educational dialogue, rather than simply in terms of the 
capability of individual students or the skill of their teachers”. 
This includes identification of individual’s understanding of – 
and interest in – particular course content, and their level of 
expertise and activity in seeking assistance to rectify conflicts, 
provide opinions and interact with instructors and peers through 
dialogs [6, 7]. Existing research focuses on visualising 
discussion participation and social interactions [8, 9], however, 
analysis and the visualisation of discussion content (i.e. written 
discourse) is lacking. Furthermore, there is no support from 
existing MOOC models to effectively organise and visualise 
these data. In a preliminary work, Chen [10] and Speck et al. 
[11] focus on identifying and visualising topic models from 
online discussion platforms.  

Due to the overwhelming abundance of information generated 
within MOOCs, it is challenging for the learners and the course 
staff to effectively locate and navigate information. Therefore, 
topic analysis from MOOC discussions is important in 
identifying main themes from students’ discussions, supporting 
forum facilitators to become aware of the key themes and the 
amount of discussions in each theme. We have previously 
developed a framework for discourse analysis in the MOOC 
context that identifies latent discussion topics [12]. Our work 
connects lecture-related discussion topics with the 
corresponding weekly lectures, allowing course staff to visualise 
the discussions as clusters of lectures. We have experimented 
with our framework using three MOOCs and obtained 
promising results [12]. 

This paper focuses on developing an open source dashboard to 
visualise topics extracted from MOOC discussion contents. Our 
topic visualisation dashboard expects to answer two main 
questions important to the educators: What are the emergent 
topics?, and What topics need more attention?. Further, we also 
explore the topic distribution using additional variables such as 
views, votes, replies, and the degree of instructor intervention 
and answer the questions including ‘what is the relationship 
between topics and views?’, ‘what is the relationship between 
topics and votes’, and ‘what is the relationship between topics 
and instructor replies’. These questions have emerged from the 
authors’ involvement in several MOOC courses and 
environments to explore key course management issues and 
pedagogical decisions. To answer these questions, we conducted 
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a statistical analysis using 3 popular MOOCs – Machine 
Learning, Statistics and Psychology and compared the results 
using the proposed visualisation dashboard.  

2. BACKGROUND 
Visual analytics within the educational context often facilitate 
educators in understanding large amount of learners’ data to 
make inferences. Learners’ data can be categorised as system-
generated and learner-generated. System-generated data (also 
known as clickstream data) are generally analysed and visualised 
to predict the performance (e.g. CourseSignals [4]). Social 
Networks Adapting Pedagogical Practice (SNAPP) [8] 
visualises the evolution of social interactions among participants 
of online discussion forums. 
Within the MOOC context, Coffrin et al. [2] visualises patterns 
of engagement and performance based on student types (e.g. 
auditor, active, qualified). Xu et al. [13] utilises visual analytics 
to explore the correlation between student behavior and student 
success. In a preliminary work, they analysed five MOOCs 
using a commercial visualisation software called Tableau and 
reported that there are multiple ways to be successful in a course 
(e.g. submitting quizzes, lecture views). While there is 
considerable, as highlighted above, contributing to the 
development of visual analytics capacity to better understand 
system-generated educational data, visualisation systems to 
understand learner-generated data (e.g. online discourse) is 
lacking. 
ForumDash, a preliminary work by Speck et al. [11], focuses on 
visualising which students are contributing, struggling, or 
distracted in order to facilitate instructors in targeting their 
efforts effectively. Using three visualisation tools, ForumDash 
attempts to provide insights for teachers on which students 
contribute to most discussions (i.e. Thought-leaders), identify 
topic clusters to determine the popular topics, and through a 
‘contribution score visualisation’, students’ are capable of 
monitoring how much they are contributing to discussion 
forums compared to their peers. KISSME (The Knowledge, 
Interaction and Semantic Student Model Explorer) is a 
visualisation framework to analyse online discourse with the aim 
of understanding the nature of interactions among learners 
including contributions and relationships using LSA and social 
network analysis [14].  Chen [10] conducts a preliminary study 
on visualising topic models from online discussion platforms. 
Another existing tool of interest that takes elements of topic 
identification and social network analysis is ‘Cohere’ [15]. The 
authors use argument-mapping techniques to analyse the 
discussion posts based on some dimensions such as whether the 
post is an idea, question, or opinion, in measuring the learner’s 
performance and attention. Topic Facet Model (TFM) 
incorporates forum posts (mainly questions) about Java from 
StackOverflow for topic analysis and visualisation [16]. 
Thus, our motivation for developing this research occurs due to 
a lack of an established research to produce ‘labeled’ topic 
models to analyse overwhelming abundance of MOOC 
discussion contents and visualisations. 

3. TOPIC VISUALISATION DASHBOARD 
The overview of topic analysis and visualisation is shown in the 
Figure 1. The process of topic analysis is briefly discussed in 

Section 3.1 and the full description can be found in the authors’ 
previous works [12] (full analysis of this work is under review).  

3.1 Topic Analysis  
Our previous work focuses on identifying topic clusters from 
lecture-related MOOC discussion contents. For this, we have 
used a state of the art topic modeling technique called Latent 
Dirichlet Allocation (LDA) [17]. LDA is an unsupervised 
learning approach focusing on discovering hidden thematic 
structures in large text corpora. One of the issues associated with 
existing topic models is its inability to label the topics, limiting 
their usage in end-user applications such as visualisations. It is 
challenging to label discussion topics due to a lack of a 
reference source. As a solution, we proposed an automated topic 
labeling approach by generating candidate topic labels from 
course lectures. A Naïve Bayes classifier was trained to classify 
discussion topic into a week or set of weeks, and document 
summarisation techniques were applied to obtain the most 
suitable labels for each topic cluster. Our approach facilitates 
classifying and labeling the discussion threads using course 
lectures. 

 
Figure 1: Overview of topic analysis and visualisation 

We conducted experiments to evaluate our topic analysis 
approach using Machine Learning (ML), Statistics (STAT) and 
Psychology (PSY) MOOCs offered during 2013. In each course, 
we analysed approximately 5448, 2530 and 9384 number of 
posts and obtained 40, 25 and 40 strong topics for human 
annotation, respectively. Three human experts from each MOOC 
were recruited to label the topics manually and their mean inter-
rater agreement (Kappa) was obtained as 0.75 (SD=0.09), 0.77 
(SD=0.07) and 0.69 (SD=0.07) for ML, STAT and PSY 
respectively. We calculated the effectiveness of automated topic 
labeling process and obtained F-measure of 0.702, 0.75 and 0.69 
for ML, STAT and PSY, respectively, demonstrating that the 
human-machine agreement is similar or slightly lower than 
inter-rater agreement. Our classifiers also performed well with a 
macroaveraged F-measure of 0.946, 0.926 and 0.896 for ML, 
STAT and PSY courses respectively We also calculated Mean 
Average Precision (MAP) to evaluate the ranked retrieval results 
of machine and obtained 0.806 (ML), 0.869 (STAT) and 0.774 
(PSY). The promising results obtained from three MOOCs 
demonstrate that the proposed approach is effective for topic 
analysis of discussion contents. 
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3.2 Topic Visualisation  
The design of our open source topic visualisation dashboard is 
motivated by the visual analytics process defined by Keim et al. 
[3] as “Analyze first, Show the Important, Zoom, filter and 
analyze further, Details on demand”. Accordingly, our design 
includes analysing discussion topics, showing an overview of 
topic visualisation, filtering using different variables, analysing 
further using different variables, and providing details of 
individual threads on demand. 
After identifying emergent topics from MOOC discussion 
contents (see Section 3.1), the focus of the topic visualisation is 
to demonstrate the discussion topics in a meaningful way for the 
end users, in our case the course staff, to make useful 
pedagogical decisions.  
Our main focus is to visualise emergent topics of each course 
and their relationship with discussion threads. A sample screen 
of our visualisation dashboard using Psychology course is 
shown in Figure 2. As shown in Figure 2, the dashboard consists 
of three components; graph area, configurations, and the source.  
The topic analysis is visualised by a bubble ‘graph’ using a 
force-directed layout, with larger nodes as topics and smaller 
nodes residing inside topics as threads. Initially, topic nodes are 
color-coded and adjusted in size to support visual perception of 
the amount of threads being discussed by the given topic (i.e. 
topic-thread weight). Topics are labeled using corresponding 
course lectures (see Section 3.1), while the similar-sized threads 
are initially labeled using the amount of posts associated with 
them. Color sliders at the bottom of the graph indicate the 
variations of topic-thread weight. 

The ‘configuration’ panel (top panel of right hand side) allows 
the users to customise the visualisation according to their desire. 
Data can be imported as a CSV file for visualisation. Primarily, 
the data file should contain topic labels, associated thread ids, 
topic-thread weight and the number of posts each thread 
contains. However, depending on the requirement of the user, 
they can explore additional data such as views, votes to explore 
more interesting patterns. Initially, we present 10 emergent 
topics, supporting the visual analytics approach by Keim et al. 
[3] which recommends showing an overview first. The end users 
are allowed to adjust the number of topics up to 39, allowing a 
large amount of topics to be visualised for the analysis. The 
rationale behind limiting the number of topics to 39 is to fit into 
the screen resolution and similarly, if the topic-thread weight is 
reasonably low, it is likely that weaker topics (i.e. topic-thread 
weight below 0.5) are not effectively being labeled using course 
lectures [12]. The configuration panel also supports an optional 
color picker. However, the system supports variation of blue 
color as default.  
An interesting aspect of this visualisation is that the user can 
explore different visualisations by changing the variables such 
as votes, views, instructor replies, time, number of words in 
threads etc. The application of the filtering parameters will 
change the color of topic nodes and labels of thread nodes (e.g. 
number of views). However, the size of the topic node remains 
unchanged to represent the amount of discussions associated 
with the given topic. For instance, number of views are vary 
from blue (highest number of views) to white (low number of 
views) (see Figure 4). 
The ‘source’ panel provides detailed information of each thread 
on demand without overloading the visualisation. Users are 

allowed to click each ‘thread’ to select it and the discussions 
associated with this thread is shown in the bottom of the right 
hand side panel. In these visualisations, we have removed any 
identifiable data such as user or thread information.  
Our open source dashboard is currently supported as a web-
based system as well as standalone system which we intend to 
extend as a plugin embedded to the MOOC platforms.  
We encounter repeated topic labels when more topic clusters are 
being labeled as corresponding to the same lecture. However, it 
is possible that these repeated topics are being discussed in 
slightly different threads depends on the distribution of topic 
terms within the topic model. If more than one topic ends up 
having the same label, we adjust the size of that particular topic 
to emphasise its’ more strong influence as an emergent topic. It 
is also likely that a thread can be shared among multiple topics.  

 
Figure 2: Topic Visualisation dashboard 

It is important to determine the goals that are planned to be 
achieved using the visualisation in terms of improving teaching 
and learning within the educational context. With this in mind, 
we attempt to gain an understanding of online discourse at a 
massive scale by exploring the range of variables present in our 
interactive visualisation. The next section discusses our results 
along with interesting visualisations. 

4. RESULTS AND DISCUSSION 
4.1 Data 
Our dataset include discussion contents (lecture-related) 
obtained from three MOOCs – Machine Learning, Statistics: 
Making Sense of Data, and Psychology within the Coursera 
platform with any user identification data removed (Table 1) 
[18].  

Table 1. Statistics of selected MOOCs; ML-Machine 
learning, STAT-Statistics, PSY-Psychology 

Course Users
* Threads 

Lecture-
related 
threads 

Total 
posts 

Total 
words in 
threads 

Mean 
(SD) 

ML 6368 5449 972 5448 359,702 370 
(229.6) 

STAT 2313 1145 392 2530 155,329 396  
(462) 

PSY 1198
9 9300 1300 9384 719,797 553 

(1014.6) 

* Anonymous users are counted as 1 unit, so the number of 
actual discussion participants may be larger 
 

Proceedings of the 9th International Conference on Educational Data Mining 278



4.2 Results 
To identify emergent discussion topics of each MOOC, and as 
described in our earlier work, we applied Latent Dirichlet 
Allocation [17] and obtained ‘unlabeled’ topic clusters 
represented by a set of topic terms (usually using 10 terms). 
Further, we obtained list of threads associated with a given topic 
and their topic-thread weight (i.e. the proportion of the thread 
that contains the topic). From this, topics whose topic-thread 
weight less than 0.5 were eliminated due to the production of 
weak topics which mostly contain domain independent terms 
[12]. We apply our topic labeling mechanism to the filtered data 
in order to cluster the discussion topics using corresponding 
course lectures (see Section 3.1). Figure 3 demonstrates a 
sample screenshot (graph area only) obtained from our 
dashboard to answer the first research question in identifying 
emergent discussion topics. 

 
Figure 3: Sample topic-thread visualisation of Machine 
Learning course  
As shown in Figure 3, we sized topic nodes (i.e. 
radius/diameter) in proportion to the number of threads to which 
the topic is associated, and the color in proportion to amount of 
posts. Even though the two topics ‘content based 
recommendation’ and ‘model representation 1’ are similar in 
size (i.e. 7 threads are associated with them), they vary in color. 
This occurs when the amount of posts is higher (i.e. 47) in the 
‘model representation 1’ topic, emphasising that this topic is 
more thoroughly discussed by a relatively larger number of 
posts. The visualisation of topic-thread relationship facilitates in 
identifying the emergent topics as well as the topics that need 
teacher interventions. This visualisation of ‘topic-wise 
classification’ also assists experts in different ‘topic’ areas (e.g. 
community TAs or skilled participants) to jump into 
corresponding discussions and respond or assist the learners (see 
Figure 2 for source of thread texts). The visualisation of least 
discussed topics (depicted in ‘lower resolution blue/white’ 
color) assist in identification of the problematic topics for 

individual users or small set of users. Our approach in 
classifying the topics based on course lectures will also help 
teachers to ignore or deprioritise discussions that do not relate to 
course contents (e.g. social matters).  
We explore topic-thread visualisation further by manipulating 
different variables relevant to our data including views, votes, 
and instructor replies to identify interesting patterns and 
correlations. This analysis answers the following questions; 
1. What is the relationship between topics and votes? 
The results of our statistical analysis show that the discussion 
topics and votes have a moderate positive correlation (r = 0.33; 
p>0.01) in Machine Learning course while no or negligible 
relationship (r = 0.13; p>0.01) in Statistics course since some 
participants tend to ‘down vote’ some discussions. However, 
Psychology course demonstrates a very strong positive 
correlation (r = 0.70; p<0.01). Thus, within the context of ML 
and STAT, the most discussed topics are not the ones most 
voted. For instance, Figure 4 demonstrates that the topic ‘centre 
of the data and the effects of extreme values’ is the most 
discussed topic, however, obtained only 1 vote, whereas ‘data 
collection – observational studies’ is one of those least discussed 
topics which obtained 8 votes. A higher number of votes 
suggests that the participants have more interest towards the 
topic or they are expecting much attention from the instructors, 
however, they may have less confidence to discuss it, perhaps 
due to lack of knowledge. Figure 4 visualises these findings.  

 
Figure 4: Relationship between topics and votes in the Statistics 
course  
2. What is the relationship between topics and views? 
We measured the correlation between the discussion topics and 
amount of views using Pearson correlation coefficient (r) and 
obtained statistically significant correlation; r = 0.7065 (p<0.01) 
for ML, r = 0.699 (p<0.01) for STAT and r = 0.79 (p<0.01) for 
PSY. This results suggest that the participants demonstrate more 
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interest towards emergent topics by viewing them more often. 
Similarly, less popular topics are viewed infrequently. Figure 5 
depicts the visualisation correspond to this statistical analysis 
using the Machine Learning course. 
According to the Figure 5, most discussed topics are illustrated 
by the size of the topic node while the most viewed topics are 
depicted using ‘higher resolution blue’ as shown in the color 
slider. The thread nodes are labeled using the number of views. 
Therefore, it is observable that the mostly discussed topics are 
similar to the mostly viewed topics in the Machine Learning 
course and vice versa. For instance, ‘gradient descent for linear 
regression’ and ‘normal equation noninvertibility’ are mostly 
discussed topics (determined by the size of the topic node) and 
they are also viewed more than thousand times. This kind of 
visualisation in classifying discussions according to topics will 
prioritise which posts to view and interact with based on specific 
requirements, resulting in a significant saving of time for both 
learners and teachers, particularly when reviewing massive 
amounts of data.   

 
 
Figure 5: Relationship between topics and views in the Machine 
Learning course  
3. What is the relationship between topics and instructor 

replies? 
Instructor replies and discussion topics are moderately positively 
correlated in ML (r = 0.32; p>0.01). However, in STAT and 
PSY, these two variables demonstrate statistically significant 
results (r = 0.72; p<0.01 for STAT and r = 0.77; p<0.01 for 
PSY). This suggests that the instructors’ intervention is more 
towards emergent topics which may isolate participants who 
have posted in other topics (i.e. declining topics). A study 
conducted by Dawson found that instructors primarily interact 
with high performing students despite isolated and low 
performing students being neglected irrespective of what they 
posts [8]. The ML course had relatively low instructor 

involvement for any topics while STAT and PSY courses had a 
good turnaround and strong positive correlation between these 
two variables. The visualisation in the Figure 6 demonstrates 
which topics require more inputs from instructors. 
This analysis supports the open question of whether the 
emergent topics or declining topics require more instructor 
intervention. However, topic-wise classification will provide 
benefits to the instructors in identifying and prioritise the 
intervention. Simultaneously, a mechanism to ‘pin’ the emergent 
discussions will aid to avoid repeated discussions on the same 
topic. 
 

 
Figure 6: Relationship between topics and instructor replies in 
the Statistics course. 
Our visualisation is currently extending to demonstrate the 
evolution of topics over time. The time-series analysis focuses 
on identifying corresponding week or set of weeks a given topic 
is being discussed. Some topics are discussed outside the course 
span (e.g. ‘diagnosis’ of Psychology course is discussed in week 
9 where the course spans over 8 weeks). Timeline visualisation 
is helpful in identifying the topics that are being discussed either 
within or outside of the allocated weeks, enabling the 
identification of topics that are sustained throughout the course 
span. 
This paper includes only a sample of visualisations and we have 
shared more visualisations based on the identified dataset here3. 
In summary, topic-thread visualisation assists in understanding 
massive volumes of discussion data by identifying emergent 
discussion themes, allowing the forum facilitators to make 
interventions more quickly rather than by reading and 
responding to individual threads. Similarly, topic-wise 
classification is supportive of comparison across discussions in 
understanding unexpectedly popular topics even after their 
expected periods in discussion.  
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The work presented in this paper is intended for MOOC course 
staff. We believe it will reduce manual forum moderation time 
in answering repeated questions, allowing novel discussions to 
occur contributing to new knowledge construction. Despite 
providing valuable insights into the analysis of large scale 
discourse, there is still considerable room for future research. 
These kinds of visualisation may also provide benefit to 
students, depending on their experience in interpreting visual 
information. Therefore, we consider that a topic-wise 
classification of discussion posts is useful as a navigational 
support for students, and intend to extend this work in future to 
support personalised navigation and recommendation of relevant 
posts. 

This work does not yet include an in-depth analysis of 
individual topics or relationship between topics. It is yet to be 
analysed for relationship between topics and users. Our future 
work will include social network analysis to identify topic-
inspired interactions between learner-teacher and learner-leaner 
(i.e. peers). 

5. CONCLUSION 
One of the primary challenges of MOOCs is to understand the 
massive volume of data to make inferences regarding student 
engagement or learning. To support this, our work analyses 
learner-generated discussion contents to identify emergent 
topics of discussions and labels them corresponding to the 
course lectures. This paper presents the visualisation of our 
topic-wise classification of discussion data, allowing the user to 
explore the analysis by manipulating different variables such as 
votes, views, instructor replies, and time-series analysis. A series 
of statistical analysis were performed to measure the correlation 
between discussion topics and other variables, and the finding 
were compared using the visualisation dashboard. This work 
provides benefit to the educational data mining and learning 
analytics research community through an open framework for 
topic analysis and visualisation of massive volume of discussion 
data generated regularly through MOOCs and other online 
learning platforms.  
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ABSTRACT
Teaching in formal academic environments typically follows
a curriculum that specifies learning objectives that need to
be met at each phase of a student’s academic progression. In
this paper, we address the novel task of identifying document
segments in educational material that are relevant for differ-
ent learning objectives. Using a dynamic programming algo-
rithm based on a vector space representation of sentences in
a document, we automatically segment and then label doc-
ument segments with learning objectives. We demonstrate
the effectiveness of our approach on a real-world education
data set. We further demonstrate how our system is use-
ful for related tasks of document passage retrieval and QA
using a large publicly available dataset. To the best of our
knowledge we are the first to attempt the task of segment-
ing and labeling education materials with academic learning
objectives.

Keywords
text segmentation, document labeling, academic learning
objectives, unsupervised

1. INTRODUCTION
The rapid growth of cost-effective smart-phones and me-
dia devices, coupled with technologies like Learning Content
Management Systems, tutoring systems, digital classrooms,
MOOC based eLearning systems etc. are changing the way
today’s students are educated. A recent survey 1 found that
there was a 45% year-on-year uptake between 2013 and 2014
of digital content in the classroom and a nearly 82% uptake
in the use of digital textbooks. Of the 400,000 K-12 stu-
dents surveyed, 37% of them reported using online textbooks
for their learning needs. Students and teachers frequently

1Project Tomorrow, Trends in Digital Learning 2015

search for free and open education resources available online
to augment or replace existing learning material. Organiza-
tions like MERLOT2 and the Open Education Consortium3

offer and promote the use of free learning resources by index-
ing material available on the web, based only on keywords
or user specified meta-data. This makes the identification of
the most relevant resources difficult and time consuming. In
addition, the use of manually specified meta-data can also
result in poor results due to inconsistent meta-data quality,
consistency and coverage. Identifying materials most suit-
able for a learner can be aided by tagging them with learning
objectives from different curricula. However, manually la-
beling material with learning objectives is not scalable since
learning standards can contain tens of hundreds of objec-
tives and are prone to frequent revision. Recent work by
[3] attempted to address this problem by using external re-
sources such as Wikipedia to expand the context of learning
objectives and a tf-idf based vector representation of docu-
ments and learning objectives. One of the limitations of the
system is that it works well only when documents are rela-
tively short in length and relate to a few learning standard
objectives. The accuracy of the algorithm reduces when the
documents considered are resources such as textbooks due
to the dilution of the weights in the tf-idf based vector space
model. Further, from the perspective of information access,
returning a large reference book for a learning objective still
burdens the user with the task of identifying the relevant
portions of the book. This, therefore, does not adequately
address the problem.

In this paper, we address the problem of finding document
segments most relevant to learning objectives, using docu-
ment segmentation [1] and segment ranking. To the best of
our knowledge, we are the first to attempt the problem of
segmenting and labeling education materials with academic
learning objectives.

In summary, our paper makes the following contributions:

• We define the novel task of identifying and labeling
document segments with academic learning objectives.

2http://www.merlot.org
3http://www.oeconsortium.org/
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• We present the first system that identifies portions of
text most relevant for a learning objective in large ed-
ucational materials. We demonstrate the effectiveness
of our approach on a real world education data set. We
report a sentence level F1 score of 0.6 and a segment
level minimal match accuracy@3 of 0.9

• We demonstrate, using a large publicly available dataset,
how our methods can also be used for other NLP tasks
such as document passage retrieval and QA.

The rest of the paper is organized as follows: In the next
section we describe related work, in section 3 we formally
describe our problem statement, section 4 describes our al-
gorithm and implementation details and section 5 presents
our detailed experiments. Finally, in section 6 we conclude
this paper and discuss possible directions of future work.

2. RELATED WORK
Broadly, our work is related to three major areas of natural
language research: Text Segmentation, Query Focused Sum-
marization and Document Passage Retrieval. We present a
comparison and discussion for each of these areas below:

Text Segmentation: Typically, the problem of automat-
ically chunking text into smaller meaningful units has been
addressed by studying changes in vocabulary patterns [6]
and building topic models[5]. In [12], the authors adapt the
TextTiling algorithm from [6] to use topics instead of words.
Most recently, [1] uses semantic word embeddings for the
text segmentation task. While supervised approaches tend
to perform better, we decided to adapt the state of the art
unsupervised text segmentation method proposed in [1], due
to the challenges associated with sourcing training data for
supervised learning.

Query Focused Summarization: Focused summariza-
tion in our context [8], [10] [4] is the task of building sum-
maries of learning materials based on learning objectives.
Here, each learning objective can be treated as a query, and
the learning materials as documents that need to be sum-
marized. However, it is important to note that in the ed-
ucation domain, any such summarization needs to ensure
that summarized material is presented in a way that facil-
itates learning. This poses additional research challenges
such as automatically identifying relationships between con-
cepts presented in the material and therefore, in this paper,
we do not model our problem as a summarization task. We
encourage the reader to consider it as a possible direction
for future research.

Document Passage Retrieval: Lastly, document pas-
sage retrieval [2] is the task of fetching relevant document
passages from a collection of documents based on a user
query. However, such tasks typically require the passage
boundaries to be well known and therefore, cannot return
sub-portions that may be present within a passage or return
results that span sub-parts of multiple passages.

3. PROBLEM STATEMENT
Typically, a learning standard consists of a hierarchical or-
ganization of learning objectives where learning objectives

are grouped by Topic, Course, Subject and Grade. For the
purpose of this paper we refer to a “label” as the complete
Grade (g) -> Subject (s) -> Course (c) -> Topic (t) ->
Learning Objective (l) path in the learning standard.

Given a document D of length N we would like to iden-

tify the most relevant segments φ
{g,s,c,t,l}
ij for a given label

{g, s, c, t, l} where i, j denote positions in a document i.e
i, j ∈ [0, N ] and i < j. In the rest of the paper, we denote
the learning objective {g, s, c, t, l} as e to ease notation.

Figure 1 shows chapter 2 from the the “College Physics”
OpenStax textbook4. The segments (demarcated using rect-
angles) have been identified for two learning objectives INST1
and INST2 and occur in different portions of the book. They
can even be a sub-part of an existing section in a chapter as
shown for INST1.

The next section describes our algorithm for the problem of
segmentation and labeling based on learning objectives.

4. OUR METHOD
We represent each sentence as a unit vector si, (0 ≤ i ≤ N−
1) in a Dim dimensional space. The goal of segmentation is
to find K splits in a document, denoted by (x0, x1, . . . , xK),
where x0 = 0 and xK = N and xi denotes the line number
specifying the segment boundary such that if the kth seg-
ment contains the sentence si, then xk−1 ≤ i < xk. The
discovered segment φi,j is the segment between the splits
xi and xj . Depending on the granularity of the learning
objectives and the document collection, the optimal number
of splits can be set (See section 5). Let the cost function ψ
for a segment ψ(i, j) measure the internal cohesion of the
segment, (0 ≤ i < j ≤ N). The segmentation score for K
splits s = (x0, x1, . . . , xK) can then be defined as Ψ :

Ψ(s) = ψ(x0, x1) + ψ(x1, x2) + . . .+ ψ(xK−1, xK)

To find the optimal splits in the document based on the
cost function Ψ, we use dynamic programming. The cost of
splitting Ψ(N,K) is the cost of splitting 0 to N sentences
using K splits. So,

Ψ(N, 1) = ψ(0, N)

Ψ(N,K) = min
l<N

Ψ(l,K − 1) + ψ(l, N)

We define the ψ function as follows:

ψ(i, j) =
∑

i≤l<j
‖sl − µ(i, j)‖2

where ψ(i, j) is analogous to the intra-cluster distance in
traditional document clustering while µ(i, j) is a represen-
tative vector of the segment. We discuss possible forms of µ
later in this section.

Ranking: Each segment is represented as a normalized vec-
tor µ(i, j) and we determine the most relevant segments to a
learning objective e by ranking segments in increasing order
of similarity based on cosine similarity.

cos(µ, e) =

Dim∑

d=1

µd ∗ ed

4https://openstax.org/details/college-physics
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Figure 1: This image shows excerpts from chapter 2 Kinematics from the College Physics text book by OpenStax along

with the segment boundaries for two learning objectives INST1 and INST2 shown in colors red and green respectively.

We then select the top n ranked segments as the segments
relevant to the learning objective. In section 5.3 we describe
how the number of splits K as well as the value of n can be
chosen empirically given a validation data set.

We now describe different methods of constructing the doc-
ument and segment vectors:

TF-IDF: Each sentence is represented as a bag of words,
the dimensionality being the vocabulary size. Each word in
a sentence vi is weighted by its tfidf measure. For a word
vi in the sentence sk of a document D, the tfidf measure is
given by :

tfidf(vi)sk,D = f(vi,D) log

( |D|
df(vi)

)

where f(vi, d) is the frequency of the word vi in the doc-
ument d, |D| being the total number of documents in our
corpus and df(vi) is the number of documents with the word
vi in it. The segment vector µ(i, j) in this case is the mean
of the sentence vectors in that segment.

Word Vector: We represented each sentence as a weighted
combination of the word vectors in a sentence. The word-
vector wi for each word vi is specified using Mikolov’s Word2Vec[9].
Each sentence si is represented as:

si =
∑

v

f(v, d) log

( |D|
df(v)

)
wi

The segment vector µ(i, j) is also the mean vector in this
case.

Fisher Vector: Paragraph vectors[7] try to embed the
sentences in a fixed dimension, but they require extensive
training on the source dataset. Instead we use Fisher Vec-
tors, which have been widely used in the vision commu-
nity [11] for combining different feature vectors (word vec-

tors in our case), and were recently used for question re-
trieval by Zhou et.al. [15]. The word vocabulary is modeled
as a Gaussian Mixture Model, since a GMM can approxi-
mate any continuous arbitrary probability density function.
Let λ = {θj , µj ,Σj , j = 1 . . . NG} be the parameters of the
GMM with NG gaussians. Let, {w1, w2, . . . , wT } be the vec-
tors for the words v1, v2, . . . , vT in the sentence si for which
we need to construct the fisher vector. We define γj(wt) to
be the probability that the word wt is assigned the gaussian
j,

γj(wt) =
θjN (wt|µj ,Σj)∑NG
u=1 θuN (wt|µu,Σu)

We define the gradient vector as the score for a sentence,
Gλ(si) [13]. To compare two sentences, Fisher Kernel is
applied on these gradients,

K(si, sj) = Gλ(si)F
−1
λ Gλ(sj)

where, Fλ is the Fisher Information Matrix,

Fλ = Ex∼p(x|λ)[Gλ(si)Gλ(sj)
T ]

F−λ 1 can be decomposed as LTλLλ , hence the Fisher Ker-
nel can be decomposed to two normalized vectors, Γλ(si) =
LλGλ(si) . This Γλ(si) is the fisher vector for the sentence
si

Γµd
j
(si) =

1

T
√
θj

T∑

t=1

γj(wt)

(
wdt − µdj
σdj

)
(1)

Γσd
j
(si) =

1

T
√

2θj

T∑

t=1

γj(wt)

[
(wdt − µdj )2

(σdj )2
− 1

]
(2)

The final fisher vector is the concatenation of all Γµd
j
(si)

and Γσd
j
(si) for all j = 1 . . . NG, d = 1 . . . Dim, hence 2 ∗

NG ∗Dim dimensional vector. We define the segment vector
µ(i, j) as the fisher vector formed by using the word vectors
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in the segment, hence giving us a unified representation of
the segment.

5. EXPERIMENTS
In this section we evaluate our method for identifying doc-
ument segments suited for learning objectives.

5.1 Data
We made use of two data sets for our experiments:

AKS labeled Data Set: We use the collection of 110
Science documents used by [3] labeled with 68 learning ob-
jectives from the Academic Knowledge and Skills (AKS)5.
We also used term expansions as described in [3] to increase
the context of learning objectives. We further identified doc-
ument segments (at the sentence level) suitable for the learn-
ing standard in each of the documents, where applicable.

To build a collection of documents covering multiple learn-
ing objectives, we simulated the creation of large academic
documents such as text books, by augmenting each lecture
note with 9 randomly selected lecture notes. Thus, for each
of the 68 instructions that were covered in our data set, we
created 5 larger documents each consisting of 10 documents
from the original set, giving us a document collection of 340
large documents, with an average length of 300 sentences.

Dataset #Docs #Avg. Sentences #Avg. Splits

AKS Dataset 340 300 10

WikiQA 8100 180 10

WikiQA Dataset: To show the general applicability of our
approach on tasks such as document passage retrieval and
QA, we also use the recently released WikiQA data set [14]
which consists of 3047 questions sampled from Bing6 query
logs and associated with answers in a Wikipedia summary
paragraph. As outlined in the approach above, for each of
the questions, we created a larger document by including
9 other randomly selected answer passages. For each of the
2700 questions from the Train and Test collection we created
3 such documents, thus giving us 8100 documents.

5.2 Evaluation Metrics
We define the following metrics for our evaluation:

MRR (Mean Reciprocal Rank) : The MRR is defined
as the reciprocal rank of the of the first correct result in a
ranked list of candidate results.

P@N (Precision@N): Let the set of sentences in the top
N segments identified be ΓSys and further, let the set of
sentences in the gold standard be ΓGold. The precision@N
is given by :

P@N =
|ΓSys ∩ ΓGold|
|ΓSys| (3)

5https://publish.gwinnett.k12.ga.us/gcps/home/public/
parents/content/general-info/aks
6http://www.bing.com

R@N (Recall@N):Using the same notation described above,
the recall @ N is given by :

R@N =
|ΓSys ∩ ΓGold|
|ΓGold| (4)

F1@N (F1 Score @N): The F1 Score@N is given by the
harmonic mean of the Precision@N and Recall@N described
above. MMA@N (Minimal Match Accuracy@N) For
a collection of D labeled documents, the minimal match
accuracy@N is a relaxed value of precision and is given by:

∑D
i 1{|ΓSysi ∩ ΓGoldi | ≥ 1}

D
(5)

where 1{} is the indicator function.

5.3 Experimental Setup
For the AKS dataset, we calculate the idf using a collection
of 6000 Science documents from Wikibooks7 and Project
Gutenburg8. For the WikiQA dataset, idf was calculated on
the 2700 summaries in the training and test collection. Word
vectors and fisher vectors were trained on the full collection
of English Wikipedia articles to ensure that the Gaussian
Mixture model isn’t trained on a skewed dataset and can be
used across universally for all kinds of english educational
documents. The number of gaussians were selected based
on the bayesian information criterion.9

Choosing the number of top segments: The number
of top ranked segments n and the number of splits K both
affect the accuracy of the system. For instance, if we set
K to be half the total number of sentences, the resulting
segments will be very small. Therefore, the value of n needs
to be higher to have adequate coverage (recall). Similarly,
choosing very few splits can result in large chunks, which
can be problematic if the learning objectives were precise
and required finer segments. Thus, the choice of n and K
depends on the granularity of specification in the learning
objectives as well as the nature of content in the document
collection.

We use 20% of the dataset (selected at random) as the val-
idation set for tuning the parameters n and k. By varying
both n and K we can determine the value at which the sys-
tem performance (measured using F1 score) is best. Figure
2 shows the variation in F1 Score for different values of K
and n. For clarity of presentation, we only show this for the
system using TF-IDF vectors. As can be seen, the F1 score
is best for 10 splits and choosing the 3 best segments closest
to the learning objective i.e K = 10, n = 3. Figures 3 and 4
show the individual contributions to the F1 score.

5.4 Results
5.4.1 Document Segmentation and Labeling

On performing segmentation on the AKS dataset using all
three vector approaches, we observe (table 1) that the tf-
idf vector representation works best. We noticed that many

7http://www.wikibooks.org
8http://www.gutenburg.org
9An index used for model selection −2Lm+mlnn, where Lm
is the maximized likelihood, m are the number of parameters
and n is the sample size
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@1 @3 @5

Query Expansion P R F1 P R F1 P R F1

TFIDF 0.669 0.359 0.468 0.493 0.698 0.578 0.395 0.843 0.538
No Expansion WORDVEC 0.462 0.357 0.403 0.331 0.633 0.434 0.284 0.829 0.423

FISHER 0.476 0.366 0.414 0.342 0.679 0.454 0.284 0.855 0.426

TFIDF 0.686 0.320 0.436 0.545 0.701 0.613 0.435 0.856 0.577
With Expansion WORDVEC 0.483 0.323 0.387 0.351 0.586 0.439 0.308 0.797 0.444

FISHER 0.481 0.322 0.386 0.351 0.619 0.448 0.305 0.827 0.445

Table 1: Results on the AKS Labeled Dataset

MRR MMA@1 MMA@3 MMA@5

TFIDF 0.78 0.652 0.905 0.882
WORDVEC 0.56 0.429 0.635 0.782
FISHER 0.55 0.405 0.620 0.715

Table 2: Segment Level Results on AKS Dataset

Figure 2: F1 Variation with number of segments at

varying depths of retrieval. Best score at 10 segments

at depth 3

of the documents in the AKS data set were very well con-
textualized when changing topics, thus blurring the segment
boundaries. For example, in one of the documents which de-
scribed “Motion in a Straight Line”, the concepts of “veloc-
ity”, “acceleration”, “position-time” graphs are intertwined
and the topical drift is not easy to observe. As a result, due
to the nature of documents in the collection, we hypothesize
that the fisher vectors and word vectors which have been
trained on large general corpora are unable to adequately
distinguish some portions of the text, while the tf-idf vec-
tors which have been tuned on the corpus better reflect the
word distributions.

The precision, recall and F1 scores are calculated at the
sentence level, thus making it a very strict measure. So we
also report segment level accuracy, i.e. how many of the top
n segments identified were relevant. A predicted segment
is labeled relevant to the external query if at least 70% of
the segment overlaps with the gold labeled segments. We
evaluate the performance using MRR and MMA@N. Table
2 shows the segment level evaluation of our system.

5.4.2 Passage Retrieval and QA
We also conducted experiments with a more discriminative
dataset where the topical shift is not as hard to observe. We
report (table 3) an MRR of 0.895 and P@1 of 89.4% for the
passage retrieval task on each of the documents generated,

Figure 3: Precision variation with number of segments

at varying depths of retrieval. Low values of n and high

values of K give high precision. Increasing K while keep-

ing n constant gives a drop in precision.

Figure 4: Recall variation with number of segments at

varying depths of retrieval. Recall is higher at low values

of K and high values of n, and the recall drops consider-

ably as the number of segments K increases.

as described in section 5.1.

Further, we also describe our results on the original task,
proposed with the data set, of finding the answer in a pas-
sage for a question. In our experiments we report results
under two conditions: (a) First identifying the best passage
and then choosing the best sentence (b) Assuming the best
passage is already known and then choosing the best sen-
tence that answers the query (original WikiQA QA task).
Table 4 presents results of experiments under both these
conditions. It can be seen that our system gives comparable
results under both conditions. The state of the art results
under condition (b) as reported in the original paper is an
MRR of 0.696. Our system, though not designed for the
original task, has an MRR score 10% lower than the best
system reported.
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@1 @3

MRR MMA@1 MMA@3 P R F1 P R F1

TFIDF 0.807 0.797 0.812 0.839 0.893 0.865 0.308 0.958 0.466
WORDVEC 0.895 0.877 0.913 0.894 0.914 0.904 0.315 0.984 0.478
FISHER 0.865 0.842 0.887 0.863 0.885 0.874 0.298 0.975 0.457

Table 3: WikiQA Passage Retrieval Results

MRR MRR
Top Segment Gold Standard Passage

TFIDF 0.528 0.495
WORDVEC 0.548 0.586
FISHER 0.577 0.597

Table 4: Finding the sentence answering the question:

“Top segment” uses our system to select the best passage

while “Gold standard passage” uses the actual passage

labeled in the data set

6. DISCUSSION AND CONCLUSION
In this paper we described the novel task of automatically
segmenting and labeling documents with learning standard
objectives. Using a state of the art dynamic programming
algorithm for text segmentation, we demonstrate its use for
this problem and report a sentence level F1 score of 0.613
and segment level MMA@3 of 0.9. We also demonstrated
the effectiveness of our approach on document passage re-
trieval and QA tasks.

Our method is completely unsupervised and only requires a
small validation set for parameter tuning. This makes our
work general and easily applicable across different geogra-
phies and learning standards. Identifying document seg-
ments best suited for learning objectives is a challenging
problem. For instance, portions of documents that intro-
duce or summarize topics or build a background in an area
are very hard to disambiguate for the algorithm due to the
lack of observable topic shifts. Developing more sophisti-
cated cohesion and topical diversity measures to address this
problem could be an interesting direction of further research.

In future work, we would also like to explore methods that
jointly segment and label documents. We also plan to use
other methods of vector construction such as paragraph vec-
tors [7] to better represent segments using a training data
set as well as semi-supervised text segmentation methods.
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[4] H. Daumé III and D. Marcu. Bayesian query-focused
summarization. In Proceedings of the 21st
International Conference on Computational
Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages
305–312. Association for Computational Linguistics,
2006.

[5] L. Du, J. K. Pate, and M. Johnson. Topic
segmentation in an ordering-based topic model. 2015.

[6] M. A. Hearst. Texttiling: A quantitative approach to
discourse segmentation. Technical report, Citeseer,
1993.

[7] Q. V. Le and T. Mikolov. Distributed representations
of sentences and documents. arXiv preprint
arXiv:1405.4053, 2014.

[8] J.-P. Mei and L. Chen. Sumcr: a new subtopic-based
extractive approach for text summarization.
Knowledge and information systems, 31(3):527–545,
2012.

[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
word2vec, 2014.

[10] Y. Ouyang, W. Li, S. Li, and Q. Lu. Applying
regression models to query-focused multi-document
summarization. Information Processing &
Management, 47(2):227–237, 2011.

[11] F. Perronnin, J. Sánchez, and T. Mensink. Improving
the fisher kernel for large-scale image classification. In
Computer Vision–ECCV 2010, pages 143–156.
Springer, 2010.

[12] M. Riedl and C. Biemann. Text segmentation with
topic models. Journal for Language Technology and
Computational Linguistics, 27(1):47–69, 2012.

[13] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek.
Image classification with the fisher vector: Theory and
practice. International journal of computer vision,
105(3):222–245, 2013.

[14] Y. Yang, W.-t. Yih, and C. Meek. Wikiqa: A
challenge dataset for open-domain question answering.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
2013–2018. Citeseer, 2015.

[15] G. Zhou, T. He, J. Zhao, and P. Hu. Learning
continuous word embedding with metadata for
question retrieval in community question answering.
In Proceedings of ACL, pages 250–259, 2015.

Proceedings of the 9th International Conference on Educational Data Mining 287



Semi-Automatic Detection of Teacher Questions from 
Human-Transcripts of Audio in Live Classrooms 
Nathaniel Blanchard1, Patrick J. Donnelly1, Andrew M. Olney2, Borhan Samei2,  
Brooke Ward3, Xiaoyi Sun3, Sean Kelly4, Martin Nystrand3, Sidney K. D’Mello1 

1University of Notre Dame; 2University of Memphis;  
3University of Wisconsin-Madison; 4University of Pittsburgh 

384 Fitzpatrick Hall 
Notre Dame, IN 46646, USA 

nblancha@nd.edu; sdmello@nd.edu  
 

ABSTRACT 
We investigate automatic detection of teacher questions from 
automatically segmented human-transcripts of teacher audio 
recordings collected in live classrooms. Using a dataset of audio 
recordings from 11 teachers across 37 class sessions, we 
automatically segment teacher speech into individual teacher 
utterances and code each as containing a teacher question or not. 
We trained supervised machine learning models to detect 
questions using high-level natural language features extracted 
from human transcriptions of a random subset of 1,000 segmented 
utterances. The models were trained and validated independently 
of the teacher to ensure generalization to new teachers. We are 
able to detect questions with a weighted F1 score of 0.66, 
suggesting the feasibility of question detection on automatically 
segmented audio from noisy classrooms. We discuss the 
possibility of using automatic speech recognition to replace the 
human transcripts with an eye towards providing automatic 
feedback to teachers. 

Keywords 
Automatic Speech Recognition, Natural Language Processing, 
Classroom Environments, Question Detection 

1. INTRODUCTION 
Teachers employ a wide array of instructional strategies in their 
classrooms due to individual teaching styles, requirements of the 
curricula, and other constraints. These strategies may include 
lectures, asking questions and evaluating student responses, or 
assigning small-group work, among many others. However, these 
approaches are not equally effective at promoting student 
achievement. Certain techniques, such as asking particular types 
of questions or facilitating a classroom-wide discussion, have 
been shown to predict student engagement and achievement 
growth above others [1], [2].  

Research also indicates that providing teachers with feedback on 
their instructional practices can lead to improved student 
achievement [3]. But where does the feedback come from? 
Currently, the onus is on trained human judges who analyze 
teacher instruction by observing live classrooms. For example, 
the Nystrand and Gamoran coding scheme [4], [5] provides a 
general template for observers to document and analyze teacher 

instructional practices. This scheme has been empirically 
validated in numerous studies across hundreds of middle school 
and high school classrooms [6]–[8]. Unfortunately, this is an 
expensive and labor intensive process that hinders the ability to 
analyze classroom instruction at scale. Instead, computational 
methods that can automatically analyze classroom instruction at 
scale are needed. We take a step in this direction by considering 
the possibility of detecting teacher questions in live classrooms. 
We focus on questions because they are a central component of 
dialogic instruction, often serving as a catalyst for in-depth 
classroom discussions and so called ‘dialogic spells’ [9]. 

The classroom environment provides a unique set of challenges 
for the automatic analysis of questions. There are also numerous 
constraints as discussed in detail by D’Mello et al. [10]. Briefly, 
the analytic approach should not be disruptive to either the teacher 
or the students. Secondly, it must be affordable to enable wide-
spread adoption across classrooms. Finally, for privacy concerns, 
video recordings are not possible unless students can be de-
identified. 

We attempted to overcome these challenges by designing a 
system that includes a low cost, wireless headset microphone to 
record teachers as they move about the classroom freely. Our 
system accommodates various seating arrangements, classroom 
sizes, and room layouts, but attempts to mitigate complications 
due to ambient classroom noise, muffled speech, or classroom 
interruptions, factors that reflect the reality of real-world 
environments.  

There is the open question as to whether the data collected in this 
fashion can be of sufficient quality for automatic question 
detection. As an initial step, we consider semi-automated question 
detection from human-transcripts of automatically-segmented 
teacher audio. If successful, the next step would be to apply our 
basic approach by using automatic speech recognition (ASR) in 
lieu of human transcriptions. 

1.1 Related Work 
Our work is related to previous attempts at automatic detection of 
questions from transcriptions of audio albeit outside of the noisy 
classroom interaction context we consider here. We limit our 
review to experiments that include ASR, as our ultimate goal is 
in full automation of question detection.  

In a study attempting to detect questions in office meetings, 
Boakye et al. [11] trained models using the ICSI Meeting 
Recorder Dialog Act (MRDA) corpus, a dataset of 75 hour-long 
meetings recorded with headset and lapel microphones. Using an 
AdaBoost classifier to detect questions from human 
transcriptions, the authors obtained an F1 score of 67.6 by 
combining various NLP features.   
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Stolcke et al. [12] built a dialogic act tagger on the conversational 
switchboard database. A Bayesian network modeling word and 
trigrams discourse grammars, from human transcriptions 
achieved a recognition rate of 71% to detect a set of dialogic acts, 
such as statements, questions, apologies, or agreement (chance 
level 35%; human agreement 84%). The authors further 
attempted to distinguish questions from statements, two speech 
acts often confused by their model. They obtained an accuracy of 
86% on a subset of their dataset containing equal proportions of 
questions and statements using only word features (chance 
accuracy 50%). This result, while promising, is based on an 
artificially balanced dataset of statements and questions.  

Most recently, Orosanu and Jouvet [13] investigated 
classification of sentences labeled as either statements or 
questions in three French language corpora, testing on a set of 
7,005 statements and 831 questions. The models accurately 
classified 75.5% of questions and 72.0% of statements using 
human transcripts. The authors compared the results of using 
human-annotated sentence boundaries against a semi-automatic 
method for boundary detection. A subset of sentences, those 
without prior and proceeding silences of an undefined length, 
were split once on the longest silence in the sentence; the 
remainder of the sentences were left unchanged. Semi-automatic 
splitting led to a 3% increase in classification errors. Although 
only a subset of sentences were split and there were no cases 
where sentences were combined, the results suggest that detecting 
questions from imperfect boundaries may be possible.  

1.2 Contributions and Novelty 
We describe an approach to automatically identify teacher 
questions from human-transcriptions of teacher audio recorded in 
live classrooms. We make several contributions while addressing 
these challenges. First, we examine a dataset of full length 
recordings of real world class sessions, drawn from multiple 
teachers and schools. Second, we only use teacher audio because 
it is the most scalable and practical option. Third, we 
automatically segment audio recordings into individual teacher 
utterances in a fully automated fashion and manually transcribe a 
subset of these utterances for use in our classification models. 
Fourth, we restrict our feature set to high-level natural language 
features that are more likely to generalize to classes on different 
topics rather than low-level domain-specific words. Finally, we 
design our models to generalize across teachers rather than 
optimizing to the speech patterns of individual teachers. 

2. METHOD 
2.1 Recording Teacher Audio 
Data was collected at six rural Wisconsin middle schools during 
literature, language arts, and civics classes. Class sessions were 
taught by 11 teachers (three male; eight female) and lasted 
between 30 and 90 minutes. The teachers carried out their normal 
lesson plan, allowing the collection of a corpus of real-world 
samples of classrooms. Based on previous work [10], a Samson 
77 Airline wireless microphone was chosen for teachers to wear 
while teaching. Teacher speech was captured and saved as a 16 
kHz, 16-bit single channel audio file. A total of 37 class sessions 
were recorded on 17 separate days over a period of a year. The 
recordings contain a total of 32 hours and five minutes of audio. 

2.2 Teacher Utterance Detection 
Teacher speech was segmented into utterances using a voice 
activity detection (VAD) technique described in [14] and briefly 
reviewed here. Audio from the teacher’s microphone was 

automatically split into potential utterances, consisting of either 
teacher speech or other sounds (e.g., accidental microphone 
contact, classroom noise), based on pauses (i.e., periods of 
silence) between speech. The beginning of a potential utterance 
was automatically identified when the amplitude envelope rose 
above a preset threshold. The end point of the utterance was 
automatically identified when the amplitude envelope dropped 
below this threshold for at least 1000 milliseconds, a pause of one 
second. The threshold was set to be sufficiently low so as to 
capture all instances of speech, also causing a high rate of false-
alarms. False alarms were eliminated by filtering all potential 
utterances with Bing ASR [15]. If the ASR rejected a potential 
utterance, then it was discarded as a non-speech segment.  

We validated the effectiveness of our VAD approach in an 
experiment by hand coding a random subset of 1,000 potential 
utterances as either containing speech or not containing speech 
[11]. We achieved an F1 score of 0.97, which we deemed 
sufficiently accurate for the purposes of this study. Therefore, we 
applied our approach for VAD to the full dataset of 37 classroom 
recordings and extracted 10,080 utterances. 

2.3 Question Coding and Transcription 
We manually coded the complete set of automatically extracted 
utterances as containing a question or not. It should be noted that 
a known limitation of annotating automatically segmented speech 
is that each utterance may contain multiple tags (questions in this 
case), or conversely, a tag may be spread across over multiple 
utterances. This occurs because we use both a fixed amplitude 
envelope threshold and pause length to segment utterances, rather 
than creating specific thresholds for each teacher or class-session. 
This fully automates the VAD detection process, and allows us to 
test generalizability to new teachers. For this work, we allow 
question tags to span multiple utterances, since the entire content 
of question is likely to be essential to future work aimed at 
providing feedback to teachers.  

We define a question after the question coding scheme developed 
by Nystrand and Gameron [4], [5], which is specific to 
classrooms. For example, calling on students in class (e.g., “What 
is the capital of Iowa [pause] Michael”) is considered a question. 
Likewise, the teacher calling on a different student to answer the 
same question after evaluating the previous response (e.g., “Nope 
[pause] Shelby”) is also considered a question. Calling a student 
name for other reasons, such as to discipline them, is not a 
question (e.g., “Steven”). Thus, question coding involves 
ascertaining both the context and intentionality of the utterance. 

The coders were seven research assistants and researchers whose 
native language was English. Coders listened to the utterances in 
temporal order and assigned a label (question or not) to each 
based on the words spoken by the teacher, the teachers’ tone (e.g., 
prosody, inflection), and the context of the previous utterance. 
Coders could also flag an utterance for review by a primary coder, 
although this occurred rarely.  

As training, the coders first engaged in a task of labeling a 
common evaluation set of 100 utterances. These 100 utterances 
were selected to exemplify difficult cases. Once coding of the 
evaluation set was completed, the primary coder, who had 
considerable expertise with classroom discourse and who initially 
selected and coded the evaluation set, reviewed the codes. Coders 
were required to achieve a minimal level of agreement with the 
primary coder (Cohen’s kappa, κ = 0.80). If the agreement was 
lower than 0.80, then errors were discussed with the coders. 
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After this training task was completed, the coders coded a subset 
of utterances from the complete dataset. In all, 36% of the 10,080 
utterances were coded as containing questions. A random subset 
of 117 utterances from the full dataset were selected and coded 
by the expert coder. Overall the coders and the primary coder 
obtained an agreement of κ = 0.85 on this evaluation set.  

From the full dataset of 10,080 labeled utterances, we selected a 
random (without replacement) subset of 1,000 utterances for 
manual transcription by humans. 30% of the utterances in this 
subset contained a question, which is slightly lower than the 36% 
question rate on the entire dataset. 

2.4 Model Building 
We trained and tested supervised classification models to predict 
if utterances contained part (or all) of a question, or did not 
contain a question. The model building process involved the 
following steps. 

Features. Features were generated using the human transcripts 
for each utterance. We limited our feature set to a set of 37 
generalizable NLP features to limit overfitting to teacher dialect 
or classroom subject/domain. These 34 features were obtained by 
processing each utterance with the Brill Tagger [16]. Each tagged 
token was examined for features (see [17] for further details) 
based on the semantics of various question types (e.g., causal, 
interpretation, disjunction) or the syntax of questions (e.g., WH-
words and modal verbs). These 34 features capture key word 
(e.g., why, how), word categories (e.g., procedural), and parts of 
speech (e.g., noun, verb), and have previously been used to detect 
domain independent question properties associated with learning 
from human-transcribed questions [18]. Three additional features 
include proper nouns (e.g., student names), pronouns associated 
with teacher questions incorporating student responses (a type of 
question known as uptake), and pronouns not associated with 
uptake. 

Minority oversampling. We supplemented training data with 
additional synthetic instances generated by the Synthetic 
Minority Over-sampling Technique (SMOTE) algorithm [19] in 
order to eliminate skew in the training set. Importantly, SMOTE 
was only applied to the training set and the original distributions 
in the testing set were not altered. 

Classification and validation. We explored a number of 
classifiers: Naïve Bayes, logistic regression, random forest, J48 
decision tree, J48 with Bagging, Bayesian network, k-nearest 
neighbor (k = 7, 9, and 11), and J48 decision tree, using 
implementations from the WEKA toolkit [20]. We also combined 
the classifiers with MetaCost, which penalized misclassifications 
of the minority class (weights of 2 and 4). All 37 features were 
used in the models. 

We validated the classification models with leave-one-teacher-
out cross-validation, in which models were built on data from 10 
teachers (the training set) and validated on the held-out teacher 
(the testing set). The process was repeated for 11 folds so that 
each teacher appeared once in the testing set. This cross validation 
technique tests the potential of our models to generalize to new 
teachers in terms of variability in question asking and language. 

3. RESULTS 
The best performing model was Naïve Bayes, which achieved the 
overall highest F1 score (0.53) for detecting utterances containing 
questions (the minority class). This model achieved an overall 
weighted F1 score of 0.66 (see Table 1 for the confusion matrix).  

Additionally, we also compared our results to a chance-model that 
assigned the question label at the same rate as our model, but did 
so randomly.  We calculated the chance recall and precision for 
the question label as the average value per teacher over 10,000 
iterations. We consider this approach to computing chance to be 
more informative than a naïve minority baseline model that would 
yield perfect recall but negligible precision. We observed an 
encouraging level of recall (0.61) for the question class, which 
reflects the model’s ability to detect questions from utterances 
well above both chance precision (0.32) and recall (0.42). 
However, we note that further refinement is needed to improve 
the model’s precision (0.47), which is hindered by the frequent 
misclassification of utterances as questions.  

 

Table 1. Confusion matrix of 1,000 utterance subset, 
showing the count and the proportion in parenthesis. 

Instances Actual Predicted 

  Question Utterance 

320 Question 195 (0.61) 125 (0.39) 

680 Utterance 224 (0.33) 456 (0.67) 
 

4. GENERAL DISCUSSION 
Questions play a central role in dialogic instruction in classrooms. 
The importance of dialogue and discussion is widely 
acknowledged in research [6], [9], [20] and public policy (e.g., 
Common Core State Standards for Speaking and Listening).  The 
ability to automatically detect questions for both research and 
teacher professional development might have important 
consequences in improving student engagement.  Towards this 
goal, our current work focuses on semi-automatic prediction of 
individual teacher questions teacher audio recorded in live 
classrooms.  

We demonstrated promising results with our approach, consisting 
of manually transcribed automatically segmented teacher speech, 
high-level language features, and machine learning. Our best 
model, validated independently of the teacher, achieved an 
overall F1 score of 0.66 and a F1 score for the question class of 
0.53.  This reflects a modest improvement in overall classification 
(F1 of 0.63) and a significant improvement in question detection 
accuracy (F1 of 0.40) over a recent state of the art model [13].  

A major contribution of our work is that our models were trained 
and tested only on automatically, and thus imperfectly, segmented 
utterances. This confirms that question detection on imperfect 
sentence boundaries is possible, a result that furthers the work of 
[13], in which the authors split a subset of manually defined 
sentences on the longest silence in the sentence (see Section 1.1).  

Despite these encouraging results, this study is not without 
limitations. Most importantly, we only considered manually 
transcribed speech in order to examine the feasibility of the 
automatic identification of questions derived from noisy 
classroom environments. To fully automate our approach we will 
need to incorporate ASR engines. We expect that the 
incorporation of noisy ASR will contribute to additional errors in 
classification, a possibility we are studying in ongoing work that 
applies automatic speech recognition (ASR) on our full dataset of 
10,080 utterances.  
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Research [11]–[13] indicates that acoustic and contextual features 
may be important to capture certain difficult types of questions 
and we will explore the use of these features in future work. 
Furthermore, additional data collection which includes a second 
microphone that captures general classroom activity is ongoing. 
This second channel of audio, when combined with the recording 
of the teacher, will allow modelling patterns of teacher-student 
interactions, potentially revealing question-response patterns 
between teachers and students. Finally, we will extend our 
approach to classify the question properties defined by Nystrand 
and Gameron [9]. We have previously explored this task using 
human transcriptions of manually segmented questions [18], [21], 
but will extend this work using our approach that employs 
automatic segmentation and subsequently ASR transcriptions. 

In summary, we took steps towards fully automating the detection 
of teacher questions from audio recordings of live classrooms. We 
will continue to refine and improve these models as we extend 
our approach to use ASR transcriptions of the utterances. The 
present contribution is one component of a broader effort to 
automate the collection and coding of classroom discourse to 
improve learning. The automated system is intended to generate 
personalized formative feedback to teachers, enabling reflection 
and improvement of their pedagogy, with the ultimate goal of 
increasing student engagement and achievement. 
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ABSTRACT
The incorporation of prerequisite skill structures into educa-
tional systems helps to identify the order in which concepts
should be presented to students to optimize student achieve-
ment. Many skills have a causal relationship in which one
skill must be presented before another, indicating a strong
skill relationship. Knowing this relationship can help to pre-
dict student performance and identify prerequisite arches.
Skill relationships, however, are not directly measurable; in-
stead, the relationship can be estimated by observing differ-
ences of student performance across skills. Such methods of
estimation, however, seem to lack a baseline model to com-
pare their effectiveness. If two methods of estimating the
existence of a relationship yield two different values, which is
the more accurate result? In this work, we propose a method
of comparing models that attempt to measure the strength
of skill relationships. With this method, we begin to iden-
tify those student-level covariates that provide the most ac-
curate models predicting the existence of skill relationships.
Focusing on interactions of performance across skills, we use
our method to construct models to predict the existence of
five strongly-related and five simulated poorly-related skill
pairs. Our method is able to evaluate several models that
distinguish these differences with significant accuracy gains
over a null model, and provides the means to identify that
interactions of student mastery provide the most significant
contributions to these gains in our analysis.

Keywords
prerequisite structures, skill relationships, feature selection,
model comparison

1. INTRODUCTION
Many educational systems like ASSISTments and Khan Academy
already implement a prerequisite structure as a suggested or-
dering in which skills should be presented to students. These

structures are often developed by domain experts and teach-
ers in the field of study, and are likely to hold ground-truth.
It is clear, for example, that relationships can be identi-
fied by observing skills at the problem-level; by viewing the
steps required for students to complete each item, it can be
known that any skills required to complete such problems
can be considered prerequisites. For example, Multiplying
Whole Numbers may act as a prerequisite to Greatest Com-
mon Factors, as is used in our analysis. While causality
suggests a strong relationship, it is possible for two skills to
relate to each other in other ways. Such relationships are
less intuitive, perhaps requiring a similar thought process or
sequence of steps to solve, even if the content of such tasks
differ. Many causal skill arches are identifiable by domain
experts by observing content, but as described, other such
relationships may be missed due to their non-intuitive struc-
tures. By observing strong skill relationships identified by
domain experts, we construct a method of measuring the
factors that are most predictive of their existence.

We also argue that identifying strong relationships is not
enough for a method of prediction to be considered ade-
quate. Such a method should also be able to identify weak
or non-existent skill relationships. It is likely that while
much attention and research is placed on structuring pre-
requisite links, some of these are false-positives. In other
words, a skill may be listed as a prerequisite, but has no
true relationship to its supposed post-requisite skill. In such
a case there is little or no interactions of performance. Such
links must also be identified and removed or reordered in
learning platforms to benefit the students.

A significant amount of research has looked at measuring
the strength of skill relationships [1],[4], and even the ef-
fects such relationships have on measuring student perfor-
mance [3],[10], but without understood ground truths, it
is difficult to compare across these methods. Furthermore,
many of these methods represent similar conceptualizations
of performance inherently, or through variations of repre-
sentation such as aggregation or centering. For example,
“student achievement” is likely a predictor of skill relation-
ships (achievement on a prerequisite skill will likely influ-
ence achievement on a post-requisite skill), but can be rep-
resented as the percent of problems answered correctly, mas-
tery speed (the number of items needed to complete an as-
signment as is commonly used in intelligent tutoring sys-
tems), or countless other combinations of features. It will be
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important to distinguish between these generalized compo-
nents to avoid incorporating features that capture the same
types of conceptualizations into predictive models.

This work provides a method to evaluate models that mea-
sure the strength of skill relationships, and with this model
we attempt to identify which features best indicate a strong
relationship between two skills. This analysis will incorpo-
rate a method of generalizing and distinguishing features
that measure different aspects of learning and performance.
With this methodology, we seek to answer the following two
research questions:

1. What link-level features, expressed in this paper as in-
teractions of performance between skills, are significant in
predicting the existence or non-existence of skill relation-
ships?

2. Which features are the strongest predictors of skill rela-
tionships, and does combining them make for a more accu-
rate predictive model?

The next section of this paper will discuss some of the pre-
vious research performed on skill relationships and prereq-
uisite structures. Then, we will discuss our theory and
methodology to provide a baseline model of comparing meth-
ods of measuring skill relationships. Using this model, we
then compare several commonly-used student-level features,
and of the most accurate, compare several different repre-
sentations of those features. Finally, we will discuss our
findings and suggested future works.

2. PREVIOUS WORKS
The discovery and refinement of prerequisite skill structures
has been an important research question in recent years.
The impact of this research on educational systems cannot
be overemphasized. Domain experts who design these struc-
tures need data centered methods to support the decisions
they make; it is vital to have empirical data to support hy-
pothesis regarding the order in which skills are presented as
it can have a large impact on student achievement and either
aid or impede the learning process. Additionally, identify-
ing the best prerequisite skill structure will enhance student
modeling; knowing a student’s prior performance on prereq-
uisite skills can help estimate that student’s performance on
the post-requisites. This can lead to earlier interventions for
struggling students, or even help redefine mastery perhaps
students who perform very well on a prerequisite requires
less practice on a post-requisite, or can be given more ad-
vanced examples.

Tatsuoka, defined a data structure called the Q-Matrix, that
represents the mapping of problems to skills: the rows of this
matrix represent the problems, and the columns represent
the skills [9]. Though the goal of the research was to diag-
nose the misconceptions of students, they set in motion a
number of studies that have used this data structure as the
first step to find prerequisite structures [2],[5],[8].

Desmarais and his colleagues developed an algorithm that
finds the prerequisite relationship between questions, or items,
in students’ response data [6]. They compare pairs of items
in a test and determine any interactions existing between

each pair. Depending on the interactions and a set of interaction-
related criteria, they determine whether the two items have
a prerequisite relationship between them. This approach
was applied by Pavlick, et al. to analyze item-type covari-
ances and to propose a hierarchical agglomerative clustering
method to refine the tagging of items to skills [7]. Brunskel
conducted a preliminary study in which they use students’
noisy data to infer prerequisite structures [4]. Further re-
search by Scheines, et al. extended a causal structure dis-
covery algorithm in which an assumption regarding the pu-
rity of items is relaxed to reflect real data and to use that
to infer prerequisite skill structure from data [8].

3. DATASET
The dataset1 used for this study consists of real-world stu-
dent data from the ASSISTments online learning platform.
The raw data contains student problem logs pertaining to
ten math skills from the 2014-2015 school year. These ten
skills represent five skill pairs, listed in Table 1, for which
domain experts identified as having a strong prerequisite
relationship. While we are not limiting the usage of our
proposed baseline model to just prerequisite relationships,
these are the most reliable to identify due to the causal ef-
fect of content (if problems in skill B require the use of skill
A to complete, a strong relationship can be identified).

Table 1: The strong skill pairs as determined by
domain experts

Prerequisite Post-requisite
Multiplication of Greatest
Whole Numbers Greatest Common Factor

Subtracting Order of
Integers Operations

Division of Dividing Multi-
Whole Numbers Digit Numbers

Volume of Rectangular Volume of
Prisms Without Formula Rectangular Prisms

Nets of Surface Area of
3D Figures Rectangular Prisms

In order to identify believable ground-truth skill pairs, a sur-
vey containing 24 skill pairs for which we had sufficient stu-
dent data (greater than 50 student rows) was administered
to 45 teachers and domain experts who use ASSISTments.
Each was asked to rate on a scale of 1 to 7, indicating the
perceived qualitative strength of the relationship of each skill
pair. From the survey results, five skill pairs were selected
to be the strongest related links with the smallest variance
in opinion scores. As we are treating these links as truth,
we wanted to be highly selective of these pairs.

The resulting dataset consists of 1838 total student rows
from 896 unique students. This includes two rows of data per
student for each of the five skill pairs included. The first row
contains information of that student’s performance on the
pre- and post-requisite skills, while the second row contains
student performance on the prerequisite and a simulated
post-requisite described further in the next section.

1The full raw and filtered datasets are available at the fol-
lowing link: http://tiny.cc/veqg5x
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For each student, a feature vector was selected using com-
mon performance metrics to compare within our model. This
feature vector contained eight link-level features represent-
ing the interactions between student-level prerequisite and
post-requisite performance metrics. The generated link-level
features observed are as described below:

Percent Correct
The mean-centered2 percentage of correct responses in
the prerequisite skill multiplied by the mean-centered
percentage of correct responses in the post-requisite
skill.

First Problem Correctness (FPC)
The binary correctness of the first response in the pre-
requisite skill multiplied by the binary correctness of
the first response on the post-requisite skill.

Mastery Speed
The mean-centered mastery speed of the prerequisite
skill, defined as the number of problems required for
each student to achieve three consecutive correct re-
sponses, multiplied by the mean-centered mastery speed
of the post-requisite skill. In addition to centering,
these values were also winsorized to make the largest
possible value 10, chosen as this is often the maxi-
mum number of daily attempts allowed within AS-
SISTments. All centering and winsorizing occurred
before multiplying the two values.

Z-Scored Percent Correct
The z-scored3 value of mean-centered percentage of
correct responses in the prerequisite skill multiplied
by the z-scored value of mean-centered percentage of
correct responses in the post-requisite skill.

Binned Mastery Speed (Bin)
The numbered bin of mastery speed as described in [3]
of the prerequisite skill multiplied by the bin of mas-
tery speed in the second skill. Students were placed
into one of five bins based on mastery speed if the as-
signment was completed and based on percent correct
if the assignment was not completed.

Z-Scored Mastery Speed
The z-scored value of mean-centered, winsorized mas-
tery speed in the prerequisite skill, multiplied by the
z-scored value of mean-centered, winsorized mastery
speed in the post-requisite skill.

Bin X FPC
The binned mastery speed value in the prerequisite
skill multiplied by the binary correctness of the first
response in the post-requisite skill.

Percent Correct X FPC
The mean-centered percentage of correct responses in
the prerequisite skill multiplied by the binary correct-
ness of the first response in the post-requisite skill.

2All centering of features was performed at the skill-level.
3All z-scoring was performed at the class-level.

4. METHODOLOGY
The ultimate goal of this work is to provide the means of
comparing models predicting the existence, or non-existence
of skill relationships. Our approach to this is through the
comparison and identification of features that most accu-
rately predict these relationships. Using principal compo-
nent analysis, we group similar features into more general-
ized conceptualizations to both compare which types of fea-
tures matter when predicting relationships, but also to avoid
problems of multicollinearity that may bias our estimates.
Once this baseline model is established, we can construct
new predictive models from the significant features and ob-
serve their accuracy in predicting the existence of skill rela-
tionships when compared to a simple null, or unconditional
model.

In order to compare the usage of features against a weak
or non-existent relationship, we simulated a new skill using
students from the existing prerequisite skill by generating
random sequences of responses. For each existing student,
we randomly assign him/her a probability between 0.5 and
0.9 in order to create a random sequence of answers. For ex-
ample, a student given a probability of 0.5 has a 50% chance
of answering each given problem correctly. We simulate stu-
dent answers until either mastery is achieved, defined as
three sequentially correct responses, or the student reaches
10 problems without mastering; a value of 10 is chosen here,
as many assignments in ASSISTments are given a daily limit
of 10 problem attempts before asking the student to seek
help or try again on another day. While we acknowledge
there are many ways to accomplish this simulation step, we
feel this simple method sufficiently creates a skill that has no
relationship to the original prerequisite as intended. As our
proposed method is intended to be used in the future to help
identify undiscovered pre- or post-requisite links, we chose
to use a simulated skill rather than a random existing skill
to avoid the possibility of randomly selecting an undiscov-
ered related skill. Again, we wanted to be highly selective
and consider several such scenarios as we are attempting to
create ground-truth values to which we can make our com-
parisons.

Using these two skill-pairs, one link representing a strong
relationship while the other representing a non-existent re-
lationship, we can calculate a feature vector for each student
in the prerequisite skill with values from each skill-pair. We
use a binary logistic regression with the existence of a re-
lationship as the dependent variable and several link-level
covariates to predict whether a skill relationship exists for
each student row. The existence of a relationship can be
determined then simply by majority ruling, but such cal-
culation is not included in this work and instead observes
accuracy at the student-level for a more accurate compari-
son.

We begin to compare commonly used student-level features
in this study through two levels analysis. The first step
attempts to compare groups of features, generalizing differ-
ent representations of similar features into conceptual group-
ings. As such, we are able to view the predictive power of
what we denote as initial performance, mastery, and correct-
ness. The second experiment looks at the individual features
as different representations of the overall group to compare
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Figure 1: The results of the PCA analysis. All fea-
tures except Z-Scored Mastery Speed mapped to
one of three generalized components.

these predictors at a closer level. We can take each factor
of mastery, for example, and compare their usage in several
models to determine which is the most accurate predictor of
the existence of skill relationships.

4.1 Comparing Link-Level Features
In order to compare representations of student-level features,
we must first be able to compare general conceptualizations
of features to determine which provide more accurate predic-
tions of the existence of skill relationships. We want to cap-
ture the true representations of each metric and attempt to
interpret these generalizations as types of features. In order
to accomplish this grouping of predictors, we use principal
component analysis (PCA) to identify which student-level
features correlate to and are representative of more general-
ized components. PCA is primarily used for dimensionality
reduction as we are doing here and gives us the ability to
create new variables from the component mappings. The
resulting feature alignment can be seen in Figure 1. As is
the case in our study, and was mentioned in the previous
section, we have multiple metrics of mastery speed as well
as several other features. As we can represent “mastery” in
several ways, we want to know if the overall concept of mas-
tery, as captured by the metrics used, is reliably predictive
of the existence of skill relationships.

Creating a new set of predictors of these groupings, we are
able to incorporate these into a binary logistic regression
model to view the predictive power of each. While PCA
groups similar features together based on their correlations,
by viewing which features are grouped we are able to inter-
pret and label each. From this process, we found that most
of our features fell into three categories for which we have
given the names“mastery,”as this consists of representations
of mastery speed, “correctness,” as this consists of represen-
tations of the percentage of correct student responses, and
“initial performance,” as this consists of representations of

student performance on the initial items of each skill. In ad-
dition to these three categories, we are also left with student
mastery speed z-scored within student classes as a variable
that did not fall under either of the three aforementioned
categories; while a derivation of mastery speed, we believe
that this did not correlate to the “mastery” category due to
the method of standardization as it is capturing this metric
in relation to students’ peers. We will readdress this case in
our section of discussion.

Once these predictors are identified and created, we con-
struct a binary logistic regression model to predict, for each
student row, whether a relationship exists or not. This
model will give us a significance value and coefficient for
each predictor in the model, as well as an overall predictive
accuracy of the model which will be used more for the next
analysis.

4.2 Comparing Feature Models
After being able to compare which generalized groups of
features are significant predictors of the existence of skill re-
lationships, we are able to compare the individual student-
level features that fall into each category by incorporating
them into separate models to observe predictive accuracy.
The analysis of the first experiment is used to determine
which categories are significant in predicting the existence
of skill relationships. Using that information, we are able to
focus on those groupings with significance to construct mod-
els that utilize factors from each grouping. The grouping of
“mastery,” for example contains the factors of mastery speed
and binned mastery speed, so we can construct models using
each to compare differences in predictive power. To avoid
problems of collinearity, no single model contains more than
one factor from a single grouping. This significantly reduces
the number of combinations of features to test compared to
running this experiment without first grouping like features
and identifying those that are significant as we did in the
first experiment.

Using the significant groupings, we are able to create 17
models consisting of single, pairs, and triplets of features.
A logistic regression is run on each of these models to pre-
dict the existence of a skill relationship. Of the 17 mod-
els, 10 of them produce a statistically significant prediction
when compared to a null model. Ideally, our null model
should produce a 50% accuracy as there is an equal number
of good and bad link rows in our dataset. This is not always
the case, however, as depending on the feature observed, in-
formation may be missing for a particular student; mastery
speed, for example, as the number of items attempted by a
student before reaching 3 consecutive correct answers, would
be missing for any student that did not complete the assign-
ment. For this reason, the predictive power of each model is
described as gains in predictive accuracy, or rather, the accu-
racy of each model minus the accuracy of the corresponding
null model.

5. RESULTS
The results of the first analysis are expressed in Table 2.
Each of the three feature groupings of Mastery, Correctness,
and Initial Performance created using PCA in addition to
the Z-Scored Mastery are compared within the same model,
predicting the existence of a skill relationship. As these
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Table 2: The coefficients and significance values of
the generalized components analyzed. From this we
can focus on models that exclude features contained
in the components with no significance.

Component Coefficient Value Significance
(log-odds units)

Mastery -.251 <.001***

Correctness .015 .802
Initial

Performance .129 .037*
Z-Scored

Mastery Speed -.129 <.001***

again are link-level features describing interactions between
student-level performance on prerequisite and post-requisite
skills, it is difficult to draw tangible interpretations from
the coefficient value, expressed in log-odds units. This co-
efficient, used in the logistic regression to make the predic-
tions, describes each component’s effect on the dependent
variable. For example, for each unit increase in “Mastery,”
the probability that the link exists decreases. Again, as this
component is an aggregation of interaction features, it is re-
ally describing an aggregation of differences of differences
between student-level features making it difficult to make
definitive claims regarding these values alone and were in-
cluded purely to display a general trend of these components
on the prediction.

From the table, we are able to determine the significance of
each component on the overall prediction by viewing the cor-
responding p-values in the third column. Looking at these
values, we can claim that the overall grouping of “Correct-
ness” seems to have less of an impact on the predictive ac-
curacy of the model. As this term is not significant, we can
focus the remainder of our study on the remaining three
components.

Table 3 illustrates the results of our second analysis com-
paring the models that we are able to construct with the re-
maining features once the “Correctness” grouping has been
disregarded. This figure shows the comparative predictive
accuracy of the 10 models that give statistically significant
predictions as seen in Table 3. Again, these values are ex-
pressed as accuracy gains, or rather the percent accuracy
increase over the null model run for each predictive model.

6. DISCUSSION
This work provides a baseline model of comparing student-
level performance across skills to measure the strength of a
skill relationship and compare the accuracy of both features
and models that estimate this value. Such a model, in our
experience, has not existed prior to this study. Our method
attempts to identify not only the individual features that
contribute to better predictions of these relationships, but
also moves to generalize similar features into conceptualiza-
tions for comparison in order to minimize multicollinearity.

The principal component analysis step of our model found
that all but one feature mapped to one of three components

that we have interpreted as mastery, correctness, and initial
performance. It was found the z-scored mastery speed, con-
trary to our intuition, did not map well to the grouping of
mastery. We can speculate the reason for this occurrence
by altering our interpretation of the feature. Mastery speed
itself is an interesting metric as it attempts to capture two
dimensions of performance: a level of understanding and a
rate of learning. Also, to reiterate a prior distinction, these
metrics are interactions of performance across skills. By z-
scoring the metric, it is capturing a contextual effect of each
student in comparison with other students in the class, a
distinction that appears to have a significant effect.

Observing the resulting model components from the prin-
cipal component analysis in Table 2, we were able to focus
our attention to those components with significant values.
Correctness was the only component of that model that was
found to have no statistical significance on the dependent
variable. This is certainly interesting, as percent correctness
and other such measures are among the most common met-
rics of performance. Perhaps the interaction between pre-
and post-requisite percent correct is losing some predictive
power from when the metric is used for other predictions of
performance.

This aspect illustrates one other important finding that the
distinct representations of one metric or another each con-
tribute differently to the predictive accuracy of the models
studied. Models incorporating mastery speed, for example,
had no significant accuracy gains over a null model, while
mastery speed binning showed considerable gains as seen in
Table 3. The baseline model of comparison proposed in this
study provides the means to make that distinction regard-
ing features contained within the same generalized compo-
nent grouping. As is seen in that figure, combinations of
features outperform any single feature, illustrating a more
robust model by capturing multiple representations of per-
formance.

7. FUTURE WORK
While we have shown that our model is able to compare
and identify features that contribute to higher accuracy in
predicting the existence of skill relationships, we also need
to stress the importance of the usage of this information.
The ability to compare features is only the first step of our
model’s goal. By identifying strong predictors of skill rela-
tionships that we know exist, we can apply it to other skills
within ASSISTments and other systems to identify poten-
tially new prerequisite arches, and also to better measure
and predict long-term student performance, learning, and
retention. Having an accurate estimate of skill relationships
can help restructure prerequisite structures to provide skill
sequences in an order that optimizes student learning and
achievement.

The work in this paper incorporated several skills into a sin-
gle dataset to make predictions. In this case, we wanted to
create a method that is generalizable to some degree. While
our selective skill set allows us to make some claims in terms
of the accuracy these models over all skills, it may likely be
the case that skill relationships are measurable in different
ways for different skills. Further analysis could repeat the
steps here on each one of the acquired skills in the dataset.

Proceedings of the 9th International Conference on Educational Data Mining 296



Table 3: The models constructed from features in the significant generalized components. No one model
contains more than a single feature from each generalized component.

Model Null Accuracy Model Accuracy Accuracy Gain Significance
Mastery Speed (MS) 0.63 0.62 0.00 1.000

Z-Scored Mastery Speed 0.63 0.63 0.00 0.888
First Problem Correctness (FPC) 0.50 0.56 0.06 <0.001***

Binned MS 0.50 0.69 0.19 <0.001***
Bin X FPC 0.50 0.56 0.06 <0.001***

Bin, Z-Scored MS 0.50 0.71 0.21 <0.001***
MS, FPC 0.63 0.62 0.00 1.000

MS, Bin X FPC 0.63 0.62 0.00 1.000
Bin, FPC 0.50 0.69 0.19 <0.001***

Bin,Bin X FPC 0.50 0.69 0.19 <0.001***
MS, FPC, Z-Scored MS 0.63 0.63 0.00 0.754

MS, Bin X FPC, Z-Scored MS 0.63 0.63 0.00 0.979
Bin, FPC, Z-Scored MS 0.50 0.71 0.20 <0.001***

Bin, Bin X FPC, Z-Scored MS 0.50 0.71 0.21 <0.001***
MS, Z-Scored MS 0.63 0.63 0.00 0.843

FPC, Z-Scored MS 0.50 0.64 0.14 <0.001***
Bin X FPC, Z-Scored MS 0.50 0.61 0.11 <0.001***

While correctness was not significant in these results, per-
haps it is significant when predicting certain types of skills.
Perhaps, similar to our features, skills themselves could be
generalized into conceptual types for different kinds of anal-
ysis pertaining to interactions of performance and their re-
lationships.

The feature vectors generated for each student in our dataset
captured many of the most common student-level metrics,
but certainly not all of them. There are many other as-
pects that could be added including completion, measures
of learning rate, time spent on the assignments, hint usage,
and countless other variables. In addition, this study only
observed interactions expressed as multiplications of these
terms to describe them as link-level features. There are
various other ways to represent interactions or other such
transformations including differences of values, division of
values, or just simply cross-feature interactions as was par-
tially explored here by looking at Bin X FPC and Percent
Correct X FPC. Such interactions model various other as-
pects of student performance and behavior that can be very
useful in this type of relationship prediction.

The methodology presented observes models that predict
the existence of skills as a binary outcome, while it can be
modified to make comparisons on estimates of relationship
strengths as a continuous outcome as well. The method ob-
served model accuracy at the student level for better mea-
surements, but it is a skill-level relationship that is being
tested. One simple addition of future work could explore
how to best combine the predictions at a student level to
make a skill-level prediction. The methodology can then
test relationships on the entire system skill structure.
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Robust Predictive Models on MOOCs : Transferring
Knowledge across Courses

ABSTRACT
As MOOCs become a major player in modern education,
questions about how to improve their effectiveness and reach
are of increasing importance. If machine learning and pre-
dictive analytics techniques promise to help teachers and
MOOC providers customize the learning experience for stu-
dents, differences between platforms, courses and iterations
pose specific challenges. In this paper, we develop a frame-
work to define classification problems across courses, provide
proof that ensembling methods allow for the development
of high-performing predictive models, and show that these
techniques can be used across platforms, as well as across
courses. We thus build a universal framework to deploy pre-
dictive models on MOOCs and demonstrate our case on the
dropout prediction problem.

Keywords
Transfer Learning, Ensembling methods, Stacking, MOOCs,
Dropout prediction

1. INTRODUCTION
As Massive Open Online Courses (MOOCs) continue to be-
come a vital part of modern education, it becomes more
and more necessary to increase their effectiveness and reach.
Along with learning science and design, data analytics is
known to be one of the fields most likely to improve this
new education experience ([1]). Predictive analytics are par-
ticularly promising, allowing researchers to design real-time
interventions and to adapt course content based on student
behavior ([7],[9],[6],[3]).
Ideally, these predictive analytics would act in ways similar
to an experienced teacherâĂŤone who is able to identify dif-
ferent students, and to adapt her actions accordingly. How-
ever, because the data available for training models is often
significantly different then the data to which those models
will be applied, it can be challenging to fully realize this
promise ([8]). A predictive analytics system for MOOCs
should be able to build on accumulated ”past data” to make

accurate predictions about an ongoing class. Thanks to the
vast offerings of MOOC databases like edX and Coursera,
there is now a plethora of past data available, both across
and within a given course.
But this diversity of available courses also means the goal of
real-time prediction is easier set than accomplished. Courses
may come from different platforms, focus on different top-
ics, or occur at different times. They may have more or
less homework, span different lengths of time, or require dif-
ferent levels of involvement. As platforms evolve, courses
may also morph to include new information or fulfill shift-
ing demands. Such changes typically affect the behavior of
students.
This raises a number of questions and challenges for a data
or learning scientist. Given data from a set of repeatedly
offered MOOC courses, key questions that shape the design
of relevant predictive analytics methods are as follows:

Purpose Can I use past courses to predict outcomes within
an ongoing course?

Data What data should I exploit to build my predictions?
Is data from a single course enough, or should I use
several courses?

Method What method will achieve good efficacy if I use
data from a single course? Several courses?

In this paper, we address the challenges inherent in build-
ing predictive models that perform well across courses. We
answer the questions, mentioned above, that a MOOC an-
alyst would ask about the prediction objectives, the data,
and the methods used to build such models. We also ad-
dress whether such methods are able to perform well across
courses on the same platform, and on different platforms.
This paper is divided into five sections. The remainder of
this first section explores the available literature regarding
MOOC dropout prediction and ensembling methods in ma-
chine learning. Section 2 introduces the formal notations,
assumptions, and data sets we used to prove our case. Sec-
tion 3 details different methods that prove useful for build-
ing robust models that transfer well to new courses. Section
4 presents the evaluation metrics, and showcases the effec-
tiveness our techniques on the dropout prediction problem.
Section 6 evaluates the potential impact of such techniques,
and summarizes the key findings and 7 conclusions.

Literature review
Even before the recent e-learning boom, concerned researchers
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have attempted to predict dropout. One major obstacle fac-
ing such attempts is the difficulty of building robust predic-
tive algorithms. While working with early e-learning data,
the authors of [7] improved the performance of their learn-
ing algorithm by merging several predictive algorithms to-
gether, namely Support Vector Machines, Neural Networks,
and Boosted Trees.
Since then, almost all dropout studies have been conducted
on MOOC data. Some researchers (like the authors of [9],
who studied the effects of collaboration on the dropout rate
of students) focus on understanding drivers of dropout among
students. Others develop feature extraction processes and
algorithms capable of pinpointing at-risk students before
they drop out. If a MOOC is able to identify such students
early enough, these researchers reason, it may be possible
for educators to intervene. In [6], Halawa et. al. used basic
activity features and respective performance comparison to
predict dropout one week in advance. The authors of [2]
included more features, as well as an integrated framework
that allowed users to apply these predictive techniques to
MOOC courses from various eligible platforms.
As MOOC offerings proliferate, the ability to ”transfer” sta-
tistical knowledge between courses is increasingly crucial,
especially if one wants to predict dropout in real time. Un-
fortunately, it is often difficult to take models built on past
courses and apply them to new ones. In [3], Boyer and Veera-
machaneni showed that models built on past courses don’t
always yield good predictive performance when applied to
new courses.
Because there is generally only one dataset available per
course, the ability to build robust models on MOOCs has
naturally accompanied the rise of ensemble methods. Over
the past twenty years, a flourishing predictive literature has
appeared, offering various techniques for choosing and en-
sembling models in order to achieve high-performing predic-
tors. A technique called ”stacking” has proven particularly
promising. In [5], Svzeroski et. al. showed that stacking
models usually perform as well as the best classifiers. They
also confirmed that linear regression is well-suited to learn-
ing the metamodel, and introduced a novel approach based
on tree models. The authors of [4] demonstrated the pos-
sibility of incrementally adding models to the ”ensembling
base” from a pool of thousands. Sakkis et. al. [10] used the
stacking method to solve spam filtering problems, finding
that it significantly improved performance over the bench-
mark.
In this paper, we explore a framework conducive to building
robust predictive models applicable to MOOCs. Although
we do address dropout prediction specifically, we also con-
sider the broader possibilities for building predictive models
from a set of courses.

2. PROBLEM SETTING AND DATA SETS
We place ourselves in the context of using past courses to
build a predictive model for a unseen course. We use the
term source courses for those courses whose data is used
to build (train) the predictive models, and the term target
course for the initially ”unseen”course. We consider the gen-
eral problem of predicting for each student i an outcome yti
at time t in the future. We suppose that we have access to
information about each student’s behavior through a set of
features: for example, a behavioral vector xti ∈ Rd describes
the behavior of the student i at time t.

ID Name Platform Students Weeks
C0 6002x13 edX 29,050 14
C1 6002x12 edX 51,394 14
C2 201x13 edX 12,243 9
C3 3091x12 edX 24,493 12
C4 3091x13 edX 12,276 14
C5 aiplan 001 Coursera 9,010 5
C6 aiplan 002 Coursera 6,608 5
C7 aiplan 003 Coursera 5,408 5
C8 animal 001 Coursera 8,577 5
C9 animal 002 Coursera 5,431 5
C10 astrotech 001 Coursera 6,251 6
C11 codeyourself 001 Coursera 9,338 7
C12 criticalthinking 1 Coursera 24,707 5
C13 criticalthinking 2 Coursera 15,627 5
C14 criticalthinking 3 Coursera 11,761 5

Figure 1: Summaries of courses used for experiments. The
first set contain five courses from edX platform (Harvard-
MIT), the second set contain ten courses from the EDI plat-
form (University of Edinburgh).

We assume that the source courses and the target course
share a non-empty set of behavioral features, such that we
can restrict ourselves to this set when building our predic-
tive models. As we will see below, this hypothesis is often
verified in practice. In this context, our goal is to learn the

statistical mapping from the behavior vector xw
′

of a stu-
dent in week w′ to their particular outcome yw in week w.
To do this, we propose to learn a statistical model by lever-

aging data (both xw
′

and yw) from previous courses.
Data sets: Our experiments are based on two sets of MOOC
courses. The source set, on which we built and validated our
methods, consists of five courses, and was provided by the
edX platform. Its attributes are described in table 1. This
dataset initially contained log files describing students’ be-
havior on the platform. For each student in these courses,
we extracted a set of 21 features on a weekly basis. The sec-
ond, or ”target,” set of courses was given by the University of
Edinburgh (EDI) and consists of 10 courses from Coursera,
whose attributes are also described in table 1. The courses
in this second set are shorter in duration (only 5 weeks), and
contain less detailed features. They share only 11 features
with the first set of courses.
To build a robust framework that could achieve reliable pre-
dictive models, we initially designed, trained and validated
our different methods on the first set of 5 courses from edX.
At the very end of this paper, we apply these models to the
second set of courses. When building models on one course
and applying its predictions to another, two issues must be
overcome. First, the two courses might not share the same
features (for example, the grade for p-sets during week 1
might be available for some courses and not for others).
Second, they might not span the same number of weeks.
We overcame these issues by only considering features and
timespans common to all courses. Therefore, we first used
21 features and 9 weeks when we trained, tested and vali-
dated our models on the edX courses. We then restricted
ourselves to an 11-feature, 5-week scheme when testing our
procedure on the EDI courses.
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3. METHODS
In this section, we describe the different approaches used
to build a predictive model for dropout. We first describe
common practices, and explore whether a single course can
be used to build a predictive model for another course. We
then explain how the aggregation of several data sources can
be used to improve the predictive power of a model. Finally,
we describe how a type of machine learning technique called
”Ensembling methods” can be used to further boost the pre-
dictive power of models built from different courses.

3.1 Naive approaches
Simple models: When building a supervised predictive
model out of data sources, the first logical step involves
training a single model on a particular dataset. Although
plenty of classification algorithms exist, there is no system-
atic a-priori method to determine which one is best suited
to a particular problem. This is the first hurdle that must
be overcome when building a robust model.
The second hurdle involves choosing which prior course to
train the model on. Although the first course s1 may have
a distribution closer to that of our target course t, s2 may
have more samples, resulting in a better predictive model.
Hence, we must choose both an algorithm and a prior course
that, working together, will be most suitable for predicting
outcomes in the new course.
Merging sources: Alternatively, one may ask, why not
use all the data from all the courses? Could learning a
predictive model on the concatenated data from all courses
{s1, s2, ..., sn} result in a model that transfers better to new
courses? This mitigates the problem of choosing among
courses, but certainly does not solve the need to choose a
a modeling approach, as it raises a number of new ques-
tions. First, concatenating obscures the differences between
courses, preventing a predictive model from making predic-
tions within the environment of the original sample. Second,
if the courses have different numbers of students, concate-
nating them can overweight the influence of the larger data
sets. Though this may not be a concern in cases where all
datasets are drawn from a single distribution, in our case,
combining the datasets is likely to limit the overall informa-
tion available.
Although those concerns could be addressed using different
tricks (for example, adding a ”dataset” feature to account
for the particularities of models, or undersampling bigger
datasets to balance their weight in the concatenated set),
we instead sought a different and more systematic approach
to building robust models.

3.2 Ensembling methods to improve transfer
of models in MOOCs

In this section, we leverage a type of machine learning tech-
nique called “Ensembling methods,” often used to aggregate
different predictive models. These techniques are now widely
practiced after their successful deployment in the Netflix1

challenge, in which hundreds of teams competed to build a
precise recommendation system. They are used both in the
industry and in public competitions, such as those held by
Kaggle 2), to improve the predictive power of models trained

1http://www.netflixprize.com/
2https://www.kaggle.com/

and tested on a single dataset(3).
In this paper, we ask whether ensembling methods can in
fact help in transferring models trained on one or more
courses. What additional parameter tuning or methods do
we have to develop to make this transference possible? Or-
dinarily, a data scientist uses ensembling techniques by se-
lecting different subsets of features and training examples,
learning algorithms, or parameters, and then building a set
of predictors to ensemble. In the context of MOOCs, which
have multiple courses, there is a natural split in the data
we can exploit. We will demonstrate that in the some cases
(for short term predictions), these approaches outperform
the performance of the transferred predictive models built
on a single course data and from a single algorithm.
We will discuss the different methods explored with respect
to the three following dimensions :

• A set of pre-trained predictors E = {p1, ..., pn}

• A set of rules to combine the predictions of different
algorithms. We call these rules ”voting rules” and note
them R = {R1, ..., Rp}

• A structure S, which specifies in which order and to
which predictions these rules should be applied.

Predictors: The first step in building a transferring method
for dropout prediction is to train a set of predictive algo-
rithms on data available from past courses. Given N source
courses and P predictive models to train, this produces
NxP = H predictors {p1, ..., pH}.
We trained four classification algorithms (RandomForest,
Logisitic Regression, SVM, and Nearest Neighbors) on each
course. For each of these algorithms, we used 5-fold cross-
validation to optimize the parameters. We note that for each
of the past available courses, we left a holdout subset of 20%
for a later-stage parameters optimization.

Fusing methods: One can combine a set of underlying
predictions {p1(x), ..., pH(x)} in infinite ways. Below, we list
three common ways of ensembling that have been proven to
perform well over a broad range of applications:

• Averaging (R1). The most common fusion method
consists of averaging the predictions of different un-
derlying predictors.

pnorm(x) =
1

H

H∑

i=1

pi(x)

• Normalized averaging (R2). When combining disparate
predictive methods, some predictors might produce es-
timations in {0.49, 0.51}, while others produce estima-
tions in {0, 1}. To account for the diversity of ranges
from one predictor to the next, one can normalize the
predictions of each predictor before averaging them.

pavg(x) =
1

H

H∑

i=1

pi(x)−minz∈t pi(z)

maxz∈t pi(z)−minz∈t pi(z)

• Rank voting (R3) In addition to differences in the
range of probabilities, may also differ in how fast they

3https://inclass.kaggle.com/c/mooc-dropout-prediction
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vary with the input. To mitigate this behavior (which
might cause the overall prediction to overweight very
sensitive predictors), one can rank the probabilities
within the target set first, then average and normalize
the resulting ranks of different .

prank(x) =
1

H

H∑

i=1

rank(pi(x))− 1

Nt

where rank(pi(x)) refers to the rank of sample pi(x)
in the set {pi(z), z ∈ t}

We note that none of these techniques assume anything
about the relative performance of different algorithms. We
call those voting schemes “symmetric” because they treat
each predictor in the same way. Our next set of methods
allows us to fuse predictions by accounting for the vary-
ing performances of different predictors, and allowing us to
put more weight on the “best” predictors. To identify these
weights, we use the holdout subset of our source courses,
and develop a method known as stacking as follows:

• Stacking (R4) We concatenate all the holdout sub-
sets from all source courses XHO ∈ RNHOxd and ap-
ply all pretrained predictors {p1(x), ..., pH(x)} on this
dataset. The output of this procedure YHO ∈ RNHOxH

is then considered as a new training dataset. We apply
a logistic regression on this output to learn the weights
for each predictor.

Structures: The last component of an ensembling method
is the structure, within which predictions are merged to-
gether. Two example structures are shown in figure 2. Struc-
tures can influence the final performance of the method.
Given a set of predictors and a set of fusing methods, the

Figure 2: Illustration of two structures used to combine the
same set of predictions using a simple voting rule (R1) (color
code is 1 for blacks and 0 for whites). The two different
structures result in two different predicted outcomes.

”structure” is the sequence in which said predictors are fused
in order to produce the final output.

Learning the structure: We posit that the structure of
votes could influence the performance of the overall ensem-
bling method. Due to the potentially arbitrary number of
“layers,” the number of possible structures is infinite. We
restrict ourselves to structures with a high degree of sym-
metry. We enumerate a subset of structures in the figure 4.
We then use algorithm 1 to compare the performance of the
preselected structures. Our goal is to find the structure that
will yield the highest performing predictor when applied to
target courses.
For this comparison to be independent of the choice of target
course, we consider each one of the five edX courses as the
target course successively, calling them C0, C1, C2, C3 and
C4). The remaining four act as source courses. We then

A

B

C

R1

R2

R3

Pre-trained
Estimators

R4

Voting Rules

Past course 1 Past course 2

Figure 3: Example of a complex voting structure built on
top of two data sources (past courses). The predictions of
the different predictors are first aggregated by course then
aggregated across courses.

aggregate our results by averaging the performance over the
five permutations. We also remark that, in order to learn
the metamodel necessary to the stacking rule, we separate all
source course into a train and a validation set, as explained
in algorithm 1.

Data: Full Data for the 5 edX courses
Result: Evaluate performance of structures
for problem in P do

initialization : Split each dataset into a training and
a validation subset (80% - 20%);

for t in set of courses do
Train each of the predictive algorithms (Random
Forest, SVM, Logistic Regression, Nearest
Neighbors) on each train set for the 4 remaining
courses;

for s in set of Structures do
if s requires training then

concatenate validation sets for 4 remaining
courses;

train s on this dataset;

else
pass

end

measure ROC AUC : AUCp,t
s ;

end

end

end
Algorithm 1: Comparing performance of different ensem-
bling structures.

4. RESULTS ON DROPOUT PREDICTION
MOOC platforms offer courses that span a particular length
of time, typically around 12 weeks. A large cohort of stu-
dents register for each of these courses, but only a fraction
of this cohort usually remains at the end of the class.
We consider the common problem of predicting which stu-
dents will remain in the class. Specifically, given a ”current
week” wc and a ”prediction week” wp our goal is to iden-
tify which of the students present in the class at week wc

will have dropped out by week wp. We call this particular
problem (wc, wp), and we remark that, given a particular

course lasting W weeks, there exist exactly W.(W−1)
2

poten-
tial problems of this type.
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S2

Past Course 2 Past Course 3

S5

Past Course 1 Past Course 2 Past Course 3

S4

Past Course 1 Past Course 2 Past Course 3

S6

Past Course 1 Past Course 2 Past Course 3

Figure 4: The six structures evaluated on the MOOCs
dropout prediction problem. Only S2, S4 and S6 require
training on the validation data because of the presence of a
”stacking vote rule”. (Note that for simplicity the diagrams
shows only 3 courses and 3 predictive algorithms per courses
whereas we used 4 and 4).

In the first to parts of this section, we use the five courses
from edX (described in 1) to experiment and build our pre-
dictive models. We noted that the five courses from edX
shared 21 behavioral features altogether. In the third part
of this section, we show that these models indeed perform
significantly better than our benchmark, even on courses
from a different platform, Coursera.

4.1 Performance metrics and benchmarks
Evaluation metrics: To measure the performance of our
predictive algorithm, we rely on the AUC-ROC metric, which
is commonly used in dropout prediction. Because not all
courses last for the same amount of time, we restrict our-
selves to problems acceptable for all courses; i.e. the set

P = {(wc, wp) s.t. wc < wp and wp < Wcourse ∀ course}
For the five courses used in this study, W = 12, meaning we
can experiment on |P | = 66 different prediction problems.
When comparing the performance of algorithms between
problems, it becomes clear that some situations are intrin-
sically more difficult to predict than others. For instance,
a short-term prediction problem (e.g, (6, 5)) will generally
yield higher performance than a long term problem (e.g,
(6, 1)). Similarly, some courses are more suited for predic-
tions than others, due to the size of the student cohort or
the volatility of students within that cohort.
To mitigate this, we normalize the performance, and use the
following metric to measure the performance of an algorithm
a on a problem p and on target course t :

DAUC p,t
a = max

a′∈A

(
AUC p,t

a′
)
−AUC p,t

a

In other words, we subtract the actual AUC of an algorithm
from the best observed AUC of any other algorithm on this
particular problem for this particular target course. In this
configuration, a lower DAUC should be considered to in-
dicate a better performance. In particular, DAUC p,t

a = 0
exactly means that a is the best algorithm for this particular
problem and target course.
To appreciate this metric over different problems, we display
both the mean and the variance of the DAUC. In order to
account for the different performance on different types of
problems, we introduce two sets of problems, for which we
choose to average the DAUC:

Two subset of problems

P Mean ROC AUC obtained on the 66 available problems

P s Mean ROC AUC obtained on three ’short term’ predic-
tion problems ({(5, 6), (8, 9), (11, 12)})

Benchmarks : A simple approach to building predictive
models is to train a classifier on a source course and use it
to make predictions on the target course. In figure 5, we
report the results obtained by training four different clas-
sification algorithms on a source course (for course 1 to 4)
and applying it to the target course (C0). We use 5-fold
cross-validation on the training set, and we tune the param-
eters independently for each method, each source and each
prediction problems.
A more systematic approach consists of building predictive
models on the concatenation of all available data. In addi-
tion to avoiding the hurdle of having to ’guess’ which course
should be chosen as the source course, this approach also
allows us to leverage more (and more diverse) data to train
predictive models.
As shown in figure 5, we observed that, regardless of the
algorithms used, models trained on the concatenation of all
available data sources always performed better than the best
models trained an a single course. This is true both in terms
of average DAUC over all problems in P , and in terms of
variance of the DAUC across those same problems.

4.2 Building robust models
Improvement through Merging Methods :
Concatenating the data from past courses undoubtedly im-
proved the algorithms’ predictive power, both in terms of
average DAUC and variance. To further improve the aver-
age performance, and to reduce the variance of our dropout
prediction system, we then leveraged the ensembling meth-
ods presented above. Instead of restricting ourselves to a
choice of a single predictive algorithm, we trained four of
them (SVM, Random Forest, Logistic Regression and Near-
est Neighbors) and merged their predictions using a simple
R1 voting rule.
Figure 5 shows the average DAUC and its variance for dif-
ferent algorithms, as well as their ”merged” version through
an R1 rule. Comparing the result obtained by the ”merged”
method with those of the four single algorithms, we observe
that the merged method always performs comparably to the
best single algorithm, beating all competitors on courses C2

and C4, and behaving comparably on courses C1 and C3).
This is true both in terms of average performance and in
terms of variance.

Proceedings of the 9th International Conference on Educational Data Mining 302



Next, we apply this same R1 rule to merge the predictions
built on the data concatenated from all available source
courses. Here, the results unveil a lower DAUC average and
variance for the ”merged” method on the concatenated data
than for any other algorithm on the same data. Moreover,
this method performs better than those ”merged” methods
trained only on a single course, in terms of both average and
variance. Through an ”all-algo all-data” kind of method, we
have achieved a more reliable and more accurate predictive
model, on average, over all possible prediction problems.
In the next section we will see that, for certain type of prob-
lems, it is possible to improve this model significantly by
using a more complex type of ensembling method called
stacking.
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Figure 5: Average (standard deviation) of the DAUC (x100)
for all predictions problems (P ) on target course C0. The x-
axis contains different predictive algorithms, the y-axis con-
tains different data source.

Optimizing the vote Structure:
The figures above show promising results for ensembling
methods in the context of dropout predictions. This en-
couraged us to explore different ensembling methods to fur-
ther improve the and performance and/or reliability of our
dropout prediction system.
Our ensembling strategy uses all available estimators de-
scribed above (those built on a single-source course as well
as those built on the concatenated data). It then applies one
of the manually pre-selected structures as shown in figure 4.
We then use algorithm 1 to learn the structure.
Figure 6 displays the DAUC obtained by different ensem-
bling structures according to algorithm 1. We differentiate
our observations according to the subset of problems over
which the average is computed (P ,Ps and Pl).

• Over all problems (average over P ), we first remark
that the structure has only a very small impact on both
the average performance and the variance of the pre-
dictive method. We also remark, however, that struc-
ture S6 yields slightly better results, both in terms of
average DAUC and in terms of variance.

Concat S1 S2 S3 S4 S5 S6

0

2

4

6
·10−2

Average DAUC over P

Concat S1 S2 S3 S4 S5 S6

0

2

4

6
·10−2

Average DAUC over Ps

Figure 6: Average DAUC over each edX course taken as
target, as computed by algorithm 1.

• Over the short-term problems, (average over Ps), we
observe a lot more difference across the different struc-
tures. By far, structure S2 is the best performer for
this type of problem, with a DAUC of 0.013 on average
compared to 0.049 for the merged method discussed in
the previous section.

• Over long-term problems (average over Pl) the differ-
ence between structures is significant, and thus not as
big as for the short term problems. The best structure
here is S4.

4.3 Transferring across MOOC platforms
Having achieved robust methods for dropout prediction on
different predictive problems, we now test our method on a
new set of courses, composed of 10 courses from the Univer-
sity of Edinburgh. Rather than testing this method on the
holdout course as explained in algorithm 1, this set of courses
present the additional difficulty of being derived from an-
other MOOC platform (Coursera), thus having potentially
very different statistics for the features used in our models.
For example, overlap between the features of our 5 first
courses (from edX) and the features of those new courses
is not total. Whereas our initial 5 courses shared 21 com-
mon features, they share only 12 features with this new set
of courses. In figure 7 we report the DAUC obtained on av-
erage over all possible prediction problems and over all ten
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Figure 7: Average DAUC over all prediction problems on
the 10 UDI courses taken as target (only edX courses are
taken as source courses).

ID Name AUC short AUC all
C5 aiplan 001 0.82 0.75
C6 aiplan 002 0.79 0.70
C7 aiplan 003 0.81 0.74
C8 animal 001 0.73 0.64
C9 animal 002 0.75 0.67
C10 astrotech 001 0.77 0.67
C11 codeyourself 001 0.84 0.74
C12 criticalthinking 1 0.71 0.63
C13 criticalthinking 2 0.80 0.71
C14 criticalthinking 3 0.78 0.70

Figure 8: AUC achieved by S2 ensembling method built on
the five edX courses and applied on the 10 UDI courses.

courses (taken as target). We display the results for a simple
Random Forest algorithm built on the first edX course, for
an ensembling method based on the S1 structure, and finally
for the best-performing ensembling method (from the exper-
iment in the previous sub section) based on S2 structure. All
the ensembling methods are built on top of estimators from
all the five edX courses (for the four algorithms : Rrandom
Forest, SVM, Logistic Regression, Nearest Neighbor). Ta-
ble 8 reports the absolute performance of the best technique
(S2) structure in terms of average AUC across different pre-
diction problems for each course.
We remark first that the S2 performs again significantly bet-
ter than both the simple algorithm and the simple ensem-
bling method. We also note that the absolute performance
achieved by this best ensembling technique is relatively high,
given the small number of features available and the different
origins of the two set of courses.

5. KEY FINDINGS
Our key findings can be summarized in three categories, cor-
responding to the three sets of questions described in the
introduction:

Purpose We showed that even though MOOC courses span
different numbers of weeks and have different char-
acteristics, one can usually find sufficient overlap be-
tween courses to perform nontrivial prediction tasks.

Data We showed that using more courses as training data
improved the predictive power significantly. We also
proved that this predictive power was sufficient to ap-
ply the model built on one particular MOOC platform
to another platform.

Method First we showed that, both in the case of a sin-
gle course model and in the case of a model built
from several courses, using simple ensembling methods
between algorithms significantly improved the perfor-
mance. When compared to a single algorithm trained
on all available courses, a simple ensemble methods
improved the AUC by an average of 1.5 to 3.2 points.
Secondly, we proved that in certain use cases (for in-
stance, short term dropout prediction problems), using
more complex ensembling structure can significantly
boost performance. For short term prediction prob-
lems, using a S2-like structure of ensembling resulted
in no less than a 4 point AUC improvement on average.

Finally, our best method was successful when applied to a
set of unseen courses. On the ten never-before-seen Cours-
era courses, our method obtained a 0.70 average AUC overall
and a 0.78 average AUC on short term prediction problems
(one week ahead). This completes our case that a high-
performance predictive model can be built from a set of pre-
vious courses, and that ensembling methods appear to be a
suitable framework to build such models.

6. DISCUSSION
When trying to estimate the actual benefit of such tech-
niques on the real life of students and teachers on MOOC
platforms, one has to make several assumptions that may
only be verified after several years of implementation.
The main assumption is the possibility to reduce churn of
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Figure 9: Estimated increase in number of students com-
pleting a typical MOOC course. Intervention A refers to an
intervention based on a simple predictive model built on a
course. Intervention B refers to an intervention of type S2.
See description for numerical assumptions.

students through personalized intervention. This is not obvi-
ous, as many argue that most dropout students were intrin-
sically not interested in the content of the class, and could
therefore not be fruitfully intervened with. Most MOOC
providers, however, agree that a good chunk of each cohort
could be prevented from dropping out of the class thanks
to some customized and well-adapted interventions. Iden-
tifying dropout students (the example describe in this pa-
per) could enable a concrete set of interventions to be done,
with extra resource help, additional videos or motivating re-
sources particularly tailored to potential ”dropout”students.
For our purpose we will assume that a tailored intervention
will save 1% of all potential dropout students.
Given a fixed false-positive rate, arguably necessary to de-
sign an intervention targeted for dropout students, the pur-
pose of the predictive methods described above can be un-
derstood as the maximization of the true-positive rate: the
ratio of predicted dropout students to the number of total
dropout students.
Taking a weekly intervention framework, in which an inter-
vention is conducted for potential dropout students at the
end of each week, we showed in the previous section that en-
sembling methods (particularly the S2 structure) were able
to perform around 0.05 AUC point better than other more
straightforward models (particularly an ”all-algo all-sources”
method). In figure 9, we show the example of two ROC AUC
separated by 0.05. We remark that with a constraint of 10%
on the false positive rate, we obtain a difference of around
20% in the true positive rate .
Given a typical MOOC class − 10 weeks long, starting with
10.000 students, and with a typical weekly dropout rate of
20% per week we display in figure 9 the simulated data
of the number of students completing the course. When
an intervention based on a straightforward predictive model
is simulated, it increases the number of students finishing
the course by around 1.7%, whereas an S2 based predictive
model would increase it by around 2.1% (an additional 50
student completions overall).

7. CONCLUSION
In this paper, we developed a framework to address the
main challenges faced when applying predictive analytics
to MOOCs: How to build models that transfer well across
courses and platforms?
To do this, we used ensembling methods, as well as a broad

range of algorithms and a rigorous training procedure. We
explored different variations of these techniques and reported
the results obtained on a first set of five courses from the
edX platform. We introduced a novel performance metric,
allowing for performance comparison across prediction prob-
lems and target courses. These results show that ensembling
methods improved the accuracy of prediction, both on aver-
age and in terms of variance. We also showed that ”stacking”
(or learning metamodels on top of a set of base predictors)
can significantly boost performance in the case of short term
prediction problems.
Eventually, we tested the method developed in a first part
(on the first set of five courses from edX MOOC platform) on
ten courses from the University of Endinburgh MOOC plat-
form. We reported the results obtained in terms of AUC
and showed that the method developed performed very well
on those new courses, too.
We argue that our paper demonstrates a robust framework
to develop predictive algorithms that are transferable across
online courses.
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ABSTRACT 
The problem of student final grade prediction in a particular 
course has recently been addressed using data mining techniques. 
In this paper, we present two different approaches solving this 
task. Both approaches are validated on 138 courses which were 
offered to students of the Faculty of Informatics of Masaryk 
University between the years of 2010 and 2013. The first 
approach is based on classification and regression algorithms that 
search for patterns in study-related data and also data about 
students' social behavior. We prove that students’ social behavior 
characteristics improve prediction for a quarter of courses. The 
second approach is based on collaborative filtering techniques. 
We predict the final grades based on previous achievements of 
similar students. The results show that both approaches reached 
similar average results and can be beneficially utilized for student 
final grade prediction. The first approach reaches significantly 
better results for courses with a small number of students. In 
contrary, the second approach achieves significantly better results 
for mathematical courses. We also identified groups of courses for 
which we are not able to predict the grades reliably. Finally, we 
are able to correctly identify half of all failures (that constitute 
less than a quarter of all grades) and predict the final grades only 
with the error of one degree in the grade scale.  

Keywords 

Student performance prediction, student similarity, classification, 
regression, collaborative filtering. 

1. INTRODUCTION 
One of the key problems of educational data mining is to design 
student models that would predict the student performance. Once 
we have a reliable performance prediction, it can be used in many 
contexts: for identifying weak students [14], for guiding the 
adaptive behavior in intelligent tutoring systems [10], or for 
providing a feedback to students. 

Our specific problem is the following: we have access to data 
about students, their study achievements and their behavior 
characteristics stored in the university information system and we 
want to predict students' final grades. The predictions are useful at 
the beginning of each semester to help students with planning 
their workload in the whole semester. We also beneficially use 
this information to design a course enrollment recommender 
system. The early grade prediction is more difficult since we have 
no a priori information about students’ knowledge, skills or 
enthusiasm for particular courses. It has been proven [4] that the 
data about the activity of students during the semester improves 
the prediction. 

The problem of the student grade prediction in a particular course 
has recently been addressed using data mining techniques. 
Researchers usually examine study-related records, e.g. the age, 
the gender, and the field of study [9] because of their easy 

availability in university information systems. Moreover, they 
attempt to identify additional characteristics that can lead to better 
understanding of students' behavior, e.g. their habits [6] or 
parents' education [13]. The most typical way how to obtain such 
data is to conduct questionnaires. Masaryk University has more 
than 40,000 active students and we try to predict the grades as 
accurately as possible for all of them. We cannot rely on data 
obtained by questionnaires since they tend to have a lower 
response rate. Therefore, only the data originated from the 
Information System of Masaryk University (IS MU) are employed 
for our experiments. 

The goal of this research is to predict students' grades with the 
major emphasis on the detection of students who can fail to meet 
the course requirements. Therefore, we are dealing with the 
following two main tasks: 

 prediction of  students' success or failure, 

 prediction of the students' final grades. 

In this paper, we present two different approaches moving 
towards our objectives. The first approach is based on the state of 
the art educational data mining techniques: classification and 
regression analysis [12]. We created an ensemble learner to utilize 
the strength of the both techniques. We also present a new type of 
data about students' social behavior originated from IS MU that 
can improve the predictions. The second approach is based on 
collaborative filtering techniques [5] applied to the educational 
context. We mapped the users-item-rating problem to the student-
course-grade problem and predict the final grades based on 
previous achievements of similar students. This paper describes 
both approaches in detail, compares them and reports their 
advantages and disadvantages. 

2. DESIGNED METHODS EVALUATION 
Historical data were employed for experiments allowing us to 
evaluate both designed approaches. We processed data about 138 
courses which were offered to the students at the Faculty of 
Informatics. We used only data stored in IS MU in the time of 
students' enrollments. We omitted freshmen students because we 
had no data about them in the system. The data comprised of 
3,584 students. The two independent data sets were used. The 
training set consisted of the data collected between the years of 
2010 and 2012 (37,005 instances) and was used for the 
identification of the most suitable methods with their settings. The 
test set consisted of the data from the year 2013 (11,026 instances) 
and was used for the validation of the methods on different data. 

The following grade scale was used: 1 (excellent), 1.5 (very 
good), 2 (good), 2.5 (satisfactory), 3 (sufficient), 4 (failed or 
waived). The value 4 represents student’s failure; the others 
represent a full completion. We evaluated approaches using the 
mean absolute error (MAE). The technique measures how close 
predictions are to the real outcomes. Lower values represent better 
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results. The measure is commonly used for grade prediction 
evaluation. In the educational environment, one of the most 
important issues is to reveal weak students. Therefore, we also 
computed the sensitivity (also called recall). Categorizing students 
only as successful or unsuccessful, the sensitivity measures the 
proportion of unsuccessful students who are correctly classified as 
unsuccessful. For students’ success or failure prediction we also 
utilized F1 score that conveys the balance between the precision 
and the recall. 

3. STUDENTS' CHARACTERISTICS 
3.1 Study-related Data 
Classification and regression are the most often used techniques 
for student performance prediction [12]. Researchers usually 
examined study-related (SR) data. Our study-related data 
contained common attributes such as the gender, the year of birth, 
the year of admission, the number of credits gained from passed 
courses, or the average grades. We built a classifier for each 
investigated course based on the training set and evaluated the 
results using the 10-fold cross validation. The method that 
achieved best results was subsequently validated on the test set. 

3.1.1 Student success/failure prediction 
The first task was to reveal unsuccessful students. Two prediction 
classes were considered: students  success  def     grades     3) and 
failure (def. 2: grade 4). Widely utilized classification algorithms 
were employed: Support Vector Machines (SVM), Random 
Forests, Rule-based classifier (OneR), Trees (J48), Part, IB1, and 
Naive Bayes (NB). As the baseline we defined a model which 
always predicts failure. Table 1 confirms that SVM achieved the 
best performance. 

Table 1. Classification algorithms results 
Rank Method F1 MAE Sensitivity 

1 SVM 0.559 0.161 0.444 

2 NB 0.554 0.251 0.467 

3 J48 0.552 0.182 0.397 

4 Random Forests 0.550 0.173 0.362 

5 Part 0.543 0.202 0.417 

6 IB1 0.536 0.216 0.436 

7 OneR 0.508 0.183 0.321 

8 Baseline 0.326 0.822 1 

3.1.2 Grade prediction 
The regression is a commonly used technique for student grade 
prediction. Widely utilized regression algorithms were selected: 
SVM Reg., Random Forest, IBk, RepTree, Linear Regression, and 
Additive Regression. The baseline model predicts the average 
grade of the training set of a given course. The best results (see 
Table 2) were achieved by support vector machine (SVM Reg.). 

3.1.3 Conclusion 
For each task, the best method was selected and an ensemble 
learner was built. If the classifiers (SVM or SVM Reg.) predicted 
the failure or the grade 4, then the ensemble learner also predicted 
the failure. Otherwise, it resulted in the value of the grade 
predicted by the SVM Reg. classifier. Finally, the overall 
performance of this approach could be seen in Table 3. We also 

evaluated the classifiers on the test set. The results indicated that 
we were able to reveal almost half of the unsuccessful students 
even if the task was difficult due to the fact that all unsuccessful 
students constitute less than a quarter of all students. The 
prediction error was about 0.75 on average which was almost 1.5 
degree in the grade scale. 

Table 2. Regression algorithms results 
Rank Method MAE Sensitivity 

1 SVM Reg. 0.605 0.196 

2 Linear Reg. 0.615 0.152 

3 Additive Reg. 0.634 0.165 

4 RepTree 0.643 0.184 

5 Random Forests 0.668 0.216 

6 IBk 0.767 0.294 

7 Baseline 0.806 0 

 
Table 3. Global SVM results 

Data Set MAE Sensitivity 

Training Set 0.701 0.524 

Test Set 0.744 0.414 

3.2 Social Behavior Data 
Recent researches are often based on finding additional data that 
can improve the prediction accuracy. Our improvements have 
been achieved through adding social behavior (SB) data to the 
original data set [1]. This specific type of data originating from IS 
MU described the students' behavior characteristics and their 
mutual cooperation. We focused on statistical data that 
represented an interaction among students: posts and comments in 
discussion forums, e-mails statistics, publication co-authoring, or 
files sharing. This information served as the basis for computing 
social ties among students and building a sociogram. From this 
sociogram, new features like weighted average grades of friends 
can be easily derived. Using Pajek [11], we also computed 
additional standard graph features [3] like degree (the number of 
the friends), weighted degree (degree weighted by the strength of 
ties), centrality or betweenness (the importance measure for each 
student in the network). Moreover, we collected data about 
students' disclosure from different system sections. By default, IS 
MU does not provide a complete list of classmates due to the 
students' privacy. Students have to actively disclose themselves to 
become visible for their classmates. We can also calculate how 
many times students attended courses of a certain teacher. Among 
others, students can also mark offered courses as favorite. 

H   Hypothesis supposes that students’ social ties correlated with 
the students performance.  

Other ensemble learners trained on data sets containing social 
attributes were built. The other settings were maintained. The 
comparison of the results can be seen in Table 4. The MAE score 
was slightly lower on average. However, for 32 courses in the test 
set, the difference in MAE was significantly better using social 
behavior data (min: 0.1; average: 0.178; max: 0.734). Only 5 
courses achieved worse results (min. 0.1; average: 0.12; max: 
0.21). For the rest courses, the difference was negligible. 
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Table 4. Adding social behavior attributes to the data set 
Data Set Attributes MAE Sensitivity 

Training Set 
SR 0.701 0.524 

SR + SB 0.629 0.528 

Test Set 
SR 0.744 0.414 

SR + SB 0.688 0.427 

 
The sorted list of selected attributes was constructed. In Table 5, 
we present the top five social behavior attributes that significantly 
affected the results. 

Table 5. The most interesting social behavior attributes 
Rank Avg. Ord. Attribute 

1 13.328 the betweenness 

2 16.252 
the information if the course was marked 

as favorite  

3 18.694 the centrality 

4 22.464 the weighted degree 

5 29.807 
the number of times when a student 

attended any course with the same teacher 

 
H1 was confirmed. Data about students’ behavior improved the 
predictions. Based on the most significant attributes, we assumed 
that the assistance of students' friends had increased the 
probability to pass the courses. 

4. STUDENTS' GRADES 
We also focused on methods utilized in recommender systems [5]. 
The data about user-item-rating triples were replaced by student-
course-grade triples and we focused on the similarities among 
students' grades.  

H2: Our hypothesis supposed that students’ knowledge can be 
characterized by the grades of courses that students enrolled 
during their studies. Based on this information we could select 
students with similar interests and knowledge and subsequently 
predict whether a particular student has sufficient skills needed for 
a particular course. 

4.1 Grade Prediction 
Our preliminary work can be found in [2]. However, the approach 
suffered from several limitations that we overcome in this paper. 

The first step was to build a similarity matrix G where rows 
represented students and columns represented courses. Although 
we predicted grades for 138 courses, the matrix G has 499 
columns since we analyzed all students' grades (e.g. courses from 
the other faculties, courses not offered now). Grades obtained by 
all students from the training set formed the matrix. If a student 
did not attend a particular course, the corresponding cell remained 
empty. The aim was to complete cells defining students' grades 
from the investigated courses enrolled by students in 2012 
(marked by symbol ?). 

Using the vectors of grades from the matrix G, we computed the 
similarity between all students enrolled in a course c in 2012 and 
all students previously also enrolled in c in 2010 or 2011. 
 

Example of Matrix G 
Students / Courses c1 c2 c3 c4 

s1 2 ?  ? 

s2 ? 2.5 3 ? 

s3 1  2.5 3 

s4  2  1.5 

Widely utilized similarity metrics were used for the calculation of 
the students' similarity: Mean absolute difference (MAD), Root 
mean squared difference (RMSD), Cosine similarity (COS), and 
Pearson’s correlation coefficient  PC)  All metrics compare grades 
of students’ shared courses  The average number of courses 
shared by students was 10.  

Subsequently, the appropriate neighborhood of the most similar 
students to the examined student could be selected to influence the 
predicted final grade. We utilize the idea of a baseline user [7]. 
We selected such students to the neighborhood who were more 
similar to the investigated student than the investigated student 
was to the baseline student. We decided to calculate two types of 
baseline students: an average student (the average grade for each 
course) and a uniform student (the average grade through all 
courses: 2.5).  The neighborhood of the top 25 students showed 
reasonable results. However, for smaller courses, 25 students 
could be all students enrolled in the course in one year. Therefore, 
we have decided to define three categories of courses with respect 
to the course occupancy: small (   students), medium       70 
students), and large  ≥70 students). Therefore, we analyzed the 
suitable size of the neighborhood for courses with the different 
occupancy. Figure 1 shows the relationship between MAE and the 
cardinality of N. We selected the size of neighborhood as follows: 
10 for small courses, 15 for medium courses, and 30 for large 
courses. In the figure, we can also see that the prediction for 
smaller courses was the most challenging. 

 
Figure 1. Relationship between MAE and the size of 
neighborhood with respect to the course occupancy  

The final grades were estimated from the grades of similar 
students belonging to the computed neighborhood. Simple 
methods as mean, max, median as well as advanced methods 
utilizing significance weighting were utilized. 

Table 6 introduces the top five combinations of the similarity 
methods, methods for the neighborhood selection and the grade 
estimation functions. The method utilizing a baseline user needed 
a large neighborhood for each student (|N| = 376 on average). In 
the production system, it was very important to lower the ties 

Proceedings of the 9th International Conference on Educational Data Mining 308



among students due to the recalculation of all similarities in the 
system during the course enrollment process to be up to date for 
students. Therefore, different neighborhood was selected even if 
the MAE score could be slightly higher. For efficiency reasons, 
we selected the third one for the implementation in the system. 

Table 6. Similarity methods comparison 
Rank Method |N| MAE Sensitivity 

1 
PC + average student 

+ sig. weighting 376 0.648 0.248 

2 
PC + uniform student 

+ sig. weighting 378 0.648 0.248 

3 
PC + Top |N| + sig. 

weighting 10/15/30 0.650 0.267 

4 
RMSD + Top |N| + 

median 10/15/30 0.651 0.211 

5 PC + Top 25 + Pred 25 0.657 0.274 

4.2 Student Success/Failure Prediction 
The majority of students passed examined courses. Therefore, we 
searched for a smaller neighborhood in order to reveal more 
unsuccessful students. As you can see in Figure 2, the highest F1 
was reached when we included only the most similar student. 
However, the method suffered by a low precision. Therefore, we 
predicted failure even if the method for grade prediction (3rd row 
Table 6) predicted grade worse than 2.4 (average grade). The 
precision was improved and still we found the sufficient number 
of unsuccessful students. The final results of methods were: MAE 
= 0.174, sensitivity = 0.413. 
 

 
Figure 2. Relationship between F1 and the size of the 

neighborhood 

4.3 Course similarity 
Any change in the similarity matrix G could lead to the 
recalculation since the similarity of students was calculated from 
all students' grades.  

H3: Our third hypothesis supposed that similar courses required 
similar skills of students to pass. It should decrease the 
computational cost and do not significantly lower the prediction 
accuracy when we use only grades of similar courses for 
predictions instead of all attended courses. 

4.3.1 Students' grades 
The collaborative filtering approach based on similarity of item to 
item was utilized and the adjusted cosine similarity was computed 
from the previously defined similarity matrix G for each pair of 

courses. Subsequently, we utilized the average link clustering [8] 
to group the investigated courses based on this similarity measure. 
The resulted clusters defined the groups of similar courses. 

Finally, when we predicted the students' grades of a certain 
course, we reduced the computations to the grades obtained from 
courses belonging to the same cluster as the investigated course. 
110 of all investigated courses belonged to one of the 37 clusters. 
The number of courses in one cluster ranged from 2 to 15. The 
average number of courses in one cluster was 3. The average 
number of students' shared courses was also 3.  

4.3.2 Course Characteristics 
Students search for useful information about courses in the Course 
Catalog that help them to decide whether or not they should enroll 
the course. We selected different course characteristics and 
attempted to identify dependencies among courses. Similarity of 
courses a and b was defined by the weighted sum of the 
similarities of the selected course characteristics t  T: 

   (   )  ∑   
  

     (     ) 

where w defined the weight of the examined characteristic. The 
weights of the characteristics were set with respect to maximize 
the grade prediction accuracy. The similarity for each pair of 
courses was calculated. The selected characteristics and distance 
metrics dist were the following: 
Prerequisites define a set of courses that had to be passed before 
students could enroll a certain course. The similarity was set to the 
value of 1 if the compared course belonged to the prerequisites; 0 
otherwise. The weight of this characteristic was set to 1 because 
the prerequisites denoted a significant dependence. 
Literature contains the recommended literature for particular 
courses that can be characterized by the set of assigned authors. 
The similarity of the set of authors A and the set of authors B is 
given by Jaccard's coefficient. The characteristics weight was set 
to the value of 0.9 due to the hypothesis that authors do not 
frequently publish in different fields. Therefore, the literature 
could constitute strong ties among courses.  
The course content was represented by the text about the study 
subject and outline what students should learn in the course. We 
cut the STOP words from the text and utilized stemming to get the 
roots of the words. TF-IDF was utilized for defining the 
importance of each word in the texts. Subsequently, the Cosine 
similarity measure was used for the processing of the final vector 
representation of the words' importance. The characteristics 
weight was set to the value of 0.7. 
Teachers of a course could be divided into two groups: lecturers 
and tutors. Weighted Jaccard's coefficient was used for comparing 
the teachers of the two courses. The weight of the lecturers was 
set to the value of 1 and 0.5 for seminar tutors. The weight of 
characteristic was set to the value of 0.6. 
Course supervisor patronize the courses. The similarity was set to 
the value of 1 if the compared courses had the same supervisor; 0 
otherwise. The characteristics weight was set to the value of 0.4. 
When we calculated the similarity of courses by the 
aforementioned procedure, we could also utilize average link 
clustering [8]. 340 from all courses (499) belong to one of the 105 
created clusters. 93 investigated courses were presented in one of 
the clusters. The number of courses in one cluster ranged from 2 
to 22. The average number of courses in a cluster was 3. The 
average number of shared courses taken by students was 2.  
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4.3.3 Comparison of approaches 
In comparison with the method using all grades, both approaches 
had positive effects on the number of calculations. 123 courses 
(from all 138) belonged to some of the created clusters and the 
final grades could be predicted based on the grades of only 3 other 
courses on average. 70 of our investigated courses belonged to 
different clusters using SC1 and SC2. A slightly better MAE was 
obtained by the method utilizing the course characteristics for 
these courses (see Table 7). Therefore, when a grade is predicted, 
the corresponding course is searched in SC2, then SC1. 

Table 7. Comparison of SC1 and SC2 

Method MAE Sensitivity Average 
cluster size 

Shared 
Courses 

All grades 0.687 0.402 499 10 

SC1 0.681 0.390 3 3 

SC2 0.640 0.386 3 2 

4.4 Conclusion 
H2 and H3 were confirmed. We described the novel approach for 
predicting the students performance (see Table 8) using only 
students' grades and course characteristics. It proved to be as 
successful as the first described approach (see Table 9). The most 
important contribution of this approach was that each university 
information system stores the data about students’ grades which 
were needed for the prediction unlike the data about students' 
social behavior. We also identified course dependencies that 
lowered the calculation cost. Moreover, we were able to predict 
the final grade considering grades from only 3 other courses for 
the most of the investigated courses. 

Table 8. Global results of the approach 
Data Set MAE Sensitivity 

Training Set 0.661 0.470 

Test Set 0.685 0.418 

5. USAGE OF THE APPROACHES 
Both approaches defined in Section 3 (based on students' 
attributes (SBA)) and Section 4 (based on students' grades (SBG)) 
reached similar average results (see Table 9). However, they can 
differ in specific situations. Our goal was to identify course 
groups for which we could get trustworthy predictions and also to 
detect when one approach outperforms the other. 

Table 9. Comparison of the both approaches 
Data Set Approach MAE Sensitivity 

Training Set 
SBA 0.629 0.528 

SBG 0.661 0.470 

Test Set 
SBA 0.688 0.427 

SBG 0.685 0.418 

H4. Each approach is more suitable for different course groups.  
We selected the following categories based on the basic course 
characteristics: 

 difficulty – the average grade of all students' grades is 2.4. 
Therefore, we divided courses into two categories: easy 
(2.4), and difficult (>2.4), 

 occupancy rate – as defined in Section 4.1: small (  ), 
medium         7 ), and large  ≥70), 

 specialization – courses divided into four groups: 
mathematics (M), theoretic informatics (I), applied 
informatics (P), and others  (O). 

Each investigated course belonged to one of the groups for each 
of the defined categories. With respect to the three 
aforementioned categories, we could define six (3!) tree structures 
which differ in the splitting order of the categories. We examined 
each permutation of the categories. We built full trees where 
courses from the training set were split subsequently by all 
categories. Each node stored the information about courses that 
belonged to it with respect to the split. Harmonic mean (HM) was 
calculated for each node and both approaches in order to get a 
suitable relationship between the sensitivity and the MAE score.  
Subsequently, we examined the trees and merged branches which 
were not interesting in order to detect significant phenomena. 
Interesting branches contained at least one of the following 
situations: 

 Difference > 0.1 in HM of SBA and SBG in the node (The 
rule detected a significant difference in the prediction 
accuracy of the both approaches for the examined groups of 
courses.). 

 Difference > 0.1 in HM of the sibling nodes (The rule 
detected course groups that were significantly easily or with 
difficulties predicted than other courses from this split.). 

 Difference > 0.1 in HM of parent and child nodes (The rule 
detected the course groups that should be separated due to 
the significant difference in the prediction in comparison 
with the rest courses from the parent node.). 

 
Figure 3. Resulted Tree 

One of the resulted trees can be seen in Figure 3. As the figure 
shows, this approach had several benefits:  

 Course groups that were predicted significantly better than 
average were identified (marked by +). It contains all 
mathematical courses (the main skill at the faculty of 
informatics can be easily predicted) and the English course. 

 Course groups that were predicted significantly worse than 
average were identified (marked by    ). It contained almost 
all courses belonged to the category others (we do not know 
students' general knowledge) and medium or large easy 
theoretic informatics courses (the grade maybe depended on 
the amount of the effort which could differ for each course 
and cannot be predicted).  
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 H4 was confirmed. Course groups that were predicted 
significantly better by the SBG approach are represented by 
the blue color. It covered almost all mathematics courses 
(except one small course). Otherwise, red nodes present 
better results obtained by the SGA approach. It contained the 
most of small courses. For the white nodes, the difference in 
prediction accuracy was negligible. 

 Outliers were also identified. One course of the group 
showed different behavior than others: the course of English 
(path: O-difficult) was easily predictable in comparison with 
all courses belonged to the category others; one small 
mathematical course (M-difficult-small) differed in the 
approach that achieved better results in comparison with all 
other mathematical courses.  

We applied this knowledge for prediction of the students’ 
performance when the test set was utilized. We can easily locate 
any particular course in the tree and used the suitable approach 
that led to the better results. We also gave no predictions for 
courses that we were not able to predict reliably. As the results in 
Table 10 show, MAE was significantly improved in comparison 
with the state of the art method utilizing only SVM. Finally, we 
were able to predict the final grades with an error of one degree in 
the grade scale. We were also able to reveal almost a half of the 
unsuccessful students. 

Table 10. Final results validated on the Test set 

Approach MAE Sensitivity Omitted 
Courses 

Novel 0.609 0.436 10 

SVM 0.744 0.414 0 

6. CONCLUSION 
In this paper, we focused on the problem of predicting final grades 
of students at the beginning of the semester with the emphasis on 
identifying unsuccessful students. Two different approaches were 
presented. Firstly, we utilized widely used classification and 
regression algorithms. SVM reached the best results. We also 
proved that data about social behavior of students improve the 
predictions for a quarter of courses. This approach can be 
beneficially utilized for the grade prediction of courses with a 
small number of students. 
The second novel approach utilized collaborative filtering 
techniques and predicted grades based on the similarity of 
students' achievements. The advantage of this approach was that 
each university information system stores the data about students’ 
grades which were needed for the prediction unlike the data about 
students' social behavior. We also succeeded in identifying course 
dependencies. Finally, we were able to predict the final grades of 
the investigated course by examining grades of only 3 other 
courses. The approach can be beneficially used for the grade 
prediction of mathematical courses. 
We also identified groups of courses that are hardly predictable: 
courses with a different specialization than usual at the Faculty of 
Informatics, and also large informatics courses which are easy to 
pass. Finally, we were able to predict the final grade with the error 
of only one degree in the grade scale for the rest of courses. Half 
of students’ failures were also correctly identified even if the task 
was difficult due to the fact that all unsuccessful grades constitute 
less than a quarter of all grades.  
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ABSTRACT 
One of the main problems faced by university students is to create 
and manage the semester course plan. In this paper, we present a 
course enrollment recommender system based on data mining 
techniques. The system mainly helps with students’ enrollment 
decisions. More specifically, it provides recommendation of 
selective and optional courses with respect to students’ skills, 
knowledge, interests and free time slots in their timetables. The 
system also warns students against difficult courses and reminds 
them mandatory study duties. We evaluate the usability of 
designed methods by analyzing real-world data obtained from the 
Information System of Masaryk University. 
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1. INTRODUCTION 
Recommender systems can be used in different fields including 
educational environment. Such systems are mainly focused on 
providing high educational standard and try to enhance the 
process of teaching and learning [13]. They help with searching 
for suitable web resources [8], recommend good solutions to 
improve students’ knowledge [4], or analyze data obtained from 
quizzes and provide a feedback to instructor to modify a quiz [9]. 

Nowadays, researchers also try to improve personalized searching 
for beneficial courses. The aim of several projects was to select 
courses in order to obtain good exam results [12] or recommend 
elective course modules based on previous students’ enrollments 
using collaborative filtering techniques [6]. Other option is to 
utilize association rules [1] or ant colony optimization [11]. 

In the last few years, recommendations became more complex. 
Besides selecting passable courses, it is essential to recommend 
beneficial courses [3]. The suitability of courses was determined 
by the importance in all fields of the university, the ratio of 
connectivity among courses and by the importance in the 
student’s field of study. Association rules were utilized for 
searching relationships between courses. Another approach was 
presented in [7]. To graduate, all defined blocks of courses must 
be completed by finishing a pre-defined number of courses. They 
utilized a flow algorithm to find the minimal set of courses that 
students have to pass. 

In this paper, we present a pilot version of the course enrollment 
recommender system designed at the Faculty of Informatics 
Masaryk University. All methods were validated on data 
originated from the Information System of Masaryk University 
(IS MU). The data contain information on courses, templates 
defining the mandatory and selective courses, students, study-
related attributes, and social behavior data. The designed methods 
predict students’ final grades and recommend them interesting 
courses with respect to their skills, interests, and free time-slots in 
the timetable. 

2. COURSE ENROLLMENT 
RECOMMENDER SYSTEM 
2.1 Motivation 
All students have to follow the obligations and principles stated 
by their university. Especially at the beginning of the study, it is 
hard for students to cover all the mandatory duties. At Masaryk 
University, all semesters are preceded by a course enrollment 
process. All active students have to enroll a sufficient number of 
courses to achieve at least the minimal pre-defined amount of 
credits. If they do not reach the minimum limit, they cannot 
proceed to the next semester. Students have to pass many courses 
before finishing their studies successfully. All mandatory courses 
must be completed. Students have to also pass several selective 
and optional courses. Analyzing the enrollment statistics, we 
found out that students prefer interesting and passable courses. 
Universities usually offer a large number of courses and it is 
difficult for students to be familiarized with all of them. They are 
forced to search through the entire course catalog, read many 
abstracts and syllabi, and compare a large amount of success rate 
statistics. Naturally, they often discuss courses with other students 
who have their own personal experiences. Obviously, the 
decisions they have made during the course enrollment process 
could significantly influence the whole study progress and the 
final result. 

2.2 System Overview 
The current version of the recommender system monitors the 
number of credits of enrolled courses to ensure successful 
progression to the next semester. It also reminds them to enroll all 
mandatory courses. Selective and optional courses are 
recommended according to the student’s performance and 
interests with respect to free time slots in students' timetables. The 
system clarifies the decisions to students using notifications. The 
system also warns against enrolled courses that usually cause 
problems to students with similar characteristics. If the system 
identifies a difficult course in the student’s enrollment, it informs 
the student about the potential issue. It allows students to focus 
more on this course or to revise the enrollment decision. Students 
can also assess each recommendation whether the recommended 
courses were interesting and adequately difficult. Based on these 
assessments, the recommendation algorithms will be modified in 
order to enhance the relevance of the further recommendations. 

3. COURSE TEMPLATES 
At our university, templates represent tree-like definitions of 
mandatory and selective courses for each field of study. The 
system allows checking the requirements that a student has 
already accomplished. The completed courses/nodes are marked 
with a green ring (o) and the uncompleted courses/nodes are 
marked with a red cross (x). 
We examined 67 templates defining the study requirements for 
active students in the years of 2010-2013 at Faculty of 
Informatics. An example of a template can be seen in Figure 1.  
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Figure 1. Template of mandatory and selective courses 

However, the structure of the templates is often more 
complicated. Each node defines how many child nodes have to be 
completed (all, defined by the number of credits, or defined by the 
number of children). The template does not enforce in which 
semester courses should be enrolled. 

3.1 Which courses do students have to pass 
before enrolling a certain course? 
Some courses have prerequisites that define what a student must 
meet before he or she can enroll in a certain course. At our 
university, prerequisites are composed of terms p1 … pn that are 
associated with logical operators AND(&&), OR(||). A term pi can 
be a course or a compound term. Prerequisites can be transformed 
into the template subtree by the following rules: 

 pi && pj → new node containing pi and pj with the rule of 
fulfillment: all nodes 

 pi || pj → new node containing pi and pj with the rule of 
fulfillment: at least one of nodes 

 
Figure 2. PA211 prerequisites: PV210 && (PA159 || PA191) 
&& PV065 

Example of such transformation can be seen in Figure 2. Each 
template could be extended by prerequisites courses for students 
to be able to count on them when creating their study plans. 

3.2 When do students have to enroll a certain 
course? 
Students can decide in which semester they enroll in a certain 
course. All graduate students that completed the template 
requirements were selected and the semester in which the most of 
them enrolled in the particular mandatory course was calculated 

by Algorithm 1. Therefore, we remind courses in the proper 
semesters with respect to students’ completed semesters. 
 

Algorithm 1. Semester Selection 

Function select_semester(course, template): 

sem_max = {sem  semesters | sem2: number_students (sem2, 
course, template) > number_students (sem, course, template)} 
if (|sem_max| == 1) then 

return sem_max[0]; 
else if (|sem_max| > 1) then 
 return min(sem_max); 
else 
 return 1; 
end if; 

Function number_students(semester, course, template): 
return the number of students having completed the given 
template  enrolled in the given course in the specific semester; 

3.3 Which courses are passable for a certain 
student? 
We focused on the problem of predicting the final grade at the 
beginning of the semester with the emphasis on identifying 
unsuccessful students. The following grade scale was used: 1 
(excellent), 1.5 (very good), 2 (good), 2.5 (satisfactory), 3 
(sufficient), 4 (failed or waived). The value 4 represents students’ 
failure; the others represent a full completion. 
We present two different approaches in [2]. Both approaches are 
validated on 138 courses which were offered to students of the 
Faculty of Informatics of Masaryk University between the years 
of 2010 and 2013. The first approach is based on classification 
and regression algorithms that search for patterns in study-related 
data and also data about students' social behavior. We prove that 
students’ social behavior characteristics improve prediction for a 
quarter of courses. The second approach is based on collaborative 
filtering techniques. We predict the final grades based on previous 
achievements of similar students. We also present the novel 
approach how to find out which approach is better for which 
courses. Finally, we are able to correctly identify half of all 
failures (that constitute less than a quarter of all grades) and 
predict the final grades only with the error slightly higher than one 
degree in the grade scale. 
Due to the prediction error, we decided to lower the granularity of 
predictions to the following three classes: excellent (1, 1.5), good 
(2, 2.5), and bad (3, 4) to prevent the recommendation of difficult 
courses. As it can be seen in Table 1, the mean absolute error was 
below 0.5 and due to the high value of sensitivity the most of 
unsuccessful students were revealed.  
The approaches are beneficially utilized in the presented course 
enrollment recommender system to warn students against difficult 
courses and to recommend only passable optional courses. 
Courses with predicted grade better than bad grade are considered 
as passable for a student.  

Table 1. Prediction Evaluation on Test set 
Task MAE Sensitivity 

Grade prediction 0.609 0.436 

Excellent / good / bad prediction 0.474 0.899 
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4. SELECTIVE COURSES 
Students can select different sets of selective courses from the 
template with respect to their skills and the course content. They 
have to select enough courses to fulfill the node requirements. We 
were interested in the student behavior, e.g. information about the 
most preferred courses. 

4.1 Designed Recommendation Methods 
We defined a course c for a student a as interesting by the 
following function: 

f (a, c) { 

1 if the student a attended course c or marked it as   
favorite 
0 otherwise 

This characteristic defined the student's interest in the course. 
Therefore, each student can be characterized by a set of his or her 
interesting courses. We designed the following 4 algorithms to 
recommend courses:  
S1. The most selected courses by students with the same 

template. We were interested in the student behavior, e.g. 
information about the most preferred courses. We computed 
the most frequent path of graduate students in the template. 
We were inspired by a simple ant colony algorithm and 
marked each node with the number of students that passed 
through. The path was computed by universal path finding 
Algorithm 2. 

S2. Courses enrolled by similar students.  We calculated the 
similarity between sets of interesting courses for each student 
and all graduate students that already completed the 
template. We utilized Jaccard’s coefficient. For each student, 
we selected the most similar students and recommended their 
courses. We were searching for the proper size of the 
neighborhood and evaluated n  [1; 25]. When we sorted the 
courses in the list by their frequency of occurrence in similar 
student’s lists, we also explored how many of them were 
suitable to be recommended. We examined x  [1; 10]. 

S3. Courses taught by favorite teacher. Students’ interesting 
courses were examined and favorite teachers were revealed. 
We considered all course lecturers and only student’s tutors. 
The teacher’s popularity was defined as the sum of all his or 
her courses which were considered as interesting. 
Considering the teacher’s popularity, we recommended other 
teacher’s courses if his or her popularity was above the 
threshold (2). 

S4. Courses enrolled by friends. We examined students' social 
behavior characteristics and their mutual cooperation. We 
focused on statistical data that represented the interaction 
among students: explicitly expressed friendship, posts and 
comments in discussion forums, e-mails statistics, 
publication co-authoring, or files sharing. This information 
served as the basis for computing social ties among students 
by means of a sociogram [2]. From this sociogram, we were 
able to reveal friends ties among students. We recommended 
courses that friends considered as interesting and belonged to 
the template. 

The algorithms also observed the following rules: 
 Courses recommended for a particular student were limited 

to courses that should be enrolled in the certain semester: 
                                        

Student’s semester was defined as the number of commenced 
semesters and the course’s semester was defined as the 

semester in which other students usually enrolled in the 
course calculated by Algorithm 1. 

 We also did not recommend courses that belonged to the 
subtree of the template which students had already 
completed. 

 Only courses that could be enrolled in the actual semester 
were recommended. 

 

Algorithm 2. Finding Path in Template 

Function process_node (node, template, student): 
children ← children of the node; 
for each child in children do 

unless (child_computed) then 
      process_node(child, template, student); 
   end if; 
end for; 
path; # calculated path 
sort children in descending order by the value in the node; 
for each child in children do 

path ← child; 
  if (node_fulfilled(node, student)) then 
     return path; 
  end if; 
end for; 

Function node_fulfilled (node, student): 
if (the given node is fulfilled by the given student) then  

return true;  
else  

return false; 
 

4.2 Recommendation Methods Evaluation 
We can assume that students are familiar with the offer of 
selective courses. Therefore, offline experiments [10] can be 
suitable approach to evaluate previously mentioned algorithms. 
All students that enrolled in the semester autumn 2014 and did not 
complete their templates were selected: 1,444 students in total.  

4.2.1 Settings for the algorithm S2 
Firstly, we had to evaluate suitable settings for the algorithm S2. 
Our task was to select suitable courses for students and 
subsequently detect if they enrolled in them or not. Therefore, the 
suitable evaluation metrics were precision and recall. To find a 
balance between precision and recall, the F1 score was also 
calculated. 

 
Figure 3. Relationship among the size of the neighborhood n, 

number of selected courses x and the value of F1 score 
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We selected 90% of examined students and calculated the F1 
score of the recommendations. Figure 3 shows the relationship 
among variables n, x, and the value of F1. Based on these 
findings, the following setting was selected for algorithm S2 as 
the most suitable: n = 8, x = 5. This conclusion was also verified 
on the test set (the rest 10% of students). 

4.2.2 All algorithms’ evaluation 
We utilized all previously described algorithms to recommend 
courses for each student. The coverage determines the percentage 
of students for whom we were able to recommend at least one 
course. 

Table 2. Results of selective courses recommendation 
Algorithm S1 S2 S3 S4 
Coverage 0.97 0.63 0.60 0.54 

Offered courses 2.97 4.81 3.85 4.43 

Enrolled courses in the 
semester autumn 2014 1.63 2.08 1.81 1.88 

Enrolled courses anytime 2.82 3.15 2.49 2.85 

Precision 0.81 0.56 0.48 0.47 

Recall 0.55 0.42 0.28 0.39 

F1 0.66 0.48 0.35 0.43 

Rank 1 2 4 3 

The coverage of approaches differs as it can be seen in Table 2. 
S1 covered almost all students. In contrary, the rest of approaches 
recommended courses for only 60% of selected students. The 
average number of courses offered by each algorithm can be seen 
in the second row. Algorithms recommended 3-5 courses on 
average. The average number of courses that students really 
enrolled in autumn 2014 can be seen in the third row. Because the 
university does not define when students have to enroll courses, 
we extend the searching for enrollment also to the next semesters. 
The average number of courses that students really enrolled 
anytime from autumn 2014 till now can be seen in the fourth row. 
As it can be seen, the number of enrolled courses almost doubled 
in all cases. Finally, we also calculated precision and recall for all 
algorithms. The algorithm S1 reached the best results.  

4.2.3 Which courses are selected the most often? 
H1: We supposed that students select easier selective courses. 
For finding the easiest way to complete the template, we assessed 
each course using its success rate (the percentage of successful 
students to all students in the course). However, we had to 
penalize courses with a small number of students and also the 
courses with smart students only (with excellent average grade). 
Therefore, the adjusted success rate (ASR) was defined as: 

                   
   

       
 

where CSR defined the course success rate, ESAG defined the 
average grade of enrolled students, NES defined the number of 
enrolled students in a course, and MAX_ENR was a constant for 
the template and defined the maximum number of students 
enrolled in any course from the template. We calculated the 
minimal adjusted success rate of courses that have to be passed in 
the subtree for each node of the template. Subsequently, we 
employed the Algorithm 2 that selected the easiest courses till the 
node requirements were met.  

For each template t  T we constructed the easiest path (EP) and 
also the most frequented path (MFP). Both paths can be 
represented as a set of selected courses on the path. Jaccards' 
coefficient (JC) was calculated to compare these sets of courses. 
The similarity of paths was 0.8 on average for all templates. 

∑             

   
     

H1 was confirmed. Correlation of EP and MFP over all templates 
confirmed our hypothesis that students usually select easier 
selective courses. 

5. OPTIONAL COURSES 
To fulfill all study requirements, students have to obtain the pre-
defined number of credits in their studies. Except credits obtained 
from mandatory and selective courses, they have to select optional 
courses. Optional courses for each student were defined as courses 
that do not belong to the student's template. 

5.1 Designed Recommendation Methods 
We utilized the same methodology as described in Section 4 for 
recommendation of selective courses. The main difference was 
that algorithms did not restrict courses from templates. The 
courses recommended by algorithms were limited to only passable 
courses (the predicted grade was not bad) according to the method 
introduced in Section 3.3. 

S1. The most selected courses by students with the same field 
of study. All optional courses of all students of a certain field 
of study were selected. The number of students that were 
interested in each course was calculated and the sorted list of 
all courses based on the calculated value was created from 
the most interesting. 

S2.  Courses enrolled by similar students. We computed the 
student similarity with all active students and also students 
graduated in the last five years. The revealed courses were 
sorted into a list by the number of occurrences in similar 
students’ sets of optional courses. 

S3. Courses taught by favorite teacher. Courses were sorted 
into a list in decreasing order by the popularity of a teacher. 

S4. Courses enrolled by friends. Courses were sorted into a list 
by the number of occurrences in friends’ sets of optional 
courses. 

5.2 Recommendation Methods Evaluation 
As a contrary to the selective course recommendation, we 
supposed that students are not familiarized with all the optional 
courses. Therefore, the offline experiments were not sufficient 
evaluation technique in this case and we had to conduct a user 
study [10]. We contacted only selected group of students to 
request them to assess our recommendations. 
We could approach 607 students enrolled in one of our courses in 
the last semester. Considering the number of students and 
expecting the lower response rate of students, we selected 5 top 
rated courses by each algorithm for each student. The coverage of 
approaches when the algorithm found at least one course to offer 
is presented in Table 3 in the first row. Only for a half of students, 
we revealed friends who could inspire students with interesting 
courses. The average number of offered courses by each algorithm 
can be seen in the second row. The approach which uses social 
ties (S4) offered only 4 courses on average. 
In our experiment, we offered 10 courses at maximum selected 
using the 2 our algorithms Si and Sj for each student. We sorted 
the students in the list by their average grade in order to be 
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independent of students’ characteristics and nearly randomly 
selected 2 algorithms that offered its top 5 courses each at 
maximum to students. We balanced the number of occurrence of 
each algorithm due to the low coverage of S4. We also merged the 
list of courses of Si and Sj in order to not prioritize one of them in 
the following order: Si1, Sj1, Si2, Sj2, Si3, Sj3, Si4, Sj4, Si5, and Sj5. 
When both algorithms selected the same course, the course 
appeared only once in the list. The assessment of the course was 
added to results for both algorithms. 

Table 3. Algorithms coverage 
Algorithm S1 S2 S3 S4 
Coverage 1 1 0.96 0.49 

Offered Courses 4.98 4.98 4.47 4.02 

Subsequently, students were asked for assessing the 
recommendation during their course enrollment process to 
increase the possibility of their reaction. Students could mark 
courses using the following attributes: like, do not like or leave it 
unanswered. Overall, 172 students responded. The most of them 
responded in one week since the invitation (see Figure 4).  

 
Figure 4. Students’ reaction period 

The distribution of students’ reactions is shown in Figure 5. The 
best recommendation was offered by the algorithm S2. The 
algorithm is based on the similarity of students’ sets of interesting 
courses. 
 

 
Figure 5. Assessed courses 

The number of students assessed (NSA) our algorithms was 
almost in balance. Each student was included twice: for each of 
algorithms that assessed. As it can be seen in Table 4, we obtained 
more assessments of courses inspired by friends’ selections (S4). 

It can mean that students with more social ties in the system are 
more active. We omitted recommendations that were not assessed.  
For all algorithms we obtained enough assessments to be able to 
properly evaluate them. We utilized the same evaluation metrics 
as for selective courses besides recall because we could not 
compute false negatives. On average for all algorithms, students 
liked 2-3 of 4-5 offered courses. 

Table 4. Algorithms evaluation 
Algorithm S1 S2 S3 S4 

NSA 79 79 82 99 

Liked Courses 2.52 2.97 2.35 2.07 

Offered Courses 5 5 4.8 3.9 

Precision 0.53 0.60 0.52 0.55 

Rank 3 1 4 2 

Considering all evaluation methods, we determined the ranking of 
algorithms’ success rate. Algorithm based on similarity of 
interesting courses (S2) reached the best results. However, the 
final solution will combine all algorithms to achieve best results. 

6. RECOMMENDATIONS 
We have designed new elements for Registration Application 
which might be available to all students of Masaryk University in 
the future. The first enhancement presents the predicted difficulty 
of courses to students. The predictions are computed by the 
method described in Section 3.3. The predicted grades correspond 
to the following color: 

  x cellent grade     green color. 
  ood grade     yellow color. 
 Bad grade     red color. 

All predictions are presented as the icons of corresponding color. 
When we have no predictions, there is no icon. We try to predict 
grades of courses that students enrolled or courses that we 
recommend to them (see Figure 6). Based on these warnings, 
students can concentrate on difficult courses or revise their 
choices depending on the planned workload in the semester.  

The second improvement is the panel on the right (see Figure 6) 
where the recommended courses are presented. For each student 
we remind mandatory courses, recommend selective and optional 
courses selected by methods introduced in Sections 4 and 5, and 
also recommend their prerequisite courses. After clicking the 
wrench icon, the short explanation of each recommendation is 
displayed to increase students’ trust to the system [5].  They can 
also assess each recommendation. Based on assessments we 
continuously improve our algorithms. 

7. CONCLUSION 
We presented a pilot version of course enrollment recommender 
system that reminds students their duties, warns them against 
difficult courses and recommends them potentially beneficial 
courses. Therefore, the system helps students with their decisions 
during the enrollment process at the beginning of each semester.  
More specifically, we designed four algorithms suitable for the 
course recommendation. The first algorithm searches for the most 
frequently enrolled courses. The second algorithm utilizes 
similarities of students based on courses of their interests. The 
third algorithm recommends courses of students’ favorite 
teachers. The last algorithm calculates the social ties among 
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students and selected courses which were interested for students’ 
friends. 
The most suitable algorithm for the selective course 
recommendation was the first described algorithm. Students 
usually selected easier courses defined in their templates. In 
contrary, the best results for the optional courses recommendation 
achieved the second algorithm utilizing students’ similarities. 
However, we decided to employ all methods in the system due to 
the high students’ satisfaction with recommendations. Optional 
courses were also recommended only if we predicted that students 
could pass the course and they had free time slots in the timetable 
for the course. We validated all designed methods on data 
originated from students of the Faculty of Informatics Masaryk 
University stored in the university information system.  
We also introduced the environment that presents 
recommendations to students, offers them the explanations why 
the courses were selected, allows them to leave a feedback, warns 
them against difficult courses, and reminds them important events 
that should be accomplished, e.g. enroll in mandatory courses or 
enroll enough credits. The designed course enrollment 
recommender system will be a part of the university information 
system in the future. 
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ABSTRACT
With the growing popularity of MOOCs and sharp trend of
digitalizing education, there is a huge amount of free digi-
tal educational material on the web along with the activity
logs of large number of participating students. However,
this data is largely unstructured and there is hardly any
information about the relationship between material from
different sources. We propose a generic algorithm to use
educational material and student activity data from hetero-
geneous sources to create a Prerequisite Structure Graph
(PSG). A PSG is a directed acyclic graph, where the nodes
are educational units and the edges specify the pairwise or-
dering of the units in effective teaching by instructors or for
effective learning by students. We propose an unsupervised
approach utilizing both text content and student data, which
outperforms to supervised methods (utilizing only text con-
tent) on the task of estimating a PSG.

1. INTRODUCTION
Students need prior knowledge for thorough understanding
of educational content. This need imparts an implicit order
in learning educational concepts. Determining this order
requires significant human time and effort. Furthermore,
relying on expert knowledge to determine this order is sub-
ject to inconsistencies due to ‘expert blind spot’ [8]. We aim
to leverage free educational material on the web, and huge
amount of student activity logs associated with them, to cre-
ate a universal Prerequisite Structure Graph (PSG). We de-
fine PSG as a directed acyclic graph, where the nodes are the
universal concepts in an educational domain and the edges
specify the pairwise ordering of concepts in effective teach-
ing by instructors or for effective learning by students. The
proposed unsupervised methods utilize both textual content
and student performance data to perform better than su-
pervised methods utilizing textual content. They can be

generalized to find the learning order between any pair of
educational elements from heterogeneous resources, at any
level of granularity (courses, units, modules, skills, etc.).

The rest of the paper is divided as follows. The related
work pertaining to the proposed methods is discussed in
Section 2. Section 3 describes the dataset used for experi-
ments. Performance-based and text-based unsupervised in-
duction of a PSG are described in Sections 4 and 5, respec-
tively. We describe the method of combining text-based and
performance-based approaches in Section 6. Experiments
and results are presented in Section 7. In Section 8, we
analyze whether the concepts extracted by proposed meth-
ods are meaningful. Conclusions and future directions are
covered in Section 9.

2. RELATED WORK
Currently, the construction of Concept Graphs majorly de-
pends on manual work of domain experts. Recent work by
[10] on Concept-Graph-Learning (CGL), focuses on deter-
mining the relationship between different University courses
and MOOCs by inferring concepts from course descriptions.
The proposed methods are completely unsupervised as com-
pared to supervised CGL which requires partial instructor-
specified links. One other recent work includes extracting
a concept-hierarchy from textbooks [9], where the focus is
only on extracting the hierarchies between concepts and the
learning is only done at the concept level. We differentiate
ourselves from this work with the fact that we learn the pre-
requisite relationships between educational concepts rather
than hierarchies, and our method is generalizable to any
granularity of educational elements.

Another indicator of prerequisite links between educational
elements is student performance. An early approach to in-
ferring prerequisite graphs from student performance data is
knowledge spaces [2], which uses associations between stu-
dent success on different classes of tasks to infer prerequi-
site relationships. The essential idea is that if students are
highly likely to get tasks of type A correct (e.g., finding least
common multiples) conditioned on getting tasks of type B
correct (e.g., adding fractions with unlike denominators) but
not the other way around (i.e., many students that can find
common multiples fail at adding fractions), then A is a pre-
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requisite of B. Subsequently, algorithms for inferring cogni-
tive models of student learning from data have been devel-
oped and it is possible to infer prerequisite relationships from
the results of these models [1]. The methods we propose are
different as we utilize not only the student performance data,
but also student activity data along with large amounts of
text in course material. Also, previous approaches assume
that there is no learning between attempts at different prob-
lems, which is suitable for standardized testing scenario but
not true for student performance logs of complete courses.

3. DATASET
We use the text content and student activity and quiz perfor-
mance data from Georgia Tech’s “Introduction to Psychol-
ogy”MOOC which uses content from the Open Learning Ini-
tiative of Carnegie Mellon University [6]. The course spans
over 12 weeks and a major topic of Psychology (like intelli-
gence, personality, psychological disorders, etc.) was covered
in each week of class. For each week, the text content from
the corresponding unit(s) was extracted. The unit(s) cov-
ered in each week are shown in Table 1. On an average, each
unit contained 12545 word instances with a standard devia-
tion of 3730. For simplicity, we will use Unit i to denote the
content covered in Week i, although the content covered in
week i might include multiple units in the course. Besides
the text inside course units, we also used text in the weekly
quizzes separately to evaluate our text-based methods.

The course also contained ungraded practice activities within
each unit. At the end of each week (from week 1 to week
11), students were assessed by a high stakes quiz containing
questions from content covered in the corresponding week.
The dataset includes the number of interactive activities and
quiz scores of 1154 students for each week.

This dataset is ideal for our analysis since it has both the
textual data of course material and the student activity and
quiz performance data. We aim to predict prerequisite links
between weeks using this data, which will imply prerequisite
links between corresponding units. For example, a prereq-
uisite link from Unit 9 to Unit 11 implies prerequisite link
from Personality to Disorders, or in other words, a student
who has learned Personality will be better able to learn Dis-
orders.

For evaluation, the dataset was first annotated by three non-
experts who determined whether a prerequisite link exists
between content covered in any two units. If a prerequi-
site link exists from Unit i to Unit j, we call it a positive
link, and conversely, if there is no link, it is called a neg-
ative link. The average percentage agreement for positive
links between each pair of annotator was 29.6% while the
percentage agreement for positive links among all the an-
notators was 18.7%. Since the inter-annotator agreement
was very low, we got the dataset annotated by a domain ex-
pert. All the links marked positive by all three non-expert
annotators were also marked positive by the domain expert,
except one link. Finally, we took 15 links marked positive
and domain expert, and 1 more link marked positive by all
non-expert annotators as the set of positive links. Therefore,
among 110 possible links, 16 links were labeled as positive
and rest negative. Note that 55 out of 110 possible links are
backward (i.e. from Unit i to Unit j such that i > j), which

Figure 1: Example of three types of concept space representa-
tion schemes: Content Words, Noun Words and Noun Phrases.

should be implicitly negative, but we will not use the infor-
mation about the ordering of units in any of the proposed
methods so that our methods are generalizable to any pair of
educational elements: modules, chapters or whole courses.

Week Unit(s) Covered

1 Introduction and Methods
2 Brains, Bodies, and Behavior
3 Sensing & Perceiving
4 Learning
5 Memory
6 Language and Intelligence
7 Lifespan development
8 Emotion and Motivation
9 Personality
10 Psychology in Our Social Lives
11 Disorders

Table 1: Unit(s) covered in each week of “Introduction to Psy-
chology” course.

4. TEXT-BASED METHODS
Each educational unit consists of a set of canonical educa-
tional concepts. The text content in each educational unit
can be used to find the concepts involved in it. The set of
concepts in all units is defined as the universal concept space
[10]. We define three concept space representation schemes
as follows:

• Content Words Representation (Word): The set
of content words (Nouns, Verbs, Adjectives and Ad-
verbs) occurring in the course content is used as the
concept space. The words are lemmatized using MIT
Java Wordnet Interface (JWI) [3].

• Noun Words Representation (Noun): In this rep-
resentation scheme, we only use set of nouns occurring
in the course content as the concept space rather than
all content words. These are again lemmatized using
MIT JWI.

• Noun-Phrase Representation (NP): In this rep-
resentation scheme, the set of noun phrases (of depth
less than 5) occurring in the course content is used as
the concept space.
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Figure 2: Overlap Method

An example of these three types of representation schemes
is shown in Figure 1. The Concept space can be represented
using other schemes such as Sparse Coding of Words and
Distributed Word Embedding, but these produce latent con-
cepts, which are not human understandable. Furthermore,
previous results indicate word-based Representation scheme
is more effective than latent concept based representation
schemes [10].

Let the total number of the concepts in the concept space
be p. Then the educational content in each unit can be
represented by a p-dimensional vector, where each element
is the frequency of corresponding concept (word, noun or
noun-phrase) in the text content of the unit. The concept
frequency can be normalized using the following quantities:

• Collection Frequency (CF): Total number of oc-
currences of the word in the collection or in our case,
course. This normalizes concept frequencies such that
all concepts are given equal weightage.

• Document Frequency (DF): Number of documents
or in our case, units, that contain the concept. This
gives less weightage to words occurring in most units
such as module, learning objective, psychology, etc.

• Wordnet Frequency (WF): The frequency of word
given in WordNet which represents the frequency of
word in naturally occurring domain-independent text.
This re-scales the frequencies such that domain-specific
psychology terms have more weightage than generic
terms.

We first describe an unsupervised method which determines
prerequisite links based on only the text overlap between
educational units. The key idea is that course unit ui is
a prerequisite of uj to the extent that ui is a probabilistic
subset of uj (i.e., most concepts involved in ui are mostly
involved in uj) and uj is not a probabilistic subset of ui

(i.e., most concepts involved in uj are not involved in ui).
This idea of using asymmetry in computing the probabilistic
subset is motivated by the theory of knowledge spaces [2],
but we use text information rather than performance data.

Let xi be a vector denoting the concept space representation
of unit ui. The length of this vector is the total number of
the concepts. Each element of this vector is the frequency
of the concept in the unit or one of the normalized versions
of concept frequency (CF, DF or WF). The intuitive gloss
on how we compute the probability that xi is a probabilistic
subset of xj is by dividing the size of the intersection of xi
and xj by the size of xi (A is a subset of B if A ∩ B = A
and less so to the extent that A ∩ B < A, see Figure 2).

Mathematically, we define Pij as the ratio of sum of elements
of pairwise minimum of xi and xj to the sum of elements of
xi:

Pij =
sum(min(xi, xj))

sum(xi)
(1)

Then Pij is the weight of the prerequisite link from unit i to
unit j, which ranges from 0 to 1.

5. PERFORMANCE-BASED METHODS
Our particular approach for unsupervised induction of PSG
based on student performance data grows out of recent anal-
ysis of student performance [6] which concludes that inter-
active activities are more indicative of learning gains than
video watching or online text reading. In subsequent analy-
sis, it was found that student learning within a course unit
is more highly predicted by their activity within that unit
than within other units [7]. However, there is an additional
learning outcome boost associated with greater activities be-
fore a target unit, but not with greater activities after that
unit. This result is consistent with there being prerequi-
site relationships between prior and later units and was the
inspiration for new algorithm development on performance-
based PSG inference.

The key idea behind the proposed performance-based meth-
ods is that more the activity in unit i predicts success in
unit j, the more likely is unit i a prerequisite of unit j. This
means that if students who do more activities in week i per-
form better in the week j quiz, as compared to students who
do fewer activities in week i, then there is an evidence for
a prerequisite link from content in week i to week j. Let

yj be Quiz Scores in week j,
xi be the number of interactive activities done in

week i, and
wij be the parameters denoting the effect of activi-

ties in week i on quiz in week j, which we want to estimate.
The value of the parameter is the strength of corresponding
prerequisite relationship.

We define two methods for predicting prerequisite links us-
ing student performance data:

• Correlation: The effect of activities in week i on the
performance in week j is estimated by the correlation
between the number of activities by students in week
i and the quiz scores of students in week j quiz. Let
ρ(X,Y ) be the Pearson correlation coefficient between
X and Y . Then,

wij = ρ(xi, yj) =
cov(xi, yj)

σxiσyj

• Multiple Linear Regression: We compute a linear
regression for student quiz scores across the 11 units
of the course where the dependent variable is student
quiz score for the target unit and the independent vari-
ables are number of activities students do within each
unit. Let wj = [w1j , w2j , ..., w11j ], be a vector denot-
ing the effects of activities in all weeks on quiz score
of week j. We define multiple linear regression using
lasso regularization as follows:

w∗
j = argmin

wj

∑

n

(yj − xTwj)2 + λ‖wj‖
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Figure 3: The heat map of strength of links from Unit i to Unit j for (a) Performance-based (Correlation) approach, (b) Text-based
(Overlap) approach and (c) Combination of both. The black boxes represent the prerequisite links labeled by domain experts. Note that
there is no link from Unit 7 to Unit 10, even though it appears to be surrounded by a black box.

Method
Name

Method
Type

Data
Utilized

MAP AUC

Regression Unsupervised Performance 0.562 0.571
Correlation Unsupervised Performance 0.604 0.720

Overlap Unsupervised Quiz Text 0.693 0.700
Overlap Unsupervised Unit Text 0.743 0.710

Overlap
+ Corr

Unsupervised
Performance
& Quiz Text

0.798 0.820

Overlap
+ Corr

Unsupervised
Performance
& Unit Text

0.837 0.840

CGL[10] Supervised
Unit Text &
Labeled links

0.747 0.820

Table 2: Comparison of all methods

6. COMBINING TEXT-BASED AND
PERFORMANCE-BASED METHODS

We observed that most of the prediction errors in unsuper-
vised text-based and performance-based methods were due
to false-positives. This is because the dataset is imbalanced
towards negative class with 85.45% negative labels. Un-
supervised systems lacking this information predict positive
and negative instance without any prior bias. In order to re-
duce the errors due to false positives, we propose to predict
a positive link only when both methods indicate a positive
link.

We get two square matrices of dimension equal to the num-
ber of units in the course, one each from text-based and
performance-based methods. The (i, j)th element of these
matrices represents the weight of the prerequisite link from
unit i to unit j obtained from the corresponding method. We
combine the two methods by first forcing diagonal entries
(self-links) to be 0, then standardizing both the matrices
such that both have zero mean and equal variance and then
just applying a pairwise minimum over these standardized
matrices. This approach predicts a link between any ordered
pair of units only if both methods suggest that there should

be a link between them. The combination of both methods
using a pairwise minimum operation performed better than
combination using pairwise summation, pairwise maximum
and pairwise product. We also explored more complex mod-
els for combination, but found no evidence to justify model
complexity.

7. EXPERIMENTS & RESULTS
We gathered and annotated the dataset for experiments as
described in Section 3. For evaluation, we used macro-
averaged Mean Average Precision (MAP) [5] and Area under
ROC Curve (AUC) [4], which are popular metrics in ranked
list retrieval and link detection evaluations [10].

The first two rows in Table 2 show the performance of two
proposed performance-based methods: Multiple Linear Re-
gression and Correlation. As the Correlation method per-
formed better than Regression method (MAP 0.604 vs 0.562
and AUC 0.720 vs 0.571), we will use Correlation method for
combining with text-based methods. The third and fourth
column in Table 3 show the performance of text-based Over-
lap method over different concept space representation types
and normalization types. The last two columns of this ta-
ble show the performance of Overlap method combined with
Correlation method. We compare this combined method to
supervised Concept Graph Learning algorithm (CGL) [10].
The best results of all methods are summarized in Table 2,
which shows that the unsupervised method which combines
text-based and performance-based approaches outperforms
supervised concept graph learning algorithm by a consider-
able margin (MAP 0.837 vs 0.747 and AUC 0.840 vs 0.820).
As seen Table 3, the combined method performs better than
CGL for most concept space representation and normal-
ization types. Note that as compared to supervised CGL
method, the proposed method (‘Overlap+Corr’) utilizes per-
formance data in addition to the text content in educational
material but doesn’t require labeled links from experts. The
results in Table 3 also suggest that on an average, Noun
Phrase concept space representation works best for all text-
based methods, although there is no clear winner among
Normalization types.
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Method Name Overlap CGL Overlap+Corr

Method Type
Text

Unsupervised
Text

Supervised
Perf+Text

Unsupervised

Rep
Type

Norm
Type

MAP AUC MAP AUC MAP AUC

Word

None 0.656 0.640 0.685 0.789 0.686 0.750
CF 0.667 0.680 0.742 0.805 0.717 0.800
DF 0.638 0.660 0.638 0.766 0.836 0.830
WF 0.693 0.660 0.676 0.781 0.730 0.800

NP

None 0.661 0.680 0.722 0.789 0.745 0.810
CF 0.703 0.710 0.747 0.820 0.792 0.820
DF 0.743 0.710 0.572 0.773 0.837 0.840
WF 0.717 0.710 0.743 0.805 0.748 0.820

Nouns

None 0.734 0.670 0.751 0.805 0.746 0.820
CF 0.681 0.680 0.687 0.797 0.821 0.810
DF 0.721 0.680 0.535 0.766 0.755 0.830
WF 0.738 0.680 0.696 0.797 0.748 0.820

Table 3: Comparison of different concept space representation schemes (Rep Type) and different Normalization schemes (Norm Type)
over different text-based methods. CF, DF and WF refer to Collection Frequency, Document Frequency and WordNet Frequency,
respectively, as described in Section 4. The best AUC and MAP scores for each method are marked in bold.

We analyzed the weights of links predicted by different meth-
ods to understand how the combination of text and perfor-
mance based methods affects our prediction. Figure 3 shows
a heat map of strength of links between all pairs of Units.
Each (i, j)th element in the matrix represents the strength
of link from Unit i to Unit j, where green is denoting higher
strength and red is denoting lower. Note that the heat of
the colors is determined by relative value of the weights in
one matrix and not absolute values across matrices. This
is because AUC and MAP metrics evaluate relative value
of predicted weights rather than absolute values. The black
boxes represent the prerequisite links labeled by experts.
The figure indicates that the estimates of performance and
text-based approaches compliment each other to give better
estimates when combined.

8. DISCUSSIONS
Figure 4 demonstrates a subset of prerequisite links iden-
tified by the proposed method and a subset of overlapping
concepts occurring in them in the concept space. We would
like to analyze whether the concepts identified by the pro-
posed method are meaningful. Consider the relationship
between Unit 11, ‘Emotion and Motivation’ and Unit 13,
‘Psychology in Our Social Lives’. All the proposed methods
estimate significant weights for link from Unit 11 to Unit
13. Figure 6 shows a part of the concept space representa-
tion using Content Words Representation scheme for these
units. Overlap method indicates a strong prerequisite link
from Unit 11 to Unit 13 due to significant overlap between
the concepts in these units. Looking into the contents of
these units, the Unit 11, ‘Emotion and Motivation’ consists
of ‘Human Motivation’ module which involves understand-
ing the motivation behind sexual behavior. It introduces
concepts of ‘attractiveness’, ‘proximity’ and ‘similarity’ as
motivating factors behind sexual interest. Unit 13, ‘Psy-
chology in Our Social Lives’ requires the understanding of
these concepts in order to understand ‘Interpersonal Attrac-
tion’ in ‘Close Relationships’ module. Since there are more

concepts in Unit 13 like ‘personality’, ‘aggression’, ‘stim-
ulus’, ‘judgment’, etc. which are not present in Unit 11,
P11,13 is greater than P13,11. Thus, the concepts extracted
by the proposed Concept Representation schemes appear to
be interpretable and meaningful.

Similarly, we also try to interpret the performance-based
results by inspecting the text of the interactive activities
within the course. For example, the interactive activities
in ‘Human Motivation’ module correspond to understand-
ing concepts of ‘attractiveness’, ‘proximity’ and ‘similarity’.
The quiz at the end of unit on ‘Psychology in Our Social
Lives’ also contains a question about role of proximity and
similarity in interpersonal attraction. Therefore, the stu-
dents who do more activities in week 8 (involving Unit 11
content) perform better on the week 10 (involving Unit 13)
quiz (as compared to students who do fewer week 8 activ-
ities) and thus, performance-based approaches identify this
relationship. Figure 5 shows the average number of activities
of students in prior units as a function of their quiz scores
in later unit for set of positive and negative links. The aver-
age number of activities in prerequisite units is greater than
non-prerequisite units for all quiz scores which is a possible
explanation of the effectiveness of performance-based meth-
ods. Also, the correlation between number of activities and
quiz scores suggests that interactive activities are indicative
of learning gains.

9. CONCLUSIONS & FUTURE WORK
We proposed completely unsupervised methods to leverage
freely available textual content in educational resources and
student performance & activity data for predicting prerequi-
site structure graph between arbitrary educational resources.
Three different concept space representation schemes have
been used for text-based methods with a variety of normal-
ization methods for concept frequencies. We also show that
when unsupervised text-based and performance-based meth-
ods are combined, they supplement each other to outper-
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Figure 4: Demonstration of prerequisite links between differ-
ent units in ‘Introduction to Psychology’ Course and a subset of
overlapping concepts.

Figure 5: The average number of activities of students in pre-
requisite units as a function of their quiz scores in post-requisite
unit.

form sophisticated supervised methods. Concepts extracted
using the proposed representation schemes seem to be inter-
pretable and meaningful from educational perspective.

While the results are encouraging, a limitation of the current
work is the size of the dataset. Although the text content in
the course and student activity and performance data is rich,
the number of positive prerequisite relations in the dataset
is low. Validation of proposed methods on diverse educa-
tional data from different courses is required to test their
generalizability and scalability. Furthermore, conducting a
long-term user-study involving students to verify if the pre-
dicted prerequisites help them improve their performance
over a course, would be useful.
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ABSTRACT
This research connects several data-driven educational data
mining approaches to a framework for interaction developed
in educational research. In particular, 10 million usage data
points collected by a Learning Management System used by
students and teachers in 450 online undergraduate courses
were analyzed with this framework. A range of educational
data mining techniques were employed, including K-means
clustering, multiple regression, and classification, to both
explore and predict student final grades and course com-
pletion rates. Findings show that support for the overall
model varied with the way data were mapped to the frame-
work (e.g., static vs. temporal features) and the analysis
technique used (with clustering and classification providing
more useful insights).

Keywords
Learning Management System, Interactions in Online Learn-
ing, Clustering, Prediction

1. INTRODUCTION
Educational data mining (EDM) studies have typically re-
lied upon data-driven techniques in order to extract use-
ful patterns and information from large-scale educational
datasets [11]. While these data-driven approaches have pro-
vided important contributions, some have argued that their
inherent a-theoretic nature may fall short in terms of provid-
ing insight into the development of educational theory and
practice [6]. As such, more studies are needed that better
connect EDM findings to educational theory, research, and
practice.

To address this need, this paper integrates a theory-driven
approach with a data-driven approach to explore student
learning outcomes, activities, and patterns as they interact
with course content using a popular Learning Management
System (LMS), called Canvas. Specifically, for the theory-
driven approach, we apply an interaction framework [2] to
explore how patterns in the LMS data are related to student

final grades and course completion rates at a course level –
a macro-perspective. Here, we use K-means clustering and
multiple regression analysis. For the data-driven approach,
we build classifiers based on machine learning algorithms to
predict a student’s final grade and whether a student will
complete a course or not, providing a micro-perspective.

In particular, we conducted three tasks by addressing follow-
ing research questions: 1) How many clusters of courses are
found based on users’ interaction patterns? Are there rela-
tionships between individual interaction clusters and course
features (size, content, level)? 2) Do the interaction patterns
significantly predict student final grades and course comple-
tion rates? 3) Can we build effective classifiers to predict an
individual student’s final grade and whether each student
will complete a course? Are the pre-built classifiers still ro-
bust and effective for the next semester’s data? How many
weeks in a semester are needed to discover low performing
students or non-course completers (i.e., who may drop out
a course)?

2. BACKGROUND
2.1 Interaction in Online Learning
Interaction has long been a significant research topic in the
field of educational technology. Nonetheless, it remains a
hard concept to define, as it is multifaceted and complex [1,
7]. Some researchers have taken a more restrictive view by
excluding non-human factors, and focusing only on human
interactions [5]. However, others argued that both human
and non-human interactions are integral aspects of the ed-
ucational experience [1, 2, 4]. Further, supporting various
combinations of interaction among teacher, student and the
content can help foster a community of inquiry in online
learning [4].

In particular, Moore [7] categorized interaction into three
types: (i) learner-content interaction, (ii) learner-instructor
interaction and (iii) learner-learner interaction. Anderson
and Garrison [2] expanded Moore’s categorization by differ-
entiating between teacher-content and student-content in-
teraction. In their final model, teacher-content (TC) inter-
action refers to teachers creating content and learning activ-
ities. Student-content (SC) interaction refers to students’
interactions with various forms of educational content in-
cluding reading texts, completing assignments, and working
on projects. Student-teacher (ST) interaction includes both
asynchronous and synchronous communication between stu-
dents and teachers. Finally, student-student (SS) interaction
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Table 1: Characteristics of 450 courses.
Course characteristics |Courses| Percent

STEM Non-STEM
STEM 116 25.8%

Non-STEM 334 74.2%

Course size
Small (<21) 107 23.8%
Med (<51) 210 46.7%
Large (51+) 133 29.5%

Course level

1000 level 156 34.7%
2000 level 79 17.5%
3000 level 157 34.9%
4000 level 58 12.9%

refers to interaction between individual students.

There have been several empirical studies investigating the
relationships between different types of interaction and stu-
dent learning. For example, Bernard et al. [3] conducted
a meta-analysis on the effects of the three types of interac-
tions (i.e., SC, ST and SS) on student performance in online
learning. They found that the effects of SS interaction and
SC interaction were significantly larger than the effect of ST
interaction in terms of student performance.

In this paper, we use this interaction framework to explore
how interaction is related to student performance and course
completion rates in online courses by analyzing and explor-
ing LMS interaction data.

2.2 Educational Data Mining in Learning Man-
agement Systems

A LMS provides a wide range of features to support inter-
actions between students, teachers, and content [9]. More-
over, the LMS typically captures interactions with these fea-
tures in various formats and at diverse granularity levels.
The most widely used methods in EDM studies using LMS
data are prediction, clustering, and distillation for human
judgment (visualization) [10]. Prior studies have found that
usage variables related to SS interaction (i.e., the number
of discussion messages posted) and SC interaction (i.e., the
number of completed assignments) were significant predic-
tors of student performance [6, 12].

However, prior studies using LMS data analyzed student-
level data, rather than looking at the various levels and kinds
of interactions between teachers, students, and contents. In
this paper, we used course level data as well as individ-
ual student level data to provide both macro- and micro-
perspectives on interactions between students, teacher, and
contents in online learning. In this way, our research com-
plements the existing research base.

3. DATASET AND METHODS
3.1 Dataset
For the present study, data were extracted from the Canvas
LMS deployed at a mid-sized public university located in the
western U.S. The LMS automatically captures all teacher
and student online interactions. Note that an academic sup-
port unit at the university extracted and anonymized these
data, and Institutional Review Board (IRB) approved using
the data for research purposes.

We conducted data preprocessing by transforming raw data
into an appropriate shape for analysis. First, we performed

data cleaning in the following three steps: 1) selected courses
offered between Fall 2014 and Spring 2015; 2) selected only
online undergraduate courses; and 3) excluded low enroll-
ment courses (i.e., the number of enrolled students is less
than 5). After conducting the data cleaning process, our
dataset consisted of 450 courses including 10,576,718 inter-
actions, and anonymized 21,171 student profiles (8,844 dis-
tinct student profiles) and 450 teacher profiles (228 distinct
teacher profiles).

Table 1 shows the number of courses in our dataset, catego-
rized by STEM vs. non-STEM, size, and course level. 25.8%
courses are Science, Technology, Engineering, and Mathe-
matic (STEM) courses. A full range of course sizes is rep-
resented and is centered around medium-sized enrollments
(i.e., 21-50 students). The largest number of courses is 1000
level (34.7%) and 3000 level (34.9%) courses.

3.2 Data Mining Methods and Features
In this study, we used three data mining methods for three
tasks – one method for each task: (i) K-means clustering
to find groups of courses each of which has similar inter-
action patterns at a course level; (ii) multiple regression
to measure the relationship between each interaction fea-
ture/variable and average student final grade and course
completion rates at a course level; and (iii) classification al-
gorithms to predict each student’s final grade and whether
the student will complete a course or not. The first two
methods provided a macro perspective focusing on courses,
while the last method provided a micro perspective focusing
on individual students.

Task 1. We used K-means clustering to identify how on-
line courses were clustered based on interaction patterns.
We used the PROC FASTCLUS method in SAS, as miss-
ing values were replaced with an adjusted distance using
the non-missing values [8]. We used Euclidean distance to
measure distance between each node (i.e., a course) and a
centroid. To find the optimal K, we examined the agglomer-
ation schedule to determine the optimal number of clusters.

Task 2. We conducted multiple regressions using SAS to
test whether each interaction type significantly predicted
outcome variables – average final grades and course com-
pletion rates.

For Tasks 1 and 2, we grouped Canvas features (variables)
into four categories (TC, SC, SS, ST) based on Anderson
and Garrison’s interaction framework [2]. Table 2 presents
four categories associated with the Canvas features, and each
feature’s mean, standard deviation (SD) and minimum and
maximum values obtained from the 450 courses.

Task 3. We applied classification algorithms (i.e., SVM,
Random Forest, J48 and AdaBoost) to predict each stu-
dent’s final grade and whether the student will complete a
course or not. Effectiveness of classifiers depends on quality
of features. For this task, we used 129 features consisting of
52 static features and 77 temporal features as shown in Ta-
ble 3. These features consisted of not only the main interac-
tion features that we used in the first and second tasks (while
they were average values in the first and second tasks, indi-
vidual student feature values were used in the third task),

Proceedings of the 9th International Conference on Educational Data Mining 325



(a) ST interaction vs. TC interaction (z-
transformed data).

(b) SS interaction vs. SC interaction (z-
transformed data).

Figure 1: Scatter plots showing how courses in clusters are distributed differently.

Table 2: Descriptive statistics of 450 courses analyzed by 12 interaction features associated with four cate-
gories.

Category Features Mean SD Min-Max

Teacher-Content

Avg. # of attachments posted by a teacher (tc atta) 15.97 22.86 0-176
Avg. # of discussion topics posted by a teacher (tc disc) 18.55 15.54 0-107
Avg. # of wiki topics posted by a teacher (tc wiki) 13.58 13.96 0-74
Avg. # of quizzes posted by a teacher (tc quiz) 9.72 9.48 0-56
Avg. # of assignments posted by a teacher (tc assi) 15.30 12.97 0-75

Student-Content

Avg. # of attachments viewed by a student (sc atta) 118.19 174.57 0-1,625
Avg. # of discussions viewed by a student (sc disc) 48.05 44.88 0-296
Avg. # of wiki viewed by a student (sc wiki) 54.42 51.92 0-387
Avg. ratio of completed quiz by a student (sc quiz) 0.88 0.12 0.10-1
Avg. ratio of completed assignments by a student (sc assi) 0.78 0.16 0.10-1

Student-Student Avg. # of discussions participated by a student (ss disc) 12.21 15.13 0-101
Student-Teacher Avg. # of discussions participated by a teacher (st disc) 50.15 68.63 0-489

but also additional features (e.g., the number of views of
the grade and announcement pages, course information and
temporal features). In particular, temporal features were
extracted from a series of daily snapshots of each student’s
interaction record. Given a course and interaction informa-
tion of a student who took the course, we represented the
student by using the 129 features.

4. EXPERIMENTAL RESULTS
In the previous section, we described our dataset and three
data mining methods for conducting three tasks. In this
section, we present results of these experiments using each
of the methods for each task.

Table 3: 129 Features extracted from each student
and each corresponding course.

Static Features
Features |Features|
Course level and Department offering the course 2
Total # of views and total # of participation by a
student

2

# of views and participation in each of the 24 items
by a student

48

Temporal Features
Features |Features|
Total # of participated weeks (i.e., we add +1 if a
student did participation at least once in a week)

1

Mean and standard deviation of weekly view count
and weekly participation count

4

Each week’s view count and participation count 36
Accumulated weekly view count and accumulated
weekly participation count

36

4.1 Task 1: Clustering Courses and Analyz-
ing Characteristics of Clusters

In Task 1, our research goal was to cluster courses based on
interaction patterns and analyze characteristics of the clus-
ters. First, we standardized the interaction features/variables
(raw scores) by following the recommendation in the litera-
ture [8]. The raw scores were z-transformed to a mean of 0
and standard deviation of 1 for either the course or semester
level data.

K-means clustering requires an input K. To make sure we
chose an optimal K, we examined the agglomeration sched-
ule. The demarcation point indicated that K = 3 would
produce the optimal result. Clusters 1, 2 and 3 contained 41,
300 and 109 courses, respectively. The root mean squared
standard deviations (RMSSTD) for each cluster were 1.32,
0.71, 0.98 respectively, indicating that the courses in cluster
1 are more widely dispersed than the others.

We further drew two scatter plots to help understand char-
acteristics of the three clusters as shown in Figure 1. Fig-
ure 1(a) represents a scatter plot of ST interaction (st disc)
vs. TC (tc atta) interaction. Courses in cluster 1 had higher
TC interaction than those in the other clusters, whereas
courses in cluster 3 had higher ST interaction than the other
two clusters. Figure 1(b) shows a scatter plot of SS interac-
tion (ss disc) vs. SC interaction (sc atta). Courses in cluster
1 showed higher student-content interaction than the other
two clusters. On the contrary, courses in cluster 3 showed
higher SS interaction than the other two clusters.
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Table 4: Means and standard deviations of clusters.
∗ indicates the highest value among the three clus-
ters.

Feature
Cluster 1
(n=41)

Content-
interaction

Cluster 2
(n=300)

Low-
interaction

Cluster 3
(n=109)

Inter-person
interaction

M SD M SD M SD
tc atta 2.12 1.78 -0.32 0.44 0.09 0.67
tc disc 0.26 0.96 -0.44 0.59 1.1 1.04
tc wiki 1.53 1.31 -0.37 0.64 0.43 0.98
tc quiz 0.68 1.32 -0.05 0.99 -0.12 0.76
tc assi 0.38 1.23 -0.28 0.77 0.62 1.14
(T-C)
mean

0.99* 0.66 -0.29 0.43 0.42 0.55

sc atta 1.47 2.27 -0.14 0.62 -0.18 0.47
sc disc -0.04 0.52 -0.46 0.55 1.22 1.02
sc wiki 1.8 1.62 -0.23 0.68 -0.07 0.7
sc quiz -0.18 1.04 0.02 0.92 0.02 1.19
sc assi -0.18 1.15 0.03 1.04 -0.01 0.84
(S-C)
mean

0.57* 0.85 -0.16 0.46 0.2 0.42

(S-S) -0.2 0.59 -0.38 0.58 1.05* 1.22

(S-T) 0.29 1.02 -0.43 0.33 1.07* 1.33

final
grades

2.77 0.59 3.01 0.57 3.05* 0.38

complet.
rates

84.04 12.95 86.84 12.75 88.09* 9.18

Next, we examined descriptive statistics for the predictors
and outcome variables (final grades and completion rates)
for each cluster as shown in Table 41. The results showed
that cluster 1, dubbed “Content-Interaction courses”, had
the highest means for both TC interaction (M = 0.99, SD
= 0.66 ) and SC interaction (M = 0.57, SD = 0.85 ). Cluster
2, dubbed “Low-Interaction courses”, had the lowest means
for all interaction variables. Lastly, cluster 3, dubbed“Inter-
person Interaction”, had higher means for SS interaction (M
= 1.05, SD = 1.22 ) and ST interaction (M = 1.07, SD =
1.33 ). The analysis revealed that courses in each cluster had
different course emphases: content interaction in cluster 1,
non-interaction in cluster 2, and person interaction in cluster
3.

Then, we compared the three clusters in terms of average
student final grades and course completion rates. As shown
in Table 4, the cluster 3 had the highest mean in student
final grades (M = 3.05, SD = 0.38 ) and course completion
rates (M = 88.09, SD = 9.18 ) among the three clusters. The
cluster 1 had the lowest mean in student final grades (M =
2.77, SD = 0.59 ) and course completion rates (M = 84.04,
SD = 12.95 ). This finding reveals that the positive impact
of courses focusing on interactions between participants.

Next, we conducted chi-squared tests to compare STEM and
Non-STEM courses in the three clusters. As shown in Ta-
ble 5, the distribution of the STEM and Non-STEM courses
was significantly different across the three clusters, χ2(6, N
= 450) = 7.80, p < .05. STEM courses were infrequent
overall, but even more scarce in the cluster 3.

Then, we analyzed how many courses in the three clusters

1The meaning of each feature’s acronym is described in Ta-
ble 2.

Table 5: The number of STEM and Non-STEM
courses in three clusters.

Cluster Non-STEM STEM Total
C1 29 (70.7%) 12 (29.3%) 41
C2 21 (71.0%) 87 (29.0%) 300
C3 92 (84.4%) 17 (15.6%) 109
Total 334 116 450

Table 6: The number of small, medium, large
courses in three clusters.
Cluster Small Medium Large Total
C1 13(31.7%) 13(31.7%) 15(36.6%) 41
C2 78(26.0%) 130(43.3%) 92(30.7%) 300
C3 16(14.6%) 67(61.4%) 26(24.0%) 109
Total 107 210 133 450

had small, medium and large enrollments. Table 6 shows the
analytical results. The result of a chi-squared test showed
significant differences among the three clusters, χ2(4, N =
450) = 15.31, p < .05. The cluster 1 had the largest propor-
tion of large courses, whereas the cluster 3 had the small-
est proportion of large courses. The findings suggest that
promoting interaction among participants is rarer in large
courses.

Lastly, we examined how many courses in the three clusters
were at the 1000, 2000, 3000 and 4000 levels. A chi-squared
test found no significant differences in the distribution of the
course levels among the clusters, χ2(6, N = 450) = 8.79, p
> .05.

4.2 Task 2: Prediction Using Multiple Regres-
sion Analysis

In task 2, first we conducted a multiple regression analysis
to examine the influence of interaction features or feature
category listed in Table 2 in predicting average student final
grades in each course. Table 7 shows regression results of
significant variables. The results indicated that the explana-
tory variables accounted for a modest 15.8% of the variance
(R2 = 0.16, F (12, 411) = 6.41, p < .05). Several signifi-
cant and negative predictors were found in teacher-content
interaction. In particular, as tc disc, tc wiki, and tc assi in-
creased, final grades tended to decrease. Findings in the
student-content interaction category were the opposite. Fi-
nal grades tended to increase when sc quiz and sc assi in-
creased and the same is true in the student-teacher interac-
tion category.

A second multiple regression analysis was conducted to test
the influence of each interaction feature or each feature cat-
egory on course completion rates. The explained variance
was a modest at 15.7%(R2 = 0.16, F (12, 411) = 6.64). Only
a single teacher-content variable tc wiki was negatively sig-
nificant. Student-content interaction features sc quiz and
sc assi were significant and positive again in relation to
course completion rates. Taken together, these findings sug-
gest that certain teacher activities related to content were
less productive, whereas student activities related to con-
tent were more positively productive in both final grades
and course completion rates.
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Table 7: Multiple regression results (* indicates the feature is significant at the 0.05 level, and the table
includes only significant features).

final grades completion rates
Category Feature B SE(B) β t p B SE(B) β t p

Intercept 0.000 0.089 0.000 29.600 0.001 0.000 0.089 0.000 29.600 <.0001

Teacher-Content
Interaction

tc disc -0.006 0.003 -0.177* -2.240 0.026 -0.078 0.060 -0.059 -0.990 0.324
tc wiki -0.011 0.002 -0.295* -4.540 0.001 -0.241 0.054 -0.202* -3.710 0.000
tc assi 0.004 0.002 0.106* 1.970 0.050 0.037 0.048 0.033 0.690 0.490

Student-Content
Interaction

sc wiki 0.001 0.001 0.141* 2.140 0.033 0.125 0.015 0.029 1.900 0.058
sc quiz 0.003 0.001 0.164* 3.250 0.001 0.284 0.019 0.107* 5.650 <.0001
sc assi 0.003 0.001 0.177* 3.530 0.001 0.115 0.019 0.044* 2.290 0.023

Student-Teacher
Interaction

st disc 0.001 0.001 0.160* 2.340 0.020 0.130 0.011 0.022 1.910 0.057

Table 8: Feature Sets
Feature
Set

Features (# of features)

A Course level and department offering the course,
total # of views and total # of participation (4)

B feature set A + # of views and participation in
each of the 24 items by a student (52)

C feature set B + total # of participated weeks (53)
D feature set C + mean and standard deviation of

weekly view count and weekly participation count
(57)

E feature set D + each week’s view count and par-
ticipation count, and accumulated weekly view
count and participation count (129)

4.3 Task 3: Predicting Individual Student’s Fi-
nal Grade and Course Completion

So far, experiments in Tasks 1 and 2 were conducted at the
course levels, providing a macro perspective. Now we turn
to building classifiers to predict individual student’s final
grade and course completion (i.e., whether the student will
complete the course or not) by using a data-driven approach,
providing a micro perspective, and then evaluating effective-
ness of the classifiers. In task 3, predicting a student’s final
grade means predicting whether the student will belong to
a high performance group (i.e., obtaining one of A, A-, B+,
B and B-) or a low performance group (i.e., obtaining one
of C+, C, C-, D+, D, F and W).

4.3.1 Prediction in 2014 Fall Semester Dataset
In this experiment, we used the 2014 Fall semester dataset
consisting of 229 courses with 4,314,425 interactions and
anonymized 10,003 student profiles. To build highly accu-
rate classifiers, proposing and using features which have sig-
nificant distinguishing power is important. To test this, the
129 features listed in Table 3 were sampled to make five fea-
ture sets entitled feature sets A, B, C, D and E as shown in
Table 8. As we chose from feature set A to E, the number
of features increased by including the previous features but
also additional features. Feature sets A and B consisted of
only static features, while feature sets C, D and E consisted
of static features and temporal features.

Since we didn’t know apriori which classification algorithm
would perform the best, we chose 4 popular classification al-
gorithms – SVM, Random Forest, J48 and AdaBoost. Given
the 2014 Fall semester dataset, we did 10-fold cross-validation
by dividing the dataset to 10 sub-samples. Each sub-sample

(a) Final grades.

(b) Course completion.

Figure 2: Prediction results of SVM, Random For-
est, J48 and AdaBoost based classifiers with five fea-
ture sets.

became a test set, the other 9 sub-samples became a train-
ing set. We conducted a classification experiment for each
of the 10 pairs of training and test sets. Then, we averaged
the 10 classification results. We repeated this process for
each classification algorithm.

Figure 2 shows prediction results for final grades/performance
groups and course completions. SVM based classifier out-
performed Random Forest, J48 and AdaBoost based classi-
fiers, achieving 80.95% accuracy, 0.79 F-measure and 0.72
AUC in final grade prediction and 94.41% accuracy, 0.94
F-measure and 0.85 AUC in course completion prediction.
As we added more features (changing from feature set A to
E), SVM classifier’s accuracy has increased in both predic-
tions. Compared with the baseline, which was measured by
a percent of the majority class instances and achieved 68%
accuracy in final grade prediction and 84% in course com-
pletion prediction, our SVM based classifier improved 19%
(= 80.95

68
− 1) accuracy in final grades prediction, and 12.4%

(= 94.41
84
− 1) accuracy in course completion prediction.

4.3.2 Robustness of Our Prediction Model
In Section 4.3.1, we evaluated effectiveness of our classifi-
cation approach for both final grades prediction and course
completion prediction. Now we are interested in how much
the pre-built model is robust when we apply it to data gen-
erated in the future (i.e., future semesters). To simulate
this scenario, we used the 2014 Fall semester dataset as a
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(a) Final grades. (b) Course completion.

Figure 3: Prediction results obtained by applying
SVM-based classifiers trained by 2014 Fall dataset
to 2015 Spring dataset.

(a) Final grades. (b) Course completion.

Figure 4: Prediction results over time.

training set and the 2015 Spring semester dataset as a test
set (consisting of 221 courses with 6,262,293 interactions and
anonymized 11,168 student profiles). We built a SVM-based
classifier and predicted each student’s final grade and course
completion in the test set.

Figure 3 shows prediction results as we used feature set A to
E. Again, using all the features (feature set E) produced the
best results, achieving 78.64% accuracy and 0.682 AUC in
final grades prediction and 93.06% accuracy and 0.817 AUC
in course completion prediction. Compared with the pre-
vious experimental results in Section 4.3.1, there were only
small reductions – 2.31% (final grades) and 1.35% (course
completion). The experimental results confirmed that our
proposed approach is robust and can be applied to future
semesters.

4.3.3 Early Prediction
The previous experimental results showed that our approach
was effective in predicting final grades and course comple-
tion. In practice, it is better to produce prediction earlier
so that a tool/system can automatically identify and alert
which students are at risk of receiving a low grade or drop-
ping out a course thereby requiring intervention by a teacher.
To address this need, we used daily snapshot of data includ-
ing student profiles, course information and interaction logs,
and then simulated the scenario by building a SVM-based
classifier in each week. In other words, we built a classifier
and evaluated its performance in each week. By doing this,
we examined how the classifier’s performance changed over
time, and when we could achieve a reasonable accuracy.

Figure 4 shows prediction results in the 2014 Fall dataset. In
final grades prediction, when we built classifiers in the 7th
week, 10th week and 15th week, we achieved 73.59%, 75.86%
and 78.28% accuracy, respectively. Similarly, in course com-
pletion prediction, we achieved 89.4% and 93.3% accuracy
in 10th week and 16th week, respectively. Overall, adding
more data improved performance of our classifiers. This
study reveals that it is possible to detect students early who
have a higher chance of receiving low grades or dropping out

a course.

5. CONCLUSIONS
The purpose of this study was to explore relationships be-
tween theoretically defined constructs extracted from a Learn-
ing Management System and student learning outcomes.
Three different tasks employing three different methods were
used to explore these relationships. The first two tasks were
conducted at the macro-level and thus aligned with a theory-
driven approach, whereas the last task at the micro level
aligned with a data-driven approach.

Results from the cluster analysis revealed that courses with
high inter-person (SS, ST) interaction had higher final grades
and completion rates than courses in the other clusters (low-
interaction and content-interaction), aligning with results
from previous studies [6, 12]. Results also suggested that
STEM and large courses tended to exhibit fewer of these pro-
ductive interactions. The micro-level, data-driven machine
learning analysis using prediction with SVM enabled the
discovery of at-risk students with high accuracy. It achieved
the best performance when all temporal features (complete
feature set) were taken into consideration and was robust
when predicting future data.

In sum, for this dataset comprised of LMS interactions drawn
from online undergraduate courses, the interaction frame-
work was useful for interpreting at both macro and micro
levels.
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ABSTRACT
Online planning of good teaching sequences has the poten-
tial to provide a truly personalized teaching experience with
a huge impact on the motivation and learning of students. In
this work we compare two main approaches to achieve such
a goal, POMDPs that can find an optimal long-term path,
and Multi-armed bandits that optimize policies locally and
greedily but that are computationally more efficient while
requiring a simpler learner model. Even with the availabil-
ity of data from several tutoring systems, it is never possible
to have a highly accurate student model or one that is tuned
for each particular student. We study what is the impact
of the quality of the student model on the final results ob-
tained with the two algorithms. Our hypothesis is that the
higher flexibility of multi-armed bandits in terms of the com-
plexity and precision of the student model will compensate
for the lack of longer term planning featured in POMDPs.
We present several simulated results showing the limits and
robustness of each approach and a comparison of heteroge-
neous populations of students.

1. INTRODUCTION
The current advances and ubiquity of learning and teaching
technologies have the potential to improve education acces-
sibility and personalization. Intelligent Tutoring Systems
(ITS) have been proposed to make education more accessi-
ble, more effective, and as a way to provide useful objective
metrics on learning [1].

A major aspect of personalized education is to be able to
identify the current level of students and how to address
particular difficulties in the student learning process. The
goal is to be able to choose online the activity that better ad-
dresses the challenges being encountered by each particular
student. Even two students with the same knowledge will
require different activities to progress further due to their
previous experience, cognitive skills or preferences. This is
a difficult challenge because as ITS are encountering the
students for the first time, it is difficult to know what is

the impact of each activity on their progress. A commonly
used method is to exploit a population-wide model on how
students learn and assume that they are all similar. The
personalization in such an approach is limited to adapting
to student’s knowledge levels but assumes that the impact
of each exercise is the same for all students with the same
knowledge levels.

Different methods have been proposed to handle this prob-
lem. One popular and well-known method is the Partially
Observable Markov Decision Process (POMDP) framework
which has been proposed in different ways to select the op-
timal activities to propose to a learner [13]. This frame-
work can find the optimal teaching trajectories for a given
teaching scenario model if an accurate student model is pro-
vided which is not always possible in practice. The main
drawback is the high computational complexity and as a
consequence, only the simplest cases can be solved exactly.
Another method explored recently to select optimized ac-
tivities is to use the Multi-Arm Bandit (MAB) framework
to personalize sequences of pedagogical activities [6]. These
methods optimize learning in the short term (rather than
in the long-term) and rely on much simpler student models
while being computationally very efficient.

In this paper, we compare the POMDP framework and the
MAB framework (specifically the algorithm ZPDES already
evaluated in real classrooms [6]). We first introduce a stu-
dent model used to compare the different algorithms. We
then propose ways to model the heterogeneity in classrooms
by considering that different students will have not only dif-
ferent learning parameters but also that they might have
different dependencies between the different knowledge com-
ponents (KCs). Our experiments will evaluate how well a
MAB can approach the optimal solution of a POMDP, and
how the different algorithms behave when encountering a
heterogeneous group of student.

2. RELATED WORK
In this work we are interested in the impact of the quality
of the student models on the quality of the sequences of
activities chosen by online algorithms.

There are several approaches to automatically choose exer-
cises based on the current knowledge level of students. We
are here particularly interested in optimization methods that
rely on minimal prior assumptions about the students or the
knowledge domain.
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One option already explored is the use of a partial-observable
Markov decision process (POMDP) [13], [14]. PODMPs of-
fer an appealing theoretical framework that guarantees an
optimal long-term solution for a planning problem. How-
ever, in general, as the computational complexity is high,
it is practically impossible to find an exact solution to the
problem. Some approximate solutions in the domain of ITS
have considered the use of aggregations of states instead of
tracking the full knowledge components. Another drawback
is that POMDPs require a precise student model for which
the policy is optimized. If the real student encountered de-
viates from this model, then the optimality properties are
lost.

A more recent approach is to use the Multi-Arm Bandit
(MAB) framework to manage pedagogical activities [6]. MABs
have the advantage of being extremely computationally ef-
ficient and rely on very weak student models. The main
drawback is that there is no long-term planning of the best
sequence of activities relying on an exploration-exploitation
tradeoff to find the best path. Aware of such problem, au-
thors of one such algorithm considered that standard MAB
needs to be complemented with a weakly specified knowl-
edge graph to provide a long-term view on the optimization
[6].

As noted, before optimizing the sequence of exercises it is
important to have some knowledge about the impact of a
given exercise in the learning of the KCs, and also to be
able to track what each student already masters. A large
part of ITS research has been on the modeling aspects of
the cognitive and student models. A seminal work on this
topic was the Knowledge Tracing framework [7] which builds
a detailed cognitive model of the student, of its learning pro-
cesses by considering a set of independent KCs, the probabil-
ity of learning them and the probability of correct or wrong
answer in exercises that relies on those KCs. More recent
methods extend this framework to a bayesian probabilis-
tic approach [12, 15] improving the performance and under-
standing of those methods. Recent methods have started to
consider how to learn such models, and variants of it, allow-
ing to simultaneously discover the relation between activities
and KC, e.g. [8, 2, 5, 9].

As discussed these methods require an accurate knowledge
of how students learn and require to track their mastery of
each KC. For this, it is necessary to learn the constraints
between different KC, exercises and KC. Given students’
particularities, it is impossible for a teacher to understand
all the difficulties and strengths of individual students and
provide an accurate student model manually. Even with
the recent advances on model learning, there are several
challenges in identifying parameters that best describe each
individual student. These models have many parameters,
and identifying all such parameters for a single student is a
very hard problem due to the lack of data, often making the
problem intractable. In most cases it is even impossible to
identify some of the parameters [3, 4]. In the general case,
it results in inaccurate models that cannot be exploited for
individualized learning. Another problem is that these plan-
ning methods are for a population of students and not for
a particular student and this has already been proven to be
suboptimal [11].

3. STUDENT MODELS
3.1 Student model
In this section, we will present the student model we will use,
also called learner model in literature. We want a generative
model that can simultaneously be used to predict students
behaviour, model their knowledge acquisition and track their
mastery level. For this, we built a student model, shown in
Fig.1 similar to the Knowledge Tracing framework [10] and
its variants. Similarly to [9], we include extra features in our
model. We are particular interested in more realistic cases
where each KC might depend on other KCs. In most cases
it is assumed that each exercise just depends on one KC and
that they are independent, this is not realistic most of the
time, and such dependencies have a strong impact on the
learning sequences generated by the different algorithms.

L(n-1)

a(n) o(n)

L(n)
learn

guess
slip

Figure 1: Graphical model of the Student model,
with L(n) the hidden state of the student at step n,
a(n) activity proposed, and o(n) the result obtained
by the student.

We consider a situation where a student has a set of m
KCs Ki to learn. A student’s state at step n is represented

by the state of each KC, L(n) = K
(n)
1 , . . . ,K

(n)
m , the global

model is described on figure Fig.1. Each KC is defined by
his state, mastered (Ki = 1) or not mastered (Ki = 0).
For each KC, there is an initial probability of mastering

it p(K
(0)
i = 1) which is always null in our experiments to

make students learn all the KCs through activities. The
emission probabilities are defined by the guess probability,
i.e performing correctly without mastering the skill, and the
slip probability, i.e performing incorrectly despite mastering
the knowledge. Theses probabilities are constant. Finally

p(K
(n)
i = 1|L(n−1), a(n)) defines the probability of transi-

tion from not mastered to mastered Ki while doing activity
a at step n and depending of the constraints between KCs
and their states. An activity can be represented as a vector
a = α1, . . . , αm where αi = 1 if the activity allows to acquire
Ki, αi = 0 else. The transition probability to learn a given
KC Ki at step n is given by the following formula:

p(K
(n)
i = 1|L(n−1), a(n)) = αi(βi,i +

m∑

j 6=i

βi,jK
(n−1)
j ) (1)

Where βi,i represent the probability to learn Ki without
considering other KCs and βi,j represent the impact of the
KC Kj on the probability to learn Ki. If a given KC does
not need other KCs to be learned, the term

∑m
j 6=i βi,jKj is

null.

For more simplicity, in our experiments, an activity a can
provide an opportunity to acquire only one KC which in-
duces an isomorphism between the knowledge space and the
activity space.
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3.2 Models of populations
The previous model can be used to describe a single student
or an average model of a population. Our goal is to under-
stand the impact that the diversity of students has when the
given sequence is optimized considering the same parameters
for all students. We will achieve such goal by considering a
canonical model and then make two types of disruptions:
i) change the probabilities between the variables; ii) change
the knowledge graph.

The first way is to disrupt the parameters in the model, i.e.
the probability of transition, guess, and slip. To do that,
we consider that each parameter is sampled from a gaussian
distribution. We can change the variance to increase the
heterogeneity of the population. With a variance null, all the
population has the same parameters. The second way is to
change the knowledge graph that changes the dependencies
between the different knowledge. This type of disruption can
be small like adding or removing a dependency, or it can be
as critical as rearranging completely the organization of the
knowledge dependencies. These two types of disruption are
combined in our experiments.

LM0 :
0.2−−→ K1

0.2−−→ K2
0.2−−→ K3

0.2−−→ K4
0.2−−→ K5

0.2−−→ K6

LM1 :
0.2−−→ K1
0.2−−→ K2

}
0.1−−→
0.1

K3
0.2−−→ K4

0.2−−→ K5
0.2−−→ K6

LM2 :
0.2−−→ K1

0.2−−→ K2
0.2−−→ K4

0.2−−→ K6
0.2−−→ K3

0.2−−→ K5

LM3 :
0.2−−→ K1

0.2−−→ K2
0.2−−→ K3

0.2−−→ K5
0.2−−→ K4

0.2−−→ K6

LM4 :
0.2−−→ K1

0.2−−→ K2
0.2−−→ K4

0.2−−→ K3
0.2−−→ K5

0.2−−→ K6

Figure 2: Knowledge graphs used in the simulations.
LM0 is the nominal knowledge graph, with LM1

and LM2 introducing small disruptions in the pre-
requirements between KCs. LM3 and LM4 represent
more critical disruptions that change the overall or-
der of KCs.

We used multiple knowledge graphs, shown in Fig.2. The
arrows represent the dependencies between KCs. For ex-
ample, LM0 represents a graph where the constraints be-
tween the different KC are ordered in a linear way. Here,
β1,1 = β2,1 = β3,2 = β4,3 = β5,4 = β6,5 = 0.2 and all the
others values of βi,j are null. We then created several differ-
ent transformations and variants to model different needs of
the students in terms of the order of the different KC.

LM1 and LM2 follow approximately the same overall se-
quence of KC, but considering two initial branches for the
different KC. LM1 considers that KC1 and KC2 are inde-
pendent and any of them allows to learn KC3. In these
knowledge graphs, we can expect that optimizing for one
will also work for the other as the overall sequence of KC is
respected, even if the strategy is no longer optimal. We also
created more critical disruptions in the knowledge graph.
LM3 and LM4 present an inversion between two KCs. For
LM3, KC4 and KC5 are inverted, what radically change the
overall sequence of KCs. For LM4, it is K3 and K4 that are
inverted.

4. OPTIMIZING LEARNING POLICIES
4.1 Partially Observed Markov Decision Pro-

cess (POMDP)
POMDP is a markovian decision process where the state is
hidden and can only be inferred indirectly from the obser-
vations. A POMDP consists of a tuple 〈S,A,Z, T,R,O, γ〉
with S the state space, A the action space and Z the obser-
vation space. T is the transition model, it gives the prob-
abilities p(s′|s, a) of transitioning from state s to state s′

with the action a. O is the observation model, it gives the
probabilities p(z|s, a) of having the observation z when ac-
tion a is made in state s. R the cost model, it specifies the
cost r(s, a) of choosing action a in state s, and the discount
factor γ gives the relation between immediate costs and de-
layed costs. With all these components, the solution of a
POMDP is a policy that optimizes total discounted future
reward.

This framework has been already used in the context of ITS
[13]. The learner’s mastery is the hidden state s, learn-
ing is the transition between states, the probabilities that
the learner gives a good answer are given by the obser-
vation model of the observation {correct, incorrect}. We
use Perseus [14] as solver to find the optimal policy for our
POMDP problem.

4.2 Zone of Proximal Development and Em-
pirical Success (ZPDES)

Time

Active
activity

Deactivated
activity

Activity not
explored

Zone of Proximal
Development

A5

A1 A2

A3

A4

ZPD

ZPD ZPD
ZPD

ZPD

A5

A1 A2

A3

A4

A5

A1 A2

A3

A4

A5

A1 A2

A3

A4

A5

A1 A2

A3

A4

δZPD ⩾ λZPD δA1 ⩾ λa δZPD ⩾ λZPD 

δZPD ⩾ λZPD 
δA2 ⩾ λa 

Figure 3: ZPDES exploration of an activity graph,
with δZDP the success rate over all active activities,
λZPD the threshold to expand the ZPD, δAx the suc-
cess rate for the activity Ax, and λa the threshold to
reach to deactivate an activity.

Here we present the recently introduced algorithm Zone of
Proximal Development and Empirical Success (ZPDES) that
is based on multi-armed bandits [6]. The idea of the algo-
rithm is presented in Fig.3 and summarized in Alg.1. The
algorithm follows an activity graph but goes through it in
a stochastic way. ZPDES is initialized with a certain num-
ber of activities defined as starting activities. At each point
in time, ZPDES has a set of activities, called the zone of
proximal development, that can be proposed to the student
which is adapted depending on student result. In the ex-
periments presented here, we make small changes in the ac-
tivation/deactivation mechanism of the original algorithm.
When the recent student success rate over all active activi-
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ties δZPD reaches a value λZPD, the graph is expanded to ex-
plore another activity and when the recent success rate for a
particular activity δai is higher than a threshold λa, this ac-
tivity can be removed from the active list. This two thresh-
old allow to partially configure the exploration behaviour of
the algorithm. Inside the set of active activities, ZPDES pro-
poses exercises proportionally to the recent learning progress
obtained by that activity. The activity graph following the
same structure than the knowledge graph, we can directly
configure ZPDES with the same knowledge graph used to
configure POMDP.

Algorithm 1 ZPDES algorithm

Require: Set of na activities A
Require: ζ rate of exploration
Require: distribution for parameter exploration ξu
1: Initialize of quality wa uniformly
2: while learning do
3: Initialize ZPD
4: {Generate exercise:}
5: for a ∈ ZPD do
6: w̃a = wa∑

j wj

7: pa = w̃a(1− ζ) + ζξu
8: Sample a proportional to pa
9: end for

10: Propose activity a
11: Get student answer Ct and compute reward:

12: r =
∑t

k=t−d/2
Ck
d/2
−∑t−d/2

k=t−d
Ck

d−d/2

13: wa ← βwa + ηr {Update quality of activity}
14: Update ZPD based on activity graph and success rates
15: end while

5. EXPERIMENTS
The goal of our experiments is to compare the impact of the
knowledge about the students on the online algorithms for
choosing exercises, namely POMDP and ZPDES. We will
proceed to change the heterogeneity of the student popula-
tions and see how much disruption each algorithm is able
to adapt. Our comparative measure of performance is the
average skill level overall knowledge and over time, for all
the students in the population.

We will compare the results obtained with two algorithms:
POMDP and ZPDES. Each algorithm will have different
variants based on the knowledge included on each of them.
POMDP relies on a knowledge graph and the parameters
of such graph. Each variant of POMDPx is characterized
by a specific student model used to find the optimal policy.
ZPDES has as information the knowledge graph, and some
parameters describing how to traverse this graph, no partic-
ular assumption is made about the probabilities of knowl-
edge acquisition. ZPDESH

x is a variant of ZPDES with the
corresponding graph x and using the parameters that were
used in an other experiment in a real world situation [6]
mostly hand-tuned with the help of a pedagogical expert.
ZPDES∗x will also use the graph x but the parameters to
traverse the graph are optimized for that particular graph
using a greed search. During the optimization, we saw that
the majority of parameters present average results and only
extreme parameters gave critical results.

Single model results. The first experiment will do a san-
ity check to evaluate each algorithm in conditions where
each student is the same in the population and each algo-
rithm is configured for this model of student. We expect
POMDP to have the best results and we want to see how
far ZPDES will be from the optimal solution. A Random
strategy which selects one activity randomly among all pos-
sible is also presented in this first experiment to see the gain
of the algorithms.

Figure 4: Evolution of the average skill level for 600
students modeled with LM 0 which activity are man-
aged by POMDP, ZPDES∗, ZPDESH configured for
LM 0. Shaded area represents the standard error of
the mean.

Fig.4 shows the comparison of POMDP, ZPDES∗, ZPDESH

and Random with a population of 600 students modelled
with the knowledge graphs LM 0. We can see POMDP is
the best for all the models, closely followed by ZPDES∗.
ZPDESH give a slower learning than the two others. Un-
surprisingly, for one particular model, POMDP has the best
performance. The optimized ZPDES is very close in per-
formance to POMDP. The results are similar for models
1, 2, 3 and 4, the curves are not presented here for space
reason. We can thus verify that the combination of knowl-
edge graphs and the activity exploration rules provides a
space of policies that is close to the optimal POMDP one.
ZPDESH present the slowest population learning among the
algorithms but as its configuration was not optimized for any
particular model we can expect such result.

These results show that the algorithms behave as expected
and that ZPDES has the potential to be close to the optimal
POMDP solution.

Multi model results. We will now present the main results
of this work with the comparison between POMDP, ZPDES∗

and ZPDESH when confronted with heterogeneous popula-
tions of students. The protocol of the experiments is as
follows. First we provide each algorithm with the informa-
tion about a specific population of students and then we
test the capability of the algorithms to address a different
and diverse population of students. As described earlier,
each algorithm is given information about a particular stu-
dent model x, POMDPx receives the graph and the student
model parameters, ZPDES∗x receives the graph and explo-
ration parameters optimized for that same graph, ZPDESH

x

receives the graph and standard parameters for the graph
exploration. We test different versions of each algorithm
with a population composed of students following 3 differ-
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Table 1: Performance position of each algorithm
configuration for each setup. The rank of each al-
gorithm configuration, and the average rank of each
algorithm is presented for steps 50 and 200.

Students 0,1,2 / Alg config 0,1,2
Rank t 50 Rank t 200

Algorithm Per conf Average Per conf Average

POMDP0 1
1

1
2POMDP1 3 2

POMDP2 4 3

ZPDESH
0 3

3
1

1ZPDESH
1 3 1

ZPDESH
2 6 3

ZPDES∗0 2
2

1
2ZPDES∗1 3 2

ZPDES∗2 5 3

Students 0,3,4 / Alg config 0,3,4
Rank t 50 Rank t 200

Algorithm Per conf Average Per conf Average

POMDP0 1
1

2
2POMDP3 2 3

POMDP4 4 5

ZPDESH
0 2

2
1

1ZPDESH
3 3 2

ZPDESH
4 4 3

ZPDES∗0 2
2

2
2ZPDES∗3 3 4

ZPDES∗4 4 4

Students 2,3,4 / Alg config 0,1
Rank t 50 Rank t 200

Algorithm Per conf Average Per conf Average

POMDP0 1
1

3
2

POMDP1 4 6

ZPDESH
0 2

1
1

1
ZPDESH

1 3 2
ZPDES∗0 2

1
4

2
ZPDES∗1 3 5

ent knowledge graphs. The probabilistic parameters of the
student models in the population follow a gaussian distri-
bution. There is 200 students per graphs for a total of 600
students.

On figure 5 we can see the evolution of the average mastery
level for all KCs. The table 1 presents the ranking of each
version of the algorithms and the average ranking of each
algorithm at step 50 and 200 according to the curves com-
parison for each setup LM0,1,2, LM0,3,4, and LM2,3,4. The
table 2 presents the statistical significance tests at step 50
and 200 for each setup and what is the best methods if the
results are statistically significant.

By comparing the different p-values, we can see that the
differences between POMDP and ZPDES∗ are never signif-
icant, but it’s not the case for ZPDESH . For the models
LM0,1,2, at step 50, ZPDESH drops behind the two others,
but it catches up rapidly with the two others and present the
same results at step 200. So for models which are close to
each other, the 3 algorithms present almost the same result.
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Figure 5: Evolution of the average skill level for
600 students with POMDP, ZPDES∗, ZPDESH . For
each curve, the number attached to the algorithm’s
name indicate what knowledge graph has been used
to configure the algorithm. Each curve shows the av-
erage KC level of the student population over time
for each algorithm configuration. In general ZPDES
have better results than POMDP. Shaded area rep-
resents the standard error of the mean.
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Table 2: ANOVA p-values for each setup to ver-
ify if the differences in the KC level distribution
according to each algorithm are statistically signif-
icant with the best algorithms in parenthesis when
it is significant. We note P for POMDP and Z for
ZPDES

P/Z∗ P/ZH Z∗/ZH

LM t 50 t 200 t 50 t 200 t 50 t 200

0,1,2
.075 .95 10−6 .82 .003 .87

(P) (Z∗)

0,3,4
.24 .90 .17 10−5 .89 10−4

(ZH) (ZH)

2,3,4
.31 .30 .18 10−5 .77 10−7

(ZH) (ZH)

For the models LM0,3,4, observations are different. At step
50, all the algorithms seem to have approximately the same
performance, even if ZPDESH seems a bit behind but it’s
not significant (p-values at 0.17 and 0.89). But with time,
it takes the lead and achieves the best performance at 200
steps. So when there are two models critically different
from another, ZPDESH presents the best results. For the
last case, the population is constituted of students following
LM2,3,4 models, and the algorithms are configured for mod-
els LM0,1. As for the previous case there is no differences at
step 50 but ZPDESH presents the best results at step 200.

ZPDESH provides the best result because its exploration
parameters were not optimized for any particular knowledge
graph, giving it higher adaptability and less constrains in
the exploration. For a particular type of student model it
will present worse performance than POMDP or ZPDES∗,
but for a heterogeneous population, ZPDESH , being more
adaptable, has the best performance.

6. CONCLUSION
In this work we considered student models where the knowl-
edge components can have constraints among each other,
allowing to model some kind of pre-requisites. Under dif-
ferent student models we can find an optimal teaching se-
quence using POMDP. Another alternative is the use of the
recently proposed method ZPDES that is computationally
more efficient but without optimality guarantees. Our goal
was to test how robust each of these methods is in relation
with ill-estimated parameters of the models, or even wrongly
estimated relations between KCs. This corresponds to the
more realistic case of heterogeneous classes of students.

We showed that for the trivial situation where the students
are perfectly modeled with the student model, ZPDES can
achieve the same performance as the POMDP. For heteroge-
neous populations again ZPDES can achieve solutions simi-
lar to POMDP. The best algorithm was using ZPDES that
uses parameters that are not optimized for no population in
particular. By having more flexibility in the exploration it
becomes more robust to changes in the population.

We conclude that multi-armed bandits, when combined with
an activity graph, are a best choice in comparison with
POMDPs due to its computational efficiency and reliance
on simpler student models.

The code to generate the graphics and the results is available
at: github.com/flowersteam/kidlearn/tree/edm2016,
follow the README.
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ABSTRACT 
This study introduces the Constructed Response Analysis Tool 
(CRAT), a freely available tool to automatically assess student 
responses in online tutoring systems. The study tests CRAT on a 
dataset of chemistry responses collected in the ChemVLab+. The 
findings indicate that CRAT can differentiate and classify student 
responses based on semantic overlap with student input and 
indices related to word frequency, text content, and lexical 
sophistication. Overall, the findings suggest that more accurate 
student responses show greater overlap with the content learned, 
include more academic function words, contain greater content 
that is descriptive, and includes more specific and familiar words.  

Keywords 

Natural language processing, on-line tutors, constructed response 
scoring 

1. INTRODUCTION 
For science education to be more effective, students should move 
beyond memorizing facts and procedures and toward gaining 
deeper conceptual understanding that allows them to both apply 
scientific knowledge to explain new phenomena and to design 
investigations. The Next Generation Science Standards [1], offer a 
new vision of science instruction that integrates science practices, 
disciplinary core ideas, and cross cutting concepts, such as scale, 
energy, and patterns that unify different fields. However, 
assessing learning of these interconnected strands is challenging 
using traditional, multiple-choice items. Constructed responses, as 
well as more novel types of assessments provide students with 
important opportunities to demonstrate reasoning, explanation, 
and inquiry skills and are thus an important educational tool [2]. 

One problem with constructed responses are associated scoring 
costs [3]. A possible solution to these costs can be found in 
automated scoring tools that can reduce the need for human 
scoring and potentially increase scoring consistency [4]. In this 
study, we introduce a freely available natural language processing 
(NLP) tool called the Constructed Response Analysis Tool 
(CRAT) that can automatically score constructed responses in 
domain specific learning environments. We conduct a pilot study 
that tests the efficacy of CRAT to score student responses to a 

domain specific question in an on-line chemistry tutoring system 
by comparing scoring models developed by CRAT to human 
ratings of constructed responses.  

1.1 Assessing student understanding 
Simulations and games provide rich environments for students to 
learn science and demonstrate their understanding of scientific 
principles [5]. Such games and simulations can be included in 
online systems that allow for just-in-time feedback. The dynamic 
feedback found in online systems affords students the opportunity 
to confront misconceptions and provides information about areas 
of struggle or mastery that teachers can use as formative 
assessments that influence instructional decision making.  
However, the utility of feedback depends on the ability of an 
online system to provide an accurate diagnosis of student 
understanding. Though multiple choice and student behaviors in 
simulation environments may be readily scored using constraint-
based model tutors [6], interpreting and accurately scoring 
constructed responses in science education has proven much more 
challenging [2]. These challenges have led researchers to develop 
content-based automated scoring systems that demonstrate 
medium to high agreement with human scores. These systems 
show promise for a number of domains (e.g., math, reading, 
psychology, biology) and a number of student levels (i.e., middle 
school, high school, college) [7, 8. 9]. 

1.2 Current Study 
The goal of this study is to introduce CRAT and examine its 
potential to automatically assign accuracy scores to student 
constructed responses from an on-line tutor. Constructed 
responses were collected in the ChemVLab+ tutoring system 
(chemvlab.org) and scored by expert raters. We used the 
Constructed Response Analysis Tool (CRAT) to calculate 
linguistic features related to text content, text summarization, and 
lexical sophistication and used these linguistic features to predict 
the human scores. 

2. METHOD 

2.1 ChemVLab+ 
The ChemVLab+ is an on-line tutoring system that provides 
students with opportunities to apply chemistry knowledge to 
meaningful contexts and to receive immediate, individualized 
tutoring. Of interest in the current study are the four stoichiometry 
activities contained within ChemVLab+. The activities engage 
students in a variety of problem-solving tasks using interactive 
simulations including a virtual chemistry lab. At the end of each 
activity, students respond to one to three open-ended questions 
(i.e., constructed responses) designed to evaluate their ability to 
synthesize the information they had learned. The four 
stoichiometry activities included a total of 10 questions. 
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2.2 Participants 
A total of 1392 high school chemistry students from the classes of 
thirteen teachers in the California bay area used the Stoichiometry 
module. Students used the online activities as part of their normal 
coursework. 

2.3 Human Scores of Constructed Responses 
All constructed responses were coded by two independent raters 
familiar with the chemistry content. Coders used an annotated 
rubric that described criteria for each score and provided 
examples of responses receiving those scores. Reliability of 
scoring varied across the questions, and interrater reliability 
ranged from Cohen’s κ = 0.55 to .92. Each question had three 
possible scores, except for the two lowest reliability questions, 
(items 1 and 2.1), which had four possible scores. When the 
highest two scores in these questions were collapsed, interrater 
reliability increased from 0.56 to 0.68 for item 1 and from 0.59 to 
0.69 for item 2.2. 

2.4 Selection of Constructed Responses 
We selected student constructed responses from question 1 in the 
stoichiometry lab to test CRAT. The question had the greatest 
number of student answers (n = 1374). The question asked 
students to explain the relationship between the amount of sugar, 
the volume of the drink, and concentration of the sports drink.  

2.5 CRAT 
CRAT is an easy to use constructed response analysis engine that 
calculates indices related to a) the linguistic and semantic 
similarities between a source text and a constructed response, b) 
the linguistic sophistication of a constructed response, and c) text 
properties (e.g., length and syntactic categories). It is freely 
available, cross-platform, and is accessed via a graphic user 
interface (GUI). The similarity indices include lexical similarity 
calculated using key word overlap, synonym overlap, and latent 
semantic analysis (LSA) similarity [10] and phrasal similarity 
calculated using key bigram and trigram overlap and key part of 
speech sensitive slot-grams (e.g., a trigram with an open slot such 
as into the ____ ). The constructed response sophistication indices 
include psycholinguistic word information indices (e.g., 
concreteness and familiarity [11, 12]), lexical frequency and range 
(words that occur in a wider range of texts) indices based on the 
British National corpus (BNC [13]) and the Corpus of 
Contemporary American English (COCA [14]), and syntactic 
categories (e.g., number of adjectives and nouns). For COCA, 
CRAT reports on frequency and range indices for a number of 
different genres including academic, newspaper, and fiction 
genres. Selected index features are outlined below. See 
http://www.soletlab.com to download the tool and to access  the 
complete list of indices. 

2.5.1 Function and content word only indices 
CRAT indices generally consider all words in a text. CRAT also 
includes index variants that include only the content words (e.g., 
nouns, verbs, adjectives, adverbs) and only the function words 
(e.g., determiners, prepositions, etc.). Content word indices and 
function word indices are designed to provide more fine-grained 
analyses, and have been shown to be more predictive, in some 
cases, than when all words are considered in an index [15]. 

2.5.2 Text and sentence minimum indices 
CRAT indices generally comprise the average score for all 
instances of a feature across an entire text. Additionally, CRAT 
calculates index variants that comprise average minimum scores 

for each sentence in a text in order to assess smaller texts that may 
be a single sentence in length. 

2.5.3 Key word exclusion indices 
In addition to the index variants outlined above, constructed 
response sophistication indices include variants that exclude 
words that occur more frequently in the source text than would be 
expected (i.e., words that are “key”). The key word exclusion 
index variants were included to minimize interference from 
sophisticated language in the source text on the constructed 
response produced. 

2.5.4 Latent Semantic Analysis Weighting 
One variable that can affect LSA similarity scores is the weighting 
scheme employed. CRAT includes LSA variants calculated from 
the TASA corpus using normalized weighting, rare words 
dominated weighting, and frequent words dominated weighting. 
Normalized weighting considers all words in a reference corpus 
equally. Rare words dominated weighting assign higher scores to 
words that occur infrequently in the reference corpus. Frequent 
words dominated weighting assigns higher scores to words that 
frequently occur in the reference corpus [16]. 

2.6 Summary Input 
CRAT is a domain specific tool and uses system input (i.e., source 
texts) to develop knowledge spaces for the domain of interest. The 
source texts used to develop knowledge spaces can be textbooks, 
lecture notes, presentations, or any type of text that generalizes 
expected knowledge on the part of the student. For this analysis, 
we used the hints provided to the students during specific 
activities within the ChemVLab+ system. These hints provide an 
overview of the input the student received and are designed to 
provide informational hints to students if they are unable to 
generate the information individually. The hints available to 
students in question 1 of the stoichiometry lab comprised over 
5,000 words and focused specifically on the relationship between 
sugar, volume, and concentration in a sports drink. 

2.7 Statistical Analysis 
The indices reported by CRAT that yielded non-normal 
distributions were removed. A multivariate analysis of variance 
(MANOVA) was conducted to examine which indices reported 
differences between the three levels of scores for each student 
response (incomplete or incorrect, partially correct, and correct 
responses). The MANOVA was followed by stepwise 
discriminant function analysis (DFA) using the selected normally 
distributed indices from CRAT that demonstrated significant 
differences between responses that were incorrect or incomplete, 
partially correct, and correct and did not exhibit multicollinearity 
(r > .90) with other CRAT indices. In the case of multicollinearity 
between indices, the index demonstrating the largest effect size 
was retained in the analysis. The DFA was used to develop an 
algorithm to predict group membership through a discriminant 
function co-efficient. A DFA model was first developed for the 
entire corpus of constructed responses. This model was then used 
to predict group membership of the constructed responses using 
leave-one-out-cross-validation (LOOCV) in order to ensure that 
the model was stable across the dataset. 

3. RESULTS 

3.1 MANOVA 
A MANOVA was conducted using the NLP indices calculated by 
CRAT as the dependent variables and the human scores of the 
student responses as the independent variables. Of the 759 indices  
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reported by CRAT, 96 of these indices were normally 
distributed and not multi-collinear with one another. Of these 96  
indices, 85 of the indices reported significant differences in the 
MANOVA analysis. These indices were related to overlap 
between the constructed response and the input received in the 
tutor, lexical sophistication, response length, response 
descriptiveness, and percentage of content words in the 
response. These indices were used in the subsequent DFA. 

3.2 Discriminant Function Analysis 
A stepwise DFA using the 85 indices selected through the 
MANOVA retained 14 variables related to semantic overlap 
between response and input, text descriptiveness, lexical 
sophistication, response length, and the use of content words. 
The indices retained in the DFA along with their means, 
standard deviations, F scores, p values, and effect sizes are 
reported in Table 1.  
The results demonstrate that the DFA using these 14 indices 
correctly allocated 853 of the 1372 student responses in the total 
set, χ2 (df=4) = 393.169 p < .001, for an accuracy of 62.2%. For 
the leave-one-out cross-validation (LOOCV), the discriminant 
analysis allocated 841 of the 1372 texts for an accuracy of  

 

61.3% (see the confusion matrix reported in Table 2 for results 
and F1 scores). The Cohen’s Kappa measure of agreement 
between the predicted and actual class label was 0.404, 
demonstrating moderate agreement. 

4. DISCUSSION  
This analysis provides an initial assessment of the extent to 
which the linguistic indices reported by the Constructed 
Response Analysis Tool (CRAT) are predictive of constructed 
responses. We examined student constructed responses to a 
single question in the ChemVLab+ system related to 
stoichiometiry. We found that 86 CRAT indices demonstrated 
differences between the three levels of human ratings 
(incomplete/incorrect, partially correct, and correct) and 14 of 
these variables were significant predictors of human scores in a 
DFA with a reported accuracy of 62%. The results suggest that 
the CRAT tool can be used to automatically classify student 
constructed responses based on human ratings of response 
accuracy. While preliminary, the results support the use of NLP 
tools in constructed response scoring and point toward specific 
linguistic features that can be used to predict human ratings of 
accuracy for student constructed responses.   

Table 1: Descriptive statistics and MANOVA results for CRAT variables 

Index Incomplete/incorrect 
Mean (SD) 

Partially correct 
Mean (SD) Correct Mean (SD) F η2 

Semantic similarity (LSA) response and 
input (rare word dominated) 0.362 (0.159) 0.458 (0.111) 0.499 (0.079) 102.799** 0.131 

Semantic similarity (LSA) response and 
input (frequent word dominated) 0.403 (0.155) 0.5 (0.113) 0.531 (0.096) 95.432** 0.122 

Academic frequency COCA function 
words 

24524.248 
(16585.406) 

36788.308 
(13168.904) 

34324.442 
(11401.743) 76.716** 0.101 

Written frequency (BNC) function words  1.000 (0.441) 1.227 (0.291) 1.25 (0.256) 53.237** 0.072 
Percentage of adjectives 0.086 (0.082) 0.112 (0.069) 0.135 (0.074) 38.42** 0.053 
Academic range (COCA) all words -0.494 (0.254) -0.401 (0.114) -0.411 (0.096) 24.093** 0.034 
Number of words 24.417 (29.134) 33.476 (53.923) 38.618 (39.975) 16.736** 0.024 
Range (SUBTLEXus) content words (no 
key words) 3737.317 (1693.106) 3227.84 (1437.09) 3213.191 

(1105.223) 15.819** 0.023 

Academic frequency (COCA) content 
words sentence minimum 0.743 (0.705) 0.941 (0.532) 0.922 (0.487) 12.386** 0.018 

Word familiarity (MRC) sentence 
minimum 497.207 (206.379) 560.031 (126.208) 529.915 (165.372) 10.534** 0.015 

Percent content words 0.635 (0.147) 0.597 (0.085) 0.606 (0.091) 9.621** 0.014 
Word familiarity (MRC) content words 
(no key words) 465.777 (132.451) 483.335 (87.545) 495.526 (77.668) 6.393* 0.009 

Range (COCA all words sentence 
minimum) -1.937 (0.143) -1.96 (0.083) -1.956 (0.08) 4.063* 0.006 

Academic range (COCA; no key words) 0.712 (0.081) 0.693 (0.076) 0.689 (0.137) 3.865* 0.006 
* p < .05, ** p < .001      

Table 2. Confusion matrix for DFA results for classifying scored responses 

  Incomplete/incorrect Partially correct Correct F1 score 
Whole set Incomplete/incorrect 605 202 138 0.755 

 Partially correct 31 119 60 0.400 

 
Correct 21 67 129 0.474 

      
  Incomplete/incorrect Partially correct Correct F1 score 
LOOCV Incomplete/incorrect 603 203 139 0.752 

 Partially correct 33 113 64 0.379 

 
Correct 22 70 125 0.459 
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The discriminant function analysis indicated that the strongest 
predictors of human accuracy scores were related to semantic 
similarity between the constructed response and the knowledge 
space provided (i.e., the available student hints in the 
ChemVLab+). The results indicated that student responses that 
had a higher semantic overlap with the hints were more likely to 
be correct or partially correct. These results held for rare word 
and frequent word LSA overlap. This suggests that students 
whose responses better represent the semantic space of the 
domain are more likely to produce correct responses. 

Beyond semantic overlap with the hints, the next strongest 
predictors of human scores of student responses were related to 
the frequency of function words. These indices indicated that 
students who used more frequent function words were rated as 
having higher response scores (for both academic and written 
frequency). This likely indicates that students who used function 
words that occur more frequently in written contexts (i.e., 
academic writing and writing in general) construct more 
accurate responses. Thus, more successful students were those 
who were more likely to use writing styles frequent in academic 
English. 

More successful answers also differed in the properties of the 
words they contained. More accurate answers were more 
descriptive in that they contained a greater number of adjectives. 
Though longer, successful answers contained fewer content 
words (i.e., they contained more function words). Successful 
answers contained more specific words (i.e., words that 
demonstrated a lower range score) and also contained more 
familiar and frequent words.  

The model developed in this pilot study reports a level of 
accuracy that is appropriate to provide automated feedback to 
users in a tutoring system such as ChemVLab+. This feedback 
could include a summative score to provide users with an overall 
assessment of the quality of the constructed response. In 
addition, the model could be used to provide formative feedback 
to users in terms of language use (i.e., the use of academic 
language) and appropriate content (i.e., is writer covering the 
content of the question appropriately). Such feedback could be 
used by students to revise their responses and engage more 
deeply with the system. However, we would caution against 
using the reported model in high stakes assessments where 
accuracy is at a premium, although this advice should be 
empirically tested on a number of high stakes test corpora. 

CRAT differs from many other scoring systems in that it is 
domain specific. Domain specificity has advantages as many of 
the key word and semantic indices can be trained on targeted 
content that increases construct validity and ensures that topic 
adherence on the part of the student remains an important 
component of constructed response scoring. Training the 
system, however, requires source texts that provide background 
about the topic. In some cases, these texts may be difficult to 
transfer to text files (in the case of lectures) or they may not 
exist within a system, limiting the generalizability of CRAT 
across a number of system.  

Lastly, it remains an open question if a model trained on one 
area of chemistry will transfer to another area of chemistry or to 
domains outside of chemistry. For instance, the model 
developed here needs to be tested on similar but not overlapping 
chemistry topics and questions to test the model’s 
generalizability within a macro-domain (e.g., with chemistry 
questions that address molecular equilibrium and acid bases). In 

addition, the model should be tested on domains outside of 
chemistry to assess whether constructed responses in various 
domains can be accurately scored based on a combination of 
semantic and keyword overlap between the response and the 
source and the use of academic language by system users. 

5. CONCLUSION 
This study introduces a freely available tool for constructed 
response scoring and tests the tool on a dataset of chemistry 
responses collected in the ChemVLab+. The findings indicate 
that the Constructed Response Analysis Tool (CRAT) can 
differentiate and classify student responses based on semantic 
overlap with text input, syntactic categories, text length, and 
lexical sophistication indices. Overall, the findings suggest that 
successful student responses contain greater overlap with the 
content learned and use more academic function words, more 
words in general, more descriptive words, and more familiar and 
frequent words that are also more specific.  

Additional studies will be conducted to refine and continue to 
develop CRAT. For example, a future direction includes 
assessing the value of including indices of semantic overlap that 
use Latent Dirichlet allocation (LDA) spaces, allowing for topic 
modeling along with semantic graph analyses. CRAT also needs 
to be tested on additional constructed responses, including 
responses from a variety of domains. Lastly, the models 
developed using the CRAT tool should be assessed for 
application in providing feedback to users in instructional 
systems. Such follow up studies will provide additional 
information about the reliability of CRAT and the linguistic 
features within CRAT that are predictive of human ratings of  
constructed responses within different domains and on-line 
learning environments.   
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ABSTRACT 
Studies examining feedback in educational settings have largely 
focused on feedback that is received, rather than chosen, by 
students. This study investigates whether adult participants learn 
more from choosing rather than receiving feedback from virtual 
characters in a digital poster design task. We employed a yoked 
study design and two versions of an online game-based 
assessment, Posterlet, to compare the learning outcomes of N=264 
Mechanical Turk adults in two conditions: when they chose the 
feedback valence versus when they received the same feedback 
valence and order. In Posterlet, players design posters and learn 
graphic design principles from feedback. We found that the more 
the participants chose critical feedback, the more time they spent 
designing posters, but there were no differences in learning, 
revision, and time spent designing posters between conditions. In 
each condition, critical feedback correlated with performance and 
revision, suggesting that feedback valence is important for 
performance, regardless of being a choice. 

Keywords 

feedback valence, choice, assessment, game, learning 

1. INTRODUCTION 
A central goal of education is to prepare independent learners 
[16]. Previously, we operationalized this goal by a) identifying 
promising behaviors for autonomous learning that would reveal 
how students learned and b) creating novel choice-based digital 
assessment games that measured these behaviors. For instance, we 
measured students’ choices to seek critical feedback and to revise, 
and we found that students who were more willing to seek critical 
feedback also learned more [4]. We examine learning choices 
(e.g., seeking social feedback), because such learning strategies 
can support ongoing learning, adapting to new challenges, and, 
ultimately, learning how to learn. These types of design thinking 
competencies, together with collaboration, persistence, and 
creativity, are crucial for 21st-century challenges, yet they are not 
formally assessed in schools [1, 21]. There are two main reasons 
why we need to measure learning behaviors. First, learning 
behaviors or attitudes enable learners to solve problems even 
when they do not have the domain knowledge skills to do so (e.g., 
collaborate with a partner from a different discipline). Second, 
current self-assessment techniques are not gender neutral: even 
though women and men scored similarly on a science exam (they 
had similar skills), women underestimated while men 
overestimated their performance (their attitudes did not match 
their skills; [7]). Such self-regulated learning behaviors [10] are 
worth investigating because revised self-assessment interventions 
may increase female representation in science, technology, 
engineering, and mathematics and could help create gender-
inclusive 21st-century learning and assessment environments. 

We previously examined the feedback valence (i.e., critical versus 
confirmatory) and its impact on performance and learning. In this 
study we examine for the first time the effect of feedback agency 
(i.e., choosing versus receiving). Our objective is to investigate 
the effect of choosing versus receiving feedback on learning, by 
comparing learning outcomes between participants who choose 
feedback and those who receive the same amount, valence, and 
order of feedback. We outline related work and theoretical 
perspectives that guide our research. Then, we describe our 
assessment environment, Posterlet, an online game designed to 
collect and assess participants’ feedback and revision choices. We 
also created and presented a modified version of this game to 
accommodate the situation in which feedback is assigned to the 
learner in a principled way that mirrors the feedback chosen in the 
original Posterlet version. We then present evidence of the impact 
of choosing versus receiving feedback on learning outcomes, as 
well as theoretical and practical implications of this research. 

We examine the impact of feedback choice and valence on 
learning by posing the following research questions: 

1) Does critical feedback correlate with learning outcomes? 

2) Are there learning outcome differences between choosing and 
receiving feedback? 

3) Are there design duration differences between choosing and 
receiving feedback? 

4) Are there gender differences on the measures by condition? 

2. RELATED WORK 
We distinguish several themes in the literature related to the 
theoretical perspectives that guide this research.  

Choice-based Assessments. Traditional assessments measure 
learners’ knowledge at the end of instruction, focusing on 
knowledge accuracy but providing little information about 
learners’ readiness to learn new things. Vygotsky highlighted the 
importance of measuring learning processes [23], rather than only 
learning outcomes, to achieve deeper insights into students’ 
potential to learn on their own. Schwartz and Bransford advocated 
preparation for future learning (PFL) assessments [19], which 
create learning opportunities during the assessment. Our research 
draws from work on constructivist assessments [20] and choice-
based assessments [18]. Both these assessments build upon PFL 
assessments and measure not only learners’ knowledge outcomes 
but also their learning processes (e.g., choices about what, when, 
and how to learn). For example, Posterlet [4], an online game that 
collects players’ choices to seek critical feedback and to revise 
while they design posters, constitutes an instance of a choice-
based assessment. The design of Posterlet is guided by the three 
core principles of choice-based assessments: typical performance 
(assessments need to capture every-day learning behaviors, not 
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test performance), PFL (assessments need to offer learning 
opportunities with measurable outcomes; [2]), and choice 
(assessments need to collect free learning choices that do not 
hinder the learners’ ability to complete the assessments). 
Specifically, Posterlet provides players with a 10-15 minute fun 
game experience, with a chance to learn graphic design principles 
and to safely explore choices to seek critical feedback and revise, 
before applying them in more high-stakes situations. 
Concomitantly, Posterlet provides researchers with a way to track 
players’ behaviors and learning outcomes to infer how prepared 
players are to learn on their own in new learning situations. 

Confirmatory versus Critical Feedback. In educational 
contexts, feedback is defined as information related to a person’s 
performance or understanding [11] and it is predominantly 
assigned by a teacher or a computer rather than chosen by the 
learner. There are some exceptions, but they pertain to help 
seeking [17] rather than specifically to feedback seeking. Here, 
we are mainly interested to investigate whether being given a 
choice about how to learn (i.e., choosing versus receiving 
feedback) has any impact on learning outcomes and other learning 
behaviors. In addition to feedback choice, the feedback literature 
provides some indication of the importance of feedback valence. 
For instance, critical feedback yields mixed results for 
performance [13], but studies of organizations show that most 
new ideas need critical constructive feedback to become 
successful [15]. A first challenge is that feedback is often absent 
from ideation environments. A second challenge is that critical 
feedback is even more elusive in such environments and it runs 
the risk of ego threat that causes people to reject instead of heed 
the feedback [11]. This suggests that attitudes towards seeking 
critical feedback are worth exploring. However, there is no 
evidence that the choice of critical feedback is as important as 
simply assigning critical feedback to the learner. Thus, we 
designed a variation of Posterlet and we employed a reduced-
length game version for comparison to address this issue.  

Choosing versus Receiving Feedback. Traditionally, most 
studies focused on supervised feedback, where the teacher 
assigned feedback to the student.  However, in many situations, 
people need to actively seek feedback. Little is known about the 
implications of students’ feedback choices on their learning or 
about variables that influence students’ feedback choices, but 
researchers acknowledge the importance of the mechanisms 
underlying feedback for learning. For instance, Zimmerman [24] 
included “responsiveness to self-oriented feedback” among three 
critical features of students’ self-regulated learning strategies. The 
effect of actively choosing rather than passively receiving critical 
feedback for learning raises interesting psychological questions. 
For example, patients who had control over their level of pain 
medication chose lower doses than those prescribed by medical 
staff [12]. Similarly, having a choice over critical feedback may 
act as a buffer against ego threat. Further, if learners are assigned 
critical feedback, would that lead to less learning than if they 
chose it? Consumer research provides corroborating evidence 
directly relevant to our prior research regarding the choice 
between confirmatory and critical feedback. Researchers found 
that novices sought confirmatory feedback more often, whereas 
experts sought critical feedback more often [9]. However, in 
contrast to our research, they did not measure learning outcomes. 

3. POSTERLET 
We employed two versions of the Posterlet game [4] to carry out 
our experiment. Participants playing the games assumed the 
identity of a school committee member in charge with designing a 

poster for each of the two booths advertising events for the 
school’s Fun Fair. The effectiveness of each designed poster (i.e., 
the number of visitors attracted by the booth) is quantified by the 
number of tickets sold, which is displayed when the poster is 
submitted. Posterlet also measures the number of times critical 
feedback is chosen or received, depending on condition, and the 
player’s choices to revise posters across the game. After designing 
each poster, the player chooses three virtual characters out of a 
focus group to find out what they think about the poster. In the 
Choose condition, the player clicks on one box (“I like” or “I 
don’t like”) above each character. For example, in Figure 1, a 
participant in the Choose condition has first selected critical 
feedback from the lion and then confirmatory feedback from the 
elephant, but no feedback from the panda yet.  
 

Figure 1. In the Choose condition, the player has first chosen 
critical feedback from the lion, confirmatory feedback from 

the elephant, and no feedback from the panda yet. 
In the Receive condition, the player clicks on the “Click for 
feedback” box to reveal a feedback valence assigned by the game. 
For example, in Figure 2, a Receive condition participant has first 
clicked on the elephant’s “Click for feedback” box (revealing 
critical feedback), then on the ostrich’s “Click for feedback” box 
(revealing confirmatory feedback). The amount of critical 
feedback chosen or assigned (depending on the condition) is 
Posterlet’s first key measure. After reading the feedback, the 
player has a choice to revise or submit the poster. The number of 
revised posters is Posterlet’s second key measure. The game’s 
feedback system generates feedback by analyzing each poster 
against 21 graphic design principles provided by a graphic artist 
and organized into three broad categories: information (e.g., the 
poster should include the date of the event), readability (e.g., the 
color contrast between the text and the background should be 
high), and space use (e.g., the space used by images needs to be 
within 30% and 70% of the poster’s surface). 

Figure 2. In the Receive condition, the player has first clicked 
on the elephant and received critical feedback, then on the 

ostrich and received confirmatory feedback. 
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It computes each poster’s quality (i.e., the number of tickets sold) 
and it includes a priority scheme to ensure a balanced 
representation of these categories in the feedback. The critical and 
confirmatory feedback phrases are equivalent in length and 
informational content. For example, if a player omits the day of 
the fair, the critical feedback is: “You need to tell them what day 
the fair is.” Otherwise, the confirmatory feedback is: “It's good 
you told them what day the fair is.”, as shown in Figure 2. 

4. METHOD 
4.1 Participants, Procedures, Data Sources, 
and Experimental Overview 
Participants (see Table 1) are N=264 Mechanical Turk adults 
randomly assigned to either the Choose or the Receive condition. 
Choose condition participants played a version of Posterlet that 
collected their feedback choices, while Receive condition 
participants played a modified Posterlet version that did not offer 
a feedback choice. In a one-to-one yoked experimental design, 
each participant in the Receive condition was assigned the 
feedback valence, number, and order of the feedback chosen by a 
matched Choose condition participant. Participants played a two-
poster version of the Posterlet game individually, corresponding 
to their assigned condition, with a five-minute time limit on each 
poster or revision. Then, they completed an individual online 
posttest. The participants in the Choose condition were presented 
with a choice regarding the valence of their feedback. For 
instance, Figure 1 illustrates the feedback choices of a participant 
in the Choose condition: the participant chose a critical feedback 
from the lion and then a confirmatory feedback from the elephant. 
The Receive Condition participants were assigned the feedback 
valence of paired Choose condition participants, in the same order 
in which feedback was chosen by those paired participants. The 
game also collected participants’ revision choices and computed 
the participants’ poster performance (i.e., the quality of all their 
posters). Posterlet tracked the amount of critical feedback out of a 
maximum of 6 (3 feedback opportunities x 2 posters), as well as 
the amount of revisions out of a maximum of 2 (1 revision 
opportunity x 2 posters). A separate posttest measured the graphic 
design principles learned by participants in both conditions. 
Table 1. Number of participants in each condition by gender 

Cond. Gender Age Range Mage (SDage) F M 
Choose 54 78 19-69 32.26 (9.53) 
Receive 61 71 19-63 33.30 (10.40) 
Total 115 149 19-69 32.78 (9.96) 

 
For instance, Figure 2 illustrates the feedback selection of a 
participant in the Receive condition: the participant was first 
assigned critical feedback and then confirmatory feedback, just 
like the participant in the Choose condition illustrated in Figure 1. 

In the Choose condition, participants played Posterlet for an 
average of M=7 minutes (SD=3.11) and then completed the 
posttest for an average of M=6 minutes (SD=2.24). In the Receive 
condition, participants played Posterlet for an average of M=7 
minutes (SD=2.91) and then completed the posttest for an average 
of M=7 minutes (SD=2.54). This study is correlational and 
experimental, aiming to determine whether having a choice about 
one’s feedback valence aids in learning or in choosing to revise 
one’s work. It compares adults who exercised a choice regarding 

the valence of their feedback (Choice condition) to adults who 
were assigned their feedback valence (Receive condition). 

4.2 Dependent Measures 
4.2.1 Feedback Valence and Revision Choices 
Critical Feedback measures the number of “I don’t like” boxes 
chosen or received by the player across the game (0-6). 
Confirmatory Feedback measures the number of “I like” boxes 
chosen or received, equivalent to 6 minus Critical Feedback (0-6), 
since there are six total feedback choices across the game. 
Revision measures the number of posters a player revised (0-2). 

4.2.2 Design Duration 
We measured the time a participant spent designing each poster, 
from the moment a booth theme was clicked to the moment the 
“Test” button was pressed. 

4.2.3 Learning Outcomes 
Poster Quality measures the poster performance, summing the 
poster quality across posters. The quality of each poster is the sum 
of the scores for each of the 21 features: 1 if a feature is always 
used correctly, 0 if a feature is not on the poster, and -1 if a 
feature is used incorrectly. Thus, the score of any individual 
poster ranges from -21 to 21, while Poster Quality from -42 to 42. 

A posttest assessed learning of the graphic principles. The overall 
Posttest score represents the sum of the normalized scores of the 
Recognition and Principle Selection measures. 

 
Figure 3. The Recognition posttest questions. 

Recognition comprised four sets of posters (Figure 3). For each 
set, participants’ task was to judge whether the quality of the 
second poster was the same/better/worse compared to the quality 
of the first poster and to provide a brief written explanation for 
their decision. A distractor image was inserted between the two 
posters to ensure that memory was not playing a role [22]. 
Participants were guided through a mini-tutorial and a trial poster 
comparison, in which pictures succeeded automatically on a five-
second timer. Each correct answer is scored with one point, while 
each incorrect answer is scored with zero points. This measure 
sums up only the correct answers, thus ranging from zero to four. 
Principle Selection comprised two 10-item design principle 
checklist questions (Figure 4). A point was awarded/subtracted for 
each correct/incorrect answer and scores were summed up. 
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Figure 4. The Principle Selection posttest questions. 

5. RESULTS 

5.1 Does critical feedback correlate with 
learning outcomes? 
We examined poster performance and design principle learning. 
Table 2 and Table 3 show the zero-order Pearson correlations by 
condition. Critical Feedback and Revision correlated with Poster 
Quality and strongly with each other. We consider Poster Quality 
a learning measure, due to participants’ improvement across the 
game [Choose: round1=10.64 (SD=5.0), round2=11.76 (SD=4.5), 
Wilks’ Lambda=.92, partial eta squared=.08, F(1,131)=11.67, 
p<.01; Receive: round1=10.68 (SD=6.0), round2=11.67 (SD=5.4), 
Wilks’ Lambda=.96, partial eta squared=.04, F(1,131)=5.89, 
p<.05]. Revision correlated with Posttest and Design Duration. 
Poster Quality correlated with Posttest, supporting the learning 
measures’ internal validity. In the Choose condition, Critical 
Feedback correlated with Design Duration. 

Table 2: Correlations between critical feedback, revision, and 
learning outcomes for the Choose condition 

Measures 
(N=132) 

Revision Poster 
Quality 

Posttest Design 
Duration 

Critical Fb. .62** .25** .08  .32**  
Revision -- .23** .21* .39** 

PosterQuality  -- .27** .39** 
** p < .01, * p < .05 

Table 3: Correlations between critical feedback, revision, and 
learning outcomes for the Receive condition 

Measures 
(N=132) 

Revision Poster 
Quality 

Posttest Design 
Duration 

Critical Fb. .58** .18* .13  .16  
Revision -- .24** .21* .36** 

PosterQuality  -- .21* .38** 
** p < .01, * p < .05 

We entered Critical Feedback and Revision in regressions to 
determine if they were independent predictors of the learning 

outcomes. In the Choose condition, for Poster Quality, the model 
was significant [F(2,129)=5.10, p<.01, R2=.07, Adjusted R2=.06], 
but Critical Feedback [t(129)=1.6, p=.11] and Revision 
[t(129)=1.6, p=.25] were not predictors. For Posttest, the model 
was significant [F(2,129)=3.33, p=.04, R2=.05, Adjusted R2=.03], 
Revision was a predictor: t(129)=2.38, p=.02, but Critical 
Feedback: t(129)=-.71, p=.48 was not. In the Receive condition, 
for Poster Quality, the model was significant [F(2,129)=4.23, 
p=.02, R2=.06, Adjusted R2=.05], Revision was a marginally 
significant predictor: t(129)=1.99, p<.05, but Critical Feedback: 
t(129)=.58, p=.56 was not. The Posttest model was not significant. 

 
Figure 5. Poster Quality by Critical Feedback and condition. 

5.2 Are there learning outcome differences 
between choosing and receiving feedback? 
T-test analyses revealed no differences in Poster Quality 
[MChoose=22.39 (SD=8.71), MReceive=22.36 (SD=10.4), t(262)=.03, 
p=.97],  Posttest [MChoose=.10 (SD=1.53), MReceive=.04 (SD=1.45), 
t(262)=.32, p=.75], and Revision [MChoose=.80 (SD=.87), 
MReceive=.93 (SD=.82), t(262)=-1.24, p=.22] between conditions. 
Figure 5, Figure 6, and Figure 7 plot our measures across the 
game as a function of critical feedback (from 0 to 6) by condition. 
Error bars represent one standard error. The x-axis shows the 
range of critical feedback and the number of participants for each 
amount of critical feedback (e.g., N=26 participants 
chose/received 3 pieces of critical feedback across all posters). 
Regressions of critical feedback, condition, and critical feedback 
by condition on learning and revision revealed no interactions of 
critical feedback and condition with our measures. 

 

5.3 Are there design duration differences 
between choosing and receiving feedback? 
A t-test analysis revealed no differences in Design Duration (time 
in seconds spent designing posters) between conditions 
[MChoose=401.30 (SD=186.39) and MReceive=394.44 (SD=174.94), 
t(262)=.31, p=.76]. Figure 8 plots participants’ poster design time 
across the game as a function of critical feedback (from 0 to 6) by 
condition. 
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Figure 6. Posttest by Critical Feedback and condition. 

 
Figure 7. Revision by Critical Feedback and condition. 

5.4 Are there any gender differences?  
In the Receive condition, we found that females [M=433.28 
(SD=176.84), t(130)=2.41, p=.02] spent more time designing 
posters than males [M=361.07 (SD=167.40)]. There were no 
gender differences by condition on any of the rest of the measures 
(Revision, Poster Quality, and Posttest). 
 

 
Figure 8. Design Duration by Critical Feedback and condition. 

6. DISCUSSION 
This is a first-of-kind examination of both the agency (choosing 
versus receiving) and the valence (critical versus confirmatory) of 
feedback and their impact on performance and learning. We found 
that, in each condition, the amount of critical feedback (either 
chosen or received) correlated with participants’ performance on 
the poster design task. Consistent with our previous findings [3, 
4], critical, rather than confirmatory, feedback seems beneficial 
for learning. Also, the choice to revise was beneficial for 

performance and learning outcomes and it strongly correlated with 
critical feedback (chosen or received). We found no differences 
between conditions in any of the measures outlined in this paper. 
These results held when we compared the measures by gender in 
each condition, although in the Receive condition, females spent 
more time designing posters than males. This indicates that these 
types of behavioral assessments of learning have the potential to 
be gender neutral. The next step would be to design more such 
dynamic assessments to evaluate other behaviors, such as self-
assessment. Designing gender-neutral assessments that embed 
both skills and learning behaviors would bring us closer to 
determining the knowledge, skills, and delivery methods required 
to foster independent learners in the 21st century, as well as ways 
to ensure gender equality, especially when only 14.1% of North 
American computer science bachelor’s degree graduates are 
female [25]. Our study points to critical, rather than confirmatory, 
feedback being beneficial for learning, regardless of being chosen 
or assigned. It also points to ways of designing assessments that 
measure learning behaviors equally regardless of gender. Finally, 
in the Choose condition, the more the participants chose critical 
feedback, the more time they spent designing posters. The relation 
between critical feedback and revision, as well as between critical 
feedback and poster quality, was stronger and more stable in the 
Choose condition, pointing to motivational factors of choosing 
versus receiving critical feedback for performance. More research 
is needed to elucidate this motivational aspect. 

People’s choices of critical feedback can be influenced by a wide 
range of factors. For instance, the perception of a trait as fixed 
may lead to avoidance of negative feedback [5]. Additionally, 
compared to a growth mindset (an incremental theory of 
intelligence - the belief that intelligence can be developed over 
time), a fixed mindset (an entity theory of intelligence – the belief 
that intelligence is fixed) was found to be associated with 
decreased attention to corrective feedback or errors [14]. 
However, the results of this study suggest that there is no 
underlying variable (e.g., desire to learn, self-confidence, growth 
mindset [6, 8], etc.) that drives the effect of critical feedback. 
People who choose critical feedback more often may exhibit one 
or more of these variables, yet, despite that, assigning the same 
amount of feedback leads to the same results as other factors that 
may causes them to choose critical feedback. Consequently, it 
seems that such factors (e.g., deep beliefs or personal attributions, 
such as “I am a learner”) do not need to be changed to help people 
reap the benefits of constructive criticism. Learner beliefs do not 
mediate the benefits of receiving constructive criticism. One 
potential implication is the possibility to change people’s beliefs 
about seeking critical feedback without having to change their 
broad beliefs about themselves as learners, which we also 
demonstrated in a separate study [3]: fairly straightforward 
instruction to seek social feedback (i.e., opinions of others) 
transferred to Posterlet and, consequently, students learned more. 

Our study’s limitations are associated with conducting 
Mechanical Turk experiments with a large population: (1) a 
maximum of five minutes allotted per poster, which may have 
hindered the discovery of some of the game’s features (e.g., that 
the poster background color can be changed) and (2) a maximum 
of two game levels, which offered participants at most six pieces 
of feedback from which to learn graphic design principles, which 
may not have overlapped with the four principles included on the 
posttest (feedback content varied, depending on each participant’s 
poster, but the posttest questions were the same for all 
participants). The latter is one possible explanation for the lack of 
correlation between critical feedback and posttest. Alternatively, 
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participants examined each poster for only five seconds and, if 
they missed one of the two posters in a set, they could not have 
accurately answered any of the questions about that set. Thus, we 
plan to compare this study’s Choose condition data with data from 
the first two levels of previous three-level Posterlet game studies. 
That way, we may predict participant behaviors on the third game 
level, to potentially detect differences between conditions in our 
measures that are not apparent currently. 

7. CONCLUSIONS 
We modified a choice-based assessment game to measure learning 
when participants are offered a choice about the valence of their 
feedback and when they are assigned their feedback valence. The 
data enabled a novel examination of choosing versus receiving 
confirmatory versus critical feedback with regards to learning 
outcomes. We found that the more the participants chose critical 
feedback in the Choose condition, the more time they spent 
designing posters. There were no differences in learning outcomes 
(performance on the poster design task and learning of the graphic 
design principles), choice to revise, or time spent designing 
posters between participants who chose feedback and those who 
received the same amount, valence, and order of feedback. We 
plan a similar study with middle-school and college students to 
explore instruction and assessment implications. These studies 
could inform teachers to create environments in which students 
feel encouraged to engage more with critical feedback 
(proactively or reactively), even in open-ended tasks as digital 
poster design. The flexibility of such short assessments focused on 
specific choices (e.g., feedback seeking) enables the development 
and evaluation of a variety of instruction models. Concomitantly, 
researchers can design pedagogical interventions and learning 
environments that embed such assessments to empower all 
learners, regardless of gender, to be innovative, confident, and 
prepared for the challenges of the 21st century. 
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ABSTRACT
With the accelerating development of open education, low-
cost online learning resources, such as Massive Open Online
Courses (MOOCs), are reaching a wide audience around the
world. However, when faced with these appealing but over-
whelming learning resources, learners are prone making rash
learning decisions, which may be either excessive or insuf-
ficient to their learning capacities. To avoid the mismatch
between learners and learning objects, we propose a support-
ing system that recommends a personalized path of learning
objects for a given learner. In realizing this system, a do-
main knowledge structure is necessary to connect learners’
information and learning objects. As an initiative step, we
employ the Labeled Latent Dirichlet Allocation method to
predict how the content of a course is distributed over dif-
ferent categories in the domain. We conduct experiments
by utilizing course syllabi as course content, and curricu-
lum guidelines as domain knowledge. The predicting per-
formance is improved when involving external texts related
to the concerned domain knowledge unit.

1. INTRODUCTION
Nowadays, pedagogically condensed free online resources are
playing an increasingly more important role of facilitating
self-learning. Among those resources, Massive Open Online
Courses (MOOCs) are engendering a revolutionary change
in higher education by distributing digital versions of uni-
versity courses to everyone at a relatively low cost. Courses
about Computer Science on Edx (one of the largest MOOC
platforms), reached over 600,000 listeners during the period
from 2012 autumn to 2014 summer [6], which hardly ever oc-
curs on real campuses. However, compared with their pop-
ularity among audience, the low completion rate of courses

(e.g, 7% of the MOOCs on Edx mentioned above) begs the
question—how many learners have truly benefited from re-
ceiving MOOCs? It appears that MOOCs have a way to go
to achieve its original goal of making education accessible to
everyone.

Rather than not being able to receive traditional education,
many users utilize MOOCs out of pure curiosity toward sub-
jects, or to complement their academic lives or career devel-
opment [2]. In addition, the occupations of MOOC users
are diverse, from students, writers, and engineers to house-
wives [2]. This type of utilization of MOOCs sets a higher
requirement in terms of learner’s self-motivation and self-
regulation. Consequently, many users have reflected that
they did not have sufficient spare time to catch on to the
process of MOOCs, or simply became stuck on the over-
whelming learning contents [2].

An intuitive question concerning that how we can help to
maintain this precious enthusiasm of refreshing one’s knowl-
edge, motives this paper. We hold the view that finding
the “just right” learning objects for respective individuals
paves the way toward a successful learning experience. This
belief is also in agreement with the opinion of [4], which un-
derlines the importance of personalization, especially in the
context of online learning. Specifically, “just right” means
that the learning objects fit both the learning objective and
learning ability of a given learner. In the context of self-
learning, where more flexibility is given to a learner for him
to decide what to learn, the adaptation to learning objec-
tives deserve greater investigation than before. Concern-
ing the method used to accomplish personalization in learn-
ing, previous studies have shown a trend of utilizing expert
manpower or learner performance data to extract internal
relationships among knowledge itself and external relation-
ships between knowledge and learner mastery, which may
not work when promoting personalized learning on a mas-
sive scale.

In this paper, we propose the idea of a novel supporting sys-
tem that automatically recommends an appropriate set of
learning objects with cues of learning priority to a given
learner. This system is expected to outperform existing
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adaptive learning systems on addressing heterogeneous course
materials automatically and on adapting learning objects to
learners before they start to learn. As an initiative task, a
course content analysis is conducted to crystallize the real-
ization of the supporting system. We employ the Labeled
Latent Dirichlet Allocation method to predict how the con-
tent of a course is distributed over different domain knowl-
edge categories. Course syllabus texts are utilized as course
content, and the knowledge listed in curriculum guidelines
are utilized as domain knowledge. To improve the accu-
racy of predictions, we extend the content of the curriculum
guideline by integrating external texts retrieved from search
engines.

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes related work with regard to personalized
learning and knowledge representation. In section 3, an il-
lustration and the framework of the supporting system are
sketched. Then, we present the results and observations of a
course content analysis. Finally, we discuss on future work.

2. RELATED WORK
2.1 Personalized learning
What we call personalized learning is named differently in
previous studies, e.g., adaptive learning/education, individ-
ualized learning/education, and intelligent tutoring systems;
however, they all share the main concern of adapting learn-
ing materials to individual learners. In this paper, we adopt
the phrase “personalized learning” to capture all these re-
lated studies and use “personalize”, “individualize”, “adapt”
interchangeably.

Personalized learning is described as“learning tailored to the
specific requirements and preferences of the individual” in
[11]. Although not forming a fixed definition of personalized
learning, many studies attempt to adapt learning to specific
learners. [4] demonstrated a hypermedia textbook that can
provide direct guidance and adaptive navigation support to
learners. Similarly, [15] developed a topic-based adaptive
learning system that directs the learner to the appropriate
learning object by providing navigational cues. Moreover,
[16] broadened the adaptation from a single source of person-
alization information to learning achievements and learning
styles at one time. [8] presented an e-learning system that
recommends learning items by detecting frequent learning
sequences and similar learners. [9] proposed another ap-
proach of generating adaptive course content using concept
filters.

A shared architecture of a personalized learning system that
can be observed consists of three parts: Domain model,
Learner model and Adaptation model. The domain model
constructs all the knowledge units of learning materials in
a common space, and its complexity varies based on the
application contexts. The learner model is a projection of
a learner’s learning state (i.e., mastery level of knowledge,
learning objective, and learning style) onto the structure of
knowledge that is defined in the domain model. The adap-
tation model functions as a recommend of the next learning
target basing on the updated learner state. This adaptation
in learning environments occurs at different levels. [11] cat-
egorized this adaptation as follows: Adaptive Interaction,
which occurs during the interactions between learners and

the system; Adaptive Course Delivery, which intends to tai-
lor learning materials to a given learner; Content Discovery
and Assembly, which involve the collecting of learning ma-
terials from potential sources or repositories; Adaptive Col-
laboration Support, which supports communication in the
learning process.

In the context of self-learning, “why I want to learn”, “what
I want to learn”, “what outcomes I am expecting”, things
usually being told to the learner by the curriculum, must
be determined by the learner himself. As a result, we con-
sider that the information-seeking phase before starting to
learn becomes a key to a successful learning experience. We
provide a learning object recommendation system that the
learners can resort to when they are faced with overwhelm-
ing learning resources. Compared with a branch of studies
[10, 1, 19] that implement the adaptation by redirecting the
learner to an optimal learning path using tracked learner
performance, our approach focuses on a more macro level
of adaptation, which occurs beforehand and addresses the
learning object with a larger granularity (i.e., a lecture).
According to [11]’s categorization of adaptation, our system
stands in an overlapping area of Adaptive Course Delivery
and Content Discovery and Assembly, thereby distinguish-
ing itself from other adaptive learning/tutoring systems.

2.2 Automatic domain representation
The construction of domain knowledge is a key step in ac-
commodating a personalized learning system. However, pre-
vious studies [4, 15, 16, 8, 9, 10, 1, 19] show a substantial
reliance on expert efforts, whose systems require the instruc-
tors to define strictly structured course materials for the con-
cerned system. This is so time-consuming and platform de-
pendent that it is unsuitable when addressing a large amount
of distributed learning materials. An automatic and inter-
operable knowledge representation and assemble are thus
desired.

In the context of learning, knowledge representation refers
to the process of editing knowledge in a more visually sound
and retrievable manner based on its hierarchical or depen-
dent relationships. Previous studies relating to this concept
can be divided into two types according to their approaches,
and we name them prior approaches and post approaches. A
prior approach means extracting the relationships between
knowledge units based on the structure defined by the in-
structor. For example, [3] utilized the content and structure
of a textbook to extract the relationships between concepts
based on their co-occurrence conditions. [5] exploited the ex-
traction of prerequisite relationships of learning objects by
conducting semantic analysis on Wikipedia articles. Regard-
ing the post approach, in which the structure of knowledge is
modified by the learner reactions on these learning objects,
[17] and [18] attempted to detect prerequisite relationships
between knowledge units by utilizing a considerable amount
of learner achievement data. Their studies are based on the
rationale that knowledge units that are statistically“always”
mistaken by the learners should be learned before the ones
that are not so.

In this paper, we emphasize the preprocess of learning (i.e.,
seeking information and making a learning plan), which oc-
curs before a substantial amount of learner performance data
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Figure 1: Illustration of our supporting system—the
course map

are available. Thus, our research falls into the category of
prior approaches. Previous studies [3, 5] have employed var-
ious Natural Language Processing techniques to extract re-
lationships between knowledge units. However, the results
remain modest in addressing heterogeneous learning mate-
rials at scale; a proliferation of this stream of research is
needed.

3. OUR SUPPORTING SYSTEM
As discussed in the previous section, in the context of self-
learning, support for a learner determining what to learn
and how to learn is sensible. Except for a learner’s learn-
ing ability, which has received a fair discussion in previous
research, we consider the estimation of the learner’s learn-
ing objective. Regarding the level of personalization in this
learning environment, we highlight the phase of assembling
learning materials from distributed learning resources. As a
consequence, we suppose that learners will benefit from our
system before they enter the real learning process when of-
fered a tailored path of learning objects that fits their learn-
ing needs and ability.

3.1 An illustration of the system
To explain our supporting system more vividly, we present
an illustration of a final usage of the system. The target user
of our system will not be constrained to a specific group of
learners; however, the learners who will benefit the most
from our system are those who are planning to challenge
some unfamiliar subject. Then, we can imagine a virtual
learner, a college student majoring in social science, who is
wondering how data mining techniques will assist in analyz-
ing his collected data.

First, he may simply input a keyword“data mining”. Instead
of returning a ranked list of relevant courses, which is normal
in existing MOOC search engines, our system will answer the
query dynamically by starting with a map of relevant courses
to that query. As shown in Figure 1, the shapes circled using
a dotted line with titles (e.g., “Intelligent Systems”) on them
refer to the predefined structure of the domain knowledge.
In addition, the shape circled using a solid line represent a
course that contains the knowledge in that place.

Then, the learner responds to the first reply differently. He
may want to obtain details of some highly similar courses
or seek a more holistic view of this domain to determine
what these courses mean to his learning task. If the learner

Figure 2: Illustration of our supporting system—the
detailed course information

Figure 3: Illustration of our supporting system—a
learning path

chooses to zoom in to course 1, then he will obtain a detailed
view of the content of course 1. As shown in Figure 2, the
topics covered in course 1 will be shown in the unit of a
lecture.

We suppose that the learner will not be satisfied until he
can make a confident decision on what and how to learn.
Therefore, he will continue interacting with our system, dur-
ing which time his learning characteristics will be recorded.
Finally, the recorded learner information will be used to rec-
ommend a tailored learning path for the learner (see Figure
3). The path consists of a set of learning objects that are
chained according to the dependent relationships between
the knowledge they cover. For well-prepared learners, the
path will exclude materials he already knows and will cover
a narrowed down knowledge set in the depth. For novice
learners, in this case, the path will cover a wider range of
knowledge and will start from the very simple knowledge
units.

3.2 The architecture of the system
To realize the system illustrated above, the architecture is
threefold—domain model, learner model, and personaliza-
tion model. The domain model conducts the task of locating
the learning objects of courses in the knowledge structure of
the domain. The learner model tracks learner information
about his learning objective, background knowledge, and
learning preferences according to the knowledge structure.
The personalization model specifies the appropriate learning
objects based on predefined criteria. Among them, the con-
struction of domain knowledge and the mapping of course
content determine how to estimate learner information and
what learning objects to recommend. Thus, it is reasonable
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Figure 4: The architecture of proposed system

to exploit the domain model as a primary task. The fol-
lowing part of this paper describes a course content analysis
and discusses its potential for equipping the domain model.

4. COURSE CONTENT ANALYSIS
4.1 Overview
As a primary task for matching course contents to a do-
main knowledge base, we extracted knowledge coverage of
a given course by projecting its syllabus text onto a cur-
ricular guideline in the domain. A syllabus functions as a
summary of the course content, which makes it suitable for
our method. In addition, a curricular guideline generally
contains important topics in the domain, which can be uti-
lized as a reference of the domain knowledge. Specifically,
we utilized the curriculum guideline Computer Science Cur-
ricula 2013 (CS2013) [14] published by IEEE-CS and ACM,
which attempts to provide instructional cues of knowledge
that should be included in an undergraduate program. In
CS2013, both classic and frontier topics in this domain are
described in Body of Knowledge (BoK). BoK is compiled in
a hierarchical structure wherein the smallest granularity of
knowledge is a topic, and each topic belongs to a Knowledge
Unit (KU), and each KU further belongs to a Knowledge
Area (KA). In total, 18 KAs and 163 KUs are formed to
categorize knowledge in the domain of Computer Science.
A simplified example of KA-KU-Topic knowledge structure
in CS2013 is shown in Table 1.

This semi-structured BoK has been used to analyze the cur-
ricula of different educational institutions [7, 13]. In an at-
tempt to obtain an overall picture of Informatics programs in
Japan, [7] conducted a judgement of knowledge coverage on
syllabi by referring to curriculum guidelines. [13] employed a
supervised Latent Dirichlet Allocation (LDA) method to ex-
tract KA coverages of a course using the text of its syllabus.
From the above studies, it is reasonable to use curriculum
guidelines as a knowledge base to form predictions of course
knowledge coverage in an automated manner. However, it
is not sufficient to recommend learning objects when solely
using the knowledge coverage of a course at the level of KA.
Therefore, we attempt to extract knowledge coverage of a
course at a further fragmented level—KU in this case.

We adopt the topic model, Labeled Latent Dirichlet Allo-
cation (Labeled LDA) to extract the knowledge coverage.
Labeled LDA is designed to specify multiple dimensions of
a given text that correspond to manually labeled tags [12].
In CS2013, exemplar courses with knowledge distribution in-
formation show that a course generally contains knowledge

Table 1: KA-KU-Topic knowledge structure in
CS2013 [14]

KA KU Topics

Algorithms Basic Analysis •Big O notation
and •...
Complexity Algorithm Strategies •Greedy algorithms
(AL) •...

... •...

Table 2: An example of syllabus information in
CS2013 [14]

What is covered in the course?

• The modeling process
• Two system dynamic tool tutorials
• Computational error
• ...

from more than one KA or KU. Therefor, this method is
suited when addressing a syllabus text that is labeled with
multiple predefined tags—KA/KU in this case.

Considering that topics listed in BoK are highly compact
representations of knowledge, we resort to external texts to
complement the content of BoK. Specifically, we integrated
snippet information retrieved from queries of a KU to im-
prove the accuracy of predictions .

4.2 Dataset
81 exemplar courses, whose course information and knowl-
edge distributions are assigned by the course instructor, are
included. As shown in Table 2, the answer to the question
“What is covered in the course?” is viewed as the syllabus
information of a course. In addition, the information offered
by the instructor on how the lecture hours of a course are
allocated to each KA and KU is referred to as the ground
truth of our method (e.g., 35.5 hours in CN, 3 hours in IS,...).
After excluding malformed course information, 73 exemplar
courses were used in the course content analysis.

Regarding the external texts, we threw 3 types of queries
to retrieve snippet texts of websites from Google Custom
Search API. The queries are formed by using: (1)KU ti-
tle alone, (2) KA and KU title, (3) KU title and its top
3 representative terms (chosen by their tf-idf values, which
represent an effective as an indicator of the importance of a
term over a set of documents). 10 snippet texts were com-
plemented to the content of each KU.

4.3 Procedures
4.3.1 Training set

As a trial analysis, we exploit the predictability of cur-
riculum guidelines by conducting experiments with differ-
ent training sets. Among all the experiments, 30 exemplar
course syllabi were chosen randomly as the testing set. Con-
cerning the training set, we set 2 variables, forming 8 pat-
terns, to improve the accuracy of predictions. The first vari-
able denotes whether manually labeled syllabus texts are
used in the training set or BoK texts alone are used. The
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Table 3: Experiment id

BoK BoK Snippet1 BoK Snippet2 BoK Snippet3

BoK KA-1-0 KA-1-1 KA-1-2 KA-1-3
BoK+Course Syllabus KA-2-0 KA-2-1 KA-2-2 KA-2-3

second denotes what type of snippet texts are used, with “0”
denoting using BoK texts alone.

Table 3 presents the naming of the experiments according to
their content of the training set. The names of experiments
for the prediction of KU knowledge coverage follow the same
naming scheme. We conduct all 8 experiments on predicting
knowledge coverage at the level of both KA and KU, and
we add “KA” or “KU” to the experiment id to indicate the
different targets.

4.3.2 Evaluation
To evaluate the predicted probabilities over KAs/KUs of a
syllabus, we apply the Normalized Discounted Cumulative
Gain (nDCG), which is used to evaluate the relevance of
a document rank to a given query in classic Information
Retrieval (IR). We choose the nDCG because it addresses
relevance as a non-binary value, which is better suited to
our case where the relevance of a document corresponds to
lecture hours. For each course, we compare the ranked list of
KAs/KUs that is predicted by our method, with the ranked
list of KAs/KUs that is allocated by the course instructor.
The computation is conducted using the following equations
:





Gc[i] = relc[i]

DCGc[k] =
∑k

i=1
Gc[i]

log2 i+1

nDCGc[k] = DCG[k]
IDCG[k]

(1)

Here, relc[i] denotes the lecture hours allocated to the ith

KA/KU for a given course; DCG denotes the discounted
cumulative gain of the ranked KA/KU list that is predicted
by our method, and IDCG denotes the one of the ranked
KA/KU list assigned by the course instructor.

4.4 Results
We utilized the Stanford Topic Modeling Toolbox to com-
pute the KA/KU distributions of a syllabus and the Python
library Scikit Learn to compute the tf-idf value of each term
appearing in a BoK. Other data processes, such as the com-
putation of the nDCG, are implemented in Python. Con-
cerning the most representative terms for each KU, we chose
the top three terms from a vocabulary of 2486 non-stopword
terms. Because the average number of KAs that a course
covers assigned by the instructor is 2.67, being 9.04 for KU,
we focus on the nDCG value of k = 3 for KA, of k = 9 for
KU. The results for each experiment are shown in Figure 5.

4.5 Discussion
As observed in Figure 5, all the nDCG values of the ex-
periments with a training set containing BoK texts alone
are higher than those with a training set consisting of both
BoK texts and exemplar course syllabus texts. In our data
set, all the BoK texts are annotated with one label, whereas
exemplar course syllabus texts are annotated with multiple

Figure 5: The nDCG values of each experiment.
The vertical axis denotes the value of nDCG, which
varies from 0 to 1. The horizontal axis denotes
the second variable with regard to the naming of
the experiments—the type of snippet texts used in
training set.

labels. This unbalanced number of labels in the training set
may reduce the precision of prediction obtained using La-
beled LDA. However, from a positive perspective, this result
indicates the potential of only using pre-collected documents
of domain knowledge instead of collecting annotated course
syllabi when predicting the knowledge coverage of a given
course.

Two types of snippet texts exhibit a positive effect on pre-
dicting KA/KU knowledge coverage. They are snippet texts
queried from KU titles with their corresponding KA title
and snippet texts queried from KU titles with their top
3 representative terms. For example, nDCG@3 of KA-1-2
and KA-1-3 are notably higher than those of KA-1-0. A
similar trend can also be observed in the case of predict-
ing KUs. In contrast, nDCG@3 of KA-1-1 are lower than
those of KA-1-0, which indicates that the external texts ob-
tained from the KU title query drag down the performance
of our model. One possible reason that can be inferred is
that a sole KU title can produce substantial noise when it
is used without context. For example, “processing” has a
much broader meaning than that in the context of “Com-
putational Science”. Other ambiguous KU titles, such as
“Basic Logic” and “Data, Information, and Knowledge”, are
prone to increasing the prevalence of this type of mistake.
Overall, queries consisting of KA titles and KU titles or KU
titles and their keywords provide effective and relevant texts
when predicting knowledge coverage.

To seek deeper factors that may contribute to the correctness
of a prediction, we examined an exemplar course syllabus
and compared it with BoK and external texts. We found:

• Some synonymous or semantically similar phrases (e.g.,
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“strategies for choosing...” and “apply...”) may not be
detected by our method.
• There exist internal relationships between KUs (e.g.,

KU “Processing” under KA “Computational Science”
overlaps with KU “Algorithms and Design” under KA
“Software Development Fundamentals”), which may
mislead the prediction of KUs.
• An increase in performance in predicting KAs may not

guarantee an improvement in predicting KUs. Because
in some cases, the improvement in predicting KAs is
achieved by assigning a probability to an incorrect KU
under the KA.

5. CONCLUSION AND FUTURE WORK
Summarizing, we proposed a supporting system that recom-
mends an effective and efficient path of learning objects for a
given individual. To realize this system, a threefold architec-
ture is needed—Domain model, Learner model and Adap-
tation Model. As an initiative step, we conducted a course
content analysis, in which Labeled LDA was utilized to pre-
dict the knowledge coverage of a course. The result provided
the positive indication that involving external explanatory
texts on domain knowledge facilitates the prediction of the
knowledge coverage of unknown course syllabi. However,
the precision of the the current experiment needs further
improvement in addressing texts semantically. Specifically,
a bigram or trigram method is expected to perform bet-
ter than the unigram method. In addition, separate nouns
and noun-phrases may increase the precision. From a holis-
tic perspective, we also need to consider the estimation of
learner characteristics when constructing domain knowledge
bases. For example, a framework of knowledge that connects
knowledge itself with its learning outcomes may be instru-
mental in mapping learning objects to learners.
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for Prior Knowledge Estimation. In Proceedings of the
8th International Conference on Educational Data
Mining, pages 109–116, 2015.

Proceedings of the 9th International Conference on Educational Data Mining 352



Student Emotion, Co-occurrence, and Dropout in a MOOC 
Context 

 

John Dillon 
Univ. of Notre Dame 
jdillon5@nd.edu

Nigel Bosch 
Univ. of Notre Dame 
pbosch1@nd.edu 

 

Malolan Chetlur 
IBM Research, India 

mchetlur@in.ibm.com

Nirandika Wanigasekara 
IBM Research, India 

nwaniga4@in.ibm.com 
 

G. Alex Ambrose 
Univ. of Notre Dame 

gambrose@nd.edu 
 

Bikram Sengupta  
IBM Research, India 

bsengupt@in.ibm.com 
 

Sidney K. D’Mello 
Univ. of Notre Dame 
sdmello@nd.edu

ABSTRACT 
This paper discusses self-reported emotions experienced by 
students in a Massive Open Online Course (MOOC) learning 
context. Emotions have been previously shown to be related to 
learning in classrooms and laboratory studies and have even been 
leveraged to improve learning. In this study, frequently occurring 
discrete emotions as well as frequently, co-occurring pairs of 
emotions were analyzed during learning with a MOOC. Both 
discrete and co-occurring emotions were related to students 
dropping out of the course, illustrating the importance of student 
emotion in a MOOC context. 

Keywords 

MOOC; affective computing; course completion. 

1. INTRODUCTION 
Emotion is one of the key aspects of the learning process [9,22]. It 
influences learning in a variety of ways [12], both positively (e.g., 
when a student feels engaged [19]) and negatively (e.g., during 
boredom [6,19]). These connections between emotion and 
cognition can be leveraged to improve learning [10]. For example, 
a dialog-based, intelligent tutor that adjusts its dialog to address 
negative emotions can improve learning for low-knowledge 
students [11]. Indeed, the relationship between emotion and 
learning has been researched in a variety of digital learning 
contexts in both laboratory studies and classroom studies [1,5,9]. 
There are, however, additional learning contexts in which the 
relationship between emotion and learning is less clear. In this 
study we focus on the role of emotion as it relates to student 
dropout in the context of a Massive Open Online Course 
(MOOC). 

MOOCs are an online learning context that has recently become 
popular worldwide [18]. MOOCs provide education access to 
large groups of people, many of whom are often non-traditional 
students. Little is known about the relationship between emotions 
and learning in a MOOC context. Some initial work toward 
examining emotion in MOOCs indicated that some emotions were 
related to dropout [13]. However, these results were derived from 
retrospective reports of emotion after a course rather than reports 
in the moment, i.e., during the course. Similarly, studies have 
used MOOC discussion forums and clickstream data to infer 
student emotions such as Confusion and Frustration based on 
researchers’ judgments of how these emotions are manifested 
[16,27], but there was no measurement of the emotions from the 
students themselves. 

The current paper expands on this limited research, addressing 
key open questions about student emotions gathered from self-
reports at different points in a MOOC. We explore a range of 
emotions, including Anger, Boredom, Confusion, Contentment, 
Disappointment, Enjoyment, Frustration, Hope, Hopelessness, 
Isolation, Pride, Relief, Sadness, and Shame, while also focusing 
on the relationship between Anxiety and learning statistics (the 
focus of the MOOC in this study) [8,17]. 

We also consider the possibility of co-occurring emotions. 
Decades ago, Izard et al. [14] considered the possibility that 
certain emotions may be experienced in concert with other 
emotions, rather than individually. Experimental research has 
shown this to be the case in some situations, for example with 
induced emotions and even with emotions experienced during 
everyday life [3,21]. In the context of learning, Bosch and 
D’Mello [4] studied novice programmers’ emotions and found 
Confusion co-occurred with Frustration, while Curiosity co-
occurred with Engagement. The degree of co-occurrence of 
Curiosity and Engagement was positively correlated with learning 
(r = .226) after accounting for individual occurrences, thereby 
highlighting the importance of examining co-occurring emotions. 

In addition to tracking the incidence of emotions and co-
occurrence pairs, we also consider how emotions are related to 
key educational outcomes. Early studies of MOOC data and 
student behavior [7,26], have often focused on “dropout” as both a 
problem and a key outcome. Recently, some have questioned the 
validity of dropout as a metric of outcome assessment [13]. 
However, Yang et al. [26] have noted, for instance, that the very 
low completion rates of MOOCs should signal some concern. 
Researchers have used log data to predict student dropout [15,23] 
as part of a larger effort aimed at better understanding student 
dropout from MOOCs and, in turn, improving the MOOC 
learning experience to reduce dropout. Here, we consider the 
relationship between students’ self-reported emotions and course 
dropout.  

To our knowledge, this is the first study to measure a range of 
self-reported student emotions in a MOOC context. We believe 
that the opportunity to study student emotion with large courses in 
the wild offers a valuable addition to previous work that has 
focused more on laboratory settings or traditional classroom 
environments. We address three related questions in this research:  

• Q1. What emotions do students experience in a MOOC? 
• Q2. Which emotion pairs co-occur more than chance? 
• Q3. How do individual and co-occurring emotions relate to 

dropout? 
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2. METHOD AND COURSE SETUP 
“I Heart Stats” was an introductory Statistics MOOC offered by a 
university in the Midwestern United States. One goal of the 
course was to alleviate student anxiety towards statistics. In this 
regard it was a prime opportunity to analyze student affect in a 
MOOC setting, while also providing an opportunity to study 
student affect at scale in the wild. 

This MOOC contained eight modules covering topics ranging 
from levels of measurement to ANOVA. Modules were 
designed to be completed in sequential order. Nevertheless, all 
modules were released to students at the same time, so students 
were free to complete the modules at their own pace and in 
whatever order they desired. 

We used a “Pick-Two” list of 15 discrete emotions (Figure 1) to 
measure student affect. In addition to the typical set of learning-
centered affective states like Confusion and Boredom [9], the list 
included several additional emotions, such as Enjoyment, Pride, 
Isolation, Hope, and Shame. These emotions were, in part, 
selected from Pekrun’s description of academic emotions [20]. 
One limitation of this emotion list was that Neutral was not 
included. Students were prompted to report emotions at the start 
of even-numbered modules (0, 2, 4, 6) as well as at the end of 
module 8 (last module). We only collected affect reports on 
every other module to minimize intrusion.  

Of the 24,279 students from 183 different countries enrolled in 
the course, 3,591 students reported exactly two emotions on at 
least one module. These 3,591 students constituted the sample in 
this study. Students were able to report greater or fewer than two 
emotions, but because we were interested in co-occurrence, we 
excluded responses that did not consist of exactly two emotions. 

 
Figure 1. Emotion reporting list 

In addition to five “course-level” affect surveys, in which students 
reported their emotions in relation to the course as a whole, we 
also included seven “content-level” surveys. These content-level 
surveys were spread throughout the course and prompted students 
to report their emotions in response to different video lectures and 
problem sets. These are two common content-delivery methods 
for MOOCs, thereby providing a preliminary understanding of 
student affect when completing these two activities.  

3. RESULTS 
We used both the course-level and content-level students self-
reported emotions to answer our research questions (see 
Introduction). 

Q1. What emotions do students experience in a 
MOOC? 
Figure 2 presents the aggregated proportions of each reported 
emotion across all five course-level surveys. We note that Hope 
and Enjoyment were the most frequently reported emotions. Other 
frequently reported emotions were Contentment, Anxiety, and 
Pride, while Shame, Disappointment, Isolation, Anger, and 
Sadness were rarely reported. 

 
Figure 2. Proportions of self-reported emotions 

These results differ from the recent D’Mello meta-analysis [9], 
where the studies rarely included emotions such as Hope, 
Enjoyment, and Contentment. However, the focus there was on 
short one-on-one interactions during learning with technology. A 
different set of emotions appear to be playing a critical role in the 
MOOC context, so context clearly matters. It is, however, difficult 
to separate context differences from measurement differences in 
the present study. 

In addition to the course-level emotion surveys, we also included 
content-level affect surveys to assess self-reported emotion in 
relation to specific segments of content that may elicit different 
emotional responses. We selected 4 content-level affect surveys to 
highlight different affective states across video and problem set 
sections of content. Two of the activities were instruction videos 
and the other two were homework and practice problem sets. We 
excluded emotions that occurred in less than 1% of the responses 
for each specific activity. In addition, since all of the content for 
this course was released at the same time, we use log timestamps 
to ensure that: 1) Students engaged with the activity, 2) Students 
answered the activity-specific affect question after their 
engagement with the activity, and 3) Students did not take more 
than 1 hour following the last activity log to complete the emotion 
survey. 

Figure 3 presents the emotion proportion distributions for four 
learning activities. The results indicated that unlike the course-
level emotion reports, Enjoyment was more frequent than Hope. 
Further, while Anxiety was the fourth most commonly reported 
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emotion at a course-level, it was far less prominent at the content 
level.  

 
Figure 3. Proportion of emotion self-reports by activity type 

We also note that the content-level emotions varied with regard to 
certain activities. For instance, Pride was reported nearly 10 times 
more frequently in response to Module 4 Practice Problems than 
in Module 1 Video. Frustration, Confusion, and Anxiety were 
quite prominent during Module 2 Homework Problem compared 
with Module 4 Video. Relief, on the other hand, did not fluctuate 
substantially among these four content-level reports. Hope was 
more frequently reported in both of the video activities, while 
Pride was more frequently reported in the problem sets. Further 
research is needed to determine if indeed students expressed Pride 
more frequently in contexts of achievement such as completing a 
problem set. We would also need to consider a larger set of 
activities to establish if certain emotions occur more frequently 
and significantly among certain genres of content. 

These course-level affect surveys highlight that students 
experience different emotions during different types of content in 
a MOOC. If MOOCs are able identify the prominent emotions 
associated with various types of content such as videos and 
problem sets, then instructors and course designers can provide 
appropriate support to learners when needed. 

Q2. Which emotion pairs co-occur more than 
chance? 
Bosch and D’Mello [4] investigated co-occurrence of emotions in 
a computerized learning environment. In their study, they 
employed a retrospective judgment protocol without any 
interruptions during the learning session. They determined which 
co-occurring emotions occurred more than chance by computing 
Lift scores [24] for each emotion pair. Lift is a technique from 
association rule learning that can be used to compare the observed 
co-occurrence of emotions to the level expected by chance. Lift of 
a pair of emotions (X, Y) is defined as ratio of Pr(X and Y) to 
Pr(X)*Pr(Y).  

We identified co-occurring course-level emotions as follows. 
First, we only considered responses with exactly two emotion 

reports. Second, we only considered affective states that occurred 
at least 1% of the time. This restricted our analysis to Anxiety, 
Boredom, Confusion, Contentment, Enjoyment, Frustration, 
Hope, and Pride. Lift scores were calculated for all pairwise 
combinations of the above emotions. We used random sampling 
without replacement (1,000 iterations) and a sample size of 3,000 
to compute 95% bootstrapped confidence intervals for the Lift 
scores. Lift scores above 1.0 with confidence intervals that do not 
overlap with 1.0 are considered to occur more frequently than 
chance. 

We computed Lift scores for all 5 course-level affect reports. 
There were 92 distinct co-occurring emotions and a total of 5,189 
emotion pairs as reported by 3,591 learners. The results are shown 
in Table 1. We note that only 5 out of the possible 92 emotion 
combinations co-occurred at levels above chance and these mainly 
involved the learning-centered affective states of Confusion, 
Frustration, Boredom, and Anxiety. The Confusion + Frustration 
pair had the highest Lift score, which is consistent with [4] despite 
considerable differences in the temporal resolution of the 
analyses. Somewhat surprising is the fact that Boredom co-
occurred with both Confusion and Frustration, but this might be 
attributed to the coarse-grained nature of the emotion self-reports 
(e.g., Boredom could occur for some activities and Confusion for 
others within the same session). 

Table 1. Lift of frequently co-occurring emotion combinations 

Emotion Pair Mean (SD) Confidence Interval 

Anxiety + 
Frustration 1.22 (0.17) (1.21, 1.22) 

Boredom + 
Confusion 1.06 (0.23) (1.05, 1.06) 

Boredom + 
Frustration 1.39 (0.43) (1.39, 1.4) 

Confusion + 
Frustration 3.22 (0.41) (3.21, 3.23) 

 

Q3. How do individual and co-occurring 
emotions relate to dropout? 
We coded a student as having “dropped out” if he or she had no 
interaction events in the last module (Module 8). Table 2 presents 
partial Spearman’s rho between dropout and course-level discrete 
emotions that comprised at least 1% of the data and corresponding 
exceeding chance. We partialled out the number of emotion 
reports per student in order to control for the steep rate of attrition 
and subsequent dropout bias in our data. 

The results indicated that Anxiety, Confusion, and Frustration 
were significantly positively correlated with dropout, which is 
what we would expect. It was surprising, however, that Hope was 
also positively correlated with dropout, suggesting that these 
hopeful students might have become disillusioned by the MOOC. 
Relief was weakly negatively related to dropout, albeit non-
significantly. 
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Table 2. Partial correlations between affect reports and dropout  

Emotion/ 
Combination 

rho p 

Anxiety .155 .000 
Boredom .004 .954 

Confusion .122 .019 
Contentment -.035 .243 

Enjoyment -.028 .184 
Frustration .251 .003 

Hope .046 .018 
Pride .034 .476 

Relief -.081 .145 
   

Anxiety + Frustration .107 .458 
Boredom + Confusion -.088 .684 
Boredom + Frustration -.018 .956 

Confusion + Frustration .177 .263 
 

The most valuable payoffs of this study for learning scientists and 
MOOC designers are the positive, though weak, correlations 
between Frustration, Anxiety, Confusion and dropout. The next 
step is to identify the causes or partial causes of those negative 
emotions. For example, students reported three times more 
Frustration in Module 2 Homework Problems than in other 
selected activities, suggesting that the homework problems in this 
module might need deeper consideration. 

4. DISCUSSION 
We recorded student affect in a MOOC setting and analyzed them 
with respect to both individual emotions and co-occurring pairs. 
This study marks the first large-scale analysis of self-reported 
emotion in a MOOC context. We found that students experience a 
rather diverse set of emotions while completing a MOOC in 
comparison with previous work that has focused on lab- or in-
class learning. Particularly interesting was the finding that Hope, 
Enjoyment, and Contentment were the most frequently reported 
emotions in the MOOC context, given that they are rare in shorter 
learning sessions studied in previous work [9].  

We also found that some emotions fluctuate depending on MOOC 
content. This is an especially valuable finding for both 
instructional designers and researchers. From a learning design 
perspective, if we know how students are affectively reacting to 
different types of content, we can adjust the course materials 
accordingly. 

Our findings also contribute to the dropout problem in MOOCs. 
Despite researchers capacity to predict dropout [25,26], we still 
lack a robust understanding of student dropout. We identified 
specific emotions and emotion combinations that correlate with 
student dropout, yielding an affective perspective to the dropout 
problem.  

5. LIMITATIONS AND FUTURE WORK 
There are several limitations with this exploratory study. First, the 
content was released to students all at once, so they could 
complete the course in any order they desired. This limits the 
feasibility of temporal analysis of the data. Second, since this 
study was based on a live course, we could not ask students to 
self-report their affective states as frequently as in a lab setting. 

This limits use of the data for more fine-grained sequential 
analyses.  

Our analyses also point to several opportunities for future work. 
One promising avenue is sensor-free affect detection for MOOCs 
[2]. It would be valuable to model student emotion based entirely 
on clickstream data provided by edX and other online learning 
platforms. This would allow for far more frequent affect 
measurement and more timely affect intervention. If, for instance, 
we know, based on log data, that a student is Frustrated, and we 
know that Frustration correlated with dropout, we can launch 
pedagogical scaffolds to help the student manage his or her 
Frustration. 

A second opportunity for future work is to analyze changes in 
emotions across the time. There are many questions that can be 
asked along this front. How do emotions change over the duration 
of an activity, a session, or the entire course? What is the affective 
trajectory of a successful MOOC student? Further research is 
needed to map emotion trajectories over the duration of the course 
so that we better understand the relationships between emotions, 
their temporal dynamics, and educational outcomes. 
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ABSTRACT
Large-scale experiments are often expensive and time consuming.
Although Massive Online Open Courses (MOOCs) provide a solid
and consistent framework for learning analytics, MOOC practition-
ers are still reluctant to risk resources in experiments. In this study,
we suggest a methodology for simulating MOOC students, which
allow estimation of distributions, before implementing a large-scale
experiment.

To this end, we employ generative models to draw independent sam-
ples of artificial students in Monte Carlo simulations. We use Semi-
Markov Chains for modeling student’s activities and Expectation-
Maximization algorithm for fitting the model. From the fitted model,
we generate simulated students whose processes of weekly activities
are similar to these of the real students.

Keywords
MOOCs; simulation of students; generative models; Expectation-
Maximization; Semi-Markov chains; Bayesian statistics

1. INTRODUCTION
Vast amounts of data which we gather and analyse in modern learn-
ing environments allow us to build models of unprecedented scale
and accuracy. This phenomenon, in parallel with developments in
computer science, gave rise to new possibilities of inference from
educational environments. In particular, the growing field of Simu-
lated Learners [8, 11, 14] provides us with tools for inference from
educational simulations.

Inference from any simulations is bounded by the predefined level
of abstraction of the analysis. In the context of Massive Online
Open Courses (MOOCs), on one hand as an educational institution
we have access to only a handful of MOOCs, on another hand, we
have data as granular as student’s clickstream in a video player. We
are therefore obliged to model granularity robustly, depending on
the availability of the data. We argue that understanding the proper-
ties of the statistical methodology at hand is crucial for successful
inference.

We propose a probabilistic model, based on extended version of
Markov Chains, called semi-Markov Chains. In the model, we can
balance the complexity of the structure and the number of parame-
ters to estimate by cross-validating its parameters. We present an
algorithm for fitting the model as well as illustrative examples of
the fit on a set of MOOCs.

The contributions of this paper are threefold. First, we investigate
to what extent Semi-Markov chains can be used to describe be-
havioural patterns of students (RQ1). Second, since our model
implicitly divides users into clusters, we analyse if these clusters
are interpretable (RQ2). Third, we analyse how these models
can be used to infer distributions of events (RQ3).

2. RELATED WORK
Modeling students is a key concept in learning analytics and edu-
cational research in general. Researchers build models predicting
motivation and cognition, based on student’s goals [19] or they pre-
dict goals by motivational traits [7]. Large datasets allow researchers
to find predictive power of seemingly slightly related signals like
the length of pauses in a video [12] or potentially noisy signals like
head movement in the classroom [16].

2.1 Generative models in MOOCs
All the aforementioned models are focused on prediction and belong
to the class of so-called discriminative models. In this study, we
suggest a generative model, which allow us not only to predict, but
also to generate observations from the estimated distribution. These
models capture the probability structure of input variables and the
flow of the processes. Several generative models in MOOCs have
been applied, e.g. to forums [3].

Among many generative models that can be encountered in educa-
tional research, Markov models were employed for visualization [5],
for modeling engagement [17] and for modeling students reten-
tion [1].

2.2 Simulated learner
The area of simulating students’ behaviour lays on the intersection
of cognitive science and artificial intelligence. Examples of applica-
tions of simulation of students can be found even outside computer
science, where the teacher simulates student’s response in order to
self-improve instructional skills [18]. An acknowledged example
of the usage of simulating humans [9] for education deals with
simulations of patients behaviour for training medicine students.

Emergence of Internet and new data storage techniques allow re-
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searchers to collect and analyse massive amounts of information
about the users. Researchers employ simulations for clustering stu-
dents [13]. For a review of earlier techniques we refer to [2]. We
motivate our methodology by the advancements of user modeling in
web context [4], as we find this environment conceptually close to
the environment of a MOOC.

3. GENERAL FRAMEWORK
3.1 Dataset
From our internal MOOC database, aggregating data from Cours-
era and edX, we extracted events for 61 EPFL courses. The raw
data contained approximately 23 million events for 500,000 stu-
dents, arranged in tuples: <StudentID, CourseID, EventType,
Timestamp>. The EventType describes the type of an activity and
takes one of four possible values presented in Table 1. We choose
these events as the most discriminative actions from the key areas:
learning, validation and community engagement. Note that our
modelling technique can be easily extended to cover other types of
events.

Abbreviation Description Proportion
VideoPlay watching a video 51%
Submission submitting an assignment 33%
ForumView visiting the forum 15%
ForumPost posting on the forum 1%

Table 1: Distribution of events in the dataset.

For the analysis we developed our own Python implementation of the
algorithm fitting the model1. In Section 5 we explain the algorithm
in detail. Since 23 million events can still fit in memory of a single
computer, we did not require a specific computing architecture to
perform the analysis. However, given the considerable size of the
dataset, the algorithm takes several minutes to run.

3.2 Definitions
We start with a general framework, in which student’s activity in any
MOOC can be very precisely described. Next, we elevate abstraction
of the model by adding assumptions simplifying the analysis. Our
goal is to introduce a model whose complexity can be adapted to
the structure of a course and the amount of available data.

We consider a model in which students behaviour is described in
a sequential manner by the type of activity they perform and the
time they wait between two sessions. Furthermore, as most of the
students perform at most 1 MOOC session per day, we choose a
daily granularity of actions.

A sequence of student’s daily activity is described as a list of ’active
events’ (VideoPlay, Submission, ForumView and ForumPost)
followed by a ’end of the day event’ (EndOfDay) or only a EndOfDay
in the case the student did not perform any activity the given day.
The formal definition of the model is following:

The set of all students S : We use the symbol s ∈S to designate
an individual student.

The set A of all types of activities: For this study we chose a set
of four types of events: { VideoPlay, Submission, ForumView,
1Our implementation is available under https://github.com/
lfaucon/edm2016-mooc-simulator

ForumPost }. We add to this set one special type of event, EndOfDay.
This event corresponds to the end of interactions with MOOCs on a
given day. We use the symbol a∈A to designate any type of activity.
One can extend the set of activities to other events if needed for
certain application.

Note that we do not specify the regular ’end of a course’ event,
since we only model the behaviour within the limited time-frame
of a course and we treat the last day of the course as the last day of
the process. Therefore, each student who went through the whole
course without dropping out has just a EndOfDay event on the last
day of the course. Number of EndOfDay events is therefore equal
to the number of days of the course.

The random sequential variable X(s)
1 ,X(s)

2 , ...,X(s)
n represents the

sequence of activities of one student s. Each X(s)
i ∈ A and the

sequence stops after an EndOfDay when the student reaches the end
of the course. We denote the length of the sequence for a student s
as n(s). The observation of one student activity along one MOOC is
thus a realization of the random sequence X.

The probability distribution P: In general, for each student s∈S

we can model the i-th event X(s)
i with a probability distribution

P(s)(X(s)
i = a | X(s)

i−1, ,X
(s)
i−2, ...,X

(s)
1 ,Cs),

where a ∈ A, X(s)
1 , ...,X(s)

i−1 are the previous events of that student
and Cs are personal characteristics of the student.

This distribution represents the student’s behaviour profile and al-
lows to generate typical sequences of activities. Our main objective
is to model this distribution as accurately as possible, given the
limited information. The accurate distribution would allow us to
draw samples of students.

3.3 Assumptions
As discussed in the previous section, assessing P(s) is unfeasible
due to dependence on too many events in the past and due to the
lack of information on personal student features. In order to fit
a probabilistic model we need to relax these dependencies. We
introduce following assumptions:

A1 Students’ behaviours fit into a small number of natural cate-
gories of behaviour.

A2 The type of activity depends only on his previous activity and
not on old past activities.

Assumption A1 maps the space of all possible students’ character-
istics into a limited number of categories, which are much easier
to attribute. Many studies on MOOCs explicitly classify students
into a small number of categories [10], students are divided between
’Viewers’ who only watch videos, ’Forum Actives’ who share with
their peers in the MOOC discussion forum and ’Completers’ who
succeed in the assignments. As we present in the next section, our
method is based on unsupervised clustering, where groups emerge
in the way optimal in terms of maximum likelihood of the model.

Assumption A2 we impose that only the last activity has an impact
on the current activity. This assumption is more constraining, but
since the complexity of history grows exponentially with the number
of steps and, in order to be able to estimate parameters, we have to
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reduce the search space. This simplification is usually called the
’Markov assumption’.

Apart from technical assumptions required for Markov Models, we
impose other assumptions for convenience. First, we do not consider
length of events, so the VideoPlay event is only the moment when
a student starts watching a video. Second, if the series of events
happens during midnight, still an event EndOfDay is added to the
sequence.

4. PROBABILISTIC MODELING
4.1 Soft clustering
In Section 3 we proposed a simplified framework, in which we
assume that there are only a few different possible classes of stu-
dents (A1). We enumerate clusters 1,2, ...,K. For each student
s ∈S we introduce a probability distribution µ(s)

k which describes
probability that the student belongs to the behaviour classes k, for
k ∈ {1,2, ...,K}.

This technique is often referred to as soft clustering, weighted clus-
tering or fuzzy clustering [15]. Instead of discret cluster assignment,
as for example in K-means, we obtain for each student a proba-
bility distribution among the clusters. These probabilities can be
intuitively seen as our certainty that the student belongs to a given
cluster.

4.2 Semi-Markov Chain
Assumption (A2), i.e. dependence only on the last state, allows us
to model the process Markov Chains. Formally, in the definition of
distribution of the next event we can drop dependence of the events
which occurred before the current one, i.e. we identify

P(s)(X(s)
i | X

(s)
1 , ...,X(s)

i−1) = P(s)(X(s)
i | X

(s)
i−1)

A preliminary analysis revealed an important weakness of using
classic Markov Models in our context. A traditional Markov model
considers that a student is equally likely to stop watching videos
when they have watched one, as when they have already watched ten
videos. In practice, students watch videos sequentially and Markov
Model does not capture appropriately the number of events in the
sequence.

To remedy this issue we employed Semi-Markov Models (also called
Markov Renewal Processes). The key feature of this model is that
it allows to replace the self-loops (transitions from one event type
to itself) in the Markov Chain, by a probability distribution of the
number of repetition of a given state.

In Semi-Markov Models, we still need to choose a parametric distri-
bution, but we have more freedom than in traditional Markov Chain.
Markov Chain implicitly assumes that probability of staying in the
same state is the largest for 1 step and decreases with number of
steps. However, we would expect that 1 is not the most probable
number of repetition at least for a particular group of students. This
phenomenon can be captured by, for example, Poisson distribution,
which proved to be more accurate in our preliminary analysis. Thus,
for an event a ∈ A and a class k we model the number of repeated
events Rk

a by

P(Rk
a = r) =

e−λ k
a
(
λ k

a
)r

r!

where r is the number of repetitions and λ k
a is the average number

of repetition and needs to be estimated from the data for each k and
a.

To illustrate that the Poisson distribution improves the model, let
us consider an example. Suppose we expect that some group of
students connects to a MOOC twice a week, with approximately
three days interval between connections. In that case, the average
number of repetitions of the EndOfDay event is 3. Simple Markov
Model, accurately models the average to be 3 but implicitly assumes
that the majority of students gets only 1 repetition. Semi-Markov
model with Poisson distribution also gives the average equal to 3
and the distribution is concentrated around 3.

5. FITTING THE MODEL
5.1 Algorithm
The Expectation-Maximisation (EM) algorithm has been introduced
in 1977 in [6]. The goal of this iterative technique is to compute
the parameters that maximize the likelihood of a given probabilistic
model. The EM algorithm has been proven to converge at least to a
local minimum. This minimum depends on the initialization point,
thus multiple runs with different random initialisations are often
used in practice in order to increase the chances of finding the global
minimum.

In this study we use the EM algorithm for unsupervised learning.
Neither the parameters of the latent classes nor the repartition of
the students are known at the beginning and the algorithm has to
estimate both quantities at once. In our settings, we define for each
k ∈ {1,2, ...,K} and states a and b:

- p(k)b−>a, the probability that a student with the behaviour pro-
file k performs the activity a after the activity b:

p(k)b−>a = P(Xi = a | Xi−1 = b)

- λ (k)
a , the average number of repetitions of an event a from a

student of profile k.

- µ(s)
k , the probability that a student s belongs to the profile k.

We can thus compute the likelihood of the observed sequence, as a
function of cluster repartition and parameters of Markov Chains by

likelihood = ∏
s∈S

[
K

∑
k=1

µ(s)
k ∏

(a,b,r)∈Ts

p(k)b−>aPλ (k)
a
(r)], (1)

where Ts is the set of tuples (a,b,r) ∈ A×A×N corresponding to
transitions from activity b to activity a with r repetitions of activity
a. The goal of the algorithm is to find the parameters that maximize
the likelihood.

In the first stage, the algorithm initialize randomly K profiles. Next,
it iteratively improves the likelihood, by alternating two steps as
described below. In each step it modifies the repartition or the
Markov chain parameters.

Initialization: The initialization consists in choosing randomly
either the p(k)b−>a and λ (k)

a or the µ(s)
k . In our algorithm, we start
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with the µ(s)
k . This can be done by generating a random number k∗

from 1 to K for each student s and by setting

µ(s)
k =

{
1 if k = k∗

0 otherwise.

Iterations: The iteration phase has two steps. First, we compute
the optimal values for p(k)b−>a and λ (k)

a given that µ(s)
k are fixed

(equations (2) and (3)).

p(k)b−>a =

∑
s∈S

∑
(a,b,_)∈Ts

µ(s)
k

∑
s∈S

∑
(_,b,_)∈Ts

µ(s)
k

(2)

λ (k)
a =

∑
s∈S

∑
(a,_,r)∈Ts

rµ(s)
k

∑
s∈S

∑
(a,_,_)∈Ts

µ(s)
k

(3)

Next, we compute the new values of µ(s)
k according to the new

p(k)b−>a and λ (k)
a (equations (4)).

µ(s)
k =

∏
(a,b,r)∈Ts

p(k)b−>aPλ (k)
a
(r)

K

∑
c=1

∏
(a,b,r)∈Ts

p(c)b−>aPλ (c)
a
(r)

(4)

Intuitively, the in the first step we compute the parameters of the
latent classes given the repartition of the students and in the second
step we recompute the repartition from the new classes parameters.

5.2 Example: Interpretation clusters (K=3)
Before we present the results for the choice of the number of clusters,
in this section, we illustrate the behaviour of the algorithm and the
model when the number of clusters is small (K = 3). Although
in this case we may lose important variability among groups of
students, small number of clusters allows us to visualise the Semi-
Markov models and interpret each of the clusters.

The visualizations of the Semi-Markov models on Figure 1 can
reveal general characteristics of students’ behaviours. For exam-
ple, Profiles 1 and 3 are in general less active as they have more
EndOfDay events. On the contrary, Profile 3 has a very high average
number of repetition on VideoPlay and considerable probability
to go back to EndOfDay events. This means that students of this
cluster are not fully engaged in all MOOC activities.

A more insightful way to analyse and interpret the differences is to
generate sequences of events and compare the outcomes. We can
compute the expected number of videos watched or the expected
number of post on the forum directly from simulated sequences.
Table 2 shows the average number of several types of events for
100 simulated students (average from 10000 simulations) over four
weeks generated with the three Markov models from Figure 1. For

Figure 1: Three graphical representations of behaviour profiles
extracted by the EM algorithm. From top to bottom: profiles
1, 2 and 3 (thickness: transition probability; color: average
number of repetitions)

example, we can see that students of Profile 1 participate in the
collaborative activities of the MOOC more rarely, but engage in the
assignments more than in watching the videos. This might indicate
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that they already have a good understanding of the content of the
course and do not need to spend more time on studying. To fully
investigate this hypothesis, further analysis should be conducted.

Profiles 1 2 3
Watched Videos 1060 3133 2363
Submissions 1535 2423 442
Forum Visits 68 1711 255
Forum posts 3 96 15

Table 2: Average number of events for 100 students over the
first four weeks of the MOOC

5.3 Choice of the parameter K
A common challenge of unsupervised learning and fitting a proba-
bilistic model is finding the correct number of classes. In our case,
the similarity of the algorithm with other clustering techniques such
as the K-means leads to the "elbow heuristic", often used in practice.
The idea is to choose the number of clusters large enough to explain
a large part of the variability, but such that a greater number of
clusters would not explain substantially more.

Figure 2: Average distance of students from their model for
different number of classes

In order to confirm the result of this first measure of quality, we
designed another measure described in the equation (5). The goal is
to quantify how the students sequences diverge from their attributed
cluster. In the equation, |A| is the cardinality of the set of possible
activities, ps(a) is the probability of finding the activity a if we
take uniformly at random an activity of student s and pk(a) is the
probability of finding the activity a if we take uniformly at random
an activity from a sequence generated by the class k.

d2(s,k) =
1
|A| ∑

a∈A
(ps(a)− pk(a))

2 (5)

This distance measure shows an elbow shape for the same values of
K between 10 and 15 as it can be seen on Figure 2. We conclude
that MOOC students from our dataset can be meaningfully clustered
into 10−15 different classes.

6. SIMULATIONS
With a model fitted with the EM algorithm at hand, the algorithm
repartitioned students and chose parameters of a Semi-Markov
Chain for each of the clusters. Since both the repartition and the
Semi-Markov Chains are generative, we can draw samples from the
fitted distribution, i.e. we can simulate the students. We run the
simulations and show a possible way to measure the validity of the
results.

To validate potential value of simulations, we first propose a simple
accuracy measure. In equation (6), Preal(|a| > n) represents the
probability that a student performs more than n events of type a
during the time of the MOOC. |a| is the count of events of type a.
Psim(|a| > n) represents the same probability but for a simulated
student. In the measure we chose the value N = 50 because it covers
most of the variability in the students activity sequences and is not
too large as still 19% of the students have an activity with more than
50 repetitions.

MSE =
1

(|A|−1)∗N ∑
a∈A

∑
n<N

(Preal(|a|> n)−Psim(|a|> n))2

(6)

In order to prove the correctness of the modeling method, we divided
our dataset into a training set and a test set for validating the results.
The first step is to run the algorithm on the training set with several
parameter K and then, use the computed parameters to simulate
a new population of students and finally compare this population
with the students from the testing set. In Figure 3 we can see
that the fit does not improve much after K = 15, because too high
number of clusters makes the algorithm learn mostly the noise from
the random actions of the students instead of their real intrinsic
behavioural patterns.

Figure 3: Measure of accuracy of a simulation for different
number of classes

The small error proves that the distribution obtained from simula-
tions is close to the original distribution. This implies that the model
properly trained on small sample of students or on just few first
events, can be extrapolated by simulation to further events or larger
samples.
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In an experimental setup, simulations with varying initial conditions
of the model (e.x. probabilities of transitions) can give us distribu-
tions of events at the later state. Knowing probability distributions of
the results of two conditions allows to estimate sample sizes needed
for finding statistical evidence of the investigated effect.

7. DISCUSSION
In Section 5 we showed that Semi-Markov chains can be success-
fully applied to describe behavioural patterns of students (RQ1). In
Section 5.2, a simple study with reduced number of clusters prove
their potential interpretability (RQ2). In Section 6, we discuss how
these models can be used to infer distributions of events (RQ3).

Our method has two main limitations. They can be further relaxed
with additional data or with incorporation of domain knowledge.

The Homogeneity of the Markov process: The Markov assump-
tion was introduced for reducing the number of parameters of our
model. It is a strong simplification, which entails some drawbacks.
This assumption implicitly requires that student behave with exactly
the same transition matrix during the whole course. The motivation
to keep learning should increase when getting closer to the end of
the course and thus the dropout rate decreases, which cannot be
capture by our method. A good way to overcome this weakness is
to use inhomogeneous Markov models with transitions probabilities
that are functions of time.

Differences between courses: The quality of the videos, the level
of difficulty of the assignments or the discussion topics in the fo-
rums are all factors that can greatly influence the behaviour of a
student. None of these were included in our model. We hypothesize
that adding external annotations that would impact the transition
probabilities of our Markov models could help solve this problem.
As for now, our model can be used to compare courses. For example,
if we run the algorithm on two MOOCs and realise that the Video
Watchers of one course have a lower engagement, that shows a lower
quality of video content while differences for the Forum Follower
may reveal differences on the quality of the Forum discussions.
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ABSTRACT 
Recent studies [10, 23] using US nationwide databases showed 
high school boys spent significantly less time doing homework 
than girls, based on their responses to questionnaires and surveys. 
To investigate gender differences in homework in middle school, 
in this paper, we analyzed computer log data and standardized test 
scores of more than 1,000 7th grade students who participated in a 
large-scale randomized controlled online homework efficacy 
study. Students used the ASSISTments platform to do their 
homework for a school year. Our results suggested no significant 
difference between the time the two genders spent on homework 
overall. There was a marginally significant difference on 
homework time between genders in the high performing group 
only. When examining the system-student interaction data, we 
found significant difference between boys and girls in their help-
seeking behaviors. In addition, we found out that boys have 
benefited from the online homework intervention more than girls.  

Keywords 

Gender gap, homework, online homework intervention 

1.   INTRODUCTION 
Studies have investigated gender differences in homework 
completion rates, learning habits, and technology use outside of 
school. The investigation into gender differences found that girls 
spend more time on homework [36], including math [28]. Further, 
research has also shown that girls are more likely to spend time 
regulating study habits (e.g., time management, engaging in 
emotion self-regulation while doing homework) [13, 16, 37, 38, 
39]. This was especially true with girls receiving family help 
while doing homework [35, 36]. With regards to gender 
differences in technology out of school, research clearly indicates 
boys have an advantage over girls with using technology for more 
varied reasons (e.g., programming, gaming, or internet surfing) 
than girls (e.g., drawing) [33] and more frequently as well [12, 17, 
22, 24, 27, 34]. This gender-based advantage extends to girls’ 
attitudes towards computer usage. Girls tend to exhibit lower self-
efficacy beliefs about their use of computers [21, 33]. At the same 
time, studies also document parent support as a critical mitigating 
factor that can increase girls’ use of and experience with 

computers [21, 33]. 
More recently, two studies, [10] and [23] suggested that boys 
spend less time on homework than girls. Based on the PISA 2012 
Database, [23] shows that around the globe, 15-year-old boys are 
overwhelmingly less likely than girls to spend time doing 
homework, which may in part explain why they are more likely to 
struggle academically. The study has been widely cited in recent 
press coverage (e.g. [26]). In the U.S., boys on average spend 1.8 
hours less time per week doing homework than girls. When 
considering boys and girls who spend the same amount of time 
doing homework, the gender gap in mathematics achievement is 
wider. [10] examined data from American Time Use Survey 
(AUS) responses. They showed that high school girls spent 
statistically significantly more time (17 minutes per day) on 
homework than male high schoolers, even after controlling for 
SES indicators, daily activities and other factors. Furthermore, the 
gap for time spent on homework is largest among high-achieving 
students.  
These studies illustrate that achievement gaps between genders’ 
use of homework does exist. However, we noticed almost all 
studies on gender differences in homework use self-reported 
measures. PISA 2012 asked students to report how much time per 
week they spend doing homework by teachers. [10] used students’ 
non-school study time using time diary data from 2003-2013 
waves of the AUS and transcript data from the Educational 
Longitudinal Study of 2002 (ELS). Our literature search shows 
that there is a serious need for rigorous homework research on 
homework in K-12 settings. The existing studies are mostly 
correlational survey studies with thousands of students that relate 
homework time, academic-, and non-academic outcomes.  
Our online homework study, which is a rigorously designed, 
randomized controlled experiment, gives us a unique opportunity 
to study the gender gap using more objective data sources of 
homework—computer logs from an online platform that support 
middle school students doing math homework. In this paper, 
examine the difference between genders in middle school 
mathematics on  

•   homework time  
•   the amount of problems completed by each gender 
•   homework performance 
•   how each gender interacted with the system 
•   whether there was any difference in the outcome 

measure between the two genders 
•   which gender benefited more from the technology-based 

intervention 
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2.   BACKGROUND 
2.1   Online homework study 
Research has been conducted to study the role and practices of 
homework and its relationship with student learning, particularly 
for mathematics (e.g. [2, 3, 5, 8, 9, 19, 20, 28, 29]). The link 
between homework assignments and student achievement is far 
from clear across the board, as noted by Cooper and others [30]. 
Although some studies show that students—and especially 
struggling students—could benefit from middle school 
mathematics homework, they may not benefit under typical 
conditions. Technology-based learning environment, such as 
ASSISTments, provides ways to make homework more adaptive 
and productive for the students who could benefit most. These 
environments can also do some of the bookkeeping and help 
teachers to keep track the progress of their students. They enable 
teachers to assign customized homework to their students. For 
example, while doing homework in ASSISTments, students 
receive support including immediate feedback on the accuracy of 
their answers, as well as extensive tutoring. With these supports in 
place, students may complete more homework and learn more 
while doing homework. Teachers may be freed from the tedium of 
grading homework and be able to instead focus their energies 
adjusting and differentiating instruction.  
SRI International, in conjunction with the University of Maine 
and Worcester Polytechnic Institute (the developer of the 
ASSISTments platform) conducted a multiyear randomized 
controlled efficacy trial at the school level. The study was 
conducted in 44 schools in the state of Maine, where one-to-one 
computing has been well-established for over 10 years. This 
experiment tested the hypothesis that the ASSISTments 
homework support improves student mathematics outcomes and 
will also examine impacts for struggling students and other 
important demographic groups. Schools in the study were 
randomly assigned to treatment or control (i.e. “business as 
usual”) conditions. The intervention was implemented in 7th grade 
classrooms in treatment schools over 2 consecutive years. In the 
control condition, teachers and students continue with their 
existing homework practices. In the treatment condition, teachers 
received professional development and used ASSISTments in the 
first year to become proficient with the system and then teachers 
used ASSISTments with a new cohort of students in the second 
year which is considered the “experiment year”. At the end of the 
experiment year, students were administered the TerraNova 
Common Core math test to provide data on student achievement 
in mathematics. TerraNova is a norm-referenced achievement test 
that is nationally normed. It generates scaled scores (ranging from 
400 to 900 points) and achievement-level information that include 
five levels of performance proficiency (1: Starting-out; 2: 
Progressing; 3: Near Proficient; 4: Proficient; 5: Advanced). 

2.2   Key features of ASSISTments platform  
ASSISTments (www.assistments.org) [6, 14] is an online tutoring 
system that provides “formative assessments that assist.” Teachers 
choose (or manually add) homework items in ASSISTments and 
students can complete their homework online. As students do 
homework in ASSISTments, they receive feedback on the 
accuracy of their answers. Some problem types provide hints to 
help students improve their answers, or help decompose multistep 
problems into parts (so-called “scaffolding questions”) 

 
Figure 1. Screen shots of an 7th grade item in ASSISTments that 
provides correctness feedback and breaks the problem into steps.  

 (see Figure 1). Teachers may choose to assign problem sets called 
“skill builders” that address individual math concepts and skills at 
grade level and are organized to promote mastery learning. Every 
night, ASSISTments servers generate customized, cognitive 
diagnostic reports. The reports show teachers homework 
completion rates, performance data for each student on every 
problem and each math skill covered in the assignment, which 
questions and/or skills were particularly challenging for, and what 
the common wrong answers were. The report is emailed to 
teachers early in the morning for their review. This data allows 
teachers to make real-time, informed decisions about what and 
how they teach, and it is ideally used to guide homework review 
practices in class.  
The usage model of the online homework study specifies that 
teachers who used ASSISTments in the study were expected to 
assign approximately 20 minutes of homework in ASSISTments 
for a minimum of three nights per week (making adjustments as 
needed to accommodate district and school homework policy). 

3.   EXPLORING GENDER DIFFERENCES 
IN HOMEWORK TIME, BEHAVIORS, AND 
PERFORMANCE  
The data used in this section includes ASSISTments system logs 
of 1033 7th grade students, including 514 boys and 519 girls, who 
participated the second year of the homework study in the 
treatment condition. Also included in the data are their TerraNova 
test scores including both scaled scores and their performance 
levels. These students used ASSISTments for homework for the 
whole school year.  

3.1   Features 
We started the data analysis by constructing features that 
represent student’s intensity of use, performance, and behaviors 
while working in ASSISTments. Below, we list all the features.  

•   mins_s: Total number of minutes students spent on 
homework in the year  

•   probs_c: Total number of problems completed 
•   perc: Average percent correct over all assignments 
•   hint_c: Average number of hint requests per problem 
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•   attempt_c: Average number of attempts1 per problem 
•   bottom_hint_c: Average number of bottom-out hint2 

requests per problem 
•   comp_perc: % of homework assignments completed on 

time 
•   late_perc: % of assignments completed but late 

Two features, mins_s and probs_c are measures of intensity of use 
of ASSISTments. perc is a measure of student’s performance on 
homework problems. Some other system features (hint_c, 
attempt_c, and bottom_hint_c) capture students’ interaction with 
the system while doing homework, including their help-seeking 
behaviors (hint_c and bottom_hint_c) and the number of attempts 
they made before getting a correct answer (attempt_c). The last 
two features show whether they complete their homework on time 
or late (comp_perc, late_perc) as opposed to not completing an 
assignment at all. 

3.2   Visual exploration of homework time 
Research has shown that spending more time doing homework is 
better for academic achievement [3, 28, 30, 32]. Additional 
research has also shown that homework time is associated with 
many factors that may have a positive effect on academic success 
such as motivation or academic interest [4, 15] and parent 
involvement [1, 25]. Therefore, we started with an exploratory 
analysis focusing on the time students have spent on doing 
homework in ASSISTments. We observed relatively weak 
positive relationships3 (.2 < r < .4) between students’ TerraNova 
scaled scores and system use and performance indicators (mins_s, 
probs_c, and perc), suggesting students who spent more time on 
homework and completed problems scored higher on the 
TerraNova test. When we examined the usage data closely, we 
found that students spent a wide range of time on homework in 
ASSISTments in the school year (ranging from 2 to 4,238 
minutes, mean = 640, standard deviation = 784), and amount of 
use varies a lot by schools (65% of the variance in mins_s is 
accounted by schools). Although homework practice is expected 
to differ across teachers and schools, the large variance is to some 
extent surprising, as the research team has specified a desired use 
model and has expressed the expectations clearly to all teachers in 
the treatment schools. On the other hand, this result confirms our 
previous findings on implementation fidelity from the previous 
2013-14 school year where adherence, exposure, and uptake of 
users varied by teachers [7].  
Next, we further explored the relationship between homework 
time and students’ achievement outcomes. We found that higher-
performing students tend to spend more time on homework. Girls 
seem to spend relatively more time on homework than boys do, 
except in the middle level of achievement. The difference is most 
notable in the “5: Advanced” level.  
Then we compared the TerraNova performances of boys and girls 
who spend similar amounts of time on homework. We found that 
there are more girls than boys who spent a significant amount of 
time on homework (defined as over 3,200 minutes in the school 

                                                                    
1 The system doesn’t limit the number of answers a student could attempt 

on a problem.  
2 When using ASSISTments in the practice and learning modes (as 

opposed to testing mode), the system requires that every problem has to 
be answered correctly in order for students to move to the next one. 
Bottom-out hints in ASSISTments reveal the correct answer to students 
so that they won’t get stuck.  

3 No other correlations were noticed 

year). Unlike [23], however, we didn’t see big gender gaps in 
mathematics achievement (Figure 3).   
 

 
Figure 2. Bar graph comparing the average homework time by 
students in each TerraNova performance level, split by gender 

 
Figure 3. Plot comparing TerraNova performance of boys and girls 
who spend similar amount of time on homework 

3.3   Modeling gender difference on usage and 
homework performance 
 

Table 1 shows the descriptive statistics of all the features by 
gender. We noticed that the mean difference between the two 
genders were high on the two features, mins_s and probs_c, yet 
standard deviations on those measures were also quite high. We 
understood the extent to which schools create variation in 
homework behaviors: differences in the amount of homework 
assigned between teachers and schools, possible variations in 
homework review processes, and differences in teachers’ 
completion policies. Since these factors could affect students’ 
performance and/or behavior when doing homework, we trained a 
series of 3-Level Hierarchical Linear Regression models (HLM) 
(students nested in classes and classes in schools) to account for 
the difference in schools’ and teachers’ homework assignment 
practices. We used each feature as a dependent variable and use 
gender of students as the predictor (male = 0, female = 1).  

Table 1. Descriptive statistics of features by gender 
Features Male  Female  

 Mean Stdev Mean Stdev 
mins_s 820.337 759.742 874.755 807.623 
probs_c 703.214 592.099 770.734 621.226 

perc 0.740 0.115 0.744 0.117 
hint_c 0.115 0.143 0.094 0.103 

attempt_c 1.403 0.281 1.375 0.248 
bottom_hint_c 0.072 0.074 0.061 0.068 

comp_perc 0.614 0.284 0.646 0.259 
late_perc 0.129 0.12 0.14 0.127 

 

As shown in Table 2, the results suggest that overall there is no 
significant difference between girls and boys in terms of the 
amount of time they spent on homework or the number of 
problems they completed. Furthermore, there is no difference 
between the two genders in their rates of correctly answered 
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problems in ASSISTments. Girls tend to complete more 
assignments on time than boys, but the difference is only 
marginally significant (p = .086). However, interestingly, girls and 
boys interacted with the system differently; girls made fewer hint 
requests and fewer attempts on problems, and they also requested 
fewer bottom-out hints as compared to boys in the same classes.  

Table 2. HLM Results Overall – Predictor: Female 

Dependent Variable Difference p 
mins_s 22.482 0.350 
probs_c 27.219 0.177 

perc 0.006 0.351 
hint_c -0.018 0.005** 

attempt_c -0.039 0.005** 
bottom_hint_c -0.011 0.002** 

comp_perc 0.015 0.086- 
late_perc -0.000 0.907 

 

Inspired by Gershenson & Holt (2015) and Figure 3 shown above, 
we were interested to see whether there was any interaction effect 
between gender and students’ performance levels. Thus, we split 
the students into 3 groups based on their performance level on the 
TerraNova test. We then trained similar HLM models within each 
group of students, and the results are shown in Table 3. 
 

•   Progressing or Below: performance levels = 1 or 2; N= 
328 (male: 145, female: 183) 

•   Near Proficient: performance levels = 3; N = 368 
(male: 165, female: 203) 

•   Proficient or Above: performance levels = 4 or 5); N = 
337 (male: 166, female: 171) 

We observed trends with regard to how students interact with the 
system in both the Near Proficient and Proficient or Above 
groups. The trends are consistent with the overall trend: girls 
requested significantly fewer regular hints or bottom-out hints, 
and made fewer attempts on problems. Results regarding 
assignment completion status are mixed. Low-performing girls 
completed fewer assignments after they were due than low-
performing boys did; yet in the Near Proficient group, girls 
completed more assignments late than boys did. In the Proficient 
or Above group, girls were more likely to complete assignments 
on time. Interestingly, we noticed a marginally significant 
difference in mins_s in the Proficient or Above group, suggesting 
high-performing girls spent more time on homework than high 
performing boys. This result is in consistent with [10], but the 
latitude of difference is not as big.  
  

4.   WHICH GENDER BENEFITED MORE 
FROM TECHNOLOGY-BASED 
HOMEWORK INTERVENTION? 
One of the research questions of the online homework study is to 
investigate whether the impact of the ASSISTments on learning 

outcomes differ by student demographic characteristics. Here we 
present the analysis that was conducted to examine which gender 
benefited more from online homework intervention. A different 
dataset was used for this analysis. Students from the control 
condition were included in this dataset in order to detect the 
interaction between intervention and gender, which increased the 
total number of students to 2,756 from 44 schools. Only students’ 
assigned condition, gender, their 6th grade state test scores, and 
their TerraNova scaled scores were included in this dataset. 
TerraNova scores were used as dependent variable. 3-level HLM 
models were employed in all the analysis. 
We first ran a basic model that includes prior achievement (6th 
grade math state test scores) and gender (male=1, female=0) as 
predictors of TerraNova scaled scores to examine effects of 
gender. The HLM model for the analysis of effect of gender is 
illustrated below.  
Level-1 model:  

TScore = β0j + β1j*(PriorMath) + β2j*(Male) + r 
Level-2 model: 

β0j = γ00 + γ01*( Trx) + u0 
β1j = γ10 
β2j = γ20 

In this model, TScore is the student’s scaled score from the 
TerraNova test. Trx is a school-level indicator of the school being 
in the treatment condition (0=Control, 1=Treatment). Student-
level variables.  PriorMath is a student-level variable, 
representing the student’s 6th grade math state test score. Male is 
a student-level variable, indicating the student’s gender 
(0=Female, 1=Male). The model showed that students in the 
treatment condition scored 10.26 points higher than control 
students and males scored 5.21 points lower than females. Both 
effects are statistically significant (p < .001). To help understand 
the difference, we referred to TerraNova technical norms 
published by CTB. The norms showed that the average yearly 
growth from 7th to 8th grade is about 10 points in scaled score. 

Table 4. HLM Results on Intervention and Gender Effect 

Gender Control Treatment Difference 
Females 683.21 693.46 10.26 
Males 677.99 688.25 10.26 

Difference -5.21 -5.21  
 

Then we augmented the basic model by adding an interaction term 
between treatment and gender. The augmented model is illustrated 
below. 
Level-1 model: 

TScore = β0j + β1j*(PriorMath) + β2j*(Male) + r 
Level-2 model:  

β0j = γ00 + γ01*(Trx) + u0 
β1j = γ10 
β2j = γ20 + γ21*(Trx) + u2 

 

Table 3. HLM Results By Groups – Predictor: Female 
Dependent 
Variable 

Progressing or Below Near Proficient Proficient or Above 
Difference p Difference P Difference p 

mins_s 8.565 0.859 -18.195 0.684 58.401 0.073- 
probs_c 34.421 0.378 -17.773 0.638 34.694 0.178 

perc -0.008 0.569 0.005 0.632 0.013 0.058- 
hint_c -0.015 0.239 -0.024 0.061- -0.012 0.064- 

attempt_c -0.017 0.56 -0.066 0.005** -0.033 0.075- 
bottom_hint_c -0.003 0.685 -0.016 0.007** -0.013 0.002** 

comp_perc 0.021 0.185 -0.001 0.929 0.027 0.055- 
late_perc -0.021 0.032* 0.018 0.034* -0.005 0.521 
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In this model, the effect of ASSISTments intervention was found 
to vary by gender (γ21=7.476, t(42)=2.232, p = 0.031). As shown 
in Table 5, boys in the control group scored 9.61 points lower than 
girls in the control group, but boys in the treatment condition 
scored only 2.13 points lower than girls in the same group.  Girls 
in the treatment group scored 6.73 points higher than those in the 
control group (which was not significant after adding in the 
interaction), while boys in the treatment group scored 14.21 points 
higher than those in the control group. In essence, the intervention 
helped close the gender gap between girls and boys for 
standardized test achievement and boys have benefited more from 
the intervention than girls.  

Table 5. HLM Results on Intervention and Gender 
Interaction Effect 

Gender Control Treatment Difference 
Females 685.20 691.93 6.73 
Males 675.59 689.79 14.21 

Difference -9.61 -2.13  
 

5.   CONCLUSIONS AND FUTURE STUDIES 
In this paper, we examined the difference between genders in 
middle school mathematics on homework time, the amount of 
problems completed by each gender, homework performance, and 
how each gender interacted with the system, using computer 
system log data from an online homework intervention. We also 
answered two research questions regarding which gender 
benefited more from a technology-based intervention supporting 
homework. Our results suggested no significant difference 
between the time the two genders spent homework overall. 
Among students who performed proficiently or above on the end-
of-year standardized test, girls have spent more time on 
homework than boys, and the difference was marginally 
significant. We also found out that when using ASSISTments for 
homework, girls and boys differed in their help-seeking and 
problem-attempting behaviors. Girls requested less hints, made 
less number of attempts on problems, and they also requested less 
amount of bottom-out hints that would reveal the correct answers 
to problems. Our findings suggested that the intervention closed 
gender gaps in mathematics achievement in 7th grade and boys 
benefited from the online homework intervention more than girls. 
We speculated on the reasons why boys have benefited more from 
the technology-based intervention. One reason could be boys in 
the study were more comfortable with using technologies, similar 
to what has been reported in earlier research. We also checked to 
see if there was any difference between the two genders in prior 
achievement. Using a simple t-test, there was no gender difference 
in 6th grade state math test scores (Female average score =645, 
Male average score=644, p =0.252).  

Researchers have been able to identify factors that impact this 
relationship between time spent doing homework and academic 
achievement. It was found that the quality of time spent on a task, 
i.e., homework, is a more critical predictor of student learning 
than the total number of minutes spent on the task. For instance, 
time on task or perseverance manifested with low distraction rates 
is positively correlated with achievement [30]. Other factors, 
especially the effort students put into homework and how 
frequently they do homework are far more reliable and positive 
predictors of student achievement [28, 30, 32]. As a follow-up 
study, we plan to look at student behaviors when working in in the 
system more closely, taking sequence and time into account. We 
plan to study help-seeking and problem-attempting behaviors at 
action level and to see whether there are any the sequential pattern 

of actions taken, and whether there is between girls and boys. For 
instance, did boys ask for hints/bottom-out hints right away, while 
girls took time to persevere through challenging homework 
problems before requesting for assistance? We also plan to build a 
dataset including students’ frequency of logging in each day and 
each week and the duration of the working sessions by gender, 
and see how such features predict student learning. Such studies 
will help the field better understand gender differences in STEM 
learning, esp. in out-of-classroom settings. The findings can be 
informative for the development of behavior detectors in online 
learning systems like ASSISTments so that the systems can 
provide interventions to improve learning outcomes and close 
gender gaps.  
We recognize the limitations in our study. We have no access to 
information, such as parent involvement, their extra-curricular 
activities, etc. that may affect student’s homework completion 
rates, their behaviors when doing homework, or their 
performance. Nor do we have access to student’s attitudes towards 
mathematics, technology or homework. All of these limit our 
ability to explain the differences we’ve discovered. The results 
presented in this paper were based on data from 7th grade students 
who are younger than the high school students who have been the 
focus of [23] and [10]. It would be a reasonable next step to 
extend such kind of study to elementary students and see if there 
might exist a trajectory in the gender differences in homework. 
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ABSTRACT
We present an analysis of log data from a semester’s use
of the OpenDSA eTextbook system with the goal of deter-
mining the most difficult course topics in a data structures
course. While experienced instructors can identify which
topics students most struggle with, this often comes only
after much time and effort, and does not provide real-time
analysis that might benefit an intelligent tutoring system.
Our factors included the fraction of wrong answers given by
student, results from Item Response Theory, and the rate
of model answer and hint use by students. We grouped
exercises by topic covered to yield a list of topics associ-
ated with the harder exercises. We found that a majority of
these exercises were related to algorithm analysis topics. We
compared our results to responses given by a sample of ex-
perienced instructors, and found that the automated results
match the expert opinions reasonably well. We investigated
reasons that might explain the over-representation of algo-
rithm analysis among the difficult topics, and hypothesize
that visualizations might help to better present this mate-
rial.
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1. INTRODUCTION
Knowing what topics are challenging to students helps ed-
ucators better allocate course resources. We present tech-
niques to automatically determine topics that are most chal-
lenging based on student interactions within the OpenDSA
eTextbook system [9, 10]. While experienced instructors
can identify which topics students most struggle with, au-
tomated measures can be useful for a variety of reasons. 1)
Identifying key topics takes a lot of time and effort on the
part of instructors; 2) They can help instructors teaching
new material or with a new approach; 3) They can be used
by an intelligent tutoring system (ITS) to automatically di-
rect more instruction to a topic; and 4) They can help find,
confirm, and quantify relationships and provide new insights
that might be missed even by experienced instructors.

Our study focuses on a post-CS2 data structures and algo-
rithms course (henceforth referred to as “CS3”). We used
two approaches to identify difficult course topics. The first
is Item Response Theory (IRT), a latent trait models (LTM)
technique to analyze student responses to problems. LTM
assumes that test performance can be predicted by specific
traits or characteristics [13]. IRT provides a model-based
association between item responses and the characteristic
assessed by a test [7]. The second approach consisted of
an analysis of student interactions with exercises to identify
harder exercises. We investigated the incidence of guessing,
the use of hints, and the level of interactions with embedded
model answers by students when solving exercises.

We found that the most difficult topics in the CS3 course are
related to algorithm analysis. While this is not surprising to
us, we also investigated possible reasons that might explain
the topics’ difficulty. Based on our study, we present some
suggestions on how to make such topics more accessible to
students.

2. RELATED WORK
IRT [19] examines test behavior at the item level, and pro-
vides feedback on the relative difficulty of the various ques-
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tions. Many IRT models have been developed with the as-
sumption of 0 or 1 assigned to each response. We adopted
the one parameter (1PL) or Rasch model [16] to characterize
items and examinees. In 1PL, the probability of a positive
response from a student is a function of item difficulty and

is modeled as Pi(θ) = exp(θ−bi)
1+exp(θ−bi) . Pi is the probability of a

correct response to item i. θ refers to the latent trait (this
is often called ability) assessed by the items being analyzed.
bi represents the difficulty of item i.

IRT has been used to evaluate students’ coding abilities in an
introductory programming course [3]. The authors used stu-
dents’ code scores to build a 1PL Rasch model. They found
that students with previous knowledge had a statistically
significant higher performance than students with no previ-
ous knowledge [3]. IRT was also used to analyze midterm
exam questions for an introductory CS course [18]. The goal
was to improve the assessment for future semesters by study-
ing questions’ item characteristic curves. IRT has been used
for problem selection and recommendation in ITS [14]. The
authors built a model based on a combination of IRT and
collaborative filtering to automatically select problems.

We know of few efforts to identify difficult topics in CS3
courses, as most such work typically has focused on in-
troductory courses [5, 6, 11]. Brusilovsky et al [4] sent a
questionnaire to CS educators asking them to report topics
that they consider critical to learn, as well as topics that
are hard to learn (for students) and hard to teach (for in-
structors). Instructors’ (n = 61) five most difficult-to-learn
topics included pointers, recursion, polymorphism, memory
allocation, and parameter passing. The five most difficult
to teach topics included recursion, pointers, error handling,
algorithms, and polymorphism. Many of these topics are
covered in CS3, but it is typically not the first time that
students will have seen them.

3. EXERCISE ANALYSIS
OpenDSA provides a collection of online, open-source tu-
torials that combine textbook-quality text with algorithm
visualizations, randomly generated instances of interactive
examples, and exercises to provide students with unlimited
practice. Content within OpenDSA is organized into mod-
ules, each focusing on a specific topic such as Quicksort or
Closed Hashing. The modules contain a wide variety of ex-
ercises. Some require that the student manipulate a data
structure to show the changes that an algorithm would make
on it. We refer to these as “proficiency exercises” (PE exer-
cises). This type of exercise was pioneered in the TRAKLA2
system [15]. OpenDSA uses the Khan Academy (KA) exer-
cise framework 1 to provide multiple choice, T/F, and short
answer exercises. We also use the KA framework to imple-
ment simpler proficiency exercises.

We studied 143 student participants enrolled in a CS3 course
at Virginia Tech during Fall 2014. OpenDSA was used as
the main textbook, and students had until the end of the
semester to complete the OpenDSA exercises. OpenDSA
exercises accounted for 20% of the course final grade.

1http://github.com/Khan/khan-exercises

3.1 Analysis of correct answer ratios
Our goal is to assign a value to each OpenDSA exercise in
terms of “relative difficulty”. We seek to find which exercises
are relatively difficult for average ability students. From
this, we hope to deduce which topics are most difficult for
students. This in turn might lead us to refocus our instruc-
tional efforts, or come up with new interventions and presen-
tation approaches. Unfortunately, it is not a simple matter
to tell whether a question is difficult. OpenDSA works on
a mastery-based system, meaning that students can repeat
a question until they get it correct. As a result, most stu-
dents earn full credit on almost all exercises. To confuse the
situation further, as is typical with online courseware, some
exercises can be “gamed” [1]. In our case, this happens when
students repeatedly reload the current page until they get an
easier problem instance to solve (though the system is im-
plemented in ways to discourage other forms of guessing on
any given question [9]). For these reasons, we cannot simply
count how many students got an exercise correct. Instead,
we developed alternative definitions for difficulty.

We analyzed OpenDSA exercises with respect to the ratio
of correct to incorrect answers as a measure of exercise dif-
ficulty, that is, harder exercises should show a lower correct
attempt ratio. To assess student performance, we use the
fraction r = #of correct attempts

#of total attempts
. For each exercise, we com-

pute the difficulty level (dl) as dl = 1 −
∑n

i=1 ri
n

where n
is the number of students and r is the ratio of correct at-
tempts. Similar metrics have been used previously to assess
exercise difficulty. In [2], the authors used “how many at-
tempts it takes for a student to determine the correct answer
once they have made their initial mistake” as a measure of
exercise difficulty for logic exercises. History of attempts
coupled with IRT was also used in [17] to estimate exercise
difficulty for an ITS.

We ranked the exercises by their dl and grouped them into
quartiles. Dl scores ranged from 0 to 0.72. Exercises in the
4th quartile (dl > 0.25) consist mainly of exercises covering
concepts related to algorithm analysis (22 out of 26 in that
quartile), and one was a code writing question. Exercises in
the 3th quartile (0.13 ≤ dl ≤ 0.25) covered mainly (14 out
of 25) the mechanics of algorithms or data structures. Ten
of these exercises covered course concepts. Exercises in the
2nd quartile (0.05 ≤ dl < 0.13) covered mainly (23 out of 25)
the mechanics of algorithms or data structures. The other
two were summary exercises covering lists and the introduc-
tion chapter. All exercises in the 1st quartile (dl < 0.05)
covered algorithms or data structures mechanics. These re-
sults indicate that students did not seem to have difficulty
completing tasks related to the behavior and the mechanics
of algorithms and data structures. They seem to have the
hardest time mastering algorithms analysis concepts.

3.1.1 IRT analysis
To perform IRT analysis we must dichotomize the answers.
We awarded 1 point for r ≥ 0.75 and 0 point for r < 0.75.
We analyzed each chapter independently, considering all ex-
ercises in a chapter as part of an assignment. We used R sta-
tistical software (ltm package) and built a 1PL model for our
investigation. For each OpenDSA chapter, we computed the
item characteristic curves (ICC), item information curves
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(IIC), and test information curves (TIF). For each curve, the
x−axis represents the students’ ability from −4 to 4, where
x = 0 means average ability. ICC shows the probability of
a score of 1, given a student’s ability. IIC shows how much
information each exercise can tell us about a students’ abil-
ity. TIF shows how reliable the overall test (or a collection
of exercises) is at distinguishing students with different abil-
ity. Harder tests would better distinguish between students
with above-average ability, while easier tests would better
distinguish between students with below-average ability.

An ICC graph lets us see the probability of getting a score
of 1 for students with average ability. Harder exercises will
have Pi(0) < 0.5. In Figure 1, we see that for three of the
most difficult exercises, the probability that a student with
average ability will get a score of 1 is less than 0.5, indicat-
ing that those exercises distinguish students with average
ability from those with above average ability, but do little
to distinguish weaker from average students. On the other
hand, an easy question on the binary search algorithm has
a graph Pi(θ) = 1. Thus it does not give us any information
about students’ ability. The curves for the easier exercises
shown in Figure 2 show differences between students with
below average ability in contrast with average and above av-
erage ability (θ ≥ 0). Another possible interpretation of this
result is that these exercises are relatively good at differen-
tiating students who studied from those who did not. The
TIF graph is a combination of all IIC curves, and indicates
the overall performance of the test.

Algorithm analysis chapter exercises: Most students
did not fare well on exercises in the introductory chapter
on algorithm analysis, as shown in Figures 1 and 2. Thus
these exercises gave us information about which students
have above-average ability.

Figure 1: Algorithm
analysis ICC

Figure 2: Algorithm
analysis IIC

Linear Structures exercises: These students were al-
ready familiar with linear structures, since these are taught
in prerequisite courses. Students could easily get a score of 1
by our difficulty measure for most problems in this chapter,
and so help to identify students with below average ability
(x < 0). However, three exercises appeared to be not so
easy for students. They covered list overhead concepts (a
new topic for them), array list concepts, and a small pro-
gramming exercise. Students who did poorly (bottom quar-
ter) on these exercises scored an average 65 on Midterm 1
compared to 76 for the rest of the class (a significant differ-
ence at α = 0.05). They received an average score of 73 on
Midterm 2 compared to 79 for the rest of the students (a
significant difference at α = 0.05). They scored an average

Figure 3: Sorting TIF Figure 4: Binary trees
TIF

of 106 on the final, compared to 112 for the rest of the class,
not a statistically significant difference.

Sorting exercises: The sorting chapter has the most ex-
ercises, with varying difficulty levels. Summary exercises
covering more advanced sorting algorithms (quicksort, radix
sort, mergesort, and heapsort) seemed to provide more infor-
mation about students with above average ability (x > 0).
Overall, the sorting chapter exercises seemed to provide a
good range of easy to difficult exercises, and provided good
information to distinguish between students with different
ability levels (TIF curve maximum at ability = 0).

Binary tree exercises: Binary trees are typically first in-
troduced in CS2 courses. Only three exercises appeared to
be difficult for students. These involved writing a recursive
function to traverse a tree, questions on heaps, and comput-
ing tree space overhead. Exercises in this chapter provided
us with information about students with below average abil-
ity (TIF curve maximum at ability < 0).

Hashing and graph exercises: As with other topics, pro-
ficiency exercises were relatively easy for the students, while
questions on the concepts and analysis were more difficult.
The graph chapter only had algorithm proficiency exercises
and so were not challenging to students. Therefore, the ex-
ercises gave us information to distinguish students with low
ability (TIF curve maximum at ability > 0).

We identified 21 (out of 100) exercises with IIC maximum at
ability≥ 0. 19 of those exercises cover the algorithm analysis
portions of the different topics. The IRT analysis for all
OpenDSA exercises given to students enrolled in the course
revealed the following. Across chapters, exercises related to
algorithm analysis had IIC curve maximums at ability< 0.
Exercises that required students to solve small programming
problems also scored as“difficult”by our metric because they
tended to require multiple submissions to complete.

3.2 Using Hints and Guessing
Our analysis metric for “incorrect attempts” does not dif-
ferentiate between using a hint or submitting an incorrect
answer. So we looked in more detail at the types of incor-
rect submission for each exercise. We analyzed OpenDSA
exercises with respect the the number of hints used, and the
appearance of a trial-and-error strategy to “guess” the an-
swers. Harder exercises are expected to display a higher rate
of hints use and/or trial-and-error.
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Exercises using the KA framework (multiple choice, T/F,
fill-in-the-blank, and one-step proficiency exercises) gener-
ate a series of question instances on the topic. The student
must get a certain number correct (typically five) to com-
plete the exercise. One point is deducted from the student’s
credit toward this requirement when they submit an incor-
rect answer, to discourage guessing. Students can also take
one or more hints that explain the answer to the question.
In this case, the attempt is not graded (no point is awarded
or deducted toward the threshold).

To analyze exercises based on students’ hint use, we com-
puted the hint ratio hr = #of hints used

#of total attempts
for each KA ex-

ercise. Four exercises are potential outliers as measured by
hr, related to quicksort, hashing, calculating overhead for
trees, and calculating overhead for lists. To analyze exer-
cises based on the rate of trial-and-error, we calculated the
incorrect ratio ir = #of incorrect answers

#of total attempts
for each KA exercise.

Inspecting exercises in the fourth quartile (exercises in the
highest 25% incorrect ratio), we found that they are related
to the topics algorithm analysis, heaps, quicksort, radixsort,
shellsort, and heapsort.

The seven exercises shown in Table 1 had high hint or high
incorrect answer ratios. They relate to topics covering math-
ematical background and runtime analysis of quicksort, hash-
ing, and shellsort. 45% of students heavily (third quartile
and up for all exercises) used hints, and provided many
incorrect answers when solving these seven exercises. We
found that most exercises with low incorrect answer and hint
ratios are for stacks, arrays, and lists. These are topics that
most students know from previous courses. When using high
rate of hint use as a measure of exercise difficulty, we found
that exercises related to algorithm analysis and mathematics
topics appeared to be more “difficult”. Algorithm analysis
was also identified as difficult by IRT analysis.

Table 1: IR and HR for difficult exercises

Exercise hr ir Topic
ListOverhead 0.93 0.6 List Overhead

Analysis
TreeOverheadSumm 0.78 0.73 Tree Over-

head Analysis
QuicksortSumm 0.32 0.67 Quicksort

Analysis
AlgAnalSumm 0.24 0.77 Algorithm

Analysis
MthBgSumm 0.25 0.63 Mathematical

background
ShellsortSumm 0.16 0.61 Shellsort
QuicksortPartitionPRO 0.27 0.58 Quicksort’s

partition

3.3 Model Answer Use and Exercise Reset
Algorithm proficiency exercises require students to repro-
duce the major steps of an algorithm. Proficiency exercises
come with a “model” answer that can be viewed at any time
(though doing so voids that problem instance for credit, and
so the student must do another problem instance). The stu-
dent can click a“reset”button to get a new problem instance.
We analyzed OpenDSA exercises with respect to model an-

swer use and “reset” as a measure of (exercise) difficulty.
Students are expected to reset or view model answers more
for harder exercises. For each proficiency exercise, we an-
alyzed the number of student attempts and the frequency
of student access to the model answer dialog. Our analy-
sis showed that heap and quicksort exercises have a model
answer view rate approaching or exceeding 50%, which is
greater than the mean (µ = 25.5) plus one standard devia-
tion (σ = 16) of the rates distribution. This finding indicates
that these exercises are relatively more difficult compared to
other proficiency exercises.

We also investigated student activity log data to learn when
students access the model answer box by computing: (i)% of
students who tried the exercise, then opened the model an-
swer dialog before they received enough points to get credit
for the exercise; % of students who opened the model answer
dialog before attempting the exercise; and % of students who
opened the model answer dialog after they received profi-
ciency credit for the exercise.

A model answer shows how to solve a problem with less
detail, while slideshows and visualizations (available to the
students before attempting the exercise) carefully explain
the concepts. We tried to determine if students use model
answers as a substitute for viewing slideshows and visualiza-
tions. For the heap exercises, we found that about 35% of
the students attempted an exercise before going through any
slideshow included in the section. This result indicates that
students might be using model answers (on certain topics)
because they overlook and/or rush through visualizations
when studying. We found that a majority of students (62%
on average) opened the model answer before attempting the
heap exercises. For the quicksort exercise, we found that
most students (67%) opened the model answer dialog after
an incorrect attempt. 24% of students opened the model
answer dialog before attempting the exercise.

For each proficiency exercise, we looked at the percentage
of students who returned back to solve the exercise after
receiving proficiency credit. We found that exercises with
a high model answer view rate have a lower level of post-
proficiency attempts. 27% of students solved them post pro-
ficiency, compared to almost 50% for other exercises. This
is somewhat surprising, as students presumably use an ex-
ercise post-proficiency in order to study the material for ex-
ams. We might have expected the most difficult exercises to
be targets for additional study.

We computed the ratio of correct attempts over number of
reset button clicks, and the ratio of all attempts over number
of reset button clicks. The correlation between the two ratios
was r2 = 0.99. Exercises with lowest ratios (bottom 25%)
were related to quicksort, heaps, shellsort, and binary trees
topics. When using number of model answer views and use
of reset button as measures of exercise difficulty, we found
that the hardest exercises are related to the topics of heaps
and quicksort. These exercises have higher use of model
answers, higher exercise reset rates, and lower levels of post-
proficiency attempts compared to other exercises. We note
that proficiency exercises cover only algorithm mechanics,
and so do not test students on more theoretical concepts.
Thus, this analysis is only comparing the relative difficulty
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of understanding the mechanics of various algorithms, and
so does not address the question of the relative difficulty of
algorithm analysis versus algorithm mechanics.

4. INSTRUCTOR SURVEY RESULTS
To validate our process, we compared the results of auto-
mated analysis with opinions of course instructors. To that
end, we distributed a survey to the CS education commu-
nity via the SIGCSE mailing list. We asked respondents:
(i) how long they have been teaching a post-CS2 course on
Data Structures and Algorithms; (ii) what topics from such
a course are the most difficult for students to understand;
and (iii) what topics from such a course are the most difficult
to teach. We received 23 responses with a mean teaching ca-
reer of 16 years (median 15 years). Since a concept can be
defined using different terms, we grouped answers that we
considered to refer to the same topic. The result was 12
topics considered most difficult for students to understand,
and 8 topics most difficult to teach. Table 2 shows the top 6
difficult topics to learn and to teach. Among the top topics
considered hard for students, only trees and heaps are not
also present in the list of hard topics to teach.

Table 2: Summary of survey responses

Topic N %
Most difficult topics for students
Dynamic programming 7 18
Algorithm analysis 6 15
OOP & Design 6 15
Recursion 4 10
Trees, Heaps 3 7
Proofs 3 7

Most difficult topics to teach
Complex algorithms 8 30
OOP & Design 4 15
Proofs 4 15
Algorithm analysis 3 11
Recursion 3 11
Dynamic programming 2 7

Dynamic programming had the most votes as difficult for
students, but we note that most CS3 courses to not cover
this in depth. Algorithm analysis received the next highest
number of votes. Our IRT and log analyses also identify
algorithm analysis as a hard topic for students. Instructors
mentioned students’ lack of proficiency in mathematics as a
major reason why algorithm analysis proves hard. Instruc-
tors wrote “mathematical sophistication is the issue here”,
and “because students are afraid of math”. Our analysis of
use of trial-and-error also revealed that students are not at
ease with mathematics topics. To explain why algorithms
analysis is hard to teach, one instructor wrote “I still do
not have good instructional material”. That reason was also
used for other topics like graphs and design. Heaps is an-
other topic that was identified as hard both by our analysis
and by instructors. In general, the survey responses corre-
spond fairly well to our automated process.

5. ALGORITHM ANALYSIS IS HARD
Our analysis shows that exercises related to algorithm anal-
ysis are harder than exercises covering algorithm mechanics.
It also reveals that students might have some difficulty with

heaps and quicksort. Algorithm analysis is of particular in-
terest since a main goal of CS3 is to teach students how to
analyze algorithms, in order to design efficient software so-
lutions. That is why algorithm analysis sections are present
in almost all topics covered in the course. Careful analysis
of the data logs reveals certain behaviors by students that
could explain why students struggle with these concepts.

5.1 Not spending enough time
We analyzed interaction logs from use of OpenDSA at three
universities (Virginia Tech, University of Texas El Paso, and
University of Florida). Table 3 shows estimated reading time
for the algorithm analysis material from three sorting mod-
ules (Insertionsort, Mergesort, and Quicksort). More than
74% of students spent less than one minute on the analysis
material for each of the three modules. Based on this re-
sult, we believe that most of the students are not reading
the analysis material.

Table 3: Time reading algorithm analysis material

University Module N µ(sec) % < 1 min
VT Insertionsort 98 63.57 74.48

Mergesort 96 39.79 78.12
Quicksort 92 64.71 73.91

UTEP Insertionsort 26 49.84 80.76
Mergesort 22 41.45 77.27
Quicksort 16 16.18 93.75

Florida Insertionsort 53 40.39 84.90
Mergesort 44 18.63 95.45
Quicksort 39 26.12 92.30

All Insertionsort 177 54.6 78.52
Quicksort 147 49.2 80.94

86% of students responding to a survey indicated that it is
easier for them to understand how an algorithm works than
to analyze the running time for that algorithm. Quotes in-
clude: “determining asymptotic running time because it is
harder to visualize and less intuitive”, “Complexities are con-
fusing and math-like”, “I think understanding how an algo-
rithm work is easy. It is the style of presentation”, “How the
algs work. It is dependent on material, also abstract stuff is
harder for me to understand”.

78% of students who are more comfortable with dynamics
attributed this to the material, as algorithm analysis is ab-
stract and requires familiarity with mathematical notations.
The other 22% attributed this to how concepts are presented
in OpenDSA (dynamics are presented using visualizations,
analysis is presented mostly through text). Quotes regard-
ing the usefulness of OpenDSA’s algorithm analysis content
include: “Not any more useful than any other book”, “Not as
much as learning the algorithms themselves, but I felt it was
as useful as any resource could be on the topic”, “Yes, but
not as much as understanding the algorithms”, “It could have
been more interactive with showing why the analysis was the
way that it was”, “I found it much more useful on Data struc-
tures. Algorithm analysis doesn’t benefit quite as much from
animations”, “It was very detailed and kind of hard to fol-
low”, “I’d like there to be more visuals for analysis”. Clearly
respondents did not find the OpenDSA material on algo-
rithm analysis different from other textbooks on that topic.
This is not what they expected from OpenDSA, whose goal
is to present content interactively.
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5.2 Content presentation not engaging
When students were asked to provide suggestions for im-
proving presentation of the analysis material in OpenDSA,
most indicated they were expecting a more interactive pre-
sentation in the form of visualizations. Quotes include: “Vi-
sualizations definitely help.”,“I think making the clickthrough
pictures into actual animations would be nice”, “more ani-
mation, the visualizations are great!”, “more visualizations is
always good”, “Visualizations always help :)”, “visualizations
showing each step of analysis would help”, “an animation
will make a much bigger difference.”

6. CONCLUSION AND FUTURE WORK
Educational resources are rapidly moving online. As eText-
books and interactive exercises become more prevalent, tech-
niques to automatically discover the most difficult topics for
students will become increasingly important. Doing so al-
lows both instructors and designers of instructional content
to focus their resources on the most difficult topics. Per-
haps resolving the difficulty might be as simple as fixing a
buggy exercise. But more generally, we find that specific
concepts are truly hard. By examining the topic in detail,
including its method of presentation, we might uncover bet-
ter approaches to instruction, leading to better outcomes.

To illustrate, we are working on addressing the issues raised
by students regarding the lack of visual presentation for al-
gorithm analysis material in OpenDSA. Inspired by the con-
cept of visual proofs [12], a set of Algorithm Analysis Visu-
alizations (AAVs) were implemented for OpenDSA sorting
modules [8]. We have collected preliminary data with two
small classes using the sorting analysis visualizations. Sum-
mary results were collected for two modules teaching Inser-
tion Sort and Quicksort. A Kruskal Wallis tests showed a
significant difference (p < 0.01) between the time spent for
text versus visualizations for these two modules. This indi-
cates that students spend more time on the material when
presented as visualizations. Having proved the value of the
concept, we will continue to expand on this approach.
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ABSTRACT
Recent studies of MOOCs demonstrate their ability to reach
a large number of users, but also caution against the high
rate of dropout. Some have looked closely at MOOC partic-
ipation in order to better understand how and when users
start to disengage, and, if they remain engaged, in what
activities they participate. Most of this prior work relies
heavily on descriptive statistics or clustering methodologies
to highlight basic user participation characteristics. In this
paper, we adapt NMF to provide a multi-dimensional view
of user participation. We use log data to create a bottom-up
understanding of user participation, and identify five basic
behaviors associated with participants’ use of content and
their engagement with assessment. Furthermore, we do a
cross-course analysis across four courses and find that these
five behaviors are present in all courses. Interestingly, users’
participation patterns - how they engage in these five be-
haviors - vary across courses even when the course topics
are similar. Our methodology can be applied to other data
sets, and findings from this work can assist in interventions
to help users successfully accomplish their learning goals.

Keywords
MOOCs, Participant Behavior, NMF, Comparative Analysis

1. INTRODUCTION
As Massive Open Online Courses (MOOCs) grow in popu-
larity, and offer an increasing variety of subjects across mul-
tiple platforms, there has been significant interest in MOOC
users’ participation patterns. Extremely low user comple-
tion rates [6] have motivated examinations and studies of
MOOC behavior that aim to ascertain whether changes in
pedagogy can improve completion outcomes, or if every in-
coming class contains a cohort of users that had no intention
to complete.

We were motivated by this recent work to attempt to bet-
ter understand MOOC users’ behavioral patterns, and the
evolution of participation over time and across courses. In
this paper, we analyze data from four MOOC courses across
three axes (learners, time, and courses), choosing methods
that link behaviors and patterns across these three dimen-
sions. Utilizing the rich features developed to characterize
learners’ weekly interactions, we adapt non-negative matrix
factorization (NMF) [5] to study the importance of these
features and the behavior of users over time [2].

Several factors make NMF particularly well-suited for this
type of analysis. The non-negativity constraint helps to
identify distinct but additive latent factors. In other words,
we are able to learn user behaviors in terms of evolving parts
due to NMF’s additive latent factors and our temporal adap-
tation (linking behaviors across weeks).Through this study,
we make the following unique contributions: 1) We iden-
tify behavioral patterns of users that are consistent across
multiple MOOCs; 2) We demonstrate how these behaviors
vary across different courses; and 3) We demonstrate the
feasibility of a framework that can be applied across similar
multi-dimensional datasets.

2. RELATED WORK
Several studies of MOOCs highlight low completion rates
[13]. The University of Edinburgh launched six MOOCs on
the Coursera platform in January 2013 [7]. Evaluations re-
vealed that, of the 309,682 learners initially enrolled, 123,816
(about 40%) accessed the course sites during the first week
(‘active learners’), and 90,120 (about 29%) engaged with
course content. Over the duration of the course, the num-
ber of active participants rose to 165,158 (53%). As a gauge
of persistence, 36,266 learners (nearly 12%) engaged with
week 5 assessments. This represented 29% of initial active
learners (although individual numbers for each of the six
courses ranged from 7% to 59%). In addition, 34,850 people
(roughly 11% of those who enrolled) achieved a statement of
accomplishment for reaching a percentage-based benchmark
of course completion.

Similarly, when Duke University ran a Bioelectricity MOOC
in 2012 [15], 12,175 students initially registered. Only 313
participants (2.6%) achieved a statement of accomplish-
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ment. Learner feedback suggested three specific reasons for
failure to complete [15]. [8] provides a compilation of avail-
able data on MOOC completion. Further analysis of the
data shows that, of the 61 courses hosted by Coursera, the
average completion rate was just over 6%. This combination
of MOOCs’ enormous popularity and extremely low comple-
tion rate has attracted significant interest.

[17] used a classification method that identifies a small num-
ber of longitudinal engagement trajectories in MOOCs. This
classifier consistently identifies four prototypical trajectories
of engagement: (1) Completing, (2) Auditing, (3) Disengag-
ing, (4) Sampling. To decide these engagement patterns,
the authors used a number of binary variables to determine
whether a student accessed a resource or attempted a prob-
lem. In contrast, we begin to extract a number of richer
descriptors about the students’ interaction with the online
learning platform.

[9] divides participants into five profiles: no-shows (those
who register but never log in); observers (those who log in
but do not take assessments); drop-ins (those who partici-
patebut do not attempt to complete the entire course); pas-
sive (those seeing the course as content to consume); and
active (those participating in all the activities and enriching
the course). Similarly, [16] distinguishes five groups of peo-
ple depending on their level of participation in the MOOC
forum: inactive (those that do not visit the forum); pas-
sive (those that just consume information); reacting (those
that add further aspects to existing questions); acting (those
that post questions and lead discussions); and supervis-
ing/supporting (those that lead discussions and summarize
gained insights).

3. DATA
Our study utilizes four courses, including 6.002x (Fall 2012
and Spring 2013): Circuits and Electronics, 2.01x (Spring
2013): Elements of Structures, 3.091x (Spring 2013): Intro-
duction to Solid State Chemistry. After filtering out learners
who had no browsing events for the duration of the courses,
the course sizes are 17379, 6339, 5597 and 8870 users, re-
spectively. The course durations are all set to 14 weeks.
Using the scripts from the MOOCdb project, we are able to
extract 21 features. Table 1 shows the feature numbers and
descriptions.

Figure 1 presents the course sizes dynamically. The count
of active users for any week is given by the sum of users
that have at least one non-zero feature in that week. The
count of inactive users is the sum of users that have all-zero
feature values in the current week, but had been active in a
prior week. New users are those whose first non-zero feature
is in the current week. The dropout value is the number of
students who are inactive this week and will be inactive for
all future weeks.

Because some features are complex and not fully explained
by their feature names, we will expand their definitions here.
Each feature is computed using the data collected in a week,
and generates a single value, so if there are 14 weeks in a
course, a user’s feature vector will contain 14 values per
feature.

2.01x, Spring 2013 3.091x, Spring 2013
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Figure 1: Student activity statuses over time for each class.
Vertical lines denote midterm exams and quizzes.

Time spent: Feature 1 sums a user’s total time spent on
any and all events in the course. Feature 11 is the single
longest time spent on any single resource (book, wiki, lecture
videos, etc). Feature 12 is the time specifically spent on
lectures, and feature 13 is the time spent on the course wiki.

Homework participation: Feature 4 is the count of all
unique problems a learner attempted [1]. Feature 5 is the
count of all attempts, including multiple tries at the same
problem. Feature 6 is the count of all problems that the
learner got correct (grade 1). Feature 7 is the average num-
ber of attempts per problem. Feature 18 counts all correct
attempts, in order to identify users that correctly solve the
same problem multiple times.

Ratio-based features: Feature 8 measures the total time
spent on the course per correct problem by dividing features
1 and 6. Feature 9 divides the number of attempts (feature
5) by the number of correct problems (feature 6). Feature
19 divides total attempts (feature 5) by non-distinct correct
attempts (feature 18).

Difference-based features: Features 14-17 represent the
change in features 2, 7, 8, and 9, respectively. This is com-
puted by taking the respective feature’s value for the current
week, subtracting the previous week, and then normalizing
the result.

Regularity and procrastination: Feature 10 tells us how
spread out a student’s schedule is over the week by present-
ing the variance of his or her event timestamps. Feature
20 computes the average amount of time the user submits
before the deadline (a zero value means an on-time submis-
sion, while a higher value means the word was submitted
earlier). Finally, feature 21 calculates the standard devia-
tion in working hours throughout the day—if the student
starts work around the same time every day, the feature
value will be low.

Feature extraction allows us to represent learners as a set of
multiple time series. A learner’s basic actions are collected
and summarized into the 21 interpretive features on a weekly
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Table 1: Students’ features.

Features’ Names

1 sum observed events duration
2 number of forum posts
3 average length of forum posts
4 distinct attempts
5 number of attempts
6 distinct problems correct
7 average number of attempts
8 sum observed events duration per correct problem
9 number problem attempted per correct problem
10 observed event timestamp variance
11 max duration resources
12 sum observed events lecture
13 sum observed events wiki
14 difference feature 2
15 difference feature 7
16 difference feature 8
17 difference feature 9
18 attempts correct
19 percent correct submissions
20 average predeadline submission time
21 std hours working

basis. Because learners are represented as a set of features
with per-week, aggregate values, time is a dimension of our
data set.

4. METHODOLOGY
Uncovering the behaviors of MOOC students requires si-
multaneously finding interaction patterns (behaviors) across
a large number of students and permitting individual stu-
dents to exhibit multiple behaviors. Since we assume stu-
dent interactions may be the result of multiple behaviors,
we choose to use a decomposition method (NMF) which re-
sults in a parts-based representation of student interactions.
Students may exhibit multiple behaviors and their behaviors
may change over time.

Step 1: Apply NMF Given a three dimensional vec-
tor representation of the student feature data with w
weeks, f features, and n users, we construct the tensor
Aijk. We begin by applying non-negative matrix fac-
torization to each feature-user matrixAi for i = [1...w].
We use a standard implementation [14] with NNDSVD
[3] for initialization of the basis matrix and Frobenius
cost function. The rank parameter, r, is set to six,
which is selected through approximation.

Ai = BiCi (1)

The results of factorizing Ai are Bi and Ci, the basis
and coefficient matrices, respectively. The dimensions
of Bi are f × r and the dimensions of Ci are r × n.

Each of the r column vectors in Bi contain f values
that essentially describe the importance of each fea-
ture to the given column vector. In our data, we use
the set of important features in each basis vector to
describe a behavior. In matrix Cᵀ

i , there are r column

vectors that contain n coefficient values, one for each
user. The mth column vector’s coefficient values in Cᵀ

i

describes how closely users associate with the mth ba-
sis vector in Bi. Because every user has r coefficient
values, it is possible for a user to identify with multiple
basis vectors. This is significantly different than hard
clustering approaches such as K-means, where groups
are mutually exclusive.

Step 2: Alignment After performing the matrix factor-
ization on each week, we have w basis matrices and w
coefficient matrices. To identify persistent basis vec-
tors and patterns, we must connect the results over
time. There is no guarantee the order of the basis
vectors is consistent over all weeks because the ba-
sis matrices are produced by independent executions
of NMF. To achieve this, we first compute the cosine
similarity using Equation (2) between two consecutive
basis vectors. In other words, for each of the r basis
vectors in week i, we compute the cosine similarity to
all basis vectors in week i + 1, resulting in r2 com-
putations. Ultimately, there are (w − 1)r2 similarity
computations.1

Sim(u, v) =
u · v

||u||2||v||2
(2)

By examining the distribution of cosine similarity val-
ues, an alignment threshold may be selected. For our
data, a threshold value of 0.95 was chosen to identify
matching basis vectors between weeks. We found that
after the first week, all basis vectors uniquely match
one and only one basis vector in the consecutive week
when a threshold of ≥ 0.95 is used. This phenomenon
occurred for all four courses we used in our experi-
ments. Although basis matrices for each week are esti-
mated independently, we find five basis vectors which
persist over time and occur in all the classes.

Step 3: Normalize and define behaviors The aligned,
per-week basis vectors are normalized. We then av-
erage these aligned-normalized vectors into a single,
representative behavioral vector. Having a single, nor-
malized vector permits a semantic interpretation of the
behavior based on relative feature values. By identi-
fying the most important features (the ones with the
largest values) in each behavioral vector, we are able to
label the vectors by the interaction pattern they best
represent.

Step 4: Coefficient analysis

Every student’s interaction attributes may be approx-
imated using a weighted mixture of the discovered be-
havior vectors. These weights (coefficients) can be con-
sidered to define a soft-membership of a student to a
behavior.

In order to decide if a user belongs to a behavior, we
threshold the distribution of the coefficient values per

1We choose cosine similarity because it is a measure of an-
gular similarity between two vectors. Thus, two basis vec-
tors whose only nonzero entry is feature j will be extremely
similar. This is valuable for aligning basis vectors whose
distributions of features are similar.
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week and per behavioral vector (or basis). This means
that the algorithm will generate r×w thresholds. The
thresholding algorithm takes the entire range of coef-
ficient values per vector and limits the range of values
to the top x%. The threshold (top x%) is a parame-
ter. This means that if the range of coefficient values
for a behavior is 0-100, then selecting a threshold of
0.85 will only consider users with coefficient values of
85-100 to be exhibiting that behavior. There is an
additional minimum size parameter s that adjusts for
a skewed distribution where a few users have signifi-
cantly higher coefficient values that any other users.
This skewed distribution causes the top x% of coef-
ficient values to only include these few users. If the
number of users within the top x% is less than the s,
then the users will be saved, and the threshold compu-
tation will be repeated without them. For our data, we
use a threshold of 0.85 with a minimum size parameter
of 30.

We assign behaviors to students for each week using
the data-derived thresholds. By tracking the set of be-
haviors across weeks, we generate a transition diagram
that presents the number of students exhibiting each
behavior over each week and the migration of users
between various behaviors. The transition diagram al-
lows us to understand the evolution of user behavior
as a course progresses.

5. BASIS MATRIX RESULTS
The resulting basis matrices for 6.002x (Fall 2012) exhibit
eight unique behaviors. Tables 2 and 3 numerically sum-
marize behaviors for week one and the average of the other
weeks, respectively. Because the first week manifests two
unique behaviors, namely introduction and sampling, it is
kept separate. From the second week onwards, all behaviors
are persistent (at least 95% cosine similarity). This allows
us to average weeks two through 14 in Table 3.

Basis vector one is dominated by feature 11
(max duration resources), which is the duration of the
longest observed event this week. This vector represents a
deep behavior, because the associated students must have
spent a long time on a single resource.

Basis vector two is primarily decided by feature 10 (ob-
served event timestamp variance). Because this feature
tells us how spread out the student’s schedule is over the
week, this vector describes a consistent behavior. Having
a high timestamp variance requires users to log in multiple
times a week.

Basis vector three is primarily decided by feature 21
(std hours working), which is the standard deviation in
working hours over the day. This could represent a bursty
behavior—because a user must be active during different
times in a day to obtain a high feature value, this could
mean that the user has a single prolonged session or multi-
ple, separate sessions.

Two basis vectors exist only in the first week of the
course. Basis vector four in Table 2 is decided by feature
three (average length of form posts) and feature two (num-
ber of form posts). This supports the idea that users inter-

Table 2: Matrix of normalized basis vectors (behaviors) for
week 1 (course 6.002x fall 2012). The behaviors Introduction
and Sampling are unique to week 1. Dominant feature values
are shown in boldface.

Feature Deep Consistent Bursty Introduction Sampling

1 0.012 0.000 0.001 0.000 0.088
2 0.000 0.000 0.000 0.137 0.000
3 0.000 0.000 0.000 0.862 0.000
4 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000
10 0.000 0.988 0.000 0.000 0.000
11 0.981 0.011 0.000 0.001 0.000
12 0.000 0.000 0.000 0.000 0.665
13 0.000 0.000 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000
21 0.008 0.000 0.999 0.000 0.248

acted heavily during the opening week of the course. The
disappearance of this basis vector, however, tells us that fo-
rum interaction in later parts of the course was insignificant
in 6.002x fall 2012. For this reason, this basis vector char-
acterizes an introduction behavior.

Basis vector five in Table 2 is defined by features 12
(sum observed events lecture), 21 (std hours working), and
1 (sum observed events duration). This group of features
supports the hypothesis that users are browsing through a
lot of content during the first week of the course. This may
be because users are interested in seeing what lies ahead in
the course, or because some users may have joined only to
gather information on one particular topic. Thus, basis vec-
tor five during the first week expresses a probing behavior.

After the first week, two more basis vectors persist. At
this point, basis vector four is primarily characterized by
feature 19 (percent correct submissions). By turning in
assignments with high correctness, the corresponding stu-
dents can be associated with a performance behavior. Ba-
sis vector five is strongly defined by feature 20 (aver-
age predeadline submission time). By turning in assign-
ments long before their deadlines, these students can be as-
sociated with an response behavior.

When we apply the same analysis to other courses, we see
similar behaviors. The average basis matrix tables for 2.01x,
3.091x, and 6.002x are not displayed because they exhibit
the same behaviors as table 3 with 95% cosine similarity.
It appears that each of these five behaviors— deep, consis-
tent, bursty, performance, and response—appear in all of
the courses. The key difference is that 6.002x has two ad-
ditional behaviors that occur only in the first week. The
introduction and sampling behaviors do not appear to be
prevalent in the other courses. This could be due to course
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Table 3: Average matrix of normalized basis vectors for
weeks 2 through 14 (Course 6.002x, Fall 2012). Dominant
feature values are shown in boldface.

Feature Deep Consistent Bursty Performance Response

1 0.031 0.002 0.007 0.000 0.000
2 0.001 0.000 0.001 0.000 0.000
3 0.004 0.001 0.003 0.000 0.000
4 0.005 0.000 0.000 0.000 0.029
5 0.003 0.000 0.000 0.001 0.012
6 0.000 0.000 0.000 0.052 0.000
7 0.001 0.000 0.000 0.003 0.003
8 0.000 0.000 0.000 0.001 0.001
9 0.000 0.000 0.000 0.001 0.001
10 0.001 0.993 0.000 0.000 0.000
11 0.922 0.000 0.005 0.007 0.028
12 0.010 0.000 0.002 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000
14 0.001 0.000 0.000 0.000 0.000
15 0.001 0.001 0.000 0.002 0.002
16 0.000 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.015 0.000
19 0.002 0.000 0.000 0.743 0.004
20 0.000 0.000 0.000 0.174 0.920
21 0.017 .0000 0.980 0.000 0.000

sizes, and the fact that 6.002x was the first edX course ever
released. Users may have been encouraged to communicate
in the forums early on (introduction), or there may have
been users testing the waters of this new online course plat-
form (sampling).

6. STUDENT TRANSITIONS
After applying the thresholding algorithm, we generate user
behavior transition diagrams for each course. The size of
each colored bar is scaled according to the amount of stu-
dents exhibiting the behavior. The transition lines in be-
tween the bars are sized and directed based on user migra-
tion between sets of behaviors.

Using these diagrams, we can observe changes in the behav-
iors themselves, and the transitional motifs that occur due to
user migration. After the first week or two, a single behavior
persists as the largest. Additionally, this behavior tends to
act as a hub for user migration. This phenomenon signifi-
cantly highlights the fact that the behaviors may manifest
differently despite the existence of the same five behaviors
among all five courses.

In 2.01x, most user migration occurs into and out of the re-
sponse behavior, with a secondary focus on the deep behav-
ior. Notable moments occur in week 5 and weeks 10 to 12,
where migration between consistent and deep occur. Oth-
erwise, there are several recurrent transitions. These motifs
include each permutation of deep and/or response migrating
to deep and/or response.

In 3.091x, most user migration occurs into and out of the
performance behavior. Most unusually, there is very little
migration in the entire first half of the course. Only in the
second half does migration pick up to levels we would have
expected given the results of the other courses. Although
some migration patterns through the performance behavior

2 3 4 5 6 7 8 9 10 11 12 13 14
Week

Deep
Consistent
Bursty
Performance
Response

Behaviors

1

Deep
Consistent
Bursty
Performance
Response

Behaviors

(a) 2.01x, Spring 2013

2 3 4 5 6 7 8 9 10 11 12 13 14
Week
1

(b) 3.091x, Spring 2013

2 3 4 5 6 7 8 9 10 11 12 13 14

Deep
Consistent
Bursty
Performance
Response

Behaviors

(c) 6.002x, Fall 2012

2 3 4 5 6 7 8 9 10 11 12 13 141
Week

Deep
Consistent
Bursty
Performance
Response

Behaviors

(d) 6.002x, Spring 2013

Figure 2: User behavior transitions over time. Vertical bars
are numbers of students performing each behavior. Diago-
nal groups indicate transitions: for example, the transition

indicates students who were Deep and Bursty and have
transitioned to Consistent. Transition thickness is the log of
the number of students involved.
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repeat occasionally, they only occur for two to three weeks
at a time. Thus, we do not infer any transitional motifs from
this course.

In 6.002x fall, most user migration occurs through the deep
behavior, with a secondary focus on the consistent behav-
ior. A unique circumstance occurs between weeks one and
two with the migration of the initially enormous bursty be-
havior. Besides this, the transitional motifs include each
permutation of deep and/or consistent migrating to deep
and/or consistent.

In 6.002x spring, most user migration occurs through the
performance behavior. Unlike the other courses, there are
two more behaviors through which there is significant mi-
gration: the deep and bursty behaviors. As a result, we
see many more motifs than simply the permutations of the
top two behaviors. In the early weeks, migration is heaviest
through deep and performance. This means that early on,
users are both engaged and performing well. In the mid-
dle weeks, during and after the midterm, there is a chaotic
shuffle between behaviors as users deal with the course dif-
ferently. In the later weeks, however, deep migration falls
off and users mostly move between bursty and performance.
This may suggest that users are capable of finishing their
work in a single day or two and achieving high correctness
simultaneously. This result could perhaps reflect a decreased
difficulty in the later weeks of the course. The occurrence of
multiple large behaviors appears to tells us more about the
evolution of user behavior.

7. CONCLUSION
In this comparative study of four MOOC courses, we show
how users follow five specific behaviors across the courses.
We found that although these behaviors are common, their
patterns of occurrence vary across courses. Through our
multi-dimensional data and our adaptation of NMF, the re-
sults reveal in great detail the differences in behavior over
time between the courses. Because our method analyzes
behavior at every step of the MOOC experience, our work
can improve the learning experience for all users, not just
those that plan to finish the course. For future work, we can
expand the purposes of user behavior trajectories by using
Markov modeling for prediction. We can add newer, more
descriptive features in addition to running the analysis with
a higher rank in order to discover possible alternative be-
haviors. If course outcomes and assessment information are
available, we can combine these with the dynamic behav-
ioral motifs to better understand the underlying processes
that fuel behavioral changes.
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ABSTRACT
With the aid of educational data mining and statistical anal-
ysis, we investigate the relationship between collaboration
outcomes and collaborative problem solving (CPS) skills ex-
hibited during the collaboration process. We found that
negotiation skill contributes positively to the collaboration
outcomes while purely sharing information does the oppo-
site.

Keywords
collaborative problem solving, simulation-based assessment,
random forest

1. INTRODUCTION
Collaborative problem solving (CPS) is widely considered as
one of the critical skills for academic and career success in
the 21st century [9]. However, assessing CPS, particularly
in a large-scale and standardized way, is very challenging,
as one must take into account the forms of collaboration,
the size of teams, and assessment contexts. Among the ex-
isting studies on assessing CPS, most of them are not de-
signed from the perspective of a standardized assessment,
but more from the perspective of revealing some important
aspects of CPS [6, 16, 5, 22]. A recent review can be found
in [21]. The first large-scale and standardized assessment for
CPS was the international Assessment and Teaching of 21st
century skills project (ATC21S) carried out by Griffin and
colleagues [9, 4]. In this assessment, two students collabo-
rate via text chat to solve computer-based CPS tasks and
their communications as well as some other features (such
as the response time) were coded automatically according

to a CPS framework [1]. Another large-scale assessment for
CPS was carried out by the Programme for International
Student Assessment (PISA) in its sixth survey in 2015 [17].
In this assessment, students collaborate with different num-
ber of virtual partners (avatars) on a set of computer-based
collaborative tasks and they communicate with their virtual
partners by choosing from a list of predefined texts. Both
ATC21S and PISA 2015 consider the CPS as skills across
different domains and the tasks used in their assessments
are not confined into a specific domain.

In this paper, we report our findings on the relationship be-
tween the CPS skills and the collaboration outcomes in the
domain of science, as we think CPS is more likely to be do-
main dependent. We developed a simulation-based task, in
which two participants collaborate via text chat to complete
a set of questions and activities on volcanoes [10]. We choose
a simulation-based task because it provides students with
opportunities to demonstrate proficiencies in complex in-
teractive environments that traditional assessment formats
cannot afford [14], which is especially suitable for measuring
the complex skills such as CPS.

In the simulation task, for each item, we ask each mem-
ber of a dyadic team to respond individually first (initial
response). Then, after collaboration, each of them will be
given a chance to submit a revised response. The difference
between the initial and revised responses directly encodes
the effect due to collaboration. Based on the data collected
using Amazon Mechanical Turk, we introduce two variables,
“number of changes” and “score change”, to characterize the
collaboration outcomes. The “number of changes” is the to-
tal number of attempts by the team members to change the
initial responses after the collaboration. Some of the at-
tempts change the responses from correct to incorrect while
some change the responses from incorrect to correct. This
number reflects the willingness to make a change after the
collaboration. On the other hand, the “score change” is the
sum of the score changes between the initial and revised re-
sponses, which quantifies the results of the changes. Based
on these two variables, we classify the teams into “effective
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collaboration”(e.g., teams that have positive“score change”)
and “ineffective collaboration” (e.g., teams that have nega-
tive “score change” or zero “number of changes”).

In addition to quantifying the collaboration outcomes, we
introduced a “CPS profile” to characterize the CPS skills
exhibited by each team during the collaboration process.
The CPS profile is defined as the frequency distribution of
CPS skills (unigram) and the consecutive CPS skill pairs (bi-
gram). Random forest classification analysis [12, 3] is used
to analyze the relationship between collaboration outcomes
and the CPS skills. Random forest is a decision tree-based
binary classifier, with increased robustness by using multi-
ple trees rather than a single tree. It is mainly used as a
classifier to map the features (independent variables) to la-
bels (dependent variables). When training a random forest
classifier, the relative importance of the feature variables for
determining the labels can be obtained as a by-product. In
our case, the feature variables are the CPS profile and the
labels are the two classes of collaboration outcomes, e.g., ef-
fective and ineffective collaborations. By training a random
forest classifier on the data, we found that negotiation skill
is more important for a successful collaboration outcome.

2. METHOD
2.1 Assessment Instruments
We designed a research study to explore the relationship be-
tween CPS skills and the collaboration outcomes. In this
large-scale study, we focused on the domain of science and
limited the number of members of each team to two. We
used text chat as the collaboration medium. There were two
major assessment instruments:1) A standalone test for gen-
eral science knowledge consisting of 37 multiple-choice items
adapted from the Scientific Literacy Measurement (SLiM)
instrument [18]; 2) A web-based collaborative simulation
task on volcanoes that require two participants collaborate
to complete.

The simulation task was modified from an existing sim-
ulation, Volcano Trialogue [23]. In this simulation task,
two participants worked together via text chat to complete
the tasks. All of the turn-by-turn conversations and time-
stamped responses to the questions were recorded in a care-
fully designed log file [11]. These conversations were used to
measure CPS skills, while the responses to the in-simulation
science items were used to measure science inquiry skills [23].
Figure 1 shows screenshot of the simulation task.

To capture the evidence for the outcomes of the collabora-
tion, we designed a four-step response procedure for each
item in the task: 1) Each participant was prompted to
respond the item individually before any collaboration; 2)
Each participant was prompted to discuss the item with her
partner; 3) Each participant was prompted to revise her
initial response if she wanted; 4) A representative was ran-
domly chosen to submit a team answer.

In this way, the changes in the responses before and after the
collaboration reflect how effective the collaborations were
and allow us to probe directly what CPS skills are more
important for better collaboration outcomes.

2.2 Participants and Data

Figure 1: Screenshots from the collaborative simu-
lation task.

We collected data through Amazon Mechanical Turk, a crowd-
sourcing data collection platform [13]. We recruited 1,000
participants with at least one year of college education to
take the general science test. Then, they were teamed ran-
domly into dyads to take the collaborative simulation task.

After removing incomplete responses, we had complete re-
sponses from 493 dyads. However, a further scrutiny of the
data showed that many of the teams started some conver-
sations even before the system prompted them to discuss.
This means that they started conversations before or during
the period that they are supposed to make initial responses
individually. Different teams had nonprompted conversa-
tions for a different subset of the items, which complicates
the analysis. Of the teams, 82 did not have nonprompted
conversatons while the other teams had nonprompted dis-
cussions for a varying number of items. We compared the
scores of the general science knowledge test for participants
from the 82 teams with the scores for the rest of the teams
via a two-tailed t-test for independent samples, and the re-
sulting p-value is 0.38. This indicates that participants from
the 82 teams are not different in a statistically significant
way from the rest of the participants in terms of the general
science knowledge. To make our analysis clean, we will stick
to the data from this 82 teams throughout this paper.

The data from the simulation task for each team include
the responses to the items in the simulation and the text
chat communications between the dyads around each item.
There are 7 multiple-choice equivalent items. Around each
item, there are about 5 turns of conversations.

2.3 Analysis
The focus of this paper is to investigate the relationship be-
tween the CPS skills and the collaboration outcomes. As
such, our analysis focuses on the responses and communica-
tions in the collaborative simulation task.

2.3.1 Scoring and Annotating
Students’ responses to the seven multiple-choice equivalent
items were scored based on the corresponding scoring rubrics
as presentend in [23]. In addition to the outcome response
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data, we also applied a CPS framework to annotate the
chat communications during the collaboration [15]. This
CPS framework was developed based on the findings from
computer-supported collaborative learning (CSCL) research [2,
7, 9, 21] and the PISA 2015 Collaborative Problem Solving
Framework [17].

The framework outlines the four specific categories of the
CPS construct (skills) we would like to focus on: sharing
ideas, negotiating ideas, regulating problem-solving activities,
and maintaining communication. Each of these major cate-
gories had some subcategories and the total number of sub-
categories amounted to 33 and a summary of the coding
rubrics can be found in Table 1. All the coding was done
at the subcategory level, based on which of the four major
categories were assigned at a later point.

Two human raters were trained on the CPS framework, and
they double-coded a subset of the discourse data (15% of the
data). The unit of analysis was each turn of a conversation,
or each conversational utterance. The raters had two train-
ing sessions before they started independent coding. In the
first session, the author of the CPS framework (the second
author) trained both raters on the 33 subcategories of CPS
skills using the skills definitions and coding examples for
each subcategory. In the second training session, the trainer
and two raters coded data from one dyad together to practice
the application of specific codes and address issues specific
to classifying utterances using the CPS framework. After
the training sessions, the two raters independently coded
discourse data from about 80 dyads.

We used the unweighted kappa statistic to measure the de-
gree of agreement between the human raters’ coding. The
unweighted kappa was 0.61 for all 33 subcategories and 0.65
for the four major categories. According to Fleiss and Co-
hen [8], a kappa value of 0.4 is an acceptable level of agree-
ment for social science experiments.

2.3.2 Quantifying the Collaboration Outcomes
The difference between the revised response and initial re-
sponse is a direct measure of the collaboration outcomes. If
we treat each dyad as the unit of analysis, we need to de-
fine variables to quantify the answer changes for each item.
We first introduce the “number of changes” (denoted as n)
to quantify how many revised responses are different from
initial responses from both members of each dyad for each
item. The possible values for n are {0, 1, 2}: n is zero when
nobody makes any changes, one when only one person makes
changes, and two when both members make changes. Next,
we introduce “score change” (denoted as s) to quantify the
total score changes between the revised response and the
initial response from both members of each dyad for each
item. The definition of s is the sum of the score difference
between initial responses and revised responses for the two
members of each dyad. The possible states for s are {-2, -1,
0, 1, 2}. One should note that for the state s = 0, there
are two different possibilities. The first is that both mem-
bers do not change their responses. The second is that one
member changes a response from incorrect to correct and
the other changes from correct to incorrect. Therefore, to
have a complete description of the changes at a dyadic level,
we introduce the vector “item collaboration effect” for each

item, δk = (sk, nk), with δk defined at the item level and
subscript k denoting the item number. At the task level,
we simply sum all items, which gives ∆ = (S,N), where
S =

∑
k sk and N =

∑
k nk. By convention, we use the

lowercase n and s to denote the item level changes and the
uppercase N and S to denote the task-level changes.

2.3.3 Quantifying the CPS Skills
Each turn-by-turn conversations was classified in one of the
four categories of CPS skills (e.g., share ideas, negotiate
ideas, regulate problem solving, and maintain communica-
tion). We introduce a “CPS profile” as a quantitative rep-
resentation of the CPS skills of each dyad. The profile was
defined by the frequency counts of each of the four CPS-
skill categories or their combinations and had two levels,
unigram and bigram. The unigram, bigram, or even ngram
levels are used in natural language processing to represent
text. We borrow this idea here to represent CPS skills and
limit us to the unigram and bigram as the frequency count
is too low for other ngram. The frequency counts of the
different CPS skills were used at the unigram level, while
the frequency counts of consecutive pairs of CPS skills in
the conversations were used at the bigram level. As such,
each dyadic team’s communications can be represented by
the corresponding CPS profile.

It is worth noting that though we consider only unigram and
bigram of the CPS skills, other collaboration-related infor-
mation can also be appended to the profile. For example,
the number of turns, the total number of words, etc. Such
a profile is essentially a vector representation of collabora-
tion skills exhibited by each team. The vector nature of this
representation allows us to easily calculate “similarity” or
“dissimilarity” among the teams, which is the foundation of
cluster analysis.

3. FINDINGS
We have introduced two variables, N and S, to quantify
the collaboration outcomes. We also introduced the CPS
profile to quantify the CPS skills. Now, we investigate the
relationship between the CPS skills and the collaboration
outcomes.

3.1 Effective versus Ineffective Collaboration
Based on the N and S variables, we define the effective
collaboration and ineffective collaboration as follows

• Effective collaboration: N > 0 ∩ S > 0.

• Ineffective collaboration: (N > 0 ∩ S ≤ 0) ∪ N = 0.

We need to point out that the criteria for effective collabora-
tion is not necessarily a fixed one. In the current study, we
considered the collaboration as effective as long as at least
one member made at least a total net change from incorrect
to correct. If nobody in the team made at least one total
net correct change, we thought of the collaboration as inef-
fective. Figure 2 shows how the 82 teams were distributed
in the space spanned by S and N .
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Table 1: Coding rubric of CPS skills used in this paper was developed based on a review of CSCL research
findings [2, 7, 9], and the PISA 2015 Collaborative Problem Solving Framework [17], with a focus on CPS in
the domain of science. More details about the CPS framework can be found in [15].
CPS skills Student performance (subcategories)
Sharing ideas 1. Student gives task-relevant information (e.g., individual response) to the teammate.

2. Student points out a resource to retrieve task-relevant information.
3. Student responds to the teammate’s request for task-relevant information.

Negotiating ideas 4. Student expresses agreement with the teammates.
5. Student expresses disagreement with teammates.
6. Student expresses uncertainty of agree or disagree.
7. Student asks the teammate to repeat a statement.
8. Student asks the teammate to clarify a statement.
9. Student rephrases/complete the teammate’s statement.
10. Student identifies a conflict in his or her own idea and the teammate’s idea.
11. Student uses relevant evidence to point out some gap in the teammate’s statement.
12. Student elaborates on his or her own statement.
13. Student changes his or her own idea after listening to the teammate’s reasoning

Regulating problem solving 14. Student identify the goal of the conversation.
15. Student suggests the next step for the group to take.
16. Student expresses confusion/frustration or lack of understanding.
17. Student expresses progress in understanding.
18. Student reflects on what the group did.
19. Student expresses what is missing in the teamwork to solve the problem.
20. Student checks on understanding.
21. Student evaluates whether certain group contribution is useful or not for the
problem solving.
22. Student shows satisfaction with the group performance.
23. Student points out some gap in a group decision.
24. Student identifies a problem in problem solving.

Maintaining communication 25. Student responds to the teammate’s question (using texts and text symbols).
26. Student manages to make the conversation alive (using texts and text symbols,
using socially appropriate language).
27. Student waits for the teammate to finish his/her statement before taking turns.
28. Student uses socially appropriate language (e.g., greeting).
29. Student offers help.
30. Student apologizes for unintentional interruption.

31. Student rejects the teammateâĂŹs suggestions without an accountable reason.
32. Student inputs something that does not make sense.
33. Student shows understanding of the teammate’s frustration.

Proceedings of the 9th International Conference on Educational Data Mining 385



Figure 2: The distribution of the teams in space
spanned by N and S.
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Figure 3: Unigram and bigram profile of CPS skills
for the teams corresponding to effective and ineffec-
tive collaborations.

Next, we compare the mean CPS profiles of the teams from
the effective and ineffective collaborations and the results
are shown in Figure 3.

From these results, one can readily see that at the unigram
level, the teams with effective collaboration show statisti-
cally significantly more negotiating skills than the teams
with ineffective collaboration. At the bigram level, teams
with effective collaboration exhibited statistically significantly
more of the following consecutive CPS skill pairs: share-
negotiate, negotiate-share, regulate-share, and negotiate-negotiate.
However, the teams with ineffective collaboration showed
many more share-share skill pairs.

3.2 Relative Importance of CPS Skills
Figure 3 shows certain CPS skills exhibit more different
frequency for effective and ineffective collaborations, which
means they have more weight in determining the collabora-
tion outcomes. To get a more quantitative measure of the
relative importance of each CPS skills (or skill pairs), we
used two methods as follows.

First,we perform a t-test for each of the CPS skills (or skill
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Figure 4: P-value of t-test on the frequency of dif-
ferent CPS skills corresponding to effective and in-
effective collaborations. The red horizontal dashed
line corresponds to a significant level of 0.05.

pairs) for the effective collaboration and ineffective collab-
oration groups. We use the corresponding p-value to tell
which skills or skill pairs show more distinction. The p-value
for each component of the CPS profile was shown in Figure 4.
If we choose 0.05 as the significance level, negotiate, share-
negotiate, negotiate-share and negotiate-negotiate stand out
immediately.

A second method we used to find out the relative impor-
tance of the CPS skills or skill pairs (feature variables) is
random forest classifier [12, 3]. We choose the collabora-
tion outcomes as label variables. During the training of the
classifier, a set of decision cuts were made on each feature
variable. The relative depth of a feature used as a decision
node in a decision tree represents the relative importance of
that feature with respect to the predictability of the target
labels. Generally speaking, features used at the top level of
the decision tree will affect a larger fraction of the sample in
terms of the final prediction. Therefore, the expected frac-
tion over the trees in the forest can be used as an estimate of
the relative importance of the features. Figure 5 shows the
relative importance of the CPS skills and skill pairs based on
such an analysis. The results show that negotiation-related
skills top the ranking.

The results from these two different analyses converge nicely
on that negotiation is a very critical skill for successful col-
laboration. This finding is consistent with the findings in
the literature on knowledge-building discourse [19, 20], as
knowledge is often built upon its use and negotiation in-
cludes interpretive process of making meaning of exchanged
ideas.

4. CONCLUSIONS AND IMPLICATIONS
In this paper, we introduced a CPS profile approach to quan-
tify the CPS skills of each team and found that the negoti-
ation skill at the unigram level is important for better col-
laboration outcomes. At the bigram level, we found that
more negotiation-related skill pairs, such as share-negotiate,
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Figure 5: Relative feature importance based on a
random forest classifier.

negotiate-share, regulate-share, and negotiate-negotiate, leads
to more effective collaboration outcomes. However, purely
sharing information with each other (share-share) is asso-
ciated with poorer collaboration outcomes. This empirical
finding may also inform the development of an outcome-
oriented scale for CPS skills.

The current study also has limitations. For example, the
items in the task are all relatively easy so that there are
few turns for each item. There are not many items in the
task, which limits the effect of the collaboration outcomes.
All these issues will be resolved in our next round of data
collection and analysis.
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ABSTRACT 
On-demand help in intelligent learning environments is typically 
linked to better learning, but may lead to longer completion times. 
This present work provides an analysis of how students interacted 
with a summer learning assignment when on-demand help was 
available, compared to when it was not. When hints were 
available from the start, students were more likely to delay work, 
compared to students for whom step-wise hints were only 
available after the third problem. When hints were always 
available, participants took significantly more time to complete a 
mastery learning assignment. We interpret this difference in time 
to complete the assignment as an opportunity to re-engage in 
productive math learning.  

Categories and Subject Descriptors 
H1.2 [Information Systems]: User/Machine Systems – human 
factors 

General Terms 
Measurement, Design, Experimentation, Human Factors 

Keywords 
Hints, completion time, randomized controlled trial, ASSISTments 

1. INTRODUCTION 
Help-functions—including on-demand help, contextualized hints, 
or supplementary learning materials [2]—are a major asset of 
modern intelligent learning environments. These functions have 
often been associated with better student learning outcomes 
([1][9][25]), but not all help has proven equally effective, and 
even well-crafted hints may be used ineffectively by students who 
do not actually need them ([2][20]) . Research has shown cases in 
which help functions fail [1] and has sought to identify the 
contexts in which different types of help strategies are most 
effective ([12][22]).  

Analysis of hint use serves many purposes and may be an obvious 
answer to wheel-spinning, where a student persists long past the 
point of productive effort [6]. It is also feasible to predict the 
problematic behaviors of hint misuse or hint abuse. Previous 
research has analyzed relationships between problem-related 
features (e.g., problem length, number of hints available, hint 
length) and student affect, behavior, and learning 
([3][11][13][19]). Among other findings, hint length has been 
positively correlated with gaming the system [3], a behavior 
incorporating help abuse that is associated with poorer learning 
outcomes ([21][23]). Other research has indicated problems 
unrelated to the deliberate behavior of students. For example, 
poorly designed hints may lead to ineffective hint usage ([4][15]). 
Research also suggests that low-knowledge students, or those that 
need the most help, are the least likely to use it effectively 
([2][3][18]).  
In this paper, we present results from a randomized controlled 
trial (RCT) that examined how hint availability effected other 
aspects of student learning, including the time required for 
students to complete the assignment, presented using the 
ASSISTments online learning system [11]. To our surprise, we 
found that students who were given the option to request on-
demand hints appeared to spend more time on tasks unrelated to 
the completion of the problem set (e.g., solve other problem sets, 
work on learning activities outside of ASSISTments, or engaged 
in activities external to the learning system). Specifically, these 
students took more time to complete the assignment even though 
they did not (a) spend significantly more time on task, (b) answer 
significantly more problems, or (c) make significantly more 
attempts per problem as compared to the control condition. The 
analyses presented herein explore this pattern more thoroughly, in 
order to contribute to the growing literature on help systems in 
online learning. 

2. ASSISTMENTS 
ASSISTments is an online learning system designed primarily for 
middle school mathematics. The platform allows teachers to 
easily create and assign their own problem sets (including 
questions, associated solutions, mistake messages, feedback) or to 
select from a set of ASSISTments Certified Problems (vetted by 
ASSISTment’s expert team) ([11][22]). These problem sets 
simultaneously support student learning and serve as automated 
formative assessments that provide real-time data to teachers [11]. 
The platform is also used as a research tool to conduct RCTs 
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([8][16][26]). ASSISTments logs learning-related features at 
multiple granularities (e.g., problem text, problem type, student 
actions, timestamps, etc.). Figures 1 and 2 show screenshots of the 
types of ASSISTments problems used in the present work.  Based 
on experimental condition, students were able to request hints, 
receive feedback messages, or simply answer the question. 

 
Figure 1. An example question from the hints-early condition, 

presented with its associated hints. 

 
Figure 2. The same example question as presented in the no-

hints-early condition. 

3. METHODOLOGY 
This study used an RCT design in which several linear 
presentations of a problem set were embedded within two 
conditions: a control condition with on-demand hints (hints-early, 
HE) or an experimental condition with on-demand hints only after 
the third problem (no-hints-early, NHE). The problem set for this 
study (available at [14]) was chosen from ASSISTments Certified 

content and was designed to address the 8th grade Common Core 
State Standard, “Finding Slope from Ordered Pairs,” [17]. It was 
deployed within ASSISTments as a Skill Builder, a type of 
problem set requiring students to accurately answer three 
consecutive problems in order to complete the assignment.  
Students were randomly assigned into one of 12 groups (6 control 
and 6 experimental) when they began the problem set. As 
depicted in Figure 3, students in each group saw the same 3 
problems, but presentation order was randomized to minimize 
cheating (i.e., A-B-C, A-C-B, B-A-C, etc.). All students, 
regardless of condition, received immediate correctness feedback 
(e.g., “Sorry try again: ‘2’ is not correct”). 

 
Figure 3. Research Design depicted as a flow chart. 

In a Skill Builder, students are able to attempt each problem 
multiple times, but (in line with common practice) problem 
accuracy is calculated using binary correctness on the student’s 
first attempt (1=Right, 0=Wrong) [10]. Students who did not 
answer the first three problems correctly were assigned additional 
problems randomly selected from a skill bank. In order to provide 
all students with adequate learning support, all students were 
permitted on-demand hints—regardless of condition—upon 
reaching these additional problems. 
Figures 1 and 2 demonstrate how the interface differed by 
condition. In the HE condition, students could access hints at any 
time by clicking on a button in the lower right corner of their 
screen. The problem remained on the screen while video tutorials 
and text-based hints were simultaneously delivered (text-based 
hints ensured access when school firewalls or connectivity issues 
may have limited access to YouTube). In contrast, the NHE 
condition only offered a Show Answer button in the lower right 
corner of the screen during the first three problems (a design seen 
in early intelligent tutors [24]) allowing students who were stuck 
to move on to the next problem and eventually complete the 
assignment.  

3.1 Student Populations 
To help retain students’ math skills, the Skill Builder in this study 
was one of many assigned as summer work at two suburban high 
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schools (henceforth Schools A and B) in the Northeastern U.S. 
School A was an agricultural/vocational high school that assigned 
this Skill Builder to 113 9th graders and 95 10th graders, along 
with numerous other Skill Builders (32 in 9th grade, 36 in 10th). 
School B was a high school without a known specialization; it 
assigned this Skill Builder (as well as 45 others) to 204 9th 
graders. Students worked on these assessments throughout the 
summer (Jun-Sept 2015) and data was harvested six months later. 
Condition distributions were well matched for student gender 
(HE: 101 f., 86 m., 29 unknown vs. NHE: 93 f., 89 m., 14 
unknown), school, grade level, and classroom section. Students in 
both conditions had the same prior Skill Builder completion 
rate (HE: M=0.91, Mdn=1.0; NHE: M=0.91, Mdn=1.0, p=.463), 
which was computed by dividing the sum of prior Skill Builders 
started by the number  of prior Skill Builders completed (amongst 
all ASSISTments assignments experienced by students in the 
sample) . Analysis using Mann-Whitney U tests (which are robust 
to skew) with a Benjamini-Hochberg false-discovery rate post-hoc 
correction for multiple tests (p<.05) [7], yielded no significant 
differences between the two conditions on several measures 
including total number of problems solved, time per problem, and 
number of attempts.  

3.2 Measures Considered 
This study considered several measures pertaining to students’ 
answers and hint patterns. As noted above, students only 
completed the Skill Builder when they correctly answered three 
consecutive questions using first attempts. However, students 
were able to attempt problems multiple times. Students wishing to 
advance to the next problem but unable to generate the correct 
answer were able to request a bottom-out hint. When hints were 
available, students had to view between 1 and 3 regular hints 
before they were able to obtain the bottom-out hint, which 
provided the correct answer. In the first three problems of NHE 
condition, students could select Show Answer, which displayed 
only the bottom-out hint, but no additional assistance.  
Several measures based on these behavioral patterns were 
considered, including: number of problems solved (PS), mean 
answer-attempts per problem (MAA), total answer attempts 
(TAA), total hint requests (THR) and mean hint requests per 
problem (MHR). Spanning conditions, participants required 9.12 
problems on average (Mdn=9.0, SD=3.32) to complete the 
assignment. Spanning conditions and problems, students averaged 
16.14 total answer attempts (Mdn=14.0, SD=10.72), or 1.72 
answer attempts (Mdn=1.71, SD=0.78) per problem. On average, 
students requested approximately one hint per nine problems 
(Mdn=0.0 , SD=2.23) throughout the Skill Builder. There were no 
significant differences in the aforementioned measures by 
condition according to Mann-Whitney U tests conducted with 
false discovery rate post-hoc corrections. 
Next, we assessed several time-based measures to determine how 
hints were affecting students’ completion rates. Basic measures 
including the number of days and weeks it took for a student to 
finish the Skill Builder were considered. These measures were 
analyzed both by completion time and by week of completion.  As 
the data was heavily skewed (most students finished in week 1), a 
Mann-Whitney U test was used to analyze completion time. Six 
months after beginning the study, when data was harvested, 
seventy-two students (18%) had not completed the Skill Builder. 
Students who completed the Skill Builder were grouped according 
to whether it had taken them 1, 2, 3, or 4 or more weeks to 
complete, while those who never finished the Skill Builder were 
labeled as incomplete. We also considered, Completion time 

(CT, in seconds), or the total time it took students to complete the 
assignment, which was calculated by subtracting the start time of 
the first problem from the end time of the last problem solved. 
Because the time students spent solving a problem was skewed, 
with a median of 1.1 minutes (M=16.22 hr, SD=4.69 days, Min=2 
sec, Max=74.96 days), this value was winsorized to 15 minutes 
(900 sec) in order to exclude irrelevant conditions (e.g., 
disconnection from the network, shifts between learning activities, 
off-task behavior). The fifteen-minute time frame accounted for 
93% of the data. 
The winsorized measures were used to calculate time-on-
problem (TOP, in seconds) for each problem in the Skill Builder 
that the student attempted to solve (i.e., end time minus start time 
for each problem). This measure was subsequently used to 
generate several others, including mean time-per-problem 
(MTPP), which showed a mean of 2.62 min (Mdn=2.35 min, 
SD=1.78 min) across all students. For each student, TOP was also 
totaled across all attempted problems (TOP-total), resulting in a 
mean of 23.42 minutes (Mdn=20.72 min, SD=16.93 min) across 
all students. Finally, total time-between-problems (TTBP), was 
calculated by subtracting TOP-total from each students’ 
completion time. Readers should note that because students were 
allowed to return to this assignment over the course of the 
summer, these values were comparatively large (M=6.73 days, 
Mdn=43 sec, SD=14.49 days). However, as Table 1 shows, 
variation among students who took more than one week was 
minimal at the problem level.  
Table 1. Mean values of time-based measures according to 
completion-time categories (weeks). 

Week PS TOP-total MTPP TTBP CT 
1 9.15 20.2 m 2.2 m 0.48 d 0.49 d 
2 10.04 35.9 m 3.7 m 10.1 d 10.1 d 
3 9.00 38.2 m 4.4 m 18.5 d 18.5 d 

≥ 4 11.81 38.6 m 3.3 m 40.8 d 40.8 d 
Incomplete 5.55 16.9 m 3.6 m 5.4 d N/A 

Note. PS – problems solved; TOP-total – total time on problem; MTPP – mean time per 
problem; TTBP – total time between problems; CT – completion time, m = minutes, d = days 

4.  RESULTS 
ASSISTments automatically logged data in analyzable form. The 
following subsections present the results on hint usage, problem 
attempts, skill builder completion, and time-on-problem. 

4.1 Hint Usage and Problem Attempts 
This study used four primary measures of student actions, 
including total answer attempts, mean answer attempts, total hint 
requests, and mean hint requests per problem. Because the two 
conditions in this study only applied to the first three problems 
(after which, students in the no-early-hints condition also had 
access to regular hints), we report on values for the first three 
problems and those that follow separately.  
Table 2 presents significant differences both between and within-
conditions. There were no significant differences between 
conditions with respect to the number of attempts per problem or 
the total number of attempts used in solving the first three 
problems of the Skill Builder. That is, the availability of hints in 
the first three problems did not effect the number of attempts used 
or the number of hints requested over the course of the 
experiment. Likewise, the significant differences observed within 
condition all trended in the same direction, suggesting little to no 
effect. 
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Table 2. Significant differences in answer attempts and hint 
requests by condition and within condition (p<.05). 

 
HE vs. NHE  1st 3 vs. Other problems 

Measure 1st 3 Others HE  NHE  

TAA NS NS Others > 1st3 Others > 1st3 

MAA NS NS NS Others > 1st3 
THR N/A NS 1st3 > Others N/A 
MHR N/A NS 1st3 > Others N/A 

Note. TAA – total answer attempts; MAA – mean answer attempts; THR – total hints 
requests; MHR – mean hint requests; HE – hints-early; NHE – no-hints-early; NS – not 
significant 

4.2 Hint Usage and Skill Builder Completion 
One of the most important measures in this study was whether or 
not students were eventually able to demonstrate skill mastery by 
consecutively answering three of the Skill Builder questions 
accurately. Chi Squared tests revealed no significant difference 
between conditions in the proportion of students who did not 
complete the Skill Builder (X2(1, N=412)=0.714, p=.398). 
Non-completion in both conditions was associated with lower 
prior Skill Builder completion rates, suggesting that students’ 
inability to master this Skill Builder was indicative of larger issues 
in completing their mathematics assignments (HE: U=1115.5, 
p<.001, NHE: U=471, p<.001). Non-completion was also 
associated with higher numbers of hint requests and answer 
attempts, both of which occurred across significantly fewer 
problems than worked by students who were able to complete the 
Skill Builder. Finally, non-completion was associated with 
significantly longer time worked across problems (TOP-total). 
Despite nearly identical Skill Builder completion rates, the two 
conditions differed significantly in the time it took students to 
complete the problem set (HE: M=208.23 hrs, Mdn=38.55 min, 
NHE: M=67.52 hrs, Mdn=20.9 min, U=16835, p=.008). 
Specifically, as shown in Table 3, students in the no-hints-early 
condition completed the Skill Builder faster than those in the 
hints-early condition. These results were complemented by Chi 
Squared results that analyzed the distribution of students 
completing the assignment over several weeks, X2(4, 
N=411)=8.981, p=.062. Again, this might seem obvious, as 
students who access hints tend to take longer to digest problem 
and feedback content, but further analysis suggests other factors 
should also be considered. 

 

Table 3. Number of students per condition who completed the 
Skill Builder each week 

Weeks HE (N=215) NHE (N=196) 
1 125 (58%) 137 (70%) 
2 15 (7%) 13 (7%) 
3 5 (2%) 3 (1%) 

≥ 4 30 (14%) 13 (7%) 
Incomplete 40 (19%) 31 (16%) 

Note. HE – hints-early; NHE – no-hints-early 

4.3 Hint Usage and Time-on-Problem 
Hint availability could effect time-on-problem (TOP) in more 
than one way, even when students use hints effectively. Students 
who need hints may be expected to answer more slowly than their 
peers, but powerful hints may actually reduce the time that a 
struggling student takes to complete a problem (compared to a 
situation in which the same student did not have access to hints).  
Table 4 (calculated with the Benjamini-Hochberg correction) 
shows a complex interaction between time-per-problem and hint 
use, but overall there were few differences between conditions. 
On the whole, the use of (regular) hints lead to longer time on 
problem (TOP) measures, but the effect of bottom-out hints 
differed by condition. In both conditions, students who used 
bottom out hints took longer to complete problems than those who 
did not use them. However, those who used bottom-out hints in 
the HE condition took less time per problem than those who only 
requested one (regular) hint. The latter pattern could be indicative 
of gaming behavior, and this warrants further investigation, but it 
is also possible that students who quickly realized their mistakes 
clicked through to the bottom-out hint in order to start work on the 
next problem. 

Results further indicated that differences were driven by hint use 
effects in the first three problems, where students who did not 
have access to hints (the NHE condition) were significantly 
slower at answering than those who did (HE) (M=1.92 min, 
Mdn=1.80 min vs M=1.65 min, Mdn=1.37 min). This was a 
predictable difference, as struggling students in the HE condition 
could ask for hints, thereby removing themselves from this 
calculation, while struggling students in the NHE condition could 
only remove themselves from this calculation by requesting a 
bottom-out hint.  
 

 

Table 4. Time-on-problem comparison by condition (in minutes) 
 Mean (SD)  Median 

 Regular Hints Requested  Bottom-out 
Hint  Regular Hints Requested Bottom-out 

Hint 

Condition N 0 Hints N 1 Hint N 2 Hints N   0 Hints 1 Hint 2 Hints  
First 3 Problems 373 1.78   (1.15) 103 3.62 (1.33) 0 N/A 167 2.98   (1.45)  1.48 3.85 N/A 2.95 
        HE 191 1.65* (1.17) 103 3.62 (1.33) 0 N/A 81 3.47* (1.33)  1.37* 3.85 N/A 3.43* 
        NHE 182 1.92* (1.13) 0 N/A 0 N/A 86 2.55* (1.43)  1.80* N/A N/A 2.53* 
Other Problems 366 1.52   (0.92) 22 2.52 (1.93) 59 3.27 (1.23) 56 3.27   (1.23)  1.33 1.78 3.02 2.98 
        HE 190 1.50   (0.87) 13 2.02 (1.92) 30 3.20 (1.33) 29 3.23   (1.33)  1.33 1.65 2.92 2.93 
        NHE 176 1.53   (0.98) 9 3.25 (1.82) 29 3.37 (1.15) 27 3.28   (1.15)  1.42 3.65 3.47 3.02 
All Problems 377 1.58   (0.78) 113 3.50 (1.37) 58 3.32 (1.17) 174 3.05   (1.35)  1.53 3.65 3.22 3.03 
        HE 195 1.50   (0.73) 104 3.53 (1.33) 29 3.28 (1.20) 87 3.45* (1.27)  1.52 3.63 2.93 3.40* 
        NHE 182 1.67   (0.83) 9 3.25 (1.82) 29 3.37 (1.15) 87 2.65* (1.33)  1.57 3.65 3.47 2.70 
Note. Units are in minutes. *p<.05. N – number of students; HE – hints-early; NHE – no-hints-early. 
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Significant differences within and between conditions 
(summarized in Table 5) showed trends that suggested that 
behavior in the first three problems was driving the differences 
between the two conditions, where hint-access was restricted to 
the students in the HE condition. Interestingly, in the first three 
problems the mean time per problem was statistically similar. 
That is, for the first three problems, the HE and NHE condition 
did not differ overall, which suggests the need for understanding 
individual differences, such as those highlighted in Table 4. The 
significant differences between conditions emerged primarily in 
total time between problems (TTBP) and in the total completion 
time (CT), with students in the hints-early condition showing 
larger values for both measures.  
Table 5. Time Measures per Condition (p<.05). 

  HE vs. NHE 1st 3 vs. Other problems 
  1st 3 Others HE  NHE  

MTPP NS NS 1st3 > Others NS 

TTBP HE > NHE NS NS Others > 1st3 

CT HE > NHE NS NS Others > 1st3 
Note. MTPP – mean time-per-problem; TTBP – total time between problems; CT – 
completion time; HE – hints-early; NHE – no-hints-early; NS – not significant 

Further analyses revealed complementary patterns in within-
condition differences. Students in the hints-early condition had 
significantly higher mean time-per-problem (MTPP) on the first 
three problems than they did on later problems (M=3.67 min, 
Mdn=2.63 min vs. M=2.17 min, Mdn=1.98 min, U=13281, 
p<.001), suggesting that those who effectively used these hints in 
the first three problems were learning the material well enough to 
complete later problems more efficiently. There were no 
significant differences in this group for other time-based measures 
(TTBP or CT). In contrast, students in the no-hints-early 
condition showed no significant differences for MTPP, but had 
longer TTBP and CT patterns for later problems than for the first 
three problems.  

5. DISCUSSION 
The present experiment was designed to explore the effects of 
ASSISTments’ on-demand hints system. For ethical reasons, we 
limited differences between the control condition (providing 
hints) and the experimental condition (withholding hints) to the 
first three problems. All students had access to hints following the 
third problem to retain overall learning. However, effects could be 
seen even after students had moved past these first three 
problems. 
The data used in the study was collected from one of many Skill 
Builders assigned to students for summer work. We explored the 
data using several different measures, extracting information 
about the number of attempts each student made, the number of 
hints (regular or bottom-out) they requested, and the length of 
time needed to complete the assignment.  
Some findings were quite predictable, as reading hints would take 
more time than simply answering problems, assuming students 
were assigned problems that matched their current ability. 
However, other findings were more surprising. Even though 
students made the same number of attempts per problem and per 
assignment, those in the HE condition took significantly longer to 
complete the Skill Builder. 
Students in the HE condition also spent relatively more time 
between problems compared to those in the no-hints-early 
condition, but only during the first three problems, where 
conditions were truly distinct. One interpretation of this finding is 

that students in the HE condition were taking more time between 
problems to process the new material they were learning. An 
alternative explanation is that students were procrastinating—
deliberately putting off working on the Skill Builder out of 
difficulty or apathy (as summer work is highly self-regulated). 
These students could have been seeking out an easier Skill Builder 
to work on or may have spent their time doing something 
completely unrelated. Still, this latter interpretation may not be 
detrimental if students were using the time to work on other 
assignments. As Baker and colleagues have suggested [5], a 
student that goes off task and is able to re-engage afterwards may 
be more productive in the long run than those who persist at all 
costs.  

6. CONCLUSION 
This work presented an investigation of how students completing 
summer work responded to having or not having hints available 
on the first three problems of a Skill Builder assignment within 
the ASSISTments online learning system. When hints were 
available from the start, students were more likely to delay work 
in comparison to students for whom step-wise hints were only 
available after the third problem. When hints were always 
available, participants took significantly more time to complete 
the Skill Builder. We interpreted the difference in completion 
times as an opportunity to re-engage towards more productive 
math learning. In future work, we plan to conduct a similar study 
during the school year to examine how results differ in a more 
controlled and less self-regulated learning environment.  
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ABSTRACT
We propose a graph mining methodology to analyze the relation-
ships among academic programs from the point of view of co-
operative education. The input consists of student - job interview
pairs, with each student labelled with his or her academic program.
From this input, we build a weighted directed graph, which we re-
fer to as a program graph, in which vertices correspond to academic
programs and edge weights denote the percentage of jobs that in-
terviewed at least one student from both programs. We show that
various properties of this graph have natural interpretations in terms
of the relationships among academic programs and competition for
co-op jobs. We also present a case study that illustrates the utility
of the proposed methodology.

1. INTRODUCTION
According to the World Association for Cooperative and Work-
integrated Education, 275 institutions from 37 countries have im-
plemented cooperative education (co-op) programs [17]. Co-op ex-
periences are vital because they supplement students’ classroom
skills and help them to gain practical experience.

We propose a graph mining methodology to analyze the relation-
ships and competition among academic programs in the context of
co-op. Our motivation is threefold. First, with academic institu-
tions introducing new programs in recent years [6, 15], it is often
unclear how one program differs from another. As a result, em-
ployers may not know which programs to advertise their jobs to
and students may not realize that they qualify for a job targeted to
a related program (e.g., Computer Science vs. Software Engineer-
ing). Understanding similarities among programs can lead to more
effective job and academic classification schemes and therefore can
help match job opportunities with qualified students. This analysis
can also help students choose programs of study that correspond
to their desired careers. Second, data from the co-op system may
be used to identify multi-disciplinary programs that enable their
students to obtain various types of jobs. This issue is becoming
increasingly important given the recent rise in popularity of multi-
disciplinary and well-rounded education [1, 2, 5, 10, 16]. Third,
analyzing co-op job data can reveal jobs that are exclusive to par-

ticular departments, and, conversely, departments whose students
compete for jobs with students from other departments. The uni-
versity can choose to attract more employers that offer jobs to pro-
grams facing strong competition. Thus, the problems we study in
this paper are critical to co-operative education from the student’s,
employer’s and institution’s perspective.

While some of these questions have been raised in prior work (de-
tails in Section 2), we propose a data-driven technique for answer-
ing them. Our input consists of student - job interview pairs, with
each student labelled with his or her academic program. We trans-
form this input to a graph, which we refer to as a program graph, in
which vertices correspond to academic programs and edge weights
denote the percentage of jobs that interviewed at least one student
from both programs. Thus, the larger the edge weight, the stronger
the relationship and competition between two programs.

Within the program graph, we are interested in vertices forming
clusters or communities, vertices that are connected to many such
clusters, and vertices that are strongly connected to their neigh-
bours. As we will show, these graph properties have natural inter-
pretations in the context of co-op. Graph clustering and community
detection determine groups of related programs whose students in-
terview for the same types of jobs; programs with connections to
multiple clusters are likely to be multi-disciplinary; and programs
with strong connections to their immediate neighbours face strong
competition for jobs.

2. RELATED WORK
The majority of related work qualitatively or statistically analyzed
co-op education through survey data with fewer than 100 entries.
To the best of our knowledge, the first research work that used a
large-scale data-driven methodology was our previous work [9].
We analyzed satisfaction with the co-op process using three years
of evaluation data (students’ evaluations of their employers and em-
ployers’ evaluations of students). We found that students received
better evaluations in their senior years, but they rated their first
employer the highest. We also found that senior students outper-
formed junior students in work placements abroad, and extended
work terms at the same employer (spanning more than one aca-
demic term) did not increase student satisfaction. In this paper, we
target a different problem of understanding the relationships among
academic programs.

In the context of academic programs, Wilson and other researchers
urged traditional academic disciplines to be updated to better re-
flect reality [6, 15]. Furthermore, Hesketh found that employers
have trouble advertising to specific programs and instead they ad-
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vertise based on desired skillsets [8]. As we will show, clusters in
the program graph indicate similar programs and suggest related
programs that employers can advertise their jobs to. Additionally,
it was suggested that programs can be evaluated based on their stu-
dents’ ability to obtain jobs [7, 14], which is a question that can be
answered with the help of our methodology. Also, while the impor-
tance of multi-disciplinary education has been widely recognized
[1, 2, 5, 10, 16], we propose a data-driven methodology for analyz-
ing whether students from a particular academic program qualify
for different types of jobs.

3. METHODOLOGY
We are given a dataset corresponding to student - job interview
pairs, with each student labeled with his or her academic program
and each interview associated with a job ID. We propose a method-
ology that relies on transforming the student-job interview pairs to
an edge-weighted directed graphG = (V,E), with a set of vertices
V and a set of edges E. Vertices correspond to academic programs
and edges represent relationships among programs. Let eij be the
weight of the edge Eij from vertex vi to vj , and let Ji be the list of
distinct jobs that interviewed students from program vi. We define
eij as the fraction of jobs that interviewed at least one student from
both programs; i.e., the fraction of jobs in Ji that also appear in Jj :

eij =
|Ji ∩ Jj |
|Ji|

(1)

This can also be interpreted as a conditional probability that a job
interviewed at least one student from program vj given that it in-
terviewed at least one student from program vi.

The direction of edges is important. For a program node vi, an in-
coming edge weight from vj measures the fraction of jobs in Jj
that also interviewed at least one student from vi. Thus, a large
incoming edge weight of vi from vj means that most jobs inter-
viewing at least one student from vj also interviewed at least one
student from vi. Conversely, a large outgoing edge weight from vi
to vj means that most jobs interviewing at least one student from
vi also interviewed at least one student from the other program.

We give an example in Table 1, which corresponds to 4 jobs, 9 in-
terviews and 8 students from three programs (A, B and C). The job
lists for each program are: JA = {1, 2, 3}, JB = {1, 2}, and JC =
{2, 4}. The corresponding program graph is shown in Figure 1,
and the edges are colour-coded by the source vertex. The edge
weight from Program A to Program B is |{1, 2}|/|{1, 2, 3}| =
2/3 = 0.67, meaning that 67 percent of jobs that interviewed at
least one student from Program A also interviewed at least one stu-
dent from Program B. The edge weight from Program B to Program
A is |{1, 2}|/|{1, 2}| = 2/2 = 1, meaning that every job which
interviewed a student from program B also interviewed a student
from program A. Thus, the larger the edge weight, the stronger the
relationship and competition between two programs.

Our definition of edge weights assumes that a relationship between
two programs exists if at least one student from both programs in-
terviewed for the same job; if there are many such jobs, then the
edge weight will be larger.

Having explained how the program graph is constructed, we now
clarify how properties of the program graph are related to the types
and extent of relationships among academic programs in the con-
text of co-op jobs:

Table 1: Sample interview data
Student ID Program Name Job ID

1 A 1
2 C 2
3 B 1
3 B 2
4 B 1
5 A 2
6 A 3
7 C 2
8 C 4

Figure 1: An example of a program graph

• Clusters: Clusters in a graph represent closely connected
vertices. In our context, clusters represent related programs
whose students interview for (mostly) the same jobs.

• Outliers: Given a graph clustering, we define outliers as
vertices that have strong connections to other vertices from
multiple clusters (as opposed to “normal” vertices connected
mostly to other vertices within the same cluster). In our anal-
ysis, outliers correspond to multi-disciplinary programs: stu-
dents from those programs have interviews in common with
students from several different program clusters.

• Fan-out: (Weighted) fan-out measures the (weighted) num-
ber of outgoing edges of a vertex. In our context, weighted
fan-out corresponds to the competition that a program faces
from other programs. High weighted fan-out means that
most jobs interviewing at least one student from the given
program also interviewed students from other programs. As
we will explain shortly, we use a modified version of stan-
dard weighted fan-out that takes into account the fact that
our edge weights are defined in terms of set intersections (of
the job sets of different programs).

In the remainder of this section, we describe the graph algorithms
that may be used to identify program clusters, multi-disciplinary
programs and programs facing strong competition.

3.1 Finding Clusters of Similar Programs
We use two techniques to find clusters of similar programs: near-
clique finding and community detection.

The density of a graph (or subgraph) is the number of edges di-
vided by the maximum possible number of edges, i.e., |E|

|V |∗(|V |−1)
.

A clique is a group of vertices that are fully connected and therefore
have a density of one. A near-clique is a group of vertices where
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the subgraph consisting of them and their edges has a density of
nearly one, i.e., a group of vertices that is nearly fully connected.
However, since our program graph is weighted and directed, we
want to find near-cliques with large edge weights. To do this, we
first remove all edges from the program graph except the five per-
cent with the largest edge weights. The resulting graph may leave
some vertices disconnected, while other pairs of vertices may only
have an incoming or an outgoing edge. Then, we remove edge di-
rections and simply retain an edge between two programs if there
is either an incoming or an outgoing edge. Finally, we return all
near-cliques from the resulting graph with density of at least 0.8.

In addition to identifying densely connected subgraphs via near-
clique finding, we use the Louvain Modularity algorithm [4] to
partition the vertices into disjoint clusters (communities), such that
vertices with the same cluster are densely connected and vertices
in different clusters are sparsely connected. This algorithm is in-
cluded in many graph mining tools such as Gephi [3] and aims to
maximize modularity, which compares the sum of the weights of
intra-cluster edges resulting from given clustering with that of a
randomly connected graph with the same number of edges [13].

Newman [12] introduced modularity for weighted undirected
graphs. We translate this metric to weighted directed graphs as
follows. Let ci be the community that a vertex vi belongs to,
and m =

∑
ij eij , i.e., the sum of all the edge weights in the

graph. The fraction of the edge weights that are intra-cluster is
1

m

∑
j eijδ(ci, cj), where δ(ci, cj) is equal to 1 if ci = cj (i.e.

vertices vi and vj belong to the same cluster) and 0 otherwise.

Let ki =
∑

j eij (i.e., the sum of the weights of the edges that
connect to vertex vi). Consider another graph in which the fan-
outs of all the vertices are the same but the edges are randomly
connected. In such a graph, the probability of an edge existing

between vertices vi and vj is
kikj
2m

. The modularity of a graph
clustering is defined as:

Q =
1

m

∑

i,j

(eij − kikj
m

)δ(ci, cj) (2)

Q = 0 means that the community detection result is no better than
random. The maximum value for Q is 1. Higher modularity indi-
cates more effective partitioning with more intra-cluster edges and
fewer inter-cluster edges.

The Louvain Modularity method is iterative and includes two
phases. In the first phase, each vertex starts in a different commu-
nity. Then, for each vertex vi, we compute the gain in modularity
if vi is moved to the community that its neighbour (vj) belongs to.
If the gain is positive, the change happens; otherwise vi remains
in its original community. This process is repeated iteratively and
sequentially until no further improvements can be made. The out-
come of the first phase is only a local optimum of modularity since
the order of processing of the vertices will affect the result. In the
second phase, a new graph is created such that the vertices are the
communities obtained in the first phase, and edge weights are the
sums of edge weights between vertices in the two communities. We
reapply the process in the first phase on this new graph. The algo-
rithm stops when maximum modularity is reached. To account for
the effect of order, we run this algorithm multiple times and keep
the result with the highest modularity.

Figure 2: Direct competitors of Medicinal Chemistry, colour-
coded by clusters

One characteristic of this algorithm is that it avoids creating small
clusters. Lambiotte et al. [11] add a resolution parameter t to con-
trol the number of clusters. The new modularity definition is shown
in Equation 3. The default t value is 1; smaller values of t lead to
more and smaller communities.

Qnew(t) = (1− t) +
1

m

∑

i,j

(eijt− kikj
m

)δ(ci, cj) (3)

3.2 Finding Multi-Disciplinary Programs
To find multi-disciplinary programs, we start with the clus-
ters/communities obtained by the Louvain Modularity algorithm.
Intuitively, if an academic program has strong connections to other
programs from multiple clusters (each of which corresponds to dif-
ferent types of jobs), it may be multi-disciplinary.

For each program, we propose a multi-disciplinary score as fol-
lows. For each cluster ci identified by the Louvain Modularity al-
gorithm, let pi be the fraction of the total weight of the outgoing
edges from the given program to the programs only in ci. Then, for
a given program, we compute the entropy of the distribution of edge
weights among different communities simply as

∑
i−pi log2 pi.

High entropy means that the given program has strong links to pro-
grams in multiple clusters and therefore may be multi-disciplinary.

We illustrate this concept with an example. Suppose that stu-
dents in the Medicinal Chemistry program had interviews in com-
mon with students from eight other programs belonging to four
clusters, labeled red, blue, purple, and green, as shown in Fig-
ure 2, with vertices colour-coded by their clusters. Only the out-
going edges from Medicinal Chemistry are relevant since they
represent the percentage of jobs from JMedicinalChemistry that
also interviews students from its neighbour programs. The sum
of all out-going edge weights of Medicinal Chemistry is 3.25.
pred = (

∑
i∈red cluster eMedicinalChemistry,i)/3.25 = (0.75 +

0.75 + 0.25)/3.25 = 0.54, which is the sum of weights of
edges from Medicinal Chemistry to the programs in the red clus-
ter. Similarly, pblue = 0.23, pgreen = 0.15, and ppurple =
0.08. Thus, the multidisciplinary score of Medicinal Chemistry
is −pred log2 pred − pblue log2 pblue − ppurple log2 ppurple −
pgreen log2 pgreen = 1.67.

3.3 Finding Programs Facing Competition
We define the extent of competition that a program faces using
a “set fan-out" metric. We want to compute the fraction of jobs
that interviewed students from the given program which also in-
terviewed at least one student from another program. For a given
vertex (program) vi, we define:
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Set Fan Outi =
| ∪j 6=i (Ji ∩ Jj)|

|Ji|
(4)

A set fan-out of zero means that all the jobs that interviewed at
least one student from program vi only interviewed students from
vi and no other program. Students from such a program may have
specialized skills that students from other programs do not have.
A set fan-out of one means that every job that interviewed at least
one student from program vi also interviewed at least one student
from another program. In other words, there were no jobs that ex-
clusively interviewed students from vi and therefore students from
vi may be facing strong competition for jobs.

Returning to Table 1, JA = {1, 2, 3}, JB = {1, 2},
and JC = {2, 4}. For Program A, its set fan-out is
|(JA ∩ JB) ∪ (JA ∩ JC)|

|JA|
=
|{1, 2}|
|{1, 2, 3}| =

2

3
= 0.67. It means

that students from Program A competed with students from other
programs in 67 percent of their jobs. 33 percent of jobs that inter-
viewed students from Program A did not interview students from
other programs. The set fan-out for Program B is 1 and for Program
C it is 0.5.

4. CASE STUDY
We now describe a case study that illustrates the utility of the pro-
posed methodology. To carry out the analysis, we used the Gephi
toolkit [3] which includes the Louvain Modularity algorithm. We
used data from a large Canadian university including all interviews
taking place in summer 2014, for co-op jobs taking place in Fall
2014. For each student - interview pair, the dataset includes the
student’s academic program and year, and job information such as
the company name, job title, and targeted programs and academic
years. The dataset consists of 4,194 students from 93 academic
programs, 2,890 jobs and 16,855 interviews. On average, each job
interviewed 5.8 students and each student had 4 interviews.

This academic institution has six faculties, each comprised of a
number of academic programs: Science (programs include Physics
and Earth Sciences), Mathematics (programs include Computer
Science and Actuarial Science), Engineering (programs include
Electrical, Mechanical, Civil, etc.), Arts (programs include Eco-
nomics, Psychology and Sociology), Environment (programs in-
clude Planning and Geomatics) and Applied Health Science (AHS)
(programs include Kinesiology and Recreation and Leisure Stud-
ies). All Engineering programs and several programs from other
faculties (mainly Mathematics) have mandatory co-op education;
other programs have optional co-op. As a result, most of the stu-
dents and jobs in our dataset are from Engineering and Mathemat-
ics.

Rather than using all available data, we build the program graph
using only the interviews of senior students (in their third and
fourth academic years). Junior-level jobs tend to be less special-
ized, meaning that (junior) students from many different depart-
ments may qualify for an interview. In particular, we noticed that
entry-level computer programming jobs interview students from
many programs, including those outside computing. By focusing
on senior students, we avoid generating edges in the program graph
that correspond to junior-level jobs and may not truly indicate a
relationship between programs. The resulting program graph con-
tains 88 vertices (corresponding to programs that have at least two
senior students in co-op) and 1,315 pairs of directed edges.

Figure 3: Vertices and edges participating in near-cliques

The program graph is a single connected component, i.e., there ex-
ists a path from every vertex to another. Its density is 0.34, meaning
that one third of all possible program pairs had at least one inter-
view in common. On average, the length of the shortest path be-
tween any two vertices is 1.7 and the diameter of the graph (i.e.,
the maximum length of any shortest path between two vertices) is
three. The number of edges per vertex ranges from 4 to 66, with an
average of 30.

4.1 Finding Clusters of Similar Programs
4.1.1 Near-Clique Finding

We begin by identifying near-cliques in the program graph (but
considering only the five percent of edges with the largest weights,
as described in Section 3). Figure 3 plots a subgraph of the program
graph containing only the 46 vertices and 104 edges (in the top 5
percent of edge weights) that participate in the 25 near-cliques that
we found. Three groups of programs appear to participate in the
near-cliques, and we use a different colour for each. The larger the
edge weight, the thicker the edge.

The red group at the top contains programs related to computing
and maths. There is one near-clique with Software Engineering,
Computer Engineering, Computer Science, Systems Design Engi-
neering and Mechatronics Engineering. This suggests that Systems
Design and Mechatronics students compete (interview) for soft-
ware and programming jobs with students from core computing
programs such as Computer Science. There are also two smaller
near-cliques corresponding to Statistics/Actuarial Science and Ac-
counting/Financial Analysis. Additionally, Pure Mathematics is
connected to both of these; in fact Pure Mathematics students had
interviews in common with students from 18 other programs. This
suggests that Pure Mathematics students also interview for jobs in
statistics, finance and business. Upon further inspection, we found
that most such jobs were in financial trading.

The blue group of vertices in the middle includes two near-cliques:
one with Chemistry-related programs and one with Earth Science
and Environment-related programs. Based on these observations,
the university may choose to either merge some of these related
programs or redesign them to remove some of the overlap.

The green group at the bottom shows interesting connections. For
instance, Economics seems strongly connected to Science & Busi-
ness and Environment & Business, suggesting that these joint pro-
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grams focus more on business than science (otherwise they would
be connected with programs such as Chemistry and Environmental
Engineering). Furthermore, there is a near-clique with seemingly
unrelated programs: Sociology, Legal Studies, English-Literature
& Rhetoric and Environment & Business; the first three are in the
faculty of Arts while the last one is in the faculty of Environment.
Upon further inspection, we found that the jobs these programs
competed for were mainly in marketing and communications.

4.1.2 Community Detection
Next, we run the Louvain Modularity algorithm with different val-
ues of the resolution parameter to obtain a partitioning of the ver-
tices into different numbers of communities, from 2 to 7. For exam-
ple, Figure 4 shows the 7 communities we found, with each com-
munity in a different colour. For readability, we only include the
edges in the top 5 percent of largest weights. Notice that Figure 3
is a subgraph of Figure 4, so all the near-cliques identified there are
also visible here.

With these seven clusters, we obtain a partitioning into Engineer-
ing/Computing, Math/Finance, Natural Sciences, Social Sciences,
Science &Business, Environment, and Health Sciences. Note that
some engineering programs such as Chemical are placed in the
Natural Sciences cluster and others such as Civil and Geological
are placed in the Environment cluster. With only four clusters (il-
lustration omitted for brevity), we obtain Engineering/Computing,
Math/Finance, Natural Science/Environment, and Social/Health
Science. With only two clusters (illustration omitted for brevity),
we distinguish between Math/Engineering and Natural/Social Sci-
ence programs.

4.2 Finding Multi-Disciplinary Programs
Recall that our methodology for identifying multi-disciplinary pro-
grams requires a clustering; then, for each program, we compute
the entropy of its edge weight distribution across different clus-
ters. We use the seven clusters from Figure 4 and obtained en-
tropy values between 0.64 and 1.89. The top five multi-disciplinary
programs (highest entropy) are: Science & Business/Biochemistry,
English Literary Studies, Science & Business/Environmental Sci-
ence, Biology, and Science & Business. The top five least multi-
disciplinary programs are: Geological Engineering, Software Engi-
neering, French, Mechatronics Engineering and Civil Engineering.
Not surprisingly, joint programs of the form Science & Business
were identified as multi-disciplinary while specialized engineering
programs were not.

4.3 Finding Programs Facing Competition
We now search for programs with high set fan-out, i.e., those with
few jobs that interviewed students only from that particular pro-
gram. We found that for about half the programs, over 90 percent
of the jobs that interviewed a student from a particular program
also interviewed at least one student from another program. Thus,
competition for jobs among academic programs appears relatively
high. In particular, 16 programs, including Business & Mathemat-
ics, did not have any jobs that interviewed only their students (the
jobs for which these students interviewed were computing-related
or financial). Most of these 16 programs were small (only 3-4 se-
nior co-op students). There were few jobs that specifically target
these programs, so students from these programs had to interview
for jobs advertised to other programs.

On the other hand, there were 8 programs where more than 30 per-
cent of the jobs that interviewed at least one of their students did not

Figure 5: Word cloud of job titles of 70 Civil Engineering jobs
that only interviewed students from Civil Engineering

Figure 6: Word cloud of job titles of 85 Civil Engineering jobs
that also interviewed students from other programs

interview students from any other program. They are Mathematical
Studies/Business, Environmental Science - Geoscience, Informa-
tion Technology Management, Accounting & Financial Manage-
ment, Kinesiology, Chemical Engineering, Mechanical Engineer-
ing, and Civil Engineering. Upon inspection of the 70 jobs that
interviewed only Civil Engineering students, we found that the job
titles reflected expertise that is specific to this program, such as
“structural”, “field inspector”, “bridge”, “traffic” and “transporta-
tion” (see the word cloud in Figure 5). However, the remaining 85
jobs that interviewed Civil Engineering students also interviewed
students from other programs, mostly other engineering programs
such as Environmental, Mechanical and Geological Engineering.
We show a word cloud of these job titles in Figure 6; notice that it
includes more general keywords as compared to those in Figure 5.
Thus, it appears that there may not be enough specialized jobs for
programs such as Civil Engineering and some students within such
programs compete for a broader set of jobs.

5. CONCLUSIONS
We presented a data-driven solution towards improving the co-
operative education process. We observed that academic programs
are typically used by students and employers to advertise and
search for jobs, but it is not always clear how one program dif-
fers from another, especially given that universities have recently
been creating new programs. In response to this problem, we
developed a methodology to characterize the relationships among
academic programs with respect to the job interviews obtained by
students from these programs. The insight behind the methodol-
ogy was to transform co-op interview data into a program graph,
which revealed that students from certain programs interview for
the same jobs as those from other programs. We proposed graph
analyses such as finding communities, finding vertices connected
to many communities, and finding vertices strongly connected to
their neighbours to describe the program relationships.
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Figure 4: Clustering of the program graph into seven communities

We applied the proposed methodology on a large co-op data set
from a major Canadian university. Our findings and their signifi-
cance may be summarized as follows.

The clustering and community detection results (Section 4.1) corre-
spond to job categories and academic specializations, which are not
always evident from the University’s academic structure. This sug-
gests a job classification hierarchy to help advertise jobs to groups
of related programs. Our results can also help students plan their
academic and employment careers.

In Section 4.2, we identified multi-disciplinary programs which
have strong connections to multiple clusters. These results can help
students select programs that will give them broad skills and job
qualifications, and can help institutions confirm that programs de-
signed to be multi-disciplinary are producing students who qualify
(i.e., are able to obtain interviews) for various types of jobs.

In Section 4.3, we identified programs where there were no jobs
that only interviewed students from that particular program. That
is, students from that program always competed for jobs with stu-
dents from other programs. The university may wish to attract more
employers that offer jobs to these under-represented programs.

6. REFERENCES
[1] R. Barnett. Supercomplexity and the curriculum. Studies in Higher

Education, 25(3):255–265, 2000.
[2] R. Barnett. Learning for an unknown future. Higher Education

Research & Development, 31(1):65–77, 2012.
[3] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source

software for exploring and manipulating networks. In Proc. of the
International AAAI Conference on Weblogs and Social Media, 2009.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical

Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
[5] M. Borrego and J. Bernhard. The emergence of engineering

education research as an internationally connected field of inquiry.
Journal of Engineering Education, 100(1):14–47, 2011.

[6] E. El-Khawas. Higher education re-formed: Peter scott (ed.): Falmer
press, London, 2000. Higher Education Policy, 14(1):93–95, 2001.

[7] Z. Fadeeva, Y. Mochizuki, K. Brundiers, A. Wiek, and C. L.
Redman. Real-world learning opportunities in sustainability: from
classroom into the real world. International Journal of Sustainability
in Higher Education, 11(4):308–324, 2010.

[8] A. J. Hesketh. Recruiting an elite? employers’ perceptions of
graduate education and training. Journal of Education and Work,
13(3):245–271, 2000.

[9] Y. Jiang, W. Y. S. Lee, and L. Golab. Analyzing student and
employer satisfaction with cooperative education through multiple
data sources. Asia-Pacific Journal of Cooperative Education,
16(4):225-240, 2015.

[10] D. Kember, A. Ho, and C. Hong. The importance of establishing
relevance in motivating student learning. Active Learning in Higher
Ed., 9(3):249–263, 2008.

[11] R. Lambiotte, J.-C. Delvenne, and M. Barahona. Laplacian
dynamics and multiscale modular structure in networks. arXiv
preprint 0812.1770, 2008.

[12] M. E. Newman. Analysis of weighted networks. Physical Review E,
70(5):056131, 2004.

[13] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69:026113, Feb 2004.

[14] A. Wiek, L. Withycombe, and C. L. Redman. Key competencies in
sustainability: a reference framework for academic program
development. Sustainability Science, 6(2):203–218, 2011.

[15] A. Wilson. Strategy and management for university development. In
Higher Education Re-Formed, Falmer Press, pp. 29-44, 2000.

[16] A. Wilson. Knowledge power: interdisciplinary education for a
complex world. Routledge, 2010.

[17] World Association for Cooperative & Work-integrated Education
(WACE). Accessed on 25 Feb 2016, at
www.waceinc.org/global_institutions.html.

Proceedings of the 9th International Conference on Educational Data Mining 399



Expediting Support for Social Learning with
Behavior Modeling

Yohan Jo†, Gaurav Tomar†, Oliver Ferschke†, Carolyn P. Rosé†, Dragan Gašević‡
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ABSTRACT
An important research problem for Educational Data Min-
ing is to expedite the cycle of data leading to the analysis of
student learning processes and the improvement of support
for those processes. For this goal in the context of social in-
teraction in learning, we propose a three-part pipeline that
includes data infrastructure, learning process analysis with
behavior modeling, and intervention for support. We also
describe an application of the pipeline to data from a so-
cial learning platform to investigate appropriate goal-setting
behavior as a qualification of role models. Students follow-
ing appropriate goal setters persisted longer in the course,
showed increased engagement in hands-on course activities,
and were more likely to review previously covered materi-
als as they continued through the course. To foster this
beneficial social interaction among students, we propose a
social recommender system and show potential for assist-
ing students in interacting with qualified goal setters as role
models. We discuss how this generalizable pipeline can be
adapted for other support needs in online learning settings.

1. INTRODUCTION
More and more recent work in educational data mining and
learning analytics refers to a “virtuous cycle” of data leading
to insight on what students need and then improvements in
support for learning [17]. An important goal is tightening
this cycle to improve learning experience. We are interested
especially in social learning, drawing from a Vygotskian the-
oretical frame where learning practices begin within a social
space and become internalized through social interaction.
This may involve limited interaction, such as observation, or
more intensive interaction through feedback, help exchange,
sharing of resources, and discussion.

There are two main contributions of this paper. The first
is to propose a pipeline that can expedite the cycle of data
infrastructure, learning process analysis, and intervention
(Figure 1). Data infrastructure provides a uniform inter-

Data Infrastructure
unifies social interaction 
into a uniform interface

Learning Process Analysis
models learner behaviors 

conditioned on social connection

Intervention
helps students engage in 

beneficial social interaction

Figure 1: Pipeline for educational data mining in social
learning.

face for heterogeneous data from social interaction in var-
ious platforms, such as connectivist Massive Open Online
Courses (cMOOCs) [15], hobby communities, and Reddit
communities, where people engage in follower-followee rela-
tions, post updates to their account, engage in threaded dis-
cussions, and also optionally link in blogs, YouTube videos,
and other websites. Learning process analysis aims to an-
alyze students’ processes depending on their social network
configurations and to identify beneficial kinds of social con-
nections. We developed a probabilistic graphical model that
analyzes sequences of behaviors in terms of topics expressed
and social media types that students actively engage in over
time. Finally, intervention is introduced to foster beneficial
social connections among students. We developed a rec-
ommender system that matches qualified students to dis-
cussions to increase opportunities for them to interact with
other peers. The pipeline is iterative such that data from
participation is used to create models that trigger interven-
tions in subsequent runs of the course. Data from those later
runs can be used to train new and better models in order to
improve the interventions, and so on.

Our second contribution is to present findings from an appli-
cation of the proposed pipeline to data from a social learning
environment called ProSolo [12], in order to investigate the
positive influence of observing goal-setting behavior. While
goal-setting has been intensively researched and proven to be
an important self-regulated learning (SRL) practice that of-
ten leads to success in learning, the influence of a student’s
goal-setting behavior on observers has little been investi-
gated empirically. If goal-setting students turn out to be
good role models, that is, beneficial to their social peers, we
can encourage and help students to make such social connec-
tions with goal setters to enhance their learning experience.
The usefulness of this effect may be especially desirable in
online courses where the number of instructors is limited,
or online communities that are not structured like courses,
where students are required to take more agency in forging a
learning path for themselves within an ecology of resources.
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In the remainder of this paper, we first motivate the specifics
of our pipeline as situated within the literature. Next, we
present our pipeline and its application, along with findings.

2. RELATED WORK
Vygotsky’s view of social interaction as a key to learning
and Bandura’s social learning theory [1] emphasize the im-
portance of interaction to learning. In social contexts, by vi-
carious learning, students observe external models and learn
from those observations even when not actively engaged in
interaction [19]. Observation of role models facilitates moti-
vation and self-efficacy for a task [14] and may be associated
with positive changes in the observer’s behavior [9]. Drawing
on this theoretical foundation, the positive impact of social
interaction has been investigated in collaborative work [8]
and in online courses [11]. Yet, to our knowledge, our work
is the first to investigate goal-setting behavior specifically as
a qualification of a role model in online learning.

Several data infrastructures have been introduced to aid
educational data mining for Massive Open Online Courses
(MOOCs). For instance, MOOCdb [18] and DataStage1,
designed to store raw data from MOOCs, consolidate click-
stream data from different MOOC platforms in a single,
standardized database schema. This allows for developing
platform-independent analysis tools, thus enabling analy-
ses that span multiple courses hosted by different MOOC
providers with reduced development effort. While these in-
frastructures focus on behavior data represented by click-
stream logs, our proposed infrastructure deeply represents
other aspects of student interactions, such as discussion be-
havior and social relationships, which require the natural
language exchange between students.

Analysis of students’ learning processes has been a critical
topic in education. Our method contributes to the literature
on time series behavior modeling. Approaches to learning
process analysis differ in the definition of the basic building
block, often conceived of as states within a graph. Com-
mon building blocks for tutoring systems and educational
games include knowledge components [22] and actions [13].
In dialogue settings, it is common to code each utterance
according to a coding scheme and analyze the sequence of
codes [4]. In a MOOC context, states are often defined as
course units [3], course materials [3], or discussions [2]. Such
predefined states, however, may not be the ideal units of
states, especially in online courses where students can se-
lectively engage in learning resources. Therefore, unsuper-
vised modeling approaches are appealing for the purpose of
identifying states that are meaningful indications of student
interests obtained in a data-driven way. Our model belongs
to the class of Markov models, which have been proposed to
learn latent states and state transitions [6, 21].

In MOOCs, a student’s learning process is affected by other
peers especially through interaction in forums, which of-
fer opportunities to develop communication and community.
Hence, social recommendation algorithms can introduce ap-
propriate students to certain discussions for productive in-
teraction. Suggested matches should be appropriate when
viewed either from the discussion or student side [16], for

1
http://datastage.stanford.edu/

example by suggesting a student to participate in discus-
sions based on both the potential benefit of the student’s
expertise as an asset to the discussions while respecting the
limitations of a student’s resources for participation in more
than a limited number of discussions [20]. Our model can
recommend discussions to a student by balancing the benefit
of the student’s qualification to discussions, her relevance to
discussions, and required effort.

3. THREE-PART ANALYTICS PIPELINE
Our pipeline is designed to expedite the process of exploit-
ing student data leading to data-driven decision-making for
enhancing student learning (Figure 1).

In this pipeline for social learning, the first component is
a data infrastructure that maps diverse forms of social in-
teraction into a common structure. This uniform interface
allows the subsequent components—learning process anal-
ysis and intervention—to apply the same tools to different
data, even from distinctly different discourse types, with lit-
tle modification. Our development of this infrastructure,
DiscourseDB2, represents discourse-centered social interac-
tion as an entity-relation model. Discourses (e.g., forums
or social media) and individual contributions in a discourse
(e.g., posts, comments, and utterances) are represented as
generic containers generalizable to diverse social platforms.
DiscourseDB also allows for defining arbitrary relations be-
tween contributions, e.g., a “reply-to” relation derived from
the explicit reply structure of the platform versus one in-
ferred through some automated analysis process. This flexi-
bility helps the subsequent components of the pipeline avoid
data-specific processing. DiscourseDB can store both active
and passive activities of individuals, such as creating, revis-
ing, accessing, and following contributions, as well as form-
ing social connections with other individuals. DiscourseDB
is the key component of our pipeline, based on which the
next components perform integrated analyses of discourses
and social networking on multiple platforms with reusability.

The second component of our pipeline is analysis of stu-
dents’ learning processes depending on their social connec-
tions. The goal is to assess students’ needs of support by
understanding how learning processes are affected by social
interaction and what types of social interactions are help-
ful to students. Just as Bayesian knowledge tracing enables
modeling the learning process from a cognitive perspective
and then supporting a student’s progress through a curricu-
lum, Bayesian approaches can model learning processes at
other levels, including supportive social processes. And sim-
ilarly, these models can then be used to trigger support
for the learning processes in productive ways. Hence, the
third component of our pipeline draws upon insights ob-
tained from the analysis to introduce interventions that can
help students make beneficial social connections with other
peers. We will propose two concrete examples of machine
learning techniques for these two components in Section 5
and Section 6 respectively.

4. APPLICATION OF PIPELINE
The remainder of the paper presents an example application
of our general pipeline to a specific problem. We propose ex-

2
http://discoursedb.github.io
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ample models for learning process analysis and intervention
that can build upon DiscourseDB. After this description we
discuss our findings. This section introduces the data set for
that exploration.

4.1 Problem and Data
We examine goal-setting behavior as a potential qualifica-
tion of good role models via learning process analysis and
foster social connections with goal setters via recommen-
dation support. Since most MOOCs and informal learn-
ing communities lack a measure to identify potentially good
role models (e.g., a pretest), increased frequency of effective
goal-setting behaviors may serve as an indirect indicator of
success, as previous studies showed positive relationships be-
tween goal-setting behavior and learning outcomes [5, 23].

The data was collected from an edX MOOC entitled Data,
Analytics, and Learning (DALMOOC) [12], which ran from
October to December 2014. This course covered theoreti-
cal principles about learning analytics as well as tutorials
on social network analysis, text mining, and data visualiza-
tion. This MOOC was termed a dual layer MOOC because
students had the option of choosing a more standard path
through the course within the edX platform or to follow a
more self-regulated and social path in an external environ-
ment called ProSolo. The ProSolo layer allowed students
to set their own learning goals and follow other students
so that they could view activities and documents that of-
fered clues about how to approach the course productively.
While a huge literature on analysis of MOOC data focuses
on Coursera, edX, and Udacity MOOCs, other platforms
with more social affordances are growing in popularity. In
order to serve the goal of identifying support needs and au-
tomating support that may be triggered in a social context,
it is advantageous to work with data from socially-oriented
platforms. We used the log data from ProSolo as our object
of analysis, which include students’ discussions on ProSolo
and their own blogs and Twitter that they identified on their
ProSolo profile pages, evidence of students’ social connection
with each other, and “goal notes,” which students can use to
set their learning goals in their own words.

We preprocessed discussion data before running our model.
First, we filtered course-relevant tweets using the hashtags
#prosolo, #dalmooc, and #learninganalytics. We confirmed
that the tweets identified as irrelevant by this process have
little to do with course activity. Because we are not inter-
ested in irrelevant content, we replaced such content with
a tag to indicate irrelevant content. In order to prevent
topics from being defined in terms of document types, we
removed Twitter mentions and “RT” from tweets as well as
other function words including URLs from all documents.
Descriptive statistics for the data set are listed in Table 1.

4.2 Goal Quality and Social Connection
To categorize the quality of goal-setting behavior of each stu-
dent, we first annotated each goal note written by students
indicating whether it indeed contains a goal or not. 58%
of goal notes contained goals. An example goal note is as
follows: “to understand learning analytics and see how these
may be useful for my teaching and in particular, my learning
resource design/development.” On the basis of this annota-
tion, we categorized students into three classes: (1) goal

Goal notes 62 Tweets (relevant) 715
ProSolo posts 318 Tweets (irrelevant) 25,461
Blog posts 359

Users 1,729 Social connections 814

Table 1: Descriptive statistics for ProSolo data.

setters, (2) goal participants, and (3) goal bystanders. Goal
setters have goal notes that mention their distal or/and prox-
imal goals. Goal participants have goal notes, all of which
are about something other than goals, e.g., experiences or
questions. Goal bystanders have no goal notes. Note that
the category of a student can change over time. All students
start as goal bystanders and may become a goal participant
or a goal setter as time passes. A student’s social connec-
tion is then categorized into seven classes: (S1) has already
been following a goal setter, (S2) started to follow a goal
setter at the current time point (S3) has been following a
goal participant (but no goal setter), (S4) started to follow
a goal participant at the current time point, (S5) has been
following a goal bystander (at best), (S6) started to follow
a goal bystander at the current time point, and (S7) follows
no one. S2, S4, and S6 mean that a student’s social con-
nection improved at the current time point, whereas S1, S3,
and S5 indicate that a student remained in the same social
connection category as in the previous time point.

5. LEARNING PROCESS ANALYSIS
Learning process analysis aims to assess students’ needs of
support. Hence, we model students’ behavior and analyze
their learning processes as they experience changes in their
social connections throughout the course.

5.1 Model
Our model automatically extracts a representation of stu-
dents’ learning processes based on their discussions in a
course and their social connections, which may reveal the
influence of different configurations within the social space
(see our technical report [7] for details). We define the build-
ing blocks of learning processes, i.e., states, in terms of dis-
cussed topics and the document types used for discussions
(e.g. Twitter, blog). Given the sequences of timestamped
documents and social connection types for students, our la-
tent Markov model infers a set of states, along with the
main topics and document types for each state. The learned
topics reflect students’ interests, and the document types
show how students use different media for different inter-
ests. The model also learns transition probabilities between
states, conditioned on the social connection category in the
source state. This discloses how learning processes differ
depending on students’ social connection types.

5.2 Findings
We applied the model to the ProSolo data and examined
the correlation between the categories of social connection
and learning behaviors. We ran our model with the number
of states set to 10 and the number of topics set to 20. We
defined the unit of a time point as one week, and if a student
had no activity in a certain week, that week was omitted
from her sequence.
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State Topics RelGoalNote IrGoalNote Post Blog RelTweet IrTweet

0 Course-irrelevant tweets 0.00 0.00 0.00 0.00 0.00 1.00
1 Concept map, network analysis (Week 9) 0.00 0.00 0.02 0.01 0.18 0.78
2 Social capital (Week 3) 0.04 0.01 0.19 0.30 0.18 0.27
3 Tableau (Week 2), Gephi (Week 3), Lightside (Week 7) 0.01 0.03 0.10 0.28 0.24 0.34
4 Prediction models (Week 5) 0.01 0.02 0.29 0.22 0.10 0.36
5 Data wrangling (Week 2) 0.01 0.01 0.12 0.08 0.26 0.52
6 Visualization (Week 3) 0.05 0.02 0.24 0.47 0.08 0.15
7 Epistemology, assessment, pedagogy (Week 4) 0.05 0.00 0.18 0.22 0.30 0.25
8 Prediction, decision trees (Week 5) 0.02 0.02 0.19 0.40 0.09 0.28
9 Share, creativity (mixed topics) 0.00 0.02 0.12 0.13 0.21 0.52

Table 2: Learned states with their topics and document type distribution (each row sums to 1). (RelGoalNote: goal notes
containing a goal, IrGoalNote: goal notes without a goal, Post: posts on ProSolo, Blog: personal blog posts, RelTweet:
course-relevant tweets, IrTweet: course-irrelevant tweets)

Social Connection

GS S1+S2 GP S3+S4 GB S5+S6 NO S7

# Time Points 139 315 265 821

% Time Points

State 0 0.59?? 0.75 0.75 0.71
State 1 0.17? 0.10 0.03 0.04
State 2 0.05 0.02 0.02 0.04
State 3 0.04? 0.00 0.01 0.01
State 4 0.01 0.02 0.03 0.06
State 5 0.05 0.03 0.06 0.05
State 6 0.05 0.02 0.02 0.02
State 7 0.03 0.01 0.03 0.02
State 8 0.00 0.03 0.02 0.02
State 9 0.01 0.04 0.03 0.04

Table 3: Proportion of time points students stay in each
state depending on the social connection (each column sums
to 1). “??” and “?” indicate that GS is significantly different
from other categories in bold with p < 0.01 and p < 0.05,
respectively, by Pearson’s χ2 test. GS, GP, and GB each
represent either “has been following” or “started to follow” a
goal setter, a goal participant, and a goal bystander, respec-
tively. NO means to follow no one.

5.2.1 Learned States
The model learns states with their topics and document
type distributions (Table 2). Most states are aligned well
with course units covering important course topics. How-
ever, State 0 is where students do not participate in course
discussion but post course-irrelevant tweets. State 3 is about
hands-on practice of software tools across the course, and
State 9 covers many side topics. Tweets tend to take a large
proportion and goal notes a small proportion in every state
due to their relative volumes. Blog posts are actively used
for summarizing readings and tutorials, and tweets are used
as a means of communicating with lecturers (e.g., State 5).
ProSolo posts are most accessible to ProSolo users, so stu-
dents use them to reveal their opinions and questions.

5.2.2 Students Following Goal Setters
According to the investigation of students’ learning pro-
cesses, based on the number of weeks they spent in each
state (Table 3) and state transition patterns (Figure 2), stu-
dents who follow goal setters show the following positive
learning behavior:
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(b) S7. Follows no one

Figure 2: State transition patterns. Nodes are states whose
size reflects the number of weeks students visit the states.
Edges are transitions whose thickness and darkness reflect
transition frequency. Edges without a source node represent
the probability of being the first state in a learning path.

Twitter usage: The students following goal setters spend
noticeably fewer weeks on irrelevant tweets (State 0).

Participation duration: The topics of the states in which
students stay reveal how long they persist in the course. The
students following goal setters are more likely to discuss the
material taught in the last week (State 1), that is, they are
active in the last phase of the course.

Activities of interest: The number of weeks students
spend in each state reflects the activities students are in-
terested in. The students following goal setters were more
active in hands-on practice (State 3) than other students.
Hands-on practice requires higher motivation than merely
watching lectures, so these students might have been helped
by observation of role models as discussed in the literature
[14]. This trend would have not been as clear using prede-
fined states based on course units [3].

Study habits or challenges: Transition patterns may re-
veal students’ study habits or challenges. Figure 2a shows
frequent transitions between three states (States 1, 3, and 5)
that are associated with materials taught in different weeks.
Such transitions may reflect the SRL strategy of activating
and applying prior knowledge to the current situation [10].

These positive effects associated with following goal setters
are not apparent with other social connection types, e.g.,
following no one (Figure 2b). This indicates that “who to
follow” is more important than simply following someone.
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6. INTERVENTION FOR SUPPORT
On the basis of the insights obtained from the previous com-
ponent, the third component of our pipeline is to offer ap-
propriate support, especially towards fostering beneficial so-
cial connections between students. We argue that a rec-
ommender system can serve this purpose, by presenting its
potential positive impact as assessed on the corpus.

6.1 Model
Our recommender system aims to match qualified students
(e.g., goal setters) to discussions so that they can interact
with and benefit the discussants through discussions (see our
technical report [7] for details). Our model has two steps:
relevance prediction and constraint filtering. The relevance
prediction step learns the relevance between students and
discussions using student- and discussion-related features.
The learned relevance reflects students’ preferences and ten-
dencies, but may not reflect the ideal matches for fostering
learning. The constraint filtering step thus combines the rel-
evance scores with some constraints that foster interaction
between qualified students and other students, and finalizes
recommendations.

6.2 Findings
Since we have identified positive learning behaviors of stu-
dents who follow goal setters, we may want to support stu-
dents by fostering interaction with goal setters. Instead of
recommending direct following relations, which are not sup-
ported by many learning platforms, we recommend discus-
sions to qualified students so that they can interact with the
discussants. We first assess the extent to which students are
sensitive to qualified students prior to explicit intervention,
and then present the potential added value of our recom-
mendation model.

6.2.1 Students’ Awareness of Role Models
Our first step is to assess whether students can identify ef-
fective role models in discussion activities (ProSolo posts),
by measuring the impact of the information about students’
qualifications on the prediction of discussion participation.
This task is to infer links between students and discussions
that we hid from an observed static snapshot of a network of
discussion participation based on observable data. A mea-
sured positive impact here would indicate some sensitivity
on the part of students to interact with qualified students
naturally. We train a predictive model of students’ partic-
ipation in discussions on two thirds of student-discussion
pairs. We then predict the discussion participation of the
remaining pairs. Our evaluation metric is mean average pre-
cision (MAP).

We compared four configurations by varying the informa-
tion about students’ qualifications that is used as feature
for relevance prediction. In particular, CAMF uses only ba-
sic features, such as the numbers of discussions each student
initiated and participated in and each discussion’s length,
number of replies, and participants. CAMF G and CAMF C
add information about goal quality and degree centrality,
respectively, and CAMF GC adds both. The evaluation was
conducted as a link prediction task, based on the relevance
scores predicted in the relevance prediction step. Students’
qualification information did not improve link prediction ac-

Configuration MAP Configuration MAP

CAMF 0.465 CAMF C 0.455
CAMF G 0.438 CAMF GC 0.439

Table 4: MAP for link prediction.

Configuration OB Configuration OB

GoalPart 1.888 MCCF G 3.683
HighCent 1.943 MCCF C 3.770
GoalPart HighCent 1.873 MCCF GC 3.656

Table 5: Overall Community Benefit for recommendation.

curacy (Table 4). This means that students are not proac-
tively sensitive to peers’ qualifications while participating
in discussions, which supports our view that explicit rec-
ommendation could be valuable for encouraging students to
interact with qualified peers through discussions.

6.2.2 Recommendation Quality
The recommendation of discussions should be consistent with
both the relevance between students and discussions (the
relevance prediction step) and constraints for beneficial so-
cial connection (the constraint filtering step). To this end,
we evaluated recommendation quality on Overall Commu-
nity Benefit (OB) [7]: the relevance of our recommendations
penalized by the burden on the students induced by the rec-
ommendations. The higher OB the better.

We tested three configurations by varying the constraints
incorporated into the constraint filtering step. MCCF G re-
quires that every discussion have at least one goal partici-
pant or goal setter. MCCF C requires that every discussion
have at least one student whose degree centrality is higher
than 0.1. MCCF GC requires both. In addition, the following
configurations were tested as baseline without incorporation
into the model. GoalPart filters goal participants or goal set-
ters after making recommendations based on predicted rele-
vance. Similarly, HighCent filters students with degree cen-
trality higher than 0.1. GoalPart HighCent filters goal par-
ticipants or goal setters with degree centrality higher than
0.1. Incorporating the constraints about students’ goal qual-
ity and degree centrality into the model (MCCF G, MCCF C,
and MCCF GC) achieved higher OB than the simple filter-
ing approaches (Table 5). That is, our algorithm effectively
matches qualified models to relevant discussions in such a
way that students in every discussion can interact with qual-
ified models while balancing the load of the models.

7. DISCUSSION
According to our learning process analysis, students bene-
fit from social connections with effective goal setters through
ProSolo’s follower-followee functionality. They stay longer in
the course, engage in hands-on practices, and link materials
across the course. This supports the view that goal-setting
behavior is a useful qualification for potential role models.
According to the discussion participation prediction task,
explicit intervention is important for helping students be
aware of qualified students and interact with them via dis-
cussions. Therefore, we incorporated the information about
students’ qualifications into our recommendation model as
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constraints, successfully matching qualified learning part-
ners to relevant discussions.

This work started from the need for expediting data anal-
ysis and analysis-informed support in social learning where
students interact with one another via various social media
in order to pursue their own learning goals. This expedition
builds on DiscourseDB, data infrastructure for complex in-
teraction data from heterogeneous platforms. We proposed
a probabilistic graphical model to analyze students’ learning
processes depending on the state of their social connections,
and proposed a recommender system that can improve stu-
dent support on the basis of the insights obtained from the
analysis. This pipeline arguably should allow us to apply
the techniques to different learning communities with little
effort.

Goal-setting behavior is an important practice in SRL and
is known to be difficult for students, so an analysis towards
improvement of this skill is arguably valuable. Nevertheless,
in this study we have not examined how this behavior in-
fluences the domain learning of students. This is due both
to the limited data size for our first trial to use ProSolo in
MOOCs as well as a lack of learning gain measures. How-
ever, the modeling techniques proposed in this paper can
readily be applied to other data sets if the requisite data
become available. We are also interested in investigating
different SRL strategies besides goal-setting in social learn-
ing, and how social interaction influences the SRL behaviors
of the students. Ultimately, the real value of the work will
be demonstrated not with a corpus analysis, as for our pro-
posed recommendation approach, but with an intervention
study in a real MOOC. We are working towards incorporat-
ing this approach in a planned rerun of DALMOOC.
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[12] C. P. Rosé, O. Ferschke, G. Tomar, D. Yang,
I. Howley, V. Aleven, G. Siemens, M. Crosslin,
D. Gasevic, and R. Baker. Challenges and Opportu-
nities of Dual-Layer MOOCs: Reflections from an edX
Deployment Study. In CSCL ’15, pages 848–851, 2015.

[13] E. Rowe, R. S. Baker, and J. Asbell-Clarke. Strategic
game moves mediate implicit science learning. In EDM
’15, pages 432–436, 2015.

[14] D. H. Schunk and A. R. Hanson. Peer models: Influen-
ce on children’s self-efficacy and achievement. Journal
of educational psychology, 77(3):313–322, 1985.

[15] G. Siemens. Connectivism: A learning theory for the
digital age. International Journal of Instructional
Technology and Distance Learning, 2014.

[16] L. Terveen and D. W. McDonald. Social matching: A
framework and research agenda. ACM transactions on
computer-human interaction, 12(3):401–434, 2005.

[17] C. Thille. Education Technology as a Transformational
Innovation. White House Summit on Community
Colleges: Conference Papers, pages 73–78, 2010.

[18] K. Veeramachaneni, S. Halawa, F. Dernoncourt,
U. O’Reilly, C. Taylor, and C. Do. Moocdb:
Developing standards and systems to support MOOC
data science. CoRR, abs/1406.2015, 2014.

[19] P. H. Winne and a. F. Hadwin. Self-regulated learning
and socio-cognitive theory. International Encyclopedia
of Education, pages 503–508, 2010.

[20] D. Yang, D. Adamson, and C. P. Rosé. Question
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ABSTRACT
The big data imposes the key problem of generalizability
of the results. In the present contribution, we discuss sta-
tistical tools which can help to select variables adequate for
target level of abstraction. We show that a model considered
as over-fitted in one context can be accurate in another. We
illustrate this notion with an example analysis experiment
on the data from 13 university Massive Online Open Courses
(MOOCs). We discuss statistical tools which can be helpful
in the analysis of generalizability of MOOC models.

Keywords
Massive open online courses, MOOCs, bias-variance trade-
off, generalizability

1. INTRODUCTION
The rapid growth of Massive Online Open Courses (MOOCs)
has shown significant impact not only on the education but
also on educational research. Over 100 world class univer-
sities partner with MOOC platforms to provide free educa-
tion. Many of these universities, use data analytics to pro-
vide indicators to the policy makers, and valuable insights
to the teachers and producers.

Researchers from emerging educational fields, such as learn-
ing analytics and educational data mining, attempt to make
sense from the huge datasets from the MOOC providers (for
example Coursera, Edx). These large datasets provide an
opportunity to detect the slightest differences in the be-
haviour which are correlated to the students’ performance.

However, the big data involves the risk of misinterpreting
the results. The misinterpretations could surface mainly be-
cause of two reasons. First, the effect sizes are few orders of
magnitude smaller then we used to expect in classical educa-
tional psychology studies; and the results are still significant
due to the large sample. Second, “black-box”approaches like
Support Vector Machines or Neural Networks give us great

predictive power of models but do not explain the underlying
processes.

Both of these reasons can lead to “overfitting” a model for
a given context. Still, the same model can be be accurate
in another context as illustrated in Figure 2. Choosing too
specific descriptors could lead to the models which precisely
describe one student but fail to generalize to new concepts.
Too vague descriptors tend to generalize better but inform
less about the specifics of the underlying processes. In sta-
tistical terminology this is often referred to as the “bias-
variance trade-off”.

Figure 1: Example of layers to which we can draw
conclusions from instances of MOOCs if the gener-
alizability issues are addressed correctly.

The bias-variance trade-off is the central problem in statis-
tical learning. It corresponds to the fact that one cannot
minimize both quantities, “bias” and “variance”, at the same
time. A model with large bias is a smooth model not meant
to fit sample points very closely but still captures the general
trend in the data. Conversely, a model with large variance
(not smooth) varies a lot for similar input parameters in or-
der to fit well to each point in the dataset, often causing the
so-called “overfitting”.
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The objective of this paper is to highlight the potential prob-
lem of closed-world context of MOOC research. We discuss
techniques for leveraging existing models to more general
context. We argue that designing context independent fea-
tures is crucial for building generalizable models and we il-
lustrate how variable selection process can be enhanced with
statistical techniques. We illustrate a statistical technique
which can be helpful in the choice of the important variables.

We address the following three research questions:

1. How to measure the extent to which the MOOC re-
search as generalizable?

2. How to leverage predictive models in a MOOC to a
broader context?

3. How to improve model’s accuracy by restraining the
scope of the variables used for prediction purposes?

2. RELATED WORK
2.1 Student Categorization
The common approach for finding generalizable patterns is
to classify students into groups. To the best of our knowl-
edge, there exist only a few categorisation schemes, mostly
based on what emerges as a pattern of behaviour from MOOC
students. These categories are based on the students’ mo-
tivation [20], engagement patterns [10, 14, 16, 7] or demo-
graphics [5, 4].

There are many categorisation schemes depending on the
engagement patterns. [10] categorised the students in Com-
pleting, Auditing, Disengaging and Sampling students based
on their activities which range from watching majority of
lectures and submitting all the assignments (Completing) to
watching only one or two lectures and no assignment sub-
missions (Sampling). In a connectivist MOOC setting, [14]
categorised students into Active (students who adapt well
to the connectivest pedagogy), Passive (frustrated ones) and
Lurkers (who actively follow the course but do not interact
with anyone). Phil Hill first categorised MOOC students
into Lurkers (ones who only enrol or sample the course),
Active (fully engaged with the course material, quizzes and
forums), Passive (only consume the content, did not partic-
ipate in forums) and Drop-ins (consumed only a part of the
course as an Active student) [8]. Later he revised his cate-
gories and divided the Lurkers into No-shows and Observers
[7].

These schemes are either defined by hard-coded thresholds
or by unsupervised learning techniques. For that reason,
they remain robust in terms of generalizability within the
MOOC’s context, but they are hard to generalize outside
of it. In this study, we will rather discuss regression than
classification/clustering, keeping in mind that similar obser-
vations can be done in both contexts.

2.2 Performance and engagement prediction
Student’s performance is one of the key metrics analyzed
in MOOCs. Many studies chose performance as an indi-
cator for showing the value of the categorization methods.
Massive datasets allow us to discover relation between per-
formance and even the smallest factors like the number of

pauses during watching a MOOC video or ratio of a video re-
played [12]. Performance is also a crucial indicator for policy
makers and MOOC practitioners. Reports focus on perfor-
mance of MOOCs as a function of performance of students
[13].

Previous studies on performance often concern a small set
of MOOCs [1, 17, 9]. These studies provide insights about a
large cohort of students and generalize to another cohorts,
however the studies encounter lack of generalizability due to
a small sample in the sense of course variability. In other
studies, authors used time spent on lecture video, lecture
quiz, homework, forum, quiz, assignments to predict stu-
dents’ learning gain [3, 11, 21, 3]. Lauria et al. [11] used
the amount of content viewed, forum read, number of posts,
assignments and quizzes submitted, to predict the perfor-
mance and the engagement of the students. Wolff et al.
[21] used the temporal clickstream data to predict students’
performance.

These studies risk having high bias towards the courses in
context and thus might lack the generalizability to be ex-
tended to courses with different content and/or courses from
different domain. However in the aforementioned works, it is
difficult to confirm our claim due to small number of MOOCs
being analyzed. An example with generalizable set is shown
by [2], where authors used the weekly time series data with
2-, 3-, 4-, and 5- grams to predict the final grades of the
students. They experienced issues with the predictive mod-
els being generalisable - the model accuracy decreases as the
authors used the same course session, to a different session
from the same course, to a different course.

3. PROBLEM STATEMENT
In the MOOC context, models with large variance might
correspond to the cases where one includes specific informa-
tion about users, which are characterising only the sample
at hand. For example, a model which includes exact timing
of actions into account, could fit precisely to the data, since
it identifies the user by the time of his actions, but it pro-
vides no generizability to new samples. Conversely, models
with high bias correspond to situations when one considers
general indicators like only the number of forum activities
in a MOOC - thus, the model will fit worse to specific users
but is more likely to generalize.

In practice, it is impossible to make both variables small,
i.e. to retain both good fitness and smoothness. We need
to choose the complexity of the model such that the sum
of these two quantities is minimised. One could show that
for any statistical learning method, the error can be decom-
posed to variance and bias terms. For a given target value
y, predictors x and the estimator f̂ , the error of the model
can be depicted as:

E
[(
y − f̂(x)

)2]
= Bias

[
f̂(x)

]2
+ Var

[
f̂(x)

]
+ σ2, (1)

where σ is the standard deviation of the residuals,

Bias
[
f̂(x)

]
= E

[
f̂(x)

]
− f(x)
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and

Var
[
f̂(x)

]
= E

[(
f̂(x)− E[f̂(x)]

)2]
.

In other terms, bias is the squared distance between the
real output f(x) and the average prediction for given x, i.e.

the E
[
f̂(x)

]
. The bias gets large whenever the average of

predictions x differs highly from E
[
f̂(x)

]
. Conversely, the

variance, expressing how do prediction vary from average
around x, gets large whenever the variability is high.

Figure 2: Influence of bias-variance trade-off on the
generalzation error - illustrative conceptual draw-
ing.

The ideal model would have both quantities Bias
[
f̂(x)

]2
and

Var
[
f̂(x)

]
equal to zero, but, as we mentioned before, it is

not practically possible. However, we can control this error,
as both quantities depend on the complexity of the model.
For example, a linear model with large number of parameters
has high variance and thus the error term increases. On
the contrary, if one chooses low complexity (small number
of variables), the model might have high error due to the
high bias. The “best” model is somewhere in the middle, as
illustrated by the green curve in Figure 2.

What is often missed in the analysis of the bias-variance
plot, is that the error depends also on the context in which
we generalize. Particularly in the MOOC context, in Figure
2 the green curve corresponds to generalization to another
instance of the same MOOC, whereas the error follows a
different pattern (orange curve) if we change the context to
another MOOC.

4. MATERIALS AND METHODS
As we focus on the concept of generalizability of models
and robustness of variables, we investigate our approach on

several different MOOCs. We used data from 13 MOOCs,
from EPFL, from both coursera and edX platforms. The
dataset contains 1 MOOC which had 3 sessions in 3 con-
secutive semesters and 2 MOOCs which had 2 sessions in 2
consecutive semesters, as indicated in Table 4.

This setup allows us to investigate several aspects of gener-
alizability. We investigated the fit of a model in correspon-
dance to: 1) the course itself; 2) another instance of the
same course; 3) another engineering course.

4.1 Setup
In order to attain a generalizable model, the setup must
be consistent between the training data and the test data.
Thus, we use the variables which could be defined for all the
courses. Additionally, all the scores are normalized to the
same range (0 - 100). Since courses have different lengths,
we focus only on student activities in the first week. Finally,
since 95% of the students did not submit any assignments
and significantly bias linear models, we analysed only those
students who got at least 1 point as their final grades. Note,
that the context we are defining serves mainly as an illus-
tration, thus we choose a relatively simple setup for trans-
parency.

As the measure of performance of a model we take the Nor-
malized Mean Squared Error (NMSE), defined as

NMSE = Var(y − f̂(x))/Var(y),

where y is the dependent variable to predict, f̂ is the esti-
mator of the relation between y and independent variable x
and Var corresponds to the sample variance.

4.2 Example method
In the linear regression, the main source of complexity is due
to the number of variables in the model. Classical statistics
provide us with robust tools for variable selection, such as
ANOVA, Akaike Information Criteria. These techniques are
useful for their inferential value, however, they do not guar-
antee the best generalizability in terms of prediction.

One of the techniques, where the complexity is controlled
using a parameter that also affects the performance of the
model, is regularized linear regression. In classical statistics,
called ridge regression, the standard linear model is extended
with an additional, regularizing term. This regularising term
controls the parameters of the model with respect to the
performance measure based on the prediction, by decreasing
the importance of variables which do not account for the
prediction.

In particular, given the independent variables X1, X2, ..., Xd

and the dependent variable Y we build a model minimizing

E
∥∥Y − β1X1 − β2X2 − ...− βnXd

∥∥2 + λ

k∑

i=1

βp
i , (2)
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where d is the number of variables, β1, β2, ..., βd are the pa-
rameters of the model and p = 2.

If λ is large, we put more weight to the sum of βs. Therefore,
the number of parameters will be reduced and the model
will have a low bias. On the other hand, if λ is small, the
model corresponds to linear regression and the variance is
high since we use all the variables.

We chose this model for our analysis since it allowed us to
control both the bias and the variance with a single param-
eter λ. Moreover, changing the value of p from 2 to 1 is
(2), gives better results in many setups. Hence, we choose
to use p = 1. The model is known in the machine learning
literature as LASSO [19]. The complete algorithm, for those
interested, can be found in [19]. Here we are refraining our-
selves to the basic description as this is not the main focus
of the paper.

4.3 Variables
For illustrating the problem, we chose the students’ final
grade in the course as the dependent variable. Following are
the features that we extracted from the data for modeling
this value.

1. Counts: We counted different online activities exhib-
ited by the students. 1) Lectures: lecture view, lecture
re-view, lecture download and lecture re-download; 2)
Quiz : quiz submission, quiz re-submission, here we
differentiated between the quizzes as an exercise, in-
video quizzes and the surveys; 3) Assignments: assign-
ment submission and assignment re-submission; 4) Fo-
rums: thread launches, upvotes, downvotes, subscrip-
tions, views, comments and posts.

2. Delays: We computed the time difference between the
different events in the MOOC structure and students’
activities. 1) First View Delay : the time difference be-
tween the first view or first download of the lecture and
the time when the lecture was online; 2) Overall View
Delay : the average first view delay for all the lecture
views and downloads; 3) Between Lecture Delay : the
time difference between the views or downloads of two
different lectures; 4) Within Lecture Delay : the aver-
age time difference between two views and/or down-
loads of the same lecture; 5) First Quiz Attempt Delay :
the time difference between the first submission for a
quiz and the time when the quiz was online; 6) Within
Quiz Time: the time difference between two attempts
for the same quiz; 7) Overall Quiz Attempt Delay : the
average first quiz attempt delays for all the quizzes.

3. Progress: We computed the score difference between
the two consecutive attempts to the same quiz or the
same assignment.

4. 2-way Transitions: We labeled the different activi-
ties as L, A, Q and F for lectures, assignments, quizzes,
and forums respectively. Further, we constructed a
time-series of the actions and counted how many times
the action pairs (for example, AA, AL, AF, LQ, FL,
16 pairs) occur in the time series for each student.

5. 3-way Transitions: using the same time series, as
to compute the 2-way transitions, we counted how
many times the action triples (for example, AAA, FAL,
QAF, LLQ, FLL, 64 triples) occur in the time series
for each student.

5. RESULTS
Using the variables, defined in the Section 4.3, we illustrate
the setup for modelling the data. As we mentioned in the
Section 4.1, we considered only the activities from the first
week of the courses and from those students who scored at
least 1. We would also like to emphasize here that the main
aim of this contribution is not to present a model that has
the least error, but to show how we can build generalizable
models taking into account the bias-variance trade off.

In the proposed setup, we demonstrate how generalizable a
model is to: 1) the students from the same course (separate
test set of 20% of observations), 2) the students from another
instance of the same course, 3) to a different course.
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Figure 3: Prediction error (NMSE) for the test sam-
ples, for the different values of the shrinkage factor
λ in (2), using all the variables.

First, we analyze the model fit to the first session of the
Numerical Analysis course and test it on: itself, another
session of Numerical Analysis and House Water Treatment
Systems a course from a different domain. We illustrate
the results in Figure 3. We observed that the model which
had highest predictive power on the test set in the session
1 (black curve) has the worse predictive power for another
instance of the same course (red curve), but still performs
well. The optimal shrinkage factor (λ in equation (2)) turns
out to be close to 0 in both cases. This shows that almost
all the variables we introduced are included in the model.
We could conclude that the model generalizes to another
instances of the same course.

However, as we hypothesized, the full model did not fit at
all to a course from a different domain. Only with a large
value of the shrinkage factor, which removed 97 variables
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from the model, we obtain a model with some informative
value for a course from another domain. Furthermore, the
errors become similar for all the courses, illustrating that the
model has lower variance. It generalizes better to another
course but it lost its fit to the Numerical Analysis course.

We conducted the identical analysis (see Table 1) on all the
courses mentioned in the dataset. In all the cases, gener-
alizability to another course required significant decrease in
the complexity, using the shrinkage factor. Removing cer-
tain variables from the model turns out to be crucial for
the performance. Since we started with 134 variables, to
further analyze the ability to generalize, we restricted our-
selves to a simpler case with the first three (counts, delays
and progress) groups of variables introduced in Section 4.3.

The same patterns were observed in this simpler case. The
optimal model for prediction in the same instance and in
another instance of the course have the lowest error if the
complexity (variance) is high. However, the model with
such a high complexity exhibits poor performance in another
course, from the same domain, i.e. the linear optimization.

As hypothesized, variables which were removed by LASSO,
are course-structure dependent. The most generalizable mod-
els contain the variables related to the lecture, forum and
quiz activities. These variables provide the required gener-
alizability to the model and hence we observe that as we
increase the shrinkage factor, the predictive power of the
model increasingly became similar for the different courses.

6. CONCLUSION
We demonstrated through examples that in the terms of
bias-variance trade-off, achieving both the specificity and
generalizability is not possible while modelling student be-
haviour. Through the statistical methods available, one can
only achieve one of the two goals, or find an optimum solu-
tion that is specific to one course and only reveals the surface
learning behaviour of the students from a course from an-
other domain, or vice verse.

Similar validation framework, analysing fitness in the same
course, another session of the same course and another course
was previously introduced [2] in literature. Results from this
work are equivalent to ours with some predefined and fixed
complexity parameter. In our work we show that practi-
tioners can modulate the complexity and generalizabiity by
selecting a subset of variables.

Previous works, have small sample size in terms of number
of MOOCs. It is therefore difficult to assess their general-
izability. For example, Social Network Analysis (as shown
by [18, 15, 6]) is based on the motivation of the student -
if the students are sharing the exact answers (or revealing
them in some other ways) forum view can play a big role in
achievement. Clickstreams (as shown by [21]) in a video are
highly dependent on the content. Finally, from the method-
ological perspective generalizability is also a design choice -
for example - if we choose a smaller number of clusters in
unsupervised learning, we may obtain more robust results
(smaller variance higher bias).

Figure 4: Illustration of bias-variance trade-off from
engineering courses. Prediction error (NMSE) for
the test samples, for the different values of the
shrinkage factor λ in (2)

7. DISCUSSION
Our goal was to illustrate the generalizability issue which we
encounter in any machine learning or learning analytics se-
tups. We did not compare multiple algorithms, but we used
a simple one to support our claims. It is worth mention-
ing that the same phenomenon is encountered in any other
machine learning method.

Moreover, the same analysis can be performed with any reg-
ularized regression algorithms, i.e., consisting a parameter
to control the complexity of the model, like SVM, logistic
regression, neural networks, etc. In each of these methods
regularization selects the optimal sets of parameters.

Finally, the choice of the feature set should be based on the
desired outcome of modelling student behaviour in a MOOC.
If the goal is to attain high predictability in a small variety of
courses, one could choose to include course-structure related
variables. On the other hand, if the modelling requirement
is to have a decent genralizability over a wide variety of
courses, one has to compromise the predictability over a set
of courses and select only the course-structure-independent
variables.

8. REFERENCES
[1] L. Breslow, D. E. Pritchard, J. DeBoer, G. S. Stump,

A. D. Ho, and D. T. Seaton. Studying learning in the
worldwide classroom: Research into edxâĂŹs first
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ABSTRACT 
Many educational data mining studies have explored methods for 
discovering cognitive models and have emphasized improving 
prediction accuracy. Too few studies have “closed the loop” by 
applying discovered models toward improving instruction and 
testing whether proposed improvements achieve higher student 
outcomes. We claim that such application is more effective 
when interpretable, explanatory models are produced. One 
class of such models involves a matrix mapping hypothesized 
(and typically human labeled) latent knowledge components 
(KCs) to the instructional practice tasks that require them. An 
under-investigated assumption in these models is that both task 
difficulty and learning transfer are modeled and predicted by 
the same latent KCs. We provide evidence for this assumption. 
More specifically, we investigate the data-driven hypothesis 
that competence with Algebra story problems may be better 
enhanced not through story problem practice but through, 
apparently task irrelevant, practice with symbolic expressions.  
We present new data and analytics that extend a prior close-
the-loop study to 711 middle school math students. The results 
provide evidence that quantitative cognitive task analysis can 
use data from task difficulty differences to aid discovery of 
cognitive models that include non-obvious or hidden skills. In 
turn, student learning and transfer can be improved by closing 
the loop through instructional design of novel tasks to practice 
those hidden skills.   

Keywords 

Cognitive task analysis, cognitive model, transfer, knowledge 
components, close-the-loop experiment 

1. INTRODUCTION 
As the field of Educational Data Mining (EDM) strives for 
technical innovation, there is risk of losing the "E" in "EDM", 
that is, of not making a clear link to the "Educational" in 
"Educational Data Mining". Connected with this concern is 

the temptation to evaluate EDM research only in terms of 
predictive accuracy and not place value on interpreting the 
resulting models for plausibility and generalizable insights. 
While it is possible to use uninterpretable or "black box" 
predictive models in educational applications (e.g., [1]), 
interpreting model results is an important step toward 
improving educational theory  and  practice  for  three  
reasons: 1)  for advancing scientific understanding of learning or 
educational domain content, 2) for generalization of models to 
new data sets (cf., [19]), and 3) for gaining insights that lead to 
improved educational technology design. 

Whether an educational application of EDM is through a black 
box model or mediated by data interpretation, the most 
important, rigorous, and firmly grounded evaluation of an 
EDM result is whether an educational system based on it 
produces better student learning. Such an evaluation has been 
referred to as "closing the loop" (e.g., [16]) as it completes 
a "4d cycle" of system design, deployment, data analysis, and 
discovery leading back to design. The loop is closed through 
an experimental comparison of a system redesign with the 
original system design. 

Use of the "close the loop" phrase, in our writing, goes back 
at least to [12]. Early examples of data-driven tutor designs, 
that is, of a close-the-loop experiment, can be found in [13] 
which tested a tutor redesign based on discoveries from data 
originally published in [17] and in [4], which was based 
on data analysis [5]. It is notable that a systematic process 
for going from data to system redesign was not articulated 
in this early work, but has been increasingly elaborated in 
more recent writings [especially 16]. 

This paper further specifies a particular class of analytic 
methods, namely quantitative cognitive task analysis methods, 
and how to use them to close the loop. The output of a 
cognitive task analysis (CTA) is a model of the underlying 
cognitive processing components (so-called knowledge 
components or KCs) that need to be learned to perform well 
in a task domain. Quantitative CTA uses data on task 
difficulty and task-to-task learning transfer to make 
inferences about underlying components. 

1.1 Cognitive Task Analysis 
In general, Cognitive Task Analysis (CTA) uses various 
empirical methods (e.g., interviews, think alouds, 
observations) to uncover and make explicit cognitive 
processes experts use and novices need to acquire to 
complete complex  tasks [3]. Various representations of the 
resulting cognitive model (e.g., goal trees, task hierarchies, if- 
then procedure descriptions) are used to design or redesign 
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instruction. Close-the-loop experiments in different domains 
demonstrate that students learn more from instruction based 
on CTA than from previously existing instruction (e.g., 
medicine [23]; biology [ 8]; aviation [ 20]). These results 
come from CTAs using qualitative research methods that are 
costly and substantially subjective. 

Quantitative CTA methods provide greater reliability and 
are less costly (though ideally used as a complement to 
qualitative CTA). An early close-the-loop s t u d y  [13] based 
from a Difficulty Factors Assessment (DFA) showed that 
algebra students are better at solving beginning algebra story 
problems than matched equations. In a controlled random 
assignment experiment, the newly designed instructional 
strategy was shown to enhance student learning beyond the 
original tutor. Besides DFA, automated techniques can further 
reduce human effort and can be used on large data sets. An 
early example used learning curve analysis to identify hidden 
planning skills in geometry area [16] that resulted in tutor 
redesign. In a close-the-loop experiment comparing the 
original tutor to the redesigned tutor, students reached 
mastery in 25% less time and performed better on complex 
planning problems on the post-test. Further research [15] has 
shown how a search algorithm (e.g., Learning Factors 
Analysis) can generate better alternative cognitive models. 

A key assumption behind DFA is that significant differences in 
task difficulty can be used to make non-obvious 
(sometimes counter-intuitive) inferences about underlying 
cognitive components and, in turn, these components help 
predict learning transfer and guide better instructional 
design. Similarly, statistical models of learning, including 
both logistic regression and Bayesian Knowledge Tracing 
variations, also tend to assume that both task difficulty and 
learning transfer can be predicted using the same KC matrix. 

Recent work explored this connection [18] and found, across 8 
datasets, that statistical models that use the same KC matrix to 
predict task difficulty and learning transfer produce better 
results than models that use separate matrices (item vs. KC). 
A key goal of this paper is to further investigate this difficulty-
transfer linkage claim by extending evaluation of it through 
close-the-loop experimentation. 

1.2 Illustrating Quantitative CTA 
Consider the problems in Table 1 and try to answer the following 
question before reading on. Assuming the goal of instruction is 
to improve students’ skill at translating story problems into 
algebraic symbols (e.g., translating the 2_step story in the first 
column of Table 1 into “62+62-f”), which will yield better 
transfer of learning: practice on 1_step story problems 
(columns 2 and 3) or practice on substitution problems 
(column 4)? Note that in the close-the-loop experiment we ran, 
similar multiple matched problem sets were created. A 
different problem set was used for practice than was used for 
transfer. For example, students who saw the 2-step problem in 
Table 1 as a transfer post-test item would not see the associated 
1_step or substitution problems from Table 1 as practice 
problems. So, again, which yields better transfer to 2_step 
problems, practice on 1_step or substitution? 

If you answered that practice on the 1_step story problems will 
better transfer to 2_step story problems, you are in good 
company as learning commonalities underlying problem 
formats (i.e., deep features) is a known factor in aiding 

analogy and transfer [9; 10]. But, the following quantitative 
analogy cognitive task analysis suggests a different answer.  

Table 1. Examples of problem variations and their solutions.  

2_step 1_step 1_step substitution 
Ms. Lindquist 
teaches 62 girls. 
Ms. Lindquist 
teaches f fewer 
boys than girls. 
Write an 
expression for how 
many students Ms. 
Lindquist teaches. 

Ms. Lindquist 
teaches 62 girls. 
Ms. Lindquist 
teaches b boys. 
Write an 
expression for 
how many students 
Ms. Lindquist 
teaches. 

Ms. Lindquist 
teaches 62 girls. 
Ms. Lindquist 
teaches f fewer 
boys than girls. 
Write an 
expression for 
how many boys 
Ms. Lindquist 
teaches. 

Substitute 
62-f for b 
in 62+b 
Write the 
resulting 
expression. 

62+62-f 62+b 62-f 62+62-f 
Using DFA, [11] explored the struggle beginning algebra 
students have with translating story problems into symbolic 
algebra expressions. A common belief is that story problems 
are hard due to comprehending the story content. However, 
two results indicate that comprehension is not a major 
roadblock. First, students are better able to solve 2_step 
problems when given a value (e.g., answering 116 when f is 
given as 8 in the 2_step story shown in Table 1) than when 
asked to write the symbolic expression (e.g., 62+62-f or 
even 62+62-8) [11]. Second, students do not do better 
when given explicit comprehension hints of the needed 
arithmetic operations than they do on 2_step symbolization 
problems without hints [11]. I f  comprehens ion  i s  no t  
the key challenge, pe rhaps  p roduc t ion  o f  the  t a rge t  
algebraic symbols is. Their results show students perform 
consistently better (62% vs. 40%) symbolizing both 1_step 
problems (e.g., producing 62+b and 62-f for the 1_step 
problems in Table 1) than on 2_step problems (e.g., producing 
62+62-f for the 2_step story problem in Table 1). 

These results suggest inferences about unobserved or “hidden 
skills” that are needed to translate 2_step stories into symbolic 
expressions such as learning how to put one algebraic expression 
inside another (e.g., as the one- operator expression 40m is inside 
the two-operator expression 800- 40m). The results are consistent 
with a need for skills that extend the implicit grammar for 
generating expressions for 1_step symbolization to recursive 
structures (e.g., “expression => expression operator quantity” and 
“expression => quantity operator expression”). Furthermore, they 
suggested that practicing non-contextual substitution problems 
(see last column of Table 1) should help students (implicitly) learn 
the desired recursive grammar structures and the corresponding 
production skills for constructing more complex expressions. 

1.3 Analysis Methods  
Our first analysis explores how much substitution practice 
transfers to story symbolization. We pursue this question 
with respect to broad outcomes and learning processes. This 
analysis replicates the high level analysis of the prior study 
(2008-09) [14] with a full dataset accumulated across four 
school years (2008-12). Our second analysis probes, more 
specifically, the question of the cognitive model link 
between task difficulty and learning transfer that underlies 
quantitative cognitive task analysis and, more generally, 
adaptive tutoring models like Bayesian Knowledge Tracing. 
Practically, the theoretical claim that learning transfer can be 
inferred from task difficulty data suggests that we can design 
instruction that produces better transfer of learning using 
models built from difficulty data (which is easier to collect). 
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Our third analysis examines whether statistical models of the 
learning process data support  conclusions drawn from the 
outcome data. Does learning curve analysis indicate 
whether and how tasks (e.g., substitution problems) designed 
to isolate practice of CTA-discovered hidden skills (e.g., 
recursive grammar) transfer to complex tasks that theoretically 
require these skills (e.g., 2_step story problems)? 

2. METHOD 
The original 2008-09 study [14] and current close-the-loop 
study were run with middle school students as part of a math 
course. In the original study, students were randomly 
assigned to either a substitution practice condition (N=149) 
or 1_step story practice condition (N=154). Since then, 
additional data with random student assignment was collected 
over three school years from 2009-12 (N=234 for 
substitution practice, N=174 for 1_step story practice) using 
the same problem set in ASSISTments. As previously 
described [14], the study involved a pre-test, instruction, and 
post-test. For the substitution condition, substitution 
problems were embedded as instruction interleaved with 
2_step story problems (posttest). For the 1_step condition,  
1_step problems were used as instruction interleaved with 
the same 2_step story problems. The pretest for a given 
version and order was the same for both conditions. Order 
was determined by difficulty of 2_step problems from a 
pilot study and  included a sequence of 2_step problems 
from easy to hard or hard to easy. 

Small changes were made to the automated scoring to give 
better feedback on unusual but arguably correct answers (e.g., 
d60 instead of 60d). For consistency in scoring, manual 
corrections made to the 0809 dataset [14] were combined 
with the corrections to the 0912 dataset and automatically 
applied to every answer in the combined dataset (0812). 

3. RESULTS AND DISCUSSION 
3.1 High Level Transfer  
In our first study [14], we reported significant main effects 
for condition and order while controlling for pretest, and no 
significant two-way or three way interaction effects when 
version was added as an independent variable. In the new 
study, we add a fifth factor for when the data was collected 
(i.e., from 0809 or from later years 0912). Most importantly, 
in a full five-factorial ANCOVA (in R with pretest as the 
covariate), we found a main effect for condition (F(1,679) = 
4.5, p < 0.05, d = .21). Main effects were also found for pre-
test (F(1,679) = 235.3, p < 0.001), order (F(1,679) = 117.8, p < 
0.001), and version (F(1,679) = 19.8, p < 0.001), but study 
year was insignificant. Significant two-way interactions were 
found for pre-test and condition (F(1,679) = 4.05, p < 0.05), 
pre-test and order (F(1,679) = 18.69, p < 0.001), and order 
and year (F(1,679) = 10.77, p < 0.01). No other higher- level 
interactions were significant (all p > 0.05). 

The pre-test by condition interaction is a consequence of the 
substitution treatment having a greater effect for students with 
higher pre-tests. Based on a median split of pre-test scores, 
students with a higher pre-test, showed greater benefits of 
substitution practice (52% posttest) over 1_step practice (44%). 
In contrast, students with a lower pre-test show less benefit of 
substitution practice (24% posttest) over 1_step practice (20%). 
This interaction is theoretically consistent with the cognitive 
task analysis in that students who cannot generate 
symbolizations for 1_step problems (e.g., 800-y and 40x) will 

not have the raw material they need to compose 2_step 
expressions (e.g., 800-40x). Figure 1 illustrates the 
interaction. Substitution practice produces transfer to story 
problem symbolization for the 82% of students (580 of 711) 
with pre-tests of at least 40%. For the 18% of students without 
1_step story skills (below 40% on the pre-test), substitution 
practice does not provide a benefit.  

 
Figure 1. The benefit of substitution practice for 

symbolizing 2_step story problems is present for the 82% 
of students with some incoming competence in 1_step story 

symbolization (at least 40% correct).  

The two other reliable interactions in the ANCOVA are not of 
theoretical significance, but we report them for completeness. 
The pre-test by order interaction is manifest in that the 
difference between high and low pre-test students is bigger on 
the easier post-test problems (63% - 31% = 32%), which 
appear in the hard-to-easy order, than on the harder post-
problems (38% - 10% = 28%), which appear in the easy-to-
hard order. The order by year interaction is a consequence of 
students in the 0912 school years showing more sensitivity to 
the order manipulation than students in the 0809 school year, 
such that they do relatively better on the easy problems (46% 
vs. 41%), but worse on the hard problems (24% vs. 30%). 

3.2 Difficulty Reliably Predicts Transfer  
In this analysis, we more precisely test the following general 
logic: If difficulty data indicates a hidden skill that makes an 
important task hard, then inventing new practice tasks to 
isolate practice of that hidden skill will transfer to better 
learning of that hard task. The specific version of the logic 
in this domain is: If the hard part of symbolizing a two 
operator story problem is in composing symbolic 
expressions, then practice on substitution problems should 
transfer to better performance on story problem 
symbolization. Our data set affords an interesting opportunity 
to more precisely test this logic because the difficulty data 
we have indicates hidden skills for some problem types, but 
not others. A precise application of the “hidden-skill-
transfer” logic stated above is that we should see the 
predicted transfer for those problem types in which the 
hidden skill is indicated by the difficulty data. For the other 
problem types, there should be no reliable transfer. 

We used the current data to reevaluate the “composition 
effect” [11]. This analysis is shown in Table 2 where task 
difficulty and transfer results are shown for each of the eight 
problems. Consider the row for the class problem (referred 
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to as “students” in the data file), which is illustrated in Table 
1. The answer for the 2_step story and substitution problems, 
namely 62+62-f, is shown in the second column. The third 
and fourth columns show the proportion correct on the 
1_step story problems, ( .75 for the “a” step with the answer 
62+b and .70 for the “b” step with the answer 62-f). The fifth 
column (labeled a*b) shows the probability of getting both 
of these steps correct, computed here as  the  product  of  the  
proportion  correct on  each  step,  .53  = 75*.70. This value is 
the baseline for the composition effect. 

The sixth column is the proportion correct on the 2_step 
story problem, 0.13. This value was computed from 
student performance on the pre-test for both conditions and 
the post-test for the 1_step practice condition. We did not 
use the post-test for the substitution practice condition to 
estimate the composition effect as the theory predicts that 
substitution practice should reduce that effect. 

A composition effect is indicated when students are less likely 
to correctly symbolize a two operator story than to correctly 
symbolize both of the matched one operator stories. The 
seventh column displays this difference (.40 = .53 - .13 for the 
class problem). The eighth column shows the estimated 
conditional probability that students can compose a single two-
operator expression (e.g., 62+62-f) given they have correctly 
formulated the two source one-operator expressions (e.g., 62+b 
and 62-f). Since p(2_step) = p(a*b) * p(2_step | a*b), we get 
p(2_step | a*b) = p(2_step)/p(a*b), thus for the class problem 
p(2_step | a*b) = .13/.53 = .25. The lower this value, the bigger 
the composition effect. 

The important feature to note about values in the 
composition effect columns is that they indicate there is no 
composition effect for the cds and mcdonalds problems (see 
the last two rows). Both are relatively well-practiced forms, 
the 5h-7 for mcdonalds is a high frequency linear form (i.e.,   

Table 2. Composition effects are found for all but the bottom two problems 

Problem 
name 

2_step 
solution 

1_step 
(a) 

1_step 
(b) a*b 2_step 

Composition Effect 
a*b - 2_step 2_step/(a*b) 

Subst 
transfer 

trip 550/(h-2) 0.65 0.78 0.51 0.11 0.40 0.22 0.08 
class 62+62-f 0.75      0.70 0.53 0.13 0.40 0.25 0.12 
jackets d-1/3*d 0.58 0.54 0.29 0.16 0.13 0.56 -0.02 
sisters (72-m)/4 0.71 0.63 0.45 0.32 0.13 0.72 0.15 
rowboat 800-40m 0.75 0.55 0.38 0.28 0.10 0.73 0.07 
children (972+b)/5 0.66 0.75 0.5 0.38 0.12 0.76 0.09 
cds 5*12*c 0.71 0.74 0.52 0.52 0.00 1.00 0.14 
mcdonalds 5*h-7 0.66 0.85 0.56 0.72 -0.16 1.29 -0.06 
 
mx+b) and the cds form 5*12*c involves a repetition of the 
same operator which can be treated as a 1-operator solution, 
namely, 60c (as 17% of students did). Students may have 
specialized knowledge for producing these forms that do not 
require general recursive grammar knowledge. 

The final column (Subst transfer) shows how much 
substitution practice transferred to 2_step symbolization as 
computed by the difference in post-test scores on each 
problem for the two experimental groups.  

To test the hidden-skill-transfer hypothesis, we expect the 
cds and mcdonalds problems to show less transfer and the 
other problems to show more. While this is not strictly the 
case (cds shows transfer and jackets does not), there is a 
trend here that is illustrated in Figure 2.  It shows the 
relationship between difficulty variation in the composition 
process and variation in the amount of transfer produced by 
substitution practice in the close-the-loop experiment. To 
better highlight the point, the graph shows the data from the 
353 students at or above the median on the pre-test -- the 
ones for which improvement in composition skills should 
produce better post-test performance on 2_step story problems 
requiring such skills. 

Consistent with the hidden-skill-transfer hypothesis, there is no 
transfer benefit (first two bars in Figure 2) for the two problem 
forms with no composition effect (mcdonalds and cds). There is 
large transfer effect for the three problems (trip, sisters, and  
children) involving parentheses (last two bars), which present 
greater challenges for composing expressions and the need for  

students to acquire more complex implicit grammar structures for 
generating correct parenthetic expressions. There is an immediate 
transfer effect for the three problems (class, jackets, and rowboat) 
not involving parentheses (middle bars), consistent with the fewer 
composition skills required. Note that success on these problems 
is oddly lower overall. We return to this point in the learning 
curve analysis where we do some search for new difficulty factors 

 
Figure 2. Transfer is limited to the problems that show a 

composition effect in task difficulty comparisons. 
and hypothesize a new hidden skill that could be pursued in future 
close-the-loop instructional design. These results add to prior 
evidence [18] supporting the hypothesis that differences in task 
difficulty and transfer effects are observable manifestations of the 
same underlying KCs. 
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3.3 Learning Curve Analysis  
As a visual representation of student performance data over time 
(i.e., as opportunity increases, error rates are expected to 
decrease), learning curves can be used to explore areas of 
student difficulty and transfer of learning [21]. Following this 
prior work, we used the statistical model for learning curve 
prediction built into DataShop (see PSLCDataShop.org): The 
Additive Factors Model is a logistic regression model that 
generalizes Item Response Theory by having latent variables 
for knowledge component difficulty in place of item difficulty 
and by adding a third growth term, a knowledge component 
learning rate, in addition to the student proficiency and 
knowledge component difficulty terms. We evaluate four 
different knowledge component models in terms of their 
prediction fit to all of the test and instructional items each 
student experienced. For our metrics, we use root mean 
squared error (RMSE) averaged over 20 runs of 3-fold item-
stratified and student-stratified cross validation. Given the 
focus on understanding the difficulty and transfer 
characteristics of the task environment, we put particular value 
on predictive generalization across items (as item stratification 
achieves by randomly putting all data on each item in the same 
fold) but also report the predictive generalization across 
students (as student stratification achieves by randomly putting 
all data on each student in the same fold). 

The results of a learning curve analysis are shown in Table 3. 
The first row displays a simple baseline no-transfer model that 
treats each problem type (2_step, 1_step, and substitution) as 
requiring a different knowledge component (KC).  The second 
row displays a substitution transfer model that introduces 
transfer between substitution problems and 2_step problems by 
having a recursive grammar KC common to both problems. 
The 2_step problems have an additional KC for 
comprehending the story and the 1_step problems have a 
different unique KC. As shown in the last columns, this 
substitution transfer model produces a reduction in RMSE on 
the item stratified cross validation, down to 0.426 from 0.429. 
This small change is associated with a small change in the 
models and changes at this level (in the thousandths) have 
proven meaningful in producing a prior close-the-loop 
improvement [16]. This close-the-loop study provides further 
evidence that small prediction differences can be associated 
with significant learning gains. 

Corresponding with the discussion above regarding the unique 
challenges of solutions requiring parentheses, the paren-
enhanced model (third row in Table 3) adds a parenthesis KC 
to the 2_step and substitution versions of the trip, sisters, and 
children problems. Surprisingly, this model does not improve 
the item generalization (0.428 > 0.426), though it does improve 
student generalization (0.473 < 0.477). The predictions of this 
model fail to account for the variance in difficulty of the non-
parentheses problems. 

As mentioned above, we were surprised that a couple of the 
non-parentheses problems posed great difficulty. In particular, 
the class (62+62-f) and jackets (d-1/3d) problems were quite 
hard (13% and 16% correct before substitution instruction). 
We hypothesized the difficulty of these problems was due to a 
quantity being referenced twice in the solution expression (i.e., 
62  in the class problem and d in the jackets problem). To test 
this hypothesis we built the double-ref-enhanced model (fourth 
row in Table 3) by adding a double-ref KC to the paren-
enhanced model on both of the 2_step and substitution versions 

of the class and jackets problems. The result is a substantially 
better prediction than the prior model on both item 
generalization (0.416 < 0.428) and student generalization 
(0.468 < 0.473). 

Table 3. Knowledge component learning curve model 
comparison. 

 

KCs 

Recursive 
grammar 
skill for 

2_step & 
substitution 

Paren 
skill 

Double-
ref skill 

Item 
stratified 

CV 
(RMSE) 

Student 
stratified 

CV 
(RMSE) 

No-transfer 3 0 0 0 0.429 0.478 

Substitution 
transfer 

3 1 0 0 0.426 0.477 

Paren-
enhanced 

4 1 1 0 0.428 0.473 

Double-ref-
enhanced 

5 1 1 1 0.416 0.468 

We have not yet modeled, but have recognized an alternative 
or additional explanation for the difficulty of the class and 
jackets problems.  Right expanding forms, which require the 
“expression => quantity operator expression” rule, may be 
harder than left expanding forms, which require the 
“expression => expression operator quantity” rule.  This idea 
garners plausibility from cognitive theory given that right 
expanding forms may require more cognitive load to maintain 
the subexpression to be written (e.g., 62-f) while the first part 
is planned and written (e.g, “62 +”).  This analysis predicts that 
the trip, class, jackets, and rowboat problems should be more 
difficult and  they are the most difficult 2_step problems. 

Future analytic and modeling efforts should pursue these 
plausible new hidden skills hypotheses and, if confirmed, a 
close-the-loop study should test whether focused instruction on 
double reference problems and/or more practice on right 
expanding expressions yields better learning transfer. 

4. SUMMARY AND CONCLUSION  
It is worth noting that the control condition in this study is 
highly similar to the treatment. Many might say, if you practice 
algebra, you learn algebra. Under that simple analysis, no 
differences should be expected between the conditions.  
Further, this control condition is a highly plausible 
instructional approach supported by a straightforward rational 
task analysis and by many colleagues who predict it should 
work:  To prepare for story problems involving two operators, 
practice story problems involving one operator. The detailed 
data-driven quantitative cognitive task analysis suggested 
otherwise, in particular, that an inherent difficulty for algebra 
students learning to symbolize complex story problems is not 
in the story problem comprehension but in the production of 
more complex symbolic forms.  Isolated practice in producing 
such forms, as the substitution problems provide, should 
enhance this hidden cognitive skill and yield better transfer.  In 
a large data pool (711 students) collected in middle school 
math classes across four school years, our close-the-loop 
experiment demonstrated strong support for this data-driven 
prediction.  

Our analysis also provides support for cognitive and statistical 
models that use the same underlying latent constructs (e.g., 
knowledge components) to predict both task difficulty and 
task-to-task transfer. This result is not only important to the 
science of learning, but it has practical relevance to the goal of 
using data-driven discoveries about domain learning 
challenges to design instruction for learning transfer.  Task 
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difficulty data can be more easily collected than task-to-task 
transfer data. Ideal transfer data (i.e., comparing performance 
on task B when task A is or is not practiced before it) requires 
giving students curriculum sequences that may harm their 
learning, therefore, it is costly and ethically challenging. Task 
difficulty data, when appropriately modeled, provides promise 
that these cost and ethical challenges can be minimized.  

Although this paper does not present new data mining 
methods, it does indicate that attempts to automatically 
discover cognitive models, such as LFA [2] and others like it 
(e.g., Rule Space [22], Knowledge Spaces [24], and matrix 
factorization [6; 7]) can be used to generate instructional 
designs that improve student learning and transfer.  While 
innovation in data mining methods is a crucial part of EDM 
research, it is important to the health of the field and its 
relevance to society that we pursue more close-the-loop studies 
and keep the E in EDM!  
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ABSTRACT 
Overall the social capital of MOOCs is under-exploited. For most 
students in MOOCs, autonomous learning often means learning 
alone. Students interested in adding a social dimension to their 
learning can browse discussion threads, join social medias and may 
message other students but usually in a blind and somehow random 
way, only hoping to find someone relevant, available and also 
willing to interact. This common isolation might be a contributing 
factor on student attrition rate and on their general learning 
experience. To foster learners’ persistence in MOOCs, we propose 
to enhance the MOOC experience with a recommender which 
provides each student with an individual list of rich-potential 
contacts, created in real-time on the basis of their own profile and 
activities. This paper describes a controlled study conducted from 
Sept. to Nov. 2015 during a MOOC on Project Management. A 
recommender panel was integrated to the experimental users’ 
interface and allowed them to manage contacts, send them an 
instant message or consult their profile. The population (N = 8,673) 
was randomly split into two: a control group, without any 
recommendations, and an experimental group in which students 
could choose to activate and use the recommender. After having 
demonstrated that these populations were similar up to the 
activation of the recommender, we evaluate the effect of the 
recommender on the basis of four factors of learners’ persistence: 
attendance, completion, success and participation. Results show the 
recommender improved all these 4 factors: students were much 
more likely to persist and engage in the MOOC if they received 
recommendations than if they did not.  

Keywords 

Recommender system, MOOC, persistence, social learning. 

1. INTRODUCTION 
Understanding and reducing the attrition rate in Massive Open 
Online Courses is still a concern for many scientists, measuring and 
predicting attrition [2, 10], and trying to uncover its factors [6, 8]. 
There is a common assumption that students doing well by 
themselves are more likely to get involved in the learning 
community. But the paradox is that students do not necessarily 
know how to initiate and have meaningful conversations within this 
community, may feel shy or inhibited in such crowded places, 
which results in further isolation. 

Therefore, while learning is above all a social undertaking [1], it 
turns out that most MOOCs students learn on their own. Far behind 
the connectivist model, transmissive MOOCs have been 
implementing functionalities such as synchronous or asynchronous 
discussions [4], peer grading, potential team mates’ geolocation, 
groups, etc. In such systems, students find others to connect with 
either in a blind manner or through user-defined filters. Most 
importantly, contacts are initiated by the students themselves, who 
need to actively search for others. So it remains extremely difficult 
to find the right person to interact with in a newly-formed and 
distance learning MOOC community. This feeling of isolation 
hinders the learning experience and is a major factor of student 
attrition [7, 11]. Indeed, the size of students’ cohorts and the fact 
that they usually work at home, at various times and pace, cultivates 
isolation rather than connection with other students for learning [5], 
a problem already well-noted before the MOOC era and which led 
to attempts to reinforce the sense of community [3, 9]. Numerous 
works have emphasized the need to help people socialising, on the 
basis that social learning might foster persistence. It requires not 
only helping students to know how to work with others (and thus 
to plan tasks for students to perform in a cooperative way), but also 
in the first place to find relevant potential learning mates one would 
want to interact with.   

In this paper, we address this issue: to foster learners’ persistence 
in MOOCs, we have designed, implemented and tested a 
recommender system. Our recommender provides each student 
with a list of high-potential social contacts, on the basis of their own 
profile and activities. We hypothesise that offering integrated 
personal data-driven recommendations may increase the students’ 
persistence and success in the MOOC. We chose to consider four 
key categories of indicators of persistence: attendance, completion, 
scores and participation. 
This paper is organized as follows: in section 2, we present the 
experiment with our peer recommender, its context and design, the 
different groups of students considered, the data collected and its 
preprocessing. In section 3, we analyse the differences in terms of 
persistence between the experimental groups, and in section 4, we 
check whether these differences are related to our recommender 
system. We then conclude the paper with a discussion on limits and 
on some perspectives of future work. 
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2. EXPERIMENT WITH A PEER 
RECOMMENDER 
2.1 Context of the experiment 
We built a peer recommender system and deployed it during the 6th 
session of a French Project Management MOOC1, powered by 
Unow2 using a customised version of the Canvas platform [7]. The 
course lasted 9 weeks, from September to November 2015 and had 
a total of 24,980 students enrolled. Chronologically, it started with 
a 4 week long pre-MOOC period (week -3 to -1), where students 
could perform some self-assessment, introduce themselves on the 
discussion threads, explore the platform and so on. Then the 4 
week-long core part of the MOOC (week 1 to 4 included) took 
place, with lecture videos, assignments, quizzes and so on. During 
the remaining 5 weeks (week 5 to 9), students followed their 
specialisation modules and took their final exam. In parallel to the 
main MOOC, students could additionally register to two possible 
streams: (i) an Advanced Certification stream where, in the first 
four weeks (1 to 4), learners also had to submit three assignments 
and perform peer-reviews; (ii) a Team track, where students also 
had to join a team and practice on a real project. The topic of the 
MOOC being Project Management, this MOOC assumes that 
learners, in addition to working individually and autonomously to 
obtain their certification, should also get involved as much as they 
can in the community. Figure 1 shows the overall MOOC timeline 
as well as the number of students who reached various checkpoints 
in the MOOC [e.g. 7716 students took quiz 1 between week 1 
(release time) and week 9 (end of the MOOC)]. 

 
Figure 1. The 6th edition of the Project Management MOOC: 
a chronological overview 

2.2 The peer recommender widget 
The recommendation widget is displayed on the navigation bar on 
the left side of the screen in a space normally empty (cf. Figure 2). 
It displays 3 lists: a list of suggested contacts in green, a list of 
contacts marked as favorite in orange and a list of ignored contacts 
in grey (A). In each list, other students are represented as a 
thumbnail showing their name and photo (if any). When bringing 
the mouse pointer over a thumbnail, it also displays the beginning 
of their biography (if any) as well as 4 icons: one to send a private 
message, one to contact them through the chat, one to add them as 
a favorite and one to ignore them (B). The chat widget is shown on 
the bottom right-hand corner of the interface and minimised by 
default. When a message is received, an icon is added and a sound 
played (C). Bringing the mouse pointer over the widget expands it, 
giving access to two tabs: in the first tab, the favorite contacts 
appear and a chat can be initiated with up to 6 of them at the same 

                                                                 
1 MOOC Project Management, http://mooc.gestiondeprojet.pm/ 

time. The second tab gives access to a list of previous chats, and 
one can reopen them to keep interacting with the student(s) 
associated to that chat (D). 

 
Figure 2. Recommendations and chat widgets 

2.3 Experimental Design 
In order to evaluate the effect of the recommender system (RS), we 
performed a controlled study. A set of experimental groups was 
offered access to the recommender whilst the control group (Ctl) 
was not. Among the experimental groups, some students accepted 
the use of the recommender (ToU) and others did not. Then among 
those who accepted it, some interacted with it (Int) — i.e. managed 
contacts, consulted profiles and attempted to write messages— and 
others did not (No_Int) — i.e. had the RS widget visible but did not 
interact at all with it (an interaction being defined as a click on the 
interface, as mouse-overs were not recorded). The experimental 
group was also split in three, each subgroup using a different 
recommendation algorithm (contact suggestions could be either 
random, based on social features only, or on a combination of social 
and advancement features). We shall not compare in this paper the 
efficiency of these algorithms but focus only on the RS’ effect. 

2.4 Deployment of the Recommender 
The recommender was progressively deployed at the beginning of 
the 4-week core period (week 1 onwards): 100 students on day 1, 
4,500 on day 5, 10,000 on day 10. Overall, N = 8673 students 
visiting the platform during this period of time were randomly split 
between the control group (NCtl = 1792) and the experimental ones 
(Nexp = 6881). The experimental group had roughly 3 times more 
students than the control one because of the aforementioned three 
subgroups, which will not be considered here. Among students in 
the experimental groups, NToU = 2025 accepted the recommender 
Terms of Use (allowing data collection for research purpose) and 
thus had access to recommendations. Among those students, NInt = 
271 interacted with the recommendations panel and the chat 
associated with it (i.e. NNo_Int = NToU – NInt = 1754). Those figures 
are summarised on Figure 3. 

2.5 Data Collection and Pre-processing 
We extracted two types of data from the MOOC: learning traces as 
interaction logs, and demographic information coming from 
students’ answers to a demographic questionnaire they could fill 
during the Pre-MOOC period, or as they started the MOOC for 
students arriving late on the platform.  
One main way to understand how learners behave is by looking at 
the interaction logs and the learning records. Overall, 3.95 million 

2 Unow, http://www.unow.fr/ 
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pages were displayed from Sept. 1st to Nov. 22nd (week -3 to 9) for 
373,937 different URLs. We classified them into semantic 
categories consisting of an action and an area of the website. The 
URLs combine references to 3 main actions: browsing, viewing 
content, and downloading resources. Students performed these 
actions on 12 areas as shown in Table 1. In total, students browsed 
pages with references to 357 different resources: 8.5% are the 
homepage, 8.3% lesson pages and 43% quizzes. Many students in 
developing countries download videos on a third-party website, so 
these figures should only be used to differentiate students’ profiles. 
We created 10 variables from this learning dataset to capture 
students’ persistence in the MOOC, which could be grouped into 
four broad categories: attendance, completion, score and 
participation. These indicators are shown in Table 2. 

 
Figure 3. MOOC cohort sizes and overlaps (to scale) 

Table 1. Tagging logs towards actions and areas 
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 [homepage] 336,941    8.5 
Announcements 27,768     0.7 
Assignments 6,602 68,591  1.9 
 Syllabus 64,611   1.6 
 Corrected assignments  77,270  2.0 
 Peer-reviewing materials  59,865  1.5 
 Downloaded assignments  69,510 23,606 2.4 
Calendar   2,214   0.1 
Discussions 35,763 119,777   3.9 
Grades 42,961 27,655  1.8 
Modules 489,325     12.4 
 Badges   80,834   2.0 
Others 440    0.0 
Pages 7,761     0.2 
 Lessons  327,882  8.3 
 Other Contents  323,469  8.2 
 Downloads 58,981     1.5 
Quizzes 11,713 1,686,448  43.0 
Profiles   2,678   0.1 
TOTAL % 27.4 72.0 0.6  100 

Finally, in addition to these learning related variables, we extracted 
the social features from one of three research surveys filled by 
participants before Nov. 11th. 10,331 learners completed this 
survey, from which 1,454 were enrolled in the control group and 
5,397 in the experimental groups. 6 variables were considered: 
student’s gender, country, year of birth, their level of study (coded 
as follow: 0, without A-Level; from 1 to 3: years of university 
course; 4: master degree; 5: PhD), the previous experiences of 
MOOCs (0 for newcomers, 2 for experienced with MOOCs; 4 for 
recurring Project Management MOOC students) and the 
participation to the Pre-MOOC (0 or 1).  

Table 2. Retrieving data related to persistence 

Category Indicators 
Attendance 1. Number of days the student visited the platform 

2. Number of pages the student accessed 
3. Time spent on these pages [max = 600 s] 

Comple-
tion 

4. Number of attempts to complete a quiz 
5. Number of quizzes completed 

Scores 6. Final score [31 compulsory quizzes + exam] 
Participa-
tion 

7. Number of posts on discussions (forums) 
8. Average length of discussion posts 
9. Number of messages sent via the Conversations 
(private messages) 
10. Average length of private messages  

2.6 Were groups similar before treatment? 
In order to assess the similarity between the control group and the 
experimental ones before the experiment started, we compared 
their social and behavioral features (cf. Table 3). The data analysis 
indicates no significant differences between the two groups in 
terms of gender, countries, year of birth, level of study, previous 
MOOC experience and attendance on the platform. We can 
therefore consider the groups were similar before the experiment. 

Table 3. Variation between Groups (ANOVA) 
Features (number of values) F P-value 

Gender (2) 0.573348 0.448958 
Countries (91) 2.14E-06 0.998834 

Year of Birth (59) 3.266974 0.070732 
Level of Study (6) 1.195992 0.274163 

Previous experiences of MOOCs (3) 0.009721 0.921462 
Participation to the Pre-MOOC (2) 0.586452 0.443815 

3. GROUP BEHAVIOUR ANALYSIS 
Table 4 shows the comparison between 3 groups: the control group 
(Ctl), and among the experimental one, the ones which accepted 
and did (resp. didn’t) use the recommender (No_Int - resp. Int). 
Figures show the students who experienced RS were those that 
displayed the strongest values for the 10 indicators of persistence 
considered. In particular, the average number of daily visits, pages 
viewed and duration increase from Ctl to No_Int and Int. The 
standard deviation increases too, revealing that the highest 
variation of behavior is observed among those who interacted with 
the RS. In terms of quizzes, the learners who experienced the RS 
completed 2 more quizzes than the others and scored on average 17 
points higher with a smaller standard deviation. Finally, their 
participation in discussions and conversations are also higher. 
Reading these figures, it appears that students who experienced the 
recommender were also more engaged with the course and its 
community: even though the 271 students in the Int group did not 
spend so much time online overall, they have managed to obtain 
higher scores in terms of completion, quiz scores and participation.  
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However, the fact that students who used the recommender were 
also more engaged is not sufficient to express causality between the 
two. The uncertainty resides in the fact that in the experimental 
group, students could choose whether or not to have a 
recommender widget, and whether or not to actually make use of 
it. It could be the case that, in fact, students who are very engaged 
are more likely to use the recommender.   

Table 4. Average and standard deviation (in italics) of 
persistence indicators for experimental versus control groups 

 
Attendance  
from W1 to W4 

Completion 
Nov. 22nd 

Scores 
/100 

Participation 
from W4 to W9 

Indicators 1 2 3 4 5 6 7 8 9 10 
Ctl 
N=1792 

10 
7 

323 
285 

1h38 
1h57 

26.4 
22.5 

20 
14 

32.2 
28.7 

0.7 
3.2 

69 
137 

0.3 
2.1 

31 
127 

No_Int 
N=1754 

12 
7.5 

411 
373 

2h08 
2h23 

30.5 
24 

21.6 
13.3 

36.1 
30.1 

1.4 
5.6 

111 
190 

0.6 
2.1 

52 
177 

Int 
N=271 

16.1 
6.9 

616 
405 

3h46 
3h07 

43.2 
24.7 

26.9 
10 

49.1 
27.8 

2.7 
6.1 

154 
186 

1.6 
3.8 

107 
212 

4. EFFECTS OF THE RECOMMENDER 
To determine the RS’ real effect on learners’ persistence, we need 
to compare cohorts that were similar in terms of persistence before 
the experiment started and see how they evolve during the course 
of the MOOC. For example, we want to find out whether, among 
students who were very passive before the recommender was made 
available, a larger proportion of those who used the recommender 
persisted in the MOOC. To do so, we first clustered students during 
the Pre-MOOC period (i.e. before they were allocated to a group, 
and before the RS was made available) based on their level of 
engagement (section 4.1). We then, in each cluster, analysed the 
control and experimental groups according to each dimension of 
persistence at the end of the main MOOC period.  

4.1 Pre-MOOC activity clusters 
To cluster students in the Pre-MOOC period, we used as features 
the times spent on 18 of the actions in areas shown in Table 1 (i.e. 
excluding those related to material not yet available). During the 
Pre-MOOC, 294,209 pages were accessed by the 9,840 students 
who were present in the Pre-MOOC period. We used the k-means 
algorithm to extract clusters and found the best solution involved 4 
groups, shown in Table 5 and called A, B, C D on the basis of their 
time spent (A being the most active and D the least). Students in 
cluster A spent over 1h40 on the website viewing lessons, quizzes 
and discussions (sum of the mean values). The second cluster (B) 
spent less than 40 minutes, essentially in the quizzes area; in the 
third cluster, C, the time is even shorter and those in the last one, 
D, stayed less than 2 min on the website in total.  

Table 6 shows the distribution across the 4 Pre-MOOC clusters of 
students who would later belong to groups Ctl, No_Int and Int. 
Since we want to follow the evolution of the students who were 
present in the Pre-MOOC period, we must only consider the 
intersecting population. The populations of the various groups are 
now: NPre&Int = 217 students who interacted with the recommender 
(vs. Nint = 271); NPre&No_Int = 1,200 (vs. NNo_Int = 1,754) who 
accepted its ToU without using it; NPre&Ctl = 1,075 (vs. NCtl = 1,792) 
who were randomly enrolled in the control group. 

To deal with the sample size difference and compare the features 
of students in Int with students in Ctl and No_Int, a subsample was 
ten times randomly drawn for each cluster – e.g. in the 
PreMOOC_D cluster, 77 persons out of 551 were ten times 
randomly drawn. The percentage averages in tables 8, 10 and 12 

are computed only on the basis of features of students from these 
subsamples. We will now exclusively focus on the last 3 Pre-
MOOC clusters since the most active group (PreMOOC_A) is very 
small (8) and already very engaged. 

Table 5. Interactions and clusters during the Pre-MOOC 

Features (in seconds) 

PreMoo
c 
_D 

PreMoo
c 
_C 

PreMoo
c 
_B 

PreMoo
c 
_A 

browsing_homepage 21 48 149 411 
browsing_announcements 1 4 15 81 
browsing_assignment 4 14 48 210 
browsing_discuss._topics 2 8 26 190 
browsing_grades 1 3 11 30 
browsing_modules 7 43 140 428 
browsing_pages 0 1 6 8 
browsing_quizzes 0 1 2 2 
downloading_assignment 0 0 0 2 
viewing_assignment 1 11 49 208 
viewing_calendar_events 0 0 0 7 
viewing_discuss._topics 13 82 226 857 
viewing_grades 0 0 1 1 
viewing_modules 0 7 24 65 
viewing_pages 25 163 550 1472 
viewing_profiles 0 1 2 37 
viewing_quizzes 33 768 1167 1965 

 

Table 6. Clusters and Groups during the Pre-MOOC 
 N (%) N Ctl No_Int Int 
PreMooc_D 66 6,386  551 578 77 
PreMooc_C 26 2,534  393 404 78 
PreMooc_B 7 658  118 190 54 
PreMooc_A 1 62   13 28 8 
Total 100 9,640  1,075 1,200 217 

4.2 Attendance during the Common Core  
We clustered all enrolled students (N=24,980) using the full set of 
features in Table 4 for a total of 3,110,321 pages seen during the 
Common Core. We obtained 4 clusters, shown in Table 7, named 
according to their attendance quality (A the best, D the worst). 
Cluster Att_D, with 77% students, has the poorest overall mean in 
regards to all the features, not exceeding 6 minutes spent interacting 
with all pages. The mean values of the second cluster, Att_C (with 
17% students), total around 1h30min. The two last clusters, Att_B 
and Att_A, contain 3% each of the population: the main difference 
is the time spent by Att_A in the assignments area.  

We then explored how the pre-MOOC students evolve into these 
attendance clusters, according to their activities during the 
Common Core (cf. Table 8, where figures in a row represent 100% 
of the mentioned Ctl, No_Int and Int). Considering the lower 
clusters D to B, these figures suggest that the recommender system 
played a significant role on the duration of the visits of the learners 
from clusters D, C and B, that is to say 99% of the Pre-MOOC 
population. Indeed, one can see that students who used to be in D, 
having the RS marginally increased their persistence, but 
significantly increased the persistence of students who used it (32% 
of them now being in cluster B vs. 8% for students of the control 
group). For students in clusters C and B during the pre-MOOC, we 
observe a similar pattern: simply having access to the RS tended to 
increase their persistence, and actually using the RS tended to 
significantly decrease their chance of dropping out (i.e. ending up 
in cluster D, the least active students).  
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Table 7. Interactions and clusters during the Common Core 
Features (in seconds) At_D At_C At_B At_A      
_others 0 0 1 2      
browsing_ 15 214 554 856      
browsing_announcements 1 12 53 61      
browsing_assignments 5 48 181 155      
browsing_discussion_topics 2 23 90 315      
browsing_grades 1 32 160 276      
browsing_modules 22 430 1022 1249      
browsing_pages 0 4 4 6      
browsing_quizzes 0 7 7 6      
downloading_assignments 0 3 5 144      
viewing_assignments 7 248 636 9334      
viewing_calendar_events 0 1 11 5      
viewing_discussion_topics 14 127 467 1477      
viewing_grades 0 10 48 216      
viewing_modules 3 57 169 177      
viewing_pages 67 1025 2766 2398      
viewing_profiles 0 1 4 18      
viewing_quizzes 180 3257 8286 5165      
% students 77 17 3 3      

 

Table 8. Attendance: Evolution of the learners from the  
Pre-MOOC to the Core-MOOC periods 

↓From To→ At_D At_C At_B At_A Group 

PreMooc_D 
66% 

39 49 8 4 Ctl 
33 49 12 7 No_Int 
9 39 32 19 Int 

PreMooc_C 
26% 

26 50 9 16 Ctl 
24 43 12 20 No_Int 
17 45 12 27 Int 

PreMooc_B 
7% 

16 48 12 24 Ctl 
16 38 15 31 No_Int 
2 37 20 41 Int 

4.3 Completion and final scores  
We clustered again the student population, using scores and activity 
in the examination points (i.e. scores obtained at the 31 quizzes and 
the final exam by the end of the MOOC). Each score is standardised 
to marks out of 100. We obtained again 4 clusters, which centroids 
are shown in Table 9. The values of the centroid of the first cluster 
indicates a large part of students (71%) who participated in the first 
2 quizzes but obtained a very low score on them and then did not 
participate again in any assessment. The centroid of the second 
cluster (4% of learners) corresponds to students who easily passed 
the quizzes of the first week but dropped out on the second. The 
third cluster (4%) has similar students, but who gave up in week 3. 
Finally, the last cluster (21%) contains all the students who 
completed all the quizzes and final exam with high scores in each.  

Once again figures in Table 10 show that, by accepting the 
recommendations and, even more, interacting with its panel, the 
learners went closer to completion and obtained better scores. In 
particular, we observe as before for students in clusters D and B 
that the mere presence of the RS has a small positive impact on their 
chances to complete (or at least to stay longer on the MOOC before 
giving up), but that students who use the RS benefit the most from 
an increased chance to complete. For students in cluster C, the use 
of the RS seems to have made some of them drop out overall a bit 
later (week 2 instead of week 1) but did not increase their chance 
to complete the MOOC.  

Table 9. Completion and score clusters during whole MOOC 
Week Quiz D C B A Week Quiz D C B A 

1 

1 3 92 92 96 
2 

17 0 1 67 92 
2 1 82 82 87 18 0 0 48 83 
3 0 92 92 96 19 0 1 57 95 
4 0 82 89 95 

3 

20 0 1 39 92 
5 0 76 93 98 21 0 1 40 96 
6 0 54 78 87 22 0 1 36 95 
7 0 63 92 98 23 0 1 33 91 

2 

8 0 26 93 96 24 0 1 31 94 
9 0 18 94 97 25 0 1 29 89 
10 0 10 92 95 

4 

26 0 1 10 91 
11 0 7 88 93 27 0 1 5 93 
12 0 4 85 93 28 0 0 2 90 
13 0 2 83 93 29 0 1 1 96 
14 0 2 86 95 30 0 0 1 95 
15 0 1 76 89 31 0 0 1 86 
16 0 1 75 93 EXAM 0 1 3 78 
N (%) 71 4 4 21 N (%)      71 4 4 21 

 

Table 10. Completion and final scores: Evolution of the 
learners from the Pre-MOOC to the Core-MOOC periods  
↓From To→ Co_D Co_C Co_B Co_A Group 

PreMooc_D 
66% 

32 5 13 49 Ctl 
27 6 14 53 No_Int 
10 5 4 81 Int 

PreMooc_C 
26% 

15 9 11 65 Ctl 
9 9 14 69 No_Int 
8 14 13 65 Int 

PreMooc_B 
7% 

8 5 8 79 Ctl 
5 9 14 73 No_Int 
4 2 11 83 Int 

4.4 Participation to the Common Core  
The total number and average length of the messages sent by each 
student were retrieved from the Canvas database (discussions and 
conversations). Using k-means with features from the participation 
section of Table 2, we obtained once again 4 clusters, shown in 
Table 11: a first cluster, Pa-D (89% of 24,980 enrolled learners) did 
not interact at all with others. The centroid of the second one 
indicates 2 posts of an average of 237 characters on the discussion 
topics (9%). The third cluster (2%) seems to have a similar activity 
but slightly stronger in term of number of posts (2.7) and average 
post length (599 characters). The last 1% is highly committed to the 
course and its community: most of them correspond to students 
who were part of the advanced certification stream.  

Table 12 shows how students in the Pre-MOOC clusters are 
distributed over the 4 participation clusters at the end of the MOOC. 
Figures reveal a consistent positive effect of the mere presence of 
the RS across the initial Pre-MOOC clusters: there are always less 
students in cluster Pa_D in the No_Int group than in the control 
group. Less surprisingly, students who interacted with the RS 
generally did so to send a message to someone, so they overall also 
ended up less often being in a situation where they do not interact 
at all with anyone else (complete isolation). Finally, we can see that 
merely giving students access to a recommender panel does not 
prevent them from being social-lazy: a majority (82%, 88% 69% 
respectively in clusters D, C and B) of the students who interacted 
with the RS did not attempt to directly contact anyone else. These 
figures are however probably lower than they would be if every 
student had access to the associated direct chat module, and still 
better than in the Control group (96%, 91% and 80% respectively 
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in clusters D, C and B) who could only contact others in a blind 
way through the forum or private messages. 

Table 11. Participation Clusters of all enrolled students 
Attribute Pa-D Pa-C Pa-B Pa-A 
Nb** of discussions 0 2 2 9 
Discussions length* 2 237 599 264 
Nb** of conversations 0 0 0 7 
Conversations length* 1 9 19 542 
N% 89 9 2 1 

   *: average number of characters; **: number of posts/messages sent 

Table 12. Participation: Evolution of the learners from the 
Pre-MOOC to the Core-MOOC periods  

↓From To→ Pa_D Pa_C Pa_B Pa_A Group 

PreMooc_D 
66% 

78 18 2 2 Ctl 
67 25 4 4 No_Int 
47 35 6 12 Int 

PreMooc_C 
26% 

76 15 4 5 Ctl 
69 18 4 9 No_Int 
62 26 4 9 Int 

PreMooc_B 
7% 

66 14 4 15 Ctl 
53 25 6 15 No_Int 
39 30 7 24 Int 

5. Discussion, conclusion and perspectives 
We conducted a controlled study during a Project Management 
MOOC, in which a recommender panel integrated to the user 
interface provided suggestions and allowed contact management, 
instant messaging and profile consultation. Students were randomly 
split into a control group (without any recommendations), and an 
experimental group (in which they could activate and use our 
recommender). The number of the students involved in this 
experience was relatively high: among 6881 selected students, 
2025 accepted the Term of Use of the recommender and 279 
accessed its functionalities. We have shown that these populations 
were similar before the activation of the recommender, and 
evaluated its effect according to four categories of indicators 
relative to learners’ persistence: attendance, completion, success 
and participation. Results suggested that our recommender 
improved these four categories of indicators: students are much 
more likely to persist and engage in the MOOC if they receive 
recommendations than if they do not.  

The main interest was then to evaluate the effect the 
recommendations might have played in such increased rates of 
engagement. To do so, we focused on clustering similar learners 
according to their activities before the beginning of the course, 
leading to four groups from the least (D) to the most (A) active 
students. We analysed the way 3 of these 4 groups (representing 
99% of the students) were evolving in terms of attendance, 
completion and score, participation. We observed overall a 
significant improvement of students’ engagement, not only for 
those who interacted with the recommendations, but, more largely, 
for all of those accepted using the recommendation system.  

This study presented several limitations: (1) for experimental 
purposes, we restricted the access to the direct communication tool; 
(2) since not all students had access to the RS and the chat, the 
teaching team could not use them for pedagogical activities, which 
could have boosted the effect of the RS; (3) students in the control 
group were not asked to accept the RS Terms of Use, since they 
would not be given access to it – however, while it is thus possible 
that students who accepted the ToU were more motivated, the 
analysis presented in section 2.6 shows that students in the control 

and experimental groups were similar in terms of participation 
before the beginning of the core MOOC and demographics.. 
Furthermore, the most significant results were obtained comparing 
students who interacted vs. those who did not interact with the RS, 
and these results are not affected. 

Overall, this controlled study is highly supporting the idea that 
recommending learners to learners, in such crowded places as 
MOOC platforms, is an effective way to get them more involved in 
terms of attendance, completion, scores and participation. In the 
future, we intend to look into more details the impact of the 
different recommendation strategies, and the different ways 
students interacted with the recommendation system. 
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ABSTRACT
Recent developments in machine learning have the potential
to revolutionize education by providing an optimized, per-
sonalized learning experience for each student. We study the
problem of selecting the best personalized learning action that
each student should take next given their learning history;
possible actions could include reading a textbook section,
watching a lecture video, interacting with a simulation or lab,
solving a practice question, and so on. We first estimate each
student’s knowledge profile from their binary-valued graded
responses to questions in their previous assessments using
the SPARFA framework. We then employ these knowledge
profiles as contexts in the contextual (multi-armed) bandits
framework to learn a policy that selects the personalized
learning actions that maximize each student’s immediate
success, i.e., their performance on their next assessment.
We develop two algorithms for personalized learning action
selection. While one is mainly of theoretical interest, we
experimentally validate the other using a real-world educa-
tional dataset. Our experimental results demonstrate that
our approach achieves superior or comparable performance
as compared to existing algorithms in terms of maximizing
the students’ immediate success.

1. INTRODUCTION
In traditional classrooms, learning has largely remained a
“one-size-fits-all” experience in which the instructor selects a
single learning action for all students in their class, regardless
of their diversity in backgrounds, learning goals, and abilities.
The quest for a fully personalized learning experience began
with the development of intelligent tutoring systems (ITSs)
[6, 19, 38, 40]. However, to date, ITSs are primarily rules-
based, meaning that building an ITS requires domain experts
to consider every possible learning scenario that students
can encounter and then manually specify the corresponding
learning actions in each case. This approach is not scalable,
since it is both labor-intensive and domain-specific.

Machine learning-based personalized learning systems [30]
have shown great promise in reaching beyond ITS to scale
to large numbers of subjects and students. These systems
automatically create personalized learning schedules, a series
of personalized learning actions (PLAs) for each individual
student to take that maximizes their learning. Examples of
PLAs include reading a textbook section, watching a lecture
video, interacting with a simulation or lab, solving a practice
question, etc. Instead of domain-specific rules, machine
learning algorithms are used to select PLAs automatically by

analyzing the data students generate as they interact with
learning resources.

The general problem of creating a fully personalized learn-
ing schedule for each student can be formulated using the
partially observed Markov decision process (POMDP) frame-
work [31]. POMDPs utilize models on the students’ latent
knowledge states [23, 28] and their transitions [8, 11, 18, 22]
to learn a PLA selection policy (a mapping from the knowl-
edge state space to the set of learning actions) that maximizes
a reward received in the possibly distant future (long-term
learning outcome). Previous work applying POMDPs to
personalized learning have achieved some degree of success
[4, 9, 32, 33]. However, learning a personalized learning
schedule using a POMDP is greatly complicated by the curse
of dimensionality; the solution quickly becomes intractable
as the dimensions of the state and action spaces grow [31].
Consequently, POMDPs have made only a limited impact in
large-scale personalized learning applications involving large
numbers of students and learning actions.

A more scalable approach to personalized learning is to
learn a PLA selection policy using the multi-armed bandits
(MAB) framework [10, 27], which is more suitable to opti-
mizing students’ success on immediate follow-up assessments
(short-term learning outcome). The simplicity of the MAB
framework makes it more practical than the POMDP frame-
work in real-world educational applications, since it requires
far less training data.

1.1 Contributions
In this paper, we study the problem of selecting PLAs for
each student given their learning history using MABs. We
first estimate each student’s latent concept knowledge profile
from their learning history (specifically, their binary-valued
graded responses to questions in previous assessments) us-
ing the sparse factor analysis (SPARFA) framework [23].
Then, we use these concept knowledge profiles as contexts in
the contextual (multi-armed) bandits framework to learn a
policy to select PLAs for each student that maximize their
performance on the follow-up assessment.

We develop two algorithms for PLA selection. The first
algorithm, CLUB, has theoretical guarantees on its ability
to identify the optimal PLA for each student. The sec-
ond algorithm, A-CLUB, is more intuitive and practical; we
experimentally validate its performance using a real-world
educational dataset. Our experimental results demonstrate
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that A-CLUB achieves superior or comparable performance
to existing algorithms in terms of maximizing students’ im-
mediate success.

1.2 Related work
The work in [27] applies an MAB algorithm to educational
games in order to trade off scientific discovery (learning about
the effect of each learning resource) and student learning.
Their approach is context-free and thus not ideally suited for
applications with significant variation among the knowledge
states of individual students. Indeed, it can be seen as a
special case of our work in this paper when there is no context
information available.

The work in [36] applies a contextual bandits algorithm to
the problem of selecting the optimal PLA for each student
given their previous exposure to learning resources. In their
approach, each dimension of the context vector corresponds
to the students’ exposure to one learning resource. Thus, the
context space quickly grows large as the number of learning
resources increases. Our approach, in contrast, performs
dimensionality reduction on student learning histories using
the SPARFA framework and uses the resulting student con-
cept knowledge profiles as contexts. This feature enables our
approach to be applied to datasets where student learning
histories contain a large number of learning resources.

The work in [29] collects high-dimensional student–computer
interaction features as they play an educational game and
uses them to search for a good teaching policy. We emphasize
that our approach can be applied to almost all educational
applications, not just computerized educational games, since
it only requires graded response data of some kind.

The works in [10] and [20] both use some form of expert
knowledge to learn a teaching policy. The approach of [10],
in particular, uses expert knowledge to narrow down the
set of possible PLAs a student can take. Our approach, in
contrast, requires no expert knowledge and is therefore fully
data-driven and domain-agnostic.

The work in [26] fuses MAB algorithms with Gaussian pro-
cess regression in order to reduce the amount of training
data required to search for a good teaching policy. Their
work requires the policy to be parameterized by a few pa-
rameters, while our framework does not and can thus learn
more complicated policies using only reward observations.

The work in [35] found that various student response models,
including knowledge tracing (KT) [11], IRT models [28, 34,
5], additive factor models (AFM) [8], and performance factor
models (PFM) [16] can have similar predictive performance
yet lead to very different teaching policies. While these
results are indeed interesting, we emphasize that the focus
of the current work is to develop policy learning algorithms
rather than comparing student models.

2. PROBLEM FORMULATION
We study the problem of creating a personalized learning
schedule for each student by selecting the PLA they should
take based on their prior learning experience. We assume
that a student’s learning schedule consists of a series of as-
sessments with PLAs embedded in between, a setting that is

Assessment	  1	   PLA	  
1	  

…Assessment	  2	   Assessment	  3	  PLA	  
2	  

Figure 1: A personalized learning schedule.

typical in traditional classrooms, blended learning environ-
ments, and online courses like MOOCs [12, 13]. Each PLA
can correspond to studying a learning resource, e.g., reading
a textbook section, watching a lecture video, conducting an
interactive simulation, solving a practice question, etc., or
a combination of several learning resources.1 Assessment
could be a pop-quiz with a single question, a homework set
with multiple questions, or a longer exam. Each student’s
personalized learning schedule can be visualized as in Fig-
ure 1, where a PLA is taken between consecutive assessments
(starting after Assessment 1).

The goal of this work is to select the optimal PLA for each
student given their learning history (their graded responses to
previous assessments) that maximizes their immediate suc-
cess, i.e., the credit they receive on the following assessment.
We aim to learn this learning action selection rule from data.
For simplicity of exposition, we will place PLA 1 between
Assessment 1 and Assessment 2 (as encased in the box in
Figure 1) as a running example throughout the paper.

Let A denote the total number of PLAs available, let K
denote the number of latent concepts covered up to As-
sessment 1, and let Q denote the number of questions in
Assessment 2, with si, i = 1, . . . , Q the maximum credit of
each question. Let Yi,j denote the binary-valued graded
response of student j to question i, with Yi,j = 1 denoting a
correct response and Yi,j = 0 an incorrect response. In order
to pin down a feasible PLA selection algorithm, we make
two simplifying assumptions: i) We assume that a reliable
estimate of each student’s latent concept knowledge vector
(estimated from their graded responses to Assessment 1),
denoted by cj ∈ RK , is available to the PLA selection algo-
rithm. Such an estimate can be obtained using any IRT-like
method, e.g., SPARFA [23]. ii) We assume that the PLA
selected for each student will directly affect their performance
on Assessment 2.

With this notation in place, we can restate our goal as
selecting a PLA for student j, given their current concept
knowledge2 cj in order to maximize their performance (i.e.,

their expected credit
∑Q

i=1 siE[Yi,j ]) on Assessment 2.

2.1 Background on bandits
The multi-armed bandit (MAB) framework [3] studies the
problem of a player trying to learn a policy that maximizes
the total expected reward by playing (pulling the arms of)
a collection of slot machines with a fixed number of trials
and no prior information about each machine. Each ma-
chine has a fixed reward distribution that is unknown to the
player. The key to maximizing the total expected reward
is to find the right balance between exploration (playing

1
Our notion of PLA is very general, and we do not restrict ourselves

to studying a single learning resource.
2
In practice, we augment cj as [cT

j 1]T to add an “offset” parameter
to each arm.
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machines that might yield high rewards) and exploitation
(repeatedly playing the machine with the highest observed
reward). Analogously, a personalized learning system must
strike a balance between testing the efficacy of every learning
action (exploration) and maximizing the students’ learning
outcomes using observations on the actions (exploitation)
[27].

Contextual (multi-armed) bandits [1, 2, 15, 24, 37] extend the
MAB framework by accounting for the existence of additional
information on the player and/or the machines, referred to
as “contexts”, in order to improve the policy. Our PLA selec-
tion problem fits squarely the contextual bandits framework,
where the current estimates of students’ concept knowledge
correspond to the contexts and each PLA corresponds to
an arm. Pulling an arm corresponds simply to selecting a
PLA. In this paper, the context will include only information
on the students. See Sec. 5 for a discussion on extending
our framework to incorporate information on the learning
resources into the contexts.

3. ALGORITHMS
The two algorithms we develop in this section are so-called
upper confidence bound (UCB)-based algorithms [3]. These
algorithms maintain estimates of the expected reward of
each arm together with confidence intervals around these
estimates, and iteratively update them as each new pull and
its corresponding reward is observed. They then pull the arm
with the highest UCB on the reward, which is equal to the
expected reward plus the width of the confidence interval.

3.1 CLUB: An algorithm in theory
We first develop the contextual logistic upper confidence bound
(CLUB) algorithm in order to provide theoretical guarantees
for the PLA selection problem. We assume that the binary-
valued student responses to the questions in Assessment 2
are Bernoulli random variables with success probabilities
following a logistic model

p(Yi,jas
= 1)=Φlog(cTjas

wa
i )=

1

1 + e
−cT

jas
wa

i

, s = 1, . . . , na,

where wa
i ∈ RK is the parameter vector that characterizes

the students’ responses to question i after taking PLA a.
Also, jas denotes the index of the sth student taking PLA a,
and na denotes the total number of students taking PLA a.
Φlog(·) denotes the inverse logit link function.

The maximum-likelihood estimate (MLE) of wa
i is

“wa
i = arg min

w

−
na∑

s=1

log p(Yi,jas
|cjas

,w), (1)

which can be computed using standard logistic regression
algorithms [17] whenever the MLE exists (see [39, Sec. 5.1]
for a detailed discussion on the conditions under which the
MLE exists).

As detailed in Algorithm 1, CLUB maintains MLEs of the
parameter vector wa

i of each PLA together with a confidence
interval around it. Then, after receiving a student’s concept
knowledge vector cj , CLUB selects the PLA with the high-
est UCB on the expected credit on the student’s following
assessment.

Algorithm 1: CLUB

Input: A set of student concept knowledge state estimates
cj , j = 1, 2, . . ., and parameters λ0, δ, η, ε

Output: PLA aj for each student, j = 1, 2, . . .
MLEall exist ← False, na ← 0, ∀ a
for j ← 1 to ∞ do

if MLEall exist then
Estimate “wa

i , ∀ i, a according to (1)

Σa ← λ0IK +
∑na

s=1 cjas
cTjas

, ∀ a
aj ←
arg maxa

∑Q
i=1 si(Φlog(cTj “wa

i ) + ci(na)
»

cTj Σ−1
a cj)

else
Randomly select aj among PLAs where ∃ i s.t. “wa

i

does not exist
naj ← naj + 1

MLEall exist ← True
for a← 1 to A do

for i← 1 to Q do
if “wa

i does not exist (verified via [39, Thm. 2])
then

MLEall exist ← False

The constants in Algorithm 1 are given by ci(na) =√
2K(3 + 2 log(1 + 2a2m/λ0)) lognaK/δ/bi,a, where am =»
K + 2

√
K log(1/η) + 2 log(1/η) and bi,a = 1/(2 +

e‖w
a
i ‖2am + e−‖w

a
i ‖2am), and 0 < δ, η � 1. Algorithm 1

exhibits theoretical optimality guarantees (omitted due to
space constraints and available at www.sparfa.com [21]).

3.2 A-CLUB: An algorithm in practice
Since in practice we do not know the values of the constants
∆a,j and also need to set the parameters ε, δ, and η, Al-
gorithm 1 and its theoretical guarantees are not directly
applicable. Furthermore, as the number of students grows,
the confidence bounds around the estimates of each PLA’s
parameters might become overly pessimistic, causing the
algorithm to over-explore [15]. Therefore, we now develop a
second CLUB-like algorithm that leverages the asymptotic
normality of the MLEs of the PLA parameters [14]. The
asymptotic normality property states that, as the number
of students grows large, the estimation error of the param-
eter wa

i for each PLA converges to a normally distributed
random vector with zero mean and a covariance matrix that
is a scaled inverse of the Fisher information matrix

Fa :=

na∑

s=1

cjas
cTjas

2 + e
cT
jas

wa
i + e

−cT
jas

wa
i

.

Thus, we can build a confidence ellipsoid around the point
estimate generated by (1), albeit asymptotically. In practice,
since the true values of the parameters wa

i ∀ i, a are unknown,
we will use their estimates “wa

i to approximate the Fisher
information matrix.

Armed with the confidence ellipsoid, we can now compute
the upper bound of the expected response of student j on
each question in Assessment 2 after taking PLA a. This cor-
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Algorithm 2: A-CLUB

Input: A set of student concept knowledge state estimates,
cj , j = 1, 2, . . ., parameter α

Output: PLA aj for each student
MLEall exist ← False, na ← 0, ∀ a
for j ← 1 to ∞ do

if MLEall exist then
Estimate “wa

i , ∀ i, a according to (1)

Fa ← λ0IK +
∑na

s=1

cjc
T
j

2+e
cT
jas

wa
i +e

−cT
jas

wa
i

, ∀ a
aj ←
arg maxa

∑Q
i=1 siΦlog(cTj “wa

i +
»
α(cTj F−1

a cj)/na)

else
Randomly select aj among PLAs where ∃ i s.t. MLE
of wa

i does not exist

naj ← naj + 1

MLEall exist ← True
for a← 1 to A do

for i← 1 to Q do
if MLE does not exist for wa

i (verified via [39,
Thm. 2]) then

MLEall exist ← False

responds to the following constrained optimization problem3

minimize
w

− 1

1 + e
−cT

j
w

subject to (w −“wa
i )TFa(w −“wa

i ) ≤ α/na,

where α is a parameter controlling the size of the confidence
ellipsoid and thus the amount of exploration. The solution

to this problem is given by w = “wa
i +

√
α

nac
T
j
F−1

a cj
F−1
a cj .

Therefore, we obtain an upper bound for the expected grade
for student j on question i after taking PLA a as Φlog(cTj “wa

i +»
αcTj F−1

a cj/na). We thus arrive at Algorithm 2, which we

dub asymptotic CLUB (A-CLUB).

4. EXPERIMENTS
In this section, we validate our algorithms experimentally on
personalized cohort selection using a college physics course
dataset. We will compare the performance of Algorithm 2
against other baseline (contextual) MAB algorithms. We
do not compare Algorithm 1, since its theoretical bounds
are usually too pessimistic in practice [15]. For comparisons
using two additional datasets, see [21].

Dataset. The dataset consists of the binary-valued graded
responses in a semester-long physics course administered on
OpenStax Tutor [30] with N = 39 students answering 286
questions. Cognitive science experiments were conducted in
this course to test the effect of spacing versus massed practice
on the students’ long-term retrieval performance of knowledge
[7]. For this purpose, the students were randomly divided
into two cohorts containing 19 and 20 students. There are

3
We assume cj is non-zero; otherwise we would simply select a PLA

at random.

Figure 2: Average student credit on Assessment 5 vs.
number of students used by three algorithms. Stu-
dent performance on the follow-up assessment in-
creases as the algorithms have access to more train-
ing data. Concretely, using data from 38 students,
A-CLUB finds a PLA selection policy whereby stu-
dents perform approximately 10% better than select-
ing randomly.

a total of 11 weekly assessments and 3 review assessments
throughout the course. In the first three assessments, both
cohorts received the same set of assessment questions. Start-
ing from Assessment 4, apart from the same set of assessment
questions both cohorts received on the concepts covered in
the current week, each cohort also received additional, differ-
ent questions. One cohort received spaced practice questions
related to the concepts they learned several weeks earlier,
while the other cohort received massed practice questions re-
lated to the concepts they learned in the current week. Each
cohort received some spaced practices and some massed prac-
tices throughout the semester so that the sets of questions
assigned to each cohort were identical in the end.

Experimental setup. Since the students in Cohorts 1 and 2
receive different sets of questions on Assessment 4, we investi-
gate how this difference affects their learning on the concepts
they learn next, i.e., their performance on Assessment 5.
Treating each cohort as a PLA, our goal is to maximize the
students’ performance on Assessment 5 by assigning them to
the cohort (selecting the PLA) that benefits them the most.
Therefore, in our setting the number of PLAs is A = 2. We
take the students’ graded responses to questions in Assess-
ments 1–3 and apply SPARFA to estimate each student’s
K-dimensional concept knowledge vector cj , which we use
as the context. We set the number of concepts to K = 3.4

Since Cohorts 1 and 2 also receive different questions for
Assessment 5 as part of the spacing vs. mass retrieval prac-
tice experiment on new concepts covered in Week 5, we take
the set of Q = 5 questions shared between the two cohorts
to evaluate their performance. Since MAB algorithms ana-
lyze students sequentially, we randomly permute the order
of the students and average our results over 2000 random
permutations.

4
In our experiments, we have found that the performance of SPARFA

and A-CLUB is robust to the number of concepts K as long as K � Q.
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A-CLUB LINUCB UCB

Training set 3.69 3.68 3.65

Test set 3.89 3.77 3.70

Table 1: Performance comparison of A-CLUB
against two baseline algorithms on personalized co-
hort selection on the physics course dataset. A-
CLUB outperforms the other algorithms in terms of
average student credit on the follow-up assessment
(out of a full credit of 5) on both the training and
test sets.

Evaluation method. We use the unbiased offline evaluation
approach in [24, 25] to evaluate our algorithms. We use only
the students that were actually assigned to the same cohort as
chosen by our algorithms and ignore the other students. This
approach evaluates the decision making algorithms under
the scenario where the data is collected in a specific “off-line,
off-policy” manner, i.e., the data is collected by selecting
PLAs for each student uniformly at random across every
PLA, as opposed to a more typical MAB setting where
PLAs are chosen for students sequentially given the observed
follow-up assessment performance of previous students. Such
a scenario fits our experimental setup well and yields an
unbiased estimate of the expected reward for each student
[25]. We use the students’ total credit on Assessment 5, i.e.,∑Q

i=1 siYi,j , as the metric to evaluate the performance of
the algorithms.

Results and discussion. Figure 2 shows the students’ av-
erage credit (out of a full credit of 5) on Assessment 5 vs.
the number of students the algorithms use for the algorithms
A-CLUB, LINUCB [24], and UCB [3]. The parameters in
every algorithm were tuned for best performance. We see
that the average student credit increases as the number of
students the algorithms observe increases, i.e., the algorithms
improve their PLA selection policy as they see more training
data. As a concrete example, by comparing the average
student credit at the first and last points on the curves, we
see that A-CLUB has found a policy that yields students
approximately 10% more credit than a policy that selects
PLAs randomly.

Following the approach in [24], we also conduct an experiment
by separating the dataset into a training set with 80% of the
students and a test set with 20% of the students, to validate
both the efficiency (performance on the training set) and
efficacy (performance on the test set) of A-CLUB. We train
the above three algorithms on the training set and apply
the learned PLA selection policy to the test set, and report
the average student credit obtained on both sets. Table 1
indicates that A-CLUB outperforms the other algorithms on
both the training set and the test set. Better performance
on the test set means that A-CLUB learns a better policy
than the other algorithms, while better performance on the
training set means that it learns this policy very quickly as
the amount of training data increases.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a contextual (multi-armed)
bandits framework for PLA selection that maximizes stu-
dents’ immediate success on a follow-up assessment, given the
latent concept knowledge estimated from their binary-valued
graded responses to questions in previous assessments. Our
contextual logistic upper confidence bound (CLUB) algo-
rithms learn such a policy and achieve better or comparable
performance than baseline algorithms.

There are a number of avenues for future work. First, our
context vectors are indexed by student features only, while
in the general contextual bandits setting the contexts can
be indexed by both student features and features of the
learning resources. SPARFA-Trace [22], a recently developed
framework for time-varying learning and content analytics,
features a mechanism to analyze the content, quality, and
difficulty of all kinds of learning resources (i.e., textbook
sections, lecture videos, practice questions, etc.). We can
apply this approach to extract features from the learning
resources that we can integrate into the contexts in our algo-
rithms. Second, we can incorporate an additional PLA that
corresponds to “no action”, due to the cost of taking actions,
as considered in [36]. This extension would enable students
with high knowledge on the concepts covered to avoid re-
peated practice and advance more quickly to new concepts.
Third, we are interested in integrating our approach into
more sophisticated contextual bandit algorithms, e.g., [37]
to reap further performance improvements.
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ABSTRACT 
In this paper, we applied the crowdsourcing approach to develop 
an automated popularity summary scoring, called wild summaries. 
In contrast, the golden standard summaries generated by one or 
more experts are called expert summaries. The innovation of our 
study is to compute LSA (Latent Semantic Analysis) similarities 
between target summary and wild summaries rather than expert 
summaries. We called this method CLSAS, i.e., crowdsourcing-
based LSA similarity. We evaluated CLSAS by comparing it with 
other approaches, Coh-Metrix language and discourse features 
and LIWC psychometric word measures. Results showed that 
CLSAS alone could explain 19% of human summary score, which 
was equivalent to the variance explained by dozens of language 
and discourse features and/or the word features. Results also 
showed that adding language and/or word features to CLSAS 
increased small additional correlations. Findings imply that 
crowdsourcing-based LSA similarity approach is a promising 
method for automated summary assessment.   

Keywords 

Summary grading, Crowdsourcing, LSA Similarity, Coh-Metrix, 
LIWC 

1. INTRODUCTION 
The use of the summarization strategy enables to improve reading 
comprehension and production of expository texts for both L1 
learners [1] and L2 learners [2]. Summarizing involves reading 
processes and reproducing processes. Reading process requires 
the learners to identify the main ideas and distinguish the 
important points from the unimportant points. Reproducing 
process requires the learners to restate the important ideas in a 
coherent, precise and accurate manner in their own words [3]. 
Learners’ summarizing skill depends on the ability to construct a 
coherent mental model of the text, which is aligned with text 
discourse [4]. This ability consists of three knowledge 
components: rhetorical text structures and genres, propositional 
text content, and a coherent mental model for a variety of genres 
[4], which are important for reading comprehension [5]. 
Summarization strategy is an effective instructional strategy [6] to 
help students improve these abilities [7] and summary writing is 
therefore considered as a good measure of reading comprehension 
at a deep level.  

Grading summaries are time-consuming and costly for teachers, so 
it is impossible for teachers to provide a real-time and instant 
summary score, let alone provide the instant feedback on the 
quality of summaries. Researchers thereby have developed the 

automated summary assessments with the techniques of natural 
language processing and machine learning [4,8]. These 
assessments are not practical for teachers because they require 
model building based on human expert summaries as the reference 
summaries and a large amount of human summary grading. Thus, 
model rebuilding is time-consuming and costly for teachers. Each 
time teachers need to repeat such complex steps as expert-written 
summaries as reference, human-scored summary as the training 
set, model training, and model evaluation. As summary writing is 
a weekly assignment for middle school and high school students, 
summary grading will be a common task for teachers. The present 
automated summary assessments will not reduce but increase the 
teachers’ workload. These methods are impractical for teachers to 
use. Teachers need a more efficient and effective summary 
assessment with least efforts.  

In this paper, we applied the crowdsourcing approach to develop 
an automated “popularity” summary scoring. Crowdsourcing 
enables a diverse and a large amount of population to generate 
abundant summaries, which are called “popularized summaries” 
or “wild summaries.” In contrast, the golden standard summaries 
generated by one or more experts are called “expert summaries.” 
The innovation of our study is to compute LSA (Latent Semantic 
Analysis) similarities between the target summary and the wild 
summaries instead of expert summaries. We called it CLSAS, 
namely, crowdsourcing-based LSA similarity. We proposed 
CLSAS was a robust measure for summary grading. 

This study makes innovative contributions to the automated 
summary assessment for three reasons. First, it is efficient and 
effective, because the model was built based on one feature rather 
than dozens of features. Second, it is unnecessary for human 
experts to generate the golden summaries on each quality level. 
The model was built based on the wild summaries generated by all 
of the summary writers. Third, it is unnecessary for human experts 
to manually grade summaries for the model training.  

The next section briefly reviews research on automated summary 
assessment, crowdsourcing approach, and three advanced text 
analysis tools, LSA similarity [9], Coh-Metrix [10] and LIWC 
(Linguistic Inquiry and Word Count) [11].  

1.1 Automated Summary Assessment 
Techniques of natural language processing and machine learning 
have been used to develop the automated summary assessment 
[4,8]. Diverse features used in the assessment range from semantic 
features measured by LSA [8] to language features exacted by 
BLEU (Bilingual Evaluation Understudy) [4], ROUGE (Recall-

Proceedings of the 9th International Conference on Educational Data Mining 430



Oriented Understudy for Gisting Evaluation) [12], TERp 
(Translation Error Rate Plus) [4], and N-gram [12]. Some features 
were used to detect plagiarism in summary (e.g., N-gram [4]), 
assess coherence of the summary (e.g., LSA [8] and N-gram [12]), 
evaluate content unit (e.g., unigram overlap [8]), or examine the 
length of summary [4]. These assessments were proved to robustly 
predict human summary grading [4,8] but had the following 
limitations. 
First, all of these assessments need reference summaries that are 
generated by one or more human experts [4,8]. The reference 
summaries have different qualities, ranging from good to poor on 
multiple-point scales [4]. The student’s summary is graded by 
comparing with the reference summaries. The similarities could 
be computed by similarities of LSA [8], a lexical and phrasal 
overlap (e.g., ROUGE) [8], N-gram overlap (e.g., BLEU) [4,8], 
summary length [4], or token count [4]. Second, the sufficient 
amount of human-graded summaries at each quality level is 
required to build the model for the supervised learning. Third, 
different language and discourse features and algorithms are 
tested in order to build a better fit model. As these assessments are 
not content independent, these three cycles are repeated if 
summaries’ source text changes. These tasks definitely increase 
extra workload for teachers, so it is hard and impractical to spread 
these approaches. It is necessary to develop a summary 
assessment without expert reference summaries, human grading, 
and model rebuilding for a new source text. This study aims to 
explore a real-time and efficient summary assessment that requires 
the least efforts so that teachers can easily use it by themselves. 

1.2 Crowdsourcing 
Crowdsourcing refers to a process that mobilizes a huge amount 
of population (called crowd workers) to accomplish the complex, 
collaborative, and sustainable tasks on demand and at large scale, 
especially from an online community rather than traditional 
employees or suppliers [13]. Crowd workers can either be 
volunteers for collective projects such as Wikipedia or paid via 
platform such as Amazon’s Mechanical Turk, one popular 
crowdsourcing platform [13]. Crowdsourcing is frequently used to 
generate ideas and break down creative tasks into smaller pieces 
[13-17]. The application of crowdsourcing is an emerging 
approach in research. For example, some researchers asked crowd 
workers to create or retrieve content for new stories [16,17], to 
generate a story [14] or summaries of social media events [15]. 
This collaborative work provides an author diverse ideas or 
contents quickly [13-17].  

1.3 LSA Similarity 
LSA [18] is a mathematical and statistical technique that 
represents knowledge about words, sentences, paragraphs, and 
documents on the basis of a large corpus of texts. LSA reduces a 
large corpus of texts to 100–300 dimensions using singular value 
decomposition technique. The conceptual similarity between two 
texts is computed as the geometric cosine between the vectors 
representing two texts. The cosine value varies from -1 to 1 
[18,19], with the higher score representing higher similarity. 
LSA is used to assess coherence in Coh-Metrix [10] and quality 
of essays [8, 20-22]. In addition, LSA has been utilized in the 
intelligent tutoring system (ITS) to assess the constructed 
response or the open response, such as AutoTutor [19]. These 
assessment systems for essay, summary, or open response requires 
expert reference summaries and human-graded summaries 
generated by human experts. Few studies do not use expert 

summaries as reference. Summarization in machine translation 
develops a fully automated approach to evaluate ranking systems 
that requires no expert summaries [8]. However, it requires a large 
amount of content annotations and is restricted to the ranking 
system, which it is not appropriate for teachers to use for summary 
grading. Cai et al. [9] explored the LSA similarity model without 
the golden standard reference for the open response assessment. 
Instead, the reference was all the responses written by students 
except the target response. We borrowed this approach in this 
study and use the learners’ summaries as the reference summaries. 

1.4 Coh-Metrix 
Coh-Metrix (cohmetrix.com) is a computer-based tool that 
automates many language- and text-processing mechanisms over 
hundreds of measures of cohesion, language, and readability [10]. 
Coh-Metrix is developed based on a multilevel theoretical 
framework [23]. This framework specifies six theoretical levels: 
words, syntax, explicit textbase (e.g., explicit propositions, 
referential cohesion), situation model (also called mental model), 
discourse genre and rhetorical structure (the type of discourse and 
its composition), and the pragmatic communication level. The 
first five of these six levels have metrics captured in the Coh-
Metrix automated text analysis tool [10]. 
The current version of Coh-Metrix [10] extracts 110 measures, 
which are categorized into genre (narrative versus informational), 
LSA space (e.g., text cohesion), word information (e.g., 
familiarity, concreteness, imageability, meaningfulness, age of 
acquisition), word frequency, part of speech, density score (e.g., 
density of pronouns), logic operators (e.g., if-then), connectives 
(e.g., therefore), type/token ratio, polysemy and hypernym, 
syntactic complexity (e.g., noun phrase density), readability (e.g., 
Flesch-Kincaid grade level), co-reference cohesion (e.g., noun 
overlap, argument overlap), along with five primary components 
extracted based on these features (e.g., narrativity, word 
concreteness, syntactic simplicity, referential cohesion, and deep 
cohesion).  

1.5 LIWC 
LIWC (Linguistic and Inquiry Word Count) [11] computes the 
percentage of words in a text that fit into the linguistic or 
psychological categories. The 2015 LIWC dictionary contains 
6,400 words, word stems, and select emoticons. It generates 93 
measures that are categorized into the following categories: word 
count, summary language variables (e.g., analytical thinking, 
authentic, emotional tone), linguistic dimensions (e.g., functional 
words, pronouns, conjunctions), other grammar (e.g., common 
verbs, interrogatives), psychological processes (e.g., affective, 
social, cognitive, informal language). The word count function of 
LIWC attempts to match each word in a given text to a word in 
the various categories.  

The LIWC categories have been confirmed as valid and reliable 
markers of a variety of psychologically meaningful constructs 
[11]. The different categories of words would be expected to 
predict psychological dimensions. For example, negative emotion 
words would be diagnostic of gloomy texts. The function words 
(particularly pronouns) are diagnostic of social status, personality, 
and various psychological states. Differences in function word use 
can be reflected by gender, age, and social class. LIWC is used to 
measure the formal versus informal language formality [24,25]. 

This paper combined the crowdsourcing approach with the LSA 
similarity to assess summaries. This approach was evaluated by 
comparing the Coh-Metrix language and discourse features and 
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the LIWC word features with the human-graded summary scores 
as the criteria. Specially, seven models were trained and compared 
their predictability for the human summary scores: (1) CLSAS, 
(2) Coh-Metrix language feaures (94), (3) LIWC word features 
(93), (4) Coh-Metrix + LIWC, (5) CLSAS + Coh-Metrix, (6) 
CLSAS + LIWC, and (7) CLSAS + Coh-Metrix + LIWC. It is 
necessary to clarify that the human-graded summary scores were 
only used to evaluate but not build the model. We hypothesize 
that crowdsourcing-based LSA similarity is an efficient, effective, 
and reliable measure for summary grading for the following two 
reasons. First, LSA is a most robust feature for semantic meaning 
[11] than the language and word features. Second, the wild 
summaries as reference maximally represent diversity of students’ 
summaries as compared with expert summaries.  

2. METHOD 

2.1 Participants 
Crowd workers (N = 201) volunteered for 3-hour monetary 
compensation ($30) on Amazon Mechanical Turk (AMT), a 
trusted and commonly used data collection service [21]. The basic 
requirement for participation is that they have the goal to improve 
English summary writing. Participants were required to complete 
writing 8 summaries, but only 1,481 summaries were collected 
due to the technical issues. 71% participants were Asian, 16% 
white or Caucasian, 7% African American, 5% Hispanic, 2% 
other. Their average age was 33.50 (SD = 8.79), 57% were male, 
and 81% with bachelor degree or above.  

2.2 Materials 
Participants read 8 expository texts with different topics and text 
difficulties in the AutoTutor CSAL. CSAL is an intelligent 
tutoring system that teaches adult learners the summarization 
strategies in order to improve their reading comprehension [19]. 
Participants were required to write a summary with 50-100 words 
for each text. Four texts are on comparison-contrast text structure 
and another four on cause-effect text structure (See Table 1). The 
text difficulty was measured with the Coh-Metrix formality (z-
score) at the multiple textural levels and Flesch-Kincaid grade 
level, sensitive to word length and sentence length [24]. These 8 
texts were formal and above grade 8 to early college grades [24]. 
The balanced Latin-square designs were applied to control for 
order effects in terms of text difficulty, topics and text structures.  

2.3 Summary Grading  
The summaries were graded based on four components: topic 
sentence, content, grammar and mechanics, and signal words.  
Table 2 lists the detailed descriptions for three scales of each 
component, from 0 (minimum) to 2 (maximum) points. Thus, the 
total score ranged from 0 to 8. Four English native researchers 
graded summaries, 1 male and 3 female. There were three rounds 
of training for summary grading and after each grading, and then 
the disagreements were discussed. Before grading, they got 
familiar rubrics and then they started the three-round grading with 
one per week. Each round included 32 randomly-selected 
summaries (4 from each text and 8 texts in total). Inter-rater 
reliability was assessed by the intraclass correlation coefficient 
with a two-way random model and absolute agreement type. The 
average inter-rater reliability reached the threshold: Cronbach’s a 
= .82, intraclass correlation coefficient = .80. As the average of 
reliabilities for three training sets were high, each grader graded 
summaries for two texts in the same text structure.  

Table 1. Source Texts and the Number of Summaries (N). 

Structure Topics Formality FKGL Words N 
Comparison Butterfly and 

Moth .12 8.6 255 183 

Hurricane .20 9.4 222 185 

Walking and 
Running .18 8.9 399 187 

Kobe and 
Jordan .14 9.2 299 187 

Causation Floods . 47 9.2 230 186 

Job Market .62 10.9 240 181 

Effects of 
Exercising .28 9.1 195 189 

Diabetes .64 11.7 241 182 

Table 2. Rubrics for Scoring Summary  

Categories 2 points 1 points 0 point 
Topic 
Sentence 

A clear topic 
sentence that 
states the main 
idea. 

A topic sentence 
that touches 
upon the main 
idea. 

The summary 
does not state 
the main idea. 

Content  Major details 
stated 
economically 
and arranged in 
a logical order.  
No minor or 
unimportant 
details or 
reflections.  

Some but not all 
major details 
stated and not 
necessarily in a 
logical order.  
Some minor or 
unimportant 
details or 
reflections. 

Few major 
details stated 
and not 
necessarily in a 
logical order.  
Many minor or 
unimportant 
details or 
reflections. 

Mechanics 
and 
Grammar 

Few or no 
errors in 
mechanics, 
usage, grammar 
or spelling. 

Some errors in 
mechanics, 
usage, grammar 
or spelling that 
to some extent 
interfere with 
meaning.  

Serious errors 
in mechanics, 
usage, grammar 
or spelling, 
which make the 
summary 
difficult to 
understand.  

Signal 
Words 

Uses the clear 
and accurate 
signal words to 
connect 
information. 

Uses several 
clear and 
accurate signal 
words to connect 
information. 

Uses several 
clear signal 
words to 
connect 
information. 

2.4 Measures 
In this study, we employed three approaches to assess summaries: 
semantic meaning measured by LSA similarity, Coh-Metrix, and 
LIWC. The crowdsourcing-based LSA similarity score was the 
LSA cosine between a target summary and all the wild summaries 
from the corresponding source text. 94 language and discourse 
features were utilized to train and build the Coh-Metrix summary 
assessment model. All of 93 psychometric word features were 
utilized to train and build the LIWC summary assessment model. 
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2.5 Procedure 
Participants took a demographic survey, a pretest (1 comparison 
and 1 causation), training (2 comparisons and 2 causations), and a 
posttest (1 comparison and 1 causation). On tests, participants 
wrote summaries by themselves. During training, two agents first 
interactively presented the importance of signal words for two text 
structures (comparison and causation) and how to use signal 
words to identify the corresponding text structure. Then 
participants interacted with the conversational agents to learn a 
summarizing strategy with adaptive scaffolding. Participants were 
required to write a summary with 50 to 100 words for each text. If 
the amount of words was beyond the range, the agents reminded 
the participants of the required length. If the participants copied 
the original sentences with 10 consecutive words, the agents 
reminded them of using their own words. Agents did not provide 
the adaptive feedback for their summary writing, but commented 
on three summary examples with good, medium, and bad qualities 
for each source text. The primary interface during training was 
shown in Figure 1.  

 

Figure 1. Screenshot of Learning Interface. 
3. RESULTS 
A series of linear regressions with 10-fold cross-validation in 
WEKA was performed on 7 models, respectively. Fisher z was 
used to compare the difference between two pairs of correlations 
(see Table 3). Results revealed that crowdsourcing-based LSA 
similarity robustly predicted human summary grading (r = .44; R2 
= .19), as well as 55 Coh-Metrix measures (r = .43; R2 = .18), 57 
LIWC measures (r = .47; R2 = .22), and 108 measures by Coh-
Metrix (57) and LIWC (51) jointly (r = .46; R2 = .21). This 
indicates that the variance explained by one LSA similarity 
measure is equivalent to the variance explained by more than 55 
language features or word features, and more than 100 language 
and word features jointly.  

Adding 94 Coh-Metrix features to CLSAS added an additional 
variance (r = .51; R2 = .26) in explaining human grading scores. 
Adding 93 LIWC features also added an additional variance (r = 
.55; R2 = .30). Adding both Coh-Metrix and LIWC feature added 
an additional variance (r = .49; R2 = .24), but the increased 
variance was significantly lower than by adding either Coh-Metrix 
or LIWC features. Due to the limited pages and the significant 
predictors in the Coh-Metrix + LIWC model overlapped with 
those in the Coh-Metrix model or the LIWC model, we only 
reported the predominant predictors in the Coh-Metrix model and 
LIWC model as below.  

The 55 Coh-Metrix measures consisted of 9 descriptive (e.g., 
word count, sentence length), 4 referential cohesions (e.g., noun 
overlap, argument overlap), 5 LSA overlap (e.g., adjacent 
sentences, LSA given, LSA new), 3 lexical diversity (e.g., type-
token ratio), 5 connectives (e.g., logical, additive), 3 situation 

model (e.g., causal verbs and particles, LSA verb overlap), 5 
syntactic complexity (e.g., minimal edit distance, sentence syntax 
similarity), 4 syntactic pattern density (e.g., noun phrase density, 
verb phrase density), 16 word information (e.g., noun, adjective, 
hypernymy for nouns), and 1 readability (e.g., Flesch Kincaid 
Grade Level).  

The 57 LIWC features consisted of 3 summary variables (e.g., 
analytical thinking, authentic), 3 language metrics (e.g., sentence 
length, words with more than 6 letters), 11 function words (e.g., 
personal pronouns), 4 grammar other (e.g., regular verb, 
quantifiers), 4 affect words (e.g., emotion words, anger), 3 social 
words (e.g., friend, gender referents), 3 cognitive processes (e.g., 
tentativeness, certainty), 3 perceptual (e.g., seeing, hearing), 3 
biological processes (e.g., body, health), 2 core drives and needs 
(affiliation and risk focus), 1 relativity, 4 personal concerns (e.g., 
religion, home), 2 informal speech (swear and filler), and 3 all 
punctuations (e.g., apostrophes, comma).  

Table 3. Fisher’s z: Comparisons of Correlations 

Models 1 2 3 2+3 1+2 1+3 

1 (r=.44) ---      

2 (r=.43) -0.34 ---     

3 (r=.47) 1.03 1.36 ---    
2+3 
(r=.46) 0.68 1.02 -0.35 ---   

1+2 (r=.51) 2.46** 2.80** 1.43 1.78* ---  

1+3 (r=.55) 3.97*** 4.31*** 2.94** 3.29** 1.51 --- 
1+2+3 
(r=.49) 1.74* 2.07* 0.71 1.05 -0.73 -2.24* 

Note. 1 = LSA similarity; 2 = Coh-Metrix features; 3 = LIWC 
features. * p < .05. ** p < .01. *** p < .001. 

4. DISCUSSION 
This paper developed an effective and efficient automated 
summary assessment, called crowdsourcing-based LSA similarity 
(CLSAS). Crowdsourcing enables a diverse and a mass of people 
to produce abundant wild summaries. CLSAS used the wild 
summaries rather than the human expert summaries as the 
reference when computing LSA similarities. The CLSAS was 
validated by comparing with Coh-Metrix language features, 
LIWC word features, and both language and word measures 
together with human-scored summaries as the criteria. Results 
indicated that CLSAS measure predicted human summary grading 
as well as over 55 language measures, 57 word measures, and 108 
language and word measures, respectively. Even though adding 
language features, word features, or both to CLSAS improved the 
predictability, the predictability of CLSAS alone is most robust 
with correlation coefficient above 6.74 in each model. Findings 
imply that crowdsourcing-based LSA similarity approach is a 
promising method and will have good popularity in automated 
summary assessment.  

One possible explanation for the significant predictability of 
CLSAS is that the wild summaries generated by diverse 
populations display diverse qualities as compared with few expert 
summaries. These wild summaries maximally represent the target 
summary. On the hand, the wild summaries represent neutralized 
or averaged semantic meaning, which is called centroid. The 
centroid might better capture the semantic meaning represented in 
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the target summary. For example, the CLSAS model showed that 
LSA similarity had a very high coefficients, β = 8.60, which was 
substantially higher than other measures’ in other models. 

The Coh-Metrix measures are different from the crowdsourcing-
based LSA similarity due to its nature on measuring cohesion, 
language, and readability rather than semantic meaning [10]. One 
semantic measure of LSA similarity between the target summary 
and the crowdsourcing-based summaries is equivalent to 55 Coh-
Metrix language measures. Among these language measues, LSA 
overlap among all sentences in paragraph reached 5.43 for mean 
and 2.07 for standard deviation; LSA given/new -3.60 for mean 
and -2.39 for standard deviation; and LSA overlap between 
adjacent sentences, -1.20 for mean. The other measures showed 
very low coefficients, generally below 1.00. This implies that a 
range of language measures jointly plays a role in assessing 
summaries, but LSA measures are attributed more than others.  

Besides the predominant role of LSA measures, other important 
Coh-Metrix measures included lexical diversity (β = 3.92) 
measured by type-token ratio. Type-token ration is widely used 
for both automated essay assessment [19] and automated summary 
assessment [4]. When the type-token ratio is high, namely, more 
unique words are used, the lexical diversity is high and the text is 
likely to be either very low in cohesion or very short. Oppositely, 
when the type-token ration is low, namely, more words are 
repeatedly used, the lexical diversity is low, but cohesion is high. 
Summarizing requires conciseness and briefness, so in one 
summary, repeatedly using the same word will lower the quality 
of summary. Another two crucial measures are sentence syntax 
similarity between adjacent sentences (β = 4.49) and across 
paragraphs (β = -4.71). The high syntax similarity between 
adjacent sentences suggests the uniformity and consistency of the 
syntactic construction. This implies that the whole summary is 
consistent in syntactic construction. However, the low syntax 
similarity across paragraphs results in greater syntactic variety. 

Another two most robust predictors are paragraph count (β = -
12.74) and word length (number of syllables; β = 4.32). These two 
measures are frequently used in the automated summary [4] and 
essay assessment [19]. Our study controlled the number of words 
of summaries, which explains why word count is not a robust 
predictor, as compared with the previous studies [9]. As the 
summary should be brief and concise, more paragraphs 
demonstrate the poor quality in conciseness. However, the high 
word length increases difficult to read and represents an academic 
or formal language style [25] in the summary. 

The phenomena that the Coh-Metrix features were unevenly 
weighted did not occur in the LIWC features. Specifically, among 
Coh-Metrix measures, the measures such as cohesion, syntactic 
and lexical complexity are more robust than measures at the word 
level. LIWC measures are all at the word level, but go beyond the 
linguistic words. They expand to diverse psychometric words, 
such as analytical thinking, emotion, and social. All the LIWC 
measures are evenly weighted to predict human summary scores. 
This pattern occurs in the Coh-Metrix and LIWC joint model as 
well. These findings suggest that each type of words plays a small 
piece of role, as compared to language and semantic measures.  

Fisher’s z comparisons CLSAS with Coh-Metrix measures, LIWC 
measures, and Coh-Metrix + LIWC measures demonstrated no 
differences in explained variance in human summary grading 
between CLSAS and Coh-Metrix, CLSAS and LIWC, and 
CLSAS and Coh-Metrix + LIWC. The findings supported our 

hypothesis that CLSAS could predict human summary grading as 
well as dozens of language measures and/or LIWC measures. 

To further evaluate the validity of CLSAS, we added Coh-Metrix, 
LIWC, and Coh-Metrix + LIWC measures to CLSAS model with 
different combinations. Results showed adding each of these 
features increased the predictability. It is easier to explain the 
incremented model because the language and word features 
represent different aspects of summary assessment and enable to 
compensate the semantic feature. No matter what features were 
added to CLSAS, CLSAS is consistently the most significant 
feature in the models. Specifically, the correlation coefficient of 
LSA was 7.49, 6.74, and 6.80 when adding the Coh-Metrix 
language features, the LIWC word features, and both, 
respectively. Therefore, LSA similarity was a robust feature for 
summary assessment, no matter when it is used alone or jointly 
with other features.  

5. CONCLUSION 
These findings suggest that crowdsourcing-based LSA similarity 
(CLSAS) is a robust predictor of human summary grading and it 
is a reliable measure for the automated summary assessment, as 
compared with a range of language and word measures. As 
CLSAS has a powerful predictability for human summary score, 
the wild summaries are assumed as a promising and encouraging 
approach to replace the expert summaries for its time-saving and 
efficient. Opposed to the tedious and time-consuming manual 
summary grading, the wild summaries have no doubt for its 
popularity and practicability for teachers. This efficient and 
effective summary grading could dramatically encourage and 
motivate the teachers to instruct the summarization strategy. 
Consequently, this will enhance the students’ summarization 
skills, especially summary writing. For example, when teachers 
need to grade the students’ summaries, they could use all of the 
summaries that the students wrote as the reference. These 
summaries wildly generated by the students represent diverse 
qualities. For a particular target summary, the teacher only clicks 
the target summary and its CLSAS will be automatically 
computed with all of the summaries. Each time teachers need 
summary grading, they could repeat this cycle, no any human 
grading is needed. Based on the LSA similarity score, the 
summary score could be generated. 

This crowdsourcing approach could be popularized and applied to 
the ITS learning and assessment environment as well. The current 
ITS assessment assesses the open response with a list of stored 
expectations and misconceptions [19]. Unfortunately, students’ 
answers could not be assessed accurately due to the unmatched 
“golden” reference. To address this issue, the crowdsourcing 
generated responses could be adopted as the reference to replace 
the limited number of responses that the human expert generates. 
However, the reliability and validity of the wild open responses 
need to be evaluated in the future research.  

The future study should concentrate on scaling crowdsourcing-
based LSA similarity score into 3- or 5-point scales that teachers 
usually use for a better interpretation. The present study only 
showed its predominant role in summary assessment without 
specifying the extent to which LSA similarity score represents the 
different levels of summaries. The present study compared the 
CLSAS approach with dozens of measures, which may have an 
overfitting problem. The future study could select the most 
popular features that are used in the automated summary 
assessment and compared them with the CLSAS approach. 
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To sum up, this study proposed an innovative approach, 
crowdsourcing-based summary assessment, to the summary 
assessment from two perspectives. First, the summary reference 
could be a range of summaries that are wildly generated by a lot 
of population who are not necessary to be experts. Second, LSA 
similarity between the target summary and the wildly-generated 
summaries is a powerful predictor for human summary grading. 
This innovation will advance the development of automated 
assessment, especially automated assessment in the ITS.  
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ABSTRACT 
The increasing use of educational technologies in classrooms is 
producing vast amounts of process data that capture rich 
information about learning as it unfolds. The field of educational 
data mining has made great progress in using log data to build 
models that improve instruction and advance the science of 
learning. Thus far, however, the predictive and explanatory power 
of such models has often been limited to the actions that 
educational technologies can log. A major challenge in 
incorporating more contextually rich data streams into models of 
learning is collecting and integrating data from different sources 
and at different grain sizes. We present our methodological 
advances in automating the integration of log data with additional 
multi-modal (e.g., audio, screen video, webcam video) data 
streams. We also demonstrate several examples of how 
integrating multiple streams of data into the knowledge 
component (KC) model refinement process improves the 
predictive fit of student models and yields important pedagogical 
implications. This work represents an important advancement in 
facilitating the integration of rich qualitative details of students’ 
learning contexts into the quantitative approaches characteristic of 
EDM research. 

Keywords 

Multi-Modal Data Analytics, KC Model Improvement, Log Data, 
Structured Event Analysis of Multiple Streams (SEAMS) 

1. INTRODUCTION 
As student learning becomes increasingly conducted on 
computers and other digital devices, vast amounts of learning-
related data are produced. Ideally, such data will provide a rich 
picture of student knowledge and behaviors (e.g., [8]). But 
predicting performance and generating pedagogical insight is 
limited, in the majority of cases, to the actions that digital systems 
can log. Computerized tutors are often used in a classroom 
context, and log data cannot capture all learning phenomena. A 
student working at a computer might be working independently 
with few outside influences. Alternatively, she might be in a lively 
classroom, with other students around her, talking and even 
offering suggestions. Data that capture the context surrounding 
educational technology use may add to and complement log data. 
In some cases, it may lead to critical insights. 

Educational data mining analyses often omit additional contextual 
data for a number of reasons. Data on classroom context are 
difficult to collect. Data from different sources are often collected 
at different grain sizes, which are difficult to integrate. Here, we 
present work that extends educational data mining techniques to 
incorporate multiple modalities of data (computer log files, audio, 
screen videos, and webcam videos). We present methods we 
developed that help streamline both the collection of additional 

streams of data and the linkage across multiple streams. In two 
experiments, we then demonstrate the value of incorporating 
multi-modal, contextually rich data streams into established 
educational data mining techniques. In the first experiment, 
students use a chemistry virtual lab tutor and, in the second, 
students use an intelligent tutoring system to collaborate on 
fraction arithmetic. 

Specifically, we extend methods of data-driven knowledge 
component (KC) model refinement [17] by incorporating, into the 
process, multiple streams of data spanning different modalities. 
We show that KC model improvements uniquely derived from 
these additional data beyond log files led to improved predictive 
models of student learning and behavior. These improved models 
of learning, in turn, can generate actionable knowledge for 
systems, students, teachers, and researchers. 

2. BACKGROUND 
2.1 Related Work 
Recent work reflects a growing interest in multi-modal data 
analytics, particularly surrounding project-based, constructionist, 
and/or informal learning contexts [4, 18]. These efforts have 
focused on capturing divergent student strategies [4] and 
interactions that happen outside of a traditional computer tutor 
environment (e.g., with peers and with the physical environment 
[16]). Their primary goal is to make technologies supporting 
open-ended learning environments more scalable and to develop 
assessments appropriate for this type of learning. 

Areas of research within the EDM community have also focused 
on collecting sources of data computer logs cannot capture to 
serve as “ground truth” labels in training log-data based detectors. 
These efforts have largely focused on modeling and detecting 
students’ motivational and affective states [2, 8, 15]. For example, 
models can detect patterns of log data activity that precede 
affective states like confusion, frustration, and boredom. 
Physiological data may also be collected and used to develop 
models that can detect affective states from machine-readable 
signals, such as facial features, body movements, and 
electrodermal activity [14]. 

Outside of these pockets of the community, though, the majority 
of EDM research has focused exclusively on using log data to 
model learning. Building statistical models to predict step-level 
performance and data-driven KC model (or Q-matrix [3]) 
discovery are examples of major branches of EDM research that 
are typically limited to computer-logged data. In the present work, 
we demonstrate the value of expanding EDM research to include 
additional data streams that convey important contextual 
information about students’ learning. We also present 
methodological advancements that improve the ease with which 
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additional data streams can be collected and incorporated into 
educational data mining methods more broadly. 

2.2 Data-Driven KC Model Improvement 
Knowledge component models are an important basis for the 
instructional design of automated tutors and are important for 
accurate assessment of learning. Knowledge components (KCs) 
refer to units of knowledge representation (e.g., facts, concepts, or 
skills) that students need in order to solve problems. A KC Model 
maps a set of KCs mapped to a set of items or problem steps. 
Student models that are based on more accurate KC models 
produce better predictions of what a student knows based on their 
performance and, thus, result in better assessment and improved 
learning and instruction [11]. Cognitive Task Analysis is the 
traditional method for creating cognitive models of learning, but it 
requires subjective decisions and large amounts of human time 
and effort. Data-driven techniques of KC model discovery and 
refinement, when applied to large sets of educational data, can 
provide both more objectivity and reduce human effort. 

A method developed by [17] leverages tools available in the 
PSLC DataShop [10] to identify potential improvements to a KC 
model in a data-driven manner. This method iterates through the 
following steps: (1) inspect learning curve visualizations and best-
fitting statistical parameter estimates for the best existing KC 
model, (2) identify problematic KCs, (3) hypothesize changes to 
the KC model based on examining constituent problem content 
and applying domain expertise, and (4) re-fit the statistical model 
with the revised KC model and assess improvements in predictive 
accuracy. The premise for this method is that a hallmark of 
learning on a well-defined KC is a smooth learning curve that 
shows monotonic improvement in performance over time. KCs 
that lack these learning curve characteristics, but not because 
students are at ceiling performance, are likely to involve certain 
problem steps that require unlabeled difficulty factors or 
knowledge demands. 

After a problematic KC is identified, its constituent problem steps 
must be examined in order to identify potential hidden difficulty 
factors. Thus far, this part of the process is limited to what 
computer log data. For example, a researcher might examine the 
error rates of the different constituent problem steps for the KC in 
question and the problem step names to gain clues about hidden 
difficulties. In the best-case scenario, the researcher might have 
access to the actual problem content for the dataset (as in [17]) 
and can apply domain knowledge to identify potential KC 
modifications. This step of content examination can be greatly 
enriched by additional streams of contextually rich data from the 
relevant moments of learning. To this end, we present a method of 
integrating streams of contextual audio and video data into the KC 
model refinement process. We show that such integration leads to 
insights that would not be derived by solely analyzing log data or 
curriculum content in isolation. We present several examples of 
how these insights lead to quantitative KC model improvements 
that improve the overall fit of student models to the data. 

3. METHODS 
We developed a method of semi-automatically extracting epochs, 
across multi-modal data streams, associated with the moments 
during which students engage with a particular KC of interest. 
This allows the content reviewer, after identifying a candidate 
KC, to not only view the curriculum content associated with a 
given KC but also to experience students engaging with that 
curriculum content through multiple modalities. 

There are many ways to collect additional streams of contextually 
rich data (e.g., using video cameras, external microphones, eye-
trackers, and sensors). We focused on a method that minimizes 
both deployment effort and interference with students’ usage of 
educational technology to increase the likelihood that researchers 
would consider collecting, analyzing, and sharing such data. In the 
following experiments, we used Camtasia to simultaneously 
capture audio recordings, screen videos, and webcam videos of 
the students. Camtasia can be run in the background to collect all 
of these streams of data while a student engages with educational 
software. We installed Camtasia to all classroom laptops in 
advance of the two studies. On each day of the studies, we opened 
Camtasia and prepared recording settings before each class period 
so that all students needed to do was click a red “Record” button 
prior to logging into the tutors. At the end, students were led 
through a simple sequence of steps to ensure that their recordings 
were saved and named properly for easy post-hoc identification. 

All recordings (audio, screen video and webcam video) for a 
single session are initially saved in a Camtasia-specific file 
format. We used the batch processing function to import and 
convert the original files to MP4 files that contained all data 
streams merged. We used timestamp information within the log 
files to map segments of log data to the appropriate corresponding 
multi-modal video stream. This step required human input, as 
Camtasia does not automatically log the system time (at 
millisecond level) that marks the start of the video recording. For 
each video file, someone must identify the offset between the 
beginning of the video and the time of some event in the log file. 
This offset can then be used to automatically align all remaining 
events between the log file and the corresponding video files. 

We developed a tool called Structured Event Analysis of Multiple 
Streams (SEAMS) that builds upon the moviepy Python package 
in conjunction with the FFMPEG multimedia framework to 
automatically extract video epochs associated with specific events 
in the log data. The tool allows the user to indicate any event type 
that can be identified by labels within the log data and generates a 
folder of video clips that contain all epochs of the merged data 
streams pertaining to the particular event of interest (in this case, a 
specific KC at the specific opportunity count). With the relevant 
epochs grouped together in a manner that allows for quick and 
effortless analysis by a human examiner, it becomes much easier 
to quickly view multi-modal data streams to identify hidden 
knowledge demands towards KC refinement. 

We applied our methods to examine the contributions of 
additional multi-modal data streams on KC model refinement 
across two classroom experiments. One experiment engaged 
students in a Chemistry Virtual Lab tutor for which we collected 
both screen videos and webcam data of learners’ facial 
expressions in addition to traditional log data. The other 
experiment engaged students in a Collaborative (partner-based) 
Fraction tutor, and we collected screen videos and audio 
recordings of students’ collaborative dialogue. Due to processor 
limitations of the school laptops that were available for the 
Collaborative Fraction tutor experiment, we were not able to 
collect webcam data. Using the data from both of these studies, 
we illustrate the application of our methods to leverage the 
additional multi-modal data streams to improve upon existing KC 
models. These KC model improvements, in turn, yielded insights 
about how to improve instruction within the respective tutors. 
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4. EXPERIMENTS 
4.1 Chemistry 
ChemVLab+ (chemvlab.org) provides a set of high school 
chemistry activities designed to build conceptual understanding 
and inquiry KCs [6]. In each activity, students work through a 
series of tasks to solve an authentic problem and receive 
immediate, individualized tutoring. As students work, teachers are 
able to track student progress throughout the activity and attend to 
students that may be lagging behind. Upon completion of the 
activities, students receive a report of their proficiency on targeted 
KCs, and teachers can view summary reports that show areas of 
mastery or difficulty for their students. In the current study, 
students completed four modules: PowerAde: Using Sports 
Drinks to Explore Concentration and Dilution, The Factory: Using 
a City Water System to Explore Dilution, Gravimetric Analysis, 
and Bioremediation of Oil Spills. 

4.1.1 Participants 
Participants were 59 students at a high school in the greater 
Pittsburgh area enrolled in honors chemistry classes. They 
participated in four Stoichiometry modules of the ChemVLab+ 
educational tutor. They completed these modules across four 50-
minute class periods spread over the course of 3 weeks. We 
collected, using Camtasia, audio recordings and screen video 
captures for 58 students and webcam recordings of facial 
expressions for a subset of 25 students who were comfortable with 
their face being recorded during tutor use. 

4.1.2 Results 
The newly developed methods facilitated the identification of the 
way in which a problematic KC needed to be split as well as 
technical issues that impacted student learning. First, following 
methods described in [17], we identified a knowledge component 
called Concentration that seemed to have uncharacteristically 
high error rates on later practice opportunities (Figure 1). This KC 
represents understanding that the measure of concentration is the 
amount of substance (e.g., a sports drink powder) in a volume of 
substrate (e.g., water). It also represents being able to read, report, 
and compare concentrations of solutions. 

 
Figure 1. Aggregate learning curve for the Concentration KC 
as originally defined by the ChemVLab+ tutor. 
We then used the methods described in Section 3 to automatically 
extract the screen and webcam videos of all epochs of students 
engaging with the Concentration KC on their 11th, 12th, 14th, 15th, 
16th, and 19th practice opportunities. These were the opportunities 
on which the KC learning curve had unusually high error rates. 

Qualitative analyses of these video stream epochs revealed that 
students were particularly confused by problems that involved 

dilution in conjunction with concentration, particularly when a 
dilution ratio or “factor” is involved. Students demonstrated this 
confusion as they responded to prompts such as ‘Create a 1:2 
dilution of the reported sample’ or ‘Add water to the sample until 
the concentration is diluted by a factor of 2’. The correct solution 
requires students to know that the amount of substance (e.g., the 
powder) takes up negligible volume, so to dilute the powder by 
2x, the total amount of water needs to be doubled. Students 
demonstrated shallow knowledge by responding to prompts like 
these by adding two parts water to one part solution rather than 
adding one part water to one part solution, which halves the 
concentration. In another example, prompt ‘Dilute this sample by 
a ratio of 6:1’ student tended to add six parts water to one part of 
solution (making the resulting amount of powder to volume 1:7), 
part rather than adding five parts of water to one part of solution 
(making the resulting amount of powder to volume 1:6). 

 
Figure 2. Aggregate learning curves for the two new KCs, 
Concentration-Only and Concentration-Dilution, resulting 
from the KC model refinement process. 
Based on this insight, we split the Concentration KC into cases 
where the problem step required a conceptual understanding of 
dilution ratios/factors (Concentration-Dilution) and cases where it 
did not (Concentration-Only). The learning curves for the 
resulting two KCs are shown in Figure 2. The curves are much 
smoother than the original learning curve, with the exception of a 
particular opportunity count with unusually high error rate in the 
resulting ‘Concentration-Only’ KC at practice opportunity 11. 

To further examine this unusual blip, we re-applied our method to 
automatically extract screen and webcam videos of all epochs of 
the 11th opportunity to practice the Concentration-Only KC. We 
noticed that the majority of problem steps experienced by students 
on this opportunity count were from a particular screen in the 
tutor in which the problem text was cut off in the interface. This 
resulted in students being confused about what they should be 
doing on this problem. Guessing the answer incorrectly was a 
common first attempt, as was clicking a hint button. Since the 
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problem text was fine when viewed on research computers, it did 
not appear to be a problem with the educational software itself. 
We hypothesize that the problem may have been due to a unique 
interaction between the software and the resolution of the 
computers that students were working on. This is a reality of 
educational technology deployment in classrooms, and it would 
have been impossible to know from strictly the log data file or 
even problem content records that this was the source of students’ 
struggle. If we had only accessed the recorded (idealized) version 
of the problem content, we may have incorrectly attributed the 
high error rate on this problem step to intrinsic content present 
within the problem. After separating these problem steps out from 
the ‘Concentration-Only’ KC, the resulting learning curve was 
much smoother, with an overall low error rate (Figure 3). 

 
Figure 3. Resulting Concentration-Only learning curve, after 
separating out the problem step in which students experienced 
a technical difficulty during deployment. 
Student model predictive fit metrics are shown in Table 1 for the 
different KC models when used in conjunction with the Additive 
Factors Model [5] and reveal an improvement in predictive fit 
across all metrics (AIC, BIC, and 10-fold cross validation) after 
splitting the original Concentration KC based on our qualitative 
analysis of student behavior during epochs of that KC (Row 2). 
Further improvements in predictive fit across all metrics were 
observed after we separated out the problem step that contained 
missing problem text during implementation (Row 3). 

Table 1. Student model fit metrics comparing different models 
resulting from the KC model refinement process. 

 AIC BIC Cross 
Validation 

RMSE 

Original KC model 6694.58 7196.59 0.3859 

‘Concentration’-Split KC 
Model 

6388.35 6904.12 0.3838 

‘Concentration’-Split KC 
Model with text-error 
problem step separated 

6318.95 6848.47 0.3819 

 
Both of these KC model refinements, each of which resulted in a 
substantive and consistent improvement in predictive accuracy 
when used by the Additive Factors Model, were uniquely 
dependent on qualitative analyses of the video data we had 
collected using Camtasia. Although it may have been possible to 
recognize that the concept of dilution ratios was an additional 
difficulty factor by purely accessing problem content, there were 
many other differences between the high error-rate problem steps 

and the low error-rate problem steps that constituted the original 
Concentration KC. For example, many of the higher error rate 
problem steps were part of a different activity (Activity 2, The 
Factory) than the lower error rate problem steps were (Activity 1, 
Powerade). Only by observing the students specifically exhibiting 
actions suggestive of possessing a shallow understanding of 
dilution ratios (via Camtasia screen videos) and affective states 
resembling frustration (via webcam videos) were we able to 
quickly identify the true hidden difficulty factor. Another benefit 
of this insight, perhaps even more significant than generating a 
better fitting KC model, is that there are clear implications for 
instructional redesign. That is, future iterations of the 
ChemVLab+ tutor might include instruction that more directly 
targets the misconceptions that students seem to have about the 
relationship between dilution ratios and existing solutions. 

Discovering the high-error-rate problem step in which text was 
cut off would not have been possible without viewing the real 
context in which students experienced the problem. Since it was 
not a general problem with the ChemVLab+ tutor but, rather, an 
idiosyncrasy in that problem’s display on the technology used in 
the classroom, the Camtasia screen videos were critical in 
correctly attributing the source of these errors. 

4.2 Collaborative Fraction Tutor 
The collaborative fraction tutor is online software developed by 
researchers at Carnegie Mellon University that helps students 
become better at understanding and working fractions. The tutor 
was created using Cognitive Tutor Authoring Tools, which allow 
for rapid development and easy deployment of intelligent tutors 
[1]. This particular fraction tutor supports collaboration between 
partners in order to learn fraction-solving KCs such as addition, 
subtraction, comparing fractions to determine which is larger or 
smaller, finding the least common denominator, and finding 
equivalent fractions. In the tutor, each student in a pair can control 
only part of the screen, so both partners must to work together in 
order to finish the problem. One student cannot do the whole thing 
him or herself. Students work at the same time and can talk about 
what they are doing, ask for help from their partner, and generally 
collaborate to get the correct answer. 

4.2.1 Participants 
Participants were 26 fifth grade students at a middle school in the 
greater Pittsburgh area enrolled in an advanced math class. 
Students participated across five 45-minute class periods on 
consecutive days within a week. On the first and last days, 
students took a computerized pre- and post-test, respectively. 
They engaged in the Collaborative Fraction Tutor during the three 
consecutive days between the pre- and post-test days. Students 
spent half of each class period working individually and half 
collaborating with a partner. Students were paired with the same 
person for all partner activities throughout the experiment. We 
also collected audio and screen video captures for all students 
working both individually and in pairs on the three tutor use days. 

4.2.2 Results 
The newly developed methods facilitated the identification of KCs 
that needed to be split. First, as in [17], we identified a knowledge 
component called LCD_procedural that was noisy, in particular 
due to an uncharacteristically high error rate on the 5th practice 
opportunity (Figure 4). We then used the methods described in 
Section 3 to automatically extract the combined audio and screen 
videos of all epochs of students engaging in their 5th opportunity 
of the LCD_procedural KC. Based on qualitative analyses of the 
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video and audio streams, it was clear that the most common 
mistake that students were making on those practice opportunities 
was multiplying the two denominators but failing to reduce the 
product to find the least common multiple. This was particularly 
apparent in students’ collaborative dialogue following their 
incorrect first attempts. Students often verbalized the realization 
that there must be a smaller common multiple. This verbalization 
did not occur on problems in which the product of denominators 
happened to be the correct solution. This suggests that there was a 
separate learning curve for the additional difficulty factor of cases 
where finding the least common denominator required reducing 
the product of the two original fractions’ denominators to find a 
smaller common multiple. Based on this, we split the 
LCD_procedural KC into cases where the LCD required reducing 
from the product of denominators (LCD_procedural_REDUCE) 
and cases where it simply was the product of denominators 
(LCD_procedural_PRODUCT). The resulting learning curves 
(Figure 5) are much smoother than the original learning curve. 

 
Figure 4. Aggregate learning curve for the LCD_procedural 
KC as originally defined by the Collaborative Fraction tutor. 
The student model predictive fit metrics (Table 2) for the different 
KC models, when used in conjunction with the Additive Factors 
Model, reveal a substantial improvement in predictive fit across 
all metrics (AIC, BIC, and 10-fold cross validation) after splitting 
the original LCD_procedural KC based on our qualitative analysis 
of student behavior during epochs of that KC. 

Through the audio-video segments, we observed students make 
denominator-product-based errors on their incorrect first attempts 
and realize they needed to find a smaller common multiple on 
certain problem steps. This greatly streamlined our identification 
of the hidden difficulty factor. As a result, we were able to quickly 

identify the appropriate KC split that led to much smoother 
learning curves and a better fitting student model. 

This discovery also has important instructional implications: for 
example, the tutor might incorporate a bug message specific to 
students’ inputting the product of the two denominators when the 
answer is a smaller multiple (i.e., “Can you find a smaller number 
that divides both denominators?”). A student model based on the 
revised KC model (with ‘LCD_procedural’ split into two separate 
KCs) would also result in students receiving more practice on 
problems in which the correct answer is a smaller multiple than 
the product of the two denominators. These instructional changes, 
resulting from the audio dialogue and video driven insights, will 
give students better support to overcome this difficulty. 

Table 2. Student model fit metrics compared between the 
original KC model and the improved KC model resulting 
from multi-modal data stream driven refinement process 

 AIC BIC Cross 
Validation 

RMSE 

Original KC model 3497.6 4156.3 0.2738 

‘LCD_procedural’ 
split KC model 3462.2 4134.5 0.2734 

5. DISCUSSION & FUTURE WORK 
The vast majority of EDM research, especially research focused 
on predicting student performance and generating pedagogical 
insights, is limited to models based on computer-logged data. A 
recognized issue within the EDM community is that log data 
cannot capture all learning phenomena; it can miss important 
details of both learning processes and the learning context. Recent 
advances in DataShop [10] allow researchers to connect problem 
names in log data to screenshots of problem content and 
encourage inclusion of contextual details in custom fields of log 
data. Clearly, however, there are still instances where a better 
understanding of the implementation environment and students’ 
experience working through certain problem steps is needed, as 
demonstrated here. 
The main contributions of this work are (1) developing 
methodological advancements (e.g., the SEAMS tool) that 
facilitate the ease with which EDM researchers can incorporate 
context-rich data streams into quantitative modeling techniques, 
and (2) demonstrating the utility of doing so. Using a top-down, 

Figure 5. Aggregate learning curves for the two new KCs, LCD_procedural_PRODUCT and LCD_procedural_REDUCE, resulting 
from our KC model refinement process5. 
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KC visualization driven method, we show that valuable 
qualitative insights can be obtained from targeted segments of 
audio and video data even without fully “coding” all of the 
multiple streams. We also show that these qualitative insights lead 
to quantitative model fit improvements and actionable 
pedagogical implications. 
There are many promising areas for future work based on the 
methods we have developed here. The present work has focused 
on refining an existing KC model. Educational data does not 
always come with an existing expert-labeled KC model, and there 
have been recent efforts to automatically generate, or discover, 
KC models [9, 12, 13]. One concern about fully machine-
discovered models is their interpretability. The ability to view 
contextually-rich audio and video segments corresponding to 
machine-discovered KCs will facilitate the interpretation of these 
KCs and, in turn, help researchers refine their methods to yield 
more interpretable or cognitively plausible KC models. 
Another interesting issue that contextually-rich streams of data are 
uniquely suited to address is the attribution of pauses of activity in 
the log data. A pause in the data because a student is off-task has 
very different implications than a pause because the student is 
actively help-seeking outside of the educational technology 
interface. Being able to use detailed information about students’ 
learning context can help produce correct interpretations of log 
data activity and, in turn, more robust student models. 
Finally, one of the interesting data streams we collected in the 
Chemistry dataset was student-facing webcam video. Aside from 
noticing the moments during which students seemed frustrated in 
the Chemistry tutor due to confused about dilution ratios, we have 
not yet fully explored the extent to which the webcam data could 
be used to improve KC models and student models. There is rich 
potential for our methods to facilitate connections between the 
cognitive (e.g., knowledge component modeling) and the affective 
[2, 8] branches of EDM research. 
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ABSTRACT
Online programming discussion forums have grown increasingly
and have formed sizable repositories of problem solving-solutions.
In this paper, we investigate programming learners’ information
seeking behaviors from online discussion forums. We design
engines to collect students’ information seeking processes,
including query formulation, refinement, results examination, and
reading processes. We model these behaviors and conduct
sequence pattern mining. The results show that programming
learners indeed seek for programming related information from
discussion forums by actively searching on the site and reading
posts progressively according to course schedule topics.
Advanced students consistently perform query refinements,
examine search results and commit to read, however, novices do
not. In addition, advanced students commit to read posts, but
novices only skim.

Keywords
Programming; Information Seeking; Hidden Markov Model;
Discussion Forums; Sequential pattern mining;

1. INTRODUCTION
In teaching and learning programming, students are typically
asked to refer to API (Application Programming Interface) or
programming textbooks for relevant information (i.e. code syntax
or code examples). In recent years, open & free online
communities (such as homework-help sites, discussion forums for
MOOCs courses etc.) have grown increasingly and have formed
sizable repositories of problem solving-solutions. They are filled
with thousands of programming problem-solving tips, such as
“how-to” questions [1], people-valued examples, and the
examples’ explanations [2] etc. On the other hand, from a
constructive point of view, the action of articulating a problem
and initiating search or referencing can also be a valuable learning
activity as well as browsing the solution. In software engineering
field, such programming information seeking has already been
recognized as a core sub-task in software maintenance [3, 4].
Programmers are even being referred as task-oriented information
seekers, which they focus on finding the answers they need to
complete a task using a variety of information sources [5]. There
are tools that have been built to make completing programming
tasks easier, such as Mica [6]. However, none of these tools
focuses on amplifying learning opportunities if any, rather, centers
on task-oriented problem solving facilitation.

In addition, according to Information Foraging theory [7], finding
information is human nature. To successfully form information
seeking criteria for a given programming problem requires
complex cognitive activities (i.e. defining and verbalizing the
programming problem; refining query criteria and selecting

results; strategies application etc.) To better support information
seeking and learning, we focus on learners’ behaviors in seeking
programming-related information. Specifically, we investigate in
an online large-scale discussion forum, StackOverflow, which is
one of the biggest online programming Q&A sites communities
and currently hosts a massive amount of heterogeneous definitions,
solutions and examples of programming languages. Are those
assorted content in the forum helpful or harmful for programming
learners?

Studies have shown that while there is a positive connection
between the usage of StackOverflow and GitHub (open source
code management service), StackOverflow’s users consider the
site to be more attractive and beneficial for learning programming
[8]. In recent learning science literature, learning-from-observing
paradigm appears to be a promising strategy, which passive
participants (such as lurkers who consume content without
contributions) can still learn by reading the postings-and-replies
exchanges from others due to the constructive responses in the
content [9]. Knowledgeable students can benefit from text with
cohesive gaps by making active retrieval and inferences [10].
They can also benefit from building memory and fluency through
the active retrieval opportunities and to refine the conditions of
application through feedback on incorrect solution attempts in
problem solving [11]. On the other hand, novices may benefit
from seeing examples of solution steps and from seeing the entire
solution structure to make sense of the role of each step in order to
construct integrated knowledge components for generating plans
and sub goals [12]. In this work, our goal is to investigate what
are programming learners’ tactics in searching for relevant
information from online discussion forums and how do they look
for relevant learning materials from massive forum posts.

In this paper, we design engines to capture programming learners’
activities on StackOverflow site, such as problem verbalization in
queries, query revision and other information seeking processes.
We collect a semester long of informal programming learning
activities from programming discussion forum. We model their
information seeking activities by using Hidden Markov Model
and data mine the post of their readings.

2. LITERATURE REVIEW
2.1 Modeling Information Seeking In
Learning
Traditionally, information seeking is associated with behavioral
science theories, which focus on seekers’ information needs,
searching strategies, and how they use the information. For
example, self-awareness of one’s information needs, self-
regulated learning strategies, information searching experience
and ability, etc.[13-15]. Puustinen and Rouet [13] further
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classified help-seeking behavior into different types on a help-
seeking continuum, a function of the helpers’ capacity to adapt
answers to their needs. In more recent information seeking
literature, we see studies show that users commonly exhibit
exploratory behavior in a great extent when performing searches
[14]. Marchionini [15] identifies a range of search activities that
differentiate exploratory search from look up search (i.e. fact-
finding retrieval). Such behavior is especially pertinent to learning
and investigating activities, which is the targeted area of interest
in our research.

2.2 Modeling Learning From Discussion
Forums
Over the decades, data mining on discussion forums has been
carried out through various formats, network analyses, topical
analyses, interactive explorers, knowledge extraction, etc. [16-18].
Due to calculation complexities (since linguistic features rely on
computer processing power), most of these in-depth analyses were
performed offline [19, 20]. As a result, the lesson learned could
only be applied in the next iteration of system development.
Recently, however, we begin to see some studies that focus on
dynamic support for users [21]. With the rapid growth of free,
open, and large user-based online discussion forums, it is essential,
therefore, for education researchers to pay more attention to
emerging technologies that facilitate learning in cyberspace. For
instance, Wise, Speer, Marbouti, and Hsiao [22] studied an
invisible behavior (listening behavior) in online discussions,
where the participants are students in a classroom instructed to
discuss tasks on the platform; van de Sande & Leinhard [23]
investigated online tutoring forums for homework help, making
observations on the participation patterns and the pedagogical
quality of the content; Hanrahan, Convertino & Nelson [24] and
Posnett, Warburg, Devanbu, & Filkov [25] studied expertise
modeling in a similar sort of discussion environment.

3. METHODOLOGY
3.1 Research Platform & Data Collection
In this project, we deployed a Chrome browser plugin to track
users’ query, searching, and reading behaviors on StackOverflow
(SO). User can search query on StackOverflow and identify their
intention with this tool. The browser plugin has two main features.
(1) It provides a direct search channel for users to issue queries on
StackOverflow; (2) It displays users’ search histories. We collect
not only users’ search queries, but also their search intentions,
including “Knowledge seeking”, “Method learning”, “Problem
solving”, and “Other” (indicated by the user). Most importantly,
we log all the users’ behaviors, comprising of scrolls, clicks,
selections, and corresponding actions’ time. The behavior tracking
function resides on StackOverflow site once initial log in via the
SO search tool. In another word, all students’ behaviors on
StackOverflow site will be logged after at least one time log in via
SO Search Tool. However, since they issue the queries directly
from StackOverflow site, their intention will be marked as “not
specified”.

3.2 Study Setup
In order to understand the students’ information seeking behaviors
on discussion forums, we conducted a user study in a
programming class in Arizona State University. Students were
encouraged to install the browser plugin search tool. They were
told that their search activities would be collected via the tool. All
students’ programming information seeking behavior was logged
during the entire semester.

Additionally, we also conducted a controlled session of lab class
during the semester. In the lab class, students were instructed to
solve a complex task (implement a 3-way merge sort algorithm)
by using the information-seeking tool within 75 minutes. All the
students’ searching and reading behaviors on StackOverflow were
recorded.

Students were given a pretest to examine their pre knowledge
about programming. In this study, the students are split into two
groups (Novice & Advanced) based on their pretest median score,
which is ranged from 0 to maximum score 20.

3.3 Data Descriptive
Among 86 students in the Object-Oriented Programming class, 71
students voluntarily installed our search plugin, whose operations
on SO were automatically recorded, 55 of them also used the
plugin to search queries. There were 44 of them took the pretest.
According to their pretest score distribution, 24 of them were
identified as novices, and 20 were classified as advanced students.

3.3.1 Query data log
For these 55 students provided query information, the average
query number is 9.55 (max 56, min 1, median 8), and the average
number of operations is 7179 (min 1, median 2917, max 140300).
In terms of the query content, the average number of words in
each query is 3.76, and the number of distinct words is 573. The
frequency distribution for each word approximately follows Zipf’s
law, which states that the relation between the word frequency
and its rank is exponential in general. Considering the pre
knowledge of students, queries are separate by whether the
provider is novice or advanced student. The novices provided
more query in average (13.2±11.7) than advanced students
(8.9±9.0), but novices’ length of each query (3.47±2.01) is shorter
than advanced ones (4.62±2.61), which indicated a lower quality
according to Belkin’s research [28].

3.3.2 Operation data log
There are 466,659 operations logged including scroll up, scroll
down, click and select for both searching and reading phases. We
found that for both groups of students, novices and advanced
students, generated the majority of the operations in reading and
in scrolling down. There were 19.3% operations are scrolling up
in the searching phase in general, which was not a trivia finding, It
showed that users were going back and forward to review the
posts content before they decide to click in to proceed further
reading in detail, However, ideally a successful search process is
that after entering the query, the best item would be shown in the
first place of the search result, so that the user would not even
need to scroll before clicking to view a result. However in reality,
users need to scroll down when they do not feel satisfied with the
results provided in the first view, and this unsatisfying ratio is
reflected by the scrolling back and forward operation percentage.
On the other hand, the time cost before each operation shows that
when browsing search results, users appear to spend more time
(37.8%) before clicking or selecting, while they are faster when
reading a specific question-answer thread. This fact indicates that
users would read more carefully, or be more serious when
choosing a thread to read among the search results.
Considering pre knowledge difference, the ratio of scroll back for
novices were lower in searching phase compared to the advanced
students, but their scroll back ratio is higher in reading phase. This
indicates that the novices were more likely to make a choice
without browsing more search results, and they had to read the
content for more times compare to advanced students.
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3.4 Programming Information Seeking
Actions
In order to analyze students programming information seeking
behavior on discussion forums, we categorize their actions into 6
categories based on Marchionini’s [18] information seeking
processes: formulate queries, query refinement, results
examination, and reading. According to the amount of operations
made on each single page, we further split search and reading (by
median) in large-search (LS), small-search (SS), large-read (LR),
small-read (SR). Table 1 describes detail of user search actions.
Based on the operation data collection and the above action
definitions, 2681 actions were identified in total, and the
distribution of action distribution is shown in Figure 2.

Table 1. Programming information seeking actions

Actions Description

Query (Q)
a student issues an query to look for
information from programming
discussion forum

Refine query (q)
a student modifies the original Q and
issues a similar query (word adjacent
distance less than 0.3)

Large search (LS)
A student browses the search result page
and did operations more than the median
of all search pages (31 operations)

Small search (SS) A student browses the search result page
and did operations less than the median

Large read (LR)
A student reads a Q&A thread page, and
did operations more than the median of
all reading pages (64 operations)

Small read (SR) A student reads a Q&A thread page, and
did operations less than the median

Figure 2. Number of actions identified for novices and
advanced students

3.5 Modeling Programming Information
Seeking From Discussion Forums Using HMM
The Hidden Markov Model (HMM) is a popular method for
modeling sequential data. Previous studies have already shown its
ability in modeling user information search process [26], survey
design [27] and student learning process [28]. In this study, we
employ the HMM to model users’ hidden tactics in searching for
programming related information on discussion forums, and refer
the actions on the site (e.g. query refinement, results examination,
content reading, information extraction) as the generated hidden
tactics. The hidden tactics can be explained as the strategy used as
informal learning activities by looking for programming related
information.

We have a sequence of information seeking behaviors from T1 to
TM, and each state is one of those predefined information seeking
actions: TS = {Q, q, LS, SS, LR and SR}. HMM assumes that we
also have a sequence of hidden states, from H1 to HM, and each
answer type is generated by a corresponding hidden state, but
different answer types can be generated by the same hidden state
with different probabilities. A HMM model has several
parameters: the number of hidden states HS, the start probability
of each states π, the transition probabilities among any two hidden
states Aij, and the emission probability from each state to each
action bij. By only defining the HS and π, a Baum-Welch
algorithm [29] can be used to learn the emission and transition
probabilities.

4. EVALUATION RESULTS
4.1 Mapping HMM Patterns to Information
Seeking Processes
In this section HMM is used to detect the students’ information
seeking behavior pattern. In order to identify the complete
sequence of information seeking operations, we only included
those operations following a query recorded. The web paged that
the students searched from other search engines, where queries
were not included, are excluded.

The first step of using HMM is to determine the number of hidden
states. A larger number of states will help to describe the model
more precisely, while the risk of over-fitting is also increased. In
model selection, the information criterion such as the Akaike
Information Criterion (AIC) or its variants Bayesian information
criterion (BIC) [29] can be used to determining the optimal
number of states. Based on models best performance by AIC, we
choose HS=3 and HS=5 for Advanced and Novice groups
accordingly (Figure 3).

Figure 3. Choosing number of hidden state using AIC.

The emission probability of each hidden state to information
seeking operations is shown in Table 2, in which the probabilities
under 0.05 were removed for better presentation of the results.
The hidden states can be treated as the underlying “tactics” or
“principles” when students look for programming information
from the discussion forum. For example, Advanced group HS2
demonstrates the stronger students’ reading behaviors, which they
appear to do more careful readings and fast browsing; while in
Novice group HS3, students tend to perform more superficial
reading than careful reading. While advanced group shows more
coherent searching, browsing and reading behaviors (each
behavior is observed by single state), novices show duo searching
and browsing behaviors. Novice HS4 and HS1 states seem to have
similar searching and browsing behaviors as advanced group.
However, Novice HS5 exhibits more distinct searches by issuing
queries and lower probability in refining queries. In addition,
Novice HS2 shows high probabilities in small search, which can
be interpreted as careless results examination.
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Table 2. The hidden states of programming information
seeking operations (bij)

hidden states Q q LS SS LR SR

Advanced
HS1 0 0 0.39 0.61 0 0
HS2 0 0 0 0 0.79 0.22
HS3 0.76 0.24 0 0 0 0

Novice

HS1 0 0 0.36 0.64 0 0
HS2 0 0 0.05 0.95 0 0
HS3 0 0 0 0 0.35 0.65
HS4 0.73 0.27 0 0 0 0
HS5 0.85 0.15 0 0 0 0

Figure 4 is plotted according to the transition probability, and the
prior probability is shown in Table 3. The probabilities under 0.05

are removed. HS3 has the highest prior probability (start
probability) in advanced group, which means that advanced
students always begin with issuing query and modifying the query.
So do the majority of the weaker students. In addition, HS5 state
is also another beginning state with high probability for novices. It
shows that there is also a great probability that novices start
issuing queries with minimal query refinement. However, what
are the impacts of the amount of query refinement? We have to
look at what is happening next. According to Figure 4, the
Advanced & Novice state transition diagrams, there are several
findings listed below:

Table 3. The prior probability of each hidden state (π)
HS1 HS2 HS3 HS4 HS5

Advanced 0 0 1 - -
Novice 0 0 0 0.536 0.464

Figure 4. Advanced (left) and Novice (right) students’ information seeking transition probability diagrams

4.1.1 Advanced students refine query; novices don’t
Advanced students consistently performed query refinements (3:1
ratio) before they examine the results (HS3  HS1). Novices
behaved differently. Part of them followed the similar pattern as
Advanced students did, tuning the queries before examine the
results (HS4  HS1). However, when these novices refined
queries, there were no consecutive actions followed in the next
step (Figure 4 – right top), which indicated that they did not go to
any reading page. On the other hand, when novices did minimum
query refinements (HS5  HS2), they did manage to proceed to
next step, which was the reading phase (HS5  HS2  HS3).
This fact suggested that novices may lack of query-results
examination ability and lead to no reading (HS4  HS1). In
addition, as the HS2 of Novice group shows, 95% of the
likelihood that the operations were small searches, which means
that novices tended not to scrutinize the search results, they only
examined the results minimally, even move on to read forum
posts (HS5  HS2  HS3). They could read whatever the
discussion forum has recommended (i.e. top returned items).
In fact, Table 4 shows the total amount of time that each student
spent on searching or reading pages. It is surprising to see that
novices spent more than 130 minutes on just reading, while
advanced students spent about 40 minutes. Similarly, novices
spent more time on searching compare to advanced students. The
reason of the time difference is not only they browsed more pages,
but also their time spent on each page is longer. These findings
indicate that the novices’ searching and browsing behaviors only
consist of minimum query refinement so that they had to spend
more time to read and understand search results, which can be due

to insufficiency of vocabulary in searching and lack of judgment
in finding reading resources. We further looked into students’
reading behavior and reading content in the following section.
Despite the reading quality, novices’ behaviors can also suggest
the hidden danger of online large-scale discussion forums, where
the existing filtering mechanisms (such as badges, acceptance, and
votes) may not be enough, especially for novice learners.

Table 4. Total time spent on searching and reading average
per student

total time (seconds)
/ student

Novice (N=24) Advanced (N=20)

Search 340.5 146.4
Read 7870.3 2366.6

4.1.2 Advanced students read and novices skim
When students eventually landed on forum post pages and read,
we found that advanced students committed to careful reading,
while novices did more skimming (Advanced HS2: 0.79 LR;
Novice HS3: 0.65 SR). In fact, we found that novices cost more
time in small reading than advanced students, while in large
reading advanced students spent slightly more time, but there was
no significant difference between groups. These results reveal that
novices performed less reading in search results filtering, but once
they did, they would spend time to read. Thus, it led us to examine
their learning effect. Do novices and advanced students have
similar effects after reading?
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4.2 Reading and Learning Effects
4.2.1 Students read posts according to course
schedule topics
In order to understand what content were students’ reading, we
crawled all the posts that students read from StackOverflow, and
performed text mining with MALLET1 LDA toolkit with default
α=30/N, β=0.01, itr=1000. We found students were reading the
contents from discussion forums according to the course weekly
topics, from week 1 Java Basis to week 9 LinkedList. We then
used all the topic words generated from the LDA model to
compute Shannon entropy score in estimating the topic focus
(Figure 5). There are several interesting findings: Advanced
students were generally more focused across all topics (smaller
topic entropy), except week 4 and week 9. The effect was much
more apparent in complex topics: Recursive (Table 5 shows the
extracted topic words, which we found advanced students read
posts regarding to a specific recursive implementation Fibonacci
sequence, which novices did not). In week 4 and 9, advanced
students were found to be less focused in terms of reading more
diverse topics was due to those two weeks were exam periods.
Therefore, it is understandable that students might read a wider
range of topics that were covered over exam periods.

Figure 5. Weekly readings’ keywords by novices and
advanced students

Table 5. Recursive topic words by novices and advanced
students

Novice: {type, code, recursive, dynamic, void, write, result,
example, loop, print, add, wikipedia, error, int, version, method,
operator, pseudo, easy, program, static, mathematics, call, line,
learn, number, work, value, function, undefined}
Advanced: {function, method, value, static, return, int, change,
version, recursive, result, error, mathematics, program, line,
number, fibonacci, sequence, fib, wikipedia, operator, pseudo,
easy, type, print, example, code, learn, void, traverse, loop}

4.2.2 Learning Effects
Based on the percentage of large read rate in reading pages, we
found that the more students spending time in reading on
StackOverflow, the higher final score they obtained (r=0.418,
p<0.01). Additionally, we found that the slope of novices and
advanced students had little difference, while the intercept of
novices is higher. This fact indicates that novice and advanced
students gained the same benefits from increasing large read rate,
however, in order to achieve the same score, novices has to read
more carefully. Figure 6 shows the connection between large read
rate and final exam score.

1 http://mallet.cs.umass.edu

Figure 6. Final score vs. Large read rate

5. CONCLUSIONS
5.1 Summary
In this study, we designed a programming information seeking
framework with a browser plugin to collect students’
programming information seeking behavior data from discussion
forum StackOverflow. Students’ query intention, time spent and
all actions were logged. We modeled programming learners’
query formulation, refinement, results examination, and reading
processes with Hidden Markov Model. We conducted sequence
pattern mining. The results showed that programming learners
indeed seek for programming related information from discussion
forums by actively searching on the site and reading posts
progressively according to course schedule topics.
The result of this study showed that programming novices usual
spend more time in browsing search result and reading, while the
sequential due to their lack of pre knowledge. As long as they can
read as well as advanced students, they can learn as much as
advanced students according to the learning evaluation result.
All the study results shed lights on programming learners seek for
learning resources from large-scale online discussion forums. We
anticipate this work serves as guidelines for educational
technologists to design better effective tools to facilitate learning
via programming information seeking process.

5.2 Limitations and Future Work
There are a few limitations in current study. First of all, after
students log in from the browser at least once, all their activities
on StackOverflow will be recorded. However, when students
search from search engines (i.e. Google) and land on
StackOverflow site, their initial queries will not be captured. A
more completed data collection should include all queries that the
students search in information seeking.
Moreover, we mainly take into account of students’ query and
mouse actions without considering other keystrokes’ actions.
Another common information seeking behavior is to use Ctrl+F
on the keyboard to search keyword with in a web page, which was
not captured in the study. This operation can be a convenient and
fast method to locate useful information when browsing web
pages, including discussion forums.
In the future, we will consider a more completed data collection
and more exhaustive evaluation. Most importantly, we aim to
design an adaptive programming information seeking tool to help
novices effectively navigate search results.
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ABSTRACT 
Educational games have become hugely popular, and educational 
data mining has been used to predict student performance in the 
context of these games. However, models built on student 
behavior in educational games rarely differentiate between the 
types of problem solving that students employ and fail to address 
how efficacious student problem solutions are in game 
environments. Furthermore, few papers assess how the features 
selected for classification models inform an understanding of how 
student behaviors predict student performance. In this paper, we 
discuss the creation and consideration of two models that predict 
if a student will develop an elegant problem solution (the Gold 
model), or a non-optimal but workable solution (the Silver 
model), in the context of an educational game. A pre-determined 
set of features were systematically tested and fit into one or both 
of these models. The two models were then examined to 
understand how the selected features elucidate our understanding 
of student problem solving at varying levels of sophistication. 
Results suggest that while gaming the system and lack of 
persistence indicate non-optimal completion of a problem, gaining 
experience with a problem predicts more elegant problem solving. 
Results also suggest that general student behaviors are better 
predictors of student performance than level-specific behaviors.  

Keywords 

Educational games; Problem solving, Classifiers. 

1. INTRODUCTION 
Educational games can be a great way to enhance learning; in 
some cases games lead to better learning than standard 
instructional activities [5, 22]. Yet while understanding how 
students learn in educational games is important, not much work 
has been done on modeling student learning in educational games 
that are open-ended, where students have a lot of freedom to 
explore. Furthermore, although there has been work on modeling 
behavior in games and educational learning environments to 
predict performance in these environments [6, 10, 13, 14, 16, 20] 
or more generally in school [4], there is not a lot of work that 
specifically looks at student problem solving strategies in games. 
Analyzing how students solve complex problems is a key part of 
understanding student learning in a domain [1, 3, 12], especially 
in open-ended environments [2]. For this reason, we are 
investigating student problem solving techniques in order to better 
understand the nature of student behavior and performance in 
open-ended educational games.  
One key problem solving skill for learning is the ability to 
produce elegant solutions as well as workable solutions [8, 17], 

especially as one of the key markers of expertise in a field is the 
ability to solve problems more elegantly than a novice [11]. Even 
though there has been research on how to model different student 
approaches to problem solving [7] there has not yet been 
sufficient work on modeling the behaviors associated with elegant 
problem-solving vs. creating workable but less-optimal solutions 
to problems, especially in game environments. This paper 
examines how students solve problems to create elegant versus 
non-optimal, workable, solutions to problems in open-ended 
educational games. We study this issue in the context of Physics 
Playground, an open-ended discovery based learning game where 
students learn about Newtonian physics while trying to solve 
problems.  

2. THE GAME: PHYSICS PLAYGROUND 
Physics Playground, formerly called Newton’s Playground [19], is 
an educational game that measures and supports knowledge of 
conceptual physics for middle and high school students. The game 
requires students to draw simple machines (consisting of ramps, 
levers, pendulums, and springboards) that act in accordance with 
Newton’s laws of force and motion. In each level of the game, 
students are tasked with freehand drawing these machines, which 
are used to get a green ball to hit a red balloon. In addition to 
drawing machines, students can draw objects that interact with the 
ball directly in order to get the ball to reach the balloon. For 
example, students can draw objects made to fall and hit the ball 
directly, causing the ball to move. These objects are called 
“divers” in the context of the game. Students can also draw 
objects through the ball to move it up slightly. This technique is 
called “stacking” and is considered a form of “gaming the system” 
[21]. Similarly, students can click on the ball to “nudge” it 
forward slightly, if need be, without drawing an object at all. 
When students finally find a way to hit the red balloon with the 
green ball, they have completed the level, and are awarded a 
badge based on their performance.  
Students can either receive a gold badge, silver badge, or no 
badge, depending on their performance in any given level. Badges 
are awarded according to the efficiency of the student’s solution 
to a problem — determined by the number of objects a student 
draws in his or her attempt to solve a given problem. For most 
levels, gold badges are awarded if the student solves the problem 
by drawing three or fewer objects. Silver badges are awarded if 
the student solves the problem, but draws more objects. Each level 
is designed so that one simple machine (a ramp, springboard, 
pendulum or lever) will optimally solve the given problem. 
Accordingly, badges for performance are also tied to the type of 
machine that a student drew in the given level. For example, if a 
student creates an efficient solution to a level using a ramp, then 
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the student would be awarded a “gold ramp” badge upon 
completion of the level. Badges are awarded as a means to give 
students feedback about the efficiency of their solution, so 
students can reflect on their solution quality. Badges are not 
necessarily constructed for motivational purposes. Student badges 
are referred to as “trophies” in the context of the game, and are 
displayed in the top right hand side of the screen upon level 
completion.  
The game consists of seven “playgrounds”, or game worlds, that 
each contains 10-11 problems. In total there are 74 problems in 
the entire game. Problems are ordered by difficulty, and problem 
difficulty is determined by a number of factors including the 
location of the ball to the target, the magnitude and location of 
obstacles between the ball and the balloon, the number of agents 
required to get the ball to the balloon, the novelty of the problem. 
Students do not have to move through the game in a linear 
fashion. All levels are unlocked and accessible to students when 
the game starts (i.e., level access does not depend on a student’s 
performance or progress in the game). Therefore, students can 
choose to go to any playground and work on any problem that 
they wish. That being said, there is a logical ordering to the levels, 
and many students do choose to go through the game in a linear 
fashion. 

3. METHOD 
3.1 The Study 
This project is based on data collected during a prior study using 
Physics Playground. A more detailed description of the study 
population and methods can be found in [9, 18]. 

3.1.1 Participants 
This data is from a study on 137 8th and 9th grade students who 
attended a diverse K-12 school in the southeastern United States.  

3.1.1.1 Procedure 
Students played the game in class for about 2.5 hours across four 
days of the study. Days 1 and 4 of the study consisted of student 
assessments, including a pretest and isomorphic posttest of 
students’ knowledge of physics concepts. Learning data will not 
be discussed in the context of this paper [for learning data see 9, 
18]. Days 2 and 3 of the study, as well as the first half of Day 4, 
consisted entirely of gameplay.  

3.1.1.2 Measures 
Physics Playground captured student log data during gameplay. 
The final data set consisted of 2,603,827 lines of action codes 
across the 137 students. Data collected included over seventy 
variables including information on student progression through 
the game, time stamps for actions, metrics on student drawings, 
gameplay actions, and badge awards. Across the 137 students, 919 
levels were completed, 203 gold badges were awarded and 500 
silver badges were awarded.  

3.2 Model Selection 
Two models were built for the purpose of distinguishing which 
features indicate elegant problem solving, and which indicate non-
optimal problem solving. The first model was built to classify the 
award of a gold badge, where problem solutions are optimal (Gold 
Model). The second model was built to classify the award of a 
silver badge, where students solve a level, but in a non-optimal 
way (Silver Model). Levels that a student attempted but did not 

complete (levels where the student was not awarded a badge) 
were not used in this analysis.  
By building two models, we were able to more effectively 
differentiate between features that predict elegant problem solving 
and features that predict non-optimal problem solutions more 
effectively. For example, creating two models allows for the 
identification of features that positively load onto one model but 
negatively load onto another. In turn, understanding these 
distinctions allows for a deeper understanding of how different 
levels of various features are indicative of the two types of 
problem solving.  Badges were used as labels because they are the 
game’s proxy for assessing student problem solution quality by 
marking the efficiency of a student’s solution. Although badges in 
many modern games are used for motivational purposes, for the 
purpose of this project, we were only interested in what badges 
indicated about the elegance of a student’s problem solution. 
Features were created, tested, and iteratively improved upon, 
across a variety of classification algorithms. During this process, 
the J48 algorithm, which is Weka’s implementation of the C4.5 
algorithm [15], consistently provided the strongest predictive 
power, while protecting against over fitting. For this purpose, 
when it came to final feature selection and model creation, J48 
was the sole algorithm used.  

The models were built on less than half of the student data (61 
students) so that the remaining test set could later be used to 
validate and test the final models. In order to validate the models 
during model creation and feature selection, batch level cross-
validation was used. Each student was randomly assigned into 1 
of 10 batches, and 10-fold validation was used to assess model 
goodness. Kappa was used as a measure of model fit. 

3.3 Feature Selection 
To make the two models, gold and silver labels were made. The 
gold label had a value of 1 if the student was awarded a gold 
badge, and a value of 0 if the student was awarded any other kind 
of badge (or no badge). A label for silver was created in the same 
way. The original log data tied each badge to the type of machine 
it awarded a badge for, but for the purpose of this project badge 
color and machine type were separated into two different features. 
This was done in part because we wanted to see if machine type 
affected which type of badge was awarded and in part because 
making machine type part of the label would result in models 
predicting what machine the student was building. Instead, we 
wanted to simply assess how successful students were at solving 
any given problem, regardless of the nature of the problem given.  

Over fifty features were created and assessed for their goodness in 
predicting badge awards on any given level. The feature 
engineering process started with a restructuring of the raw student 
data logs to the problem-level (raw logs came at the action level) 
because the label of interest categorized student performance at 
the problem-level grain size. This process was then followed by a 
descriptive analysis of the variables that came out of this re-
structured data, followed by structured brainstorming to elicit 
ideas about the types of features that could be built out of this 
data. Features were then created to measure certain constructs 
(e.g., time on task, gaming the system behavior, etc.) and 
behaviors of interest. Once a core set of features was created, 
colleagues and system experts were consulted about the quality, 
interest, and potential effectiveness of those features. Features 
were then iterated on. New features were created in an attempt to 
both measure constructs in more ways (e.g., measuring time on 
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task by looking at time on level, standardized time, or just time 
spent drawing objects) and to measure different student behaviors 
and constructs that the first set of features failed to measure. 
Features were then refined based on colleague and system expert 
feedback and used in single feature models to assess feature 
quality. An iterative process of feature creation, peer consulting, 
and feature refinement then continued for several more cycles 
until the final set of fifty features had been created.  

Once all features had been created, single-feature models were 
used to choose the seventeen features that were the best predictors 
of any given construct. For example, Time on Level in minutes 
was determined to be a better classification of the amount of time 
that a student spent on a level than standardized time.  

The final seventeen features were then ordered in terms of their 
goodness within a single-feature J48 model, under student-level 
cross-validation. The best feature was added, and then a recursive 
process was used where additional features were tested in the 
same order to determine whether adding that feature improved 
model goodness, as measured by an increase in kappa. Only 
features that improved kappa were added. The final gold model 
contained fourteen features, and the final silver model contained 
nine features.  

3.4 Feature Descriptions 
The final seventeen features used for model creation are listed and 
described below in addition to which model they ended up being 
included in. Features are listed in the order that they were tested 
and selected.  

Sum Elapsed (silver): The total amount of time that a student 
spent actively drawing objects up until that point in the game. For 
example, if a student spends 90 seconds actively drawing objects 
in Level 1, and then 30 seconds drawing during Level 2, then Sum 
Elapsed by the end of Level 2 would have a value of 120 seconds. 

Time on Level (both): The total amount of time spent playing the 
level that the student is being awarded the badge for (in seconds).  

Nudge Count (gold): The total number of times that the student 
pressed the ball to nudge it forward a little in the level.  

Number of Objects (both): The total number of distinct objects 
(machines, random lines, weights, etc.) the student drew in the 
level.  

Diver Count (none): The total number of divers that a student 
created in the level.  

Pause Before End (both): Binary indicator of whether or not the 
student hit the pause button as their last action before the level 
ended. Usually this happens when students wants to exit out of a 
level before completing the level. In this case, students would 
neither be awarded a gold badge nor a silver badge.  

Ball Count (both): The number of balls a student uses in a level. 
If a student knocks a ball off the screen or if the ball provided to 
the student falls to the bottom of the screen, then it disappears and 
the student gets a new ball to try again.  

Max Velocity Y (both): The maximum velocity that any ball a 
student used in a level traveled in the y direction (up and down). 
Velocity values in the Physics Playground system are given in 

meters-kilogram-second (MKS) units. 

Max Velocity X (gold): The maximum velocity that any ball a 
student used in a level ever traveled in the x direction (left and 
right). 

Erased Object Count (silver): Number of objects that a student 
drew, and then erased in the level. Students can erase an object 
that they have drawn by clicking on it. 

Stack Count (both): Number of times student drew an object 
through the ball in order to move the ball up.  
 
Badge Before (gold): Binary indicator of whether or not a student 
has received a badge (of any color) on this level before. 

Played Before (gold): Binary indicator of whether or not a 
student has played this level before. 

Average Free-fall Distance (gold): Free-fall distance is a 
measure of how far any divers fell before striking a ball. This 
feature averages across all those distances in the level. Units are 
percentage of the game screen. So if the diver falls half the 
distance of the game screen, this would have a value of 0.5.   

Restart Count (gold): The number of times a student re-started 
the level. 

Play Count (gold): The number of times that a student has played 
the current level before. Restarts are not included in this count. A 
student has to have either completed the level or made an attempt 
at the level, left the level, and then returned, in order for it to 
contribute towards this play count.  

Machine (both): The type of machine that should be created to 
optimize movement of the ball to the target. There is one machine 
per level and they can take the form ramp, lever, pendulum, or 
springboard. 

3.5 Final Models 
The final J48 gold classification model with ten-fold student batch 
cross-validation, which was built on half the data, had a Kappa 
value of 0.69, and the silver classification model had a Kappa of 
0.83. The other half of the data was held out for future analysis 
comparing the models developed here to other, future models. As 
is evident from the features mentioned above, seven features fit 
into both the gold and silver classification models. Those features 
were Time on Level, Number of Objects, Pause Before End, Ball 
Count, Max Velocity Y, Stack Number, and Machine. Seven 
features only fit the gold classification model; those were Nudge 
Count, Max Velocity X, Badge Before, Played Before, Average 
Free-fall Distance, Restart Count, and Play Count. Finally, two 
features only fit the silver classification model. Those were Sum 
Elapsed and Erased Object Count.   

3.6 Qualitative Analysis of Models 
The primary goal of this project was to use classification models 
to help elucidate how student behavior predicts gold and silver 
badge acquisition differently. For this reason, we take a more 
qualitative look at which features were included in each model, 
which were included in both, and which were included in neither. 
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Table 1 indicates how each of the features loaded onto each of the 
models when used in a single-feature model (machine type does 
not have a numeric value, so it is not included in the table). Since 
both models were built using J48 decision trees, this is simply a 
proxy for the general loading of each feature on the model 
outcomes, and not a comprehensive measure of how each feature 
fits into each model.   

Table 1. Feature loadings onto each model 
Feature Gold Model Silver Model 

Sum Elapsed - Negative 

Time on Level Negative Positive 

Nudge Count Negative - 

Number of Objects Negative Positive 

Diver Count - - 

Pause Before End Negative Negative 

Ball Count Positive Negative 

Max Velocity Y Negative Positive 

Max Velocity X Positive - 

Erased Object Count - Positive 

Stack Count Negative Positive 

Badge Before Negative - 

Played Before Negative - 

Average Free-fall Distance Negative - 

Restart Count Positive - 

Play Count Positive - 
 

3.6.1 Features included in both models 
Features that were included in both models mostly helped indicate 
whether the student was able to achieve optimal performance or 
simply workable solutions. For the majority of the features that 
were in both models, the value was higher for non-gold and higher 
for silver, indicating that these behaviors were typical of students 
who developed workable yet non-optimal solutions. 
For example, Time on Level was a good indicator of which 
students produced non-optimal, yet workable solutions. Students 
who spent a very short time on the level could have entered a 
level and then immediately quit, so they were likely to not receive 
a badge. However, longer time in level is associated with a badge 
but not a gold badge. This loading is likely because students who 
spend a long time on a level are struggling more or drawing more 
and those students are therefore less likely to develop the most 
optimal solution in a single level attempt. 
Other features that were higher for non-gold and silver were 
Number of Objects, Max Velocity Y, and Stack Count. It makes 
sense that students who drew more objects would get silver, 
because they are doing more work than students who quit the 
level (no badge) and students who developed optimal solutions 
(gold badge). Also, badges are awarded in accordance with the 
number of objects a student draws in his or her attempt to solve a 
given problem, so it makes sense that this feature would be a 
significant indicator of performance. Stack Count could have been 
a good indicator of whether students solved a problem optimally 
or non-optimally because students who are stacking a lot could be 

trying to game the system, likely because they don’t know how to 
solve the problem more effectively using machines. These 
students are likely to get a silver badge if they complete the 
problem, because stacking requires drawing many objects.  
Only one feature that appeared in both models was higher for both 
non-gold and non-silver, Pause Before End. This is likely because 
students who paused before the end of the level were quitting, and 
therefore did not receive a badge at all. However, that was not 
always the case. 
It is curious that students who had a higher Ball Count per level 
were more likely to produce optimal solutions; the value for ball 
count was higher for gold and non-silver indicators. This may be 
because students who created optimal solutions were 
experimenting more, and therefore going through more balls, but 
without spending too much time or drawing too many objects. 
This behavior could be indicative of students who are quickly 
iterating on a single idea, or thinking of what to do before drawing 
objects. (On some levels balls keep dropping down until you draw 
an object underneath to catch the ball, so the longer you spend 
without drawing an object, the more balls you use).   

3.6.2 Features that only fit the gold model 
Features that only fit the gold model are interesting because they 
specifically separate those who were able to solve problems 
elegantly as opposed to students who could not find an optimal 
solution to the problem. The features fit three general categories, 
relative to whether or not they indicate experience, shallow 
strategies, or efficiency. 
Features that indicate experience include Badge Before, Played 
Before, Play Count, and Restart Count. It is interesting that Badge 
Before and Played Before, which are both binaries, indicate non-
Gold performance while Play Count and Restart Count indicate 
gold performance. This indicates that if a student is working on a 
problem they have completed or played once before, they are not 
likely to develop an optimal solution, but the more they play a 
level, the closer they are to get to an optimal solution. Students 
who have played the level before have some experience with the 
problem space, even if they did not complete the level previously 
and that experience could help them determine an optimal 
problem solution. Play Count and Restart Count tell the model the 
precise amount of experience the current student has had with a 
level. Students who re-start or play a level more often might be 
optimizers, aiming to iterate several times on their problem 
solution in an attempt to find the best approach to solving the 
problem. They might be thinking more critically about the choices 
they are making and choosing to come back to a level or start it 
again when they’ve determined that they have acquired the skill or 
knowledge necessary to now perform more effectively. Resetting 
also enables students to clear their screens of all objects, and start 
over, so they can approach the problem afresh. This can be a good 
strategy for students who want to try going in a different direction 
instead of iterating on an earlier idea, and it can lead to more 
efficient problem attempts later. 
Nudge Count is a feature that indicates shallow strategies, or even 
potentially gaming the system. Students who nudge the ball a lot 
are trying to make the ball move without using a drawn machine 
to move the ball. This could lead to effectively moving the ball 
without drawing more objects, which could lead to a problem 
solution despite a low object count, which would result in a gold 
badge. Or, it could indicate a student who is nudging because they 
are struggling a lot with the problem, perhaps because they have 
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already drawn many objects, but are unable to get the ball to move 
effectively, so they try to nudge it along.  
The other features associated with gold badges but not silver 
badges measure how efficiently students are building machines. 
These include Average Free-fall Distance and Max Velocity X. 
Max Velocity X is a predictor of gold badges while Max Velocity 
Y can predict gold and silver badges, because Max Velocity X is a 
more effective measure of how well a student has constructed his 
or her machine. If a ball is dropped from the starting point, then 
regardless of how effective the student’s machine is, the ball will, 
in many cases, hit the same maximum velocity as it falls because 
all balls in the Physics Playground interface follow the laws of 
physics, and therefore accelerate at g. However, how fast a ball 
moves in the x direction is a direct result of how well a student’s 
designed machine moved the ball in that direction. Likewise, 
Average Free-fall distance measures student machine efficiency, 
because students have to carefully choose where to draw divers so 
that they have a desired effect on ball movement. Divers that are 
positioned too far away might not hit the desired target, requiring 
another driver to be drawn for the desired effect. Therefore, both 
these features are found in this model because they are able to 
successfully classify effective and efficient student construction 
choices. 

3.6.3 Features that only fit the silver model 
Only two features were associated with silver badges but not gold 
badges. They were Sum Elapsed and Erased Object Count. Both 
of these features describe the behaviors of students who are 
tinkering to iterate to a solution. Sum Elapsed negatively loads on 
the model, suggesting that it indicates ineffective tinkering, while 
Erased Object count positively loads on the model, suggesting that 
it indicates effective yet inefficient tinkering. Sum Elapsed is a 
measure of how much effort a student has put into the game, up 
until that point in time. A student who has spent a lot of time 
drawing objects across all prior game levels will have a higher 
Sum Elapsed value. This is higher for non-silver badges, maybe in 
part because students who spend a lot of time drawing on levels 
are less likely to complete the level they are on. This could be 
because students are making long strokes while doodling, or doing 
other off task work. On the other hand, students who erase many 
objects are more likely to get a silver badge. This might be 
because students who erase a lot are pruning their work if they 
drew too many objects or made mistakes. These students are more 
dedicated to completing the current problem, to acquire a badge, 
but they are not likely to solve the problem in an optimal manner. 
Therefore Erased Object Count measures an effective problem 
solving strategy that is not efficient. 

3.6.4 Features that fit neither model 
It is important to consider not only the features that fit into the 
models, but also the features that failed to improve either of the 
models when added. These included Diver Count and a host of 
other features that were discarded during the feature engineering 
process, due to the features’ low predictive power for behaviors of 
interest. Interestingly, more specific features involving specific 
machines or operators were less predictive of student performance 
than more general variables. Concrete behavior-specific features 
like Diver Count and Pin Count (pins are small dots that students 
can add to a drawing to tack an object in place or create a point 
for an object to rotate around) were less associated with outcomes 
than were general features like Object Count and Sum Elapsed, 
which describe student behaviors that span across several actions 
or several levels. (Note that divers are objects, so when talking 

about a distinction between these features Object Count is a more 
general category than Diver Count). It could be that student 
performance on any particular problem was not as predictive of 
their problem-solving efficacy as that student’s overall behavior. 
This could suggest that problem solving scaffolding and teaching 
should focus more on students’ overall strategies, rather than level 
specific strategies. On the other hand, it may simply indicate that 
none of the more specific features, by themselves, are as 
predictive as the more general categories that cut across and 
combine different specific features. It is also important to note 
that in addition to improving prediction, using more general 
features also reduces the risk of models over-fitting. 

4. DISCUSSION AND CONCLUSION 
This analysis of two models built to predict optimal student 
performance and non-optimal student performance gives us some 
interesting insights about the kinds of behaviors that predict 
student performance, and also about the kinds of features that best 
fit these types of models. Models that describe student 
performance more generally are more predictive when fed into a 
J48 decision tree, which can make cutoffs at different values of 
those feature variables in order to differentiate students who are 
solving levels optimally, sub-optimally, and not solving levels at 
all. In turn, features that differentiate optimal performers from all 
others focus on student experience with the problem space, 
shallow strategies, and gaming behaviors in addition to measures 
of student problem solving efficiency. Classifiers of successful 
but sub-optimal performance tend to describe more exploratory, 
tinkering behavior while classifiers of elegant problem solving 
seem to highlight the value of student exposure to a problem and 
measures of problem-solving efficiency.  

These findings give insight into future designs of Physics 
Playground and other games and open-ended learning 
environments. To encourage more elegant student problem 
solving, the learning environment can encourage students to 
revisit problems, especially after they’ve created a workable 
solution, but failed to create an elegant one. Additionally, student 
feedback about how effective their solution is or what kind of 
metrics are needed for an optimal solution (e.g., a prompt 
indicating that for the ball to reach the target it must hit a certain x 
velocity) could aid students in understanding what more proximal 
goals they need to fulfill in order to ultimately solve the problem 
at hand in the most efficient way. 

Future work can explore whether similar features are effective for 
predicting student problem solving in other games. The models 
discussed here were built on only one game with a unique form of 
gameplay and specific design constraints, so the study is limited 
in its generalizability. However, there is the potential for the 
results of this paper to be used for constructing models for 
classifying student performance to differentiate between elegant 
and non-optimal problem solving strategies in other games or 
open-ended learning environments.  
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ABSTRACT 
Recent years have seen a growing interest in intelligent game-
based learning environments featuring virtual agents. A key 
challenge posed by incorporating virtual agents in game-based 
learning environments is dynamically determining the dialogue 
moves they should make in order to best support students’ 
problem solving. This paper presents a data-driven modeling 
approach that uses a Wizard-of-Oz framework to predict human 
wizards’ dialogue acts based on a sequence of multimodal data 
streams of student interactions with a game-based learning 
environment. To effectively deal with multiple, parallel sequential 
data streams, this paper investigates two sequence-labeling 
techniques: long short-term memory networks (LSTMs) and 
conditional random fields. We train predictive models utilizing 
data corpora collected from two Wizard-of-Oz experiments in 
which a human wizard played the role of the virtual agent 
unbeknownst to the student. Empirical results suggest that LSTMs 
that utilize game trace logs and facial action units achieve the 
highest predictive accuracy. This work can inform the design of 
intelligent virtual agents that leverage rich multimodal student 
interaction data in game-based learning environments. 

Keywords 

Game-Based Learning, Virtual Agents, Deep Learning, 
Multimodal. 

1. INTRODUCTION 
Recent years have witnessed a growing interest in intelligent 
game-based learning environments because of their potential to 

simultaneously promote student learning and create engaging 
learning experiences [23]. These environments incorporate 
personalized pedagogical functionalities delivered with adaptive 
learning techniques and the motivational affordances of digital 
games featuring believable characters and interactive story 
scenarios situated in meaningful contexts [13, 23]. A key feature 
of game-based learning environments is their ability to embed 
problem-solving challenges within interactive virtual 
environments, which can enhance students’ engagement and 
facilitate learning through customized narratives, feedback, and 
problem-solving support [18, 25]. 

Game-based learning environments offer considerable 
opportunities for implementing virtual agents by delivering 
visually contextualized pedagogical strategies [14]. Intelligent 
virtual agents have been shown to deliver motivational benefits, 
promote problem-solving, and positively affect students’ 
perception of learning experiences [14]. Virtual agents play a 
variety of roles in interactive learning environments including 
intelligent tutors, teachable agents, and learning companions [4]. 

A key challenge in developing intelligent virtual agents is 
devising accurate predictive models that dynamically attune 
pedagogical strategies to individual students using evidence from 
students’ interactions with the learning environment. Previous 
research has focused on when to intervene [21] and what types of 
dialogue moves to make during students’ problem-solving 
activities [3] to provide support in a timely, contextually relevant 
manner. Selecting appropriate pedagogical dialogue moves is 
critical [24] because failing to provide effective feedback may 
lead to decreased learning in a student experiencing boredom [1], 
lead a student who is confused to become disengaged [10], or 
negatively impact the outcome of dialogues [5]. 

Much of the previous work in this line of investigation has 
addressed this challenge through computationally modeling 
agents’ dialogue acts, the underlying intention (e.g., greeting, 
question, suggestion) of the utterances, by utilizing sequences of 
actions within learning environments as evidence [2]. The current 
work builds on this by examining multimodal data streams, which 
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can provide rich evidence of students’ cognitive and affective 
states, in addition to evidence captured from game trace logs. To 
effectively deal with the granular sequential data in parallel 
multimodal data streams, we investigate two sequence labeling 
techniques: a deep-learning technique, long short-term memory 
networks (LSTMs) [11];  and a competitive baseline approach, 
conditional random fields (CRFs) [26]. This work is inspired by 
the recent success of LSTMs in dealing with low-level data (e.g., 
speech signals), and particularly by their state-of-the-art 
performance in speech recognition tasks [16]. Additionally, 
hierarchical representation learning supported by deep learning 
provides advantages over other machine learning techniques by 
avoiding the need for labor-intensive feature engineering [16].  

Our sequence labeling models are evaluated with 211 dialogue 
acts made by human wizards who interacted with 11 students 
playing CRYSTAL ISLAND, a game-based learning environment for 
middle school microbiology [23]. The interaction data include 
game trace logs, facial action units [17] processed from facial 
video recordings, and galvanic skin responses, all of which are 
utilized as input features for devising predictive models. Wizards 
used pre-designed utterances, which they selected from menus 
organized by dialogue act. Each selected utterance was then 
delivered to the student via speech synthesis. Wizards could 
observe the student’s face, gaze, game screen, and voice while 
selecting dialogue moves, but facial action units, galvanic skin 
responses, and game trace logs were not directly accessible. We 
hypothesize that these unobserved multimodal data streams serve 
as proxies for the wizards’ dialogue decisions and examine these 
as explanatory variables to predict the next dialogue act that a 
human wizard might choose. 

LSTM and CRF models are devised utilizing subsets of the 
parallel multimodal data streams. Student-level cross-validation 
studies indicate that LSTMs utilizing game trace logs and facial 
action units outperform both CRFs and the majority class-based 
baseline with respect to predictive accuracy. Further, we find that 
the LSTM model effectively takes advantage of multimodal data 
streams, and it most effectively utilizes both game trace logs and 
facial action unit data. The results suggest that LSTM models can 
serve as the foundation for dialogue act modeling for intelligent 
virtual agents that dynamically adapts dialogues to individual 
students. 

2. RELATED WORK  
Recent work in game-based learning has explored a broad 
spectrum of subject matters ranging from computer science [18] 
and language to cultural learning [13]. Narrative-centered learning 
environments, which provide narrative adaptation for individual 
students in the context of intelligent game-based learning, have 
been found to deliver experiences in which learning and 
engagement are synergistic [13, 23]. Student interaction data from 
game-based learning activities has provided a rich source of 
information from which students’ development of competencies 
[18, 25] and progress towards learning goals [19, 20] are 
diagnosed. Game-based learning environments can also be 
populated by virtual agents, whose design should consider 
students’ cognitive and affective states [4, 14].   

In parallel work on tutorial dialogue, it has been found that 
tutorial planning can take into account students’ cognitive and 
affective states [7]. Planning dialogue moves and inducing turn-
taking policies have been widely examined in supervised learning 
(e.g., hidden Markov models [2], directed graph representations 
[5]) and reinforcement learning [3, 21]. The approach described in 

this paper is the first to investigate dialogue move classification 
using LSTMs and CRFs that take as input sequential multimodal 
data streams, which can serve as the foundation for guiding the 
dialogue of intelligent virtual agents in game-based learning 
environments.  

 

3. CRYSTAL ISLAND 
Over the past several years, our lab has been developing CRYSTAL 
ISLAND (Figure 1), a game-based learning environment for middle 
school microbiology [23]. Designed as a supplement to classroom 
science instruction, CRYSTAL ISLAND’s curricular focus has been 
expanded to include literacy education based on Common Core 
State Standards for reading informational texts. The narrative 
focuses on a mysterious illness afflicting a research team on a 
remote island. Students play the role of a visitor who is drawn into 
a mission to save the team from the outbreak. Students explore the 
research camp from a first-person viewpoint, gather information 
about patient symptoms and relevant diseases, form hypotheses 
about the infection and its transmission source, use virtual lab 
equipment and a diagnosis worksheet to record their findings, and 
report their conclusions to the camp’s nurse.  

Extending the previous edition of CRYSTAL ISLAND, we 
incorporated a prototype virtual agent into the game to investigate 
both affective and cognitive influences on students’ learning 
processes. This virtual agent, a young female scientist named 
Layla (Figure 2), was designed as a near-peer mentor who 
supports the student through dialogue-based interactions.  

 
In CRYSTAL ISLAND’S virtual world, students interact with 
learning resources such as books and posters, as well as with non-
player characters through informative menu-based dialogue. As 
students progress through the game, they collect evidence and 
record their hypotheses in a “diagnosis worksheet.” The student 
meets Layla when the diagnosis worksheet is opened (Figure 2).  

Figure 1. The CRYSTAL ISLAND game-based learning 
environment. 

Figure 2. CRYSTAL ISLAND virtual agent.  
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With Layla’s visual and speech synthesis prototypes in place, but 
no adaptive dialogue model implemented yet, a Wizard of Oz 
system was implemented to enable a human operator to provide 
the intelligence behind Layla’s dialogue. When the human 
“wizard” decides to initiate a dialogue move, she chooses one of 
six dialogue acts (Table 1) from a menu interface, then selects a 
dialogue utterance from the act’s set of pre-determined utterances. 
Layla then speaks the utterance through speech synthesis. The 
selection of dialogue moves was informed by the literature on 
dialogue systems for learning [8], as well as experience with a 
recent study conducted in the same middle school, in which pairs 
of middle school students interacted with CRYSTAL ISLAND 
together. 

Three wizards controlled Layla’s dialogue in the game from a 
room separated from the students, while observing the students 
through a live feed that included the student’s facial video, the 
student’s gaze superimposed in real time over a video capture of 
the game screen, and the student’s voice as recorded through a 
headset microphone. 

Data was collected in two studies implemented in the spring and 
summer of 2015 at a public middle school in Raleigh, North 
Carolina. In the spring study, participants were drawn from an 
after-school activity, and the summer study’s participants were 
from classroom pull-outs. Of the 11 students who participated, 7 
were female and 4 were male, with an average age of 12 (SD = 
1.1). The data corpus contains 211 virtual agent dialogue acts 
across the students (average number of acts: 19.2, maximum 
number of acts: 41, and minimum number of acts: 3). 

Table 1. Agent’s dialogue acts and distributions of their use. 

Dialogue Act Distributions Dialogue Act Distributions 
Greeting 58 (27.5%) Suggestion 51 (24.2%) 
Question 35 (16.6%) Feedback 8 (3.8%) 

Acknowledge- 
ment 43 (20.4%) Affective 

Statement 16 (7.6%) 

4. MULTIMODAL DATA 
During the students’ interactions with CRYSTAL ISLAND, both 
game actions and parallel sensor data were captured to collect 
both cognitive and affective features of students’ experience. In 
the following subsections, we describe the three types of input 
data investigated in the present work. 

4.1 Game Trace Logs 
Students play CRYSTAL ISLAND using a keyboard and mouse. 
Student actions are logged for gameplay analysis and game 
telemetry [20]. In the present modeling work, seven key 
categories of actions are examined: moving around the camp, 
using the laboratory’s equipment to test a hypothesis about the 
disease and its source, conversing with non-player characters, 
reading complex informational texts about microbiology concepts, 
taking embedded assessments associated with the informational 
texts, interacting with the diagnosis worksheet, and experiencing 
dialogue moves with the virtual agent. The total number of 
distinct actions is 143.  

A total of 4,117 student actions were logged along with 211 
dialogue acts by the virtual agent in the training data. Students 
took an average of 19.5 actions between two adjacent dialogue 
acts, where the minimum and maximum number of actions 
between any two adjacent dialogue acts are 1 and 217, 
respectively. 

4.2 Galvanic Skin Response 
Galvanic skin response (GSR) is a measurement of the level of 
conductance across the surface of the skin, which is driven by the 
activity of the sympathetic nervous system. GSR reflects a variety 
of cognitive and affective processes, including attention and 
engagement [6, 22]. In addition, the presence of significant spikes 
in students’ GSR in response to certain events during a 
technology-supported learning activity has been found to be 
associated with learning-linked emotions and learning outcomes 
[12]. In this study, Empatica E4 bracelets on both wrists were 
used for GSR recording. These bracelets were chosen because, 
unlike palmar and fingertip GSR recording devices, they do not 
restrict the range of hand movement needed to play the game. 

4.3 Facial Action Units 
Facial expressions have been shown to have a relationship to self-
reported and judged learning-centered affective states [1, 17]. 
Previous work has also found that facial expressions during 
learning can help predict a student’s learning gains, frustration, 
and engagement [27]. Facial expressions can be examined non-
invasively through video recordings taken during a student’s 
interaction with a learning environment. 

In this work, we observe facial expressions by analyzing a 
student’s facial action units, which capture movement of the 
muscles in the face. Facial action units are grounded in the Facial 
Action Coding System, which was devised to make observations 
about facial movements [9]. In this study, facial videos were 
recorded via a webcam and analyzed using FACET, an automated 
system devised for tracking facial action units, because it allows 
for frame-by-frame tracking in the facial videos without the time 
intensive effort of human-tagging facial action units. FACET is 
the next generation of the Computer Expression Recognition 
Toolbox [17], which has been validated for both adults and 
children. In this study, we considered the subset of facial action 
units provided by FACET (Table 2). In the following section, we 
describe the deep learning-based dialogue act classifier that 
utilizes these three data sources. 

Table 2. Facial action units examined. 
Inner Brow Raiser 
(AU1) 

Upper Lip Raiser 
(AU10) 

Tightener (AU23) 

Outer Brow Raiser 
(AU2) 

Lip Corner Puller 
(AU12) 

Lip Pressor (AU24) 

Brow Lowerer (AU4) Dimpler (AU14) Lips Part (AU25) 
Upper Lid Raiser 
(AU5) 

Lip Corner Depressor 
(AU15) 

Jaw Droop (AU26) 

Cheek Raiser (AU6) Chin Raiser (AU17) Lip Suck (AU28) 
Lid Tightener (AU7) Puckerer (AU18)  
Nose Wrinkler (AU9) Lip Stretcher (AU20)  

5. LSTM-BASED DIALOGUE MOVE 
DECISION MODEL 
Long short-term memory networks (LSTMs) have demonstrated 
significant success in dealing with a series of raw signals, such as 
speech, yielding state-of-the-art performance in speech 
recognition tasks [16]. This inspires our work, which deals with 
low-level sensor data such as GSRs and facial AUs. In the 
following subsections, we present a high-level description of 
LSTMs [11], introduce how multimodal input data are 
synchronized and encoded into a trainable format, and describe 
how the LSTM-based dialogue move prediction models are 
configured. 
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5.1 LSTM Background 
LSTMs are a type of gated recurrent neural network specifically 
designed for sequence labeling on temporal data. LSTMs, like 
standard recurrent neural networks, take the approach of sharing 
weights across layers at different time steps. LSTMs feature a 
sequence of memory blocks that include one or more self-
connected memory cells along with three gating units [11]. In 
LSTMs, the input and output gates modulate the incoming and 
outgoing signals to the memory cell, and the forget gate controls 
whether the previous state of the memory cell is remembered or 
forgotten. This structure allows the model to preserve gradient 
information over longer periods of time [11].  

In the implementation of LSTMs investigated here, the input gate 
(𝑖!), forget gate (𝑓!), and candidate memory cell state (𝑐!) at time t 
are computed by Equations (1)–(3), respectively, in which W and 
U are weight matrices for the input (𝑥!) at time t and the cell 
output (ℎ!!!) at time t-1, b is the bias vector of each unit, and σ 
and tanh are the logistic sigmoid and hyperbolic tangent function, 
respectively. 

𝑖! = 𝜎(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)         (1) 
𝑓! = 𝜎(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)            (2) 
𝑐! = 𝑡𝑎𝑛ℎ(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)           (3) 

Once these three vectors are computed, the current memory cell’s 
state is updated to a new state (𝑐!) by modulating the current 
memory cell state candidate value (𝑐!) via the input gate (𝑖!) and 
the previous memory cell state (𝑐!!!) via the forget gate (𝑓!). 
Through this process, a memory block decides whether to keep or 
forget the previous memory state and regulates the candidate of 
the current memory state via the input gate. This step is described 
in Equation (4), in which ⊙ denotes element-wise multiplication: 

𝑐! = 𝑖! ⊙ 𝑐! + 𝑓! ⊙ 𝑐!!!                     (4) 
The output gate (𝑜!) calculated in Equation (5) is utilized to 
compute the memory cell output (ℎ!) of the LSTM memory block 
at time t, modulating the updated cell state (𝑐!) (Equation 6): 

𝑜! = 𝜎(𝑊!𝑥! + 𝑈!ℎ!!! + 𝑏!)               (5) 
ℎ! = 𝑜! ⊙ 𝑡𝑎𝑛ℎ(𝑐!)                   (6) 

Once the cell output (ℎ!) is calculated at time t, the next step is to 
use the computed cell output vectors to predict the label of the 
current training example. For the dialogue move decision model, 
we use the final cell output vector (ℎ!), assuming that ℎ! captures 
long-term dependencies from the previous time steps. 

5.2 Data Encoding for Dialogue Move 
Decision Model 
Each data stream from a suite of multimodal interaction data is of 
a sequential form. Because these data include fixed-rate 
recordings (e.g., facial action units and galvanic skin responses) 
with rates that differ between streams, as well as in-game action-
driven recordings (e.g., game trace logs) with no set rate, the first 
step of data encoding is synchronizing input data across 
modalities.  

We obtained from each student two series of galvanic skin 
responses (GSRs), one each for the left and right hand, as well as 
19 facial action units (AUs). In the modeling work reported here, 
only the GSR information from the subject’s dominant hand is 
utilized, so GSR is represented by a one-dimensional vector. AUs 
are represented by a 19-dimensional vector space per time stamp. 
GSR and AUs were logged with the frequencies of approximately 
4Hz and 30 Hz, respectively. Game traces were recorded as events 

were triggered in the game, whenever the actions described in 
Section 4.1 were performed.  

In contrast to GSR or AUs, which have continuous values, the 
game trace logs (GAME) consist of discrete indices for specific 
actions, indexed 1 to 143. To represent actions in a vector format, 
we employ the one-hot-encoding technique, in which a bit vector 
whose length is the total number of actions (143 in this work) is 
created while only the associated action bit is on (i.e., 1) while all 
other bits are off (i.e., 0). Once the vector representations for 
GAMEs are created, the next step is to synchronize the three data 
representations into an integrated representation.  

To keep the length of data sequences manageable while 
preserving key game actions, we synchronize the multimodal data 
based on the game trace logs. All GSR and AU data collected 
between any two adjacent game actions are transformed into two 
vectors, using the following method: 

• Vector 1: (75th percentile minus 50th percentile) per feature 
across all the data points between the two adjacent actions 

• Vector 2: (50th percentile minus 25th percentile) per feature 
across all the data points between the two adjacent actions 

We hypothesize that these two quartile-based vectors can capture 
variance of signals within an interval, while effectively avoiding 
outliers, smoothing out individual differences, and keeping the 
number of input features (183, or the sum of 143 for GAME, 38 
for AU, and 2 for GSR) small enough to efficiently train LSTMs. 
Once these two vectors are created for the GSR stream and for 
each AU, the vectors are concatenated to the game trace log 
vector. 

5.3 LSTM Model Configurations for Dialogue 
Move Decision 
Prior to training LSTMs, the hyperparameters of the models must 
be determined. LSTM hyperparameters have often been explored 
using grid search or random search settings in the process of 
minimizing validation errors [20]. We adopt the grid search 
approach to empirically find an optimal configuration for a set of 
hyperparameters. In this work, we consider two hyperparameters: 
the number of hidden units for LSTMs among {32, 64} and the 
dropout rate [16], a model regularization technique, among {0.4, 
0.7}. Both hyperparameters have significant influence on the 
performance of deep neural networks [11, 20].  

In addition to LSTM-wide hyperparameters, this work also 
analyzes the isolated impacts of multimodal data sources. In order 
to perform this analysis, we examine all possible combinations of 
features, generating the following seven input feature sets: 
galvanic skin responses (GSRs), facial action units (AUs), game 
trace logs (GAMEs), GSRs and AUs, AUs and GAMEs, GSRs 
and GAMEs, and all three data sources. The dimension of a 
feature set is decided by summing up the dimensions of the 
features (see Section 5.2) that comprise the feature set. 

In addition to the hyperparameters examined in the grid search, 
we apply a fixed value to the following hyperparameters for 
LSTMs: employing a softmax layer for classifying given 
sequences of interactions, adopting mini-batch gradient descent 
with a mini-batch size of 32, utilizing categorical cross entropy 
for the loss function, and employing a stochastic optimization 
method. The training process stops early if the validation score 
has not improved within the last 15 epochs. In this work, we 
evaluate our models using student-level leave-one-out cross 
validation, and so in each fold, 1 student’s data is used for testing 
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(completely hidden) out of 11 students, while 8 students’ and 2 
students’ data are utilized as the training and validation set, 
respectively. Finally, the maximum number of epochs is set to 100.  

6. EVALUATION 
To evaluate the proposed LSTM-based dialogue act classification 
(cast as six-class classification), we search for an optimal set of 
hyperparameters through cross-validation in the previously 
discussed grid search setting, and then perform feature-set level 
predictive performance analyses based on the chosen 
hyperparameters. Additionally, we compare each LSTM-based 
computational model to a competitive approach based on linear-
chain conditional random fields (CRFs) [26] as well as a majority 
class baseline using the same cross-validation split for a pairwise 
comparison. CRFs are trained using the Block-Coordinate Frank-
Wolfe optimization technique [15], and we adjust the 
regularization parameter for the optimization technique among 
{0.1, 0.5, 1.0} to find optimal CRFs as we do in LSTMs.  

Table 3 presents feature-set-level cross-validation results. LSTMs 
with the hyperparameter configuration of 64 hidden units and 0.7 
dropout rate achieve the highest predictive accuracy (34.1%), and 
CRFs trained with the regularization parameters of 0.5 achieved 
the second highest accuracy (32.2%). We use raw correct and 
incorrect prediction counts to calculate accuracy rates rather than 
reporting fold-based averaged accuracy rates, in an effort to avoid 
the potential for skew brought on by the wide variation in the 
number of data points per student (min: 3; max: 41).  

Table 3. Student-level leave-one-out cross validation results 
across feature sets (64 hidden units and 0.7 dropout rate for 
LSTMs and 0.5 regularization parameter for CRFs). 

 LSTMs CRFs 
GSRs 28.0% 19.9% 
AUs 21.8% 25.6% 

GAMEs 29.4% 32.2% 
GSRs / AUs 26.1% 22.3% 

AUs / GAMEs 34.1% 30.8% 
GSRs / GAMEs 29.9% 29.4% 

GSRs / AUs / GAMEs 31.3% 27.0% 

In the evaluation, LSTMs that achieve the highest predictive 
accuracy utilize AUs and GAMEs (LSTMAU/GAME), the accuracy 
of which constitutes a 43.9% marginal improvement over the 
baseline accuracy (23.7%). Note that the baseline accuracy is 
different from Table 1, because it is influenced by the random 
split made in cross validation. We conducted a Wilcoxon signed 
rank, a non-parametric statistical test for two related samples, to 
compare cross-validation results between the LSTMAU/GAME and 
the majority class baseline per fold. The test finds a statistically 
significant difference between LSTMAU/GAME and the baseline 
(Z=-2.25, p=0.024). The differences between LSTMAU/GAME and 
the best performing CRFs (p=0.67) and between the CRFs and the 
baseline (p=0.095) are not statistically significant.  

It is noteworthy that AUs by themselves do not achieve a high 
predictive accuracy. This can be partially explained by noting that 
the facial action unit data stream was often temporarily lost (a 
vector filled with zeros is used in this case for the missing data), 
usually when the subject’s face was not properly situated within 
the camera screen. It is surprising, however, to see that partially-
missing AUs synchronized with GAMEs data helped improve the 
prediction of the next virtual agent dialogue act by outperforming 
GAMEs models (Z=-1.71, p=0.088) as well as AUs models (Z=-
2.24, p=0.025).  

The LSTMAU/GAME’s outperformance might be explained by the 
information available to the human wizards as they chose 
dialogue acts: they were able to watch the subject’s game play as 
well as facial expressions during the interaction with the game, 
which together potentially influenced the dialogue decisions. On 
the other hand, the AUs likely characterize aspects of the subject’s 
affective states, and they can contribute to the improved predictive 
performance synergistically with GAMEs in LSTMs. 

Overall, GAMEs serve as a strong predictor relative to other 
independent data sources: GAMEs models (29.4%) outperform 
the other two independent models induced utilizing GSRs (28.0%) 
or AUs (21.8%); in the meantime, each feature set that leverages 
GAMEs in addition to other data sources outperforms the 
corresponding feature set without the GAMEs (e.g., GSRs, AUs, 
and GAMEs (31.3%) vs. GSRs and AUs (26.1%)). Sequences of 
actions in the GAMEs may reflect students’ underlying cognitive 
states such as plans, goals, and knowledge during problem-solving 
activities [19, 20], which wizards attempted to address through 
their dialogue act choices. It is expected that LSTMs’ capacity for 
hierarchical feature abstraction enables them to recognize these 
high-level patterns from low-level action sequences.  

It is interesting to observe that GSRs by themselves outperform 
the baseline but incorporating GSRs with AUs and GAMEs 
(31.3%) does not outperform LSTMAU/GAME (34.1%). Although 
much of the previous research has used GSR data streams as 
evidence for modeling humans’ affective and cognitive states 
[22], the findings of the study presented here suggest that GSR 
collected using wrist sensors may not be the most informative data 
source for predicting a human-operated virtual agent’s next 
dialogue act, particularly when other data sources are available. 

7. CONCLUSION AND FUTURE WORK 
Dialogue modeling is a critical functionality for pedagogically 
adaptive virtual agents. This paper has presented two sequence-
modeling approaches to classifying human wizards’ dialogue 
moves when utilizing multimodal observation sequences. Both 
conditional random fields (CRFs) and long short-term memory 
networks (LSTMs) have demonstrated significant promise as 
effective modeling techniques on the sequential, parallel, 
multimodal data from game trace logs, galvanic skin response, 
and facial action units. Both CRFs and LSTMs outperform the 
majority class-based baseline with respect to predictive accuracy, 
while LSTMs achieve the highest predictive accuracy. Feature-
level analyses of LSTMs suggest that even incomplete facial 
action unit data can augment LSTMs’ predictive performance 
along with game trace logs, while game trace logs serve as strong 
predictor in both computational approaches. Along with achieving 
a substantial improvement in the use of sequence labeling 
techniques, this work suggests a number of directions for future 
work. 

First, it will be important to extend the current models to 
determine the timing of dialogue acts. Together with the current 
work, this will further enhance the potential capacity for 
intelligent virtual agents to provide adaptive pedagogical support. 
Second, it will be important to examine the relationships between 
students’ cognition and affect as perceived by human wizards, and 
to investigate how they influence wizards’ dialogue decision-
making. Because multimodal interaction data may reflect 
students’ affective and cognitive states, identifying the 
relationship between student models and dialogue acts can guide 
the design of advanced tutorial dialogue management capabilities 
for pedagogical agents.  
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ABSTRACT
We have been incrementally adding data-driven methods
into the Deep Thought logic tutor for the purpose of creating
a fully data-driven intelligent tutoring system. Our previous
research has shown that the addition of data-driven hints,
worked examples, and problem assignment can improve stu-
dent performance and retention in the tutor. In this study,
we investigate how the addition of these methods affects stu-
dents’ demonstrative knowledge of logic proof solving using
their post-tutor examination scores. We have used data col-
lected from three test conditions with different combinations
of our data-driven additions to determine which methods
are most beneficial to students who demonstrate higher or
lower knowledge of the subject matter. Our results show
that students who are assigned problems based on profil-
ing proficiency compared to prior exemplary students with
similar problem-solving behavior show higher examination
scores overall, and the use of proficiency profiling increases
retention and reduces the amount of time taken in-tutor for
lower performing students in particular. The results from
this study also helps differentiate the behavior of higher and
lower performing students in tutor, which can allow quicker
interventions for lower proficiency students.

Keywords
Data-driven Methods, Proficiency Profiling, Tutoring Sys-
tems

1. INTRODUCTION
We have been incrementally adding data-driven methods for
problem assignment[9, 10], hint generation[3], and worked
examples[11] to the Deep Thought logic tutor to create a
fully data-driven tutoring system. While we have observed
improvements in student retention and tutor scores with
each of these additions, we have not studied the difference in
post-tutor examinations when these methods are combined
in different test conditions. We seek to understand how the

specific methods of problem assignment and combination of
hints and worked examples may have impacted student per-
formance on related questions on the course midterm exam.

In this paper we compare two classrooms of students us-
ing different test conditions of Deep Thought, with different
combinations of problem assignment, hints and worked ex-
amples. Students’ knowledge of logic were evaluated in two
problems on a mid-term exam, and these scores were used to
differentiate high and low proficiency students for our analy-
sis. The results from our analysis show that high performing
students benefit most from problem-solving opportunities,
while low performing students benefit most from problem as-
signment based on proficiency profiling, comparing current
students to prior exemplary students with similar behav-
ior. We conclude that the use of proficiency profiling is the
most effective method for increasing retention and reducing
time spent in the Deep Thought tutor, and result in higher
overall examination scores. The results from this study also
help differentiate the behavior of higher and lower perform-
ing students in tutor, allowing for quicker interventions for
lower proficiency students who need additional instructional
support.

2. RELATED WORK
Koedinger et al.[6] summarized the general process of intelli-
gent tutoring systems: the system selects an activity for the
student, evaluates each student action, suggest a course of
action (either via hints, worked examples, or another form
of feedback), and finally updates the system’s evaluation of
the student’s skills. An effective tutor should adapt instruc-
tion according to the student’s current knowledge level [1].
However, in order to make instructional decisions, most ITSs
either use fixed pedagogical policies providing little adapt-
ability, or expert-authored pedagogical rules based on exist-
ing instructional practices [1, 14]. Intelligent tutoring sys-
tems with data-driven methods can be more adaptive by
leveraging previous student data in order to complete one
or more of these steps. Data-driven approaches to mak-
ing effective pedagogical decisions – in particular selecting
problems, when to apply worked examples, and the type of
hint or feedback to provide – would mostly bypass the need
for expert involvement in creating and improving the effec-
tiveness of ITSs. In practice, incorporating student data
has been shown to increase learning efficiency and predict
student behavior. This, in particular is why we use data-
driven knowledge tracing (DKT) of rule applications within
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the Deep Thought logic tutor to facilitate profiling of stu-
dents’ proficiency.

In the remainder of this section, we describe the Deep Thought
logic tutor and the data-driven additions implemented. We
then describe the system and data used to evaluate the ef-
fectiveness of these data-driven methods in Deep Thought.
After reporting the results of this evaluation, we discuss the
implications for future design decisions in the tutor, and
present our conclusions.

2.1 The Deep Thought Tutor
We have been examining the potential for data-driven meth-
ods to improve learning gains in a complex problem solv-
ing domain by incrementally augmenting the Deep Thought
logic tutor. Deep Thought is a tutor for graphically con-
structing propositional logic proofs. Deep Thought presents
proof problems consisting of logical premises and a conclu-
sion to be derived using logical axioms. Deep Thought is
divided into 6 levels of logic proof problems. In previous
work with the Deep Thought logic tutor, we have been im-
plementing data-driven methods for several of the intelligent
tutor steps. We implemented a data-driven mastery learning
system (DDML) to track student actions and assign appro-
priate problems based on the student’s current level of profi-
ciency [9]. The problem set was split into two tracks: a high
proficiency track and a low proficiency track for Levels 2–6,
with Level 1 containing a common set of problems for initial
track assignment. We tracked student actions throughout
their time in the tutor, and in particular their application of
logical rules to construct logic proofs. Based on their correct
or incorrect application of logical rules, the DDML updated
a set of rule scores, one score for each logical rule. At the end
of each level, the students’ rule scores were weighted based
on expert-determined priorities; rules deemed by experts
to be of high importance to solving the problems in that
level were weighted higher than rules that were not. These
weighted scores were summed together, and compared to the
average rule scores in the previous semester’s data; based
on this comparison, students were assigned to the higher or
lower proficiency path. We tested Deep Thought with the
DDML incorporated and found students completed, on av-
erage, 79% of all six levels in the tutor assignment. Student
retention rate was 55%. This was an improvement over the
non-DDML version of Deep Thought (61% tutor completion
on average, and 31% retention rate).

We later incorporated a data-driven proficiency profiler (the
DDPP) to replace the expert-determined priorities[10][8].
The DDPP is a system that calculates student proficiency
at the end of each level in Deep Thought based on how
a given student performs in comparison to exemplars who
employed similar problem solving strategies, with rule scores
weighted as determined through principal component anal-
ysis (PCA). Based on how similar exemplary students were
assigned in subsequent levels, the DDPP can determine the
best proficiency level for a new student. In contrast to the
DDML system previously employed, this proficiency calcu-
lation and rule weighting is entirely data-driven, with no
expert involvement.

We determined similar problem solving strategies among the
exemplars by clustering the exemplars’ rule scores based on

hierarchical clustering. Expert weighting was replaced by
PCA of the frequency of the rules used for each exemplar
for each level, accounting for 95% variance of the results.
For each rule, its PCA coefficient is the new weight for that
rule score. When a new student uses the tutor, the student’s
rule scores are calculated throughout the level. At the end
of each level, the DDPP examines each student’s individual
rule score and assigns it to a cluster for that rule. The DDPP
then finds which clusters the scores for the most important
rules fall into for that level (based on the same PCA based
weighting), and then classifies that student into a type based
on the set of clusters the student matches. Finally the sys-
tem assigns the student to a proficiency track based on data
from the matching type of exemplars, and how those exem-
plars were placed in the next level. The more exemplars
we have of a given type, the stronger the prediction we can
make for a new student. In the event that a new student
doesn’t match an existing type in the exemplar data, the
student’s proficiency is calculated using the average scores,
as in the original DDML system.

Providing hints to students in the course of an intelligent
tutor as a possible form of step-based feedback has the po-
tential to increase learning gains. Razzaq, Leena, and Hef-
fernan [12] found that learning gains increased for students
given on-demand hints in comparison to students who were
provided hints proactively. In Deep Thought, the hint sys-
tem used is called Hint Factory. Hint Factory is an auto-
matic data-driven hint generator that converts an interac-
tion network graph of student trace behavior into a Markov
decision process (MDP) to automatically select on-demand
hints for students upon request, based on their individual
performance on specific problems. The MDP is data-driven,
using actions logs from previous Deep Thought use in the
classroom to assign weight to proof-state actions based on
whether or not that action ultimately led to successful com-
pletion of the proof. These hints help students solve prob-
lems by suggesting what step should be taken next on a
multi-step problem. Hint Factory has been implemented
in the Deep Thought logic tutor to automatically deliver
context-specific hints to students during problem-solving [4].
In a previous study Hint Factory was shown to provide
context-specific hints over 80% of the time [3]. In a pilot
study, Barnes & Stamper found that Hint Factory can pro-
vide sufficient, correct, and appropriate hints for the Deep
Thought Logic tutor and help students to solve more logic
proof problems in the same span of time [4]. However, we
currently cannot determine the effect hints would have in
addition to the DDML or DDPP; so far, students using ei-
ther of those versions of Deep Thought did not use hints
often enough for any meaningful analysis.

Adding worked examples as a supplement to traditional prob-
lem solving can also be beneficial [2, 13]. Hilbert and Renkl
[5] found that improved learning outcomes occurred when
providing worked examples with a prompt, and proposed
that this was due to allowing the students to have a greater
cognitive load at once. McLaren and Isotani [7] compared
three tutors using all worked examples, all traditional un-
guided problem solving, and a mix of worked examples and
problem solving. Each group achieved similar learning gains,
but the students who were given all worked examples re-
quired less time to achieve those gains. We added worked

Proceedings of the 9th International Conference on Educational Data Mining 461



examples to the version of Deep Thought with the DDML
incorporated[11]. Worked examples were generated based on
previous best student solutions, and procedurally annotated.
They were presented to students randomly on a per-problem
basis, based on the number of problems they had solved in
that level already. We found that student retention overall
was 90%, and students completed 94% of the tutor on av-
erage. This percentage was significantly higher than that of
the DDML alone.

3. METHODS
Deep Thought was used as a mandatory homework assign-
ment by students in an undergraduate “discrete mathemat-
ics for computer scientists” course in Fall 2015 and Spring
2016. Students in the two semesters were taught by differ-
ent instructors. Students were assigned Levels 1–6 of Deep
Thought for full credit, with partial credit awarded propor-
tional to the number of levels completed. For this study, we
compare the data from three Deep Thought test conditions
used across the two semesters to differentiate the effect of
our data-driven methods on student performance.

The first group evaluated for this study were assigned only
problem-solving opportunities (PS group, n = 26). The
problem assignment system used was the DDML system de-
scribed in the previous section, where students were assessed
between levels and placed on either a high or low proficiency
track in the next level. This group of students were taken
only from the Fall 2015 semester, as there existed no equiv-
alent test condition in Spring 2016.

The second group of students were randomly assigned either
problem-solving opportunities or worked examples of the
same problems within each level (PS/WE group, n = 179),
with the number of problem-solving opportunities controlled
to match the number of problems solved by the PS group.
Like the PS group, the PS/WE group were assigned profi-
ciency tracks using the DDML. However, because individual
rule application scores were updated at each step in worked
examples as if a student had applied that rule in while prob-
lem solving, most students were consistently assigned to the
high track in most levels, and were only assigned the low
track when their individual performance was below satisfac-
tory. This group of students were taken from both the Fall
2015 and Spring 2016 semesters.

The third group of students were randomly assigned problem-
solving opportunities or worked examples in the same man-
ner as the PS/WE group, but with the DDPP method as-
signing proficiency tracks instead of the DDML, where stu-
dents were assigned the same proficiency track as prior stu-
dents who most closely matched their rule application be-
havior (DDPP group, n = 61). This group of students
were also taken from both the Fall 2015 and Spring 2016
semesters. Students in all three groups had access to on-
demand hints.

All students were evaluated using two proof problem ques-
tions as part of a mid-term examination, which was used
as a post-test for this study. Students performance in the
post-test for both Fall 2015 and Spring 2016 were graded by
the same teaching assistant, ensuring consistent evaluation
across all results. Students were separated for evaluation

by performance on the post-test and by the predominant
track level in Deep Thought. The post-test was a set of
two proofs students had to solve on paper for a midterm
exam. These questions were hand-graded with partial credit
given based on the percentage of the proofs completed and
points taken off for misapplication of rules and skipping non-
trivial rules. We considered two performance levels: post-
test scores greater than or equal to 80% (AB), or less than
80% (CDF). The post-test scores mark the final evaluation
of students’ ability to solve proof problems, and occurs im-
mediately following the Deep Thought tutor homework as-
signment.

The second dimension we studied was the proportion of high
to low proficiency track levels the students completed. Stu-
dents who were assigned to the high proficiency track in a
level had the ability to finish on either the high or low profi-
ciency track depending on the number of problems skipped
within that level. Students who completed more levels on
the high track than the low track were marked as high track
students, and students who completed more levels on the low
track than the high track were marked as low track students.
The track assignments indicate the number and complexity
of problems students received, with the low track having
more problems of lower complexity, and the high track hav-
ing fewer problems of higher complexity. The tracks were
designed so that students would have a similar number of
rule applications across the tracks, even though the number
of problems differs. Typically, the low track has three prob-
lems with expert solutions using 5 rule applications, and the
high track has 2 problems with expert solutions using 7 –
8 rule applications - meaning that both tracks minimally
required about 15 total rule applications (though students
typically used more).

In addition to post-test and predominant track level, we ex-
amined total time in tutor, average time spent per problem,
percentage of correct rule applications out of all rule appli-
cations, and the total number of rule applications. We also
looked at ancillary behaviors (hint usage, skipped problems,
and reference requests) that could differentiate high and low
performing students. We compared these metrics to better
understand the impact of worked examples, hints, and data-
driven track selection on student performance. The results
of this descriptive analysis are presented in the next section.

4. RESULTS
Table 1 displays the percentage of AB students in each of the
PS, PS/WE, and DDPP groups for all students, as well as
students who completed the majority of the tutor in either
the high or low tracks. Table 1 also displays the percentage
of students in each group and each track who dropped out of
the tutor before full completion, as this is one of the metrics
we have used to judge the effectiveness of our data-driven
methods. In our previous work using the same version of
Deep Thought, we found that students completed 94% of
the tutor on average, with a retention rate of 90%. The
average percent tutor completion for the groups in this study
were consistent with these numbers (PS: 95%, PS/WE: 93%,
DDPP: 94%).

The first interesting result of note is that the percentage of
students who performed better on the post-test was higher
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Table 1: Percentage of AB Students and Percentage
of dropped students in the PS, PS/WE, and DDPP
groups.

Condition ALL High Track Low Track
n % AB Students

PS 26 65.38 71.43 63.16
PS/WE 179 49.72 52.35 36.67
DDPP 61 63.93 66.67 61.76

n % Dropped Students
PS 26 3.85 0.00 5.26

PS/WE 179 11.73 6.71 36.67
DDPP 61 9.84 11.11 8.82

for for the PS (65%) and DDPP (64%) groups than for the
PS/WE group (50%), across all the students, as well as
within the high and low track groups. In the PS group,
students who completed more levels on the high track dis-
played a higher overall proficiency of the subject matter than
those who finished more often on the low track (71% vs 63%,
respectively), as did students in the PS/WE group (52% vs
37%).

However, students in the DDPP group showed a consis-
tent level of proficiency regardless of the tracks completed
(66% vs 61%), which makes sense considering that these
students were matched to previous successful students who
displayed similar rule-application behavior, and had a more
even placement within the high and low tracks compared
to the PS group, who had even placement among tracks,
but within the context of their own performance compared
to expert-decided thresholds. The DDPP group also had
higher placement compared to the PS/WE group, who were
placed on the high track much more often than not due to
the inclusion of worked examples. A Kruskal-Wallis test for
one-way analysis of variance showed no significant difference
between groups (p = 0.22).

Students also had a higher retention rate in both the PS
(4%) and DDPP (10%) groups compared to the PS/WE
group (12%). It is especially interesting to see the drop rate
among low track students in the PS/WE group, who had
a much lower retention rate among all the students in the
study. Because students in the PS/WE group were more
often that not placed in the high track in each level, for
students to end up on the low track indicates a high level of
problem-skipping among these students. We can conclude
that low performing students who are not intelligently as-
signed problems based on their problem-solving performance
appear to gain little from worked examples.

While it may be tempting to declare problem-solving op-
portunities with no worked examples as the best performing
pedagogical choice among the three groups based on these
numbers alone, a look into additional performance metrics
gives some more insight. Table 2 presents the amount of
time spent in tutor and on each problem, as well as the per-
centage of correct and total rule applications for each group,
separated by track. The numbers presented are the median
values for each metric, since the distributions of scores were
highly skewed and non-normal, and none of the differences
were significant due to low sample size within each subgroup.

As shown in Table 2, among AB students in all three groups,
the total time spent in tutor appears similar, although the
mean time for high-track students was lower for DDPP (M
= 3.95hr, SD = 6.21hr) compared to PS/WE (M = 4.46hr,
SD = 9.13hr) and PS (M = 6.66hr, SD = 9.91hr). The
mean time for low-track students was lower for PS (M =
4.63hr, SD = 9.55hr) and DDPP (M = 5.48hr, SD =
5.42hr) than the PS/WE (M = 7.74, SD = 9.76). The
means of average problem time, percentage of correct rule
applications, and number of rule applications were consis-
tent with the median values presented in Table 2 across all
three groups. Note that low-track students in the PS/WE
groups had the lowest percentage of correct rule applica-
tions, and the highest number of total rule applications among
all the groups. This means they are doing more work, but a
lower percentage of it is correct.

As shown in Table 2, among CDF students in all three
groups, the total time spent in tutor is dramatically dif-
ferent, with PS spending 3 to 4 times as long in the tutor
than PS/WE and DDPP groups. This ratio is also similar
in the average problem time for high and low track stu-
dents, and the number of total rule applications for high
track students. Therefore, while problem-solving only (PS)
may have a slightly higher overall success rate in helping
students learn proof problem solving and remain in the tu-
tor than the DDPP students, for students who are less pre-
pared, PS results in a much higher time spent in the tu-
tor, with little return on the time investment. Therefore,
for students who have a better grasp of the subject matter,
pure problem-solving may offer a slightly better option for
getting through the assigned tutor, although the differences
between problem solving, problem solving and worked exam-
ples, and proficiency profiled assigned problem solving and
worked examples are minimal. However, for less prepared
students, pure problem-solving opportunities offer little to
guide students to higher understanding of the material, and
in general, the DDPP offers a much better path to complet-
ing the tutor in far less time for both AB and CDF students,
giving students the opportunity to encounter all the subject
matter and have a greater chance of learning the material,
resulting in higher overall post-test scores.

Completing the tutor assignment is important for students;
however, since we want to make sure that students are learn-
ing the material well, mid-term examination scores are ulti-
mately a higher gauge for learning success. Among all the
experimental groups in this study, at most 65% of students
were performing at A or B grade level on the mid-term ex-
amination. We would like to increase this percentage of AB
students, so the question at this point is: Is it possible for us
to predict low exam scores based on in-tutor data for early
intervention?

We first look at the differences between AB and CDF stu-
dents in Table 2, with the assumption that the DDPP method
offers the best overall chance of success for students. For
high track students, total tutor time, average problem time,
percentage of correct rule applications, and total rule ap-
plications are consistent between AB and CDF students.
However, for low track students, average problem time, per-
centage of correct rule applications, and total rule applica-
tions show a higher difference. CDF students spent twice as
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Table 2: Total Time, Average Problem Time, Percentage of Correct Rule Applications, and Total Rule
Applications for AB and CDF students in the PS, PS/WE, and DDPP groups, separated by High and Low
Track. The numbers listed are all median values.

AB STUDENTS CDF STUDENTS
PS PS/WE DDPP PS PS/WE DDPP

HIGH TRACK n 5 78 18 n 2 71 9
Total Tutor Time (hr) 2.47 2.37 2.80 12.8 3.75 3.17

Average Problem Time (min) 9.89 11.1 12.1 52.3 18.4 16.0
% Correct Rule Applications 60.8 63.5 58.5 64.1 56.9 62.3

Total Rule Applications 258 214 203 471 255 204
LOW TRACK n 12 11 21 n 7 19 13

Total Tutor Time (hr) 1.80 3.33 3.67 17.2 5.96 4.98
Average Problem Time (min) 6.76 15.2 15.0 60.1 25.0 30.4
% Correct Rule Applications 68.8 45.5 57.0 48.7 45.7 47.0

Total Rule Applications 201 404 291 382 394 389

long on average per problem than AB students, and applied
rules correctly less than half of the time, while AB students
applied rules more than half of the time. CDF students
also attempted applying rules 25% more overall than AB
students.

Since the performance differences between AB and CDF stu-
dents are not as apparent for high track students, we look
at ancillary tutor behavior to make a better distinction. Ta-
ble 3 shows the number of requested hints, the number of
skipped problems, and the number of rule reference requests
(descriptions of logic rule operations) made by students in
all groups. For the DDPP group, the most apparent dif-
ference among AB and CDF students are the number of
hints requested, with the CDF group requesting 32 hints
(M = 50, SD = 57) compared to 17 (M = 32, SD = 42) for
the AB group. This difference in hints requested between
AB and CDF students is also consistent across all groups
and both high and low track students. We conclude that
for high track students, we can differentiate between higher
and lower proficiency students using hint request behavior,
and for low track students, we can differentiate higher and
lower proficiency students using the amount of time spent
on average per problem and the percentage of correct rule
applications. This allows the possibility of making an inter-
vention during a student’s progress through Deep Thought
in the case that a student requires additional feedback or
aid from an instructor due to a lesser understanding of the
subject matter.

Table 3: Number of Hints, number of Skips, and
number of Rule Reference requests for AB and CDF
students in the PS, PS/WE, and DDPP groups, sep-
arated by High and Low Track. The numbers listed
are all median values.

PS PS/WE DDPP
HIGH AB CDF AB CDF AB CDF
# Hint 95 166 12 26 17 32
# Skip 5 16 1 1 0 2
# Ref 151 168 76 145 111 92
LOW AB CDF AB CDF AB CDF

# Hint 30 104 31 44 19 26
#Skip 1 0 30 24 3 15
# Ref 77 224 60 271 55 109

5. CONCLUSION
In this paper we compared two classrooms of students us-
ing different test conditions of Deep Thought, with different
combinations of problem assignment (DDML or DDPP) and
the addition of worked examples, for the purpose of under-
standing how the specific methods of problem assignment
and combination of hints and worked examples affect high
and low performing students, as evaluated using mid-term
examination scores. We found that for higher proficiency
students who have a firmer grasp of the subject matter,
problem-solving opportunities offer the best chance of com-
pleting the tutor in a timely manner; however, the addition
of worked examples does not significantly detract from these
students’ learning experience. The method of problem as-
signment (DDML or DDPP) does not have a noteworthy
effect on high student performance.

For lower proficiency students, we found that problem-solving
opportunities alone with DDML problem assignment offered
little to guide students to higher understanding of the ma-
terial, and greatly extended the amount of time students
spent in the tutor with little learning benefit. The addi-
tion of worked examples helped these students get through
the tutor faster, however these students had a lower reten-
tion rate than any other students and lower examination
scores. We conclude from these results that updating our
data-driven skill estimates equally for viewing or applying
rules resulted in students being assigned to the high-track
when they were not prepared to solve harder problems. With
proficiency profiling – matching students to previously suc-
cessful students and the paths they take through the tutor –
we can reduce the amount of time spent in tutor, increase re-
tention, and make better use of worked examples by giving
them alongside problems that better match an individual
student’s proficiency level. This results in similar perfor-
mance to problem solving alone in terms of retention and
knowledge gained, but with a lot less time spent in the tu-
tor for lower-proficiency students. We conclude that our
DDPP method offers the best overall possibility of success
for students completing the Deep Thought tutor in a timely
manner, learning the subject matter, and performing well
on post-tutor examinations.
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ABSTRACT
In online educational systems we can easily collect and an-
alyze extensive data about student learning. Current prac-
tice, however, focuses only on some aspects of these data,
particularly on correctness of students answers. When a stu-
dent answers incorrectly, the submitted wrong answer can
give us valuable information. We provide an overview of
possible applications of wrong answers and analyze wrong
answers from three different educational systems (geogra-
phy, anatomy, basic arithmetic). Using this cross-system
comparison we illustrate some common properties of wrong
answers. We also propose techniques for processing of wrong
answers and their visualization, particularly an approach to
item clustering based on community detection in a confusion
graph.

1. INTRODUCTION
A key advantage of computerized educational systems is
their potential for personalization. By analyzing students’
answers we can estimate their knowledge using student mod-
eling techniques and adapt the behaviour of a system to the
needs of individual students. Student models [6] typically
utilize only information about correctness of answers. On-
line systems, however, collect (or can easily collect) much
richer information, e.g., timing information [18] and specific
details about answers and individual steps. In this work we
focus on analysis of wrong answers.

Wrong or incomplete answers from online educational sys-
tems have been studied previously, but mostly just as a
supplementary analysis to other research interests. For ex-
ample, analysis of programming assignments in MOOCs [9,
14] shows that the distribution of wrong answers is highly
skewed, containing few very common wrong answers. This
research does not, however, focus on analysis of wrong an-
swers, but rather on finding similar or equivalent solutions
and their visualizations (as there are many ways how to write
the same program) [7].

The observation that distribution of wrong answers is highly
skewed holds not only for programming assignments, but
also for other domains. For example, common wrong an-
swers have been used for student modeling in mathemat-
ics [29], but this work uses only information about whether
the wrong answer is common or not, it does not utilize actual
values of wrong answers. Specific student answers were also
modeled [8], but authors present only overall accuracy of the
proposed model without discussion of specific mistakes.

Data analysis techniques has been used for analysis of math-
ematical errors with the goal of classification (explanation)
of answers [13, 24]. The results show that it is possible
to classify most wrong answers into one of few categories.
Other data-driven techniques in educational data mining
have focused mainly on programming assignments [10, 21].
Rather than “wrong answers” they utilize “incomplete so-
lutions” and use them for automatic generation of hints
(changes towards a correct solution).

In the wider context, wrong answers are related to miscon-
ceptions, which are intensively studied in pedagogical lit-
erature, e.g., misconceptions in mathematics [26] or chem-
istry [22]. This line of research focuses on understanding
“buggy rules” used by students [4]. These rules are useful
not just for educating teachers about student thinking, but
also in development of intelligent tutoring systems.They can
be also used as a basis of erroneous examples [1, 11]. Re-
search in this direction is typically based on expert insight
using only relatively small (and often qualitative) data and
the focus is typically on complex skills.

In this work we focus on automatic techniques for anal-
ysis of large quantitative data, dealing with simple skills
(learning of declarative knowledge and simple procedures).
We describe analysis of wrong answers from three educa-
tional systems. Although the used systems share similar
basic principles they cover widely different domains (geog-
raphy, anatomy, basic arithmetic) and different learner pop-
ulations (from kindergarten to university students). Thanks
to the size of the used data set (millions of answers), results
provide interesting insights into properties and potential of
wrong answers. We describe specific examples of analysis
and propose novel techniques for analysis and visualization
of wrong answers. A key observation is that wrong answers
in our three domain (geography, anatomy, basic arithmetic)
share many properties and thus it should be feasible to carry
insights and analysis techniques across domains.
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2. POTENTIAL APPLICATIONS OF WRONG
ANSWERS

In this section we outline potential applications of wrong an-
swers. The presented applications are rather general and for
a specific application they need to be more precisely quan-
tified. In the next section we provide such specific analysis
for three particular domains.

2.1 Student and Domain Modeling
Student and skill models [6] typically utilize only binary in-
formation about correctness of an answer (correct/incorrect).
A more thorough analysis of wrong answers may improve
student and skill modeling in several directions.

In modeling of cognitive skills, wrong answers may help
to distinguish between absence of understanding and slips
(careless errors, typos). Highly uncommon wrong answer is
more likely to be a careless error, whereas common wrong
answer is more likely to be a genuine mistake (unless caused
by poorly designed user interface). Wrong answers may also
be indicative of the level of knowledge and strategies that
students are using. Consider for example a multiplication
5 × 5: a student A answers quickly 30, whereas a student
B answers 24 after a long time. This may indicate that the
student A retrieved the answer (incorrectly) from declarative
memory, whereas the student B made an error in a procedu-
ral strategy. Wrong answers can thus be useful for modeling
cognitive processes of learners [27]. Moreover, they may be
useful also for modeling affect and motivation [29]. Irrele-
vant, highly uncommon wrong answers (particularly when
repeated and quickly delivered) are probably indication of
disengagement rather than lack of knowledge.

Wrong answer may be useful also for domain modeling. Com-
mon wrong answers may indicate relations between topics
and thus may be used for automatic detection of knowledge
components. Even through these may be misconceived rela-
tions, when they are common, they may be useful for student
modeling. Relations between items based on wrong answers
may also be taken into account in the design of the user in-
terface or in the item selection algorithm. Wrong answers
can also be used for student clustering – different groups of
students make different types of mistakes and need different
treatment from the educational system (e.g., students with
dyslexia or dyscalculia).

2.2 Construction of Items and Hints
A basic observation about wrong answers, which seems to
be valid in many different domains, is that the distribution
of wrong answers is often highly skewed, i.e., some mistakes
are much more common then others. This feature of wrong
answers is potentially very useful for construction of ques-
tions and hints (both manual and automatic).

Common wrong answers may highlight student misconcep-
tions and thus provide inspiration for new items (problems).
In the case of items with simple structure, wrong answers
may even be used automatically, e.g., as competitive dis-
tractors in multiple choice questions [16]. Previous work [1,
11] explored the possibility of using erroneous examples in
education. Common wrong answers provide useful material
for creation of such examples.

Wrong answers may also be useful for development of hints,
feedback to students, and other scaffolding aids. If the hints
are developed manually by experts, wrong answers provide
good way to prioritize the expensive work of an expert. Due
to the skewed distribution of wrong answers it may be pos-
sible to quickly provide answer-specific feedback to most an-
swers even in open environments [9]. It is also possible to
generate hints automatically based on actions of other stu-
dents with the same wrong answer [23].

2.3 Feedback for Learners, Teachers, and Tool
Developers

Analysis of wrong answers can also bring more pragmatic
advantages. A useful feature of personalized educational
systems is an overview of mistakes made by a learner or a
class. Such an overview can serve for example as a base
for a review session. Teachers may use such overview to
quickly detect common problems of their students and thus
focus on problematic parts in classroom time or in personal
consultations.

For tool developers common wrong answers may be useful
as an indicator of problems with a user interface. For exam-
ple, in a prototype of one of the systems used in this study
there was a common wrong answer “1” in cases where the
answer should have been “10”. This turned out to be a user
interface issue – the system was expecting a single click on a
“10” button, whereas users were trying to click buttons “1”
and “0”.

For these types of applications, basic analysis of wrong an-
swers should be easily accessible in educational systems for
both teachers and system developers. Since there can be a
large number of mistakes, it is important to make the listing
of mistakes easy to navigate. To achieve this goal, we need
to understand common features of wrong answers.

3. ANALYSIS OF WRONG ANSWERS
After the general discussion of properties and possible ap-
plications of wrong answers, we turn to analysis of specific
data.

3.1 Used Systems and Data
The used systems cover three different domains (geography,
anatomy, basic arithmetic) and are used by very different
learners, but they have been developed by the same research
group and share the basic principles. All of them focus on
adaptive practice of declarative knowledge or simple proce-
dures. Systems estimate learners’ knowledge and based on
these estimates they adaptively select questions of suitable
difficulty. They use a target success rate (e.g., 75%) and
adaptively selects questions in such a way that the learners’
achieved performance is close to this target.

The used questions are either multiple-choice questions or
“open questions” – either a free text answer or selection of
any item from a provided context (e.g., “select Rwanda on
the map of all African states”). For the analysis we use only
answers to open questions, since the used multiple-choice
questions have adaptively chosen distractors and this fea-
ture makes analysis difficult (due to the presence of feedback
loops [19]).
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The first system is Outline Maps (outlinemaps.org) for
practice of geography facts (e.g., names and locations of
countries, cities, mountains). Details of the behaviour of
the system are described in [15, 16]. The used data set con-
tains more than 10 million answers (with more than 1 million
wrong answers) and is publicly available [17]. This data set
is the largest of the three used data sets and it is at the core
of the presented analysis. The application is currently used
by hundreds of learners per day, majority of learners is from
the Czech Republic since the interface was originally only
in Czech. The geographical origin and language of students
clearly influence interpretation of below presented results.
However, our main point is not interpretation of particular
results, but rather illustration of different insight that can
be gained by the analysis of the data.

The second system is Practice Anatomy for practicing hu-
man anatomy (practiceanatomy.com). The main target
audience of the system consists of junior medical students
preparing for their anatomy exams. Currently, the system
offers practice of more than 1800 items organized into 14
organ systems and 9 body parts. Learners can practice a
selected organ system or a body part, or specify a more ad-
vanced practice filter as an intersection of a set of organ
systems and a set of body parts. The system is available
in Czech (with Latin terminology) and English. Most users
are from the Czech republic. The analyzed data set contains
over 380 000 answers.

The third system is MatMat (matmat.cz) for practice of
basic arithmetic; its functionality is similar to for example
Math Garden [24]. The system contains examples divided
into 5 high level concepts (counting, addition, subtraction,
multiplication, division), each of these concepts contains
around 50-700 items, over 2 000 items in total. The system
behaviour and the used student modeling approach are de-
scribed in [28]. The analyzed data set contains over 180 000
answers.

Student knowledge and mistakes in the used domains have
been analyzed before, e.g., recall and mistakes in knowledge
of US states [20] or knowledge of Europe by Turkish stu-
dents [25]. These works focused on difficulty of recall of
individual countries and on factors which influence this dif-
ficulty (e.g., borders), they did not analyze wrong answers.
Moreover, we use a data set that is orders of magnitudes
larger than those used in previous research on geography
knowledge. The domain of basic arithmetic has been stud-
ied intensively before, even with the focus on mistakes. A
well-known example is the repair theory [4] with case study
for subtraction problems. Particularly multiplication has
been studied in detail, e.g., description of effects influenc-
ing difficulty (size effect, five effect, tie effect), connectionist
model of retrieval [27], classification or errors [5, 24]. Our
contribution in this domain is mainly in aligning the results
with analysis from different domains (learning declarative
knowledge in geography and anatomy).

3.2 Common Wrong Answers
Generally the distribution of wrong answers is highly skewed,
most wrong answers are comprised from just few items.
Analysis of commonly confused countries shows that the
most important factors are whether the countries have com-

mon border, if they have similar size (important factor par-
ticularly if they have a common border) and whether their
name starts with the same first letter (important factor par-
ticularly if they do not have a common border). There are
differences between the skewness of the distribution of wrong
answers for individual items. For some countries there are
few very typical mistakes – for Bulgaria more than 40% of
wrong answers are Romania, for Finland the two most com-
mon wrong answers (Sweden and Norway) comprise nearly
three quarters of wrong answers. Some countries, however,
have much more even distribution of wrong answers, e.g., for
Switzerland or Croatia the most common mistake comprises
only 10% of wrong answers.

The context of questions is also important. In the used sys-
tem countries can be practiced either in the context of a
single continent or of the whole world. In most cases the
mistakes on the world map are within the same continent
(i.e., the wrong answers on the world map are very similar
to wrong answers within the continent map). There is, how-
ever, nontrivial number of exceptions, for example: countries
with similar names, e.g., Guinea, Guyana, and Papua New
Guinea, which have confusingly similar names and are on
three different continents; countries close to continent bor-
ders, e.g., Turkey is confused with European countries and
Arab countries in Africa and Asia confused; islands are con-
fused together, e.g., Madagascar is not confused with other
African countries, but with other islands. These examples
illustrate the importance of proper practice context for some
items, e.g., it is not very useful to practice Madagascar on
the map of Africa, Madagascar should be practiced mainly
on the map of the whole world. Such results can have direct
consequences for the design of the behaviour of educational
systems.

The data from the MatMat application contain similar pat-
terns – the distribution of wrong answers is skewed, but
the skewness of the distribution differs among items. Some
items have very typical wrong answer (e.g., 1×1 = 2, 4×9 =
32), for other items wrong answers are more uniformly dis-
tributed (e.g., 6×8 with answers 42, 54, 56, 64, 78). Previous
work [24] has analyzed classification of errors in basic arith-
metic (particularly in multiplication), using categories like
near miss (±1), typo, operation error, or operand related
error. In agreement with previous research [13, 24], large
part of wrong answers fit into one of these categories, and
the dominant categories are as expected – for counting and
addition the dominant error type is “near miss”, whereas
for multiplication a common error is operand related, e.g.,
4× 9 = 32 (which is 4× 8). There are, however, interesting
differences between items of the same type. For division the
typical mistake is “near miss” (±1). For division by 1 and
10, however, the typical mistakes are rather answers 1 and
10; for items of the type N/N common wrong answers are N
or 0. For small operands (e.g., 4/2) operation errors (multi-
plication instead of division) sometimes occur, whereas this
does not happen for larger operands (e.g., 54/6).

3.3 Categories of Wrong Answers
To provide a more quantitative analysis and comparison
across educational systems, we define a coarse classification
of wrong answers and analyze properties of individual cate-
gories. We propose the following classification of wrong an-
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swers into four categories (note that the defined categories
can be seen as “degrees of wrongness” of an answer with a
natural ordering). TopWA is the most common wrong an-
swer for a given item. CWA is a common wrong answer other
then the most common one (as a definition of “common” we
require that the number of occurrences is more then 5% of
all wrong answers for the given item, it must also be larger
than 1). Other is any nonempty answer that is not com-
mon. Missing is an empty answer. Previous research [29]
used 10% bound for definition of common wrong answers,
but they did not treat the top wrong answer separately.

Figure 1 (top) shows distribution of answers among these
classes. Although there are some differences between the
used systems (respectively specific maps in the geography
system), overall the distribution is quite balanced, i.e., the
used definitions of classes provide reasonable partition of
wrong answers. The rest of Figure 1 shows characteristics
of student behaviour related to answers from individual cat-
egories. Since in this work we are interested mainly in rel-
ative comparison among types of answers (and not among
systems), the results are normalized with respect to correct
answers (for each system). The reported characteristics are
computed globally. We have also analyzed more detailed re-
sults (e.g., for specific practice contexts like European coun-
tries or one digit multiplication), the results show similar
trends.

The results show clear trends that are very similar across
the three used systems. The median response time is larger
for more wrong answers, with the exception of missing an-
swers. The probability of leaving the system directly after
an answer is much higher for wrong answers than for cor-
rect answers. Also within the wrong answers there is a clear
trend (the probability of leaving increasing with wrongness).
Finally, the last two graphs analyze future success of a stu-
dent; the probability of success on the next question about
the same item, the probability of success on the next ques-
tion within the system (global). In both cases there the
probability of future success decreases with wrongness of
the current answer.

We see that there are systematic differences between dif-
ferent types of wrong answers. The general nature of these
differences is rather intuitive, the main interesting aspects of
these results are the similarity of results across three differ-
ent domains and the consistently linear nature of these rela-
tionships, i.e., we can say that the distance between TopWA
and CWA is the same as the distance between CWA and
Other. The bottom line is that the wrongness of answers
can be treated as an interval variable and it may be useful
to utilize it as such for student modeling (for modeling both
knowledge and affect).

3.4 Confusion Graph and Item Clustering
So far we have analyzed wrong answers for each item sepa-
rately. But mistakes for individual items are clearly inter-
connected. We can analyze these interconnections with a
“confusion graph” (a similar analysis has been done previ-
ously for the domain of statistics [12], but for much smaller
data). In a confusion graph nodes are individual items, and
edges correspond to wrong answers – we consider a weighted
graph where a weight of an edge (u, v) is given by a frequency

of a particular wrong answer v among all wrong answers on
an item u. This definition leads to a directed graph, to ob-
tain an undirected graph we compute the weight of an undi-
rected edge by averaging the weights of the corresponding
directed edges.

Figure 2 shows the confusion graph for European countries.
The confusion graph contains distinct clusters of items, this
observation holds also for confusion graphs of other prac-
tice contexts in the used systems. To automatically detect
these clusters we use a community detection algorithm [3].
The resulting clusters are meaningful and can provide use-
ful insight for teachers and developers of educational system
(Figure 2 for an illustration). The presented clustering was
obtained by off-the-shelf implementation of the community
detection algorithm [2] without any tuning. For a specific
application of such clustering it may be useful to experiment
with different community detection algorithms and specific
definitions of the confusion graph.

3.5 Other Properties of Wrong Answers
Wrong answer may help us to (quickly) differentiate between
different groups of users. For example in the geography do-
main we can see some important differences in wrong an-
swers of students of different geographical origin, e.g., con-
fusions between Slovakia and Slovenia, which is much more
common mistake for US students than for Czech students,
or wrong answers for Belarus (Bulgaria for US students,
Ukraine for Czech students).

Wrong answers differ in their “persistence”, i.e., probability
that the mistake will be repeated (by the same student) in
future. For example, consider wrong answers for Ireland.
United Kingdom is more probable mistake than Italy, but
the second one is more likely to persists. Other similar ex-
amples are Moldova (answers Macedonia versus Kosovo) or
Benin (answers Burundi versus Ghana). Some mistakes are
very likely to be repeated, e.g., confusion between Zambia
and Zimbabwe, Gambia and Senegal, or Guinea-Bissau and
Burkina Faso.

4. CONCLUSIONS
Our analysis suggests that wrong answers are underused re-
source in online educational systems. They are easy to col-
lect and can provide interesting insight applicable in many
different ways (student modeling, automatic question and
hint construction, feedback and inspiration for teachers and
system developers). We provide a systematic overview of po-
tential applications of wrong answers and many illustrative
examples of interesting insights from educational applica-
tions.

We also propose specific novel approaches to analysis and
utilization of wrong answers, particularly a classification of
wrong answers into four categories (which can be treated
as “degrees of wrongness”) and clustering of items using a
confusion graph (based on wrong answers) and a community
detection algorithm. The results of analysis from three dif-
ferent domains (geography, anatomy, basic arithmetic) show
that properties of wrong answers are rather consistent and
thus the developed approaches should be applicable also for
other domains.
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Figure 1: The first line shows frequency of different categories of wrong answers for different systems and for
selected maps in geography system. The rest of the figure shows properties of different categories of answers
normalized with respect to correct answers.

Figure 2: Left: A confusion graph for European countries (showing only the most significant edges). Right:
Clustering of European countries based on community detection in the confusion graph.
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ABSTRACT
An increasing number of automated models can make infer-
ences about learners’ understanding based on their problem
solving choices in interactive educational technologies. One
potential use of these models is to personalize feedback inter-
ventions. We investigate using the output of an inverse plan-
ning model to choose feedback activities for learners. The
inverse planning model uses the patterns of how a learner
solves algebraic equations to estimate her proficiency on sev-
eral discrete skills. The personalized feedback then focuses
on the skill which is least proficient and includes a combina-
tion of existing educational content and scaffolded practice.
We experimentally tested the effectiveness of personalizing
the feedback based on the algorithm’s estimate compared
to simply providing a random feedback activity. The re-
sults show that completing the feedback was associated with
performance improvements from pre- to post-test, but that
personalized feedback was not associated with reliably more
improvement. However, participants who received feedback
about a skill that was far from mastery did show reliably
more improvement than those who received feedback about
an already-mastered skill. This suggests that there is poten-
tial in using the inverse planning algorithm to provide more
effective learning experiences.

1. INTRODUCTION
Cognitive models of people’s learning are often useful for
better understanding behavior and can highlight what a
particular learner knows and where she may be struggling.
There are also an increasing number of educational resources
available for learning specific topics, such as online videos,
which might be effective for remediating a learner’s strug-
gles. However, there can be challenges when trying to close
the loop between estimating a model of what someone knows
and creating interventions based on that model to address
misunderstandings or gaps in knowledge. The model is not a
perfect assessment, and many interventions may be effective
for a particular learner, making it difficult to determine if
personalizing the intervention is valuable. While there are a

number of models that have been used to change the behav-
ior of an educational technology, such as providing problems
until mastery [2], there has been less of a focus on using
models based on behaviors in more open-ended learning en-
vironments to guide feedback and remedial interventions in
these settings.

We address the problem of closing the loop between a model-
based assessment of a learner’s algebra skills and the expe-
rience the learner has in a web-based algebra activity. The
model was an inverse planning model for algebra, which pro-
vides an assessment of specific algebra skills based on the
pattern of how someone solves equations. While the model
provides a profile of what a person may misunderstand, sug-
gesting that it could be used to guide feedback interventions,
its estimates also have some error, meaning that it will not
perfectly identify misunderstandings for every person. Ad-
ditionally, the model’s assessment is based on a collection of
problem solutions, meaning the feedback must be targeted
at an overall skill or misunderstanding rather than perfor-
mance on a specific problem. This differs from many con-
texts where feedback is provided in interactive educational
technologies, but has the potential to facilitate longer inter-
ventions about specific concepts or skills. This type of feed-
back could connect a learner with existing resources about
particular concepts, since rather than assisting with a single
question, the feedback is remediating a more abstract area
of struggle. Thus, we explore how the model’s assessment of
understanding can be used to provide feedback to learners
that targets their misunderstandings.

We investigate this question by designing feedback inter-
ventions for specific skills and experimentally testing how
people’s performance changes from pre- to post-test based
on the intervention that they are given. The feedback in-
terventions combined relevant content from existing sources
and scaffolded opportunities for practicing a particular al-
gebra skill. In an experiment, we compared performance for
people who completed a feedback intervention based on the
algorithm’s estimate of their skills versus those who com-
pleted an intervention that was chosen randomly. We found
that both groups showed significant performance improve-
ments from pre- to post-test, but the two groups did not
differ in their amount of improvement. However, complet-
ing feedback about a skill that one was less proficient in was
reliably associated with more improvement than completing
feedback about a skill that was near mastery. These results
suggest that the algorithm’s assessment may be used to di-
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rectly improve the educational technology, although there
are a number of subtleties in how to do this effectively.

2. BACKGROUND
There has been a great deal of previous work related to
assessing student understanding and providing interactive
feedback to improve understanding. In our work, we are
most interested in techniques where a student’s actions or
choices are used as part of the assessment of understanding,
such as in open-ended learning environments (OELEs). OE-
LEs are often used in science education, as they can provide
opportunities for students to generate and test their own hy-
potheses [6]. Educational data mining has been used to bet-
ter understand what behaviors are associated with learning
in some of these environments, such as Betty’s Brain [4], and
these environments may provide feedback to students about
their progress (e.g., [12]). Data mining is also used in these
environments for assessments of skills, especially those like
experimentation that are more difficult to measure in other
environments [3]. However, it is rarer for the data mining
to be used directly to inform feedback to students, and the
feedback that is provided is frequently in the form of a short
hint or suggestion about what to do. In mathematics ed-
ucation, there exist several systems, such as the Cognitive
Tutor [2], that maintain a model of student learning and use
this to adapt instruction, such as providing more problems
on an unmastered skill; typically these systems assess stu-
dent knowledge based on final answers rather than on what
actions are taken to generate a solution. In both the science
and mathematics systems the type of adaptive feedback dif-
fers from our focus on providing a somewhat longer session
of feedback focused on re-teaching a particular skill.

While formative feedback to learners is an effective way to
improve understanding and help create a more integrated
base of knowledge [13], the problem of determining what
type of feedback will be most effective is an area of active
research. Much of the previous work on feedback in mathe-
matics tutors has focused on progressively more informative
hints (e.g., [5]). More holistic information based on assess-
ments of skills may be provided to students, such as when
making a learner model “open” to the learner [1], but this is
not necessarily paired with feedback or interventions to re-
mediate understanding. Research about teachers’ responses
to student work in educational technologies has found that
teachers may customize their instruction in a variety of ways
to adjust to student misunderstandings [8]. Based on this
work, we were interested in how more holistic feedback that
focuses on a particular skill that a student is struggling with,
rather than a specific problem, might affect learning.

3. INVERSE PLANNING
In order to get a holistic assessment of a learner’s algebra
skills based on observing their behavior, we used a Bayesian
inverse planning approach [11]. Bayesian inverse planning
takes as input a set of step-by-step actions from a learner,
and outputs a posterior distribution over possible levels of
proficiency for various skills. This approach allows us to
interpret people’s patterns of behaviors while they solve al-
gebraic equations in a relatively freeform interface. In this
interface, shown in Figure 1, learners have the ability to en-
ter step-by-step solutions to equations, with no constraints
on whether individual steps are correct before entering a new

Figure 1: A screenshot of the step-by-step interface
for solving algebraic equations. The user may solve
the problem using any steps she chooses and record
them in the interface.

step. The Bayesian inverse planning algorithm uses both the
mathematical correctness of each step and the way it moves
the learner towards the solution to diagnose proficiency; the
model is substantially similar to that described in [10]. We
provide a brief overview of the algorithm and its underlying
model of problem solving.

Bayesian inverse planning is based on a generative model:
it models how likely a person would be to choose each pos-
sible solution step if she had a particular understanding of
algebra, and then uses this model to infer what understand-
ing is most likely to have resulted in the observed solutions.
To create this generative model, we need to specify how
choices about solution steps are made as well as specify-
ing the representation of possible understandings. Inverse
planning treats algebraic equation solving as a Markov deci-
sion process (MDP), in which people choose actions to bring
them closer to the goal of solving an equation with as few
steps as possible. With each action, the person moves from
one (partially solved) equation to another. In an MDP, the
value Qh(s, a) of taking an action a given that the current
equation is s can be approximated using dynamic program-
ming. This long-term value is dependent on the person’s
understanding of algebra, denoted as h, since that under-
standing may change what actions she believes are possible
or what next equation she generates from the current equa-
tion. We model people as following a noisy optimal policy
when choosing actions: p(a|s) ∝ exp(β · Qh(s, a)), where β
controls the level of noise. Intuitively, this policy assumes
people tend to choose actions that they think will help them
solve the problem efficiently but they do not do so determin-
istically. The parameter β is estimated for each individual,
as described below.

In this model, understanding is represented by the level of
proficiency for several skills. For each skill, the proficiency
indicates whether the person generally applies the skill cor-
rectly or if she makes a particular type of error. The different
levels of proficiencies form a hypothesis space of possible al-
gebra understandings. The hypothesis space was based on
past education and psychology research and consists of pa-
rameters for six skills (see [10] for details): moving terms,
dividing by the coefficient of a term, applying the distribu-
tive property, combining terms, arithmetic, and planning.
The first four parameters relate to specific rules of manipu-
lating algebraic equations, while the latter two apply more
broadly.

Each of the four algebra-specific parameters indicates whether
the person is prone to a particular type of error or “mal-
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rule” [9]. For moving terms, the mal-rule is failing to flip
the sign of a term when moving it from one side of the
equation to another; the inferred parameter is the probabil-
ity of not following this mal-rule when moving a term. For
dividing by the coefficient of a term, the mal-rule is multi-
plying rather than dividing (i.e., not using the reciprocal),
and for applying the distributive property, the mal-rule is
only distributing the coefficient to the first term rather than
all terms. Both of these parameters, like moving terms, are
probabilities. For combining terms, the mal-rule is combin-
ing unlike terms, such as a variable and a constant. This
parameter is binary: the person either considers combining
unlike terms when choosing actions or she does not.

The final two parameters for the hypothesis space are the
arithmetic parameter and the planning parameter. The arith-
metic parameter is the probability that a person accurately
computes a calculation. The planning parameter is the pa-
rameter β in the noisily optimal policy: higher values for
this parameter indicate very high probability of choosing
the most efficient action for moving towards a solution, while
values close to zero indicate very different choices from those
expected by the model, such as choosing an action that does
not make progress towards the solution or giving up prior
to reaching a solution. This parameter is the only parame-
ter not targeted for feedback, as a mixture of cognitive and
motivational feedback might be most effective for improving
planning and lessening the rate of non-answers.

The parameters above form a six-dimensional, continuous
hypothesis space H, where each point in the space repre-
sents one possible set of skill proficiencies h. Given this
hypothesis space, the posterior distribution after observing
the person’s problem solutions D is calculated using Bayes’
rule: for each h ∈ H, p(h|d) ∝ p(h)

∏
d∈D p(d|h), where p(h)

is the prior distribution over the hypothesis space and p(d|h)
is the likelihood that the person would produce the observed
step-by-step solution if she had the skill levels indicated in h.
The prior favors higher levels of proficiency; intuitively, this
means that the algorithm favors the part of the hypothesis
space indicating normative algebra understanding unless it
observes evidence in the solutions that non-normative steps
are being taken. Because the hypothesis space is continu-
ous, the posterior distribution cannot be calculated exactly.
Instead, Markov chain Monte Carlo (MCMC) methods are
used to compute an approximate posterior distribution. As
shown in Figure 2, the resulting posterior distribution indi-
cates both the most likely proficiency for each skill as well as
the algorithm’s confidence. In the figure, both the parameter
for moving terms and the distributive property are close to
one, but the estimate for moving terms is more certain; there
is also a lower estimated proficiency for arithmetic than for
the other skills. In order to use the posterior distribution
for feedback, we calculate the mean value of the posterior
on each skill dimension (shown as green lines in Figure 2).

4. FEEDBACK DESIGN
Given the output of the inverse planning algorithm, our goal
was to “close the loop” by providing learners with a feedback
activity that could help to remediate their understanding of
a particular skill. In an attempt to minimize differences in
feedback effectiveness due to quality rather than topic, all of
the feedback interventions followed the same pattern. First,
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Figure 2: The inverse planning algorithm’s assess-
ment for a learner from the experiment. Each plot
shows the posterior distribution for one skill. Larger
values are closer to mastery.

an overview screen showed the learner two skills: the skill
closest to mastery and the skill she would receive feedback
about. In both cases, she was shown her proficiency level as
a colored bar and a short description of the skill was pro-
vided. The bottom of the page told her that she would be
learning more about the second skill that was shown; we
refer to this skill as the feedback skill. On the next page,
learners were shown a 2–5 minute embedded video about
the feedback skill. Since there already exist a large number
of freely availably educational videos, we aimed to connect
learners to a relevant resource rather than create new tuto-
rial content. All videos were sourced from Khan Academy1,
and were chosen because they targeted one of the five skills.

After the video, several stages of scaffolded practice were
provided. For the four skills related to algebraic rules, the
scaffolded practice began with four problems to highlight
the core skill being practiced. For example, only the feed-
back focused on correctly applying the distributive property
included practice on the distributive property. For these
problems, the learner’s steps were checked for correctness
with each new step. If a mathematical error was detected,
the step was highlighted and she was asked to fix it before
continuing. After each problem, the learner was told the
correct answer. Following these problems, eight problems
were provided that still focused on the feedback skill, but
checking of correctness was only provided after the learned
submitted her answer. At that point, steps with errors were
highlighted and the learner was given the opportunity to re-
view them before continuing. These problems thus targeted
the feedback skill, but included slightly less immediate assis-
tance than the first set of problems. For the feedback target-
ing arithmetic, all twelve practice problems were arithmetic
computations to complete rather than algebraic equations.
Finally, all feedback finished with twelve algebra problems
that were not specialized based on the feedback skill, with
the intention for people to practice in context what they
had learned from the skill-specific problems. The interface
for these problems was the same as when doing general prob-
lem solving on the website: people had the opportunity to
enter individual problem steps, and they were told whether
they were correct before moving to the next problem.

5. EXPERIMENT
When we designed the feedback, our goal was to person-
alize what feedback someone was given based on the algo-
rithm’s assessment of their skills by assigning the person to
complete feedback on their least proficient skill. While it
is intuitively plausible that personalized feedback based on

1http://www.khanacademy.org/
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this assessment might be more helpful than non-personalized
feedback, there are several reasons to be skeptical. First,
the algorithm’s diagnosis is an approximation: there is er-
ror both in the MCMC estimate, and in the model itself.
In general, the algorithm can interpret most problem so-
lutions [10], but some people’s behavior may be poorly fit
by the model, resulting in poor accuracy for an individual.
Additionally, the algorithm does not account for learning
within the period that the skills are being assessed and de-
pending on the person’s behavior, there may be some skills
about which we have very limited information. For example,
a person might solve only a few problems using the distribu-
tive property, giving a relatively large confidence interval
for possible skill proficiencies. A second concern about per-
sonalizing feedback is that learners who are struggling may
be struggling in many skills. In that case, it may be that
the personalization is unnecessary: most students who ben-
efit from one feedback activity would also benefit from any
of the other feedback activities. Thus, we ran an experi-
ment to test whether the feedback activities were associated
with learning and to examine whether personalized feedback
produced larger learning gains than feedback that was not
personalized based on the algorithm’s assessment.

5.1 Methods
Participants. 200 participants in the USA were recruited
from Amazon’s Mechanical Turk (AMT) and compensated
$4 for session 1, $6 for session 2, and $8 for session 3. Partic-
ipants had taken an algebra course and had not completed
college math classes beyond algebra.

Stimuli. Participants completed a multiple-choice assess-
ment, solved algebra problems on a website, and responded
to several surveys. The twelve question multiple-choice as-
sessment was based on College Board ACCUPLACERR© tests
used for math placement in many postsecondary institu-
tions[7]. The questions were substantially similar to the El-
ementary Algebra questions used in [11], but the numbers
were changed to create two versions of the assessment.

All problem solving on the website used a similar interface
to that shown in Figure 1. In sessions 1 and 3, learners
were told whether or not they were correct immediately after
submitting a problem. During the feedback in session 2, the
interface behaved as described in the previous section.

In the surveys, participants indicated their demographics as
well as prior math class experience. They also completed
18 questions focused on the usability of the website and the
perceived helpfulness of the feedback.

Procedure. Participants completed three sessions, sepa-
rated by at least one day. In the first session, all partici-
pants solved 24 equations on the algebra website, followed
by the multiple-choice questions about elementary algebra
topics. The website included a short tutorial about how
to use the interface, and the 24 problems were generated
based on templates. For example, one template was a con-
stant plus a variable equal to a constant. The constants and
coefficients for variables were generated randomly, but all
participants shared the same templates. After a participant
completed all problems on the website, the diagnosis for that
participant was computed automatically by the inverse plan-

ning algorithm, and results were stored in the database for
the participant’s next session. Participants were randomly
assigned to receive version one of the multiple-choice ques-
tions or version two; these versions were identical except for
changes to the exact numbers used in the problems.

In the second session, participants completed one of the feed-
back activities. They were randomly assigned to either tar-
geted or random feedback. Those receiving targeted feed-
back completed the feedback activity for the skill which the
algorithm estimated they had least proficiency; those re-
ceiving random feedback completed one of the five feedback
activities selected uniformly at random.

In the third session, participants again solved 24 equations
on the algebra website, followed by the multiple-choice ques-
tions about elementary algebra topics. Just as in the first
session, participants all completed problems on the website
that used the same templates. For the multiple-choice ques-
tions, each participant completed the version of the ques-
tions that they did not complete in the first session. Finally,
participants ended the third session by completing the de-
mographics and usability surveys.

5.2 Results
82% of participants completed all three parts of the experi-
ment in a single session. Several participants were removed
due to technical problems, such as needing to restart the
computer during a session and thus losing their place in the
activity. The results that follow include only the 164 partic-
ipants who completed all parts of the experiment.

Responses to our demographics questions suggest that par-
ticipants came in with varying levels of mathematics back-
ground and that for most, significant time had passed since
they had last studied algebra in school. 98% of partici-
pants reported what previous math classes they had taken,
in college or in high school. 62% of those who responded
had taken no math classes beyond geometry (typically at
a high school level); the remaining participants had taken
trigonometry, pre-calculus, or calculus at a high school level.
A number of participants who reported taking one of these
higher-level courses in high school also reported taking a col-
lege algebra class. Thus, we would expect all participants
to have prior experience with solving equations, but to be
likely to have some gaps in their knowledge.

We first examined changes in participants’ performance be-
tween the first session, before getting feedback, and the final
session, after getting feedback. Results from the first ses-
sion confirmed that participants were on average far from
ceiling on the task: they correctly answered an average of
7.2 multiple-choice questions out of a total of 12, and cor-
rectly answered an average of 12.4 out of the 24 algebra
problems on the website. There was a small increase in
the number of multiple-choice questions answered correctly
in the final session. Using a repeated-measures ANOVA
with factors for time of test, condition, and a random factor
for participant, we found that this main effect was reliable
(F (162, 1) = 15.7, p < .001), but there was no interaction
between condition (targeted versus random feedback) and
time of test. Given that many of the questions focused on
skills that were not directly targeted by our intervention, in-
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cluding some quadratic equations and linear inequalities, it
is not surprising that we see only a small improvement from
the first to the final session. The increase in performance
was somewhat larger for the algebra equations solved on the
website: participants correctly answered 23% more prob-
lems correctly, for a mean of 16.6 problems correct in the
final session. We again used a repeated-measures ANOVA
with factors for time of test, condition, and a random fac-
tor for participant to analyze the reliability of this finding,
and found that there was a main effect for time of test
(F (162, 1) = 89.9, p < .001), but no interaction between
time of test and condition.

To better understand why there was no interaction between
condition and the amount of improvement, we examined the
estimated proficiency level of the skills for which feedback
was given. On average, the targeted condition selected skills
that had lower levels of proficiency (average proficiency level
of 0.56 versus 0.88; t(162) = 7.03, p < .001), indicating
that in many cases, there were large differences between the
least mastered skill and a random skill. However, there were
a number of participants in the random condition who re-
ceived feedback about a skill with which they were strug-
gling as well as participants in the targeted condition who
did not have any skills that were far from mastered. To
test whether participants who received feedback that was
more appropriate for them improved more than participants
who received feedback that was less appropriate for them,
we divided all participants into two categories: those who
received feedback about a skill that was estimated to be
less than a proficiency level of 0.85 (an unmastered skill)
and those who received feedback about a skill that was at
a proficiency level greater than or equal to 0.85 (a mastered
skill). This criterion categorizes 46% of participants as re-
ceiving feedback about an unmastered skill. As shown in
Figure 3, participants who received feedback about an un-
mastered skill improved more than those who received feed-
back about a mastered skill. A repeated-measures ANOVA
with factors for whether the feedback skill was already mas-
tered, time of test, and a random factor for the participant
showed that there was a main effect of time of test as well
as an interaction between time of test and whether the feed-
back skill was already mastered (F (162, 1) = 9.42, p < .01).
To ensure that this result was not simply due to the cutoff
level we chose for mastery, we also examined a categoriza-
tion based on mastery level 0.9, and found the same trends
(F (162, 1) = 46, p < .05). While these results must be inter-
preted with some caution, as participants were not randomly
assigned to the two categories, they suggest that receiving
feedback that the algorithm indicates is more appropriate
can result in greater improvements in performance.

Based on the fact that proficiency level influenced the ef-
fectiveness of the feedback, we examined the distribution of
proficiencies for individual participants. We were interested
in whether participants tended to have all skills at a similar
level or whether they usually had some skills that were mas-
tered and some that were unmastered. As shown in Figure 4,
35% of participants were at mastery for all skills, where mas-
tery is defined as proficiency of at least 0.85, and 14% of par-
ticipants were not at mastery for any skills. The remaining
51% of participants who had some mastered skills and some
unmastered skills are arguably those that might most bene-
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Figure 4: Count of the number of unmastered skills
by participant.

fit from targeted rather than random feedback. A repeated-
measures ANOVA with factors for time of test, condition,
and a random factor for participant shows that there is a
significant interaction between time of test and condition
when restricting the data to these participants: as shown in
Figure 5, those who completed targeted feedback improved
almost twice as much those who completed random feed-
back (average improvement 5.3 versus 3.0; F (82, 1) = 5.64,
p < .05).2 This suggests that inverse planning can provide
a benefit for these participants: it allows us to determine
what skill(s) will be appropriate targets for feedback.

6. DISCUSSION
Our goal in the feedback design and the experiment was to
evaluate the benefit of connecting the holistic assessment
and the feedback activities. While many of the feedback
problems provided practice on multiple skills, since multi-
ple skills are required to solve the algebraic equations, there
was specialization in our feedback based on the algorithm’s
assessment. Our results show that overall, participants’ per-
formance improved after completing the feedback activities.
The effects of personalization on the size of this effect were
mixed: across all participants, feedback targeted at some-
one’s weakest skill was not associated with reliably more
improvement than feedback about a random skill, but re-
stricted to those who had some mastered and some unmas-
tered skills, we observed more improvement for those receiv-
ing the targeted feedback compared to those receiving the
random feedback. This suggests that there is promise in us-
ing the inverse planning algorithm’s assessment to connect

2With mastery level set at 0.9, this effect is marginally signif-
icant (average improvement 4.2 versus 2.7; F (103, 1) = 3.33,
p = .07).
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skills. Participants show reliable improvement, and
participants who received targeted feedback tended
to improve more than those who received random
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learners to relevant resources and personalize feedback activ-
ities, although further investigation is needed to determine
ways to make this personalization even more effective.

There are several limitations of this work. First, our popu-
lation of AMT workers may not be typical of algebra learn-
ers. These people were paid to participate in the study,
and may differ in motivation and background from those
who would use the website by choice. However, their varied
backgrounds may be typical of adult learners who are try-
ing to surmount barriers such as algebra at the community
college level, a group we are particularly interested in reach-
ing. Second, this experiment does not separate whether the
content of a feedback intervention is helpful from whether
the targeting of that feedback is accurate. We intend to
further evaluate these two components to better understand
what the maximum benefit of this type of feedback would
be if targeting was perfectly accurate, but any evaluation of
the overall effectiveness of the knowledge diagnosis-feedback
loop must acknowledge that inaccuracies in the diagnosis
may lead to the personalization being less effective.

In future work, there are a number of ways we will explore
how to design more effective personalized feedback and in-
vestigate variations in how to use the algorithm for person-
alization. Our intervention was relatively short, with most
participants taking about an hour for the session in which
feedback was provided. One might expect the effects of per-
sonalization to be cumulative, with targeted feedback being
most helpful when learning over a longer period; in that
case, the targeting could be used to remediate the same
skill multiple times if struggles were still evident or to recog-
nize that say, one session of feedback had resulted in several
skills reaching mastery and skipping the already mastered
skills. Such longer interventions are likely to have larger ef-
fects, and may highlight whether targeted feedback is overall
more effective or whether there is a subset of participants for
which targeting makes a difference. Another area to explore
is providing the profile generated by the inverse planning
algorithm to the learner and using this in conjunction with
targeted feedback, random feedback, or feedback chosen by
the learner. The current system provides learners with the
algorithm’s assessment of several of their skills, but it does
not allow them to make choices about what feedback they re-

ceive. Choice might be useful for those not well-modeled by
the algorithm or in cases where several non-mastered skills
have been identified; however, it is also possible that strug-
gling learners are unable to understand the possible types
of feedback in order to make a good choice. Finally, there
are several ways we might adjust how the algorithm’s out-
put is linked to feedback. The diagnosis includes information
about the algorithm’s certainty. This might be used to focus
on skills that we are confident are unmastered. Additionally,
the algorithm outputs a diagnosis of planning efficiency, but
this was not used for feedback. Low levels of this parameter
can be indicative of someone who frequently gives up or who
is not well fit by the model. In either situation, it may not
be appropriate to simply give feedback about the least pro-
ficient skill. Overall, the results in this paper serve as first
steps for a larger investigation into how to effectively close
the loop between holistic assessments of misunderstandings
and guiding personalized feedback interventions for learners.
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ABSTRACT 
To succeed in STEM, students need to connect visual representa-
tions to domain-relevant concepts, which is a difficult task for 
them. Prior research shows that physical representations (that 
students manipulate with their hands) and virtual representations 
(that they manipulate on a computer) have complementary ad-
vantages for conceptual learning. Further, physical and virtual 
representations are often embedded into different social classroom 
practices. Thus, to optimally combine these representation modes, 
we need to understand what social events prompt students to 
connect representations to concepts, and if different representation 
modes afford different social prompts. A multiple-case study with 
12 high-school students addresses this question. Student pairs 
worked with physical and virtual representations of chemistry. 
Frequent patterns obtained from discourse data show that students 
incrementally co-construct concept-representation connections, 
and that instructor prompts are key triggers of these connections 
for both representation modes. Meta-cognitive statements serve as 
important prompts in the absence of an instructor when students 
work with virtual representations. I discuss implications for inter-
ventions that combine physical and virtual representations.  

Keywords 
Physical and virtual representations, educational technology, 
collaboration, conceptual and social learning processes, STEM. 

1. INTRODUCTION 
Novice students in science, technology, engineering, and math 
(STEM) domains grapple with a representation dilemma [1]: they 
have to use visual representations they have never seen before to 
make sense of concepts they have not yet learned. Educators often 
take for granted that students can see meaningful concepts in 
representations [2]. However, much evidence shows that students 
struggle in connecting concepts to visual representations [3]. 
Their failure to make such concept-representation connections can 
impede their learning [4]. For example, in chemistry, difficulties 
in making concept-representation connections affect students’ 
understanding of key concepts related to atomic structure and 

bonding [5]. This issue applies to most STEM domains: because 
many key concepts cannot be directly observed, STEM domains 
heavily rely on visual representations [3]. Thus, STEM instruction 
typically provides conceptual prompts to help students make 
concept-representation connections [6]. 
Research in many STEM domains—including chemistry—shows 
that different representation modes provide different types of 
prompts for concept-representation connections [7]. Physical 
representations are tangible objects that students manipulate with 
their hands (Figure 1, top). In physical representations, haptic 
sensory input, experiences of movement, and continuous changes 
serve as prompts by making concepts intuitively accessible [7, 8]. 
By contrast, virtual representations are digital visualizations that 
students manipulate via mouse or text input (Figure 1, bottom). In 
virtual representations, visualizations and manipulations of invisi-
ble processes and immediate feedback can serve as prompts for 
concept-representation connections [7]. Thus, physical and virtual 
representations serve complementary roles in prompting for stu-
dents to make concept-representation-connections [7, 9].  
Besides providing different types of conceptual prompts for con-
cept-representation connections, physical and virtual representa-
tions may provide different types of social prompts. Social 
prompts are discourse events that elicit collaborative co-
construction of such connections [10]. Such events can emerge 
from student-student or student-instructor interactions. Because 
physical representations are typically used in collaborative con-
texts, interactions among students and instructors may prompt 
concept-representation connections [11]. By contrast, virtual 
representations are embedded in educational technologies that 
provide help in making concept-representation connections. In 
this context, students may work individually or collaboratively, 
typically with less help from an instructor [12]. Hence, interac-
tions with instructors may be less important in prompting concept-
representation connections. Thus, because physical and virtual 
representations are embedded in different social classroom prac-
tices, they may yield different social prompts for concept-
representation connections. 

 
Figure 1. Physical representations (top) and virtual representations (bottom) of chemical molecules
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Considering what social events serve as prompts for concept-
representation connections is important for the design of instruc-
tional interventions that combine physical and virtual representa-
tions. Prior research has not investigated whether different repre-
sentation modes afford different types of social prompts for con-
cept-representation connections. At a theoretical level, addressing 
this question will help us understand the mechanisms by which 
representation modes affect students’ ability to make concept-
representation connections. It will also help us understand why 
one representation mode may be more effective than another for a 
given concept. At a practical level, it will allow us to design in-
structional activities that take advantage of the social prompts that 
the different representation modes afford.  
The goal of this paper is to take a first step towards identifying 
social prompts of concept-representation connections for physical 
and virtual representation modes. To this end, I used a multiple-
case study approach; specifically, I observed and recorded collab-
orative discourse among six student pairs over an extended learn-
ing period. Case-study approaches are particularly appropriate for 
investigating how social processes unfold over a longer learning 
intervention within the given social classroom practices [13]. The 
study compared two instructional contexts: (1) student pairs work-
ing with physical representations while receiving support from an 
instructor and (2) student pairs working with virtual representa-
tions embedded in an educational technology. 
To identify social prompts of concept-representation connections, 
I applied frequent pattern mining to discourse data. This analysis 
identified social prompts that are successful for both representa-
tion modes and social prompts that were specific to a particular 
representation mode. I discuss implications for blending interven-
tions that combine physical and virtual representations.  

2. METHODS 
2.1 Multiple-Case Study 
Participants were 12 students from a small charter high school in 
the Midwestern U.S. The study was conducted as part of a chem-
istry workshop. Students had very limited prior knowledge about 
the concepts and the visual representations. The study took place 
as part of an in-school workshop on 3 days spread across 4 weeks. 
Each study day was 3h long. Prior to day 1, the teacher gave an 
introduction on chemical bonding. On day 1, students received an 
introduction into collaborative strategies and then worked on the 
chemistry workshop materials for the remaining study days.  
All students were randomly assigned to pairs for the duration of 
the study. For each study day, the pairs were randomly assigned to 
a sequence of representation mode (i.e., physical-then-virtual, 
virtual-then-physical). For example, a pair might be assigned to 
the physical-then-virtual order for day 1. This pair would work 
with physical representations for the first half of day 1 and then 
switch to virtual representations for the second half of day 1. On 
day 2, the pair was randomly assigned to a new sequence.  
The workshop covered basic concepts related to the polarity of 
chemical bonds. Students were presented with the visual represen-
tations shown in Figure 1: Lewis structures, ball-and-stick models, 
space-filling models, and electrostatic potential maps. Each was 
presented in the physical and virtual mode. When working with 
physical representations, students received a worksheet that asked 
them to construct a physical representation of a molecule, answer 
questions about the target concepts (e.g., about electronegativity) 
and about how the representation depicts these concepts. Each 
student pair was teamed up with an instructor—a research assis-
tant who was trained on facilitating student collaboration and on 

the chemistry concepts covered.  Instructors provided feedback 
and assistance as students solved the problems. 
Virtual representations were integrated in an educational technol-
ogy for chemistry: Chem Tutor [14]; a type of intelligent tutoring 
system designed specifically to help students make concept-
representation connections. To this end, Chem Tutor provides 
interactive virtual representations that students manipulate to 
solve problems about bonding. Chem Tutor prompts students to 
reflect on how each visual representation depicts particular con-
cepts. Chem Tutor provides error-specific feedback and hints on 
demand. Chem Tutor was shown to significantly enhance learning 
of chemistry knowledge and conceptual understanding of repre-
sentations [14]. While working with Chem Tutor, students could 
request help from an instructor who circulated the classroom.   

2.2 Analysis 
The goal of the analysis was to identify social events that prompt 
students’ concept-representation connections and to investigate 
whether these prompts differ between representation modes.  
The first step in the analysis was to code discourse data. All inter-
actions among students and instructors were video-taped and 
transcribed. To develop a coding scheme, we used a grounded, 
bottom-up approach: we summarized discourse utterance-by-
utterance to discover emerging themes. Next, we formalized these 
themes as codes, and then applied the codes to the discourse data. 
The coding scheme comprises 45 codes (see Table 1 for exam-
ples). Inter-rater reliability was substantial with kappa = .77. 
The second step in the analysis was to identify discourse segments 
in which students succeed in making a concept-representation 
connection, defined as establishing the relation between a visual 
feature in a representation and the domain-relevant concept it 
illustrates [6]. Hence, a concept-representation connection was 
operationalized as an utterance made by a student that correctly 
refers to a concept and a representation (e.g., Table 2, #5). 
The third step in the analysis was to operationalize social events 
that may prompt students to make concept-representation connec-
tions. In principle, any aspect of student-student or instructor-
student discourse could serve as a social prompt: mentioning a 
concept, encouragement, evaluating, a meta-cognitive statement, a 
mistake, etc. Hence, I considered any code as a potential prompt.  
The fourth step in the analysis was to specify the unit of analysis. 
Because I was interested in social events as prompts, I defined 
two consecutive discourse turns as the unit of analysis (i.e., utter-
ances by two different speakers). I segmented the discourse data 
in the following way. First, I identified turns with concept-
representation connections (e.g., Table 2, row 5). Second, I identi-
fied the two prior turns and considered them as a case (e.g., rows 
3-4 in Table 2). This case was labeled as ‘connection present’ 
(i.e., a concept-representation connection occurs in the next turn). 
Third, I segmented the remaining discourse data such that two 
consecutive turns serve as a case (e.g., rows 1-2 in Table 2), la-
beled as ‘connection absent’ (i.e., no concept-representation con-
nection in the next turn). Thus, each case was composed of two 
consecutive turns, labeled as connection-present/absent, annotated 
with codes, speaker (student or instructor) and mode (physical or 
virtual). Table 3 shows an overview of the dataset. 
The final step in the analysis was to search for social events that 
trigger concept-representation connections. Given the focus on 
social mechanisms, I was interested in discovering which codes 
co-occur in collaborative discourse. To this end, I used frequent 
pattern mining to identify undirected patterns that describe which 
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Table 1. Subset of codes in the coding scheme with examples 
from the transcripts. 

Code Definition Example 
Con-
cept 

Utterances that relate 
something to a scientific 
concept 

“They want to be able to 
make a complete number, 
a complete number of the 
eight on the outside” 

Con-
cept-
request 

Suggesting / prompting 
utterances that relate 
something to a concept 

“What's the rule for the 
bonding?” 

Repre-
senta-
tion 

Utterances that relate 
something to the represen-
tation; utterances that 
explain information shown 
by a representation 

[pointing at a representa-
tion] “So, one, two, three, 
four, five. He have five.”; 
[pointing at a representa-
tion] “So, wait, that's 
carbon?” 

Repre-
senta-
tion-
request 

Suggesting / prompting 
utterances that relate 
something to the represen-
tation; utterances that 
explain information shown 
by a representation 

“By looking at the Lewis 
structure, can you answer 
the question about elec-
tronegativity?”; “What 
are these things [points at 
dots in Lewis structure]?” 

Assent Expression of approval or 
agreement 

“yeah”; “ok”; “I know.”; 
“Mmhmm.” 

Meta-
confu-
sion 

Utterances about oneself 
that describe confusion 
about how to proceed or 
about a concept, or about 
not knowing a concept 

I don’t know.”; “this is 
very confusing.” “May-
be.”; “This is hard.”; “So, 
now we’re stuck.”; “I 
don’t get it why it’s 
lines.” 

Meta-
under-
stand-
ing 

Utterances about oneself 
that describe a novel in-
sights or understanding of 
how to proceed or of a 
concept 

“Got it “; “Well, I know 
that part”; “I like this 
explanation.”; “then I was 
like, well, duh”; “We’ve 
been making this so much 
harder than it is!” 

Read-
ing 

Reading the problems 
statement or instructions 
or hints / feedback from 
Chem Tutor 

“well it says right here 
that, “Choose the letters 
that show each atom,” 

Expla-
nation 

Utterances that explain / 
elaborate a concept 

“But when they say dini-
trogen, means they bond-
ed.”; “I’ll give a little bit 
more help.”; “So, carbon 
has more electrons than 
hydrogen.” 

Expla-
nation-
request 

Suggesting / prompting 
utterances that explain / 
elaborate a concept 

“So what do you think 
that that is?”; “Could you 
try, try to put as a com-
plete sentence”; “But 
why?”; “How did you 
know?” 

Meta-
phor 

Utterances that use a met-
aphor, intuitive example, 
embellished language to 
describe an abstract con-
cept 

“To make it lock on kind 
of.”; “can I borrow your 
electrons”; “It’s the same 
pulling forces.”; “So, like 
magnetic, plus and mi-
nus.”; 

Table 2. Excerpt transcript showing 4 turns before a concept-
representation connection (turn #5), with codes assigned to 
each turn. All student names are fake. 

# Speaker Utterance Codes 
1 Brigid Electronegativity are the 

same so makes it covalent 
which is no difference. 

Concept 

2 Adriana [reads] Does the Lewis 
structure show the polari-
ty? Why or why not? Um. 
I’d say- I feel like no, be- 
Well, yeah. I don't know. 

Reading; 
meta-
confusion 

3 Brigid What does polarity mean? Explanation-
request;  
concept-
request 

4 Instruc-
tor 

Polarity means plus and 
minus. Polarity means- 
This [points at representa-
tion] By looking at this 
one, can you see it has like 
electronegativity or stuff. 
Polarity means that- 

Explanation;  
metaphor; 
representation-
request;  
concept-
request 

5 Adriana I mean, like yeah, it 
doesn't like show really 
like the pulling or the not 
pulling or the same.  

Explanation;  
representa-

tion;  

concept;  
metaphor 

codes often occur together  [15, 16]. I ran this algorithm separate-
ly for cases with connections present or absent and for physical 
and virtual representations. Essentially, this analysis discovered:  
1. Frequent patterns for cases with concept-representation con-

nections present for physical representations  
2. Frequent patterns for cases with concept-representation con-

nections absent for physical representations 
3. Frequent patterns for cases with concept-representation con-

nections present for virtual representations 
4. Frequent patterns for cases with concept-representation con-

nections absent for virtual representations 
Comparing findings 1 and 2 identified prompts of concept-
representation connections for physical representations. Compar-
ing findings 3 and 4 identified prompts of concept-representation 
connections for virtual representations. Comparing findings 1 and 
3 identified differences between representation modes. 

3. RESULTS 
In the following, I first discuss which discourse patterns were 
found to prompt concept-representation connections with physical 
representations or with virtual representations. Then, I compare 
the physical and virtual representation modes.  

3.1 Physical models 
To identify prompts of concept-representation connections with 
physical representations, I considered patterns found only for 
cases with a present concept-representation connection (i.e., cases 
that correspond to two turns followed by a concept-representation 
connection). Table 4 shows statistics for the patterns.  
Several results are worth noting. First, it stands out that all pat-
terns involve either a reference to a concept or to a representation.  
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Table 3. Number of cases by representation mode and speaker.  

Representation mode 
Label Speaker 

Connection present Connection absent Student Instructor 
Physical 229  (7.33%) 2,895 (92.67%) 2,115 (67.70%) 1,009 (32.30%) 
Virtual  67  (3.28%) 1,976 (96.72%) 1,780 (86.13%) 263 (12.87%) 

 
Table 4. Frequent patterns for physical representations (un-
derlined: instructor utterances, italics: patterns that overlap 
with virtual representations). 
Frequent pattern Support Confidence 
1. instructor-assent; student-

concept 
0.100 0.410 

2. instructor-assent; student-
representation 

0.087 0.377 

3. instructor-representation-
request; instructor-concept-
request 

0.074 0.684 

4. student-representation; stu-
dent-concept 

0.201 0.803 

5. instructor-assent; student-
representation; student-
concept 

0.083 0.536 

 
This finding suggests that it may be easiest for students to make a 
concept-representation connection if discourse is already focused 
on the concept or representation. A related finding is that 3 of 5 
patterns include references to both concepts and representations—
either as a request to relate to concepts and representations by the 
instructor (#3 in Table 4) or by the students themselves (#4 and 
#5). These patterns have the highest support and confidence. 
Hence, students may be particularly likely to make a concept-
representation connection it already occurs in previous discourse. 
Second, 4 of 5 patterns involve instructor utterances. This finding 
suggests that instructors may be better than students at prompting 
concept-representation connections. 
Finally, 3 of 5 patterns include assent by the instructor. Assent is 
defined as agreement with a previous statement (see Table 1), 
often in the form of encouragement (e.g., “mhm). In the identified 
patterns, such encouragement co-occurs with references to a con-
cept or to a representation (or both) provided by one of the stu-
dents or by the instructor. This finding suggests that encourage-
ment by the instructor—when discourse is already focused on a 
concept or representation—prompts students to elaborate by mak-
ing a concept-representation connection.  

3.2 Virtual models 
To identify triggers of concept-representation connections with 
virtual representations, I considered patterns found only for cases 
with a present concept-representation connection. Table 5 shows 
statistics for these patterns. 
The following findings stand out. First, all patterns include a 
reference to a concept or to a representation. Hence, students may 
be likely to make a concept-representation connection if discourse 
is already focused on a concept or on a representation. A related 
result is that 7 of 16 patterns include a reference to both concept 
and representation (either as request by the instructor, or a direct 
reference to both by the instructor or the student). These patterns 

Table 5. Frequent patterns for virtual representations (under-
lined: instructor utterances, italics: overlap with physical 
representations). 
Frequent pattern Support Confidence 
1. instructor-assent; instructor-
concept 0.075 0.420 

2. student-metaConfusion; student-
representation 0.104 0.393 

3. student-metaUnderstanding; stu-
dent-representation 0.075 0.471 

4. student-metaUnderstanding; stu-
dent-concept 0.075 0.476 

5. student-metaConfusion; student-
concept 0.075 0.386 

6. student-concept; student-assent 0.134 0.388 
7. student-representation; student-
assent 0.134 0.378 

8. instructor-concept-request; instruc-
tor-concept 0.060 0.468 

9. instructor-representation-request; 
instructor-representation 0.060 0.468 

10. instructor-representation-request; 
instructor-concept 0.060 0.508 

11. student-assent; instructor-
representation; instructor-concept 0.060 0.568 

12. student-metaConfusion; student-
representation; student-concept 0.075 0.468 

13. instructor-representation-request; 
instructor-representation; instructor-
concept 

0.060 0.637 

14. student-metaUnderstanding; stu-
dent-concept; student-representation 0.060 0.463 

15. student-assent; student-concept; 
student-representation 0.119 0.550 

16. instructor-representation; student-
assent 0.060 0.299 

17. instructor-assent; student-concept 0.090 0.374 
18. instructor-assent; student-
representation 0.104 0.428 

19. instructor-representation-request; 
instructor-concept-request 0.075 0.714 

20. student-concept; student-
representation 0.254 0.792 

21. instructor-assent; student-
representation; student-concept 0.090 0.539 
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had the highest support and confidence. Hence, students may be 
particularly likely to deepen their discussion about a connection if 
prior discourse already focuses on the connection. 
Second, 7 of 16 patterns involve instructor utterances. This ratio 
seems surprisingly high, given that students worked without the 
instructor for most of the time. Recall that when working with 
virtual representations, instructor support was available only upon 
request, and that when students worked with virtual representa-
tions, they generated 86.13% of the utterances—instructors only 
12.87% (see Table 2). Thus, this finding may indicate that stu-
dents need help from an instructor to make concept-representation 
connections, even if they receive technology support.  
Third, 6 of 16 patterns include assent by the instructor (4 of 6) or 
a student (2 of 6). Recall that assent is defined as agreement with 
a previous statement (see Table 1), often in the form of encour-
agement. Again, assent always co-occurs with a reference to a 
concept or representation. Hence, this finding suggests that en-
couragement can prompt a concept-representation connection—
regardless of whether it is provided by a student or a tutor. 
Fourth, 4 of the 7 patterns that involve instructor utterances in-
volve explicit requests for the student to relate to a concept or a 
representation. This request is always combined with an instructor 
reference to a concept or to a representation. This finding suggests 
that prompts to elaborate on a previously mentioned concept or 
representation yields concept-representation connections. 
Finally, 6 of 16 patterns include a meta-cognitive utterance by the 
student about understanding (3 of 6) or confusion (3 of 6). All of 
these meta-cognitive utterances co-occur with a reference to a 
concept and/or a representation. None of these meta-cognitive 
utterances co-occur with instructor utterances. This finding sug-
gests that meta-cognitive statements about one’s own understand-
ing can prompt concept-representation connections; for example, 
after a student voices confusion about a concept, the partner may 
use a representation to explain the concept. 

3.3 Comparing physical and virtual modes 
Finally, I investigated whether prompts of concept-representation 
connections differ by representation mode. The following com-
monalities stand out. First, all patterns found for physical repre-
sentations were also found for virtual representations. Hence, 
prompts that help students connect concepts to physical represen-
tations are also successful prompts for virtual representations. 
Second, patterns with highest support and confidence for both 
representation modes involved relations to concepts and/or repre-
sentations, indicating that students co-construct concept-
representational competencies incrementally, over the course of 
consecutive social exchanges. 
Third, the instructor plays a prominent role in prompting concept-
representation connections both for physical and virtual represen-
tations: instructor utterances were involved in 4 of 5 patterns for 
virtual representations and in 7 of 16 patterns for physical repre-
sentations. This result suggests that the role of an instructor is 
critical to students’ success in making concept-representation 
connections, regardless of representation mode. 
Fourth, assent that co-occurs with a reference to concepts or rep-
resentations plays an important role for both representation 
modes. Hence, encouraging students to elaborate by agreeing with 
prior utterances may prompt concept-representation connections. 
Several differences between representation modes stand out. First, 
students made fewer concept-representation connections with 
virtual representations (3.28%; see Table 2) than with physical 

representations (7.33%). Given the finding that instructors play a 
critical role for concept-representation connections, it may be that 
the lower involvement of an instructor when students work with 
virtual representations accounts for this difference.  
Second, when students work with physical representations, assent 
seems to prompt concept-representation connections only when it 
is provided by the instructor. By contrast, when students work 
with virtual representations, assent provided by the student partner 
also prompts concept-representation connections. Hence, this type 
of prompt may be one that students can take responsibility for 
when working collaboratively without instructor support. 
Finally, meta-cognitive utterances of confusion or understanding 
of concepts or representations were important prompts only for 
virtual representations. Given that none of the patterns that in-
cluded meta-cognitive utterances included instructor utterances, it 
seems that meta-cognitive utterances are a major mechanism by 
which students can prompt concept-representation connections in 
the absence of instructor support.  

4. DISCUSSION 
My goal was to investigate the representation dilemma: how nov-
ice students make connections between new concepts and new 
representations. I investigated which social events in collaborative 
classroom practices prompt students’ concept-representation 
connections. Using frequent pattern mining, I identified such 
prompts for physical and virtual representations.  
A key finding was that prompts with the highest confidence and 
support contained relations to a previously mentioned concept or 
representation, regardless of representation mode. This finding 
suggests that the conceptual process by which students make 
concept-representation connections is mediated by a gradual, 
incremental social mechanism. Students may first discuss a con-
cept or a representation separately from one another before they 
negotiate the connection between the two. 
A further finding was that instructors played a crucial role in 
prompting concept-representation connections, regardless of the 
representation mode. With respect to physical representations, this 
finding is not surprising because students have no other way of 
receiving feedback and assistance. However, with respect to virtu-
al representations, this finding is surprising because the represen-
tations were embedded in an educational technology that support-
ed concept-representation connections (and was shown to be 
successful in doing so [14]). Hence technology support for con-
cept-representation connections may not be able to “replace” 
instructor support—at least when students have little prior 
knowledge about the concepts or representations.  
Finally, the results showed that meta-cognitive statements can 
prompt concept-representation connections when students work 
on virtual representations. Meta-cognitive statements were the 
only successful prompts when an instructor was not involved. The 
social mechanism underlying this effect may be that a meta-
cognitive statement by one student prompts the other to explain 
the given concept-representation connection. 

5. LIMITATIONS & FUTURE RESEARCH 
Several limitations of the present analysis should be considered 
when interpreting these results. First, the study used a multiple-
case design, which focuses on gaining in-depth insights into social 
processes that unfold over time rather than on generating general-
izable evidence for causal effects. Therefore, this paper does not 
attempt to make causal claims about which prompts are effective, 
but to generate new hypotheses about social prompts. Based on 
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the theoretical consideration that instructional support for con-
cept-representation connections may be most effective if it takes 
advantage of social prompts that different representation modes 
afford, one may hypothesize that instructional interventions 
should be designed to maximize instructors’ capacity to assist 
students, regardless of the representation mode. One might also 
hypothesize that interventions with virtual representations are 
particularly effective if students are prompted (or trained) in mon-
itoring their own understanding and communicate their meta-
cognitive assessments to their partner. These hypotheses should 
be tested with study designs that allow for causal claims. 
Another limitation regarding the generalizability stems from the 
focus on the representation dilemma; that is, how novice students 
see novel concepts in novel representations. Because students in 
this study had limited prior knowledge about concepts and repre-
sentations, we do not know if the results generalize to advanced 
students. One may speculate that the importance of instructor 
support decreases as students learn, especially if students receive 
technology support. One might also speculate that the incremental 
way in which students focus on a concept or a representation 
alone before connecting them plays a lesser role if students have 
prior experience with representations or concepts. Hence, future 
research should examine social prompts among advanced stu-
dents. A related limitation is that many utterances did not involve 
concept-representation connections. Consequently, the overall 
support and confidence for the discovered patterns is rather low. 
Concept-representation connections are one of many mechanisms 
of students’ learning, so future research may apply the present 
analysis to other social (or conceptual) mechanisms of learning. 
A further limitation results from this study’s focus on social 
mechanisms that may underlie the complementary effects of rep-
resentation modes on conceptual learning. Consequently, this 
study did not consider prompts beyond collaborative discourse, 
such as availability of resources in the classroom, an individual’s 
bodily experiences with physical representations, etc. Future 
research could examine the role of such distributed and embodied 
types of prompts for concept-representation connections. 
Finally, an assumption of this study was that concept-
representation connections are a “desirable” educational outcome. 
While much research documents the importance of connecting 
concepts to representations for students’ learning [1-12], this 
study did not test whether concept-representation connections 
correlate with learning outcomes. Future research could assess 
learning outcomes and test whether concept-representation con-
nections mediate the effectiveness of physical and virtual repre-
sentations and of interventions that combine both modes. 

6. CONCLUSIONS 
This study yields new theoretical insights into the representation 
dilemma by revealing how novice students connect new concepts 
to new representations. This study identified social events that 
prompt students to connect concepts to physical and virtual repre-
sentations. These connections emerge in a co-constructive process 
that is incremental and requires instructor support. Meta-cognitive 
statements prompt students to help one another to make connec-
tions when an instructor is not always available.  
At a practical level, this study yields new hypotheses suggesting 
that physical and virtual representations are most effective if 
instructor support is available. If instructor support is not availa-
ble, interventions with virtual representations may benefit from 
meta-cognitive support. These hypotheses are empirically testable 
in studies on combinations of physical and virtual representations. 
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ABSTRACT
The past few years has seen the rapid growth of data min-
ing approaches for the analysis of data obtained from Mas-
sive Open Online Courses (MOOCs). The objectives of this
study are to develop approaches to predict the scores a stu-
dent may achieve on a given grade-related assessment based
on information, considered as prior performance or prior ac-
tivity in the course. We develop a personalized linear mul-
tiple regression (PLMR) model to predict the grade for a
student, prior to attempting the assessment activity. The
developed model is real-time and tracks the participation of
a student within a MOOC (via click-stream server logs) and
predicts the performance of a student on the next assess-
ment within the course offering. We perform a comprehen-
sive set of experiments on data obtained from two openEdX
MOOCs via a Stanford University initiative. Our experi-
mental results show the promise of the proposed approach
in comparison to baseline approaches and also helps in iden-
tification of key features that are associated with the study
habits and learning behaviors of students.

Keywords
Personalized Linear Multi-Regression Models, MOOC, Per-
formance prediction

1. INTRODUCTION
Since their inception, Massive Open Online Courses (MOOCs)
have aimed at delivering online learning on a wide variety
of topics to a large number of participants across the world.
Due to the low cost (most times zero) and lack of entry bar-
riers (e.g., prerequisites or skill requirements) for the par-
ticipants, large number of students enroll in MOOCs but
only a small fraction of them keep themselves engaged in
the learning materials and participate in the various activi-
ties associated with the course offering such as viewing the
video lectures, studying the material, completing the various
quizzes and homework-based assessments.

Given, this high attrition rate and potential of MOOCs
to deliver low-cost but high quality education, several re-
searchers have analyzed the server logs associated with these
MOOCs to determine the factors associated with students
dropping out. Several predictive methods have been de-
veloped to predict when a participant will drop out from
a MOOC [4, 5, 6, 14].Using self reported surveys, studies
have determined the different motivations for students en-
rolling and participating in a MOOC. Participants enroll in a
MOOC sometimes to learn a subset of topics within the cur-
riculum, sometimes to earn degree certificates for future ca-
reer promotion or college credit, social experience or/and ex-
ploration of free online education [8]. Students with similar
motivation have different learning outcomes from a MOOC
based on the number of invested hours, prior education back-
ground, knowledge and skills [4].

In this paper, we present models to predict a student’s fu-
ture performance for a certain assessment activity witin a
MOOC. Specifically, we develop an approach based on per-
sonalized linear multi-regression (PLMR) to predict the per-
formance of a student as they attempt various graded activ-
ities (assessments) within the MOOC. This approach was
previously studied within the context of predicting a stu-
dent’s performance based on graded activities within a tradi-
tional university course with data extracted from a learning
management system (Moodle) [3]. The developed model is
real-time and tracks the participation of a student within a
MOOC (via click-stream server logs) and predicts the perfor-
mance of a student on the next assessment within the course
offering. Our approach also allows us to capture the varying
studying patterns associated with different students, and re-
sponsible for their performance. We evaluate our predictive
model on two MOOCs offered using the OpenEdX platform
and made available for learning analytics research via the
Center for Advanced Research through Online Learning at
Stanford University 1.

We extract features that seek to identify the learning behav-
ior and study habits for different students. These features
capture the various interactions that show engagement, ef-
fort, learning and behavior for a given student participating
in studying; by viewing the various video and text-based
materials available within the MOOC offering coupled with
student attempts on graded and non-graded activities like
quizzes and homeworks. Our experimental evaluation shows
accurate grade prediction for different types of homework as-

1datastage.stanford.edu
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sessments in comparison to baseline models. Our approach
also identifies the features found to be useful for predicting
an accurate homework grade.

2. RELATED WORK
Several researchers have focused on the analysis of educa-
tion data (including MOOCs), in an effort to understand
the characteristics of student learning behaviors and moti-
vation within this education model [11]. Brinton et. al.
[1] developed an approach to predict if a student answers a
question correct on the first attempt via click-stream infor-
mation and social learning networks. Kennedy et. al. [7]
analyzed the relationship between a student’s prior knowl-
edge on end-of-MOOC performance. Sunar et. al. [12]
developed an approach to predict the possible interactions
between peers participating in a MOOC. Elbadrawy et. al.
[3] proposed the use of personalized linear multi-regression
models to predict student performance in a traditional uni-
versity by extracting data from course management systems
(Moodle). Our study focuses on MOOCs, which presents
different assumptions, challenges and features in compari-
son to a traditional university environment.

Most similar to our proposed work, Pardos et. al. pro-
posed a model “Item Difficulty Effect Model” (IDEM) that
incorporates the difficulty levels of different questions and
modifies Bayesian Knowledge Tracing (BKT) model [2] by
adding an “Item” node to every question node. By identi-
fying the challenges associated with modeling MOOC data,
the IDEM approach and extensions that involve splitting
questions into several sub-parts and incorporating resource
(knowledge) information [9] are considered state-of-the-art
MOOC assessment prediction approaches and referred as
KT-IDEM. However, this approach can only predict a bi-
nary value grade. In contrast, the model proposed in this
paper is able to predict both, a continuous and a binary
grade.

3. METHODS
3.1 Personal Linear Multi-Regression Models
We train a personalized linear multi-regression (PLMR) model
[3] to predict student performance within a MOOC. Specifi-
cally, the grade ĝs,a for a student s in an assessment activity
a is predicted as follows:

ĝs,a = bs + ptsWfsa

= bs +

l∑

d=1

(ps,d

nF∑

k=1

fsa,kwd,k),
(1)

where bs is bias term for student s, fsa is the feature vec-
tor of an interaction between student s and activity a. The
features extracted from the MOOC server logs are described
in the next Section. nF is the length of fsa, indicating the
dimension of our feature space. l is the number of linear
regression models, W is the coefficient matrix of dimensions
l × nF that holds the coefficients of the l linear regression
models, and ps is a vector of length l that holds the member-
ships of student s within the l different regression models [3].
Using lasso [13], we solve the following optimization prob-
lem:

minimize
(W,P,B)

L(W,P,B) + γ(‖P‖F + ‖W‖F ), (2)

where W , P and B denote the feature weights, student
memberships and bias terms, respectively. The loss func-
tion L(·) is the least square loss for regression problems.
γ(‖P‖F + ‖W‖F ) is a regularizer that controls the model
complexity by controling the values of feature weights and
student memberships. Tuning the scalar γ prevents model
from over-fitting.

3.2 Feature Description
We extract features from MOOC server logs and formulate
the PLMR model to predict real-time assessment grade for
a given student. Figure 1 shows the various activities, gen-
erally available within a MOOC. Fig 1 (a) shows that each
homework has corresponding quizzes, each of which has its
corresponding video as resources for learning. Fig 1 (b)
shows that while watching a video, a student can have a
series of actions. Fig 1 (c) shows that while studying using
a MOOC, a student can have several login sessions. In order
to capture the latent information behind the click-stream for
each student, we extract six types of features: (i) session fea-
tures, (ii) quiz related features, (iii) video related features,
(iv) homework related features, (v) time related features and
(vi) interval-based features. These features constitute the
feature vector fsa for a student and a homework assessment.
The description of these features are as follows:

Figure 1: Different activities within a MOOC.

(i) Session features:.
A single study session is defined by a student login combined
with the various available study interactions that a student
may partake in. Since, students do not always log out of
a session, we assume that a “no activity” period of more
than one hour constitutes a student logging out of a session.
We show a “no activity” period for a student between two
consecutive sessions in Fig 1 (c).

• NumSession is the the average number of daily study
sessions a student engages in, before a homework at-
tempt.

• AvgSessionLen is the average length of each session
in minutes. We calculate the average study time of a
study session by

AvgSessionLen =
Total study time

NumSession
. (3)

• AvgNumLogin. Students are free to choose when to
login and study in a MOOC environment. We consider
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a day as a “work day” if a student logs into the study
system; and a day as “rest day” if a student does not.
The rate of “work” and “rest” can capture a student’s
learning habits and engagement characteristics.

AvgNumLogin =

# of“work day”

# of “work day” + # of “rest day”
.

(4)

(ii) Quiz Related features:

• NumQuiz is the number of quizzes a student takes
before a homework attempt. This feature reflects the
student’s dedication towards the course material and
a factor towards performance in a homework.

• AvgQuiz is the average number of attempts for each
quiz. The MOOCs studied in this paper allow unlim-
ited attempts on a quiz.

(iii) Video Related features:

• VideoNum denotes the number of distinct video ses-
sions for a student before a homework attempt.

• VideoNumPause is the average number of pause ac-
tions per video. There are several actions associated
with viewing videos, including “pause video”, “play
video”, “seek video” and “load video”. Tracking these
actions allows for capturing a student’s focus level and
learning habits.

• VideoViewTime is the total video viewing time.

• VideoPctWatch. In a large amount of cases, stu-
dents do not finish watching a full video. As such, we
calculate the average percentage of the watched part
of a video.

(iv) Homework Related features:

• HWProblemSave is the average number of “save an-
swer” actions for each homework assessment. Before
submitting answers for a homework, students are al-
lowed to save their answer sheet and check as many
times as they need. This feature is more valuable when
the MOOC provides only one chance for a homework
answer submission.

(v) Time Related features:

• TimeHwQuiz is the time between a homework an-
swer submission and the last quiz attempt.

• TimeHwVideo is the time between a homework an-
swer submission and the last video watching activity.

• TimePlayVideo is the percentage of study sessions
with video watching activity over all the study sessions.

• HwSessions is the number of sessions that have home-
work related activities (save and submit).

(vi) Interval-Based features:.
It is expected that there will be some changes in study activ-
ities once the students know the former homework’s grade.
They may study harder if they don’t get a satisfactory score.
The interval-based features are aiming to represent different
activities between two consecutive homeworks.

• IntervalNumQuiz: denotes the number of quizzes
the student takes between two homeworks.

• IntervalQuizAttempt: is the average number of quiz
attempts between two homeworks.

• IntervalVideo: is the number of videos a student
watches between two homeworks.

• IntervalDailySession: is the average number of ses-
sions per day between two homeworks.

• IntervalLogin: is the percentage of login days be-
tween two homeworks.

We also use the cumulative grade (so-far) on quizzes and
homeworks for a student as a feature and denote it by
Meanscore. For our baseline approach we only consider
the averages computed on the previous homeworks.

Figure 2: Distribution of students attempting each
Assessment. StMed and StLearn had 6 and 9 assessments, respec-

tively.

4. EXPERIMENTS
4.1 Datasets
We evaluated our methods on two MOOCs: “Statistics in
Medicine” (represented as StMed in this paper) taught in
Summer 2014 and“Statistical Learning”(represented as StLearn
in this paper) taught in Winter 2015.

StMed: This dataset includes server logs tracking infor-
mation about a student viewing video lectures, checking
text/web articles, attempting quizzes and homeworks (which
are graded). Specifically, this MOOC contains 9 learning
units with 111 assessments, including 79 quizzes, 6 home-
works and 26 single questions. The course had 13,130 stu-
dents enrolled, among which 4337 students submitted at
least one assignment (quiz or homework) and had corre-
sponding scores, 1262 students have completed part of the
six homeworks and 1099 students have attempted all the
homeworks. 193 students attempted all the 79 quizzes and
six homeworks. This course had 131 videos and 6481 stu-
dents had video related activity.
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Figure 3: AllStMed Prediction Results. RMSE (↓ is
better).

Figure 4: AllStLearn Prediction Results. Accuracy
(↑ is better).

StLearn: This course had ten units. Except the first one,
all units have quizzes and end of unit homeworks, which
add up to 103 assessments in total. 52,821 students en-
rolled in this course, and 4987 students had assessment ac-
tivities, 3509 students attempted a subsets of the available
homeworks while 346 students attempted all the 9 home-
works, and 118 students attempted all the 103 assessments.
The key difference between the homeworks in the StLearn
in comparison to the StMed is that homeworks have only
one question which a student can either get correct or in-
correct. As such, scoring in this MOOC is binary instead of
continuous. To predict whether a student answers a ques-
tion correctly, we reformulate the regression problem as a
classification problem using a logistic loss function. Figure
2 shows the distribution of students attempting the different
assessments available across the two MOOCs studied here.

4.2 Experimental Protocol
In order to gain a deep insight of students’ performance in
a MOOC, we perform two types of experiments. Given n,
homework assessments represented as {H1, . . . , Hn} our ob-
jective is to predict the score a student achieves in each
of the n homeworks. Depicting the most realistic setting,
for the i-th homework, Hi we define the training set as all
homework and student pairs who attempt and have a score
for all homeworks up to the Hi−1. For predicting the score
for Hi for a given student, we use all the features extracted
just before attempting the target homework Hi. We refer to
this as PreviousHW-based Prediction. Secondly, for the
predicting i-th homework Hi’s score, we use training data
of student-homework pairs restricted from only the previ-
ous one homework i.e., Hi−1. This experiment is referred
by PreviousOneHW-based Prediction. Note, in these
cases we cannot make any prediction for the first homework
(H1) since, we do not have any training information for a

given student.

4.3 Data Partition
We partition the students for StLearn and StMed into two
groups: the group of students who attempt all the requested
homeworks, and the group of students who finish few of the
homeworks. This allows us to consider the different moti-
vations and expectations of students enrolling in a MOOC.
For example, the students who aim to learn in a MOOC may
choose watching videos over taking all homeworks. While,
the students who want to achieve a degree certificate may
focus on the homework completeness. We refer to the first
group by “Partial homeworks accomplished group”, and the
second group by “All homeworks accomplished group”. We
evaluate our models on the two groups for the AllStMed
and AllStLearn datasets. Specifically, we name the four
group of students as AllStMed, AllStLearn, PartialStMed
and PartialStLearn based on their group and MOOC class.

HW# PLMR Meanscore
2 0.230 0.248
3 0.162 0.176
4 0.176 0.196
5 0.144 0.156
6 0.143 0.150

Avg 0.171 0.185

Table 1: PreviousHW-based RMSE Performance
(RMSE) comparison for AllStMed.

Figure 5: Predictive Performance with Removal of
Feature Types.

4.4 Evaluation Metrics
StMed course has continuous scores for a homework, which
are scaled between 0 and 1. However, the homework score is
binary in the StLearn course, indicating whether the student
answers a question correctly or incorrectly. For StLearn,
we use a logistic loss and formulate a classification problem
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HW#
Accuracy (↑) F1 (↑)

PLMR
Baseline

PLMR
Baseline

Meanscore KT-IDEM Meanscore KT-IDEM

2 0.641 0.646 0.623 0.775 0.777 0.768
3 0.760 0.580 0.681 0.821 0.805 0.810
4 0.754 0.710 0.739 0.838 0.706 0.850
5 0.867 0.809 0.829 0.920 0.880 0.906
6 0.730 0.678 0.667 0.808 0.776 0.800
7 0.716 0.675 0.730 0.887 0.878 0.844
8 0.817 0.762 0.817 0.903 0.849 0.886
9 0.823 0.794 0.777 0.864 0.856 0.853

Avg 0.764 0.707 0.759 0.852 0.816 0.848

Table 2: PreviousHW-based prediction performance comparison for AllStLearn group.

instead of the regression problem as done for the StMed
course. To evaluate the performance of our approach, we
use the root mean squared error (RMSE) as the metric of
choice for regression problem. For classification problem, we
use accuracy and the F1-score (harmonic mean of precision
and recall), known to be a suitable metric for imbalanced
datasets.

4.5 Comparative Approaches.
In this work, we compare the performance of our proposed
methods with two different competitive baseline approaches.

(i) Average grade of the previous homeworks. We
calculate the mean score of a given student’s previous home-
works to predict their future performance and is denoted as
Meanscore. We use this method to compare our prediction
results on StMed.

(ii) KT-IDEM [10]. KT-IDEM is a modified version of
original BKT model. By adding an “item” node to every
question node, the model is able to identify different dif-
ficulty levels of each question. Since this model can only
predict a binary value grade, we use this model to compare
our prediction results on StLearn.

5. RESULTS AND DISCUSSION
5.1 Assessment Prediction Results
Figures 3 and 4 show the prediction results with varying
number of regression models for the AllStMed and AllStLearn
MOOCs, respectively. Analyzing Figure 3 we observe that as
the number of regression models increases the RMSE metric
goes lower and use of five models seems to be good choice for
all the different homeworks. Comparing the PreviousHW-
and PreviousOneHW-based results, we notice that predic-
tions for all the homeworks (HW3, HW4, HW5, and HW6)
benefits from using all the available training data prior to
those homeworks i.e., to predict grade for Hi it is better to
use training information extracted from H1 . . . Hi−1 rather
than just Hi−1. Similar observations can be made while
analyzing the prediction results for the AllStLearn cohort
which includes nine homework correct/incorrect binary as-
sessments. Figure 4 shows the accuracy scores (higher is
better) for the three experiments. For the PreviousOneHW-
and PreviousHW-based experiments HW5 shows the best

prediction results. This suggests that in the middle of a
MOOC, students tend to have stable study activities and the
performance is more predictable than other phases. Also,
some homeworks thrive well with just using training data
from the previous homework (PreviousOneHW-based, e.g.
HW3).

5.1.1 Comparative Performance
Table 1 shows the comparison between baseline approach
(Meanscore) and the predictive model for the PreviousHW-
based experiments for the AllStMed group. We cannot re-
port results for the KT-IDEM model since, it solves the
binary classification problem only. Table 2 shows the com-
parison of the accuracy and F1 scores of the AllStLearn
groups with baseline approaches. We notice that for pre-
dicting the second homework, which only uses the informa-
tion from HW1, the predictive model is not as good as the
mean baseline, which reflects that under the situation of
lack of necessary amount of information, linear regression
models cannot always outperform the baseline. But as the
dataset gets larger, our approach outperforms the baseline
due to the availability of more training data. From Table
2, we also notice for some homework, KT-IDEM has better
performance than PLMR (HW7 and HW4). This could be
due to unstable academic activities during these two study
periods, which can effect the performance of PLMR.

5.1.2 Feature Importance
We test the effect of each feature set in predicting the as-
sessment scores by training the models under the absence of
each feature group. For the StLearn course, since there is
no limit on homework attempts, we do not add Interval-
Based feature groups to the predictive model. Figure 5
shows the comparison of each prediction result for AllStMed,
PartialStMed, AllStLearn and PartialStLearn cohorts. Ana-
lyzing these results we observe that for the StLearn MOOC,
meanscore is a significant feature and removing it leads to
a substantial decrease in accuracy for both All and Partial-
cohorts. For the AllStMed, the removal of video related
features leads to the most decrease in performance (i.e., in-
creased RMSE). This suggests that features related to the
video watching are crucial for predicting the final homework
scores. For the PartialStMed, the use of all feature types or
a subset does not show a clear winner. This could be due to
the varying characteristics of students within these group.
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Another way to analyze feature importance is to exclude the
influence of the dominant feature, which is meanscore in our
study. The evaluation formula of the importance of the ith
feature (excluding meanscore feature) is as follows:

Ii =
1

N

N∑

n=1

∑l
d=1 |pnS ,dfnS ,iwd,i|∑l

d=1 |pnS ,d

∑nF
k=1 fnS ,kwd,k|

, (5)

where N is number of test samples, nS is the student num-
ber corresponding to the nth test sample. fnS ,i is the fea-
ture value of an interaction between student nS and activity
i. nF is the number of features. l is the number of lin-
ear regression models. wd,i is the coefficient of dth linear
regression model with ith feature, and pnS ,d is the mem-
bership of student nS with the dth regression model. We
calculate each feature’s importance by calculating the per-
centage contribution of each feature to the overall grade
prediction. Figure 6 shows the feature importance on the
AllStMed group, excluding Meanscore feature. We can see
NumQuiz and VideoPctWatch are the most important
for AllStMed group besides Meanscore feature.

Figure 6: Feature importance for AllStMed.

6. CONCLUSION AND FUTURE WORK
In this work we formulated a personalized multiple linear re-
gression model to predict the homework grades for a student
enrolled and participating within a MOOC. Our contribu-
tions include engineering features that capture a student’s
studying behavior and learning habits, derived solely from
the server logs of MOOCs. We evaluated our framework
on two OpenEdX MOOC courses provided by an initiative
at Stanford University. Our experimental evaluation shows
improved performance in terms of prediction of real time
homework scores compared to baseline methods. We also
studied on different groups of student participants due to
their motivation. Features associated with engagement (log-
ging multiple times), studying materials (viewing videos and
attempting quizzes) were found to be important along with
prior homework scores for this prediction problem.
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ABSTRACT 
Building on prior work visualizing player behavior using 
interaction networks [1], we examined whether measures of 
implicit science learning collected during gameplay were 
significantly related to changes in external pre-post assessments of 
the same constructs. As part of a national implementation study, 
we collected data from 329 high school students playing an optics 
puzzle game, Quantum Spectre, and modeled their gameplay as an 
interaction network, examining errors hypothesized to be related 
to a lack of implicit understanding of the science concepts 
embedded in the game. Hierarchical linear modeling (HLM) 
showed a negative relationship between the science errors 
identified during gameplay and implicit science learning. These 
results suggest Quantum Spectre gameplay behaviors are valid 
assessments of implicit science learning. Implications for how 
gameplay data might inform classroom teaching in-game 
scaffolding is discussed. 

Keywords 

Game-based learning, Interaction Networks, Implicit Science 
Learning, Hierarchical linear modeling 

1. INTRODUCTION 
As digital games become increasingly prevalent in today’s society 
and are played by the majority of youth of all demographics [2], it 
behooves us to study how the energy and passion invested in 
gaming can be harnessed for productive purposes. Game-based 
learning interests education researchers and learning scientists 
because digital games uniquely engage learners and because their 
data logs can serve as input for innovative learning assessments 
[3]. Data logs generated through gameplay can be used to study 
players’ in-game activity [4] and how game-based learning can be 
leveraged for classroom learning. Research shows that elements 
of gameplay can invoke complex thinking such as scientific 
inquiry [5] and may foster learning-related skills such as creativity 
and persistence [4]. 

This work examines complex behaviors of students solving optics 
puzzles in the educational game Quantum Spectre, using 
interaction networks. An Interaction Network is a complex 
network representation of all observed player-game interactions 
for a given problem or task in a game or tutoring system [6]. 
Regions of the network can be discovered by applying network 
clustering methods. These regions correspond to high-level 
student approaches to problems [7]. In this work, we used 
Interaction Networks as visualizations to analyze Quantum 
Spectre gameplay data and automated the coding of game states 
that correspond to incorrect applications of the game's core 
science concepts. Three types of errors were coded:  two science 
errors (placement and rotation) and puzzle errors. 

This paper reports HLM analyses that relate those coded game 
states to implicit science learning measured by external pre/post 
assessments. The analyses examine how game-based learning is a 
function of what players do in the game, not simply duration of 
gameplay or highest level reached. This information is useful for 
building an adaptive version of the game to scaffold players’ 
implicit science learning and for informing teachers about 
important aspects of student competency.  

2. IMPLICIT SCIENCE LEARNING 
Polanyi argued that implicit knowledge (also called tacit 
knowledge) is foundational and a required element of explicit 
learning [8]. Implicit understandings are embodied and enacted 
through our interactions with the world around us, but may not yet 
be formalized or expressed verbally or textually. Vygotsky 
described similar abilities and understandings a learner brings to a 
learning situation that can be scaffolded by a teacher, 
environment, and tools [9]. Implicit misunderstandings (often 
called misconceptions) may get in the way of a learner’s 
conceptual development [10, 11], particularly in the area of basic 
physics, such as Newton’s Laws of Motion. The work of diSessa 
distinguishes between the intuitive knowledge that novices hold—
a book will not fall through a table or a glowing filament is hot—
from an expert understanding of these phenomena, explaining that 
while learners’ behaviors may be guided by implicit 
understandings, the learner is not necessarily ready to express the 
related formalisms or question the ideas in a deeper sense [12].  

Games promise to reveal implicit learning because they can be (a) 
“sticky”—meaning they encourage players to dwell in the 
phenomena and (b) they leave a digital trail that reveals the 
patterns the players used in their learning process. Several 
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researchers have used educational data mining techniques within 
an Evidence-Centered Design framework to develop stealth 
assessments that discern evidence of learning from the vast 
amount of click data generated by online science games such as 
SimCityEDU [13], Physics Playground [14], and Surge [15]. 

As players “level up” in a game, they typically deal with the 
mechanics in increasingly complex applications, building implicit 
knowledge about the underlying system. Because games allow 
players to fail, repeat, revise, and try again—recording what 
players do in the process—games may be powerful formative 
assessments of learning, and the strategies players build. The 
methods players use to tackle new challenges may demonstrate 
conceptual understanding that the learner may not express in other 
ways and that may not be measured by current external learning 
assessments [4, 16]. Careful alignment of game mechanics with 
learning and assessment mechanics [17] may reveal implicit 
learning and empower teachers and learners to help bridge game-
based knowledge to other forms of learning.  

In a classroom, teachers may be able to build on implicit game-
based learning if they have the right information and tools to 
support students at key moments in the learning process. That 
may consist of real-time information, provided during class to 
know who is struggling and needs attention, or more reflective 
information after school to help plan lessons for the next day 
based on class gameplay [18]. Post-game debriefing and 
discussions connecting gameplay with classroom learning help 
students apply and transfer learning that takes place in games 
[19]. To exploit learning that happens in games, teachers need to 
build bridges between the students’ “aha” moments while playing 
[20] and the content being covered in the classroom. 

3. QUANTUM SPECTRE 
To examine implicit science game-based learning, we studied 
high school students playing a Physics-oriented game called 
Quantum Spectre. Quantum Spectre is a puzzle-style game, 
designed for play in browsers and on tablets (Figure 1).  

 
Figure 1: Quantum Spectre Puzzle 21. Players must direct the 
laser beams to the matching colored targets using movable 
mirrors and other optical devices, selected from the inventory 
on the right. 

Players use optical devices, such as lenses and mirrors, to guide 
colored laser beams to matching targets. The lenses and mirrors 
can be flat, convex, or concave and single or double-sided. All 
devices produce scientifically accurate results when interacting 
with the laser beams. When the laser beams in a puzzle reach the 
matching colored targets, the puzzle is solved (i.e., goal state is 

reached) and the player is scored on the number of moves used. 
The player earns three stars if the puzzle has been solved in the 
optimal number of moves, two stars for a low number of extra 
moves, and one star for simply solving the puzzle. Regardless of 
their score, players can proceed onto the next level, but players 
can repeat earlier levels at any time to improve their performance.  

The game is divided into 6 zones with 30 puzzles in each zone. In 
Zone 1 of Quantum Spectre, the puzzles focus on 2 key concepts: 

• The Law of Reflection, or Angle of Incidence equals Angle 
of Reflection—When reflecting off of a smooth surface, the 
path of a ray of light (such as a laser beam) will make the 
same angle with the surface (relative to the normal) upon exit 
as it makes upon entry. 

• Slope—Players can use the squares on the game grid and 
calculate the slope (rise over run) to figure out and/or predict 
the paths of laser beams and where to place items. 

This study focuses on data from Puzzles 14-23 in Zone 1 of the 
game. At this point in gameplay, players have presumably 
mastered the game mechanic, and mastery of the puzzles typically 
requires an understanding of Slope and the Law of Reflection. 
Table 1 provides an overview of Puzzles 14-23. The number of 
goal states reflects the number of unique solutions (position-
rotation combinations) for each puzzle. 

Table 1: Quantum Spectre Puzzles 14-23 

Game 
Level 

# Mirrors # Targets # Optimal 
Moves 

# Goal 
States 

14 1 1 2 1 

15 2 1 4 5 

16 2 1 3 8 

17 2 2 4 1 

18 2 2 4 6 

19 4 4 7 4 
20 6 3 12 42 

21 6 5 11 6 

22 3 1 6 1 

23 4 2 8 3 

 

4. CLASSIFYING GAMEPLAY 
BEHAVIORS USING INTERACTION 
NETWORKS 
To simplify the vast number of puzzle solution paths into a 
manageable group we could study, we used a method called 
Interaction Networks (INs). INs use a complex network data 
structure to represent players’ solutions as traces of game states 
and actions, with additional information such as edge labels (e.g., 
labels of player actions). This process involved 4 key steps [1]:  
creating a full IN for each puzzle, clustering player actions using 
laser shapes, classifying clusters for evidence of implicit science 
understanding, and automating coding of player actions. 

4.1 Create Full Interaction Network 
To construct an IN, we collected the set of all solution attempts 
for that puzzle. Each interaction is defined as Initial State, Action, 
and Resulting State, from the start of the puzzle until the player 
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solves the puzzle or exits the system. A sample trace is shown in 
Figure 2. Player actions are represented as edges in the network. 

Figure 2: Sample trace of player actions in Quantum Spectre 
Puzzle 18 of Zone 1 

Table 2 describes the complexity of the full interaction networks 
for Puzzles 14-23 for the full sample of students playing the game. 
The full IN of every state and every action taken was large, 
complex, and difficult to interpret in terms of player 
understanding. 

Table 2: Interaction Networks in Puzzles 14-23 

Game 
Level 

# 
Players 

Total # 
Moves 

# 
Network 

Edges 

# 
Unique 
States 

# Laser 
Shapes 

14 479 3003 462 164 5 

15 473 3866 1009 484 10 

16 462 3218 761 446 12 

17 454 10878 1899 1067 21 

18 439 10314 3458 1800 22 

19 416 15389 7093 4550 330 
20 384 10778 4947 2391 264 

21 349 23080 13919 6261 696 

22 282 3697 1500 1017 146 

23 271 10529 6154 4138 364 

 
4.2 Cluster States by Laser Shapes 
Most puzzles have states in which different configurations of 
objects result in similar output. These states could be considered 

equivalent since they show the same player proficiencies or errors, 
but a simple state representation would consider them as different 
states. In previous work using INs for games, it has been helpful 
to consider the output of a state as well as the position/orientation 
of objects in that state [7]. To group these equivalent states, we 
took a similar approach, using “laser shape” as part of our state 
representation to create Approach Maps. Approach Maps are a 
visual summary of the information contained in the interaction 
network [7]. This reduction is created by grouping similar states 
together based on how often students co-visit the states during 
their solution attempts. Here, the approach map consists of a list 
of targets hit by a laser of the appropriate color and a list of angles 
taken by that laser. This allows game states that represent similar 
errors to be effectively grouped together, as shown in Figure 3.  

 
Figure 3: Using laser shape to group similar game states in 

Puzzle 18. 
This approach preserves the relevant properties of a board state 
while ignoring distance traveled, which is not relevant to the game 
state. 

4.3 Classify Player Actions for Implicit 
Science Understanding 
A Quantum Spectre game designer who has a science education 
background, worked with a researcher to classify each laser shape 
into one of three categories:  

1) Correct move—placement and rotation of the mirror are 
consistent with an eventual goal state 

2) Placement errors—placement of the mirror in a location that 
does not match a goal state—may indicate a lack of 
understanding of slope.  

3) Rotation errors—rotation of a mirror to an angle that does 
not match a goal state—may indicate a lack of understanding 
of the Law of Reflection.  

As described elsewhere [1] using a subset of these data, the game 
designer and researcher also identified placements that were not 
consistent with a goal state but were more indicative of a lack of 
grasp of the puzzle mechanic than of a lack of science 
understanding. We labeled these Puzzle errors. For example, in 
puzzle shown in Figure 2, a correct solution requires players to 
use the two available mirrors to direct the laser through the two 
targets simultaneously. In Figure 4, player actions are consistent 
with someone who understands slope (i.e., they placed the mirror 
on the path of the laser) and the Law of Reflection (i.e., they 
rotated the mirror to reflect the mirror through the target).  
However, their actions are not going to let them solve this puzzle.

 

 
Figure 4:  Sample Puzzle Errors in Puzzle 18. 
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4.4 Automated Coding of Individual Player 
Behaviors 
Once all laser shapes had been coded and puzzle error placements 
identified, we automated the coding of individual player 
behaviors. Every player behavior was classified as a Placement 
Error, Rotation Error, or Puzzle Error (0=Not Present; 1=Present). 
These are mutually exclusive player behaviors. Player actions 
with none of these errors were classified as Correct. Figure 5 
shows the distribution of player behaviors across each puzzle. 

Figure 5:  Error rates by puzzle level 
The percentage of correct moves ranged from 39% in Level 18 to 
79% in Level 20. Placement error rates range from 8% (Level 16) 
to 35% (Level 18). Rotation error rates were most common in 
earlier puzzles, 35% in Level 14 to 1% in Level 21. In two 
puzzles, Levels 14 and 22, no puzzle errors were possible. Puzzle 
errors in the remaining puzzles ranged from 4% (Level 20) to 
36% (Level 23). 

5. RESEARCH QUESTIONS & 
HYPOTHESES 
In this paper, we examine the ways in which the extent of players’ 
puzzle and science errors are related to changes in their 
performance on a pre-post assessment of slope and the Law of 
Reflection. We anticipated a negative relationship between 
placement errors, rotation errors, and pre-post assessment 
results—that is players who are demonstrating a lack of 
understanding of the science concepts in their gameplay will have 
smaller gains than players whose gameplay is consistent with an 
implicit understanding of slope and the Law of Reflection. Our 
anticipated relationship between puzzle errors and pre-post 
assessment results was less clear. It could be that puzzle errors 
interfere with their implicit learning of the science content. It 
could also be players who understand the science content are just 
as likely to make puzzle errors as players without that 
understanding, so there may be no relationship between the 
number of puzzle errors and pre-post assessment results. 

6. METHODS 
Teachers were assigned to one of three groups as part of a national 
Quantum Spectre implementation study. In Bridge classrooms, 
teachers encouraged students to play the game outside of class and 
used examples from the game as part of their science instruction. 
In Game Only classrooms, teachers encouraged students to play 
the game but provide no game examples during their science 
instruction. In Control classrooms, teachers and students did their 
normal science instruction with their students not knowing about 

the game. This paper reports gameplay data from the 329 students 
in 29 classes (14 Bridge and 15 Game Only) that participated in 
the implementation study during the 2013-14 and 2014-15 
academic years.  

6.1 Sample 
Because this study focuses on Puzzles 14-23 in Zone 1 of the 
game, 79 students were excluded from these analyses because 
they did not attempt Puzzle 14 of the game. The final sample of 
329 high school science students included 132 females, 162 
students in Bridge classrooms, 281 students in non-Honors/AP 
classrooms, and 249 students in classrooms where more than 75 
percent of the students participated in the study. 

6.2 Measures 
This study collected gameplay log data, as described above, as 
well as pre-post assessment and student/classroom characteristics,. 

6.2.1 Gameplay Metrics 
To allow for the fact that students (a) used varying numbers of 
moves to solve the puzzles and (b) not all students completed 
Levels 14-23; the percentage of the total number of moves 
(actions) that were correct, placement errors, rotation errors, and 
puzzle errors was calculated. The mean error rate across all 
students was 19% placement errors, 7% rotation errors, and 12% 
puzzle errors. We used standardized (z-scores) error rates.  

The total amount of time each student played Quantum Spectre 
and the highest level reached were also recorded. Previous 
analyses showed Puzzle 21 to have a high dropout rate [21], we 
analyzed whether or not players completing Puzzle 21 had any 
relationship to changes in pre-post assessment results. Among this 
sample, there was no significant difference in the percentage of 
students in Bridge and Game Only classrooms that reached Puzzle 
22 (X2=3.53, 1 d.f., p=0.06). Given the non-normal distribution of 
the amount of time students played Quantum Spectre, we 
categorized students as having played less than 1 hour, or 1 hour 
or more. Forty-one percent of students played 1 hour or more, this 
proportion did not vary among students in Bridge and Game Only 
classrooms (X2=3.23, 1.d.f., p=0.07).  

6.2.2 Students & Classroom Characteristics 
When completing the pre-assessment, students were asked to 
indicate their gender. We categorized class names (e.g., Honors 
Physics 101) obtained from teacher applications as being either 
Honors/AP classes or not. Seven of the 29 classes in this study 
were Honors/AP classes. Finally, we asked teachers the total 
number of students enrolled in each class. We calculated the 
percentage of the class with complete study information (e.g., 
complete consent/assent forms, pre-post assessments complete, 
and gameplay beyond Puzzle 1 in Zone 1). This ranged from 31 to 
100 percent of each class, with the majority of classes (26) having 
more than half of the students participating. 

6.2.3 Assessments 
Science content experts developed assessment instruments and 
tested them in a series of think-aloud interviews with 10 high 
school students. Each assessment contained 12 (pre) and 13 (post) 
questions that required minimal formalisms to complete. The pre- 
and post-assessments each included 3 items related to focal length 
that are not included in these analyses. Figures 6 and 7 are sample 
items for slope and the Law of Reflection, respectively. In Figure 
6, students are asked which point (A-D) a line drawn through the 
two black points would hit. The item in Figure 7 asks students 
which letter each laser would hit. 
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Figure 6:  Sample Slope assessment item 

 
Figure 7:  Sample Law of Reflection assessment item 

These analyses are limited to the 9 pre and 10 post items focused 
on slope and the Law of Reflection. These pre- and post-
assessment items had good internal consistency (Cronbach’s alpha 
was 0.70 (pre) and 0.73 (post). To account for the different 
number of items, we used the percentage of items answered 
correctly in the analyses. Students answered an average of 53 
percent of the pre assessment items and 59 percent of the post 
assessment items correctly. Students in Bridge classrooms, 
however, answered significantly fewer questions correctly on both 
the pre- and post-assessment than students in Game Only 
classrooms (F=19.2, 1, 132 d.f., p<0.01). On average, students in 
Bridge classrooms answered 48 percent of the pre-assessment and 
55 percent of the post-assessment items. In contract, students in 
Game Only classrooms answered 58 percent of the pre assessment 
items and 63 percent of the post assessment items correctly. 

7. RESULTS 
Using the SPSS MIXED linear models procedure, HLM analyses 
began with an unconditional 3-level model with students, 
classrooms, and teachers using Restricted Maximum Likelihood 
(REML) and unstructured covariances. In the 3-level model, 
seven percent of the variation was at the teacher level. Triple that 
proportion of the overall variation was attributable to the 
classroom level. A 2-level unconditional model with students 
nested within classrooms was estimated. In that model, a 
statistically significant 34 percent of the variance in the post-
assessment was attributable to classroom level variation. 
Sets of covariates were added to the unconditional HLM model in 
this order: 

Set 1. Pre-assessment score (standardized) 

Set 2. Study Group (Bridge or Game Only) 

Set 3. Student gender (1=Female) 

Set 4. Classroom Level Characteristics: Whether or not they were 
enrolled in class in which more than half of the students 
completed the study (1=Yes); whether or not they were enrolled in 
an AP/Honors science class (1=Yes) 

Set 5. In-game measures of implicit understanding—% Placement 
Errors, % Rotation Errors, and % Puzzle Errors (all standardized) 

Set 6. Gameplay duration (>1 hour vs. not) and highest level 
reached (Level 22 vs. not) 

Only statistically significant covariates were retained in the HLM 
model presented in this paper. Sets 3, 4, and 6 had no significant 
results, meaning student gender, Honors/AP status, gameplay 
duration and highest level reached were not significantly related 
to changes in pre-post assessment scores. 

The model with the in-game measures of implicit understanding 
of slope and the Law of Reflection were a significantly better fit 
than the model without those measures (X2 (3 df, N=317), 6.76, 
p<0.10). The best-fitting HLM model, which accounts for 33 
percent of the variation at the classroom level, is presented in 
Table 3. Overall, after accounting for students’ performance on 
the pre-assessment, students who exhibited more Placement and 
Rotation errors while playing the game performed more poorly on 
the post than students with lower science error rates.  

Table 3:  Best-fitting HLM model 

 

The intercept coefficient represents the estimated outcome for 
male students who scored at the mean level of the pre-assessment, 
were in the Game Only group, were not in a Honors/AP class, and 
had mean levels of Placement and Rotation Errors. These students 
would score 0.07 standard deviations below the mean post-
assessment score. The Pre-Assessment coefficient reflects the 
change in number of standard deviations of the post-assessment 
for every increase of 1 standard deviation on the pre-assessment. 
For every standard deviation increase on the pre-assessment, 
students would be expected to score 0.35 standard deviations 
higher on the post-assessment. Students in Bridge classes scored 
0.17 standard deviations lower on the post–assessment than 
students in Game Only classes—a non-significant difference. 
There was no significant difference between Bridge and Game 
Only groups in their pre-post gains.  This may be because Game 

          

95%  
Confidence 

Interval 

Parameter Est. 
Std 
Err df Sig. Lower  Upper 

Intercept 0.10 0.12 24 0.43 -0.15 0.35 
Pre-
Assessment1 0.35 0.05 320 0.00 0.26 0.45 
Bridge  
(vs. Game 
Only) -0.17 0.17 25 0.33 -0.52 0.18 
%Placement 
Errors1 -0.08 0.05 304 0.09 -0.17 0.01 
%Rotation 
Errors1 -0.17 0.05 320 0.00 -0.26 -0.07 
%Puzzle 
Errors1 0.00 0.04 310 0.93 -0.09 0.08 
1Standardized 
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Only classroom instruction provided lab experiences with lasers 
that mirrored what Bridge classrooms did with Quantum Spectre, 
providing comparable experiences and similar gains. 

Students whose placement or rotation error rate was one standard 
deviation above the mean, however, had post-assessment scores 
0.08 and 0.17 standard deviations below the mean, respectively. 
There was no impact of puzzle errors. Interactions between study 
group (Bridge vs. Game Only) and gameplay errors were 
examined but none significantly improved the fit of the HLM 
model, suggesting the impact of these errors was the same across 
study groups. 

8. DISCUSSION & IMPLICATIONS 
Hierarchical linear modeling suggest a direct negative relationship 
between science-related gameplay errors and implicit science 
learning—players making errors consistent with a lack of implicit 
science understanding performed worse than players not making 
as many of those errors. Educators can use this information as a 
real-time, or reflective, formative assessment tool. This could be 
very useful in a class where students are playing a learning game, 
individually or in groups, while the teacher has an app that alerts 
them to which students are struggling and may need attention. A 
more comprehensive dashboard they can use after class might 
show them overall progress of their class and trends that inform 
how the next lessons are planned. Teachers might also use a 
dashboard to monitor their students’ game-based learning as they 
play at home or with friends outside of class. The ability to validly 
infer implicit science learning from the digital records of game 
activity makes this all possible. 
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ABSTRACT 
Engineering virtual internships are simulations where students 
role play as interns at fictional companies, working to create 
engineering designs. To improve the scalability of these virtual 
internships, a reliable automated assessment system for tasks 
submitted by students is necessary. Therefore, we propose a 
machine learning approach to automatically assess student 
generated textual design justifications in two engineering virtual 
internships, Nephrotex and RescuShell. To this end, we compared 
two major categories of models: domain expert-driven vs. general 
text analysis models. The models were coupled with machine 
learning algorithms and evaluated using 10-fold cross validation. 
We found no quantitative differences among the two major 
categories of models, domain expert-driven vs. general text 
analysis, although there are major qualitative differences as 
discussed in the paper. 

Keywords 

Virtual internships, machine learning, auto-assessment, epistemic 
frame theory 

1. INTRODUCTION 
In virtual internships, students play the role of interns in a virtual 
training environment. In engineering virtual internships, such as 
Nephrotex (NTX) and RescueShell (RS), students research and 
create multiple engineering designs [1]. As part of their design 
process, they regularly submit written work in the form of 
electronic engineering notebooks that are assessed by human 
judges. This human assessment is labor intensive, time 
consuming, and error-prone under certain circumstances such as 
time pressure. Furthermore, prior work has suggested that the 
reliability of human assessments can vary depending on the traits 
of the assessor, their experience, and the types of problems being 
assessed [14]. Thus, an automated assessment method that could 
provide efficiency in terms of time and cost as well as improved 
reliability is much needed. Our work presented here constitutes a 
step in this direction. 

In the present study, we explored various models for 
automatically assessing notebooks in the engineering virtual 
internships NTX and RS. The content of these notebooks varies; 
however, in this study we focus on only one type of notebook in 
which students must justify their engineering designs by typing a 
short, free-text justification. 

We have experimented with models that emulate an expert 
analysis of the student notebook entries as well as models derived 
from general textual analysis features. It should be noted that our 
work differs from previous attempts which rely on a semantic 
similarity approach, i.e. measuring how semantically close a 
student-generated response is to an ideal, expert-generated 
response as in [6]. 

The domain expert-driven models incorporate theoretically 
driven, content-based features identified by human experts such as 
“referencing any performance parameter such as cost”, which is a 
general design feature because it applies to all engineering designs 
in NTX and RS, or “indicating the power source”, a feature 
specific to the concrete task of designing an exoskeleton, which 
was the focus of the RS internship and not NTX. A challenge with 
the domain expert-driven models is that the features are specific to 
either the type of task, e.g. engineering design, or the concrete 
task itself, e.g. design an exoskeleton. This results in a scalability 
issue as these models must be redesigned manually by domain 
experts when moving to a new domain, new type of task, and/or a 
new concrete task. However, the net theoretical advantage of these 
domain expert-driven models is that they are tailored to the task at 
hand and therefore are expected to yield very good performance. 
These models also afford the ability to create automatic and 
tailored feedback to students given their task-specific diagnostic 
capabilities. 

The other category of models that we used rely on general text 
analysis features inspired from previous work on automated essay 
scoring [2,5,13] and text analysis software tools such as Coh-
Metrix [4] and LIWC [7]. For instance, in automated essay 
scoring the length in words of the essay, i.e. the number of all 
word occurrences or word tokens, is by far the best predictor of 
essay quality. Coh-Metrix is a software package that calculates the 
coherence of texts in terms of co-reference, temporal cohesion, 
spatial cohesion, structural cohesion, and causal/intentional 
cohesion. LIWC (Linguistic Inquiry and Word Count) uses a 
word count strategy to characterize texts along a number of 
dimensions that include standard language categories (e.g., 
articles, prepositions, pronouns), psychological processes (e.g., 
positive and negative emotion word categories), and traditional 
content dimensions (e.g., sex, death, home, occupation).  

The key advantage of the general text analysis models is that they 
are generally applicable across types of tasks, specific tasks, and 
domains. In addition, the general text analysis features are 
relatively cost-effective and easy to derive from the data compared 
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to features derived by domain experts, which require (significantly 
more) human time and effort. 

In this paper, we explore the predictive power of the two major 
categories of models mentioned above, domain-expert vs. general 
text analysis, in conjunction with a number of machine learning 
algorithms such as decision trees, naïve Bayes, Bayes Nets, and 
logistic regression. Furthermore, we employed an ensemble of 
classifiers approach in order to boost the performance of 
individual models. We conclude the paper with a qualitative 
assessment of the relative benefits of the proposed models for 
virtual internships by considering their predictive value, the labor 
involved in their development, and their ability to provide 
interpretable assessments for students. 

2. BACKGROUND 
We review in this section prior work on assessing students’ open-
ended responses with an emphasis on prior work in the area of 
educational technologies. 

Automated essay scoring systems [2,5,13] have been developed 
for more than two decades as a way to tackle the costs, reliability, 
generality, and scalability challenges associated with assessing 
student generated open-ended responses to essay prompts. There 
are a number of systems available for automated essay scoring, 
some of which are commercial. It is beyond the scope of this 
paper to offer a thorough review of the work in this area. We limit 
ourselves to noting that the focus on automated essay scoring is 
on the argumentative power of an entire essay while in our case 
the focus is on required (design) items that must be present in 
paragraph-like justifications. This entails that style and higher-
level constructs such as rhetorical structure are less important in 
our task as opposed to the essay scoring task and that factors that 
focus more on content measures are highly important. Given these 
differences and the fact that the two most predictive factors of 
essay quality are also content related, we included in our models 
the following two features: word count, i.e. total number of word 
occurrences or tokens in student justifications, and content word 
count, i.e. the total number of content word occurrences (nouns, 
verbs, adjectives, and adverbs). 

Directly relevant to our study is previous work by Rus, Feng, 
Brandon, Crossley, and McNamara [8] who studied the problem 
of assessing student-generated paraphrases in the context of a 
writing strategy training tutoring system. One of the strategies in 
this tutoring system is paraphrasing. As the system is supposed to 
prompt students to paraphrase and then provide feedback on their 
paraphrases, Rus and colleagues collected a large corpus of 
student-generated paraphrases and analyzed them along several 
dozen linguistic dimensions ranging from cohesion to lexical 
diversity obtained from Coh-Metrix [4]. There are significant 
differences between their work and ours. First, we deal with 
justifications which can vary in length from a few words to a full 
paragraph as opposed to explicitly elicited paraphrases of target 
sentences. Second, we do use extra features to build our models 
besides the Coh-Metrix indices. Third, we assess the student 
generated justifications as acceptable or unacceptable (i.e., correct 
or incorrect). We could eventually investigate finer levels of 
correctness, e.g. on a scale from 1-5, which we plan to do as part 
of our future work. 

Williams and D’Mello [15] worked on predicting the quality of 
student answers (as error-ridden, vague, partially-correct or 
correct) to human tutor questions, based on dictionary-based 

dialogue features previously shown to be good detectors of 
cognitive processes (cf. [15]). To extract these features, they used 
LIWC (Linguistic Inquiry and Word Count; [6]), a text analysis 
software program that calculates the degree to which people use 
various categories of words across a wide array of texts genres. 
They reported that pronouns (e.g. I, they, those) and discrepant 
terms (e.g. should, could, would) are good predictors of the 
conceptual quality of student responses. Like Williams and 
D’Mello, we do use LIWC to analyze student notebooks’ 
justifications. Furthermore, we employ expert-identified features 
and features from Coh-Metrix and automated essay scoring. 

Prior work by Rus, Lintean, and Azevedo [9] investigated the 
performance of several automated models designed to infer the 
mental models of students participating in an intelligent tutoring 
system (ITS). The ITS was designed to teach students self-
regulatory processes while they were learning about science topics 
such as the human circulatory system.  Rus and colleagues used 
two methods, a content-based method and a word-weighting 
method, to derive features for their models. While our present 
work does not investigate models using word-weighting methods, 
we do investigate models using content-based features. 

The content-based features used by Rus and colleagues included a 
taxonomy of relevant biology concepts derived by human experts, 
expert annotated pages of content from the ITS, and expert-
generated paragraphs. In the present study, the content-based 
features, or domain-expert (DE) features, we used consist of 
discourse codes developed by human experts. Discourse codes 
indicate the presence or absence of specific concepts in student 
talk, or in this case, student written work. The DE features were 
developed through a grounded analysis of student design 
justifications collected from engineering virtual internships [3].  

The learning that occurs in engineering virtual internships can be 
characterized by epistemic frame theory. This theory claims that 
professionals develop epistemic frames, or the network of skills, 
knowledge, identity, values, and epistemology that are unique to 
that profession [11]. For example, engineers share ways of 
understanding and doing (knowledge and skills); beliefs about 
which problems are worth investigating (values), characteristics 
that define them as members of the profession (identity), and a 
ways of justifying decisions (epistemology). In this study, we used 
epistemic frame theory to guide the development of the DE 
features. In prior work, elements of the engineering epistemic 
frame have been operationalized as discourse codes and used to 
assess engineering thinking in virtual internships [1]. In this 
study, the DE features we identified correspond to elements of the 
engineering epistemic frame that relate to justifying design 
decisions. The presence or absence of these features in a student’s 
written work thus represents elements of the engineering 
epistemic frame that are present or lacking. 

In sum, we used some of the features described by the above 
researchers in our work, such as word count, as well as novel 
features, e.g. features based on the engineering epistemic frame. 

3. ENGINEERING VIRTUAL 
INTERNSHIPS 
In this study, we examined student written work collected from 
the engineering virtual internships, Nephrotex (NTX) and 
RescueShell (RS). In NTX, students work in teams to design 
filtration membranes for hemodialysis machines, while in RS, 
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student teams design the legs of a mechanical exoskeleton used by 
rescue workers.  
All interactions in virtual internships take place via a website in 
which students communicate with their teams using email and 
chat. During the internships, students research and create 
engineering designs in two cycles. In each cycle, students design 
five prototypes and later receive performance results for each 
prototype which they have to analyze and interpret.  
During their design process, students submit records of their work 
via electronic notebook entries for each substantive task they 
complete, including summarizing research reports and justifying 
design decisions. The expectations of notebook entries are 
outlined in prompts, which students receive via email in the 
virtual internship website. Each notebook that students submit is 
divided into notebook sections, i.e., separate text fields for items 
that are defined by the email prompts. In this study, we analyzed 
notebook sections in which students provided justifications for 
their prototype design decisions.  
Once students complete each notebook section, they submit the 
notebooks to trained human raters for assessment. In the fiction of 
the virtual internships, these raters play the role of more senior 
employees in the company who act as mentors to the students. 
The role of the mentors is to answer student questions and lead 
team discussions, in addition to assessing student work.  
Once a mentor receives a notebook, they assess each section as 
acceptable or unacceptable using provided rubrics. The 
assessment system used by the mentors automatically generates 
pre-scripted feedback corresponding to the assessment given to 
each section. Currently, this feedback is generic in the sense that it 
does not respond to the particulars of a student’s response. For 
example, an assessment of unacceptable on a notebook section 
requiring a summary generates feedback that (1) informs the 
student that the section was unacceptable, (2) reminds them of the 
content they were asked to summarize, and (3) points them to the 
documents they were asked to summarize. This automated 
feedback does not inform the student exactly why the section was 
rated as unacceptable. However, the mentor does have the option 
to compose specific feedback for the student if they wish. 
Our work here moves us towards a more automated and student-
tailored assessment and feedback mechanisms which could have 
significant impact on the economy of scaling virtual internships to 
all students, anytime, anywhere via Internet-connected devices. 

4. EXPERIMENTS AND RESULTS 
We describe first the data set we used in our experiments before 
presenting the experiments and results obtained with the models.  

4.1 Data Set 
In this study, we analyzed notebook sections from the NTX and 
RS virtual internships in which students justified their engineering 
design decisions. In these notebook sections, students were 
required to include the design input choices they selected—that is, 
their design specifications, and a justification explaining why this 
design was chosen for testing. 
Mentors assessed these notebook entries as acceptable or 
unacceptable in real-time during the virtual internship using the 
following rubric: 

1. Listed their design specifications 

2. Included a justification referencing at least one design 
specification. 

Acceptable justification may include: 
1. Prioritizing attributes 
2. Referencing internal consultant requests 
3. The performance of a design specification on a specific 

attribute 
4. Experimental justifications (e.g., holding design 

specifications constant) 
To select data for this study, we randomly sampled 298 
justification sections from 20 virtual internship sites, i.e. datasets 
corresponding to 20 schools where the virtual internships were 
implemented. Twelve were NTX sites and eight were RS sites. Of 
the 298 justifications sampled, 146 were from NTX and 152 were 
from RS. Students were given the same prompts for justification 
sections in NTX and RS. In addition, the same rubrics were used 
by raters in NTX and RS. Thus, we combined data from RS and 
NTX to train our models.  
As described above, justification sections were originally assessed 
by mentors during the virtual internship in real time. The mentors 
were trained to assess notebook section, but they were not experts 
in the domain of engineering or the content of the virtual 
internships. In addition, they had to assess notebook sections 
under time constraints and while completing their other 
responsibilities as a mentor. For example, they could have to 
respond to student questions via chat while assessing. Thus, to 
obtain potentially more valid and reliable assessments for model 
training, the justification sections in this study were re-assessed by 
more experienced raters that did not face the constraints placed on 
the mentors. We found that the agreement between the human 
mentors and our experienced raters on the 298 student 
justifications we used in this work was kappa = 0.271. This value 
is very low, indicating that mentors’ assessments are not reliable, 
as we suspected. 
Each justification section was re-assessed by two new raters, 
benchmark rater 1 (BE1) and benchmark rater 2 (BE2). BE1 had 
over two years of experience rating notebook sections from virtual 
internships and had contributed to the content development of 
both NTX and RS. BE1 was thus considered an expert rater for 
the purposes of this study. BE2 was a less experienced rater 
trained to assess justification sections. BE1 and BE2 assessed all 
298 justification sections using the rubric above and agreed on 
one final judgement (acceptable or unacceptable) for each 
justification. Their inter-annotator reliability as measured by 
kappa was 0.767. Table 1 includes examples of notebook sections 
from NTX assessed as acceptable and unacceptable by the 
benchmark raters. About 73% of the instances in the data set were 
rated positively by the BEs. The distribution of positive and 
negative instances is shown in Table 2. 

4.2 Feature Selection 
As already mentioned, we focused on two major categories of 
models: models that rely on domain-experts (DE) versus models 
that rely on more general textual analysis features. We developed 
the DE features through a grounded analysis [3] of a sample of 98 
justification sections. These features were developed by two 
researchers who re-assessed the sample and developed discourse 
codes corresponding to what they attended to while assessing. 
Next, we automated these codes using the nCoder, a tool for 
developing and validating automated discourse codes that relies 
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on authoring targeted regular expressions for each of the expert-
identified codes [12]. These codes were included as features in 
our models (see Table 3 for descriptions). 
Table 1.  Example of Acceptable and unacceptable notebooks 

from the virtual internship Nephrotex 

Notebook entry Assessment 
Design Specifications: PAM, Vapor, Negative 
Charge, 4 % Justification: This prototype was 
altered slightly from the original with this 
material by changing from 2% CNT to 4%. 
This is an attempt to increase reliability 
without hindering flux or blood cell reactivity. 

Acceptable 

Design Specifications: PAM, Vapor, Negative 
Charge, 2.0 Justification: These specificaions 

ran best for PAM material 

Unacceptable 

 
Table 2. Distribution of human-ratings in the 298 instances. 

Human Rating #Instances 

Acceptable 217 

Unacceptable 81 

Total 298 

The general textual analysis features were further divided by their 
source into the following three categories: features inspired from 
automated essay scoring (ES) research, features obtained with the 
automated tool for textual analysis Coh-Metrix, and features 
obtained with the automated tool for textual analysis LIWC. This 
categorization of the general textual analysis features is needed for 
several reasons. First, the various sources capture different aspects 
of a text. Second, this categorization allows us to conduct ablation 
studies in which we assess the contribution of each major category 
of features to solving the task at hand. It should be noted that 
there is overlap among the features from various groups/sources. 
For instance, the WC (LIWC), DESWC (Coh-Metrix), and 
Word_Count (DE) features are all counts of white-spaces in a 
target text, i.e. justifications in our case. These features are 
slightly different from the token Count feature in the ES group 
which counts number of tokens after applying the Stanford 
tokenizer tool. Similar features will not end up in the same models 
if they correlate highly, as explained next. 
Not all features have equal predictive power and having redundant 
or irrelevant features can decrease the performance of the models. 
Therefore, we had a feature selection step keeping features that 
have low correlation with each other (<.70). When two features in 
a model had a correlation greater than .70 of them was dropped. 
For instance, from the LIWC and Coh-Metrix groups of features 
the features selected via this process were: WC, SIXLTR, 
adverbs, verbs, DESSC, DESSL, DESSLd, PCNARz, PCCONNp 
(See Table 3 for descriptions). The feature selection step was 
needed given that we worked with various machine learning 
algorithms, some of which do not have a feature selection process 
linked to them, e.g. the stepwise variable selection in some 
regression implementations. 

4.3 Results 
We experimented with the proposed models in conjunction with a 
number of classification algorithms including decision trees, naïve 
Bayes, Bayes Nets, and logistic regression. We present here the 

results obtained with the logistic regression classifier as it yielded 
the best results overall. The models were validated using 10-fold 
cross validation. Performance was measured using standard 
measures such as accuracy, false positive rate, precision, recall, F-
measure, and kappa statistic. The false positive rate, the 
percentage of true negatives predicted as positives, is of special 
interest because it gives us an idea of how many justifications are 
deemed correct when in fact are not, by a particular method. That 
is, it indicates how many opportunities for feedback a specific 
method might miss as a justification deemed correct means there 
is no need for specific feedback to improve it. The evaluation 
results are shown in Table 4. We focus next on the most important 
model comparisons due to space constraints, e.g. we do not show 
results when combining two groups of features. 
We started with models that included features from only one 
group, i.e. the individual feature group models shown in rows 1-4 
in Table 4, selected the best such model and then added, 
sequentially, features from the other groups in batches, where 
each batch contained the selected features in one group. This 
procedure, also known as an ablation study in machine learning, 
allows to see what we gain if we add a group of features to a 
model that already contains feature from one or more groups. 
From Table 4, we infer that the ES and Coh-Metrix individual 
models are the best as they have slightly higher accuracy in 
prediction (85.23% for ES and 85.23% for Coh-Metrix) compared 
to other two individual feature groups. Also their kappas are the 
highest among the models with only one group of features.  
In row 5, we show the results when combining all general text 
analysis features: ES, LIWC, and Coh-Metrix. As already 
mentioned before, we are directly interested in comparing the 
domain expert-driven model, derived from the DE features, with 
the model in row 5 that includes all the general text analysis 
features from the ES, LIWC, and Coh-Metrix groups. As we 
notice, these two qualitatively different models have very similar 
performance across all performance measures. 
In addition to developing the above models from subsets of 
features, we used ensembles of 3 individual and combined 
models, respectively, in conjunction with a majority voting 
mechanism. For instance, if 2 or 3 out of 3 models predicted a 
justification as accepted then the final prediction for the instance 
was accepted. We experimented with voting in two different 
ways: (1) we used the best 3 models from the individual or 
combined groups of features; (2) we used the weakest 3 models 
obtained with any combinations of features from individual and 
combined groups of features; this latter case is based on results 
from statistics that show that combining weak classifiers should 
result, in general, in better performance relative to the 
performance of each of the weak classifiers. Both types of 
ensembles (weakest versus best) yielded in the best cases similar 
accuracies of ~86% and similar performance across all the other 
performance measures. The false positive rate of the weakest 
combined model ensemble was lowest. 

5. CONCLUSIONS 
In this paper, we experimented with multiple models designed to 
automatically assess notebook sections from engineering virtual 
internships. In particular, we developed models to assess 
notebook sections in which students justified design decisions. All 
models performed very well with good and very good kappa 
scores (kappas scores of 0.6-0.8 are considered very good)  
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Table 3. Descriptions of the some features used in the proposed models (not all shown due to space constraints). 

Features 
 

Description 

LIWC 

Word Count Word Count (WC; Total number of words in text), Token Count (TC; Number of unique words in text), 
Words > 6 letters (SIXLTR: total number of words greater than 6 letters) Punctuations 

Type Token Ratio Ratio of TC and WC 

Coh-Metrix 

Lexical Component 
Counts  

DESPC - Paragraph count, number of paragraphs; DESSC - Sentence count, number of sentences, DESWC 
- Word count, number of words 

DESPL DESPL - Paragraph length, number of sentences, mean; DESPLd - Paragraph length, number of sentences, 
standard deviation; DESSLd; Sentence length, number of words, standard deviation; 

Connectives Features PCCONNp - the degree to which the text contains connectives such as adversative, additives and 
comparative connectives to express relations in the text. 

Temporality Features PCTEMPz - the temporality such as tense or aspect of the text; SMTEMP - temporal cohesion, measured 
by repetition score of tense and aspect 

LDTTRa Type token ratio of all words. 

Domain Expert (DE) 

Exoskeleton Design 
Inputs 

Control Sensor, Range of Motion, Power Source, Material, Actuator 

Dialyzer Design Inputs Process, Surfactant, Material, Carbon Nanotube Percentage  

Attributes Referencing any design attribute or performance parameter such as cost, reliability, etc. 

Justification Features Balancing - Justifying input choices by stating it made up for the weakness of another choice or by saying 
that another choice will balance out its weaknesses; Client - Justifying input choices by stating it would be 
good for the client or end user of the product; Consultant.Requests - Justifying input choices because the 

results meet or are expected to meet internal consultants' requests; Evaluation - Justifying input choices by 
evaluating the performance of the inputs 

Essay Scoring (ES) 

Token Count Count of word occurrences in the justification. 

Content Word Count Count of all content words (noun, adjective, verb, adverb) in the justification. 

 
Table 4. Performance evaluation results for various models. 

indicating that they are much better than chance predictions. Our 
results show that, in this context, the predictive value of models 
using only the general text analysis features is comparable to the 
predictive value of a model using only the DE features (a 
McNemar’s test on paired nominal data revealed no significant 
difference between the two models’ prediction). 
In particular, the ES group of features is the best predictor of 
students’ justifications quality. When other groups of features are 
added to the individual ES model, the results do not improve 
significantly. The fact that the ES features are so good is not 

surprising. Word count, or essay length, which is one of the 
features in the ES group, is known as being the best predictor of 
essay quality in automated essay grading [6,10]. Also, the Coh-
Metrix group of features are a good predictor of the quality of 
students’ justifications.  
It is important to note, however, that the predictive power of a 
model is only one dimension for evaluating the utility of 
automated assessment models in learning environments like 
virtual internships. We suggest that developmental cost and 
interpretability of the models are also valuable dimensions to 

S.N. Features Accuracy FP Rate Precision Recall F-
Measure 

Kappa 

1 ES 85.2349 0.2490 0.850 0.8520 0.8510 0.6181 

2 LIWC 83.2215 0.2950 0.8270 0.832 0.8290 0.5591 

3 Coh-Metrix 85.2349 0.2950 0.8480 0.8520 0.8460 0.5991 

4 DE 83.2215 0.3020 0.8270 0.8320 0.8280 0.5555 

5 ES+LIWC+Coh-Metrix 83.8926 0.2920 0.8340 0.8390 0.8350 0.5733 
6 LIWC + DE + Coh-Metrix + ES 81.8792 0.3000 0.8150 0.8190 0.8170 0.5314 
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consider. Of the models presented above, those using only the 
general text analysis features have the lowest developmental cost. 
Moreover, these features are generally applicable across types of 
tasks, specific tasks, and domains. In contrast, models containing 
the DE features have a relatively high developmental cost because 
their features required the time and expertise of humans to 
develop. We do note that the DE features described in this paper 
were automated. Thus, they can readily be applied to more 
justification sections from engineering virtual internships. 
However, these DE features are specific to this context and are 
likely not generalizable outside of engineering virtual internships. 
The utility of these automated assessment models lies in 
implementing them in real-time during a virtual internship where 
they will be used to assess student work and either generate 
automatic feedback or suggest feedback for human mentors to 
give. For the models using only the general text analysis features, 
any potential feedback would be in terms of features such as word 
count or “narrativity” of the text that are not directly related to the 
domain-relevant content of the text. Those models using DE 
features, however, could potentially generate domain-relevant 
feedback in terms of what DE features were present and absent in 
the text. For example, if a student’s justification section fails to 
relate their design decisions to the requests of the company’s 
internal consultants, that is, it lacks the “Consultant Requests” DE 
feature, feedback could be suggested to the mentor or provided 
automatically to the student informing them of this missing 
information and suggesting ways to include it. Thus, in terms of 
ease of interpretation, those models using only the general text 
analysis features have a relatively low ease of interpretation 
compared to those models that include the DE features.  
In this context, we then suggest the use of the best predictive 
model to assess the overall quality of justifications in engineering 
virtual engineering internships, and subsequently use the DE-
based model to identify potential domain-specific missing parts in 
an unacceptable justification in order to provide direct feedback to 
the student or at least make suggestions to human mentors 
regarding possible weak aspects of the justification. This approach 
balances the tradeoffs between generality and reliability versus 
domain and task specific diagnostic capabilities. 
We plan to further improve the predictive power, generality, and 
diagnostic capabilities of our models. For instance, we are 
considering unsupervised methods to automatically detect domain 
specific codes that could be used as features in our DE models. 
Furthermore, we are considering unsupervised topic detection in 
student-generated justification as a way to generalize the 
applicability of our models to other domains and types of tasks. 
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ABSTRACT
We propose a novel tensor factorization approach, Feedback-
Driven Tensor Factorization (FDTF), for modeling student
learning process and predicting student performance. This
approach decomposes a tensor that is built upon students’
attempt sequence, while considering the quizzes students se-
lect to work with as its feedback. FDTF does not require
any prior domain knowledge, such as learning resource skills,
concept maps, or Q-matrices. The proposed approach differs
significantly from other tensor factorization approaches, as
it explicitly models the learning progress of students while
interacting with the learning resources. We compare our
approach to other state-of-the-art approaches in the task
of Predicting Student Performance (PSP). Our experiments
show that FDTF performs significantly better compared to
baseline methods, including Bayesian Knowledge Tracing
and a state-of-the-art tensor factorization approach.

Keywords
Tensor factorization, student modeling, predicting students
performance, learning analytics

1. INTRODUCTION
The growth of Massive Open Online Courses (MOOC) has
rapidly increased the volume of data on students’ education
and learning behavior. This abundance of data calls for ap-
proaches that can automatically make sense of such data,
and that remove the need for manual handling of such mas-
sive amounts of data. Predicting students performance and
modeling student knowledge are two of the tasks that help
researchers to understand such data. The goal in predict-
ing student performance (PSP), is to estimate if a specific
target student can handle a learning material successfully
– for example, whether the student can succeed or fail at
solving a specific quiz. Student knowledge modeling aims to
quantify or infer a student’s knowledge at each moment in
time in each of the possible skills (or concepts) the student

may have. The set of skills are defined either manually or
automatically based on the learning materials.

Understanding students’ attempt data through PSP and
student knowledge modeling encourages teachers to design
better courses, allows for targeted personalization of course
pace, and provides more accurate automatic learning mate-
rial recommendation to students. Hence, a primary focus in
educational data mining literature is on predicting student
performance and student knowledge modeling. For example,
Bayesian Knowledge Tracing was one of the pioneering ap-
proaches that could predict the success or failure of students
in solving problems [1].

Recently, other approaches, such as factorization models,
have been used for PSP. For example, Performance Factor
Analysis (PFA) [5] is another approach to PSP and cogni-
tive modeling. PFA takes into account the effects of the ini-
tial difficulty of the skills (knowledge components) and prior
successes and failures of a student at learning the skills as-
sociated with the current item. These approaches require
prior knowledge of the overall domain model – the associa-
tion between skills and learning material.

More recent approaches have sought to overcome this limita-
tion by using latent factor approaches. For example, Thai-
Nghe et al. experimented on a context-aware factorization
algorithm, based on collaborative filtering approaches, in
the relevant recommender system literature [9]. Sahebi et
al. studied various methods of the educational data mining
field with matrix and tensor factorization approaches, from
the recommender systems literature for PSP [7]. Lan et al.
used quantized matrix completion to predict students’ per-
formance in SPARFA-Lite [4]. This method solves a convex
optimization problem and gives a global optimum solution.

Tensors, or multi-dimensional arrays, have been used in the
literature to represent data on student attempts [6]. One of
the main reasons that tensors are a suitable representation
for modeling educational data is their seamless integration
ability and flexibility in representing multiple dimensions of
the data, such as students, questions, time, and topic struc-
ture. Another reason for using tensors is their capability for
decomposing interactions in multi-dimensional data.

While various tensor decomposition models and algorithms
already exist in the literature [3], the potential for versa-
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tile modeling of tensors in the educational data mining field
is under-explored. Although previous tensor factorization
models that have been used in the literature have resulted
in comparable performance in the task of PSP [6, 8], they
are not tailored to educational data. More specifically, these
models are built for purposes other than educational data
mining (such as recommender systems), and thus do not
consider the characteristics of educational data mining chal-
lenges.

One of these challenges is increases in student knowledge
that occurs while they interact with learning material. As
the students learn through quizzes, readings, and other learn-
ing resources, they incrementally learn the underlying skills
that are present in these resources. Thus, this amount of
knowledge increase for a student depends on the material
that the student is interacting with. The current tensor fac-
torization approaches that are used for PSP in the literature
do not model this interaction.

In this paper, we provide a solution to this problem by
proposing a unique tensor factorization-based approach that
can account for the constant learning of students. Our pro-
posed tensor factorization model, called feedback-driven ten-
sor factorization, directly models the increases in student
knowledge by adding a feedback-based constraint on the
previous student’s knowledge and the current learning ma-
terial that a student is using. We compare our approach
to Bayesian Knowledge Tracing and a baseline tensor fac-
torization algorithm. Our experiments show the superior
performance of our proposed approach, as compared to the
baseline methods.

2. FEEDBACK-DRIVEN TENSOR FACTOR-
IZATION (FDTF)

As mentioned in the introduction, the goal of our approach
is to predict student performance while considering the fact
that students are constantly learning. In order to achieve
this goal, we represent student activities on learning material
as a three-dimensional tensor Y.

Notations. In this paper, tensors are represented by script
letters, e.g. Y; Matrices are denoted by boldface capital
letters, e.g. X; and vectors are represented by boldface low-
ercase letters, e.g. x. In addition, we denote the ith row of
a matrix X as Xi,:, the jth column as X:,j , and the entry
(i, j) as Xi,j .

Suppose that students are working with one resource type
and are learning from it. To be more specific, suppose that
m students are interacting with n quizzes, and that each
student can have multiple attempts (at most l) on each quiz.
Then, we can represent the students’ attempt sequences on
all quizzes as a tensor of size m × n × l. The kth frontal
slice of this tensor (Y:,:,k) shows the success or failure of all
students on all quizzes in their kth attempt. To abbreviate,
we use Yk to represent the kth frontal slice of all tensors.
Accordingly, Yi,:,: shows all the attempts of student i on
all questions and Y:,j,: shows all attempts of all students on
question j. We assume that each quiz consists of multiple
(c) concepts (skills or knowledge components) and that the
students should have some knowledge of these concepts in
order to solve the quizzes that include such concepts. Some

Figure 1: Phase 1: Decomposition of Student Per-
formance into Student Knowledge and Concept-
Map

of the elements of Y are unknown to us because not all of
the students try all of the questions as many times. Based
on these assumptions, we formulate the problem as a tensor
factorization with two phases: the prediction phase and the
learning phase.

In the prediction phase, we follow the assumption that stu-
dents’ success or failure in quizzes depends on their knowl-
edge and the concepts underlying those quizzes. In this
phase, we decompose Y into a tensor and a matrix: the ten-
sor T that shows the knowledge of students on the concepts
at each of their attempts on the quizzes, and the matrix
Q that shows the concepts that are required to solve each
quiz correctly. For each quiz j, Q:,j shows the importance
of each of the discovered concepts in it. Also, Ti,k,l shows
the knowledge of student i in concept k at the lth attempt.

Based on this decomposition, we can estimate (predict) the
unknown values of Y using the multiplication of tensor T
and matrix Q, as presented in Equation 1. Figure 1 gives
an illustration of this decomposition.

Y = T ×Q (1)

We suppose that students learn by practicing the quizzes,
and that the knowledge of students increases through this
practice of the concepts. The learning phase of our tensor
factorization approach models student learning, based on
the quizzes that they choose to solve in each step. In order
to do that, we construct a tensor X that denotes when a
student has or has not chosen to work on a specific problem
at a specific time. Equation 2 shows how to build this tensor,
based on Y.

Xi,j,k =

{
1, if Yi,j,k is observed

0, if Yi,j,k is not observed
(2)

In the learning phase, we assume that the amount of gained
knowledge in each concept is a function of the student’s
knowledge at the previous attempt, as well as the weight
of concepts that are learned in the quiz that the student
chooses to solve. Let f(·) be such a function; then the gained
knowledge at time t can be expressed as:

Tt = f(Tt−1,Xt,Q)

Since we assume that knowledge of students grows over time,
we should choose a monotonically increasing function for
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f(·). Also, to keep this knowledge increase from growing
too large, this function should be bounded. Based on these
assumptions, we model the knowledge growth of students as
a logistic regression function that ranges between 0 (for no
increase in the knowledge) to 1 − Tt−1 (for a maximum in-
crease in the knowledge). This allows us to have a bounded
amount of knowledge that always stays between zero and
one. To add to the flexibility of this function, and to account
for different students’ rate for learning from the quizzes, we
add a factor µ that controls the slope of the logistic regres-
sion function. The higher the learning rate (µ), the larger
the knowledge increase and the faster the students reach a
maximum state of knowledge. This increase can be seen in
Equation 3.

Tt = Tt−1 + (
2(1− Tt−1)

1 + exp(−µXtQ′)
− (1− Tt−1)), (3)

which can be written as follows:

Tt = 2Tt−1 +
2(1− Tt−1)

1 + exp(−µXtQ′)
− 1 (4)

Based on this model, the more knowledgeable the student
is in a concept, the less improvement she will obtain by
practicing the same concepts again and again. The great-
est increase in the student’s knowledge happens when the
student does not know the skills that are provided in the
quiz. If we expand and simplify Equation 3, we achieve
Equation 4. Since f(·) is a monotonically increasing func-
tion, the estimated knowledge tensor (T ) and domain model
(Q) are both non-negative. This non-negativity is in accor-
dance with assumptions in the educational domain: that the
weight of each concept in each learning material cannot be
negative and that the knowledge of students at any time and
in any concept cannot be negative either.

Eventually, the matrix factorization includes solving Equa-
tions 1 and 4. Assuming that we have the values for Xt

and Q, Equation 4 can be considered as a static update
and we can only optimize Equation 1 iteratively and update
the knowledge values in each iteration using Equation 4. To
achieve this goal, we try to optimize for the least regularized
estimation error of our observed tensor (Y) in Equation 5.
Thus, our objective is to minimize the overall error, which
is defined as:

Σt
i=1 ‖ Yt − TtQ ‖2 +λ(Σt

i=1 ‖ Ti ‖2 + ‖ Q ‖2), (5)

where λ is a regularization parameter. The last two terms
are added to the error equation to regularize the values in
tensor T and matrix Q. These two terms increase the spar-
sity of the knowledge and domain model by decreasing the
values in these two factors, while preventing the factoriza-
tion from being over-fit to the training data.

Since this method uses the iterative feedback loops and the
two phases of prediction and learning, we name it Feedback-
Driven Tensor Factorization (FDTF).

3. EXPERIMENTS
To asses the student performance prediction task, we com-
pare the proposed FDTF model to a baseline tensor fac-
torization algorithm that was introduced in previous rec-

Figure 2: Screen-shot of QuizJet System

ommender system literature. This tensor factorization al-
gorithm is called the Bayesian Probabilistic Tensor Factor-
ization (BPTF) and models the temporal change of user
interests on items [10]. We choose this model as a base-
line because of its consideration for time sequencing and the
common use of recommender systems algorithms in the ed-
ucational data mining literature [7]. As our second baseline,
we run the Bayesian Knowledge Tracing (BKT) algorithm
on the data [1]. Since BKT requires a pre-defined set of con-
cepts, we use the manually-labeled concepts that have been
discovered by experts in this case.

The FDTF algorithm has two parameters that need to be
tuned: the number of concepts (c) and the learning rate of
students (µ). We define these two parameters through cross-
validation. Also, in our experiments, we set λ = 0.0001.

3.1 Dataset and Setup
We use student sequences of the QuizJet online self-assessment
system to run our experiments [2]. This system produces pa-
rameterized Java quizzes based on a set of predefined tem-
plates. Hence, each student can repeat the same Java quiz,
with different parameters, over and over again. The stu-
dents submit their answer using a text box provided in the
user interface and can receive immediate feedback. Figure 2
shows a screen-shot of this system in use.

The dataset was collected from the students who have taken
a Java programming course from Fall 2010 to Spring 2013
(six semesters). The system was introduced in the class
and students have voluntarily interacted with this system.
The subject domain is organized by experts into 22 coherent
topics. Each topic has several questions and each question
is assigned to one topic. We use these sets of topics as the
expert-labeled domain model in our experiments.

We experimented on 27, 302 records of 166 students on 103
questions. The average number of attempts on each ques-
tion is equal to three. Our dataset is imbalanced: the total
number of successful attempts in the data equals 18, 848
(69.04%) and the total number of failed attempts is 8454.
We used a user-stratified 5-fold cross-validation to split the
data so that the training set has 80% of the users (with all
their records) randomly selected from the original dataset,
while the remaining 20% of the users were retained for test-
ing. In other words, 80% of students are in the training
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Figure 3: RMSE of Algorithms for Predicting Stu-
dents Performance

set and we have all of their sequences. For the remaining
students (20%) we use 20% of their data to predict the rest
80% of it. Eventually, we include 80% + 20% ∗ 20% = 84%
of the whole dataset in the training set. We used the same
set of data for all of the algorithms. We ran the experiments
3 times per stratification, and ended up with running each
algorithm 15 times. The simple statistics of our dataset are
shown in Table 1.

Table 1: Dataset Statistics
Average Min Max

#attempts per sequence 3 1 50

#attempts per question 265 25 582

#attempts per student 165 2 772

#different students per question 87 7 142

#different questions per student 54 1 101

To find the best number of concepts (c) in each of the auto-
matic PSP algorithms, we use cross-validation.

3.2 Experimental Results
As explained in Section 3, we examine the prediction per-
formance of the proposed FDTF algorithm and the baseline
models BPTF and BKT with expert-labeled topics. We then
compare the accuracy of these three approaches. Since the
dataset is imbalanced with approximately 70% positive la-
bels and 30% negative labels, we define predicted values that
are greater than 0.3 as positive-label predictions and pre-
dicted values that are less than or equal to 0.3 as negative-
label predictions. Figure 4 shows the accuracy of the men-
tioned algorithms. The red, green, and cyan bars represent
the accuracy of FTDF, BPTF, and BKT. As we can see in
this figure, although the accuracy of the baseline tensor fac-
torization model (BPTF) is better than Bayesian Knowledge
Tracing, it is significantly less than the accuracy of the pro-
posed approach (FDTF). Eventually, FDTF performs sig-
nificantly better than both of the baseline algorithms.

Although the task of predicting student performance is a
binary classification task in this setting (predicting either
failure or success for students), the Root Mean Squared Er-

Figure 4: Accuracy of Algorithms for Predicting
Students Performance

ror (RMSE) is traditionally used to evaluate this task in the
literature. As a result, we compare the approaches based
on the RMSE of approaches in addition to their accuracy.
Figure 3 shows RMSE of these experiments for each of the
approaches. Again, we can see that FDTF has a significantly
better RMSE than both the BKT and BPTF algorithms.

These results show that, even though BKT adds the knowl-
edge of topic-based domain model, the tensor factorization
algorithms outperform it. Additionally, despite the facts
that both BPTF and FDTF use the same data, model the
student data as a tensor, and are temporal tensor factor-
ization approaches, the proposed FDTF approach performs
better than BPTF. These results show that explicitly mod-
eling students’ knowledge acquisition by considering their
interactions with learning materials leads to better overall
modeling of student knowledge, and thus provide a better
overall prediction of student performance.

4. CONCLUSIONS AND FUTURE WORK
We proposed a novel tensor factorization model (FDTF)
that can predict students’ success or failure in future quizzes
by explicitly modeling their knowledge acquisition during
their interaction with learning materials. This approach
does not require any expert or domain knowledge and can be
automatically performed using students’ historical attempt
sequence. Our evaluations show that FDTF outperforms the
predicting student performance approaches in the literature.

In future, we plan to explore the ability of the proposed
approach in discovering the underlying domain model for the
learning material, experiment on more diverse datasets, and
compare our algorithm to other PSP and domain modeling
approaches in the literature. We plan to improve our FDTF
model to be able to model implicit feedback of students’
activity, in addition to providing overall success and failure
records.

The FDTF model has the potential to be used as a basis to
recommend learning material to students. Also, it can help
teachers discover domain models and edit or enhance learn-
ing materials, look up the concepts that students struggle
to learn, and suggest appropriate learning activities.
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ABSTRACT
We explored a series of feature selection methods for model-
based Reinforcement Learning (RL). More specifically, we
explored four common correlation metrics and based on them,
we proposed the fifth one named Weighed Information Gain
(WIG). While much existing correlation-based feature selec-
tion methods mostly explored high correlation by default, we
explored two options: High vs. Low. The former selects the
next feature that has the highest correlation measure with
existing selected ones while the latter selects the one with
the lowest correlations. The 10 correlation-based methods
were compared against previous feature selection methods
for model-based RL across several datasets collected from
two vastly different intelligent tutoring systems. Our results
showed that the 10 correlation-based methods significantly
outperform all other methods across all datasets. Among the
five correlation metrics, WIG performed best. Surprisingly,
for each of correlation metrics, the low option significantly
outperform its high correlation peer and thus it suggests that
low correlation-based feature selection methods are more ef-
fective for model-based RL than high ones.

1. INTRODUCTION
Optimal decision making in complex interactive environ-
ments is challenging. In Intelligent Tutoring Systems (ITSs),
for example, system’s behaviors can be treated as a sequen-
tial decision process where at each step system selects an
appropriate action from a set of alternatives. Each of these
system decisions will affect the user’s subsequent actions and
performance. Its impact on outcomes cannot be observed
immediately and the effectiveness of each decision is depen-
dent upon the effectiveness of subsequent decisions. Peda-
gogical strategies are policies that are used to decide what
system action to take next in the face of alternatives.

Reinforcement Learning (RL) is one of the best machine
learning approaches for decision making in interactive envi-

ronments. RL focuses on inducing optimal policies on what
action(s) an agent should take in any context that would
maximize the agent’s cumulative reward. While various RL
approaches have shown promising, existing RL approaches
tend to perform poorly when the interactive environment
is complex in that many factors can impact desired out-
comes yet not fully understood. Our general approach is to
start from a collection of potentially relevant features and
to apply feature selection methods to narrow them down
to a compact and effective state representation. Many fea-
ture selection methods such as Least-squares temporal dif-
ference (LSTD) with lasso regularization [11], Monte-Carlo
tree search algorithm [5] have successfully applied for RL.
However, most of then are designed for model-free RL and
we used model-based RL (Section 3).

In this paper, we proposed a series of correlation based
feature selection methods by exploring different correlation
metrics. Correlation-based methods have been widely used
in supervised learning, where we use input state feature
space X to predict output label Y and previous approaches
mainly select the subsets of X with the highest correlation
with the output label Y [8, 21]. However, for RL there is no
output label Y and thus, to apply correlation-based feature
selection methods directly to RL, we explored two options:
High and Low. The former is to select the next feature that
is the most correlated (High) with the selected ones while
the latter option is to select the least correlated (Low)
one. Theoretically speaking, choosing the most correlated
feature may be effective since the selected feature is more
likely to be related to decision making, however it may not
make more contribution than the current selected feature
set does. On the other hand, choosing the least correlated
feature may raise the diversity of selected feature set and
enrich the state representation, however it takes a risk of
selecting irrelevant or noisy features.

In short, we explored both high and low options for five cor-
relation metrics and resulted in 10 correlation-based meth-
ods. We compared them against an ensemble method, the
methods involved in [3] referred as RLPreviousFS for the
rest of paper, and the random feature selection method across
several datasets collected from two vastly different ITSs: one
is a data-driven logic tutor named Deep Thought and the
other is a natural language physics tutor named Cordillera.
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2. RELATED WORK
In general, existing feature selection for RL can be classified
into three categories [6]: Filter, Wrapper and Embedded.
Filter approaches can be seen as a preprocessing procedure
in that it usually employs a ranking function so that either
a fixed number of features with the highest rank or a feature
set above a preset threshold value will be selected from the
high-dimensional state space. This process is independent
from the subsequent model learning process. For RL, the
ranking function is generally based on which state feature
subset would directly influence the rewards. For example,
Morimoto et al. applied kernel dimension reduction to eval-
uate the conditional independence among state features and
those with the most impacts on the next-time-step rewards
are selected [14]. Hirotaka and Masashi [7] proposed a filter-
type approach by directly evaluating the independence be-
tween immediate reward and state-feature sequences using
conditional mutual information. However, it is not clear how
their approach can be applied when immediate reward is not
directly observable and only delayed reward is present.

Wrapper approaches search feature space and generate sev-
eral candidate feature subsets, evaluate each subset using
a learning algorithm, and then select the subset with the
best performance. For example, Gaudel and Sebag applied
Monte-Carlo tree search algorithm to generate candidate
feature subsets and then evaluate the goodness of feature
subset using the predefined score function [5]. In addi-
tion, Keller, et al applied LSTD to approximate value func-
tion, selected a feature subset by implementing Neighbor-
hood Component Analysis to decompose approximation er-
ror, which can be used to evaluate the goodness of the fea-
ture subset [9]. Similarly, in LSPI-FFS Li, Williams and
Balakrishnan also applied LSTD to approximate value func-
tion using linear model. They updated the parameters of
the linear model through gradient descent and selected a
feature subset with largest magnitude of weight [13].

Embedded approaches for RL conduct feature selection and
policy induction process simultaneously. Kolter and Ng ap-
plied LSTD with Lasso regularization to approximate value
function as well as to select effective feature subset [11].
Bach explored the penalization of approximation function by
using Multiple Kernel learning (MLKL)[2]. Wright, Loscalzo
and Yu proposed IFSE-NEAT, the feature selection embed-
ded in neuroevolutionary function, which approximates the
value function, and features are selected based on their con-
tributions to the evolution of topology of network[20].

In short, while much of prior research has done on feature se-
lection for RL, most of them is for model-free RL. For Model-
based RL, Chi et al. investigated 10 filter-based methods
(RLPreviousFS) [3]. These methods were implemented to
derive a set of various policies, where features are selected
mainly based on the single feature performance and the co-
variance in training data. Their results showed there was no
consistent winner among the ten feature selection methods
and in some particular cases these methods performed no
better than the random baseline method. Therefore, much
research on feature selection for model-based RL is needed.

3. REINFORCEMENT LEARNING &
MARKOV DECISION PROCESS

Generally speaking, RL can be divided into two categories:
model-free and model-based. Model-free RL [4] typically
uses samples to learn a value function, from which a policy
is implicitly derived. Model-based RL, by contrast, first
builds up a model from samples and then compute a policy
based the model. Both approaches have their own strengths
and weaknesses. Model-free methods are appropriate for
domains where data collection is inexpensive and trivial.
Model-based methods, on the other hand, are suitable when
collecting data is expensive. Given the high cost of collect-
ing training data in our task, we focused on model-based RL
and used a Markov Decision Process (MDP) framework.

MDP is defined as a tuple 〈S ,A,T ,R〉. S denotes state
space, which reflects the generalization of interactive envi-
ronment; actions A are agent’s possible behaviors; reward
function R can be immediate or delayed feedback from en-
vironment respect to agent’s behavior and RaSS′ denotes
the reward of transiting from state S to state S′ by tak-
ing action a; transition probabilities T are defined as T =
{p(Sj |Si, Ak)}k=1,··· ,m

i,j=1,··· ,n, which is estimated from training

corpus. More specifically, T aSS′ = p(S′|S, a) denotes the
probability of transiting from state S to state S′ by taking
action a.

Once the tuple 〈S ,A,T ,R〉 is set, we transform the problem
of inducing effective pedagogical strategies into computing
an optimal policy in an MDP by dynamic programming ap-
proaches. More specifically, we calculate the value function
V π(S) under a policy π though Bellman equation[17], which
is defined as:

V π(S) = Eπ(Rt|St = S)

=
∑

a

π(S, a)
∑

S′
T aSS′

[
RaSS′ + γV π(S′)

]

where γ is a constant called discount factor. The optimal
value function can be estimated by

V ∗(S) = max
π

V π(S)

Then we can derive the optimal policy corresponding to the
optimal value function V ∗(S). Here we used the toolkit
developed by Tetreault and Litman [18]. Besides inducing an
optimal policy, Tetreault, & Litman’s toolkit also calculate
the Expected Cumulative Reward (ECR) for the induced
policy. The ECR of a policy is derived from a side calculation
in the policy iteration algorithm: the V-values of each state,
the expected reward of starting from that state and finishing
at one of the final states. More specifically, the ECR of a
policy π can be calculated as follows:

ECRπ =

n∑

i=1

Ni
N1 + · · ·+Nn

× V (si) (1)

Where s1, · · · , sn is the set of all starting states and V (si) is
the V-values for state si; Ni is the number of times that si
appears as a start state in the model and it is normalized by
dividing Ni

N1+···+Nn
. In other words, the ECR of a policy π is

calculated by summing over all the initial start states in the
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space and weighting them by the frequency with which each
state appears as a start state. The higher the ECR value of
a policy, the better the policy is supposed to perform.

In our application, we defined our action set A and re-
ward function R in Section 5. However the state space S
is not well-defined, where each state is a vector represen-
tation composed of a fixed number of state features F =
{F1, F2, ..., Fp}. Our approach is to apply various feature
selection methods to narrow a wide set of feature space to
a compact and effective subset that would model student
learning process accurately.

4. METHODOLOGY
In this section, we first describe the five basic correlation
metrics we used and then describe our general feature se-
lection procedure. More specifically, we will describe our
10 correlation-based methods, the ensemble method, and fi-
nally briefly describe the RLPreviousFS methods.

4.1 Five Correlation Metrics
In order to quantize correlation among features, we used five
correlation metrics. The first four are commonly used in su-
pervised learning and here we will investigate whether they
can be applied to RL. We proposed the fifth one, Weighted
Information gain, by combining the four commonly used
metrics and adapting them based on the characteristic our
task and datasets. More specifically, we have:

1. Chi-squared (CHI)[22]: a statistical test used to iden-
tify whether the distribution of a categorical variable
differ from the other one, which induces the indepen-
dence between two variables. CHI is usually applied
to evaluate the independence of two variables in math-
ematical statistics.

2. Information gain (IG)[12]: it measures the differ be-
tween the uncertainty of a variable Y and the uncer-
tainty of Y given variable X as conditional informa-
tion. It is calculated as:

IG(Y,X) = H(Y )−H(Y |X)

where H() is called entropy function, measure uncer-
tainty of a variable. IG evaluates the certainty of vari-
able Y obtained from variable X, which can be treated
as one type of correlation between X and Y . IG has
the bias towards the variable with a large number of
distinct values.

3. Symmetrical certainty (SU)[21]: it is defined as:

SU(Y,X) =
H(Y )−H(Y |X)

H(X) +H(Y )

SU evaluates the correlation between two variables by
normalizing IG. SU compensates the weakness of IG
and it is a symmetrical measurement, which treats a
pair of variables symmetrically.

4. Information gain ratio (IGR)[10]: it’s the ratio of in-
formation gain to the intrinsic information, which is
the entropy of conditional information. IGR can be
represented as:

IGR(Y,X) =
H(Y )−H(Y |X)

H(X)

Comparing with IG, IGR takes the uncertainty of con-
ditional information into account with purpose of re-
moving bias of selecting variable with many distinct
values. However, IGR is not a symmetrical measure-
ment (IGR(X,Y ) 6= IGR(Y,X)).

5. Weighted Information gain (WIG): it is proposed as:

WIG(Y,X) =
H(Y )−H(Y |X)

(H(Y ) +H(X))H(X)

We propose WIG by combining IG, SU and IGR. Com-
paring with IGR, WIG normalized IG by consider-
ing the uncertainty of both variables X and Y and
also compensate the weakness of IG. Comparing with
SU, although WIG is not symmetrical measurement.
Based on the above equation, WIG sets more weight
for variable X. In our application, WIG is used for
evaluating the correlation between current selected fea-
ture set Y with the new feature X .

For each of the five correlation metrics, we explored two
options: High and Low, which resulted in 10 correlation-
based methods named five High methods: CHI-high, IG-
high, SU-high, IGR-high, WIG-high and five Low methods:
CHI-low, IG-low, SU-low, IGR-low, and WIG-low. Our goal
is to investigate which option is better: high vs. low and
which of the five correlation metric performs the best.

4.2 Correlation-based Feature Selection
In this project, we followed a forward stepwise feature se-
lection procedure in that: given current selected feature set,
our correlation-based methods select the feature forwardly
based on the five correlation metrics described above.

Algorithm 1 Correlation-based Feature Selection Algo-
rithm

Require: Ω: Feature space; D: Training data; N : Maxi-
mum number of selected features

Ensure: S∗: Optimal feature set
1: for fi in Ω do
2: ECRi ← Calculate-ECR(D, fi)
3: end for
4: Add f∗ with highest ECR to S∗
5: while size(S∗) < N do
6: for fi in Ω− S∗ do
7: Ci ← Calculate-correlation(S∗, fi, m)
8: end for
9: F ← SelectTop(C, 5, reverse) . Select top 5

features based on correlation metrics
10: for fi in F do
11: ECRi ← Calculate-ECR(D, S∗ + fi)
12: end for
13: Replace S∗ by S∗ + fi with higgest ECR
14: end while

Algorithm 1 shows the concrete process of our correlation-
based feature selection procedure. It contains three major
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parts: in the first part (lines 1–4), it constructs MDPs for
each single feature, induces a single-feature policy and cal-
culates it ECR. Then the feature with highest ECR is
added into current optimal feature set. In the second part
(lines 6–9), it evaluates the correlations between current op-
timal feature set S∗ with other features fi ∈ Ω− S∗, ranks
the correlations, and then selects the top 5 highest ones for
high correlations or the bottom 5 lowest ones for low cor-
relations. They are selected to form a feature pool F . In
the third part (lines 10–13), several candidate feature sets
are generated by combining current optimal feature set S∗
with each feature fi ∈ F . Then ECR for each candidate
feature set can be evaluated by applying Calculate-ECR
function. Current optimal feature set S∗ will be replaced by
the candidate feature set with highest ECR. The algorithm
will terminate until the size of optimal feature set reaches
maximum number N . The third part can be treated as the
process of wrapper approach where several candidate fea-
ture sets are evaluated by the RL method. Therefore, our
correlation-based methods are the combination of filter and
wrapper approaches.

4.3 Ensemble Method
Our ensemble approach combines the 10 proposed correlation-
based methods and 4 RL-based methods (Section 4.4), which
are most effective methods among RLPreviousFS. Its pro-
cedure is similar to that of correlation-based method except
the second part (lines 6–9). The ensemble approach inte-
grates the features generated from each method and gen-
erates a relatively big feature pool F . The maximum size
of F is up to 70 but often smaller because of the overlap-
ping feature sets. Note that it is still much larger than any of
our 10 correlation-based methods which has 5 candidates for
each step. After generating the feature pool, the ensemble
method jumps to the third part (lines 10-13) of Algorithm 1.
At each step, the ensemble method explores feature sets by
adding the feature with maximum ECR.

4.4 RLPreviousFS
Chi et. al [3] grouped RLPreviousFS into three categories:1)
four RL-based methods; 2) two PCA-based method, which
selects features with the high correlation with principle com-
ponents; 3) four PCA&RL-based methods, which use RL-
based methods to select features from a candidate feature
set which is generated from PCA-based method. All three
categories can be seen as the filter approaches.

5. TRAINING DATASETS
5.1 Two Deep Thought Datasets
Deep Thought (DT)[15] is a data-driven ITS . It is a rule-
based system where students need to select different rules
to complete logic proof problems. In DT, we focused on
a problem level decision named problem solving (PS) vs.
Worked Example(WE). More specifically, when starting the
next training problem, the tutor will make a simple decision:
“should it ask student to solve the next problem (PS), or
should it provide an example to show the student how to
solve the next problem (WE)”.

Our training dataset includes a total of 303 undergraduate
CS students who used DT as part of class assignment in Fall
2014 and Spring 2015. The average amount of time spent in

the tutor was 416.60 minutes. To induce RL policies, a total
of 134 features were extracted from the student-system log
files. The reward function in DT dataset is calculated based
on level score LevelScorei where i ∈ [1, 6]. Particularly,
we designed two type of reward: immediate and delay re-
ward. Immediate reward is defined as Ri = LevelScorei −
LevelScorei−1 where i ∈ [1, 6], R1 = LevelScore1, it re-
flects the change of students’ performance level by level.
Delayed reward is represented as Rdelay = LevelScore6 −
LevelScore1, which determines the change of students’ per-
formance across all levels. For the convenience, we denote
the two DT datasets with immediate reward as DT-Immed
and that with delayed reward as DT-Delay respectively.

5.2 Six Cordillera Datasets
Cordillera [19] is a natural language tutoring system teach-
ing college introductory physics. Different from DT tutor
system, Cordillera requires students to input their answer
by natural language free text. The data collection consists
of the following stages: 1) background survey; 2) studying
textbook and prerequisite materials, 3) taking a pretest; 3)
training on Cordillera, 4) and taking a post test. Cordillera
makes step-level decision: Elicit/Tell (ET). The ET deci-
sion means“should the tutor system elicit the next problem-
solving step for student, or should it tell student the instruc-
tion of next step directly”.

Our training corpus involves 64 students. In Cordillera,
there are five primary Knowledge Components (KCs): Def-
inition of Kinetic Energy (KE), Gravitational Potential En-
ergy (GPE), Spring Potential Energy (PE), Total Mechan-
ical Energy (TME), and finally Conservation of Total Me-
chanical Energy (CTME). In STEM domains such as math
and science, it is commonly assumed that the relevant knowl-
edge is structured as a set of independent but co-occurring
KCs. A KC is “a generalization of everyday terms like con-
cept, principle, fact, or skill, and cognitive science terms like
schema, production rule, misconception, or facet” [19]. For
the purposes of ITSs, these are the atomic units of knowl-
edge. It is assumed that a tutorial dialogue about one KC
(e.g., kinetic energy) will have no impact on the student’s
understanding of any other KC (e.g, of gravity). This is an
idealization, but it has served ITS developers well for many
decades, and is a fundamental assumption of many cognitive
models [1, 16]. Given the KCs’ independence assumptions,
we will apply RL to induce KC-specific pedagogical strate-
gies for each of the five primary KCs individually. Moreover
some steps in Cordillera have mixed KC, thus we also apply
RL to induce pedagogical policies irregardless of the KCs in-
volved (denoted by Across). In short, we have a total of six
Cordillera KC datasets, one per KC for the five primary KCs
and one KC-general for the Across policy. Each of the KC
datasets contains 50 state features and to induce RL-rules,
we used the delayed reward defined as student Normalized
Learning Gains (NLGs): NLG = Posttest−Pretest

MaximumScore−Pretest .
Here MaximumScore is the maximum score a student can
get and for both pretest and posttest, the maximum score
is set to be 1.

6. EXPERIMENT & RESULT
To evaluate the effectiveness of induced policies, we set the
maximum number of selected features to be 6 considering
the size of our training datasets. In this section, we present
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Table 1: The highest ECR Induced by Correlation-based Methods Across Eight Datasets

ITS Data
CHI IG SU IGR WIG

High Low High Low High Low High Low High Low

DT
Immed 55.89 129.82 53.87 95.81 53.87 95.81 53.87 95.81 59.04 143.16*
Delay 8.89 12.56 8.89 12.58 10.73 12.58 8.94 15.43* 8.94 15.43*

Cordillera

KE 5.86 6.75 5.86 6.75 5.86 6.75 5.57 7.64* 5.57 7.62
GPE 10.47 13.39 11.80 13.39 11.21 13.39 11.10 17.23* 10.82 17.23*
SPE 12.67 17.17 12.67 14.88 12.67 18.02* 10.83 18.02* 10.27 18.02*
TME 7.34 7.96 7.57 9.42 7.47 9.42 6.98 10.04* 6.40 10.04*

CTME 23.01 32.71 24.01 31.22 24.31 31.22 23.01 33.24* 23.01 33.24*
Across 1.77 2.26 1.77 2.26 1.77 2.57* 1.77 2.26 1.77 2.57*

Note: The best ECR among 10 methods for each dataset is highlighted by *.

Table 2: Overall Evaluation Across Eight Datasets

DT Cordillera
Immed Delayed KE GPE SPE TME CTME Across

Low Correlation 143.16 15.43 7.64 17.23 18.02 10.04 33.24 2.57
High Correlation 59.03 10.72 5.85 11.80 12.67 7.57 24.31 1.71

Ensemble 127.79 12.61 7.33 16.40 16.95 9.12 32.06 2.68
RLPreviousFS 60.28 12.56 6.17 14.41 11.90 7.15 24.60 2.03

Random 8.53 7.62 4.26 7.34 10.52 4.78 22.02 1.20

the experimental analysis of the correlation-based methods,
the ensemble, the RLPreviousFS used in previous research,
and random feature selection methods which is our baseline
method.

6.1 Comparing correlation-based methods
In this section, we want to answer two questions:
1) which option is better for model-based RL: High vs. Low;
2) which of the five correlation metrics performs the best.

High VS Low. Table 1 shows the performance of the
10 correlation based methods across eight training datasets:
two DT and six Cordillera datasets. The rows represent the
eight datasets while columns represent the 10 correlation-
based methods. Each cell in Table 1 shows the highest ECR
of the policy generated from the corresponding correlation-
based feature selection method on the corresponding dataset
when the number of features varies from 1 to 6.

Table 1 shows that for each of five correlation metrics, the
low correlation-based method significantly outperform its
high correlation-based peer. For DT-Immed dataset, the
ECR of WIG-low is 143.16, while ECR of WIG-High is
only 59.04; the former is 140% higher than the latter. Sim-
ilarly, the ECRs of CHI-low and CHI-High are: 129.82 vs.
55.89 and the former is 132% higher than the latter. The
similar results is true across all five correlation metrics and
across all eight datasets.

Moreover, the out-performance of the Low option over the
High option seems to be more prominent on DT datasets
than Cordillera datasets. For DT data, the average percent
increase for the low correlation methods over the high cor-
relation methods is 75.35%, the maximum percent increase
is 142.48% and the minimum percent increase is 17.24%.

For Cordillera KC datasets, the average percent increase for
the low correlation methods over the high ones is 35.15%,
the maximum percent increase is 75.46% and the minimum
percent increase is 8.45%. On average the low correlation
methods outperform the high correlation peers by 45.2%.

To summarize, our results showed that the low correlation
option is more suitable for the model-based RL than the
high correlation option. It indicates that it is important to
include a variety of features in the state representation for
applying RL to induce pedagogical policies.

Five Correlation Metrics. In Table 1, for each of the
eight datasets, we highlight the best ECR of the induced
policies by *. Table 1 shows that the WIG is the consis-
tent winner in that it has the best ECR for all datasets
except for KE. On the KE dataset, WIG-Low performance
is slightly lower than the best policy: 7.62 for WIG-Low vs.
the highest 7.64 for IGR-Low. Following WIG, IGR is the
second best in that it has the highest ECR for six out of
eight datasets. Note that WIG and IGR together produced
all the best policies across all eight datasets and they over-
lapped on DT-Delay, GPE, SPE, TME, CTME. Except for
WIG and IGR, the remaining three metrics only induced 2
best policies and both are found by SU-Low. In short, our
proposed WIG performed the best among the five correla-
tion metrics followed by IGR.

6.2 Overall Evaluation
Table 2 shows the overall comparison among all feature se-
lection methods. With the purpose of simplicity, for the five
low-correlation methods, the five high-correlation methods
and the RLPrevousFS methods, we select the best one from
each category. Thus, Table 2 will compare the five cate-
gories of feature selection methods: the best of the five Low-
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correlations, the best of the five High-correlations, the en-
semble, the best of RLPreviousFS and the random method.

In Table 2, rows denote the five categories and columns show
the eight datasets. Table 2 shows that as expected the ran-
dom method performs the worst across all datasets. In addi-
tion, the best of the low correlation-based methods outper-
forms all other methods in all datasets except in the Across
dataset, where the ensemble method performs slightly better
that the best of the low correlation-based methods. On av-
erage, the best low correlation-based method increases over
the best of RLPreviousFS by 43.87% and over the ensemble
method by 9.05%. In addition, the ensemble method im-
proves over the best of RLPreviousFS on average 36.46%.
To summarize, we can rank the five categories of methods
as Low correlation-based > Ensemble > High correlation-
based, RLPreviousFS � Random.

7. CONCLUSIONS & FUTURE WORK
In this paper, we proposed 10 correlation-based feature selec-
tion methods for model-based RL. Our result clearly showed
that the low correlation-based methods are more effective
than the ensemble, the high correlation-based, the RLPrevi-
ousFS, and the random method. Among the five correlation-
based metrics, our proposed WIG performed the best. WIG
found the best policies across all eight datasets except that
on KE, its performance is only slightly lower than the best
one which is found by IGR.

While in supervised learning features associated with high-
est correlation are generally selected, for model-based RL
selecting the next feature with lowest correlation is more ef-
fective. Moreover, it is surprising to see that the ensemble
method only performed the best on one out of eight datasets.
Given that the motivation for applying the ensemble method
is that it can take the advantages of each method with pur-
pose of achieving better results. Therefore, one of our future
work is to explore other ways to make our ensemble method
more effective.
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ABSTRACT
In massive online communities of creators (OCOCs), one of
the core challenges is to encourage users to learn to create
original contents using basic components. Recommending
the right learning components at the right time is criti-
cal for improving user engagement and has not been fully
studied due to the unstructured nature of online commu-
nities. To address the problem, we propose in this paper
a novel recommendation model which integrates Cox’s sur-
vival analysis and collaborative filtering. Our model can
incorporate factors such as user learning history and social
engagements, which provides us insights in improving the
personalized service. We apply our method to the user data
from Scratch online platform and demonstrate the perfor-
mance of the model.

1. INTRODUCTION
In recent years, the number of online learning communi-
ties (OCOCs) has increased exponentially as evidenced by
successful platforms such as Scratch online1. These online
communities offer flexible learning environment where users
can create projects (e.g., games, art designs), share projects,
and engage with like-minded users in the community. One of
the goals is to foster learning programming concepts through
developing and sharing projects among its users based on in-
teractions in the community [11]. Previous studies [7] have
found that creating and sharing projects is the gateway to
other online social activities including commenting and fol-
lowing. However, only about 29% of Scratch users would like
to share their projects and about half of them contribute no
more than one project.

One way to improve user engagement is to track users’ learn-
ing history and recommend contents tailored to each indi-
vidual. For example, Scratch users learn to create projects
by manipulating basic programming blocks such as “goto”,

∗Corresponding author.
1https://scratch.mit.edu/

“changecolor”, and“doIf”. Each block is categorized in a cer-
tain Computational Thinking (CT) concept [6]. Users are
expected to learn CT concepts such as “motion” by manip-
ulating blocks such as “goto”, “bounce”, and “turn”. Users
may follow different learning paths over time. Based on pro-
gramming blocks that each user has used in his/her previous
projects, we can recommend particular blocks, concepts, or
projects tailored to the individual. For instance, for users
who are interested in animation projects with some basic
motion blocks such as “goto”, the system can recommend
projects that have more advanced motion blocks such as
“bounce”.

In addition to what to recommend, when is a good time
to recommend is another important factor to consider since
suggesting blocks to users at the right time may influence
learning effectiveness and efficiency. For example, if a user is
still struggling with basic motion techniques such as “goto”,
it may not be a good idea to introduce a project or a more
advanced programming concept such as“turn”or“direction”.
Our goal is to alleviate the high dropout rates in the early
stage through personalization of the learning path.

In this paper, we propose a model to learn the probability
of a user’s exposure to a certain learning component at a
particular time. The probability of exposure is estimated
based on a collaborative filtering model, which recommends
the user the items favored by the like-minded. The condi-
tional probability of a user being exposed to a given item at
a particular time is modeled by the Cox proportional hazard
model from survival analysis.

2. RELATED WORK
Early studies on learning behavior analysis for OCOCs have
been based on case-studies evaluating learning process qual-
itatively [5, 12]. Other attempts [3, 7] have focused on clus-
tering user behaviors based on types and volumes of users’
online activities. A recent work by Yang et al. [14] modeled
informal learning trajectories quantitatively as the growth
of cumulative usage of programming blocks by each user.

Personalization approaches that are based on user behaviors
have been widely studied in different types of Web services
such as e-commerce. In e-commerce, most personalization
approaches focus on recommending users the items that have
been favored by like-minded users based on their purchase
history. Traditional recommendation algorithms are mem-
ory based methods including vector similarity and correla-
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Figure 1: Time-aware recommendation. The occur-
rence time of user-item interaction is modeled using
survival analysis. Our goal is to predict the most de-
sired learning item i at a particular time t for each
individual user u.

tion [2]. The state-of-the-art methods including the one that
won the Netflix competition [9] are based on matrix factor-
ization. The time factor in personalization services largely
affects the user satisfaction of the service [13, 10]. Our con-
tribution in this paper lies in that we incorporate both the
Cox model and collaborative filtering to provide personal-
ized recommendation for online learners.

3. METHOD
In OCOCs, users create and share projects consisting of ba-
sic items such as programming blocks in Scratch. Each item
belongs to a certain category. Based on user-item interac-
tion histories, we would like to suggest items tailored to each
user at a particular time. To achieve this goal, we propose
to estimate the joint probability p(u, i, t) = p(t|u, i)p(u, i),
where p(u, i) is the probability of user u interacting with
item i and p(t|u, i) is the conditional probability of user u
interacting with item i at time t.

We model the occurrence time t of the event that user u in-
teracts with item i using the Cox model in survival analysis.
Survival analysis is used to estimate the probability of the
occurrence of an event p(event in [t, t + ∆t]) such as when
a patient fails to survive. In the online learning context,
our task is to estimate the probability of the occurrence of
exposing to a specific learning block for each user, which is
p(t|(u, i)). As shown in Figure 1, in the observed sequences
of user-item interactions, a user builds a project with a set
of items (e.g., “isequal” and “goto”) at time tk. Then item
i is used again in another project of the same user at time
tk+1. Let xk be the covariates associated with user u at time
tk. We are interested in predicting the time gap tk+1 − tk.

Let λ(t) denote the instantaneous rate of event happening at
time t following the last event given the covariates xk, that
is λ(t) = P (T = t | T ≥ t). The Cox model assumes that
the covariates only affect the magnitude of each individual
hazard rates. Formally, for an individual observation with
covariates xk, the hazard at time t is:

λ(t) = λ0(t) ∗ exp(xTk β), (1)

where λ0 is the non-parametric baseline hazard function, xk
is the covariates, and β is the regression coefficient. The log
likelihood of observing the occurrences is:

logL =

K∑

k=1

{
dk log λ(tk)−

∫ tk

0

λ(τ)dτ

}
, (2)

where dk is a censor indicator, taking the value one if event

occurs at time tk or the value zero if event does not occur till
time t by the end of observation window. The parameters β
and the baseline hazard λ0 can be estimated by maximizing
the log partial likelihood with Breslow’s approximation [4].

We further estimate the probability p(u, i) of a user favoring
a particular item (e.g., block) by adopting collaborative fil-
tering (CF) recommendation algorithms. User interactions
contain substantial information to improve recommendation
accuracy. For example, in Scratch, users play with a set of
programming blocks to develop a project. Therefore, the
frequency of each type of block may indicate their prefer-
ences. Based on the previous learning history, the system
can predict interesting blocks tailored to individual taste.
Collaborative filtering methods focus on detecting users with
similar preferences and recommending items favored by the
like-minded. Algorithms range from similarity based CF
methods [2] to matrix factorization based CF methods pop-
ularized by the Netflix Prize Competition [9].

Let rui denote the observed preference of user u for item i,
where u = 1, 2, . . . ,m and i = 1, 2, . . . , n. The pairs (u, i)
are stored in the set O = {(u, i) | rui is observed}. Since
the observed ratings or event frequencies are very sparse,
matrix factorization is used to learn latent features of both
users and items in a lower dimensional space such that the
product of each user-item pair can best approximate the
ratings. Specifically, let θu and vi denote latent features
for user u and items i, where θu and vi are k-dimensional
vectors. The latent features can be estimated by minimizing
a prediction loss function between the predicted ratings and
true ratings of users. That is,

min
Θ,V

∑

(u,i)∈O

(rui − θ>u vi)2, (3)

where Θ = [θ1, θ2, . . . , θm] is a k × m matrix and V =
[v1, v2, . . . , vn] is a k × n matrix. A gradient descent based
method [9] can be used to estimate latent features. The
probability of user favoring an item p(u, i) can be generated
using a softmax function:

p(u, i) =
exp(rui)∑n
j=1 exp(ruj)

, (4)

4. EXPERIMENTAL RESULTS
We evaluate the model performance through two steps: time-
to-return prediction and time-aware recommendation. In
the first step, for every user-item interaction (u, i), we esti-
mate the probability of the next occurrence at time t and
use the expected value of the time as the predicted time to
return. In the second step, for each user u at a particular
time t, we rank each item i by the joint probability p(u, i, t)
and recommend top-K items. We present the experimen-
tal details including data collection, evaluation metrics, and
competing baselines.

4.1 Data Collection
We apply our method to user data which was released in
spring of 2014 from Scratch online2. Users can create a
project by programming with basic components called blocks.
Each block can be categorized into one or more CT concepts.

2https://llk.media.mit.edu/scratch-data/
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Table 1: Covariate analysis for CT concept “condi-
tionals”. *** p<0.001, ** p<0.01, * p<0.05, . p<0.1

Covariate Name Coefficient P-Value
is.remix 0.190556 0.000593 ***

is.self.remix -0.140119 0.062772 .
is.remixed 0.447668 2.44e-15 ***

like 2 or more 0.226432 0.001440 **
follow 2 or more 0.262599 0.000346 ***

comments 2 or more 0.478668 < 2e-16 ***
conditionals experience 0.332191 1.14e-08 ***

operators experience -0.074161 0.236036
data experience -0.157914 0.010259 *

We adopt the the mapping table from blocks to CT concepts
as suggested in [6]. Users are encouraged to share their
projects and interact with others by commenting projects,
favoring projects, or following other users. For each user,
the dataset includes the project details including block us-
age and timestamps. It also maintains tables of different
types of social interactions including user follower-followed
relationship and comments. The user history data collected
from December 2011 to March 2012 are used to create the
training and the testing datasets. Possible spam users who
create more than 100 projects in a day are filtered out. The
remaining data contains 22415 users and 170 learning blocks
with 6 CT concepts. All user records observed during De-
cember 2011 to February 2012 are used to train the model
through cross-validation and all user records during March
2012 are used for testing.

The following covariates are used to estimate the Cox model.
Covariates related to user activity history include the num-
ber of days since registration and the gap since last lo-
gin. User social interaction covariates include the number
of projects liked, the number of friends followed, and the
number of comments on projects. User project details in-
clude the number of projects created, the number of types
of blocks, and the number of concepts. We collect user co-
variates on a daily basis and predict the days till the user’s
next event. Users who had not been exposed to the event
by the end of the time window were censored.

4.2 Performance Evaluation
In the first step “time-to-return prediction”, for every block
pair (u, i), we estimate the probability of the next occurrence
at time t and treat the expected value of the time as the
predicted time to return. Since the data are sparse, a direct
estimation of a survival model for each block will be noisy.
Instead, we train a Cox model for each CT concept using
the interactions events of blocks belonging to that concept.
To evaluate the performance, we predict the expected time
from the learned density function and compute the Rooted
Mean Square Error (RMSE) with respect to the true time.
We compare the Cox model against the baselines including
linear regression and decision tree regression. Smaller RMSE
values indicate better performance.

The importance of covariates for predicting each individual
user’s exposure to CT concepts “conditionals” and “data”
are shown in Tables 1 and 2. Both tables show the co-
variates’ names, the regression coefficients and the signif-
icance scores. A positive regression coefficient for a vari-

Table 2: Covariate analysis for CT concept “data”.
*** p<0.001, ** p<0.01, * p<0.05, . p<0.1

Covariate Name Coefficient P-Value
is.remix 0.15007 0.018629 *

is.self.remix -0.18239 0.037235 *
is.remixed 0.52571 3.33e-16 ***

like 2 or more 0.23287 0.005221 **
follow 2 or more 0.20475 0.023510 *

comment 2 or more 0.54465 < 2e-16 ***
conditionals experience 0.03648 0.605257

operators experience 0.14616 0.041800 *
data experience 0.12105 0.076548 .

able implies a higher hazard if the value of the variable is
high. Both tables show that the regression coefficients for
the variable “is.remixed.bool” are positive. It indicates that
if a user’s project is remixed by others, the hazard rate of
observing the user’s next event will increase by a factor of
exp(0.190556) − 1 compared with the baseline hazard. On
the contrary, a negative regression coefficient implies a lower
hazard, which means the probability of user interacting with
the blocks belonging to that concept will be smaller. The
value of the coefficient is statistically significant at different
significance levels. We only show the covariates with highest
significant levels.

As shown in the tables, for both CT concepts “conditionals”
and “data”, for users who share projects later remixed by
others, it is more likely that these users will be back creating
projects in the future. Interestingly, users who remix others’
projects will be more likely to create projects than those who
remix their own projects. In addition, users who like two or
more projects, who follow two or more friends, and who
have two or more comments are more likely to create and
share projects in the future than those who have no social
interactions. This implies that social interactions help users
to learn and share. In addition, we can see that users who
have built blocks in the concept“conditional”are more likely
to build blocks falling into the same concept. Interestingly,
users who have built blocks in the concepts “operator” and
“data” are more likely to build blocks in the concept “data”.

We then use the estimated model to predict the time to the
next event in each CT concept. Table 3 displays the root
mean square error (RMSE) for the return time prediction us-
ing the Cox model and baselines, respectively. For concepts
“loops”, “conditionals”, “operators”, and “data”, the hazard
based approach outperforms all the other baselines. For con-
cept “event”, the hazard based approach performs very close
to linear regression and both of them perform better than
the others. All the baselines do not model the underlying
temporal patterns in the observed sequences.

For the final step “time-aware recommendation”, suppose
the testing event of user u occurs at time t, we compute the
probability p(u, i, t) of the user favoring an item i at time t
for each item i and rank among all items by probability. Ide-
ally, the observed items that the user actually interacts with
should appear on top positions. In information retrieval,
we focus on the evaluation accuracy on top positions us-
ing several standard metrics including precision at k (P@k),
Mean Average Precision (MAP) and Normalized Discounted
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Table 3: RMSE comparison for user return time pre-

diction. Smaller values indicate better performance.
Loops Events Conditionals Operators Data

Linear
Regres-
sion

9.13 9.20 8.94 8.79 8.68

Decision
Tree Re-
gression

9.33 9.41 9.13 9.00 8.80

Cox
model

9.04 9.25 8.63 7.97 7.62

Table 4: Comparison of recommendation accuracy.
P@1 P@3 P@5 MAP@20 NDCG@20

NMF 0.78 0.70 0.64 0.71 0.67
SurvMF 0.84 0.72 0.64 0.72 0.68

Cumulative Gain at k(NDCG) [8]. We compare with the
state-of-the-art baseline non-negative matrix factorization
(NMF) [1]. We follow the standard procedure in collabora-
tive filtering to estimate the model using the user data in
the training set and evaluate the performance of the predic-
tion in the test set. Specifically, the user records observed
before March 2012 are used to train and the user records in
March 2012 are used to test. The data contains the rating
of each user-block pair, where the rating corresponds to the
categorization of event occurrences. The maximum rating is
6 for six or more event occurrences. At the time of the test-
ing event, we compare the ranked list with ground truth. As
shown in Table 4, since our method (SurvMF) integrates the
survival model into the matrix factorization to capture the
temporal dynamics of user-item interaction, it can achieve
better performance.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have focused on personalization of learn-
ing path in massive online communities of creators. One
of the main challenges in online learning is high dropout
rates in the early stage due to cognitive overload. To allevi-
ate the problem, we propose a novel model integrating the
Cox model and matrix factorization to recommend the right
learning contents at the right time. The model can incor-
porate factors such as user learning history and social en-
gagements. In addition, the latent features learned through
matrix factorization further improves the recommendation
accuracy. Empirical evaluations on real world data demon-
strate the performance of our model.
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ABSTRACT 
Research has shown that supporting tinkering and exploration 
promotes a wide range of STEM related literacies. However, the 
open-endedness of tinkering environments makes it difficult to 
know whether learners’ exploration is productive or not. This is 
especially true in museum spaces, where dwell times are short and 
facilitators lack a history of engagement with individual visitors. 
In response, this study uses telemetry data from Oztoc – an open-
ended exploratory tabletop exhibit in which visitors embody the 
roles of engineers who are tasked with attracting and cataloging 
newly discovered aquatic creatures by building working electronic 
circuits. This data is used to build Hidden Markov Models 
(HMMs) to devise an automated scheme of identifying when a 
visitor is behaving productively or unproductively. Evaluation of 
our HMM was shown to effectively discern when visitors were 
productively and unproductively engaging with the exhibit. Using 
a Markov model, we identify common patterns of visitor 
movement from unproductive to productive states to shed light on 
how visitors struggle and the moves they made to overcome these 
struggles. These findings offer considerable promise for 
understanding how learners productively and unproductively 
persevere in open-ended exploratory environments and the 
potential for developing real time supports to help facilitators 
know how and when to best engage with visitors. 

Keywords 

Learning analytics, museums, interactive tabletops modeling. 

1. INTRODUCTION 
While there is evidence that digitally-augmented museum spaces 
can enhance science learning [36, 11], there is increased interest 
in how less-structured, open-ended designs can support new forms 
of STEM-based (science, technology, engineering, and math) 
reasoning and collaboration [18, 19]. Tinkering, in particular, 
often characterized by playful, experimental, iterative styles of 
engagement, and iterative, investigative processes of learning and 
discovery, has shown considerable promise in helping novices 
develop engineering and computer science literacies [5, 26].  

Tinkering is an ideal complement to the kinds of learner-centered 
constructivist pedagogy found in many hands-on science 
museums [1]; however, in the open-ended and exploratory tasks 
that typify tinkering, assessment and feedback is particularly 
difficult [8]. This is especially true in museum environments, as 
visitors often do not have the expertise or confidence to conduct 
the coherent, in-depth investigations required to answer their 
questions on their own [2]. As such, within open-ended 
environments there is a growing need to develop methods for 
understanding learners’ tinkering and exploration. 

Digitally mediated museum spaces, when properly instrumented, 
can capture data on visitors’ tinkering and experimentation in 

real-time (known as telemetry data), allowing researchers to 
identify and analyze temporal patterns in visitor interactions. We 
can then begin to investigate which patterns might be classified as 
productive (e.g., moving towards the broader learning goals of the 
exhibit) or unproductive (e.g., [23]). However, by their very 
nature, productive and unproductive states within open-ended 
tinkering activities are inherently difficult to classify.  

One approach to understanding the state of a learner is through 
Markov Modeling [4]. Markov modeling is used to characterize 
patterns of sequential activity, but first-order Markov models only 
consist of sequences of known states, and we are often more 
interested in more complex relationships than just sequences of 
concrete data. One approach to finding hidden states in learners’ 
activities is the use of Hidden Markov Models (HMM – [25]). 
Applying HMM to learning processes allows us to consider a 
learner as being in one of a fixed set of (“hidden”) states at any 
moment in time. These models, are particularly well suited for 
museums as individual visitors’ states are particularly hard to 
capture and pre- and post-tests are problematic if we want to 
ensure a naturalistic setting [9]. In response, the paper advances a 
research trajectory in which we attempt to highlight productive 
and unproductive patterns of visitor interactions by mining their 
telemetry data from an interactive tabletop exhibit at a large urban 
interactive science museum. In particular, this research addresses 
the following questions: 1) Can a Hidden Markov Model 
accurately predict if visitors are productively or unproductively 
engaged in an open-ended museum activity? 2) Can we identify 
the patterns of exploration and tinkering visitors engage in when 
they move from unproductive to productive states?  

2. BACKGROUND & PRIOR WORK 
Within the context of this study, it is important to understand what 
we consider to be “productive” or “unproductive” patterns of 
practice. Within the learning sciences, there is interest in practices 
that can be considered productive for novices who are learning 
computer sciences and engineering [5]. With its focus on the 
processes of creative and improvisational exploration and making, 
tinkering is recognized as a means for developing a wide range of 
STEM literacies [22, 13]. Tinkering is predicated on engaging 
learners in activities centered on the use of scientific tools, 
processes, and phenomena to explore a problem space through 
experimentation, trial and error, and refinement [6, 10, 5]. 

With tinkering’s focus on open exploration and learner-defined 
goals, understanding how and when a learner is engaged in 
productive tinkering is a challenge. For instance, making mistakes 
in “traditional” learning environments is often viewed as failure, 
but in tinkering environments, failure is not only tolerated but 
celebrated [26]. At their core, tinkering-focused environments 
enculturate the notion that learners should be allowed to persevere 
through initial struggles. However, it is not simply that learners 
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persist, but why they are persisting and how they are persisting 
[27]. With persistence, it is critical that learners actively move 
towards new solutions or problem conceptualizations, or they risk 
getting stuck in cycles of unproductive perseverance [23]. 

In museum settings, understanding when visitors are engaging in 
productive versus unproductive practices and having museum 
facilitators monitor these states is a challenge. This is especially 
true in open-ended exploratory exhibits in which multiple visitors 
can engage and leave at different times (rather than having well-
defined beginning and end points) and can interact with the 
exhibit at multiple granularities (e.g., alone, in groups, or 
simultaneously with strangers). However, if we can develop ways 
for capturing visitors’ hidden productive and unproductive states, 
we open up the possibility for understanding underlying patterns 
in their tinkering and learning and providing critical information 
to researchers, designers, and museum facilitators. 

2.1 Tabletop Interfaces and Engineering  
There is significant research into the role the “programming” 
environment plays in supporting novices in exploring and 
tinkering when learning computer science and engineering [20, 5]. 
Tangible engineering platforms, such as “snap together circuits” 
(e.g., snapcircuits.net), allow novices to physically manipulate 
objects as they tinker and explore engineering concepts, providing 
clear feedback on their process (with pieces clearly fitting 
together, or lighting up when properly connected). Such interfaces 
can reduce learner overhead, freeing them to focus on exploration. 
With their ability to support multiple visitors simultaneously and 
in promoting social interactions, interactive tabletops are 
increasingly used in science and engineering museum research [9, 
1]. In general, interactive tabletops are well suited for supporting 
engineering practices as they promote greater co-awareness of 
peers’ work [35], and can provide increased opportunities for 
others to monitor and provide feedback [20, 33]. The addition of 
tangible blocks (blocks that are recognized by the tabletop when 
placed on its surface) can further support visitors’ engagement 
with engineering practices by allowing them to quickly try out 
ideas [16] and more generally explore and tinker. 
While tabletops are great for supporting collaborative engineering 
learning, they can make it more difficult for museum explainers to 
know the state of tinkering of any one visitor. Similar to the 
problems teachers face with laptop lids [29], the flat surface of the 
multitouch tabletop can obscure visitors’ interactions, forcing 
explainers to “hover” in order to know what visitors are doing. 
Even if explainers do hover, keeping track of multiple visitors’ 
states manually (to know when and where they are needed) would 
be nearly impossible. In response, we need to develop models that 
can give us insight into visitor sates, particularly in real-time. 

2.2 Markov and Hidden Markov Models 
A Markov decision process (MDP) is defined by its state set S, 
and transition probabilities P [41] – assuming identical actions 
between states, and identical rewards for each transition. This is 
represented as a graph, called a Markov Model, which depicts that 
given a state s, the probability of transitioning to any of the other 
states s’ is T(s, s’). In a Markov model, transition probabilities are 
calculated given a sequence of user states. Calculating (and then 
visualizing) the likelihood of a transition between states has many 
potential uses: identifying optimal action sequences in Intelligent 
Tutoring Systems towards success and using these to provide 
hints to users [3]; or classifying and identifying common student 
errors and technical problems to reduce their occurrence [15].  

Hidden Markov Models (HMMs), as their name suggests, are 
Markov Models of hidden states. These are not directly observed 
in the input sequences, but, rather, they exist as aggregated 
“descriptions” of a user’s visible states or “action events” [17]. 
These have been used to classify users through their navigation or 
content access patterns [12] and characterize student behaviors in 
computer-based inquiry learning environments [17]. HMMs 
require: an input sequence of visible states; an initial transition 
table providing a starting estimate for the transition probabilities 
between the hidden states; and an emission table with the 
probabilities of each of the visible states given each hidden state. 
Initialization and verification for an HMM-based learning model 
is an important step, as inappropriate initialization might result in 
the model getting stuck in local minima [7]. After appropriate 
initialization via the transition and emission tables, the HMM 
labels each input state with the corresponding hidden states, and 
gives the transition probabilities between the hidden states. 

3. DESIGNING AN OPEN-ENDED 
TABLETOP ENGINEERING EXHIBIT 
3.1 The Oztoc Exhibit 
In order to address our research goals, we are building upon an 
existing multitouch tabletop exhibit at a large urban science 
museum. The exhibit, named Oztoc [19], situates visitors as 
electrical engineers called in to help fictional scientists who have 
discovered an uncharted aquatic cave teeming with never-before 
documented species of aquatic life (Figure 1). The creatures who 
live in this cave are bioluminescent, and visitors are asked to help 
design and build glowing “fishing lures” to attract the “fish” so 
that scientists can better study them. Visitors place wooden 
blocks, which act as electrical components (i.e., batteries, 
resistors, Light Emitting Diodes or LEDs, and timers), on the 
interactive table to create simple circuits (which the table 
recognizes the blocks via fiducial symbols – see Figure 1). 

 
Figure 1. Visitors assemble virtual circuits using wooden blocks 
that represent resistors (1), batteries (2), timers (3), and different 
colored LEDs (4). Visitors make circuit connections (depicted as 
lines on the tabletop - 5) by bringing the positive and negative 
terminals of the blocks (augmentations displayed by the table) in 
contact with one another. Creating a successful circuit (one that 
has the correct ratio of resistors, batteries, and LEDs) causes 
LEDs to glow and lures creatures attracted to it for cataloging. 
Oztoc’s narrative aims to give learners a situated context in which 
to engage in engineering practices. To avoid many of the 
problems of other engineering and making exhibits [19], we 
wanted Oztoc to give visitors some freedom in choosing their own 
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goals (e.g., which types of fish to target) while still giving them a 
common set of materials and processes. 

4.  METHODOLOGY AND VISITORS 
Oztoc is installed in an enclosed exhibit space just off the main 
floor of a large urban science center. A lollipop sign just outside 
the exhibit space indicates when videotaping will take place in the 
exhibit, allowing visitors to decide to enter or to return when data 
collection is not active. Researchers were present for technical 
support to museum staff only. Video data was collected via 
cameras placed in the exhibit space, audio from a boundary 
microphone, and telemetry data using the ADAGE system [31]. 
Visitors in this study come from a wide range of backgrounds and 
SES. Visitors were also multi-generational and came to the exhibit 
alone, as families, and in large groups. 

4.1 Establishing Visitor Start and Stop Times 
Unlike many other exhibits, Oztoc does not have pre-determined 
start and stop events (such as the beginning or end of a simulation 
or game) – it is a continual process in which visitors enter and 
leave, often at different times. Therefore, in order to accurately 
separate visitors’ sequences of activities, we developed a method 
for determining when visitors entered or exited the exhibit. Given 
all actions performed at each of the table’s four “zones” over a 
single day, we found that if a zone was inactive and empty over a 
set period of time – the “inactivity interval” (InI), the next event 
in that zone indicated a new visitor. We evaluated an InI ranging 
from 10-120 seconds, and the InI did not change significantly 
between 45-120 seconds. As such, we validated the 45-second InI  
with hand-labeled data. Our 45 second InI achieved full accuracy 
for the 2-hour sample of video data that we hand-labeled.  

4.2 Coding Visitor Events 
We needed to establish a granularity of the telemetry data that 
would allow us to understand the state of visitors’ tinkering at any 
moment. Based on previous research on visitors’ interactions with 
the exhibit [19], we chose to look at the events when visitors 
successfully created a circuit (denoted in the logs as 
MakeCircuitCreate). This state was particularly useful as a circuit 
was logged in ADAGE even if the circuit “didn’t work” (i.e., the 
LEDs were not supplied correct voltage), giving us insight into 
visitors’ process exploring different circuit configurations, 
solution states, and goals. By leveraging visitors’ histories at the 
table, we could mine for more complex relationships between 
their current circuit, previously made circuits, and those made by 
others at the table since their arrival. We then automatically coded 
each visitors’ MakeCircuitCreate event using four binary codes 
(see Table 1). 
 
Table 1. Binary codes for MakeCircuitCreate events 

4.2.1  Is the circuit complex? (coded S or C) 
Earlier analysis of visitors’ interactions with the exhibit showed 
that most visitors (if they made any circuits) only made the basic 
three-component circuit (one LED, one resistor, and one battery) 
[34]. As such, the building of a complex (more than three 
component) circuit was a key indicator that visitors were trying 
out more complex configurations. If a circuit had three or less 
components we scored it an S (indicating it was “simple”), any 
circuit that had more than three components was scored a C 
(indicating it was a complex circuit). It is important to note that 
this code is not concerned with whether or not the circuit works, 
only the number of components used. 

4.2.2 Does the circuit work? (coded N or W) 
Understanding the relationship between the individual 
components and making a working circuit is a critical factor in 
determining the success of an exploration. As such, each 
completed non-working circuit was coded with an N and each 
completed working circuit with a W.  

4.2.3 Is the circuit unique for self? (coded R or U) 
Because problem solving through tinkering is characterized by 
exploration and iteration [26], we coded if a circuit created by a 
visitor was “unique” for them (i.e., had they constructed the exact 
same circuit earlier). A visitor who received a W on the does the 
circuit work code might seem to be engaging in productive 
tinkering; however, if they are simply repeating their first circuit 
over and over, this might indicate a failure to try out new ideas or 
expand their problem definition. To mark if a visitor’s circuit was 
unique we coded it with a U, if it was a repeat of a past circuit we 
assigned it an R.  

4.2.4 Is the circuit unique at the table? 
Finally, Oztoc is designed to support visitors in collaborating with 
and building off others’ to advance their own exploration. This 
use of others’ constructed artifacts as a basis for one’s own work 
has been termed “echoing” and has been shown to be an important 
part in open-ended and exploratory tinkering [34]. We considered 
a circuit to be an echo if it had the same number of each 
component type (battery, resisters, and LEDs). If a visitor’s circuit 
echoed of one of their peers’, we assigned it an E (for echo); if the 
circuit was unique to the table, we assigned it an O (for original). 
The process described above resulted in every MakeCircuitCreate 
event for each visitor receiving an easily interpretable four-digit 
code. For instance, a MakeCircuitCreate that was assigned a code 
of SWRO means that it was a simple (S), working circuit (W) 
that was a repeat of a past circuit made by the visitor (R), but had 
not been created by anyone else at the table since this visitor 
started playing (O). These codes provided a rich and detailed 
source of data for passing into a Hidden Markov Model to see if 
we could identify if visitors were productive or unproductive at 
any point during their engagement with the exhibit. Since the 
MakeCircuitCreate events were chronologically ordered and 
separated per visitor, we could further examine which created 
circuits led to important state shifts. 

4.3 Coding for productive behaviors 
Using the coded descriptions of the circuits created by the visitors, 
we wanted to make an HMM that identifies when a visitor was 
behaving “productively”, or not. For this purpose, building off of 
previous research [19], two members of the research team 
discussed and identified patterns of MakeCircuitCreate that were 
indicative of productive and unproductive tinkering. 

Marker Code Description 

Is the circuit 
complex? S/C The completed circuit has 3+ 

components 

Does the circuit 
work? N/W The circuit successfully lights up  

Is the circuit 
unique for self? R/U This is the first time the visitor 

has made this circuit 

Is the circuit 
unique at the 

table? 
E/O 

No one else at the table has made 
a circuit with the same set of 

components 
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One of the key patterns identified focuses on visitors trying out 
new circuit configurations to fix errors in their existing circuits or 
to develop new circuits (denoted by a U in codes). For instance, if 
a visitor attempted a few different non-working circuits – seen as 
a sequence of SNUO, SNRO, SNUO, SNUO (with the second 
circuit being a duplicate of a past circuit) – the sequence seems to 
indicate that while the visitor’s circuits do not work (indicated by 
the Ns), they are trying out new approaches and expanding their 
exploration. This sequence of activities was coded as productive 
behavior. If the visitor’s continued exploration results in cycle of 
repeated circuits coded with Rs (repeats) or did not eventually 
make a working circuit (coded with a W), we coded these actions 
as falling into unproductivity, as the visitor seems to have failed to 
figure out how to make a working circuit. 
Similarly, a visitor might make a working circuit (indicated by a 
W in their circuit code) and repeat it over and over again (e.g., a 
series of circuits such as SWRO, SWRO, SWRO). This would 
seem to indicate that the visitor is repeating past success and is 
failing to consider new problem spaces or avenues for exploration. 
A change of SNRO to SNOE – trying a new (U = self-unique) 
circuit that someone else on the table has made (E = table-echo), 
might be an attempt at gaining understanding by looking at what 
other visitors are doing – and was coded as productive depending 
on how many failed attempts the visitor had already made.  
With this understanding, the first two authors first coded 200 
circuit creates, and established reliability with 91% agreement. 
They then coded 644 of the (total of 3952) circuits made in player 
one’s zone (one of the four game quadrants) on the table.  

4.4 Training the Hidden Markov Model 
We used our manually coded states to calculate appropriate values 
for the emission table for our HMM. The emission table was 
calculated by seeing how often a certain circuit code was marked 
as productive (or unproductive) as a proportion of all the circuits 
coded with the same hidden state. For instance, of all the circuits 
coded as productive, 5.6% of those were coded as CWUO and 
6.49% were coded as CWUE (from the list of 16 circuit-codes), 
these values were then used to populate the HMM emission table. 
We needed to identify when new visitors started playing at the 
table to ensure that the new visitors circuits were not considered 
as a continuation of earlier visitors. To do this we added events (a 
0000 code) in the sequence of circuit-codes to signify new 
visitors. This brought up the question of whether the HMM should 
code new visitors as unproductive, productive, or another state 
altogether. To be able to show what state people tended to leave 
and begin at in the final transition table, we chose to make the 
visitor change a distinct state in our HMM even though it was not 

a hidden state, and is equivalent to a direct observation. 
We used Python’s hmmlearn package to create our HMM, which 
has the limitation of only looking for local optima in calculating 
the probabilities of transitioning from one hidden state to another. 
To account for this, different initial transition table values were 
tried. Results showed that the HMM stably converged to the final 
transition table (Figure 3). 

 
Figure 3. HMM for productive/unproductive states in Oztoc 

5. FINDINGS 
This study has two important findings, with the first finding acting 
as the scaffold for the second: First, the recognition of when 
visitors are engaged in productive or unproductive exploration; 
and second, the understanding of which sequences of events 
typically lead visitors from prolonged (at least three) consecutive 
unproductive states to a productive state. 

5.1 Running HMM on Visitors’ Circuits 
The result of the HMM’s final transition table revealed several 
interesting results (Figure 3). The HMM model shows that the 
probability of a new visitor beginning productively is 68%, versus 
32% for beginning unproductively. Being unproductive appears to 
be a more stable state than being productive (89% versus 69%, 
respectively), and moving from unproductivity to productivity is 
also rarer than the reverse (3% versus 15%). The model also 
shows that the chances of leaving the table while being productive 
is higher than of leaving while unproductive (16% versus 8%).  
To validate the predictive accuracy of the HMM’s classification 
we used a general agreement score, the calculated the area under 
the curve (AUC) of the model’s receiver operating characteristic 
(ROC) and Cohen’s Kappa as compared to our 644 hand-coded 
labels. Our HMM had 94% agreement, scored an ROC/AUC 
score of 0.79, and a Cohen’s Kappa of 0.59, which were 

Figure 4. Markov model for visitors who transition from three consecutive unproductive states to a productive state 
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satisfactory measures to consider the HMM’s coding reliable. 

5.2 Developing Markov Models of Moving 
from Unproductive to Productive States 
After the HMM tagged the circuits as productive or unproductive, 
we wanted to understand what patterns of activity preceded 
visitors becoming productive. We were particularly interested in 
sequences in which visitors struggled (had several unproductive 
moves) and then moved to a productive state. For this, we built a 
list of when a visitor had three consecutive unproductive circuits 
immediately followed by a productive circuit. We pruned the 
sequences that only happened once (as they were uninformative).  

Once we had a list of the 4 step chains, we made a Markov model 
depicting the sequences of actions visitors followed when moving 
from unproductive to productive (Figure 4). This model also 
showed the likelihood that a visitor making a certain coded circuit 
would make another specific circuit next. The thickness of the 
lines between nodes indicates how many times a path occurred.  

6. DISCUSSION 
This paper outlined how the combination of Hidden Markov 
Models (HMMs) and Markov chains could be used to effectively 
predict when visitors were engaging productively or 
unproductively in an open-ended, exploratory museum exhibit. A 
closer examination of the HMM revealed several unexpected 
visitor behaviors. Visitors more often than not (68%) begin 
productively, but are less likely to stay productive (69%) than 
unproductive (89%) once in that state (Figure 3). The first finding 
is not entirely surprising, as our model considers open, thoughtful 
exploration as productive and it is hard to consider a visitor’s 
“first move” as anything more than a first “exploratory step”. This 
view is partially validated by the lower likelihood of staying 
productive – indicating many visitors fail to make thoughtful 
adjustments to their tinkering or explore new definitions of the 
problem space. This is compounded by instances where visitors 
make a successful circuit then “settle into” making the same 
circuit over and over. These findings are supported by the high 
percentage of visitors who either stay unproductive (89%) or 
leave the exhibit (8%). It should be noted that 69% is still a very 
high number of visitors staying productive and is probably further 
understated by the “first circuit” effect described above. 
Another interesting finding is the high likelihood of leaving the 
table while being productive (16% compared to leaving the table 
while unproductive – 8%). On the surface this is surprising, as one 
would expect visitors to give up due to frustration more often than 
while ‘succeeding’. The results may indicate that visitors who 
“figure out” multiple facets of the exhibit continue to engage 
productively until they leave – some of these effects have been 
covered in other research on this project [19]. Another possible 
explanation is that visitors started to engage in productive 
behaviors (such as trying something new that they had not done 
before or echoing the work of another visitor) that didn’t 
immediately result in positive feedback from the system (e.g., 
capturing a fish) and they gave up. 
When looking at the Markov model of unproductive to productive 
states we uncovered several interesting sequences (see Figure 4). 
For instance, unproductive circuits coded as CNUO (complex, 
not-working, unique, original) always went to CNRO (complex, 
not-working, repeated, original), followed by another CNRO, 
which finally led 15% of the time to a productive SWUE – a 
simple, working circuit that they had never made earlier, but had 
been made on the table in front of them by someone else! This is 
an interesting phenomenon – that a visitor, after some initial 

failures at making working circuits with a high level of 
complexity, likely saw a simple working circuit made by someone 
else, and then switched to echoing that circuit. The ability to see 
the work of others helped them overcome their own unproductive 
exploration. We see similar patterns in the Markov chain 
sequences SNUO -> SNRO -> SNRO -> SWUE; and SNUE -> 
SNRE -> SNRE -> SWUE, highlighting the role that making the 
work of others engaged in parallel tasks visible can serve in 
helping visitors move from unproductive to productive states. 

7. CONCLUSIONS AND NEXT STEPS 
Tinkering and exploration are powerful ways for learners to 
engage in science and engineering practices [24]; however, 
supporting leaners to productively engage in open-ended learning 
is inherently difficult, especially in museums [13]. Much of this 
has to do with the inherent chaos of the museum environment – 
hundreds (even thousands) of visitors interact with an exhibit in a 
day, coming and going at different times, and with different 
expectations and goals. For facilitators in exploratory exhibits, 
keeping track of the flow of participants and the state of their 
individual and collective tinkering efforts is nearly impossible.  

This paper illustrates how data mining and analytics can help 
disambiguate the actions of visitors in such exhibits and uncover 
the hidden states of their tinkering. In addition to shedding light 
into how visitors productively and unproductively tinker, this 
work holds considerable potential for developing new ways to 
support facilitators. Knowing when and how visitors are engaging 
in unproductive exploration can help us develop complementary 
applications to help facilitators know when and how they are most 
needed. Knowing how visitors tend to move from unproductive to 
productive states can further guide us in developing strategies and 
scaffolds to help facilitators better engage with visitors.  

While tablet applications have been used to provide added 
contextual information and alert museum facilitators about the 
visitors’ interactions with exhibits in real-time [30], they have 
done so only using surface features, without understanding 
visitors’ exploration ‘states’. By uncovering the particular ways 
that a visitor is struggling, and understanding the subtle ways they 
can be “nudged” towards more productive exploration, there is the 
potential for dramatically influencing visitors’ exploration and 
learning. By interceding at moments where visitors are struggling 
or are likely to give up, we may increase visitors dwell time, 
which has been shown to increase their collaboration with others, 
and domain learning [9]. In response, we are developing a tablet 
application that uses our models to support facilitators in real-time 
to understand how such applications compare to approaches that 
rely only on surface measures and unmodeled log data. 
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ABSTRACT
Learning curves have proven to be a useful tool for under-
standing how a student learns a given skill as they progress
through a curriculum. A learning curve for a given Knowl-
edge Component (KC) is a plot of some measure of compe-
tence as a function of the number of opportunities the stu-
dent has had to apply that KC. Consider the case where each
problem-solving step is recorded by, for instance, by an in-
telligent tutoring system. In this case, one normally assigns a
unique KC to each problem-solving step and the construction
of the associated learning curves is straightforward. On the
other hand, many online homework systems only evaluate the
student’s final answer to a problem. In that case, the student
has generally applied a number of KCs to find the answer and
their performance on the problem is some composite of their
mastery of all of the requisite KCs. In this paper, we propose
a simple method for generating learning curves for multiple-
KC problems that is independent of any particular theory of
learning. In the case where there is only one KC per prob-
lem, the method reduces to the ordinary learning curves. We
demonstrate this method using a set of artificially generated
student data.

Author Keywords
Learning Curves, Knowledge Components

ACM Classification Keywords
I.2.6 Learning: Knowledge acquisition

INTRODUCTION
The increased use of online homework systems and intelli-
gent tutor systems (ITS) means that ever-increasing amounts
of student log data is available for analysis. This data can be
used to answer two important questions: what skills are stu-
dents learning and how quickly are they learning them? To be
more precise, we can equate skills with Knowledge compo-
nents (KCs): small bits of information needed to solve a prob-
lem [11, 3]. KCs generally have some sort of pre-requisite
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relations: For example, you cannot apply the area of a cir-
cle formula A = πr2 unless you first know the definition
of “radius of a circle.” However, aside from prerequisites, a
KC can, by definition, be mastered independently from other
KCs. This definition assumes that KCs are context indepen-
dent. That is, the student’s ability to apply that KC correctly
or quickly does not depend on the particular problem the stu-
dent is solving or the other KCs needed to solve that problem.

Since KCs are defined to have these properties, then it re-
mains to be seen whether, and in what cases, they are a use-
ful description of skill acquisition. One way to determine
how well the KC picture is working is to examine the as-
sociated learning curves. If the curves are smooth, increas-
ing/decreasing monotonically (depending on the measure of
competence), and independent of context, then the KC picture
is working.

Learning curves are a plot of some measure of mastery of a
skill as a function of the number of opportunities that the stu-
dent has had to apply that skill. Possible measures of mastery
include:

• number of errors made before correctly applying the KC,

• time taken to correctly apply a KC,

• “assistance score,” number of errors plus number of re-
quests for help before completing a step, and

• “correctness”, whether the student applied the KC cor-
rectly without any preceding errors or requests for help.

In the following, we will use “correctness” as our measure of
competence for a given skill.

In a typical Intelligent Tutoring System (ITS), the student en-
ters each problem-solving step into the tutor system. It is
natural, in that case, to associate one KC with each student
input and it is relatively straightforward to construct the as-
sociated learning curves. However, many online homework
systems only require the student to enter their final answer to
a problems into the system. In this case, a single input is the
entire problem and it is natural to associate multiple KCs to
each student input.

If multiple KCs are associated with a single input, then the
construction of learning curves is more difficult. If the stu-
dent gets the problem wrong, which KC is responsible? This
is sometimes called the “assignment of blame problem” [7,

1
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Table 1. List of definitions and quantities

k, l, m: label representing a KC.

t, u, v: label representing opportunity number for some KC.

p: label representing an exercise.

s: the student.

Pt,k is a model parameter representing the probability that a
student will apply KC k correctly on opportunity t. Pt,k ∈
[0, 1].

ξs,p is the model-given probability that student s will get
problem p correct.

Ct,k is the number of students in the dataset who correctly
applied KC k on opportunity t.

I (t,k) is the number of students who got a an exercise
containing KCs k = {k1, k2, . . .} incorrect where t =
(t1, t2, . . .) is a vector of corresponding opportunities. This
exercise represents opportunity ta for the student to apply
KC ka.

Ts,p is the set of KC, opportunity pairs such that problem p
is opportunity t for student s to apply KC k.

6, 5]. In the following, a simple method is proposed which
addresses the assignment of blame problem while making a
minimum of theoretical assumptions, allowing one to con-
struct learning curves for exercises with multiple KCs. Our
strategy is to introduce a model where every point on each
learning curve is identified as a model parameter. These
model parameters, and their associated errors, are then de-
termined by a maximum likelihood fit to student log data. In
the case of a single KC per problem/step, this reduces to the
usual learning curves.

LEARNING CURVE MODEL
A number of studies have addressed the multiple-KC problem
in the context of some model of learning, such as Bayesian
Knowledge Tracing or Performance Factor Analysis [2, 4].
In the present work, our goal is simply to construct learning
curves using a minimum number of model assumptions. Note
that conventional learning curves themselves make two major
assumptions:

1. They average over students. This corresponds to a model
that does not have any student-specific parameters.

2. They ignore the problem context. This corresponds to a
model that does not have any problem-specific parameters.

In fact, the construction of a learning curve is equivalent to
fitting the student log data to a model containing a parameter
representing each KC and step. In other words, if I define
Pt,k as the probability that a student will correctly apply KC
k at opportunity t, and determine Pt,k by fitting to the student
log data, then plotting of Pt,k versus t is a learning curve for
KC k.

This gives us a way forward in the multiple-KC case. We
define a model having parameters {Pt,k}. The associated log-
likelihood is

log (L) =
∑

s,p∈Cs
log (ξs,p) +

∑

s,p∈Is
log (1− ξs,p) (1)

where s is the student, p is the problem, Cs is the set of prob-
lems s got correct, and Is is the set of problems s got incor-
rect. Also, ξs,p is the model-given probability that student s
will get problem p correct.

We will assume that the student must apply all of the asso-
ciated KCs to solve a given exercise correctly. This is some-
times called a “conjunctive model” and is a good approach
for typical K-12 math exercises [8]. This means that the total
probability of success is the product of the KC probabilities:

ξs,p =
∏

t,k∈Ts,p
Pt,k (2)

where Ts,p is the set of KCs and opportunities such that prob-
lem p is opportunity t for student s to apply KC k.

To construct Ts,p, one needs a list of KCs associated with each
exercise p, sometimes referred to as the “Q-matrix” [10]. In
this discussion, we will assume that the Q-matrix is known,
perhaps determined by the problem author or a domain ex-
pert.

Numerical Calculation
The likelihood given by Eqn. (1) is rather inconvenient for
large numerical calculations. Instead, we will introduce vari-
ables that aggregate over student and exercise. Define Ct,k

to be the number of students in the dataset who correctly ap-
plied KC k on opportunity t. Likewise, define I (t,k) to be
the number of students who got a an exercise containing KCs
k = {k1, k2, . . .} incorrect where t is a vector of associated
opportunities. This exercise represents opportunity ta for the
student to apply KC ka. Then, the log-likelihood can be writ-
ten as

log (L) =
∑

t,k

Ct,k log (Pt,k)+
∑

t,k

I (t,k) log (1− Γ (t,k))

(3)
where Γ (t,k) is the probability that a student with opportu-
nity vector t will have success on a problem containing KCs
k = {k1, k2, . . .}. Following Eqn. (2), Γ (t,k) is a product
over the associated probabilities:

Γ (t,k) =
∏

a

Pta,ka
. (4)

Note that the first term of Eqn. (3) has a much simpler form
than the second term. This is due to our use of a conjunctive
model. If a student gets an exercise “correct” then we know
without ambiguity that they applied all of the associated KCs
correctly. However, if they get a problem wrong, then it is not
clear which KC is to blame and the associated probabilities
must be considered jointly.

Let {P̂t,k} be the model parameters at the maximum like-
lihood point. {P̂t,k} can be found numerically by maxi-
mizing the log-likelihood, Eqn. (3) subject to the constraints

2
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Table 2. KC content of the artificial homework set. Students completed
the first eight problems in the given order and the remaining problems
in random order; they completed between 15 and 20 problems total.

1 2 3 4 5 6 7 8 9 10
A A A A B B B B A B

11 12 13 14 15 16 17 18 19 20
A B AB AB AB AB AB AB AB AB

0 ≤ Pt,k ≤ 1. For convenience, the Mathematica func-
tion FindMaximum, was used to calculate the maximum of
log (L). However, any optimization algorithm that enforces
constraints and uses information about the gradient of the
function should work as well.

Error analysis
It is important to calculate the standard errors associated with
the model parameters. Unlike the single KC per problem
case, the model parameters may be strongly correlated and
the errors can have unexpected values. In addition, the error
analysis can elucidate any cases where the model parameter
cannot be determined from the data (we will discuss this fur-
ther in the conclusion).

Before finding the errors, we need to examine the the max-
iumum likelihood point and identify any parameters that lie
on the boundaries P̂t,k = 0 or 1. The likelihood function L
is not stationary in these parameters at the maximum likeli-
hood point, so the error analysis cannot be applied to them;
they should be not be included in the Hessian matrix below,
Eqn (5). In practice, this should not a significant issue, since
P̂t,k = 0 or 1 typically occurs when there are just a few stu-
dent problem-solving instances for a given t and k.

For a maximum likelihood fit, the standard errors associated
with the model parameters can determined using the follow-
ing procedure [1, 9]. First, we find the Hessian matrix asso-
ciated with Pt,k = P̂t,k. The matrix elements of the Hessian
are given by

∂2 log (L)

∂Pt,k∂Pu,l

∣∣∣∣
Pv,m=P̂v,m

=

− 1

P̂t,kP̂u,l

∑

t,k

I (t,k) Γ (t,k)

(1− Γ (t,k))
2

∣∣∣∣∣
Pv,m=P̂v,m

. (5)

To find the standard error associated with each of the model
parameters P̂t,k, we invert the negative of the Hessian ma-
trix and take the square root of the diagonal elements. If this
process fails (the Hessian matrix is singular), it is a signal
that some of the model parameters cannot be uniquely de-
termined from the given log data. Similarly, if the Hessian
matrix is nearly singular, then the associated standard errors
will be very large. This will single out any model parameters
that cannot be determined from the data.
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Figure 1. Learning curve for the artificial homework set where we as-
sume each problem has the same single KC. Note the jump after oppor-
tunity 4 due to the fact that the first four and second four problems have
different KCs.
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Figure 2. Learning curve for KC A. The solid line is the model used to
generate the student data and the points with error bars represent the
learning curve determined from the student data using our procedure.
Note that the error bars for the last few opportunities are larger, due to
student attrition.

APPLICATION TO STUDENT DATA
To illustrate how this model works, we will generate an ar-
tificial student performance dataset. Consider a homework
assignment of 20 problems that exercise two KCs, A and
B as detailed in Table 2. We assume that students progress
through the first 8 problems in the given order, but solve the
remaining 12 problems in random order, completing between
15 and 20 problems. We assume that student mastery for the
KCs is given by the functions Pt,A = 0.9 − 0.85e−0.3t and
Pt,B = 0.85 − 0.45e−0.1t; see Figures 2 and 3. We use this
model to generate a set of outcomes, Cs, Is, and Ts,p, for 100
students.

If we ignore the KC content of the problems, we can plot a
naı̈ve learning curve for this student data; See Fig. 1. We
see a discontinuity at t = 4 due to the change in actual KC
content of the problems. The last problems are more difficult,
since they involve two skills and so the student performance
on them is suppressed.

Next, we use our procedure to generate learning curves and
associated errors for this dataset. The results are plotted in

3
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Figure 3. Learning curve for KC B. The high value at t = 5 is a sta-
tistical fluctuation: as we iincrease the number of students, the model
parameters will converge to the solid line.

Figs. 2 and 3. As expected, they agree well with the model
used to generate the student data. This shows that our method
is working. Note that the error bars can vary considerably
from point to point.

CONCLUSION
The primary goal of the approach developed here is to plot
learning curves for cases where there are problems (or prob-
lem steps) involving multiple KCs. In practice, we find our
method to be numerically robust (no problems with local
maxima).

However, there is one case where it may fail: if there is a
KC that always appears along with another KC for several
problems and all the students in the dataset solve nearly the
same ordered sequence of problems, then there is no way dis-
tinguish between the two KCs for one or more value of t.
This will result in a Hessian matrix that is not positive-definite
and the matrix inversion will fail. We believe that this situa-
tion will rarely arise in practice, since most datasets involve
students in multiple courses, and students are generally not
forced to solve problems in a specific order.

In this work, we focused on a “conjunctive model” for com-
bining KCs, as this is likely the most appropriate model for
typical math and science exercises. Although the basic strat-
egy we present here could be applied to other models (dis-
junctive, compensatory) for combining KCs, the details of the
associated numerical calculation would look rather different.

Obviously, the next step is to apply this approach to real stu-
dent data. This would require a set of exercises that have
been tagged with multiple KCs, where the mix of KCs vary
significantly from exercise to exercise. In addition, the stu-
dent activity would have to fairly heterogeneous, with differ-
ent students taking different paths through the exercises.
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ABSTRACT
How to identify at-risk students in open online courses has
received increasing attention, since the dropout rate is unex-
pectedly high. Most prior studies have focused on using ma-
chine learning techniques to predict student dropout based
on features extracted from students’ learning activity logs.
However, little work has viewed the dropout prediction prob-
lem as a sequence classification problem in the consideration
that the dropout probability of a student at the current time
step can be likely dependent on her/his engagement at the
previous time step. Therefore, in this paper, we propose
a nonlinear state space model to solve this problem. We
show how students’ latent states at different time steps can
be learned via this model, and demonstrate its outperform-
ing prediction accuracy relative to related methods through
experiment.

Keywords
At-risk students; Dropout prediction; Open online courses,
Nonlinear state space model

1. INTRODUCTION
With the advent of open online courses, such as MOOC web-
sites Edx, Coursera, Khan Academy, high quality education
can easily be accessed by students at low cost. However, al-
though many thousands of participants have enrolled on the
online courses, their dropout rate is extremely higher than
expected. As reported in [8], the average dropout rate of
current MOOCs is approximately 75%.

Identifying at-risk students by predicting their dropout prob-
ability thus becomes timely important, given that early pre-
diction can help instructors provide proper support to those
students to retain their learning interests. To address this
issue, some researchers focused on extract features from stu-
dents’ learning activities (such as watching videos, working
on assignments, and posting in or viewing discussion forums)
for building machine learning models (like support vector

machine (SVM) [9] and logistic regression (LG) [14]). How-
ever, they rarely considered that students’ learning activities
across different time steps (e.g., weeks) might be interrelated
and take different weights in making the prediction. For in-
stance, recent activities could be more important to reflect
students’ engagement degree. If a student actively engages
with a course in the current week, it is more likely that
s/he will continue to engage with this course in the coming
week. Otherwise, if s/he becomes inactive, it may infer that
her/his interest in the course is decreased. Recently, though
some approaches, such as the one based on Hidden Markov
Model (HMM) [2] and that based on Recurrent Neural Net-
work (RNN) [12], have been proposed to model students’
states over time, they still suffer from some issues: 1) the
estimation of next state depends only on the current state;
2) the estimated states are deterministic that would lead to
error propagation in the estimation procedure; 3) the pa-
rameters of their models are time-invariant.

In our work, we focus on predicting whether a student will
have activities in the coming week. We particularly for-
mulate this issue as sequential classification problem, and
develop Nonlinear State Space Model (NSSM) [1] to solve
it. Essentially, NSSM has several advantages. Firstly, it can
be used to discover a student’s latent state (i.g., engagement
pattern) to characterize the student’s intention to perform
certain activities. The student’s dropout probability is then
computed based on the state estimated for that time. Sec-
ondly, relative to HMM and RNN, NSSM takes into account
all of the current and previous states to estimate next state.
It can also accommodate uncertainty given that the state in
NSSM is a set of random variables with multivariate Gaus-
sian distribution. Thirdly, the parameters in NSSM are time
varying (i.e., being different at different time steps), which
makes it more flexible to model students’ dynamics.

In short, this paper has two main contributions: 1) we im-
plement Nonlinear State Space Model (NSSM) to address
the dropout prediction problem, which particularly models
students’ latent states varying over time; 2) we conduct ex-
periment to compare our method with related ones including
logistic regression (LG), simultaneously smoothed logistic
regression (LR-SIM), and RNN with long short-term mem-
ory cell (LSTM). It shows that our method is more accurate
in identifying at-risk students who tend to drop out.

In the remainder, we first describe related work in Section 2,
and then present our methodology in Section 3. In Section 4,
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we give experimental results. In Section 5, we conclude our
work and indicate its future directions.

2. RELATED WORK
High dropout rate that popularly exists in current MOOCs
has driven some researchers to investigate the issue of iden-
tifying at-risk students who are likely to quit. They have
considered different features to build the prediction model,
such as those extracted from clickstream data (e.g., watch-
ing a lecture video, posting to discuss forums, submitting an
assignment) [2, 5, 6, 9, 14], quiz performance [5, 6, 14], cen-
trality of students in discussion forums [15], and sentiments
of discussion forum posts [4].

As for prediction model, some studies have applied support
vector machines (SVM) [9], logistic regression (LG) [14],
survival analysis techniques like Cox proportional hazard
model [15], and probabilistic soft logic (PSL) [13]. However,
their common limitation is that they assume a student’s
dropout probabilities at different time steps are indepen-
dent, which limits the approach’s applicability in practice
as usually a student’s state at one time can be influenced by
her/his previous state.

Alternatively, [6] extended logistic regression model to smooth
the dropout probabilities across weeks with the aim to min-
imize the difference of successing predicted probabilities be-
tween weeks. [2] used Hidden Markov Model (HMM) to
model student’s actions over time, which encodes their be-
haviour features into a set of mutually exclusive discrete
states. [12] adopted Recurrent Neural Network (RNN) model
with long short-term memory (LSTM) cells, which is able
to encode features into continuous states. However, though
RNN may be advantageous against HMM, it inherently suf-
fers from error propagation phenomenon because the estima-
tion of current state depends only on the estimated previous
state.

In comparison, in our model, the uncertainty of estimated
states is considered by representing the state as random
variables drawing from a multivariate Gaussian distribu-
tion. What’s more, we adopt extended Kalman filter and
smoother for state estimation so as to take into account
all observed activities in sequence, which makes it different
from, and potentially more effective than, HMM and RNN
where only states at two consecutive time steps are related.

3. OUR METHODOLOGY
3.1 Problem Statement
As mentioned above, our goal is to estimate the probability
that a student stops engaging with a course in the coming
week, given her/his learning activities up to the current time
step.

The temporal prediction of dropout probability requires us
to assemble some features 1 for expressing time-varying be-
havior of students. Therefore, we extract 28 typical features
for each week t, denoted as N dimensional vector xi,t ∈ RN ,

1Prior to model training, these features are normalized to
have mean 0 and variance 1, and the normalization param-
eters (mean, standard deviation) are used for normalizing
the testing set.

by considering the seven types of activity 2. The summa-
rization of these temporal features is listed in Table 1.

Table 1: List of features derived from each student’s
learning activities by the week t

Features Description
x1 The average number of activities per week by the

week t.
x2 The total number of activities in week t.
x3 The average number of sessions per week by the

week t. 3

x4 The total number of sessions in week t.
x5 The average number of active days per week by

the week t. 4

x6 The total number of active days in week t.
x7 The average time consumption per week by the

week t.
x8 The total time consumption in week t.

x9 - x15 The average number of 7 different types of activ-
ity per week by the week t.

x16 - x22 The total number of 7 different types of activity
in week t.

x23 − x25 The average number of videos watched, wiki
viewed and problem attempted per session by the
week t respectively.

x26 − x28 The average number of videos watched, wiki
viewed and problem attempted per session in
week t respectively.

In consequence, we obtain a sequence (xi,1,xi,2, . . . ,xi,ni)
for each student i across ni weeks, as well as the correspond-
ing sequence of dropout labels (yi,1, yi,2 . . . , yi,ni). Here ni

represents the number of weeks during which student i has
engaged with the course. Formally, for current week t, if
there are activities associated to student i in the coming
week, her/his dropout label in the week t is assigned yi,t = 0,
otherwise yi,t = 1. We can then treat the dropout predic-
tion task as a sequential classification problem, for which the
student’s latent states evolving over time are not observable
directly. As illustrated in Figure 1, as the course progresses,
given the student i’s features xi,t for the current week t,
and his/her previous state si,t−1, we want to estimate the
student’s current state si,t and whether s/he will continue
engaging with the course in the coming week yi,t.

3.2 Nonlinear State Space Model (NSSM)
Specifically, we employ a nonlinear state space model (NSSM)
with continuous value states to summarize all the informa-
tion about a student’s past behavior. Formally, let the vec-
tor si,t ∈ RK (K � N) be the latent state of student i in
the t-th week, which depends on the observed explanatory
features xi,t and her/his previous state si,t−1, as follows:

si,t = Fsi,t−1 + Gxi,t + wi,t (1)

in which the matrix F ∈ RK×K transforms the previous
state into the current state, the matrix G ∈ RK×N trans-
forms the observed features to reflect the current state, and
2The seven types of activity consist of watching lecture
videos, working on course’s problems, accessing course’s
modules, accessing course’s wiki, posting or viewing course’s
forum, navigating through courses, and closing course page.
3The minimal elapsed time between two separate sessions is
set as 60 minutes.
4The day that has at leas one activity is treated as an active
day.
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Figure 1: The illustration of MOOCs dropout pre-
diction problem and the graphical state space model.
The dark blue signifies an observed variable and the
light blue signifies a latent variable.

wi,t represents a diffusion variable which follows a mul-
tivariate Gaussian with mean 0 and covariance Qi,t (i.e.,
wi,t ∼ N (0,Qi,t)). Note that the dimension of the state
vector K is usually smaller than the dimension of feature
vector N . This hyperparameter K controls the complexity
of the model, and requires manual tuning to determine its
optimal value.

In our work, we aim to infer the dropout probability πi,t

for student i in week t, which can be represented as logistic
regression

πi,t = σ(hT
t si,t + βT

t xi,t) (2)

=
1

1 + exp(−hT
t si,t − βT

t xi,t)
(3)

where ht ∈ RK×1 and βt ∈ RN×1 are two vectors of coef-
ficients for current state variable si,t and input feature xi,t

respectively. In this model, the non-stationary of student
dynamic is captured by time-evolving state variable si,t, and
time-varying parameters ht and βt.

3.3 Expectation Maximization
With the nonlinear state space model described in Eqn. 1
and Eqn. 2, we design an Expectation-Maximization (EM)
algorithm (see Algorithm 1) that iterates between state es-
timation (E-step) and parameter estimation (M-step) [11].
The E-step makes use of extended Kalman filter and smoother
to estimate states, and the M-step re-estimates the param-
eters by maximizing the likelihood of all observed data, in
which the state variables of student are replaced by their
posteriori values from the extended Kalman smoother.

3.3.1 Expectation Step
In the expectation step, the expected mean of student state
si,t and its covariance Pi,t are obtained using the extended
Kalman filter and smoother. Specifically, given student i’s

entire t−1 weeks’ observation sequenceD
(t−1)
i = {(xi,1, yi,1),

(xi,2, yi,2), . . . , (xi,t−1, yi,t−1)}, the posterior mean and co-
variance of student state si,t−1 are supposed be represented

by E(si,t−1|D(t−1)
i ) = s

(t−1)
i,t−1 and Cov(si,t−1|Di,t−1) = P

(t−1)
i,t−1

respectively. The predicted student state si,t and its covari-

ance P
(t−1)
i,t for t = 1, 2, . . . , ni − 1, ni can then be defined

Algorithm 1 EM algorithm for estimating latent student
state and model parameters.

1: Initialize each student’s starting state si,0 and model param-
eters Φ = {F,G,ht,βt}

2: repeat
3: procedure E-step:
4: Extended Kalman filter: For t = 1, 2, . . . , ni−1, ni,

correct the student state si,t and its covariance Pi,t by using
Eqn. 10 and Eqn. 11 respectively.

5: Extended Kalman smoother: For t = ni, ni −
1, . . . , 2, 1, smooth the predicted student state s

(t)
i,t and co-

variance P
(t)
i,t by using Eqn. 13 and Eqn. 14 respectively.

6: end procedure
7: procedure M-step:
8: Update parameters of the model Φ via equations from

Eqn. 17 to Eqn. 20.
9: end procedure

10: until converged

as:

s
(t−1)
i,t = Fs

(t−1)
i,t−1 + Gxi,t (4)

P
(t−1)
i,t = FP

(t−1)
i,t−1FT + Qi,t (5)

By following the extended Kalman filtering, the nonlinear
function σ(·) can be approximated by its Taylor series ex-
pansion as follows:

πi,t = σ(hT
t si,t + βT

t xi,t)

≈ σ(hts
(t−1)
i,t + βT

t xi,t) + AT
i,t(si,t − s

(t−1)
i,t−1 ) (6)

where

Ai,t , ∂σ(hT
i,tsi,t + βT

t xi,t)

∂si,t

= σ
(
hT
i,ts

(t−1)
i,t + βT

t xi,t

)

(
1− σ(hT

i,ts
(t−1)
i,t + βT

t xi,t)
)

hi,t (7)

The one-step ahead prediction π
(t−1)
i,t for the dropout prob-

ability is computed as:

π
(t−1)
i,t = σ(hT

t s
(t−1)
i,t + βT

t xi,t) (8)

For the sake of simplicity, we set the state noise covariance as
Qi,t = qi,tI, where the state noise variance qi,t is computed
via:

qi,t = max{µ(t)
i,t − µ

(t−1)
i,t , 0} (9)

in which µ
(·)
i,t = π

(·)
i,t(1 − π

(·)
i,t). After receiving a new obser-

vation (xi,t, yi,t), the predicted state s
(t−1)
i,t in Eqn. 4 and

covariance P
(t−1)
i,t in Eqn. 5 will be updated as:

s
(t)
i,t = s

(t−1)
i,t + Ki,t

(
yi,t − σ(hT

t s
(t−1)
i,t + βT

t xi,t)
)

(10)

P
(t)
i,t = (I−Ki,tAi,t)P

(t−1)
i,t (11)

in which Ki,t is the Kalman gain computed according to [3]:

Ki,t = P
(t−1)
i,t AT

i,t

(
Ai,tP

(t−1)
i,t AT

i,t + Qi,t

)−1

(12)

It is worth noting that the predicted state s
(t)
i,t and covari-

ance P
(t)
i,t in Kalman filter are estimated based on the ob-

servation D
(t)
i up to week t. We take advantage of extended
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Kalman smoother to smooth the estimated states by con-
sidering the entire sequence of the student’s observations

D
(ni)
i . The smoothed states could hence be more accurate

than the filtered ones. Specifically, the student state s
(ni)
i,t−1

and covariance P
(ni)
i,t−1 for t = ni, ni−1, . . . , 1 are recursively

smoothed as:

s
(ni)
i,t−1 = s

(t−1)
i,t−1 + Ji,t−1

(
s
(ni)
i,t − Fs

(t−1)
i,t−1 −Gxi,t−1

)
(13)

P
(ni)
i,t−1 = P

(t−1)
i,t−1 + Ji,t−1

(
P

(ni)
i,t −P

(t−1)
i,t

)
JT
i,t−1 (14)

where Ji,t−1 is the smoothing gain defined as:

Ji,t−1 = P
(t−1)
i,t−1FT

(
P

(t−1)
i,t

)−1

(15)

Note that the initial values s
(ni)
i,ni

and P
(ni)
i,ni

for the smoother
are the final estimates of the filter.

3.3.2 Maximization Step
At the maximization step, given the observed data D of N
students, the likelihood is defined as

(16)L(D|Φ) =

N∑

i=1

ni∑

t=1

yi,t log(σ(hT
i,ts

(ni)
i,t + βT

t xi,t))

+ (1− yi,t) log(1− σ(hT
i,ts

(ni)
i,t + βT

t xi,t))

− 1

2

N∑

i=1

ni∑

t=1

(s
(ni)
i,t − Fs

(ni)
i,t−1 −Gxi,t)

TQ−1
i,t (s

(ni)
i,t

− Fs
(ni)
i,t−1 −Gxi,t)− 1

2

N∑

i=1

ni∑

t=1

log|Qi,t|

By using the posterior hidden state variables s
(ni)
i,t from

Kalman smoother, the optimal parameters Φ = {G,F,ht,βt}
can be obtained by maximizing the likelihood defined in
Eqn. 16. We then apply the gradient based method L-
BFGS [10] to update model parameters by using the fol-
lowing derivation formulas respectively:

∂L
∂F

=−
N∑

i=1

ni∑

t=1

(
s
(ni)
i,t − Fs

(ni)
i,t−1 −Gxi,t

)
Q−1

i,t s
(ni)
i,t−1 (17)

∂L
∂G

=−
N∑

i=1

ni∑

t=1

(
s
(ni)
i,t − Fs

(ni)
i,t−1 −Gxi,t

)
Q−1

i,t xi,t (18)

∂L
∂ht

=

N∑

i=1

ni∑

t=1

(
yi,t − σ(hT

t s
(ni)
i,t + βT

t xi,t)
)

s
(ni)
i,t (19)

∂L
∂βt

=

N∑

i=1

ni∑

t=1

(
yi,t − σ(hT

t s
(ni)
i,t + βT

t xi,t)
)

xi,t (20)

Initialization of the EM Algorithm: The initial value
of parameters Φ should be chosen with care, otherwise the
EM algorithm may not converge. In our experiment, the
matrix G is initially set as the transform matrix resulted
from principle component analysis (PCA) algorithm [7], and
the matrix F is assigned to be an identity matrix.

4. EXPERIMENT
In order to evaluate the performance of our proposed model,
we conducted an experiment on a real-life dataset.

4.1 Dataset
We use a data set collected from xuetangX 5, one of the
largest MOOC platforms in China. This dataset was re-
leased for KDD CUP 2015 6. The dataset, as shown in
Table 2, includes 79,186 students each of whom enrolled on
at least one course among the whole set of 39 courses. Each
enrollment is associated with a log of the student’s activi-
ties including watching lecture videos, working on course’s
problems, accessing course’s modules, and so on. Totally,
there are 8,157,277 activity logs and the longest lifetime of
enrollment is 5 weeks.

Table 2: Statistics of xuetangX dataset for the ex-
periment

Item Statistical description
# courses 39
# students 79,186
# enrollments 120,542
# activity logs 8,157,277
# longest lifetime of enrollment 5 weeks

Figure 2: The number of students, number of
dropouts, and the dropout rate in different weeks.

As shown in Figure 2, we observe that 76, 123 students
dropped out in the first week. Another observation is that
the longer the student has engaged with the course, the less
likely s/he quit the course. For example, the dropout rate
of students who have engaged with the courses for 5 weeks
is 10.05% vs. 63.15% for 1 week.

4.2 Evaluation Metrics
Due to the class imbalance phenomenon, we use Area Un-
der the Receiver Operating Characteristics Curve (AUC)
as the evaluation metric, as it is invariant to imbalance.
Concretely, AUC measures how likely a classifier can cor-
rectly discriminate between positive and negative samples.
An AUC of 1 indicates perfect discrimination whereas 0.5
corresponds to a classifier that guesses randomly.

5http://www.xuetangx.com
6http://www.kddcup2015.com

Proceedings of the 9th International Conference on Educational Data Mining 530



4.3 Compared Methods
We compared our model with related methods:

• Logistic Regression (LG) [14]: In this method, a lo-
gistic regression classifier is trained to make dropout
prediction for each week. Specifically, for a student i in
week t, his/her dropout probability is computed as the
logistic function of the weighted sum of input features
xi,t:

p(yi,t|xi,t,wt) =
1

1 + exp(−yi,twT
t xi,t)

(21)

where wt = [wt1, wt2, . . . , wtN ]T is the weight vector
to be learned. The objective function for week t is

L(wt)=
∑

i∈Nt

log(1 + exp(−yi,twT
t xi,t)) +

λ1

2
||wt||2 (22)

where Nt is the set of students who engage with the
course in week t and λ1 > 0 is the regularization pa-
rameter for wt.

• Simultaneously Smoothed Logistic Regression (LR-SIM) [6]:
It extends the logistic regression by smoothing the pre-
dicted dropout probabilities across consecutive weeks.
In this model, a regularization term is added into the
objective function to minimize the difference of the
predicted probabilities between two adjacent weeks,
such as wT

t xi,t and wT
t−1xi,t−1. A new feature space

x′i,t is introduced, which has T × N dimensions (T is
the total number of weeks), with the t-th component
having N features corresponding to the features in the
original feature space xi,t for week t, and other T − 1
components corresponding to zeroes. Then, a single
weight vector w is introduced, which also has T × N
dimensions corresponding to x′i,t. The final objective
function is defined as:

L(w) =
∑

i∈Nt

ni∑

t=1

log
(

1+ exp(−yi,twTx′i,t)
)

+
λ1

2
||w||2

+ λ2

T∑

t=2

∑

i∈Nt,t−1

||wTx′i,t −wTx′i,t−1||2 (23)

where Nt,t−1 is the set of students who engage with
the course in both weeks t and t − 1, and λ2 > 0 is
the regularization parameter for the difference of the
resulted dropout probabilities between two adjacent
weeks.

• RNN with Long Short-Term Memory Cell (LSTM) [12]:
It uses a recurrent neural network (RNN) model with
long short-term memory (LSTM) architecture to train
a sequence classifier model that produces temporal pre-
diction. Similar to our proposed model, given the
student’s week-by-week features and dropout labels
{(xi,t, yi,t), 1 ≤ t ≤ ni}, the LSTM model is applied
to estimate the student state, which can then be used
to predict the student’s future actions.

Note that we did not compare with Hidden Markov Model
(HMM) based method [2] because it can be treated as a
special case of RNN by representing student state as discrete
variable. For all the compared models, we used the same set
of features as input (see Table 1).

4.4 Results and Discussion
The main hyperparameter to determine the NSSM model’s
performance is the dimensionality of student state K (see
Eqn. 1). We compared the performance of NSSM in terms of
AUC with varying dimension of latent state K, and observed
that the optimal value of K in most cases is 12. Therefore,
in our experiment, we set K as 12 to train the NSSM model.

4.4.1 Single Course
In this setting, we trained a separate model for each course.
To get sufficient data for training, we only consider the pop-
ular courses that include more than 5,000 students. After
filtering, 6 popular courses are used in this experiment. As
students may enroll in a course at different time steps, we
select 70% students who enrolled in the course in early pe-
riod as the training data, and remaining 30% students as
the testing data.

LR LR-SIM LSTM NSSM
Week 1 0.812 0.886 0.891 0.900
Week 2 0.819 0.876 0.887 0.891
Week 3 0.807 0.854 0.861 0.870
Week 4 0.768 0.778 0.786 0.796
Week 5 0.673 0.679 0.689 0.702

Table 3: Performance comparison of LR, LR-SIM,
LSTM and NSSM in terms of average AUC on 6
popular courses.

Table 3 presents the average AUC scores across weeks by
testing different models. The results indicate that the mod-
els that consider dependence between consecutive weeks,
such as LR-SIM, LSTM and NSSM, achieve higher AUC
score than the baseline LR model without this considera-
tion. For example, for the first week, the AUC score of
NSSM is 0.9, which is 10.8% improvement relative to that
of LR model. Furthermore, we can see that the methods
that model the student’s states over time (i.e., LSTM and
NSSM) achieve higher AUC than LR and LR-SIM in most
cases. More notably, our proposed model NSSM performs
consistently better than LSTM, suggesting that the student
states estimated by NSSM is more predictive than those by
LSTM. We can also observe that the accuracy during early
weeks is higher than that of later weeks by most of mod-
els. This implies that the dropout prediction task may be-
come harder with increasing lifetime of engagement, as there
might be various hidden reasons that cause a student to quit
the course.

4.4.2 Across Courses
In this setting, we are interested in evaluating whether the
proposed model trained on some courses can serve other
courses as well, for which we randomly select 70% courses for
training and remaining 30% for testing. In this experiment,
we use all of the student data from the training courses to
train the model.

Table 4 shows the performance comparison. Same conclu-
sions can be made as in the previous Section 4.4.1. Specif-
ically, from this table, we can observe that our proposed
model NSSM still outperforms the other models (e.g., LR,
LR-SIM and LSTM) across different weeks. For example,
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LR LR-SIM LSTM NSSM
Week 1 0.835 0.933 0.936 0.936
Week 2 0.911 0.915 0.915 0.919
Week 3 0.868 0.872 0.867 0.871
Week 4 0.782 0.784 0.785 0.789
Week 5 0.655 0.662 0.673 0.686

Table 4: Performance comparison of LR, LR-SIM,
LSTM and NSSM in terms of AUC on new courses
across weeks.

for the first week, the AUC score of NSSM is 0.686, which
is 12% improvement relative to that of LR model. Further-
more, we can see that the improvement from NSSM with re-
gard to LSTM is slight, and the relative improvement during
later weeks is larger than that of early weeks (e.g., +5.1%
during week 4 vs +4.4% during week 2). This observation
implies that the NSSM has the potential to make better
dropout predictions for students who have longer lifetime
of engagement than LSTM. In addition, as these results are
predictions made for students from new courses, we can con-
clude that our proposed model is capable of making better
dropout prediction in new courses, in comparison with other
models.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have focused on identifying at-risk stu-
dents in online courses by making dropout prediction. We
particularly take advantage of nonlinear state space model
(NSSM) because it can discover a student’s latent state to
characterize the student’s intention to perform certain ac-
tivities. We conducted experiment on a real-world dataset,
which demonstrates that our proposed model achieves higher
prediction accuracy than related methods. We also showed
that the NSSM model trained on data from some courses
can make dropout prediction for students in new courses.

However, because the extended Kalman filter and smoother
we used in this paper may not be an optimal parameter es-
timator, the difference between NSSM and LSTM is slight.
Therefore, in the future, we will exploit other advanced al-
gorithms (e.g., Unscented Kalman filter) to estimate the pa-
rameters in our nonlinear state space model. For the second
future direction, as the experiment presented in this paper
is limited to xuetangX dataset, we plan to evaluate our pro-
posed model on datasets collected from other MOOC plat-
forms, such as Edx and Coursera.
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ABSTRACT
To create a satisfying social learning experience, an emerging
challenge in educational data mining is to automatically as-
sign students into effective learning teams. In this paper, we
utilize discourse data mining as the foundation for an online
team-formation procedure. The procedure features a delib-
eration process prior to team assignment, where participants
hold discussions both to prepare for the collaboration task
and provide indicators that are then used during automated
team assignment. We automatically assign teams in a way
that maximizes average observed pairwise transactivity ex-
change within teams, whereas in a control condition, teams
are assigned randomly. We validate our team-formation pro-
cedure in a crowdsourced online environment that enables
effective isolation of variables, namely Amazon’s Mechan-
ical Turk. We compare group knowledge integration out-
comes between the two team assignment conditions. Our re-
sults demonstrate that transactivity-based team assignment
is associated with significantly greater knowledge integration
(p < .05, effect size 3 standard deviations).

1. INTRODUCTION
Although there are typically thousands of students in a Mas-
sive Open Online Course (MOOC), social isolation is still
the norm in the current generation of MOOCs. However,
there is evidence that many students would prefer to have
more social engagement in that context. Recent research
shows that a quarter of learners want to meet new people in
their courses; and another 20% of learners in typical MOOCs
want to take their courses with friends or colleagues [17].
To satisfy learners’ social needs, there is growing interest in
enabling group learning in MOOC learning contexts. Re-
cent emerging platforms like NovoEd1 and cMOOCs are de-
signed with team-based learning or social interaction at cen-
ter stage. Additionally, many recent xMOOCs are adopting

1https://novoed.com

team-based learning features (e.g., in EdX2). There is accu-
mulating evidence that social interaction is associated with
enhanced commitment to the course [11], which has the po-
tential to address one of MOOC critics’ biggest concerns,
namely high attrition rates [18]. However, how to automat-
ically assign students to effective MOOC learning groups is
still an open question [12, 25, 20]. Methods for mining
educational data have been used to optimize instruction or
feedback for individuals [21]. In this paper we explore how
a form of educational data mining (namely, mining of dis-
cussion behavior) can be used to optimize the experience of
collaborative learners through the support of effective team
formation.

Algorithms for group assignment typically bring together
students based on learning style, personality or demographic
information. For team assignments based on such algo-
rithms, student information must be collected and then pro-
vided to the algorithm [9]. Because of the paucity of avail-
able student personal information in MOOCs, designing a
team-formation process that relies on mining of discussion
data to fill in missing information would be a valuable contri-
bution. Moreover, research identifying valuable evidence for
effective team formation is needed since recent work shows
that forming teams based on typical demographic features,
e.g. gender and time zone, does not significantly improve
teams’ engagement and success in MOOCs [25]. In an on-
line interaction, demographic information about learners is
only relevant to the extent that it influences how those stu-
dents come across and interact with others. Thus, observa-
tion of behavior and interaction between students may be a
better source of insight for assigning students to groups in
which they will function well as a team. This provides an
excellent opportunity for data mining technology to make a
contribution in support of valued learning processes. The
alternative to automated assignment is self-selected teams.
When a student population is large, which is usually the case
in MOOCs, it is difficult for students to navigate through a
list of students or teams to find a team that fits. Previous
work has shown that many self-selected teams fail in team-
based MOOCs [23]. As an alternative to both of these ap-
proaches, we design a practical group-formation procedure
through which participants are organized into small groups

2https://courses.edx.org/courses/course-v1:
McGillX+GROOCx+T3_2015,
https://www.edx.org/course/medicinal-chemistry-
molecular-basis-drug-davidsonx-d001x-1
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based on the data mined from their participation processes
in the course. This procedure uses a deliberation process,
where participants hold discussions in preparation for the
collaboration task; teams are then automatically assigned
based on features of their interaction during deliberation.

In recent years there has been increasing interest in mining
discourse data for insights into learning processes [7], for un-
derstanding factors associated with attrition in MOOCs [16],
and for building models to trigger dynamic support for col-
laborative learning [11]. In this paper, we mine students’
collaborative process to collect information for automatic
team assignment. In particular, we automatically identify
an important property of discourse, transactivity, from stu-
dents’ discussion. Transactivity is known to be higher within
groups where there is mutual respect [5] and a desire to
build common ground [14]. Previous studies showed that
high transactivity groups are associated with higher learn-
ing [22], higher knowledge transfer [13], and better problem
solving [5]. Prior work has demonstrated success at auto-
matic detection of transactivity and relevant discussion con-
structs [14]. Because of the social underpinnings of transac-
tivity, it is reasonable to hypothesize that automated detec-
tion of transactivity could form the basis for an automated
group assignment procedure in online learning contexts. In
this paper, we combine text-mining and algorithm-based
team formation; We study whether by grouping individuals
with a history of engaging in more transactive communica-
tion during a pre-collaboration deliberation can help them
achieve more effective collaboration in their teams. Simply
stated, our research question is:

Can evidence of transactive discussions during deliberation
inform the formation of more successful teams?

As a step towards effective team-based learning in MOOCs,
in this paper, we explore the team-formation process in an
experimental study conducted in an online setting that en-
ables effective isolation of variables, namely Amazon’s Me-
chanical Turk (MTurk). While crowd workers likely have
different motivations from MOOC students, their remote in-
dividual work setting without peer contact resembles today’s
MOOC setting where most students learn in isolation [6].
This allows us to test the causal connection between vari-
ables in order to identify principles that later we will test
in an actual MOOC. A similar approach was taken in prior
work to inform design of MOOC interventions for online
group learning [6]. We designed a collaborative knowledge
integration task where participants work together on writ-
ing an energy proposal for a city. This knowledge integration
task is modeled after ones used in earlier collaborative learn-
ing studies [4]. The participants in our study will be referred
to as students throughout the paper.

2. METHODS
Our experimental study is designed as a validation of a team-
formation paradigm. In this paradigm, we attempt to offer
teams a running start in their collaboration work by start-
ing them with individual work, which they then discuss as
a community. In addition to providing the basis for assign-
ment to teams, the community engagement prior to team
formation provides students with a breadth of exposure to
different perspectives relevant to the group work. Based

on the interactions displayed during this community discus-
sion, students are automatically assigned to teams. The
students then enter their teams for the bulk of their group
work. We test a transactivity-maximization team-formation
method. Instead of grouping students high in transactivity
into teams and students low in transactivity together, the
team assignment algorithm maximizes the average amount
of transactive communication within all the teams through
a constraint satisfaction algorithm.

2.1 Experimental Paradigm
2.1.1 Collaboration Task Description

For the team task, we designed a highly-interdependent col-
laboration task that requires negotiation in order to create a
context in which effective group collaboration would be nec-
essary for task success. The task is comparable to a course
project where a student team writes a proposal collabora-
tively. We used a Jigsaw paradigm, which has been demon-
strated as an effective way to achieve a positive group com-
position and is associated with positive group outcomes [4].
In a Jigsaw task, each student is given a portion of the knowl-
edge or resources needed to solve the problem, but no one
has enough to complete the task alone. Following the Jigsaw
paradigm, each member of the team was given special knowl-
edge of one of the four energy sources, and was instructed
to represent the values associated with their energy source
in contrast to the rest, e.g. coal energy was paired with
an economical energy perspective. The team collaborative
task was to select a single energy plan and write a proposal
arguing in favor of the group decision with respect to the
associated trade-offs, meaning team members needed to ne-
gotiate a prioritization among the city requirements with
respect to the advantages and disadvantages they were cu-
mulatively aware of. The set of potential energy plans was
constructed to reflect different trade-offs among the require-
ments, with no plan satisfying all of them perfectly. This
ambiguity created an opportunity for intensive exchange of
perspectives. The collaboration task is shown in Figure 1.

2.1.2 Experimental Procedure
We designed a four-step process for the task:
Step 1: Preparation. In this step, each student was asked
to provide a nickname, which would be used in the deliber-
ation and collaboration phases. To prepare for the Jigsaw
task, each student was randomly assigned to read an in-
structional article about the pros and cons of a single energy
source. Each article was approximately 500 words, and cov-
ered one of four energy sources (coal, wind, nuclear, and hy-
dro power). To strengthen their learning and prepare them
for the proposal writing, we asked them to complete a quiz
reinforcing the content of their assigned article. The quiz
consisted of 8 single-choice questions, and feedback includ-
ing correct answers and explanations was provided along
with the quiz.

Step 2: Pre-task. In this step, we asked each student to
write a proposal to recommend one of the four energy sources
(coal, wind, nuclear, and hydro power) for a city given five
requirements, e.g. “The city prefers a stable energy”. After
each student finished this step, their proposal was automat-
ically posted in a forum as the start of a thread with the
title “[Nickname]’s Proposal”.
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In this final step, you will work together with other Turkers to recommend a way of distributing resources across energy
types for the administration of City B. City B requires 12,000,000 MWh electricity a year from four types of energy
sources: coal power, wind power, nuclear power and hydro power. We have provided 4 different plans to choose from,
each of which emphasizes one energy source as primary. Your team needs to negotiate which plan is the best way of
meeting your assigned goals, given the city’s requirements and information below.
City B’s requirements and information:
1. City B has a tight yearly energy budget of $900,000K. Coal power costs $40/MWh. Nuclear power costs $100/MWh.
Wind power costs $70/MWh. Hydro power costs $100/MWh.
2. The city is concerned with chemical waste. If the main energy source releases toxic chemical waste, there is a waste
disposal cost of $2/MWh.
3. The city is a famous tourist city for its natural bird and fish habitats.
4. The city is trying to reduce greenhouse gas emissions. If the main energy source releases greenhouse gases, there will
be a “Carbon tax” of $10/MWh of electricity.
5. The city has several large hospitals that need a stable and reliable energy source.
6. The city prefers renewable energy. If renewable energies generate more than 30% of the electricity, there will be a
renewable tax credit of $1/MWh for the electricity that is generated by renewable energies.
7. The city prefers energy sources whose cost is stable.
8. The city is concerned with water pollution.

Energy Plan Cost Waste disposal Carbon Renewable Total
Coal Wind Nuclear Hydro cost tax tax credit

Plan 1 40% 20% 20% 20% $840,000K $14,400K $48,000K $9,600K $892,800K
Plan 2 20% 40% 20% 20% $912,000K $0 $0 $11,000K $901,000K
Plan 3 20% 20% 40% 20% $984,000K $14,400K $0 $9,600K $988,800K
Plan 4 20% 20% 20% 40% $984,000K $0 $0 $11,000K $973,600K

Figure 1: This figure displays the collaborative task as it was presented to the students. In addition to the
task statement, they had a chat interface and a shared document space to work in.

Step 3: Deliberation. In this step, students joined a threaded
forum discussion akin to those available in many online en-
vironments. Each proposal written by the students in the
Pre-task (Step 2) was displayed for students to read and
comment on. Each student was required to write at least
five replies to the proposals posted by the other students.
To encourage the students to discuss transactively, the task
instruction for this step included the request to, when re-
plying to a post, “elaborate, build upon, question or argue
against the ideas presented in that post, drawing from the
argumentation in your own proposal where appropriate.”

Step 4: Collaboration. In the collaboration step, team mem-
bers in a group were first gathered for synchronous interac-
tion and then directed to a shared document space to write
a proposal together to recommend one of four suggested en-
ergy plans based on a city’s eight requirements. Students
in the same team were able to see each other’s edits in real
time, and were able to communicate with each other using a
synchronous chat utility on the right sidebar. The collabo-
rative task was designed to contain richer information than
the individual proposal writing task in Step 2.

2.1.3 Outcome Measures
We evaluated team success using two types of outcomes,
namely objective success through quantitative task perfor-
mance (i.e., the quality of the integrated proposal, which in-
dicates collaborative knowledge integration [3]) and process
measures, as well as subjective success through a group satis-
faction survey. The quantitative task performance measure
was an evaluation of the quality of the proposal produced by
the team. The goal of evaluating the team knowledge inte-
gration process is to distinguish instances when students are

making statements based on reasoning from simply repeat-
ing what they have read. In particular, the scoring rubric
defined how to identify the following elements for a proposal:
(1) Which requirements were considered; (2) Which com-
parisons or trade-offs were made; (3) Which additional valid
desiderata were considered beyond stated requirements; (4)
Which incorrect statements were made about requirements.
Positive points were awarded to each proposal for correct
requirements considered, comparisons made, and additional
valid desiderata. Negative points were awarded for incorrect
statements. We measured Team Knowledge Integration by
the total points assigned to the team proposal, i.e. team
proposal score. Two PhD students who were blind to the
conditions applied the rubric to five proposals (a total of 78
sentences) and the inter-rater reliability was good (Kappa
= 0.74). The two raters then coded all the proposals.

We used the length of chat discussion during teamwork as
a measure of team process in the Collaboration step. On
average the longer discussions referred to more substantive
issues.

Group Experience Satisfaction was measured using a
four item group experience survey administered to each stu-
dent after the Collaboration step. The survey was based on
items used in prior work [19, 6]. In particular, the survey
instrument included items related to:

• Satisfaction with team experience.

• Satisfaction with proposal quality.

• Satisfaction with the group communication.

• Perceived learning through the group experience.
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Each of the items was measured on a 7-point Likert scale.

2.1.4 Control Variables
Intuitively, students who display more effort in the Pre-task
might perform better in the collaboration task, so that level
of effort is an important control variable. We used each stu-
dent’s individual Pre-task proposal length as a control vari-
able for Individual Performance. Analogously, we used each
group’s average group member Pre-task proposal length as
a control variable for the group knowledge integration anal-
yses.

2.1.5 Transactivity Annotation, Prediction, and Mea-
surement

To enable us to use counts of transactive contributions as ev-
idence to inform an automated group assignment procedure,
we needed to automatically judge whether a reply post in
the Deliberation step was transactive or not using machine
learning. A transactive contribution displays the author’s
reasoning and connects that reasoning to material commu-
nicated earlier. Two example posts illustrating the contrast
are shown below:

• Transactive
“Nuclear energy, as it is efficient, it is not sustainable.
Also, think of the disaster probabilities”.

• Non-transactive
“I agree that nuclear power would be the best solution”.

Using a validated and reliable coding manual for transac-
tivity from prior work [14], an annotator previously trained
to apply that coding manual annotated 426 reply posts col-
lected in pilot studies we conducted in preparation for the
studies reported in this paper. Each of those posts was an-
notated as either “transactive” or “non-transactive”. 70% of
them were transactive.

Automatic annotation of transactivity has been reported
in the Computer Supported Collaborative Learning litera-
ture. For example, researchers have applied machine learn-
ing using text, such as chat data [15] and transcripts of
whole group discussions [2]. We trained a Logistic Regres-
sion model with L2 regularization using a set of features
consisting of single word features (i.e., unigrams) as well as
a feature indicating the post length [10]. We evaluated our
classifier with a 10-fold cross validation and achieved an ac-
curacy of 0.843 and a 0.615 Kappa. Given the adequate
performance of the model, we used it to predict whether
each reply post in the Deliberation step was transactive or
not.

To measure the amount of transactive communication be-
tween two students in the Deliberation step, we counted the
number of times a pair of their posts in a same discussion
thread were transactive; or one of them was a thread starter
and the other student’s reply was transactive.

2.2 Transactivity Maximization Grouping
The Transactivity Maximization teams were formed so that
the average amount of transactive discussion observed in
the Deliberation step among the team members in the team

was maximized. A Minimal Cost Max Network Flow algo-
rithm was used to perform this constraint satisfaction pro-
cess [1]. This network flow algorithm tackles resource allo-
cation problems with constraints. In our case, we need to
satisfy the Jigsaw constraint. At the same time, the minimal
cost part of the algorithm maximized the transactive com-
munication that was observed among the group members
during the Deliberation step. The algorithm finds an ap-
proximately optimal grouping within O(N3) (N = number
of students) time complexity. A brute force search algo-
rithm, which has an O(N !) time complexity, would take too
long to finish in real time.

Our algorithm can achieve an approximately optimal so-
lution in an admissible time. Instead of maximizing the
pair-wise accumulated transitivity post count, we approx-
imate the solution by maximizing the accumulated transi-
tivity post count between two adjacent pairs of users. The
algorithm can be generalized to form teams of any size. In
our experiment, the team size is 4. We build a directed
weighted graph based on students’ discussion network. Then
we use the successive shortest path algorithm to find a sub-
optimal, but nevertheless substantially better than random
grouping [1]. The algorithm greedily finds a flow with min-
imum cost until there is no remaining flow in the network,
as outlined in Algorithm 1.

Algorithm 1 Successive Shortest Paths for Minimum Cost
Max Flow
f(v1, v2)← 0 ∀(v1, v2) ∈ E
E′ ← a(v1, v2) ∀(v1, v2) ∈ E
while ∃Π∗ ∈ G′ = (V,E′)
s.t. Π∗ a minimum cost path from S to D do

for each (v1, v2) ∈ Π∗

if f(v1, v2) > 0 then
f(v1, v2)← 0
remove −a(v2, v1) from E′

add a(v1, v2) to E′

else
f(v1, v2)← 1
remove a(v1, v2) from E′

add −a(v2, v1) to E′

end

end

2.2.1 Experimental Manipulation
In our study, students participated in a deliberative discus-
sion as a community in a threaded discussion forum prior
to being assigned to teams automatically. We investigated
how the nature of the experience in that context may con-
tribute to the success of the teams. We made use of a Jigsaw
paradigm in the team assignment of teams in both the exper-
imental and control conditions. In the experimental condi-
tion, which we termed the Transactivity Maximization con-
dition, we additionally applied a constraint that preferred
to maximize the extent to which students assigned to the
same team had participated in automatically detected trans-
active exchanges in the deliberation. In the control condi-
tion, which we termed the Random condition, apart from
enforcing the Jigsaw constraint, teams were formed by ran-
dom assignment. In this way we tested the hypothesis that
observed transactivity is an indicator of potential for effec-
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tive team collaboration. We ran the study in 10 separate
batches, with 5 batches in each condition. In each batch, all
the students in that batch were assigned to teams using the
Random strategy or all the students were assigned to teams
using the Transactivity Maximization strategy. The aver-
age level of amount of transactivity during the deliberation
stage was not significantly different between batches. Thus
we can test if the team-formation method can predict fu-
ture collaborative knowledge integration. All the steps and
instructions of the task were identical for the two conditions,
as described in 2.1.2.

2.3 Participants
Participants were recruited on MTurk with the qualifications
of having a 95% acceptance rate on 1,000 tasks or more.
Each student was only allowed to participate once. A total
of 246 students participated in the experiment, the students
who were not assigned into groups or did not complete the
group satisfaction survey were excluded from our analysis.
The experiment lasted on average 35.9 minutes. We included
only teams of 4 students in our analysis. There were in total
27 Transactive Maximization teams and 27 Random teams,
with no significant difference in attrition between conditions
(χ2(1) = 1.46, p = 0.23). The dropout rate of students in
Random groups was 27%. The dropout rate of students in
Transactivity Maximization groups was 19%.

3. RESULTS
As a manipulation check, we compared the average amount
of transactivity observed among teammates during the de-
liberation between the two conditions using a t-test. The
groups in the Transactive Maximization condition (M = 12.85,
SD = 1.34)3 were observed to have had significantly more
transactive exchanges during the deliberation than those in
the Random condition (M = 7.00, SD = 1.52) (p < 0.01),
with an effect size of 3.85 standard deviations, demonstrat-
ing that the maximization was successful in manipulating
the average experienced transactive exchange within teams
between conditions.

Teams that experienced greater transactivity during deliber-
ation demonstrate better team knowledge integration.
To assess whether the Transactivity Maximization condition
resulted in more effective teams, we tested for a difference
between group-formation conditions on Team Knowledge In-
tegration. We built an ANOVA model with Grouping Crite-
ria (Random, Transactivity Maximization) as the indepen-
dent variable and Team Knowledge Integration as the de-
pendent variable. Average team member Pre-task proposal
length was again the covariate. There was a significant main
effect of Grouping Criteria (F(1,52) = 6.13, p < 0.05) on
Team Knowledge Integration such that Transactivity Maxi-
mization teams (M = 11.74, SD = 0.67) demonstrated signif-
icantly better performance than the Random groups (M = 9.37,
SD = 0.67) (p < 0.05), with an effect size of 3.54 standard
deviations, which is a large effect. Effect size is measured in
terms of Cohen’s d.

Across the two conditions, observed transactive communi-
cation during deliberation was significantly correlated with
Team Knowledge Integration (r = 0.26, p < 0.05). This

3SD is short for standard deviation in this paper.

also indicated teams that experienced more transactive com-
munication during deliberation demonstrated better Team
Knowledge Integration.

Teams that experienced greater transactivity during deliber-
ation demonstrate more intensive interaction within their
teams.
In the experiment, students were assigned to teams based on
observed transactive communication during the deliberation
step. Assuming that individuals that were able to engage in
positive collaborative behaviors together during the deliber-
ation would continue to do so once in their teams, we would
expect to see evidence of this reflected in their observed team
process. Group processes have been demonstrated to be
strongly related to group outcomes in face-to-face problem
solving settings [24]. Thus, we should consider evidence of a
positive effect on group processes as an additional positive
outcome of the experimental manipulation.

In order to test whether such an effect occurred, we built an
ANOVA model with Grouping Criteria (Random, Transac-
tivity Maximization) as the independent variable and length
of chat discussion during teamwork as the dependent vari-
able. There was a significant effect of Grouping Criteria on
length of discussion (F(1,45) = 9.26, p < 0.005). Random
groups (M = 20.00, SD = 3.58) demonstrated significantly
shorter discussions than Transactive Maximization groups
(M = 34.52, SD = 3.16), with an effect size of 4.06 standard
deviations.

Survey results
For each of the four aspects of the group experience sur-
vey, we built an ANOVA model with Grouping Criteria
(Random, Transactivity Maximization) as the independent
variable and the survey outcome as the dependent variable.
Team ID and assigned energy condition (Coal, Wind, Hydro,
Nuclear) were included as control variables nested within
condition. There were no significant effects on Satisfaction
with team experience or with proposal quality. However,
there was a significant effect of condition on Satisfaction
with communication within the group (F(1,112) = 4.83,
p < 0.05), such that students in the Random teams (M = 5.12,
SD = 1.7) rated the communication significantly lower than
those in the Transactivity Maximization teams (M = 5.69,
SD = 1.51), with effect size 0.38 standard deviations. Ad-
ditionally, there was a marginal effect of condition on Per-
ceived learning (F(1,112) = 2.72, p = 0.1), such that stu-
dents in the Random teams (M = 5.25, SD = 1.42) rated
the perceived benefit to their understanding they received
from the group work lower than students in the Transactivity
Maximization teams (M = 5.55, SD = 1.27), with effect size
0.21 standard deviations. Thus, with respect to subjective
experience, we see advantages for the Transactivity Maxi-
mization condition, but the results are weaker than those
observed for the objective measures. Nevertheless, these re-
sults are consistent with prior work where objectively mea-
sured learning benefits are observed in high transactivity
teams [8].

4. DISCUSSION
In this paper we presented an experiment to address our re-
search question regarding the extent to which benefit could
be achieved by selecting teams based on evidence of trans-
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active exchange observed during the deliberation. We de-
signed an automatic team-formation process that combines
discourse data mining and algorithm-based team formation.
Here we found that teams formed such that observed trans-
active interactions between team members in the delibera-
tion was maximized displayed objectively better knowledge
integration than teams assigned randomly. On subjective
measures we see a significant positive impact of transactiv-
ity maximization on perceived communication quality and
a marginal impact on perceived enhanced understanding,
both of which are consistent with what we would expect
from the literature on transactivity where high transactiv-
ity teams have been demonstrated to produce higher quality
outcomes and greater learning [22]. These results provide
positive evidence in favor of a design for a team-formation
strategy in two stages: Individuals first participate in a pre-
teamwork deliberation activity where they explore the space
of issues in a context that provides beneficial exposure to a
wide range of perspectives. Individuals are then grouped
automatically through a transactivity detection and maxi-
mization procedure that uses communication patterns aris-
ing naturally from community processes to inform group for-
mation with an aim for successful collaboration.

This research was supported in part by funding from Google
and the Gates foundation.
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conversation for summarization of educational
dialogue. In SLaTE, pages 53–56, 2007.

[16] R. F. Kizilcec, C. Piech, and E. Schneider.
Deconstructing disengagement: analyzing learner
subpopulations in massive open online courses. In
Proceedings of the Third International Conference on
Learning Analytics and Knowledge, pages 170–179.
ACM, 2013.

[17] R. F. Kizilcec and E. Schneider. Motivation as a lens
to understand online learners: Toward data-driven
design with the olei scale. ACM Transactions on
Computer-Human Interaction (TOCHI), 22(2):6, 2015.

[18] C. Kulkarni, J. Cambre, Y. Kotturi, M. S. Bernstein,
and S. Klemmer. Talkabout: Making distance matter
with small groups in massive classes. In CSCW, 2015.

[19] I. Lykourentzou, A. Antoniou, and Y. Naudet.
Matching or crashing? personality-based team
formation in crowdsourcing environments. arXiv
preprint arXiv:1501.06313, 2015.

[20] S. MacNeil, C. Latulipe, B. Long, and A. Yadav.
Exploring lightweight teams in a distributed learning
environment. In Proceedings of the 47th ACM
Technical Symposium on Computing Science
Education, pages 193–198. ACM, 2016.

[21] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 1093–1102, 2015.

[22] S. D. Teasley, F. Fischer, A. Weinberger,
K. Stegmann, P. Dillenbourg, M. Kapur, and M. Chi.
Cognitive convergence in collaborative learning. In
International conference for the learning sciences,
pages 360–367, 2008.

[23] M. Wen, D. Yang, and C. P. Rosé. Virtual teams in
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ABSTRACT
Estimating student proficiency is an important task for com-
puter based learning systems. We compare a family of IRT-
based proficiency estimation methods to Deep Knowledge
Tracing (DKT), a recently proposed recurrent neural net-
work model with promising initial results. We evaluate how
well each model predicts a student’s future response given
previous responses using two publicly available and one pro-
prietary data set. We find that IRT-based methods consis-
tently matched or outperformed DKT across all data sets
at the finest level of content granularity that was tractable
for them to be trained on. A hierarchical extension of IRT
that captured item grouping structure performed best over-
all. When data sets included non-trivial autocorrelations
in student response patterns, a temporal extension of IRT
improved performance over standard IRT while the RNN-
based method did not. We conclude that IRT-based models
provide a simpler, better-performing alternative to existing
RNN-based models of student interaction data while also
affording more interpretability and guarantees due to their
formulation as Bayesian probabilistic models.
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1. INTRODUCTION
A key challenge for computer-based learning systems is to
estimate a student’s proficiency based on her previous inter-
actions with the system. Accurate estimation of proficiency

∗Contributed equally to the work.
†Performed initial coding and analysis while at Knewton.

enables more efficient diagnosis and remediation of her weak-
nesses and more effective advancement of her knowledge
frontier. Proficiency estimates can also provide the student
or teacher with actionable information to improve student
outcomes when reported as analytics [21].

Two classical families of methods for estimating proficiency
are Item Response Theory (IRT) [8, 13] and Bayesian Knowl-
edge Tracing (BKT) [2]. IRT essentially amounts to struc-
tured logistic regression (see Section 2.1), estimating latent
quantities corresponding to student ability and assessment
properties such as difficulty. BKT does not capture assess-
ment properties but employs a dynamic representation of
student ability. A growing body of recent work has focused
on modeling various structural properties of students and as-
sessments in an attempt to combine the advantages of IRT
and BKT, for instance [14, 15, 11, 5, 10, 12, 3]). In a re-
cently proposed method known as Deep Knowledge Tracing
(DKT) [16], a recurrent neural network was trained to pre-
dict student responses and was shown to outperform the
best published results ([15]) on the publicly available AS-
SISTments data set [4] by about 20 percentage points with
respect to the AUC metric described in Section 4.

To investigate DKT’s advantage over traditional models, we
compared a standard one parameter IRT model, two exten-
sions of that model, and DKT on three data sets (two are
publicly available and one is proprietary) on a realistic on-
line prediction task that is typically required by computer-
based learning systems (see Section 4), and which was con-
sistent with the evaluation task employed in [16].1 We re-
produce the results of [16] on the ASSISTments data set,
but find that proper accounting for duplicate data negates
the claimed performance gains. For the two larger data sets,
computational tractability hampered our ability to train DKT
on fine-grained content labels, while training IRT-based mod-
els scaled to handle them. Moreover, the IRT-based models’
best tractable performance matches or outperforms DKT’s
best tractable performance on all data sets, with a hierar-
chical extension of IRT performing the best in all cases. We
conclude that for these data sets, IRT-based models provide
simple, better-performing alternatives to DKT while also
affording more interpretability and guarantees due to their
formulation as Bayesian probabilistic models.

1Code for the IRT and DKT models, as well as in-
structions for reproducing our results, can be found at
github.com/Knewton/edm2016.
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2. MODELS OF STUDENT RESPONSES
In this section we set notation and describe the models we
compare. Throughout, we will represent the student re-
sponse data D as a set of tuples (s, i, r, t) indicating the
student, item, correctness, and time of each response. In
this paper, time will be indexed by interaction index (rather
than wall clock time).

2.1 Item Response Theory (IRT)
Item Response Theory (IRT) is a standard framework for
modeling student responses dating back to the 1950s [8, 13].
A single number, called the proficiency or ability, represents
a student’s knowledge state during the course of completing
several assessments. It is assumed that this proficiency is
not changing during this examination.2

The model assumes that many students have completed a
test of dichotomous items and assigns each student s a pro-
ficiency θs ∈ R. A key innovation of IRT is to model vari-
ation across different items. In its simplest form, the one-
parameter model, each item i is assigned a parameter βi,
representing the difficulty of the item. The probability that
a student s answers item i correctly is given by f(θs − βi),
where f is some sigmoidal function.

When f is the logistic function, this corresponds to (struc-
tured) logistic regression, where the factors for a response to
an item are indicators for students and items. We use a vari-
ant of this model known as 1PO (one-parameter ogive) IRT,
where the link function f(x) = Φ(x) is the cumulative distri-
bution function of the standard normal distribution3. The
maximum likelihood solution of {θs, βi} is underdetermined
4; we take a Bayesian approach and regularize the solution
of {θs, βi} by imposing independent standard normal prior
distributions over each θs and βi.

2.1.1 Learning
To train the parameters on student response data, we max-
imize the log posterior probability of {θs, βi} given the re-
sponse data (the set of response correctnesses {r : (s, i, r, t) ∈
D}, each of which is 0 or 1). Assuming independent, stan-
dard normal priors on each θs, βi, the log posterior is:

logP ({θs}, {βi}|D) =
∑

(s,i,r,t)∈D
r log f(θs − βi) + (1− r) log(1− f(θs − βi))

− 1

2

∑

s

θ2s −
1

2

∑

i

β2
i + C . (1)

We maximize this objective with respect to the parameters
using standard second-order ascent methods to obtain the
maximum a posteriori (MAP) estimate of each parameter.

2.2 Hierarchical IRT (HIRT)
2For an in depth discussion of IRT and a review of related
literature see [17], especially Chapter 5.
3The ogive yields nearly identical results to the commonly
used logistic link function, but allows closed-form posterior
computation in the temporal IRT model described in Sec. 2.3
4For example, the response predictions are invariant when
adding a constant offset to the {θs}’s and {βi}’s.

In many situations, including each of our data sets, the as-
sessment items may have structure that can inform predic-
tions of student responses. For example, groups of items may
assess the same topic, resulting in item properties that are
more similar within groups than across them Alternatively,
items may be derived from common templates. Templates,
often found in math courses, look like “What is x+ y?” and
a particular instantiation is generated by choosing values for
x and y. For example, the ASSISTments data set contains
several problems, many of which are with the same template,
many of which in turn assess a single skill.

We can augment the IRT model to incorporate knowledge
about item groups, resulting in a hierarchical IRT model
(HIRT). Each item i is associated with a group j(i) whose
difficulty is distributed normally around a per-group mean
µj(i): βi ∼ N(µj(i), σ

2). Each µj is in turn distributed

according to the hyperprior µj ∼ N(0, τ2). This reflects the
belief that the difficulty of items in the same group should
be similar. The degenerate cases provide some intuition:
the limit σ → 0 is the same model as 1PO IRT where we
consider the items in the group to be the same item, and
the limit τ → 0 is equivalent to a 1PO IRT model with no
groupings.

2.2.1 Learning
Learning is done similarly to Bayesian IRT (section 2.1),
except that we ascend the modified log posterior probability

logP ({θs}, {βi}, {µt}|D) =
∑

(s,i,r,t)∈D
r log f(θs − βi) + (1− r) log(1− f(θs − βi))

− 1

2

∑

s

θ2s −
1

2σ2

∑

i

(βi − µj(i))2 −
1

2τ2

∑

j

µ2
j + C . (2)

We maximize this objective with respect to {θs, βi, µj}.

2.3 Temporal IRT (TIRT)
1PO IRT and HIRT assume each student’s knowledge state
remains constant over time. However, in a setting where a
student may be acquiring (or forgetting) knowledge over a
period of time (e.g., while interacting with a tutoring sys-
tem), we can extend this model by modeling each θs as a
stochastic process varying over time (see for example [5]).
We adopt the approach described in [3], modeling the stu-
dent’s knowledge as a Wiener process:

P (θs,t+τ |θs,t) = e
− (θs,t+τ−θs,t)2

2γ2τ ∀s, t, τ . (3)

In other words, the change in student s’s knowledge state
between time t and a future time t+ τ (expressed as θs,t −
θs,t+τ ) is normally distributed about 0 with variance γ2τ
where γ is a parameter controlling the “smoothness” with
which the knowledge state varies over time.

2.3.1 Learning
We fit the parameters according to the procedure described

in [3]. Estimating the entire trajectory ~θs,t for each student
simultaneously with item parameters is very expensive and
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difficult to do in real-time. To simplify the approach, we
learn parameters in two stages:

1. We learn the βi according to a standard 1PO IRT
model (see Section 2.1.1) on the training student pop-
ulation and freeze these during validation.

2. For each response of each student in the held-out vali-
dation population, we predict this response according
to a temporal IRT model given the student’s previous
responses, as described below. For further details of
the validation procedure, see Section 4.

For the second step, we combine the approximation:

P ({(s′, i, r, t′) ∈ D : s′ = s, t′ ≤ t}|θs,t) ≈
∏

(s′,i,r,t′)∈D:s′=s,t′≤t
P ((s′, i, r, t′)|θs,t) (4)

with (3), integrating out previous proficiencies of the student
to get a tractable approximation of the log posterior over the
student’s current proficiency given previous responses:

logP (θs,t|D) ≈
∑

(s′,i,r,t′)∈D
s′=s,t′≤t

[r log f(α̃t′(θs,t − βi))+

(1− r) log(1− f(α̃t′(θs,t − βi)))] , (5)

where α̃t′ =
(
1 + γ2(t− t′)

)−1/2
. The α̃t’s are essentially

discounting the relative effect of older responses when esti-
mating the current proficiency. See [3] for details.

2.4 Deep Knowledge Tracing (DKT)
Recently, a recurrent neural network was used to predict
student responses [16]. Such architectures have seen enor-
mous success in applications to a wide range of other do-
mains (e.g., image processing [6], speech recognition [7], and
natural language processing [20]).

In this model, the input vectors are representations of whether
the student answered a particular question correctly or in-
correctly at the previous time step, and the output vectors
are representations of the probability, over all the questions
in the question bank, that a student will get the question cor-
rect at the following time step. In [16], the authors propose
using a one-hot vector ~xs,t ∈ R2I to represent the response of
a student s (on item i) at time t. Here I is the total number
of items and the first I slots represent answering correctly
and the remaining I slots represent answering incorrectly.
Output vectors ~ys,t ∈ RI are vectors of probabilities, where
the ith element of ~ys,t is the model’s predicted probability
that student s would answer item i correctly at time t+ 1.

We use a model with one hidden layer, of dimension H,
which is fully connected5 to both the input and output lay-
ers, as well as recurrently to itself. This model is able to
capture temporal effects (via the recurrent component of the
network) and remains flexible enough to describe non-trivial
relationships between items.

5Note that in [16], an LSTM network was used in addition
to the RNN described here, and the performance of the two
networks was comparable.

2.4.1 Learning and Parameter Choices
In order to make learning tractable, we reduced the dimen-
sionality of the input by projecting the ~xs,t ∈ R2I to a lower
dimensional space RC using a random projection matrix
c : R2I → RC , as was done in [16]. We used batch gradient
ascent with dropout [18], and chose the input dimensional-
ity C and the hidden dimensionality H by sweeping these
parameters on a data set that was held out from the data
used for training and cross-validation.

The predictions are given by the following equations:

~hs,t+1 = g(Whh
~hs,t +Wxhc(~xs,t) +~bh) (6)

~ys,t+1 = φ(Why
~hs,t+1 +~by) (7)

Here, g and φ are the logistic and arctangent functions, re-

spectively. The parameters of the modelWhh,Wxh,Why,~bh,~by
are fit by optimizing the cross-entropy of the responses with
the predicted probabilities (which is equivalent to the log
likelihood if these probabilities were produced via a genera-
tive probabilistic model):

∑

(s,i,r,t)∈D
r log ys,t,i + (1− r) log(1− ys,t,i) (8)

Stochastic gradient ascent with minibatches of students on
the unrolled RNN, coded using Theano [1], was used to op-
timize this objective function.

3. DATA SETS
In order to test these models, we used three data sets, two
publicly accessible and one proprietary. Each of these data
sets comes from a system in which students interact with a
computer-based learning system in a variety of educational
settings (e.g., interspersed with classroom lectures, offline
work, etc.).

3.1 ASSISTments
This data set comes from the ASSISTments product, an
online platform which engages students with formative as-
sessments replete with scaffolded hints. Most assessments
are templated, and each problem is aligned with one, sev-
eral, or none of the skills that the product is attempting to
teach.

The data set [4] is divided in two parts, the “skill builder”
set associated with formative assessment and the “non skill
builder” set associated with summative assessment. All of
our results are reported on the “skill builder” data set as
we expect a stronger temporal signal from formative assess-
ment than from summative assessment. This was also the
evaluation data set for [16].

In preprocessing the data, we associated items not aligned
with a skill to a designated “dummy” skill, as was done
in [16]. We chose to discard rows duplicating a single in-
teraction (represented by a unique order_id value), a step
we do not believe was taken by [16]. These duplicate rows
arise when a single interaction is aligned with multiple skills.
Without removing these duplicates, models that process all
skills simultaneously, including DKT and the IRT variants
used in this paper, will see the same student interaction
several times in a row, essentially providing these models
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Figure 1: Summary of results across models and metrics. Error bars represent the standard error of measure of the metric
across five folds. For TIRT, parameter selection yielded γ2 = 0.01 for ASSISTments, γ2 = 0 for KDD (making it identical
to IRT), and γ2 = 100.0 for Knewton. For HIRT, parameter selection yielded σ2 = 0.125 and τ2 = 0.5 for ASSISTments,
σ2 = 0.5 and τ2 = 0.25 for KDD, and σ2 = 0.25 and τ2 = 0.125 for Knewton. For DKT, C = 50, H = 100, and the probability
of dropout is 0.25 for all models.

access to the ground truth when making their predictions.
This can artificially boost prediction results by a significant
amount (see Section 5), as these “duplicate” rows account
for approximately 25% of the rows. Indeed, we observed
that the performance gains of DKT are negated when these
duplicates are removed (see Section 5). Note that typical
BKT-based approaches are not susceptible to this artificial
boost, since they usually split the data by skill and train
separate models.

After pre-processing, the data set consisted of 346,740 in-
teractions for 4,097 users on 26,684 items arising from 815
templates and 112 skills. The overall percent correct was
64.54%.

3.2 KDD Cup
In 2010, the PSLC DataShop released several data sets de-
rived from Carnegie Learning’s Cognitive Tutor in (Pre-
)Algebra from the years 2005–2009 [19]. We used the largest
of the “Development” data sets, labeled “Bridge to Algebra
2006–2007.”

One distinct difference between Carnegie Learning’s prod-
uct and ASSISTments is that Carnegie Learning provides
much finer representations of the concepts assessed by an
individual item. In particular, Carnegie Learning is built
around scaffolded, formative assessment, where each step a
student takes to answer a problem is counted as a separate in-
teraction, with each step potentially assessing different skills
(called Knowledge Components (KCs) in the data set). Note
that this “Problem → Step” structure provides a hierarchy
which HIRT (Section 2.2) can exploit.

Like ASSISTments, any particular interaction may assess
zero or more skills. We follow the same methodology as we

did in Section 3.1, arbitrarily but consistently retaining only
one of the skills after preprocessing, and associating items
not associated with any skills with a designated “dummy”
skill.

After pre-processing, the data set retained 3,679,198 inter-
actions for 1,146 users on 207,856 steps arising from 19,355
problems and 494 KCs. The overall percent correct was
88.82%.

3.3 Knewton
Data was collected from a variety of educational products
integrated with Knewton’s adaptive learning platform and
used in various classroom settings across the world. These
products vary with respect to the educational content used
(disciplines spanned math, science, and English language
learning) as well as the way in which students are guided
through the content. For example, students may take an
initial assessment and then be remediated on areas need-
ing improvement. In other products, students start from
the beginning and work toward a predefined goal set by
the teacher. In all of these settings, Knewton receives data
about each interaction (the (s, i, r, t) tuple of Section 2).
We utilized approximately 1M responses of 6.3K randomly
sampled students on 105.6K questions spanning roughly 4
months. Students who worked on fewer than 5 questions
total were excluded. After pre-processing, student history
lengths ranged from 5 to 3.2K responses. The overall per-
cent correct of these responses is 54.6%.

4. EVALUATION METHODOLOGY
4.1 Parameter Selection
For each data set, 20% of students were first set aside for
parameter selection, which we performed as follows:
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Figure 2: Accuracy metrics for the three data sets computed using a rolling window of previous responses, as a function of
window length. Response accuracy is computed by predicting correct if the majority of responses in the window are correct.

IRT HIRT tIRT DKT∗

ASSISTments problem_id template_id → problem_id problem_id template_id

KDD Step Name Problem Name → Step Name Step Name KC

Knewton item_id concept_id → item_id item_id concept_id

Table 1: Item labels yielding best results for each model and data set. For HIRT, the first label specifies the difficulty mean
grouping identifier, and the second the item identifier.

• For 1PO IRT there were no parameters to select.

• For HIRT, we swept values of the variances τ2 and σ2

of the group means and item difficulties respectively,
including regimes (τ2 small) which made the model
mathematically equivalent to 1PO IRT.

• For TIRT, we swept the temporal smoothness param-
eter γ2, including the regime (γ2 small) which made
the model mathematically equivalent to 1PO IRT.

• For DKT, we swept the compression dimension C (the
dimension of the space to which the input was pro-
jected using a random matrix), the hidden dimension
H, the dropout probability p, and the step size of our
gradient ascent.

4.2 Online prediction accuracy
We use an evaluation method we call online response predic-
tion which matches that of [16]. Students are first split into
training and testing populations. Each model is first trained
on the training population and the model parameters that
are not student-level (item parameters for IRT-based mod-
els, weights for neural networks) are frozen. Then for each
time t > 1 in each testing student’s history, we train the
student-level parameters in the model on the first t − 1 in-
teractions of the student history and allow it to compute
the probability that the t’th response is correct. This pro-
cess mirrors the practical task that must be completed by
an ITS.

We report two different metrics for comparing the predicted
correctness probabilities with the observed correctness val-
ues. Accuracy (Acc) is computed as the percent of responses
in which the correctness coincides with the probability being
greater than 50%. AUC is the Area Under the ROC Curve
of the probability of correctness for each response.

We use five-fold cross validation (by partitioning the stu-
dents) on the 80% of the data set remaining after parameter

selection (Section 4.1), averaging the Acc and AUC metrics
over five different splits of the student population.

5. RESULTS AND DISCUSSION
Table 1 enumerates the fields chosen in each data set to iden-
tify items and item groups (for HIRT only) that yielded the
computationally tractable model with the best results. Note
that for the IRT-based models, our validation scheme (Sec-
tion 4.2) estimates a single number θst for each student at
each point t > 1 of the validation.For computational reasons,
it was not feasible to evaluate DKT on fine-grained labels in
KDD and Knewton (for ASSISTments, fine-grained labels
were tractable but yielded worse results), whereas all IRT
variants were able to process data at the finest levels.

We trained and validated each of the three models on each
of the three data sets as described in Sec. 4. The results on
our evaluation task are summarized in Figure 1. The results
clearly indicate that simple IRT-based models do as well or
significantly better than DKT across all data sets.

The fact that HIRT is the best-performing model across the
board (except for MAP accuracy on the Knewton dataset
where TIRT slightly outperforms it) suggests that grouping
structure is useful information to exploit when predicting
student responses. Indeed, the HIRT model does have access
to strictly more information than the other models in that it
has both the item and group identifier associated with each
interaction. While the DKT model does have the ability
to infer item relationships from data, our results indicate
that building in this knowledge is more advantageous in a
variety of educational settings. One potential area to explore
is in learning a hierarchical model purely from the data,
which could profit from the structured Bayesian framework
without requiring prior information or expert labels.

The temporal IRT model yielded higher accuracy on the
Knewton dataset, but not on the other two data sets. To
understand these effects, we investigated the degree to which
temporal structure in the data affects predictive performance
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by looking at how a naive “windowed percent correct” (pre-
dict the student will answer the tth question correctly if they
answer at least half of the previous w questions correctly)
model performs as a function of window length w (Figure 2).
The Knewton data set has a clear optimal window length –
integrating over windows too short or too long degraded per-
formance, which is indicative of nontrivial temporal struc-
ture. However, for the ASSISTments and KDD data sets,
longer window lengths perform equal or better than shorter
window lengths, suggesting that static models would do just
as well in these cases. Indeed, this would explain why TIRT
does more or less the same as baseline 1PO IRT on ASSIST-
ments and KDD but shows significant improvement on the
Knewton data set. However, it does not explain why DKT
lags regardless of the amount of temporal structure.

Finally, we note that our DKT results in Figure 1 contradict
those of [16] on the ASSISTments data set, which reported
an AUC of 0.86. We believe this is due to data cleaning
issues, specifically the issue of removing duplicates so as not
to artificially boost online prediction accuracy, as discussed
in Section 3.1. Indeed, we were able to reproduce the per-
formance reported in [16] when applying our RNN imple-
mentation on the raw data set (with duplicates left in).

Other recent work [9] points out that the specific method
of computing AUC in [16] also significantly affects the re-
ported performance relative to BKT-based models, and fur-
ther demonstrates that BKT-based models can perform just
as well as DKT on a variety of data sets.

6. CONCLUSION
Our results indicate that simple IRT-based models equal or
outperform DKT on a variety of data sets, suggesting that
incorporating domain knowledge into structured Bayesian
models comprises a promising area of future research for
modeling student interaction data.

In our experience, structured models were easier to train
and required less parameter tuning than DKT. Moreover,
the computational demands of DKT hampered our ability
to fully explore the parameter space, and we found that
computation time and memory load were prohibitive when
training on tens of thousands of items. These issues could
not be mitigated by reducing dimensionality without signif-
icantly impairing performance. Further work on discrimina-
tive models is necessary to bridge this gap, but currently,
IRT-based models seem superior both in terms of perfor-
mance and ease of use, making them suitable candidates
for real-world applications (e.g. intelligent tutoring systems,
recommendation systems, or student analytics).

A promising avenue of research could explore combining
the advantages of structured Bayesian models with those
of large-scale discriminative models, which have provided
superior performance in several other domains, particularly
in the large-data regime. A crucial challenge for structured
models is how to accommodate the diversity of educational
settings from which the data are collected (different content,
different classroom environments, etc.) while retaining the
structure that drives predictive power and interpretability.

7. REFERENCES

[1] Bergstra, J., et al. Theano: a CPU and GPU math
expression compiler. In SciPy 2010.

[2] Corbett, A., and Anderson, J. Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
Modeling and User-Adapted Interaction 4, 4 (1995),
253–278.

[3] Ekanadham, C., and Karklin, Y. T-SKIRT: Online
estimation of student proficiency in an adaptive learning
system. Machine Learning for Education Workshop at
ICML (2015).

[4] Feng, M., Heffernan, N., and Koedinger, K.
Addressing the assessment challenge with an online system
that tutors as it assesses. In User Modeling, Adaption, and
Personalization, G.-J. Houben, G. McCalla, F. Pianesi, and
M. Zancanaro, Eds. 2010, pp. 243–266.

[5] Gonzalez-Brenes, J., Huang, Y., and Brusilovsky, P.
General features in knowledge tracing: Applications to
multiple subskills, temporal item response theory, and
expert knowledge. In EDM 2014.

[6] Gregor, K., et al. DRAW: A recurrent neural network
for image generation. In ICML 2015.

[7] Hinton, G., et al. Deep neural networks for acoustic
modeling in speech recognition.

[8] Hulin, C. L., and Drasgow, F. Item Response Theory. In
Handbook of Industrial and Organizational Psychology,
S. Zedeck, Ed., vol. 1. American Psychological Association,
1990, pp. 577–636.

[9] Khajah, M., Lindsey, R. V., and Mozer, M. C. How
deep is knowledge tracing? In EDM 2016.

[10] Khajah, M. M., Huang, Y., González-Brenes, J. P.,
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ABSTRACT 

Over the last couple of decades, there have been a large variety of 

approaches towards modeling student knowledge within 

intelligent tutoring systems. With the booming development of 

deep learning and large-scale artificial neural networks, there have 

been empirical successes in a number of machine learning and 

data mining applications, including student knowledge modeling. 

Deep Knowledge Tracing (DKT), a pioneer algorithm that utilizes 

recurrent neural networks to model student learning, reports 

substantial improvements in prediction performance. To help the 

EDM community better understand the promising techniques of 

deep learning, we examine DKT alongside two well-studied 

models for knowledge modeling, PFA and BKT.  In addition to 

sharing a primer on the internal computational structures of DKT, 

we also report on potential issues that arise from data formatting. 

We take steps to reproduce the experiments of Deep Knowledge 

Tracing by implementing a DKT algorithm using Google’s 

TensorFlow framework; we also reproduce similar results on new 

datasets. We determine that the DKT findings don't hold an 

overall edge when compared to the PFA model, when applied to 

properly prepared datasets that are limited to main (i.e. non- 

scaffolding) questions. More importantly, during the investigation 

of DKT, we not only discovered a data quality issue in a public 

available data set, but we also detected a vulnerability of DKT at 

how it handles multiple skill sequences.   

Keywords 

Knowledge tracing, deep learning, recurrent neural networks, 

student modeling, performance factors analysis, data quality  

1. INTRODUCTION 
Deep Learning (DL) is an emerging approach within the machine 

learning research community. A series of deep learning algorithms 

have been proposed in recent years to move machine learning 

systems toward the discovery of multiple levels of representation 

and they already had important empirical successes in a number of 

traditional AI applications such as computer vision and natural 

language processing [8]. Much more recently, Google’s deep 

learning networks [7] beat a top human player at the game of Go.  

Most research in deep learning (e.g. Google’s deep learning 

algorithm) has been focused on the studies of artificial neural 

networks.  

Deep knowledge tracing (DKT), the recent adoption of recurrent 

neural nets  (RNNs) in the area of educational data mining, 

achieved dramatic improvement over well-known Bayesian 

Knowledge Tracing models (BKT) and the results of it have been 

demonstrated to be able to discover the latent structure in skill 

concepts and can be used for curriculum optimization [1]. 

Driven by both noble goals (testing the reproducibility of 

scientific findings) and some selfish ones (how did they do so 

much better at predicting student performance?!), we set out to 

take the theories, algorithms, and code from the DKT paper and 

apply them ourselves to the same data and more data sets.  As to 

the goal of reproducing the findings, we were motivated by 

studies discussing the importance of reproducibility [5]. In 

addition to applying DKT to the same data, we also tested the 

algorithm on a different ASSISTments dataset (which covers data 

in 2014-2015 school year), as well as the one of data sets from 

KDD Cup 2010. In our experiments with the original DKT 

algorithm, we uncovered three aspects of the ASSISTments 2009-

2010 data set that, when accounted for, drastically reduce the 

effectiveness of the DKT algorithm. These can broadly be 

summarized as 1). an error in reporting the data (wherein rows of 

data were randomly duplicated). 2). an inconsistency of skill 

tagging, and 3). the use of information ignored by PFA and BKT. 

We will discuss these three inconsistencies and their impacts on 

the prediction accuracies in section 3.  

2. DEEP KNOWLEDGE TRACING AND 

OTHER STUDENT MODELING 

TECHNIQUES 
When describing neural networks, the use of 'deep' conventionally 

refers to the use of multiple processing layers; the 'Deep' in DKT 

refers to the recurrent structure of the network and the 'depth' of 

information over time. This family of neural nets represents latent 

knowledge state, along with its temporal dynamics, using large 

vectors of artificial neurons, and allows the latent variable 

representation of student knowledge to be learned from data rather 

than hard-coded.  

Typical RNNs suffer from the now famous problems of vanishing 

and exploding gradients, which are inherent to deep networks. 

Figure 1 shows an unrolled RNN; there are loops at hidden layers, 

allowing information to be retained; this is the ‘depth’ of an RNN. 

When building a deep neural net, the standard activation functions 

, and cumulative backpropagation error signals either shrink 

rapidly or grow out of bounds. i.e., they either decay or grow 

exponentially (‘vanish’ or ‘explode’).  Long short-term memory 

(LSTM) model [14] is introduced to deal with the vanishing 

gradient problem; it also achieves remarkable results on many 

previously un-learnable tasks. LSTM, a variation of recurrent 

neural networks, contains LSTM units in addition to regular RNN 

units. LSTM units have two unique gates: forget and input gates 
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to determine when to forget previous information, and which 

current information is important to remember. 

 
Figure 1. An unrolled Recurrent Neural Network (RNN)  

The idea behind LSTM is simple. Some of the units are called 

constant error carousels (CEC). Each CEC uses an activation 

function f, the identity function, and has a connection to itself 

with fixed weight of 1.0. Due to f’s constant derivative of 1.0, 

errors backpropagated through a CEC cannot vanish or explode 

but stay the same magnitude. CECs are connected to several 

nonlinear adaptive units needed for learning nonlinear behavior. 

Weight changes of these units often profit from error signals, 

which propagate far back in time through CECs. CECs are the 

main reason why LSTM nets can learn to discover the importance 

of (memorize) events that happened thousands of discrete time 

steps ago while previous RNNs routinely fail in cases of minimal 

time lags of 10 steps. LSTM learns to solve many previously un-

learnable DL tasks and clearly outperformed previous RNNs on 

tasks both in terms of reliability and speed [1].  

In the DKT algorithm, at any time step, the input to RNNs is the 

student performance on a single problem of the skill that the 

student is currently working on. Since RNNs only accept fixed 

length of vectors as the input, we used one-hot encoding to 

convert student performance into fixed length of vectors whose all 

elements are 0s except for a single 1. The single 1 in the vector 

indicates two things: which skill was answered and if the skill was 

answered correctly. This data presentation draws a clear 

distinction between DKT and other student modeling methods, 

such as Bayesian Knowledge Tracing and Performance Factor 

Analysis. 

The Bayesian Knowledge Tracing (BKT) model [10] is a 2-state 

dynamic Bayesian network where student performance is the 

observed variable and student knowledge is the latent data. The 

model takes student performances and uses them to estimate the 

student level of knowledge on a given skill. The standard BKT 

model is defined by four parameters: initial knowledge and 

learning rate (learning parameters) and slip and guess (mediating 

parameters).  The two learning parameters can be considered as 

the likelihood the student knows the skill before he even starts on 

an assignment (initial knowledge, K0) and the probability a 

student will acquire a skill as a result of an opportunity to practice 

it (learning rate). The guess parameter represents the fact that a 

student may sometimes generate a correct response in spite of not 

knowing the correct skill. The slip parameter acknowledges that 

even students who understand a skill can make an occasional 

mistake. Guess and slip can be considered analogous to false 

positive and false negative. BKT typically uses the Expectation 

Maximization algorithm to estimate these four parameters from 

training data. Based on the estimated knowledge, student 

performance at a particular practice opportunity can be calculated 

except the very first one, which only apples the value of K0. 

Skills vary in difficulties and amount of practices needed to 

master, so values for four BKT parameters are skill dependent. 

This lead to one major weakness of BKT [11]: it lacks the ability 

to handle multi-skill questions since it works by looking at the 

historical observation of a skill and cannot accommodate all skills 

simultaneously. One simple workaround is treating the multiple 

skill combination as a new joint skill and estimate a set of 

parameters for this new skill. Another common solution to this 

issue is to associate the performance on multiple skill questions 

with all required skills, by listing the performance sequence 

repeatedly [12]. This makes the model see this piece of evidence 

multiple times for each one of required skills. As a result, a 

multiple skill question is multiple single skill questions.  

Another popular student modeling approach is the Performance 

Factors Analysis Model (PFA) [9]. PFA is a variant of learning 

decomposition, based on a reconfiguration of Learning Factor 

Analysis. Unlike, BKT, it has the ability to handle multiple skill 

questions. Briefly speaking, it uses the form of the standard 

logistic regression model with the student performance as the 

dependent variable. It reconfigures LFA (Learning factors 

analysis) [13] on its independent variables, by dropping the 

student variable and replaces the skill variable with question 

identity. This model estimates parameters for each item’s 

difficulty and also two parameters for each skill reflecting the 

effects of the prior correct and incorrect responses achieved for 

that skill. Previous work that compares KT and PFA have shown 

that PFA to be the superior one [11]. One reason is the richer 

feature set that PFA can utilize and the fact that learning 

decomposition models are ensured to reach global maxima while 

the typical fitting approach of BKT is no guarantee of finding a 

global, rather than a local maximum. 

Beside the theoretical comparison of DKT, BKT, and PFA, we 

can also compare them visually by looking at the differences 

between them in terms of inputs data. Consider a simple scenario 

that a student answers two questions from two skills each, Tables 

1-3 compare different training data formats for these three 

modeling methods under that same scenario of student responses.  

Table 1. An example of BKT’s training data 

Model ID Skill ID Response Sequence 

1 A 1,0 

2 B 0,1 

  

Table 2. An example of PFA’s training data 

Index 

ID 

Skill 

ID 

Prior 

Correct 

Prior 

Incorrect 

Difficulty Correct 

1 A 0 0 0.7 1 

2 A 1 0 0.75 0 

3 B 0 0 0.6 0 

4 B 0 1 0.65 1 
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Table 3. An example of DKT’s training data 

Index ID One-hot encoding 

1 1,0,0,0 

2 0,0,1,0 

3 0,0,0,1 

4 0,1,0,0 

 

3. METHODOLOGY AND DATA SETS 

3.1 Implementation of Deep Knowledge 

Tracing in Tensorflow 
The original version of DKT (Lua DKT1) was implemented in Lua 

scripting language using Torch framework and its source code has 

been released to the public. In order to have a comprehensive 

understanding of the DKT model, we decided to replicate and 

implement DKT model in Python and utilize Google’s 

TensorFlow API [3] to help us with building neural networks. 

TensorFlow is Google Brain’s second generation machine 

learning interface; it is flexible and can be used to express a wide 

variety of algorithms.  

Our implementation of DKT in TensorFlow (TensorFlow DKT2) 

can be described as a directed graph, which is composed of a set 

of nodes. The graph represents a data flow computation, with 

extensions for allowing certain nodes to maintain and update 

persistent state and for branching and looking control, this is 

crucial for allowing RNN nodes to work on sequential data. In the 

directed graph, each node has zero or more inputs and zero or 

more outputs and represents the instantiation of an operation. An 

operation represents an abstract computation. In our 

implementation of DKT model, we adapted the loss function of 

the original DKT algorithm. It has 200 fully-connected hidden 

nodes in the hidden layer. To speed up the training process, we 

used mini-batch stochastic gradient descent to minimize the loss 

function. The batch size for our implementation is 100. For one 

batch, we randomly select data from 100 students in our training 

data. After the batch finishes training, 100 students in the batch 

are removed from the training data. We continue to train the 

model on next batch until all batches are done. Just as in the 

original Lua implementation, Dropout [4] was also applied to the 

hidden layer to avoid over-fitting.  

4. DATA SETS 

4.1 ASSISTments 2009-2010 Data Set 
The original DKT paper conducted one of three of experiments 

using the ASSISTments 2009-2010 skill builder data set [16]. 

This data set was gathered from ASSISTments’ skill builder 

problem sets, in which a student achieves mastery by working on 

similar (often isomorphic) questions until they can correctly 

answer n right in a row (where n is usually 3).  After mastery, 

students do not commonly rework the same skill. This dataset 

contains 525,535 rows of student responses; there are 4,217 

student ID's and 124 skills. Lua DKT achieved an AUC of 0.86 

                                                                 

1 https://github.com/chrispiech/DeepKnowledgeTracing 

2 https://github.com/siyuanzhao/2016-EDM 

and noticeably outperformed BKT (AUC = 0.67) on this data set. 

However, during our investigation on the DKT source code and 

application, we believe we discovered three issues that have 

unintentionally inflated the performance of Lua DKT. These 

issues are: 

4.1.1 Duplicated records   
To our surprise and dismay, we found that the ASSISTments 

2009-2010 data set has a serious issue of quality: large chunks of 

records are duplications that should not be there for any reason 

(e.g. see records of order id 36369610). These duplicated rows 

have the same information but only differ on the “opportunity” 

and “opportunity_original”; these two features record the number 

of opportunities a student has practiced on a skill and the number 

of practices on main problems of a skill respectively. It is 

impossible to have more than one ‘opportunity’ count for a single 

order id. This is definitely an error in the data set and these 

duplicated records should not be used in any analysis or modeling 

studies. We counted there are 123,778 rows of duplications out of 

525,535 in the data set (23.6%). The existence of duplicated data 

is an avoidable oversight and ASSISTments team has 

acknowledged this error on their website. All new experiments in 

this work and following discussions exclude data of these 

duplications. 

4.1.2 Mixing main problems with scaffolding 

problems 
A mastery learning problem set normally contains over a hundred 

of main problems, and each main problem may have multiple 

associated scaffolding problems. Scaffolding problems were 

designed to help students acquire an integrated set of skills 

through processes of observations and guided practice; they are 

usually tagged with different skills and have different designs 

from the main problems. Because of the difference in usage, 

scaffolding questions should not be treated as the same as main 

problems. Student modeling methods such as BKT and PFA 

exclude scaffolding features. The experiment conducted by Lua 

DKT did not filter out scaffolding problems.  This means that Lua 

DKT had the advantage of additional information; thus, the 

prediction results cannot be compared fairly with BKT. There are 

73,466 rows of records of scaffolding problems. 

4.1.3 Repeated response sequences with different 

skill tagging (Duplication by skill tag) 
The 2009-2010 skill builder dataset was created as a subset of the 

2009-2010 full dataset.  The full dataset from 2009-2010 includes 

student work from both skill builder assignments (where a student 

works until a mastery threshold is reached) and more traditional 

assignments (where a student has a fixed number of problems).  

Any problem (or assignment) can be tagged with any number of 

skill tags. Typically, problems have just one skill tag; they seldom 

are tagged with two skills; they are very rarely tagged with three 

or more. Depending on the design of the content creator, a 

problem set may have multiple skill tags; many assignments - 

especially skill builders - will have the same skill tag for all 

problems. When the full dataset was decomposed into only 

mastery style assignments, the problems, and assignments that 

were tagged with multiple skills were included with a single tag, 

but repeated for each skill.  This means that the sequence of action 

logs from one student working on one assignment was now 

repeated once per skill.  For models such as RNNs that operate 

over sequences of vectors and memory on the entire history of 
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previous inputs, the issue of duplicated sequences is going to add 

additional weight onto the duplicated information; this will have 

undesired effects on RNN models.  

For an example, suppose we have a hypothetical scenario that a 

student answers two problems which have been tagged with skill 

“A” and “B”; he answers first one correctly and the next one 

incorrectly. Table 4 shows the data set where responses have been 

repeated on skill “A” and “B”. This format of data can be used in 

BKT models since BKT can build two models for skill “A” and 

“B” separately.  When applying this sequential data set to DKT, 

we believe DKT can recognize the pattern when a problem tagged 

with skill “B” follows a problem tagged with “A”; the skill “B” 

problem has an extremely high chance to repeat skill “A” 

problem’s response correctness. Note that skill ID can be mapped 

to skill names, but the order of skill ID is completely arbitrary.  

  

Table 4. An example of repeated multiple-skill sequence  

Index ID Skill ID Problem ID Correctness 

1 A 3 1 

1 B 3 1 

2 A 4 0 

2 B 4 0 

 

One approach to change the way of how multiple-skill problems 

are handled is to simply use the combination of skills as a new 

joint skill. Table 5 shows the data set which uses a joint skill of A 

and B. In this case, DKT no longer has access to repeated 

information. PFA and BKT can also adapt this format of data too.  

 

Table 5. An example of joint skills on multiple-skill problems 

Index ID Skill ID Problem ID Correctness 

1 A, B 3 1 

2 A, B 4 0 

 

Table 6. Three variants of ASSISTments 2009-2010 Data set 

 09-10 (a) 09-10 (b) 09-10 (c) 

Has 

duplicated 

records 

 

No 

 

No 

 

No 

Has 

scaffolding 

problems 

 

Yes 

 

No 

 

No 

Repeated 

multiple-skill 

sequences 

 

Yes 

 

Yes 

 

No 

Joint skills 

from 

multiple-skill 

 

No 

 

No 

 

Yes 

 

In order to understand the impact of having scaffolding problems 

and two approaches to dealing with multiple-skill problems, we 

generate three different data sets (namely 09-10 (a), 09-10 (b), 09-

10 (c)) derivate from the ASSISTments 2009-1010 data set, as 

summarized in Table 6. 

4.2 ASSISTments 2014-2015 Data Set 
Even without the issue of duplicate rows, 2009-2010 skill builder 

set has lost its timeliness and certainly cannot represent the latest 

student data in an intelligent tutoring system. So we gathered 

another data set that covers 2014-2015 school years’ student 

response records [16]. In this experiment, we randomly selected 

100 skills from this year’s data records. This data set contains 

707,944 rows of records; each record represents a response to a 

main problem in a mastery learning problem set. Each problem set 

has only one associated skill and we take caution to make sure 

there is no duplicated row in this data set. We suspect this new 

data set contains different information that covers student learning 

patterns, item difficulties and skill dependencies. 

4.3 KDD Cup 2010 Data Set 
Our last data set comes from the Cognitive Algebra Tutor 2005-

2006 Algebra system [6]. This data was provided as a 

development dataset in the KDD Cup 2010 competition. Although 

both ASSISTments and Cognitive Algebra Tutor involve using 

mathematics skills to solve problems, they are actually rather 

different from each other. ASSISTments serves primarily as 

computer-assisted practice for students’ nightly homework and 

review lessons while the Cognitive Tutor is part of an integrated 

curriculum and has more support for learners during the problem-

solving process. Another difference in terms of content structure 

is that the Cognitive Tutor presents a problem to a student that 

consists of questions (also called steps) of many skills. The 

Cognitive Tutor uses Knowledge Tracing to determine when a 

student has mastered a skill. A problem in the tutor can consist of 

questions of different skills, once a student has mastered a skill, as 

determined by KT, the student no longer needs to answer 

questions of that skill within a problem but must answer the other 

questions which are associated with the un-mastered skills. The 

number of skills in this dataset is substantially larger than the 

ASSISTments dataset [15]. One issue of using KDD data on PFA 

is how to estimate item difficulty feature. In this work, we use a 

concatenation of problem name and step name. However many 

such pairs are only attempted by 1 student and the difficulty 

values of these items are either 1.0 or 0.0, leading to both over-

fitting and data leakage. To fix that, we replace difficulty values of 

these items with skills’ difficulty information. Filtering out rows 

with missing values resulting in 607,026 rows of data with 

students responded correctly at 75.5% of the time. This KDD data 

set has 574 students worked on 436 skills in mathematics. The 

complete statistic information of five data sets can be found in 

Table 7. 

 

Table 7. Data set statistics 

 # records # Students # Skills 

09-10 (a) 401,757 4,217 124 

09-10 (b) 328,292 4,217 124 

09-10 (c) 275,459 4,217 146 

14-15 707,944 19,457 100 

KDD 607,026 574 436 
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5. RESULTS 
Student performance predictions made by each model are 

tabulated and the accuracy was evaluated in terms of Area Under 

Curve (AUC) and the square of Pearson correlation (r2). AUC and 

r2 provide robust metrics for evaluation predictions where the 

value being predicted is either a 0 or 1 also represents different 

information on modeling performance. An AUC of 0.50 always 

represents the scored achievable by random chance. A higher 

AUC score represents higher accuracy. r2 is the square of Pearson 

correlation coefficient between the observed and predicted values 

of dependent variable. In the case of r2, it is normalized relative to 

the variance in the data set and it is not directly a measure of how 

good the modeled values are, but rather a way of measuring the 

proportion of variance we can explain using one or more 

variables. r2 is similar to root mean squared error (RMSE) but is 

more interpretable. For example, it is unclear whether an RMSE 

of 0.3 is good or bad without knowing more about the data set. 

However, an r2 of 0.8 indicates the model accounts for most of 

the variability in the data set. Neither AUC nor r2 method is a 

perfect evaluation metric, but, when combined, they account for 

different aspects of a model and provide us a basis for evaluating 

our models. 

Experiments on every data set have been 5-fold student level 

cross-validated and all parameters are learned from training data. 

We used EM to train BKT and the limit of iteration was set to 

200. Besides the number of hidden nodes and the size of mini-

batch parameters we have discussed, we set the number of epochs 

of DKT to 100. 

The cross-validated model predictions results are shown in Table 

8 and Table 9. As can be seen, DKT clearly outperforms BKT on 

all data sets, but the results are no longer overwhelmingly in favor 

of DKT (both implementations). Note that Lua DKT 

implementation which we can access uses regular RNN nodes; 

TensorFlow DKT uses LSTM nodes.  

Table 8. AUC results  

 Torch 

DKT 

TensorFlow 

DKT 

PFA BKT 

09-10 (a) 0.79 0.81 0.70 0.60 

09-10 (b) 0.79 0.82 0.73 0.63 

09-10 (c) 0.73 0.75 0.73 0.63 

14-15 0.70 0.70 0.69 0.64 

KDD 0.79 0.79 0.71 0.62 

 

Table 9. r2 results 

 Lua DKT TensorFlow 

DKT 

PFA BKT 

09-10 (a) 0.22 0.29 0.11 0.04 

09-10 (b) 0.22 0.31 0.14 0.07 

09-10 (c) 0.14 0.18 0.14 0.07 

14-15 0.10 0.10 0.09 0.06 

KDD 0.21 0.21 0.10 0.05 

 

On the ASSISTments data sets, average DKT prediction 

performance across two implementations is better than PFA and it 

is not affected by removing scaffolding, as we change dataset 

from 09-10 (a) to 09-10 (b).  On the other hand, PFA’s 

performance increases from 0.70 to 073 in AUC and 0.11 to 0.14 

in r2 (p ≤ 0.05), we believe that removing scaffolding helps 

reducing noise from data and provides PFA with a dataset with 

lower variance. When we switch to dataset 09-10 (c) where 

multiple skills were combined into joint skills, the performance of 

DKT suffers a noticeable hit, average AUC and average r2 drop 

from 0.81 to 0.74 and from 0.30 to 0.18 respectively. This 

observation confirms our suspicion on repeated response 

sequence inflating the performance of DKT models. On the 09-10 

(c) dataset and 14-15 dataset where no repeated response 

sequences and scaffolding problems, we notice that PFA performs 

as well as DKT. 

A deeper way of looking at the impact of repeated response 

sequences on data set 09-10 (b) is splitting the prediction results 

into two, the predictions of leading records and repeated data 

points. We see that predictions on repeated data points (e.g. skill 

“B” problems in Table 4) have nearly perfect performance metrics 

(AUC = 0.97, r2 = 0.74). On the other hand, the leading records 

(e.g. skill “A” problems in Table 4) have much lower prediction 

results (AUC = 0.77, r2 = 0.23). That said, we also notice these 

numbers are still higher than 09-10 (c)’s results, which uses joint 

skill tags to avoid repeated sequences. One can explain this as 

making DKT to model skills individually can cause data 

duplications but it also can have benefits on building skill 

dependencies over time and use such information to make better 

predictions. 

On the KDD dataset, the performance results of two DKT 

implementations are definitely better than both BKT and PFA (p 

≤ 0.05). There are a few possible reasons for this performance gap 

between PFA and DKT. First of all, as we have mentioned, we 

have to adjust item difficulty values for many problems in order to 

avoid overfitting and data leakage, which leads to the lower 

predictive power of that feature and lower PFA performance. 

Another possible explanation of DKT is winning on KDD data set 

is that DKT can better exploit step responses. The structure of 

KDD data set made it is difficult to distinguish “main problems” 

and “scaffolding problems”, thus PFA is unable to have a more 

unified data set for this part of the experiment. That said, the 

advantage of DKT shows its power on complicated and realistic 

data sets. 

6. DISCUSSION AND CONTRIBUTION 
Within this paper, we have compared two well-studied knowledge 

modeling methods with the emerging Deep Knowledge Tracing 

algorithm. We have compared these models in terms of their 

power of predicting student performance in 5 different data sets. 

Contrary to our expectation, the DKT algorithm did not achieve 

overwhelmingly better performance when compared to PFA 

model on ASSISTments data sets when they are properly 

prepared. DKT appears to perform much better on KDD dataset, 

but we believe this is due to PFA model undermined by inaccurate 

item difficulty estimation. 

A second interesting finding is that when DKT is fed repeated 

response sequences derived from the transformation of problems 

tagged with multiple skills, the overall performance of DKT is 

certainly better than PFA and BKT. Our explanation is that 

DKT’s implementation backbone, RNNs, has the power of 
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remembering exact patterns of sequential data and could thus 

inflate prediction performance on responses tagged with multiple 

skills and repeated per skill. More discussion and special attention 

are required when handling multiple skill problems in DKT 

algorithm. 

Last, but not least, during the investigation of DKT, we 

discovered an issue in data quality arising from duplicated 

information in a publicly available data set.  The duplication 

issues (caused by unclear transformational rules and some other 

as-of-yet-to-be-ascertained cause) allowed us a natural experiment 

to examine the impact of duplications on the robustness of these 

algorithms.  These discoveries (the data duplications and their 

subsequent impact) should serve as a reminder of the importance 

of data preprocessing and transformation procedures in the work 

of knowledge discovery and data mining.  Or, put another way, 

while we advance new algorithms and fine tune their parameters, 

we should also consider (and, if possible, report on) the 

robustness of the algorithms to common data glitches.  

7. FUTURE WORK AND CONCLUSION 
There are several directions for further research in the area of 

DKT modeling. Prior work [2] has shown that the use of context-

dependent RNN language model improved the performance in the 

task of the Wall Street Journal speech recognition task.  More 

features like student features (e.g. prior knowledge, completion 

rates, time on learning, etc.), and content features (problem 

difficulty, skill hierarchies, etc.) may be available and could be 

used. A context-dependent DKT implementation could be created 

by adding an extra input vector containing these features. 

Another open area for future work is that DKT and other deep 

learning algorithms are not restricted to one kind of output or 

application. It is also possible that we could apply deep learning 

algorithms on other modeling challenges such as wheel spinning, 

mastery speed, and affect detection.   

In conclusion, our work here focuses on a primitive investigation 

of DKT and aims to provide us deeper insight on how DKT 

works. Overall, this paper suggests that DKT remains a promising 

approach to modeling student knowledge; however, we see that 

data which contains problems tagged with multiple skills has to be 

dealt carefully in DKT modeling. But, considering that this 

implementation of DKT: a) only relied on the sequences of 

student responses (just as BKT does) and no other information on 

skills and problems and b) performs substantially better than BKT 

and as good as PFA, we believe that DKT has great potential to 

outperform other methods when it utilizes more features. 
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ABSTRACT
In recent years, substantial improvements were obtained in
the effectiveness of data driven algorithms to validate the
mapping of items to skills, or the Q-matrix. In the cur-
rent study we use ensemble algorithms on top of existing Q-
matrix refinement algorithms to improve their performance.
We combine the boosting technique with a decision tree.
The results show that the improvements from both the de-
cision tree and Adaboost combined are better than the de-
cision tree alone and yield substantial gains over the best
performance of individual Q-matrix refinement algorithm.

1. INTRODUCTION
A Q-matrix, as proposed by Tatsuoka (Tatsuoka, 1983), is
a term commonly used in the literature of psychometrics
and cognitive modeling that refers to a binary matrix which
shows a correspondence between items and their latent at-
tributes. Items can be questions or exercises proposed to
students, and latent attributes are skills needed to succeed
these items. Usually, a Q-matrix is defined by a domain
expert. However, this task is non trivial and there might
be errors, which in turn will result in erroneous diagnosis of
students knowledge states (Rupp & Templin, 2008; Madison
& Bradshaw, 2015). Therefore, better means to validate a
Q-matrix is a highly desirable goal.

A fair number of algorithms have emerged in the last decade
to validate an expert given Q-matrix based on empirical data
(see for eg. recent work from Chen, Liu, Xu, & Ying, 2015;
de la Torre & Chiu, 2015; Durand, Belacel, & Goutte, 2015).
Desmarais, Xu, and Beheshti (2015) showed that Q-matrix
refinement algorithms can be combined using an ensemble
learning technique. They used a decision tree and the results
show a substantial and systematic performance gain over the
best algorithm, in the range of 50% error reduction for real
data, even though the best algorithm is not always the same
for different Q-matrices.

The encouraging the results obtained by combining the out-

put of Q-matrix refinement algorithms leads us to pursue
further along the line of using ensemble learning, or meta-
learning techniques. In particular, a common approach is
to use boosting with a decision tree algorithm. This is the
approach explored in the current study.

2. THREE TECHNIQUES TO Q-MATRIX
VALIDATION

Our approach relies on meta-learning algorithms whose prin-
ciple in a general way is to combine the output of existing
algorithms to improve upon the individual or average results.
In our case, the approach combines a decision tree trained on
the output of Q-matrix validation algorithms with boosting,
a weighted sampling process in the training of the decision
tree to improve its accuracy. In this section, we first de-
scribe the Q-matrix validation techniques before describing
the decision tree and boosting algorithms.

2.1 minRSS
The first Q-matrix refinement technique that serves as in-
put to the decision tree is from Chiu and Douglas (2013).
We name this technique minRSS. The underlying cognitive
model behind minRSS is the DINA model(see De La Torre,
2009).

For a given Q-matrix, there is a unique and ideal response
pattern for a given a student skills mastery profile. That
is, if there are no slip and guess factors, then the response
pattern for every category of student profile is fixed. The
difference between the real response pattern and the ideal re-
sponse pattern represents a measure of fit for the Q-matrix,
typically the Hamming distance. Chiu and Douglas (2013)
considered a more refined metric. The idea is if an item has
a smaller variance (or entropy), then it should be given a
higher weight in measure of fit. A first step is to compute
the ideal response matrix for all possible student profile,
and then to find the corresponding student profiles matrix
A given observed data. First, a squared sum of errors for
each item k can be computed by

RSSk =

N∑

i=1

(rik − ηik)2

where r is the real response vector while η is the ideal re-
sponse vector, and N is the number of respondents. Then,
the worst fitted item (highest RSS) is chosen to update its
correspondent q-vector. Given all permutations of the skills
for a q-vector, the q-vector with the lowest RSS is chosen to
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replace the original one. The Q-matrix is changed and the
whole process repeated, but the previously changed q-vector
is eliminated from the next iteration. The whole procedure
terminates when the RSS for each item no longer changes.
This method was shown by Wang and Douglas (2015) to
yield good performance under different underlying conjunc-
tive models.

2.2 maxDiff
Akin to minRSS, the maxDiff algorithm relies on the DINA
model. De La Torre (2008) proposed that a correctly spec-
ified q-vector for item j should maximize the difference of
probabilities of correct response between examinees who have
all the required attributes and those who do not. A natural
idea is to test all q-vectors to find that maximum, but that is
computationally expensive. De La Torre (2008) proposed a
greedy algorithm that adds skills into a q-vector sequentially.
Assuming δjl represents the difference to maximize, the first
step is to calculate δjl for all q-vectors which contains only
one skill and the one with biggest δjl is chosen. Then, δjl is
calculated for all q-vectors which contains two skills includ-
ing the previously chosen one. Again the q-vector with the
biggest δjl is chosen. This whole process is repeated until
no addition of skills increases δjl. However, this algorithm
requires knowing slip and guess parameters of the DINA
model in advance. For real data, they are calculated by EM
(Expectation Maximization) algorithm (De La Torre, 2009).

2.3 ALSC
ALSC (Conjunctive Alternating Least Square Factorization)
is a common matrix Factorization (MF) algorithm. Desmarais
and Naceur (2013) proposed to factorize student test results
into a Q-matrix and a skills-student matrix with ALSC.

ALSC decomposes the results matrix Rm×n of m items by n
students as the inner product two smaller matrices:

¬R = Q¬S (1)

where ¬R is the negation of the results matrix (m items by
n students), Q is the m items by k skills Q-matrix, and ¬S is
negation of the the mastery matrix of k skills by n students
(normalized for rows columns to sum to 1). By negation, we
mean the 0-values are transformed to 1, and non-0-values
to 0. Negation is necessary for a conjunctive Q-matrix. As
such, the model of equation (1) is analogous to the DINA
model without a slip and guess parameter.

The factorization consists of alternating between estimates
of S and Q until convergence. Starting with the initial ex-
pert defined Q-matrix, Q0, a least-squares estimate of S is
obtained:

¬Ŝ0 = (QT
0 Q0)−1 QT

0 ¬R (2)

Then, a new estimate of the Q-matrix, Q̂1, is again obtained
by the least-squares estimate:

Q̂1 = ¬R¬ŜT
0 (¬Ŝ0 ¬ŜT

0 )−1 (3)

And so on until convergence. Alternating between equa-
tions (2) and (3) yields progressive refinements of the ma-

trices Q̂i and Ŝi that more closely approximate R in equa-
tion (1). The final Q̂i is rounded to yield a binary matrix.

3. DECISION TREE
The three algorithms for Q-matrix refinement described in
the last section are to be combined to yield with a decision
tree to obtain an improved refinement recommendation, and
further improved by boosting. We describe the decision tree
before moving on to the boosting method.

Decision tree is a well-know technique in machine learning
and it often serves as an ensemble learning algorithm to
combine individual models into a more powerful model. It
uses a set of feature variables (individual model predictions)
to predict a single target variable (output variable). There
are several decision tree algorithms, such as ID3 (Quinlan,
1986), C4.5 (Quinlan, 1993), CART (Breiman, Friedman,
Stone, & Olshen, 1984). We used rpart function from the
R package of the same name (Therneau, Atkinson, & Ripley,
2015). It implements the CART algorithm. This algorithm
divides the learning process into two phases. The first phase
is for feature selection, or tree growing, during which the
feature variables are chosen sequentially according to Gini
impurity (Murphy, 2012). Then in the second phase, the
pruning phase, deep branches are split into wider ones to
avoid overfitting.

A decision tree is a supervised learning technique and there-
fore requires training data. To obtain training data of suf-
ficient size, Desmarais et al. (2015) use synthetic data from
Q-matrices generated by random permutations of the per-
turbated Q-matrix. Since the ground-truth Q-matrix of syn-
thetic data is known, it becomes possible to generate train-
ing data containing the class label. The training set for
decision tree can take this form:

Algorithm target prediction Other factors
Target minRSS maxDiff ALSC ...

1 1 0 1 ...
0 0 1 0 ...
... ... ... ... ...

The other factors considered to help the decision tree to im-
prove prediction are the number of skills per row (SR), num-
ber of skills per column (SC). Moreover, a feature named
stickiness is introduced and makes a critical difference. It
measures the rigidity of cells under each validation meth-
ods. Stickiness represents the rate of a given algorithm’s
false positives for a given cell of a Q-matrix. The rate is
measured by “perturbating” in turn each and every cell of
the Q-matrix, and by counting the number of times the cell
is a false positive. The decision tree can use the stickiness
factor as an indicator of the reliability of a given Q-matrix
refinement algorithm suggested value for a cell. Obviously,
if a cell’s stickiness value is high, the reliability of the corre-
sponding algorithm’s refinement will be lower.

4. BOOSTING
The current work extends the idea of using a decision tree
with another meta-learning technique named boosting.

Boosting (Schapire & Freund, 2012) serves as a meta-learning
technique for lifting a base learner. It operates on weights
of the loss function terms. For a training set of N samples
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and a given loss function L, the global loss is

Loss =

N∑

i=1

L(yi, f(xi))

Different ways of choosing loss function yield different boost-
ing algorithm. The most famous algorithm for boosting is
Adaboost (Freund & Schapire, 1997), which is especially set
for binary classification problem and uses exponential loss.

In our case, the base learner is the decision tree. Adaboost
trains the decision tree for several iterations, but with a dif-
ferent weighted training data for each iteration. That is,
each time a decision tree is trained, the wrongly predicted
data records in the current iteration will be assigned higher
weights in the computation of the loss function for the next
training iteration of the decision. The final output of Ad-
aboost is a sgn function (sign function) of a weighted sum
of all “learners” trained in the whole procedure (the decision
tree with different weights vectors).

For a training set of N samples, the whole procedure for
Adaboost is shown below (Murphy, 2012):

Initialize ωi = 1/N
for i = 1 to M do

Fit the classifier φm(x) to the training set using weights
w

Compute errm =

N∑
i=1

ωiI(ỹi 6=φm(xi))

N∑
i=1

ωi

Compute αm = log[(1− errm)/errm]
set ωi ← ωi exp[αmI(ỹi 6= φm(xi)]

end for

return f(x) = sgn(
M∑
m=1

αmφm(x))

In which M is the number of iterations (10 in our experi-
ment), ωi is the weight for i-th data, I(·) is the indicator
function, ỹi ∈ {1,−1} is the class label of training data, and
φm(x) is the decision tree model in our case.

Boosting has had stunning empirical success (Caruana &
Niculescu-Mizil, 2006). More detailed explanation and anal-
ysis of boosting can be found in Bühlmann and Hothorn
(2007) and Hastie, Tibshirani, and Friedman (2009). The
Adaboost algorithm was implemented in this experiment to
improve the results obtained by Desmarais et al. (2015). The
results are reported in section 7.

5. METHODOLOGY AND PERFORMANCE
CRITERION

To estimate the ability of an algorithm to validate a Q-
matrix, we perturbate a “correct” Q-matrix and verify if the
algorithm is able to recover this correct matrix by identify-
ing the cells that were perturbated while avoiding to classify
unperturbated cells as perturbated. In this experiment, only
one perturbation is introduced. For synthetic data, the “cor-
rect” matrix is known and is the one used in the generation
of the data. For real data, we assume the expert’s is the
correct one, albeit it may contain errors.

Table 1: Q-matrix for validation

Name
Number of

Description
Skills Items Cases

QM1 3 11 536 Expert driven from
(Henson, Templin, &
Willse, 2009)

QM2 3 11 536 Expert driven from
(De La Torre, 2008)

QM3 5 11 536 Expert driven from
(Robitzsch, Kiefer,
George, & Uenlue,
2015)

QM4 3 11 536 Data driven, SVD
based

In order to use a standard performance measure, we define
the following categories of correct and incorrect classifica-
tions as the number of:

• True Positives (TP): perturbed cell correctly recov-
ered
• True Negatives (TN): non perturbed cell left un-

changed
• False Positives (FP): non perturbed cell incorrectly

recovered
• False Negatives (FN): perturbed cell left unchanged

We give equal weight to perturbed and unperturbed cells
and use the F1-score, or F-score for short. The F-score is
defined as

F = 2 · precision · recall
precision+ recall

In which precision is calculated by the model accuracy on
non-perturbated cell while recall is calculated by the model
accuracy on perturbated cell.

6. DATASET
For the sake of comparison, we use the same datasets as the
ones used in Desmarais et al. (2015). Table 1 provides the
basic information and source of each dataset.

7. RESULT
The results of applying Adaboost over the decision tree (DT)
are reported in table 2 for synthetic data and Table 3 for real
data. The individual results of each algorithm are reported
(minRSS, maxDiff, and ALSC), along with the decision tree
(DT) and the boosted decision tree (BDT). Different im-
provement over baselines are reported as:

• DT %Gain: the Decision Tree (DT) improvement
over the best of the three individual algorithm (minRSS,
maxDiff, ALSC)

• BDT %Gain: Boosted Decision Tree improvement
over the DT performance, which corresponds to the
gain we get from boosting.

Let us focus on the F-Score which is the most informative
since it combines results of the perturbed and non perturbed
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Table 2: Results for synthetic data

Individual Ensemble

QM m
in

R
S
S

m
ax
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iff
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n
)

B
D

T
(%

G
ai

n
)

Accuracy of perturbated cells

1 0.809 0.465 0.825 0.946 (69.4%) 0.951 (9.2%)
2 0.069 0.259 0.359 0.828 (73.2%) 0.903 (43.5%)
3 0.961 0.488 0.953 1.000 (99.7%) 1.000 (0.0%)
4 0.903 0.489 0.853 0.956 (54.3%) 0.971 (33.9%)

X 0.685 0.425 0.747 0.933 (74.2%) 0.956 (21.7%)

Accuracy of non perturbated cells

1 0.970 0.558 0.387 0.990 (65.1%) 0.990 (0.0%)
2 0.987 0.529 0.431 0.989 (20.5%) 0.996 (59.1%)
3 0.950 0.258 0.736 0.994 (88.9%) 1.000 (100.0%)
4 0.966 0.559 0.391 0.997 (92.2%) 0.998 (19.2%)

X 0.968 0.476 0.486 0.993 (65.3%) 0.996 (49.4%)

F-score

1 0.882 0.507 0.527 0.968 (72.4%) 0.970 (7.4%)
2 0.128 0.348 0.392 0.902 (83.8%) 0.947 (46.1%)
3 0.955 0.337 0.831 0.997 (93.5%) 1.000 (100.0%)
4 0.934 0.522 0.536 0.976 (64.0%) 0.984 (33.6%)

X 0.725 0.429 0.571 0.961 (78.4%) 0.975 (46.4%)

Table 3: Results for real data

Individual Ensemble

QM m
in

R
S
S

m
ax

D
iff

A
L
S
C

D
T

(%
G

ai
n
)

B
D

T
(%

G
ai

n
)

Accuracy of perturbated cells

1 0.485 0.167 0.515 0.758 (50.0%) 0.758 (0.0%)
2 0.345 0.093 0.564 0.618 (12.5%) 0.764 (38.1%)
3 0.212 0.091 0.364 0.818 (71.4%) 0.818 (0.0%)
4 0.394 0.111 0.576 0.576 (0.0%) 0.818 (57.1%)

X 0.359 0.115 0.505 0.692 (33.5%) 0.789 (23.8%)

Accuracy of non perturbated cells

1 0.435 0.670 0.418 0.606 (−19.4%) 0.606 (0.0%)
2 0.875 0.929 0.110 0.956 (37.9%) 0.966 (21.4%)
3 0.661 0.830 0.219 0.785 (−26.2%) 0.752 (−15.1%)
4 0.520 0.889 0.148 0.546 (−308.7%) 0.658 (24.7%)

X 0.623 0.829 0.224 0.723 (−79.1%) 0.746 (8.0%)

F-score

1 0.459 0.267 0.461 0.673 (39.4%) 0.673 (0.0%)
2 0.495 0.168 0.184 0.751 (50.6%) 0.853 (40.9%)
3 0.321 0.164 0.273 0.801 (70.7%) 0.784 (−8.7%)
4 0.448 0.198 0.235 0.560 (20.3%) 0.730 (38.5%)

X 0.431 0.199 0.288 0.696 (45.25%) 0.760 (17.8%)

cells of the Q-matrix. For synthetic data, the error reduction
of boosting over the gain from the decision tree is substan-
tially improved for all Q-matrices. The range of improve-
ment is from 7% to 100%. For real data, two of the four
Q-matrices show substantial improvements of around 40%,
whereas the other two show no improvements, even a de-
crease of 8.7% for Q-matrix 3 which is characterized by a
single skill per item. However, let us recall that we assume
the expert Q-matrices are correct, which may be over opti-
mistic. Violation of this assumption could negatively affect
some of the Q-matrices scores for real data.

Note that QM3 has an inconsistent 100% gain from boost-
ing with synthetic data compared to a small loss is obtained
with real data. The value of 100% should be taken cau-
tiously because the F-score difference is measured close to
the boundary of 1 and therefore the result of only a few
cases in our sample. Nevertheless, the fact that a very high
F-score is obtained for synthetic data compared to real data
does raise attention and might be related to the fact that it
is the only single skill per item matrix.

8. DISCUSSION
This study shows that the gain obtained from combining
the output of multiple Q-matrix refinement algorithms with
a decision tree can be further improved with boosting. The
results for synthetic data show an F-score error reduction
from boosting over the DT score of close to 50% on average
for all four Q-matrices, and a 18% reduction for real data.
Compared with the score of the three individual refinement
algorithms, minRSS, maxDiff, and ALSC, the combined en-
semble learning of decision tree is very effective.

However, we find strong differences between the Q-matrices.
For eg., QM2 benefits of improvements close to 50% (QM2),
while QM1 has a null improvement for real data and only
7.4% for synthetic data. In that respect, the boosting does
not provide a gain that is as systematic as the one obtained
from the DT which is positive for all matrices.

An important advantage of the meta-learning approach out-
lined here is that it can apply to any combination of algo-
rithms to validate Q-matrices. Future work could look into
combining more than the three algorithms of this study, and
add new algorithms that potentially outperform them. And
if the current results generalize, we would expect to make
supplementary gains over any of them.

Moreover, the Q-matrices used in this research are quite
small in size. The performance of boosted decision tree on
larger Q-matrix and larger dataset would also be of interest.

However, besides the Q-matrix-based algorithms mentioned
above, there are other frameworks for knowledge tracing
or domain modeling, especially when dealing with dynamic
data. For example, there are Learning Factor Analysis (Cen,
Koedinger, & Junker, 2006), Weighted CRP (Lindsey, Kha-
jah, & Mozer, 2014), HMM-based Bayesian Knowledge Trac-
ing (Corbett & Anderson, 1994; Lindsey et al., 2014) and
other HMM-based models (González-Brenes, 2015). Com-
parison with these frameworks are also left to future work.
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ABSTRACT 
Bayesian Knowledge Tracing (BKT) models were in active use in 
the Intelligent Tutoring Systems (ITS) field for over 20 years. 
They have been intensively studied, and a number of useful 
extensions to them were proposed and experimentally tested. 
Among the most widely researched extensions to BKT models are 
various types of individualization. Individualization, broadly 
defined, is a way to account for variability in students that are 
working with the ITS that uses BKT model to represent and track 
student learning. One of the approaches to individualizing BKT is 
to split its parameters into per-skill and per-student components. 
In this work, we are proposing an approach to individualizing 
BKT that is based on Hierarchical Bayesian Models (HBM) and, 
in addition to capturing student-level variability in the data, 
weighs the contribution of per-student and per-skill effects to the 
overall variance in the data.  

Keywords 

Student models of practice, Bayesian knowledge tracing, 
hierarchical Bayesian models, skill vs. student parameterization. 

1. INTRODUCTION 
Bayesian Knowledge Tracing (BKT) is one of the most popular 
student modeling techniques in the field of Intelligent Tutoring 
Systems (ITS). It has been in active use for over two decades and 
has been confirmed to be the modeling approach researchers can 
rely on. 

Over the years, a large number of extensions to the standard BKT 
were proposed and tested in posthoc analyses as well as 
experimentally. Among the most widely researched additions to 
BKT is the ability to account for students’ individual traits. It has 
been confirmed in the are of modeling student learning in general 
and in the case of BKT that accounting for student-level 
variability in the data could benefit the model’s statistical 
goodness of fit, as well as potentially improve the generalizability 
of the model. 

Known approaches could be separated into three groups. The first 
group, binary multiplexing of the initial skill mastery probability 
based on the student characteristics, for example, the correctness 
of the first response (Pardos & Heffernan, 2010). This method has 
been proven to benefit the overall student model quality, and the 
implementation of this approach was a runner-up in the 2010 
KDD Cup data mining challenge. The second group, fitting BKT 
parameters not across students for a particular skill, but for a 
student/skill pair (Lee & Brunskill, 2012). This approach has not 
been evaluated for predictive correctness. The third group, are the 
methods separating BKT parameters into per-student and per-skill 
components (Corbett & Anderson, 1995; Yudelson et al., 2013). 

The two approaches from the third group were shown to improve 
model fits reliably. 

While the BKT individualization approaches mentioned above 
were successful in one way or the other, are arguably yet to 
achieve a sufficient flexibility and rigor of the available 
parameterization devices. In this paper, we propose and 
investigate an individualized Bayesian Knowledge Tracing that, 
on top of refining certain aspects of its predecessor (Yudelson et 
al., 2013), draws on the flexibility of the Hierarchical Bayesian 
Models' representation to capture relative weight of student-level 
and skill-level variability in the learning data as defined by 
respective parameters. Also, we empirically explore the 
possibility of clustering student-level factors via mixes of 
Gaussian distributions. 

The rest of the paper is organized as follows. Section 2 discusses 
the related work. Section 3 outlines the methods. Section 4 
describes the data we used for this investigation. Section 5 talks 
about the results. Finally, Section 6 closes with a few discussion 
points. 

2. RELATED WORK 

2.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) is a probabilistic framework 
(Corbett & Anderson, 1995) it is used to assess student progress 
with a unit of knowledge often referred to as skill. Upon correct or 
incorrect action, an estimate of student mastery of skill(s) is re-
computed. Computationally, BKT is a Hidden Markov Model 
with two hidden states, representing whether a particular skill is 
un-mastered or mastered. Observations of student performance on 
opportunities to practice a skill are binary: a student either solves 
a problem step correctly or not (due to error or because of a hint 
request). While students might go through dozens of attempts to 
get a particular step correct, traditionally, only students’ first 
attempts are considered for updating skill mastery estimates. 

There are four skill parameters used in BKT: initial probability of 
knowing the skill a priori – p(L0) (or p-init), probability of 
student’s knowledge of a skill transitioning from not known to 
known state after an opportunity to apply it – p(T) (or p-learn), 
probability to make a mistake when applying a known skill – p(S) 
(or p-slip), and probability of correctly applying a not-known skill 
– p(G) (or p-guess). Given that parameters are set for all skills, the 
formulae used to update student knowledge of skills are as 
follows. The initial probability of student u mastering skill k is set 
to the p-init parameter for that skill Equation (1a). Depending on 
whether the student u applied skill k correctly or incorrectly, the 
conditional probability is computed either using Equation (1b) or 
Equation (1c). The conditional probability is used to update the 
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probability of skill mastery according to Equation (1d). To 
compute the probability of student u applying the skill k correctly 
on an upcoming practice opportunity one uses Equation (1e). 

𝑝 𝐿! !
! = 𝑝 𝐿! ! (1a) 

𝑝 𝐿!!!|𝑜𝑏𝑠 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 !
!

=
𝑝 𝐿! !

! ∙ 1 − 𝑝(𝑆)!

𝑝 𝐿! !
! ∙ (1 − 𝑝(𝑆)!) + (1 − 𝑝 𝐿! !

!) ∙ 𝑝(𝐺)!
 (1b) 

𝑝 𝐿!!!|𝑜𝑏𝑠 = 𝑤𝑟𝑜𝑛𝑔 !
!

=
𝑝 𝐿! !

! ∙ 𝑝(𝑆)!

𝑝 𝐿! !
! ∙ 𝑝(𝑆)! + (1 − 𝑝 𝐿! !

!) ∙ (1 − 𝑝(𝐺)!)
 (1c) 

𝑝 𝐿!!! !
! = 𝑝 𝐿!!! 𝑜𝑏𝑠 !

! + (1 − 𝑝 𝐿!!! 𝑜𝑏𝑠 !
!) ∙ 𝑝(𝑇)! (1d) 

𝑝 𝐶!!! !
! = 𝑝(𝐿!)!! ∙ (1 − 𝑝(𝐺)!) + (1 − 𝑝(𝐿!)!!)

∙ 𝑝(𝐺)! (1e) 

2.2 Introducing Student-Level Factors to the 
Bayesian Knowledge Tracing 
Having student-level parameters is a regular feature of models of 
student learning and learning performance. The logistic regression 
based Rasch model (van der Linden & Hambleton, 1997) that 
captures test item complexity and its extension –the Additive 
Factors Model (Cen et al., 2008) both include a parameter to 
account for variability in the student a priori abilities. Including 
student-level parameters in these models helps both the fit as well 
as the interpretability of the models overall. 

There were a few attempts to introduce student-specific 
parameters to otherwise skill-only standard BKY. The original 
work on BKT (Corbett & Anderson, 1995) discussed fitting skill-
level and student-level parameters on respective slices of the data 
to later combine and apply the two in the context of each student-
skill pair. As a result, the correlation of expected and observed 
within-student accuracies was higher for the thus individualized 
model. 

Another approach to individualization suggests the multiplexing 
probability of initial skill mastery (p-init) based on student cohort 
(Pardos & Heffernan, 2010). Based on the correctness of the first 
student’s response, the appropriate skill p-init is set to the lower or 
higher predetermined constant. This prior-per-student model 
outperforms standard BKT on a significant fraction of problem 
sets authors considered. 

According to yet another approach (Lee & Brunskill, 2012), BKT 
parameters were fit within each student-skill pair's data slice and 
not across skills or students. Authors did not discuss on the 
goodness of fit of their individualized models, however. Their 
primary focus was on whether the individualized model when 
deployed in an intelligent tutoring system, would schedule fewer 
or more problems to be solved as compared to standard BKT 
model. The conclusion was that a considerable fraction of 
students, as judged by individualized model, would have received 
a significantly different amount of practice problems. 

Finally, another individualization approach that we would be 

using for comparison in this work suggests something akin to the 
original discussion of the BKT individualization (Yudelson et al., 
2013). Student and skill components of BKT parameters are fit 
one set after the other using a coordinate gradient descent 
procedure with an active parameter set maintained throughout the 
process. In addition to improved fits, BKT models individualized 
this way were shown to lead to optimized problem-sequences 
leading to saving students some efforts. 

Overall, there is enough evidence that introducing student-level 
parameters to BKT benefits the fit of the model and could 
optimize student learning experience. 

2.3 Introducing Item-Level Factors to the 
Bayesian Knowledge Tracing 
Recently, a noticeable amount of work focused on addressing 
item-level variability in BKT models. Pardos & Heffernan (2011) 
presented their KT-IDEM model that features special nodes that 
capture item difficulties and, together with skill-level latent 
variables are influencing the student performance. 

In the approach Huang and colleagues took (Huang et al., 2015), it 
is possible to address not just items, but even item level features, 
adding parameters in a way it is done in regression analysis. In 
another work (Khajah et al., 2014), authors are discussing 
merging an IRT model and BKT model. This approach resulted in 
an HBM that combines features of both. It is worth to note that the 
latter two use Markov Chain Monte Carlo methods to fit their 
models. 

3. METHODS 
Our objective is to introduce further improvements to the 
approach to individualizing BKT and draw comparisons to regular 
BKT as well its original version in terms of statistical fitness as 
well as and to attempt to judge the plausibility of their respective 
student-level parameters. 

3.1 Individualized BKT Model via 
Parameter-Splitting 
Individualization of the BKT that was proposed in (Yudelson et 
al., 2013) prescribes to put every individualized parameter in the 
context of a particular student that works on a particular skill. In 
this context, p-init, p-learn, p-slip, and p-guess parameters have 
two components: a per-skill component and a per-student 
component. The two are combined using a pairing function shown 
in Equation 2a. Here, components are first converted from 
probability scale to log-odds scale using logit function (Equation 
2b), added, and the sum is converted back to the probability scale 
using sigmoid function (Equation 2c). An individualized model, 
where all per-student components are equal to 0.5 (0 on the log-
odds scale) is equivalent to the standard BKT model. 

𝑓 𝑃!! ,𝑃!! = 𝑆 𝑙 𝑃!! + 𝑙 𝑃!!  (2a) 

𝑙 𝑝 = ln
𝑝

1 − 𝑝
 (2b) 

S x =
1

1 + e!!
 (2c) 

Fitting of such individualized BKT (iBKT) model is done by 
computing gradients of the log-likelihood function given 
individual student/skill data samples with respect to every iBKT 
parameter (Levinson et al., 1983). On every odd run, gradients are 
aggregated across skills to update skill component of the 
parameters. On every even run, the gradients are aggregated 
across students to update respective student components. This 
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block-coordinate descent is performed until all parameter values 
stabilize up to a pre-set tolerance criterion. An active set of 
parameter components is maintained to fit only those that still 
haven't stabilized. An extended discussion of the method, as well 
as derived formulas for the gradients is given in the original 
publication of this work (Yudelson et al., 2013). 

The standard and individualized model described above we 
implemented in the tool called hmm-scalable. The tool has a 
suite of solvers, including the classical BKT Expectation 
Maximization solver for standard BKT, as well as a set of 
stochastic and conjugate gradient descent solvers. Hmm-
scalable is freely available on GitHub repository1 of the 
International Educational Data Mining Society (standard BKT 
models only). 

3.2 Individualized BKT via Hierarchical 
Bayesian Model 
We have also implemented the BKT as well as the iBKT approach 
described above in the form of a Hierarchical Bayesian Model 
(HBM). HBMs allow for a more universal and flexible way of 
representing iBKT. The HMB BKT just like the hmm-scalable 
BKT had 4N parameters, where N is the number of skills. In the 
iBKT models, both hmm-scalable and HBM version, only the p-
init and p-learn were individualized. Thus, the number of 
parameters in the hmm-scalable version of iBKT was 4N+2M, 
where M is the number of students. HBM version of the iBKT 
treated per-student parameters as being drawn from Gaussian 
distributions and had 4 hyper-parameters: mean and standard 
deviation for student-level p-init and p-learn. While we did not 
specifically check or prove this, but intuitively, confining a 
parameter to the bounds of a particular distribution serves as a 
form of regularization and, theoretically, could improve the 
generalizability of the model. Although iBKT models 4N+2M had 
parameters, the per-student and per-skill parameters, when 
combined using the pairing function from Equation 2a, could 
result in up to 2N+2NM in-context parameters. P-guess and p-slip 
were not individualized (2N), 2NM represents all possible 
combinations of students and skills for p-init and p-learn. 

𝑓 𝑃!! ,𝑃!! ,𝑊!,𝑊! ,𝑊!,𝑊!" = 
= 𝑆 𝑊! +𝑊!𝑙 𝑃!! +𝑊!𝑙 𝑃!! +𝑊!"𝑙 𝑃!! 𝑙 𝑃!!  

(3) 

The main contribution of this paper is to not only mix per-student 
and per-skill parameters together but to weight each component of 
the mixture in an attempt to define whether either one has a larger 
impact on the resulting in-the-context parameter value. We have 
taken Equation (2a) and changed into Equation (3). Here we have 
the bias term (W0), the weights for the per-skill and per-student 
components (Wk and Wu respectively), and also the interaction 
term for the two with the weight (Wuk). The W

� weights are drawn 
from Gaussian distribution. Each of them is constrained to [0, 1], 
and the sum is fixed at 2. We have used the same W

�
 weights for 

mixing both p-init and p-learn. Thus, we have 8 additional 
hyperparameters and this new model, that we will refer to as 
iBKT-W HBM, has 4N+2M+4 parameters and 12 hyper-
parameters. If {W0, Wk, Wg, Wgk} weights were set to {0, 1, 1, 0} 
respectively, the model would we equivalent to the iBKT HBM 
model. 

When exploring the per-student parameter values if the iBKT-W 
HBM model, we have noticed that, in spite of being drawn from 

                                                                    
1 https://github.com/IEDMS/standard-bkt 

the Gaussian distribution, the actual distribution has a hint of 
being binomial (rf. Figure 1). It is especially visible for the 
distribution of the per-student values of p-init. In order to address 
this phenomenon, we have created yet another HBM model, that 
we will call iBKT-W-2G HBM, where the per-student p-init and 
p-learn parameters will be drawn from a mixture of 2 Gaussian 
distributions. In this new model, there are 4 means of the 
Gaussians distributions (2 for per-student p-init and 2 per-student 
for p-learn), 2 variances (1 for per-student p-init and 1 per-student 
for p-learn) instead of 4 as in iBKT-W HBM. The membership in 
one or the other mixture is modeled by a 2-parameters categorical 
distribution based on Dirichlet(1,1) distribution. Thus, there are, 
just as before, 4N+2M+4 parameters, while the number of 
hyperparameters is 16. Table 1 summarizes the information about 
parameters of all of the models we have considered in this work. 

HBM versions of the three iBKT models are not supported by 
hmm-scalable. To build them we used BUGS language (Lunn 
et al., 2009) implemented as rjags package in R (Plummer, 
2016). As opposed to hmm-scalable, that uses a form of exact 
inference, BUGS models were build using the Gibbs Sampler 
implemented in the rjags package. 

To fit HBM iBKT models we used 10 chains running in parallel 
for the duration of 500 iterations. Unfortunately, it is not possible 
whether a model fit using a Gibbs sampler has converged. It is, 
however, possible to say whether it did not. In our experimental 
runs, we have confirmed there were no signs that the models 
failed to converge. Each model took roughly 1 hour to finish. 

 

Table 1. Model parameters and hyper-parameters. Number of 
skills – N, number of students – M 

Model Parameters Hyper-parameters 

Majority Class 0 0 
Standard BKT hmm-
scalable 4N 0 

Standard BKT JAGS 4N 0 

iBKT hmm-scalable* 4N+2M 0 

iBKT HBM* 4N+2M 4 

iBKT-W HBM * 4N+2M+4 12 

iBKT-W-2G HBM * 4N+2M+4 16 

* for all iBKT models we only individualize p-init and p-learn. 

4. DATA 
We used the data from the KDD Cup 2010 Educational 
Datamining Challenge2. The data was donated by Carnegie 
Learning Inc., a publisher of mathematics curricula and a 
producer of intelligent tutoring system – Carnegie Learning’s 
Cognitive Tutor – for middle school, high school, and college. 
The KDD Cup 2010 datasets are quite large. Algebra dataset has 
close to 10 million student transactions, and pre-algebra dataset 
has a little over 20 million transactions. 

Although computational capabilities of the hmm-scalable tool 
allow fitting BKT and iBKT models within minutes, R 

                                                                    
2 http://pslcdatashop.web.cmu.edu/KDDCup 
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implementation of the Gibbs Sampler and the BUGS language are 
not as scalable. Because of that, we have selected a subset of the 
pre-algebra dataset, namely, a sample where students worked on 
Linear Inequalities unit. This sample consisted of 66,307 
transactions of 336 students. This sample only contained 
transactions labeled with the skills that the Carnegie Learning’s 
Cognitive Tutor tracks. There were 30 skills that the unit on linear 
inequalities taught. 

From the rich feature set of the data we took four columns: 
success at first attempt at a problem step (student activity is 
blocked and sequenced into working on individual problem steps 
and BKT traditionally only looks at the first attempt; anonymous 
student id; concatenation of curriculum unit, section, and problem 
(was not necessary for our analyses, but required by hmm-
scalable); and relevant skill(s) practiced at that particular step. 

5. RESULTS 
5.1 Model Fits 
The results of statistical fitness of the models we have discussed 
are in Table 2. There we list four fitness metrics, the Deviance 
Information Criterion (van der Linde, 2005), root mean squared 
error, Accuracy and area under ROC curve (A’). DIC is a metric 
based on log-likelihood. It is often used for Bayesian model 
selection. Accuracy is a point measure of how often the model 
guesses the correct response (here whether the student was correct 
or incorrect). RMSE goes a little further by quantifying how close 
the each prediction is to the correct classification of a correct or 
incorrect response. The area under the ROC curve is a measure of 
how well the model can tell the classes or responses apart. As the 
name suggests, it is a curve metric, without a working point, like 
accuracy (with which a 0.5 threshold is often used). 

As wee can see in Table 2, the majority class model performance 
is low as expected A' is at 0.50 (as it should be), accuracy is about 
72%. There are usually more correct responses in the Carnegie 
Learning's Cognitive Tutor data since the tutor breaks problems 
into steps and guides students towards the correct solution. 

As we move down in Table 2, we can see that model accuracies 
start improving. Standard BKT models outperform Majority 
Class. There is a small advantage of the HBM model fit using R 
implementation of JAGS over the hmm-scalable. iBKT 
models (here we only individualize p-init and p-learn) are a 
further improvement of the fit, again, with a small advantage for 
the HBM version of the model. The weighted version of the iBKT 
(iBKT-W) is only implemented as an HBM and, again, shows an 
improvement overall (in terms of DIC, RMSE, and A'). 

Table 2. Performance of the models 

Model DIC RMSE Acc. A’ 

Majority Class  0.52516 0.7242 0.5000 
Standard BKT hmm-
scalable 66230 0.40571 0.7561 0.7649 

Standard BKT HBM 65347 0.40299 0.7569 0.7728 

iBKT hmm-scalable* 64215 0.39376 0.7680 0.7990 

iBKT HBM * 63644 0.39287 0.7692 0.7992 

iBKT-W HBM * 63587 0.39236 0.7687 0.8005 

iBKT-W-2G HBM * 63412 0.39252 0.7689 0.8005 

* for all iBKT models we only individualize p-init and p-learn. 
In addition to observing model fits, we have performed one round 
of 3-fold item-stratified cross-validation to verify whether the 
differences between the iBKT model fit by hmm-scalable and 
the iBKT-W model fit by JAGS become more visible. Although 
the fit metrics deteriorated a bit, the partial order of the models 
regarding the goodness of fit did not change. 

5.2 Per-Skill and Per-Student Parameters 
When we plotted the densities of per-student p-init and p-learn 
parameters for the weighted iBKT, we have noticed that the 
distributions had a hint of bimodality, especially the distribution 
of per-student p-init (rf. Figure 1). Given that the HBM is drawing 
parameter values from a Gaussian distribution, the bi-modality is 
quite pronounced. To check our intuition, we have constructed a 
modified version of the weighted iBKT where per-student p-init 
and p-learn are mixstures of two Gaussians. The new model, 
iBKT-W-2G, did not show improvement in fit statistics, except 
for DIC. However, the distributions of the corresponding per-
student p-init and p-learn were visibly bimodal (rf. Figure 6). The 
two means for the p-init parameters are 0.280 and 0.786. The two 
means for the p-learn parameters are 0.277 and 0.630. 

The weights for pairing the per-student and per-skill parameters 
for both of the weighted iBKT models are given in Table 3. Both 
the bias weight W0 and interaction Wuk seem to be sufficiently 
small. Although there is no exact agreement between the two 
models, in both the weight of the per-skill parameters (Wk) are two 
to three times smaller than that of per-student parameters (Wu).  

 
Figure 1. Density plots for per-student p-init and p-learn 

parameters of iBKT-W HBM model. 

 
Figure 2. Density plots for per-student p-init and p-learn 

parameters of iBKT-W-2G HBM model. 
Table 3. Skill-student weights in iBKT-W models 

Model W0 Wk Wu Wuk 
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iBKT-W HB 0.012 0.565 1.420 0.004 

iBKT-W-2G HBM 0.019 0.700 1.274 0.007 

5.3 Extra Look At Per-Skill and Per-Student 
Parameters 
In an attempt to investigate the differences between iBKT model 
fit using hmm-scalable and the iBKT-W-2G fit using JAGS, 
we have plotted the per-student p-init and p-learn parameters for 
both. The respective plots are in Figure 3 and Figure 4. As we can 
see in Figure 3, where per-student parameters of iBKT hmm-
scalable model are plotted, correlation of p-init and p-learn is 
mid-range and is equal 0.55. Notably, a tangible portion of 
students, as estimated by the model, have low p-init and high p-
learn parameters. If we interpret p-init as student’s overall prior 
preparation and p-learn as student’s overall rate of learning, these 
would be the students that came in with the low level of 
knowledge and quickly caught up. Using the same logic, there are 
also a few students that came in with high prior knowledge but 
suffered from low learning rate. 
The plot of per-student p-init and p-learn parameters of iBKT-W-
2G HBM model is entirely different (rf. Figure 8). The correlation 
is very high – 0.90. Although the student points are lined up 
almost linearly, it is possible to discern two clusters (lower left, 
and upper right) that roughly correspond to two mixed Gaussians 
represented by a categorical node in the model. Here, there are 
effectively no students in the upper left or bottom right corners of 
the graph. Namely, those arriving with lower preparation, but the 
high rate of learning, or, vice-versa, high preparation, but the 
lower rate of learning. The former is unfortunate since the 
unprepared students that can quickly close the gap are, arguably, 
the most desired ones since they make the application that assisted 
them (e.g., Carnegie Learning's Cognitive Tutor) shine.  

 
Figure 3. Scatter plot of per-student p-init (x-axis) and p-learn 

(y-axis) from iBKT model fit by hmm-scalable. The 
correlation between the two is 0.55 (significant at 0.001 level). 

 
Figure 4. Scatter plot of per-student p-init (x-axis) and p-learn 

(y-axis) from iBKT-W-2G model fit by JAGS in R. The 
correlation between the two is 0.90 (significant at 0.001 level). 

6. DISCUSSION 
6.1 Small Differences in Statistical Fits 
Arguably the most pressing question about comparing the hmm-
scalable-fit iBKT model and the HBM models is why the 
differences in statistical accuracy are so small. Given that some of 
the changes in per-student parameters are quite large (rf. Figures 3 
and 4), we are to expect more pronounced differentiation, 
especially since the fitting method and parameterization changed. 

We would like to refer to an earlier work where we examined 
alternative parameterizations of a logistic regression model of 
student math learning (Yudelson et al., 2011). As we have found 
there, despite virtually no difference in statistical fit, the 
parameter values and especially their interpretability improved. 
We did not estimate the interpretability of the parameter values of 
the HBM models, however, the relative distribution of the iBKT-
W-2G HBM per-student parameters is, arguably, more realistic 
than that of the iBKT hmm-scalable.  

Besides, as we were able to show in (Yudelson & Ritter, 2015), 
the absence of a tangible difference in statistical fit between two 
models may, none the less, correspond to considerable variance in 
assigned practice when the models compared are deployed in the 
actual system and used for knowledge tracking and problem 
selection. 

6.2 What Do The Gaussians Mixtures 
Represent? 
We have followed the trace of the possible bi-modal distributions 
of per-student p-init and p-learn parameters in the iBKT-W and 
constructed iBKT-W-2G model where per-student parameters are 
represented as mixtures of 2 Gaussian distributions with the same 
standard deviation. 

To reverse-engineer the fuzzy mixture variable that clusters 
students we have attempted to correlate it with a set of student 
performance metrics. These included: overall number of problems 
solved, time spent, hints requested (both on the first attempt at a 
step and overall), errors committed (both on the first attempt at a 
step and overall), percent correct (both on the first attempt at a 
step and overall), time spent per problem, errors committed and 
hints requested per problem. None of them correlated with the 
fuzzy mixture variable reliably. It is likely that the resulting 
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clustering represents some latent student factor, we just could not 
interpret it. 

6.3 Weighting Per-Skill and Per-Student 
Parameters 
We have tried more models than the two HBM iBKT-W's we 
reported. The models included those individualizing p-init and p-
learn separately or together, with weighting or without, mixing 1, 
2, or 3 Gaussians (18 variants overall) – in all cases per-student 
parameter component weight was two-to-three times larger than 
that of per-skill components. One explanation for that could be 
possible over-fitting. There are 336 students and 30 skills. Even 
though the model is hierarchical and both per-skill and per-student 
parameter values are regularized, they are an order of magnitude 
more per-student values. To confirm or disconfirm the over-fitting 
hypothesis we would have to perform multiple sample-and-fit 
rounds where the number of students is equal to the number of 
skills. 
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ABSTRACT
In this work we tackled the task of Automatic Short An-
swer Grading (ASAG). While conventional ASAG research
makes prediction mainly based on student answers referred
as Answer-based, we leveraged the information about ques-
tions and student models into consideration. More specifi-
cally, we explore the Answer-based, Question, and Student
models individually, and subsequently in various combined
and composite models through feature engineering. Ad-
ditionally, we extend the exploration of machine learning
methods by utilizing Deep Belief Networks (DBN) together
with other five classic classifiers. Our experimental results
show that our proposed feature engineering models signifi-
cantly out-performed the conventional Answer-based model
and among the six machine learning classifiers, DBN is the
best followed by SVM, and Naive Bayes is the worst.

1. INTRODUCTION
Developing effective Computer-based assessment has been
increasingly gaining its importance over years and it is widely
believed that open-ended problems are more effective to
access student knowledge than multiple choices. The for-
mer require students to generate free text and communicate
their responses and thus student answers are relatively im-
mune to test-taking shortcuts like eliminating improbable
answers. On the other hand, grading student’s free text
answers is often time-consuming and challenging. There-
fore, much research has focused on how to automatically
grade student free text answers. Generally speaking, re-
search to date has concentrated on two sub-tasks: grading
student essays, which includes checking the style, grammar,
and coherence of an essay [13], and grading student short
answers [16, 18, 19], which is the focus of this work. More
formally, [7] defined short answers as those: 1) in the form
of natural language; 2) requiring students to recall exter-
nal knowledge that is not provided by the question; 3) of
which the length ranges between one phrase to one para-
graph; 4) focusing on the correctness of the content rather
than the style; and 5) and are closed, which means that the
answers have to match the specific facts corresponding to

questions. The goal of this work is to explore effectiveness
of various Machine Learning (ML) approaches on Automatic
Short Answers Grading (ASAG). An ASAG system is one
that automatically classify student answers into, correct or
incorrect, based on the referred correct one(s).

Much of the prior research on ASAG is answer-based which
involves applying various Natural Language Processing (NLP)
techniques to extract a wide variety of text-based features di-
rectly from student answers. These features include various
measurements of text similarities between student answers
and the referred correct ones. Often time, the shorter the
student answers, the harder to classify them into correct or
incorrect because the limited text provides fewer lexical fea-
tures. Many classic NLP approaches such as bag-of-words
or keyword matching often fail to work. For example, Table
1 shows an example of student short answer extracted from
our training corpus. In this example, using text similari-
ties alone would fail to recognize that the student’s answer
is correct because it looks quite different from the referred
correct answer.

Table 1: An Example of Student Short Answer.

Tutor: Why are there no potential energies involved in this
problem?
Student: There is no second object that is massive and can
have gravitational energy. (Correct)
Correct Answer: Because the rock is the only object in the
system, there are no potential energies involved.

On the other hand, information about question and student
knowledge can be handily used to improve the effectiveness
of existing answer-based ASAG model. For example, in the
example above if we know that the question is about ”po-
tential energy” and the student’s knowledge on ”potential
energy” is very high, it is more likely that the student will
answer the question correctly even though his/her answer
looks quite different from the correct one. Thus in this pa-
per we will investigate whether the effectiveness of ASAG
can be further improved if we leverage question model, stu-
dent model, or both into the answer-based model. To the
best of our knowledge, this is the first comprehensive study
exploring the effectiveness of feature space from all three
models on the task of ASAG. For simplicity reasons, in the
following we will refer the three models as Answer(Ans),
Question(Ques), and Student (Stu) models respectively.

Prior research on ASAG has explored several classic ML
classifiers such as Näıve Bayes and Decision Tree. In re-

Proceedings of the 9th International Conference on Educational Data Mining 562



cent years, Deep Belief Network (DBN) [5] has been suc-
cessfully implemented and applied in a wide variety of real-
world tasks [15,17]. DBN enables the automatic extraction
of representative features via an unsupervised pre-training
and it can learn the latent complex relationship among fea-
tures. Given the potential complex connections among the
features from Ans, Ques and Stu models, we investigated on
leveraging DBN to exploit the more discriminative feature
space to facilitate automatic grading. As far as we know,
this is the first study to apply DBN to the task of ASAG.

To summarize, we investigated on improving ASAG by uti-
lizing DBN together with five classic ML methods and by
extending existing answer-based approaches to leverage a
wide range of state features which are either based on or
generated from Ans, Ques, and Stu models.

2. RELATED WORK
Popular Natural Language Tutors like AutoTutor [11] and
BEETLE II [12] have extensively studied how to automat-
ically understand student Natural Language inputs so that
the system can respond to student’s responses adaptively.
Pulman and Sukkarieh used manually crafted patterns in
the part-of-speech tagged answers for pattern matching with
the correct answer [19]. Their approach is question-specific
in that they applied Näıve Bayes and Decision Tree to auto-
matically generate patterns for each question using a set of
marked answers. Results showed their approach can achieve
an average accuracy of 84%.

Mohler and Mihalcea developed an unsupervised approach
using Knowledge-based and Corpus-based text-to-text sim-
ilarity measures [18]. They used Latent Semantic Analysis
coupled with domain specific corpus built from Wikipedia.
Their resulted measures outperformed other similarity mea-
sures in that the former obtained Pearson correlation r =
0.463 between the computer assigned grades and average of
human assigned grades.

Recently, Microsoft’s Power Grading [2] took a semi-automated
approach based on the observation that similar answers get
similar grades. Thus, instead of directly grading student
answers, Power Grading builds a hierarchy of short-answer
clusters and lets human grader either grade the entire clus-
ter with same score or manipulate the clusters as needed.
Inspired by their work and promising results, we borrowed
some of the features such as length and tf-idf from previous
research into this work.

Our approach differed from previous research in that: 1) un-
like relying solely on answer-based methods, we explored fea-
tures from Ans, Ques and Stu models individually and com-
bined; 2) our models are trained across all questions, that
is, it is question-general instead of building question-specific
classifiers in previous research; 3) previous approaches mainly
involved two or three ML methods while we used a total
of six including the state-of-the-art DBN together with five
other traditional ML approaches.

3. METHODS
In this section, we will briefly describe the features involved
in this study and the ML classifiers applied. For the latter,
we will focus on DBN.

3.1 State Features
To investigate the impact of state features on the task of
ASAG, we compare the effectiveness of various features from
Ans, Ques and Stu models individually and combined. We
also composite new features generated within or across dif-
ferent models.

3.1.1 Answer (Ans) Model
In [7], Burrows et al. identified two categories of answer-
based approaches: corpus-based approaches are based on
mapping the concepts in student answers to those in the
reference correct answers [16], while alignment-based ap-
proaches are based on clustering student answers by some
quality similarity estimates among student answer represen-
tations regardless of the correct answers. Our Ans model in-
cludes both corpus-based features and alignment-based ones.

Based on [2] and [18], we defined five Ans-based features by
measuring the text similarity between student answer and
the correct answer(s). The latter consist of the referred cor-
rect answer and the correct answers generated by students.
More specifically, we have:

• length difference: the length difference (in words) be-
tween the student and the correct answers.
• max-matched idf : the maximum value of idf of matched

words in a student answer. The idf of each word is cal-
culated based on the Bag-Of-Word(BOW) generated
from the word-answer matrix. This is a good mea-
sure to reflect whether prominent keywords in correct
answers show up in the student answer.
• cosine similarity is calculated using tf-idf vectors of

the student answer and the referred correct answers.
• weighted text similarity : Wu & Palmer similarity is a

knowledge-based measure for text similarity [18], which
is based on word similarities. More specifically, we for-
malize the text similarity between the student answer
s and the correct answers c as sentences. We construct
a domain specific word list d for the specific domain
by assigning higher weight to domain specific words.
Then the text similarity is calculated by weighting the
similarities of general words simw(s, c) and those of
domain specific words simd(s, c).

• Latent Semantic Analysis (LSA, Landauer and Du-
mais, 1997): is a computational method which aims
to represent a corpora of natural text using the latent
subspace. This subspace reflects the weight of each
word in each answer so that similar correct answers
share similar weight vector of words.

3.1.2 Question (Ques) Model
In domains such as math and science, it is commonly as-
sumed that the relevant knowledge is structured as a set of
independent but co-occurring Knowledge Components (KCs).
A KC is “a generalization of everyday terms like concept,
principle, fact, or skill, and cognitive science terms like schema,
production rule, misconception, or facet” [21].

In many Intelligent Tutoring Systems (ITSs) such as Cordillera,
completion of a tutor question requires students to apply
multiple KCs. By including KCs in our model, we wish to
guide the learning process in distinguishing between different
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types of questions. Moreover, utilizing KCs is helpful for ex-
ploiting the homogeneity among questions. The central idea
of Ques model is to build a Q-matrix to represent the rela-
tionship between individual questions and KCs. Q-matrices
are typically encoded as a binary 2-dimensional matrix with
columns representing KCs and rows representing questions.
Previous researchers have focused on the task of generating
or tuning Q-matrices based upon a dataset [1, 20]. For the
present work we employ a static Q-matrix manually gener-
ated from domain experts.

Additionally, for each question we also include a feature
named questionDifficulty. It has consistently been selected
as one of the important features in our previous work on
exploring various state features for modeling student learn-
ing [9]. questionDifficulty is defined as difficulty level of a
question and its value is roughly estimated from the training
corpus based on the percentage of answers that were correct
on the question in the training dataset.

3.1.3 Student (Stu) Model
Student modeling is an important component for any inter-
active e-learning environment so that the system can adapt
its behaviors based on student needs and knowledge [3].
There are many techniques for generating student models
and among them, Bayesian Knowledge Tracing (BKT) [10]
is the most widely used. Fundamentally, the BKT model can
be seen as a Hidden Markov Model with two hidden states:
learned and unlearned. They are defined based on whether
a student has mastered the target knowledge or not. BKT
keeps a running assessment of the probability that a student
is in the learned state based on the student’s past history
of performance (e.g. correct, incorrect). BKT assumes that
student learning process is a Markov Chain in that at each
time t+1, the probability of a student has learned the knowl-
edge pt+1 is only dependent on his learning state at time t.

Our Stu model used the outputs of the BKT, that is the
probability that a student is in the learned state after an-
swering n questions, denoted as p(Sn = learned) as state
features. Moreover, our Stu model is KC-specific in that for
each of domain KCs, our model will include one probability
of being in the learned state on the corresponding KC in
the Stu model. Our goal is to use these KC specific proba-
bilities to predict whether the student will answer the next
question correctly. Additionally, we also included student
KC-specific pretest scores which measures student initial in-
coming competence.

Therefore, our final Stu model includes a combination of
KC-specific learning probabilities calculated from BKT and
the student KC-specific pretest scores.

3.1.4 Composite Feature Space
In this part we will explore state features representing the
underlying connections between the Ques and the Stu mod-
els. As described above, KCs are involved in both Ques
and Stu models and thus we hypothesized that a student’s
performance on a problem should depend on the KCs in-
volved in the problem and the student’s performance on
corresponding KCs. Hence, we conduct the Cartesian prod-
uct (CP) using the Ques and Stu models. Additionally, we
applied the clustering on the Stu model based on their learn-

ing states and pretest scores. Compared with the original
features in the Stu model, using student clustering can be
seen as more compact representation. Here we used Gaus-
sian Mixture Model, which is a type of soft-clustering meth-
ods. Similarly, we hypothesized that the students with sim-
ilar patterns in Stu clusters may have similar performance
on certain types of questions and thus we also conduct the
Cartesian product using the student clustering features and
Ques vector.

3.2 Six Classifiers
Prior research on ASAG successfully explored several clas-
sic ML methods which included: Naive Bayes (NB), Logistic
Regression (LR), Decision Tree (DT), Artificial Neutral Net-
work (ANN), and Support Vector Machine (SVM). In recent
years deep learning model has been widely used in computer
vision and image processing. In this paper, we will compare
Deep Belief Networks (DBN) [5] against those five classic
ML methods. Given the space constraints, we only briefly
describe DBN in the following paragraphs.

DBN is one of the most widely implemented deep learning
models. Through the unsupervised pre-training in the first
stage, DBN is able to extract the latent features that are
more representative than the original input features. Given
the input features, DBN first utilizes the stacked Restricted
Boltzmann Machine (RBM) layers to automatically extract
the high-level features. After the feature extraction in pre-
training phase, the weights in these layers are then folded
into neural networks for supervised training. Since the ca-
pacity of feature extraction mainly lies in the pre-training
phase, we now present the mechanism of RBM.

RBM is a restricted version of Markov Random Field. It
consists of two layers of variables, visible units V and hid-
den units H. From the perspective of feature extraction,
V stands for the original feature inputs and H denotes the
extracted feature representation. The joint distribution of
V and H is defined by an energy-based probabilistic model,
as follows:

P (V,H) =
exp(−E(V,H))

Z
,

Z =
∑

V,H

exp(−E(V,H))
(1)

where the energy function E(V,H) is defined to be:

E(V,H) = −V TWH −BTV − CTH. (2)

In the above equation, W denotes the weights between V
and H. Specifically, Wi,j represents the weight between Vi

and Hj , and B, C denote the biases for visible units and
hidden units, respectively. The denominator Z serves as the
normalizer for the probability distribution.

Given that each unit of V or H is independent with other
units in the same layer, the conditional distribution is fully
factorial and can be easily derived. Due to the intractabil-
ity of gradient computation brought by the factor Z, the
training of RBM (i.e., pre-training phase) follows the Con-
trastive Divergence algorithm [14], which executes K steps
of alternating Gibbs sampling to approximate the gradient.
The details can be found in [4].
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4. DATA DESCRIPTION
Our training corpus was collected from Cordillera [8, 21],
a Natural Language ITS that teaches students introduc-
tory college physics. The domain consists of a subset of
the physics work-energy domain, which is characterized by
eight primary KCs including Kinetic Energy, Gravitational
Potential Energy, Spring Potential Energy, and so on. In
Cordillera, students interact with tutor by means of natural
language entries, and currently the Natural Language under-
standing module in Cordillera is using human interpreters
referred as the language understanding wizard [6]. The only
task performed by the human wizards is to match student
answers to the closest response from a list of potential cor-
rect or incorrect responses.

Our training corpus involves 158 students. The data collec-
tion consists of the following stages: 1) background survey;
2) studying textbook and prerequisite materials, 3) taking
a pretest; 3) training on Cordillera, 4) and taking a post
test. In total there are 482 different questions involved in
the training corpus and it takes students roughly 4-9 hours
to complete the training. Our training corpus includes se-
quences of tutorial dialogue interactions between students
and Cordillera, one sequence per student, and the average
number of Cordillera-student interactions is more than 280
per student. For each interaction in a sequence, it consists of
a tutor question, a student answer to the question, and two
output labels correct or incorrect based on human wizards
inputs. Thus, these human manually generated binary labels
function as ground truth in our training corpus.

Based on the definition in [7], our training corpus included
16228 short answers selected from a total of 27868 dia-
logues. The average length of student answers in our cor-
pus is 7.6 words. 61.66% of training corpus is labeled as
“correct” while the rest are labeled as “incorrect”. A series
of standard natural language pre-processings including stop
word removal, tokenization, punctuation removal and word
correction, have been conducted on our training corpus. Ad-
ditionally, we also conducted domain-specific pre-processing,
which includes expanding acronyms to their full forms and
removing quantitative questions with equations.

5. EXPERIMENTS
To evaluate the effectiveness of various features from Ans,
Ques, and Stu models individually, combined, and/or com-
posite features generated from these three models, we use
two ubiquitously implemented classifiers - LR and SVM in
Experiment 1. Then in Experiment 2, we will compare DBN
against five classic ML classifiers on the best feature model
produced in Experiment 1.

5.1 Experiment 1: Exploring Feature Space
For Ans model, we use the five Ans features described in
3.1.1. For Ques model, we include 9 Ques features (one
is questionDifficulty and the other eight are KC-based Q-
matrix features, one feature per KC) and for Stu model,
we include 16 Stu features (8 KC-based learning parameters
and 8 KC-based pretest scores). Generally speaking, our
Experiment 1 can be divided into three stages:

In stage 1, we compare the Ans, Ques, and Stu model indi-
vidually. Our goal is to investigate whether either Ques or

Stu model will be more effective than Ans model for ASAG.
In stage 2, we will compare different ways of combining the
three basic models. Our results from stage 1 show that Ans-
based model alone performs better than either Ques or Stu
model (depicted in Section 6.1.1) and thus we mainly ex-
plore whether to include the Ques and/or Stu models to the
Ans-based model in stage 2. Finally, in stage 3, we will
compare different ways of generating new features from the
three models (depicted in Section 3.1.4) together with the
best model learned from stage 2, which is AQS. Table 2 sum-
marize the types of feature models we explored in each stage.

Table 2: Feature Representations.

Feature Abbr. Construction

Stage 1

Basic

A(ns) Ans Model
S(tu) Stu Model
Q(ues) Ques Model

Stage 2

Combined

AS A + S
AQ A + Q
AQS A + Q + S

Stage 3

Composite

CF1 AQS + SC (Student Clustering)
CF2 AQS + SC + CP(Q,S)
CF3 AQS + SC + CP(Q,SC)

? CP denotes Cartesian Product.

To quantitatively evaluate the effectiveness of different fea-
ture models, we train LR and SVM with 10-fold cross-validation
(CV). LR is widely adopted as the prediction model in in-
dustry for its efficiency and robustness. On the other hand,
SVM is one of the most popular classifier due to its effec-
tiveness and the capability to incorporate different kernels.
Here we adopt RBF kernel for our SVM models.

5.2 Experiment 2: Six Classifiers
In Experiment 2, we evaluate six classifiers with 10-fold
cross-validation using the best feature model from Exper-
iment 1, CF3. The six classifiers are NB, LR, DT, ANN,
SVM and DBN. As for the DBN, we build three hidden
layers, with 74, 34, 10 hidden units respectively and the
learning rate is set to be 0.01.

Among the six classifiers, NB assumes the state features
are conditionally independent given the output label while
the other models do not have such strong assumption and
thus are able to combine multiple features to make predic-
tions. Since there exist latent connections among our ex-
tracted features, we expect that NB would perform poorly
compared to other models. While all five remaining clas-
sifiers can make use of combined features to explore latent
connections among features, their approaches are different:
LR only linearly combines features; DT synthesizes the fea-
tures at different branches to make predictions; the hidden
layers in ANN and the kernel function of SVM can effec-
tively achieve the non-linear feature mapping; while SVM
and ANN utilize the relatively fixed pattern for feature com-
bination, DBN enables the extraction of more representative
features via a separate unsupervised pre-training procedure.
Although the best model CF3 already contains composite
features, we expect the DBN can further leverage the la-
tent connections among features that cannot be manually
captured in CF3.
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6. RESULTS
Five widely used measures, Accuracy, Area Under the Curve
(AUC), Precision, Recall and F-measure are used to evaluate
how well various classifiers performed. For precision, recall
and F-measure, we treat incorrect answers as the positive
class because it is more important for the system to know
when the student answer is incorrect.

6.1 Experiment 1: Exploring Feature Space
In the following, we will report our results from each stage
listed in Table 2. Given that A(ns) (Ans model) is the fun-
damental model studied in previous research, it will be our
baseline model for comparisons across three stages.

6.1.1 Stage 1: Three Basic Models
We first compare Ans, Ques and Stu model separately and
Table 3 shows the 10-fold cross-validation results. In Table
3, the best performance of corresponding classifier with re-
spect to each measure is in bold and the best value of each
measure is marked *.

Table 3: Performance of Basic Models.

Classifier Evaluation A S Q
Accuracy 0.646 0.616 0.633

AUC 0.589 0.499 0.548
LR Precision 0.564 0.025 0.425

Recall 0.342 0.001 0.548
F-measure 0.426 0.002 0.478
Accuracy 0.728∗ 0.540 0.636

AUC 0.654∗ 0.546 0.567
SVM Precision 0.830∗ 0.422 0.551

Recall 0.331 0.572∗ 0.271
F-measure 0.474 0.486∗ 0.364

? The majority class is 0.617.
? ‘∗’ is for the highest value of each measure across all models.

Table 3 shows that all three models beat the majority class
baseline (0.617) except for the case of applying SVM on Stu
model. As expected, when using either LR or SVM, Ans
model outperforms Stu and Ques models on Accuracy, AUC
and precision. For the other two measures, Stu model pro-
vides the best Recall and F-measure when using SVM and
Ques model yields the best Recall and F-measure when us-
ing LR. Moreover, when comparing LR and SVM, Table 3
shows that SVM classifier seems to be more effective than
LR in that the highest values of five measures are all gener-
ated by SVM, marked *. More specifically, for Ans model,
SVM outperforms LR on all the measures except Recall; for
Stu model, SVM outperforms LR on every measure except
for Accuracy; finally, for Ques model, SVM outperforms LR
on three out of five measures, the exceptions are recall and
F-measure.

Overall, while the Ans model generate the best Accuracy,
AUC and Precision, the best Recall and F-measure are gen-
erated using either the Ques model for LR or the Stu model
for SVM. Therefore, we expect combining the Ques and Stu
model with Ans model would result in more effective models.

6.1.2 Stage 2: Three Combined Models
To test the effectiveness of combining multiple features, we
show the 10-fold CV performance of A, AQ, AS and AQS
by applying LR and SVM respectively in Table 4.

Table 4: Performance of Combined Features.

Classifier Evaluation A AQ AS AQS
Accuracy 0.646 0.719 0.712 0.768

AUC 0.589 0.696 0.690 0.753
LR Precision 0.564 0.656 0.663 0.737

Recall 0.342 0.591 0.576 0.671∗
F-measure 0.426 0.621 0.616 0.703
Accuracy 0.728 0.784 0.777 0.822∗

AUC 0.654 0.731 0.733 0.781∗
SVM Precision 0.830 0.880 0.881∗ 0.876

Recall 0.331 0.505 0.513 0.615
F-measure 0.474 0.641 0.649 0.723∗

Table 5: Performance of Composite Features.

Classifier Evaluation A CF1 CF2 CF3
Accuracy 0.646 0.786 0.802 0.810

AUC 0.589 0.769 0.784 0.794
LR Precision 0.564 0.736 0.764 0.774

Recall 0.342 0.692 0.707 0.720
F-measure 0.426 0.713 0.734 0.746

Accuracy 0.728 0.835 0.830 0.848∗
AUC 0.654 0.799 0.824 0.850∗

SVM Precision 0.830 0.887∗ 0.778 0.769
Recall 0.331 0.649 0.795 0.859∗

F-measure 0.473 0.750 0.787 0.811∗

? CF1 AQS + Student Clustering (SC).
? CF2 AQS + SC + Cartesian product(Ques, Stu).
? CF3 AQS + SC + Cartesian product(Ques, SC).

It is observed that by adding either Ques or Stu model into
Ans model, the effectiveness of resulted models is greatly
improved on each of five measures. For example, the Ac-
curacy increases from 0.646 for Ans model to 0.719 for AQ
model, and 0.712 for AS model under LR. We can observe
the same pattern when SVM is applied. For both LR and
SVM classifier, it seems that AQ and AS have comparable
performance.

AQS, the combination of all three models, outperforms ei-
ther AQ or AS for both LR and SVM on all five measures
except on Precision by SVM where AS has a slightly higher
value (0.881) than AQS (0.876). Therefore, it suggests that
Stu and Ques model indeed contribute different information
to ASAG task. Similarly, across three models, Table 4 shows
that the SVM classifier seems to be more effective than LR
in that the best of each of the five measures (those marked
*) are generated by SVM except for Recall where the best
value 0.671 is generated by LR on AQS model.

6.1.3 Stage 3: Three Composite Models
Given that AQS performs as the best model in Stage 2, we
explore whether the effectiveness of classifiers can be further
improved by adding composite features. Table 5 shows the
performance of CF1, CF2 and CF3.

Tables 4 and 5 show that CF1 is more effective than AQS
on every measure when using SVM and on four out of five
measures except on Precision using LR. It suggests that the
using student clustering can indeed further improve the per-
formance of either LR and SVM.

The improvement from CF1 to CF2 and CF3 mainly stems
from the power of Cartesian product. Furthermore, the dif-
ference between CF2 and CF3 lies in the different choices of
features used for Cartesian product. The result shows that
there exists stronger association between the latent student
clusters and Ques model than that between Stu model and
Ques model. Overall, SVM outperforms LR throughout CF1
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to CF3 in that the best of five measures (those marked *)
are all generated by SVM in Table 5.

To summarize, the performance of SVM dominates LR when
using individual feature models, combined models, and com-
posite models. With only one exception, the best of each of
the five measures (those marked *) are all generated by SVM
across all three stages. Finally across the nine models, the
best model for both LR and SVM is CF3 in that CF3 is more
effective than the other eight models on every measures us-
ing LR and on four out five measures except on Precision
using SVM. Therefore, CF3 is selected for Experiment 2.

6.2 Experiment 2: Six Classifiers
Table 6 shows the performance of the six ML classifiers on
CF3: AQS + SC + CP(Q,SC) using 10-fold cross-validation.
From the results, we draw the first conclusion that NB falls
behind other classifiers with a large margin of 18% except
on Recall. As expected, LR, DT, ANN, SVM and DBN
outperform NB in all the evaluations due to the capacity of
combining features and NB’s strong independent assump-
tion. Table 6 shows that DBN yields the highest Accuracy,
AUC, Precision and F-measure while SVM reaches the best
recall value of 0.859 closely followed by DBN. For AUC and
F-measure, we have the values in the increasing order for
NB, LR, DT, ANN, SVM, and DBN. Overall, our results
suggest that DBN performs the best among the six classi-
fiers followed by SVM and NB performs the worst.

Table 6: Comparing the Six Classifiers

Evaluation NB LR DT ANN SVM DBN
Accuracy 0.631 0.810 0.825 0.837 0.848 0.850*

AUC 0.667 0.794 0.813 0.827 0.850 0.890*
Precision 0.511 0.774 0.775 0.791 0.769 0.830*
Recall 0.823 0.720 0.765 0.784 0.859* 0.838

F-measure 0.631 0.746 0.770 0.787 0.811 0.834*

7. CONCLUSION
In this paper we tackled the task of ASAG through feature
engineering and exploration of better ML approaches such as
DBN. For feature engineering, we utilized two other mod-
els: Ques and Stu models and explored various combined
and composite feature representation. Our results showed
that by utilizing the composite features, we obtain an AUC
improvement of around 35% and 30% and F-measure im-
provement of around 75% and 72% on LR and SVM re-
spectively as compared with using Answer-based features
only. The comparisons among different classification mod-
els shows that DBN outperforms all other methods on Ac-
curacy, AUC, Precision and F-measure. On Recall, DBN
performs slightly worse than SVM. Furthermore, the exper-
iment has led to some interesting observations: (1) The clus-
tering of student, as a more compact representation, leads to
more discriminative features when combined with question
features using Cartesian product. (2) While SVM results in
better Accuracy, the composite feature representation brings
less improvement on SVM than LR probably because we
used RBF kernel in our SVM models which allows the clas-
sifier to operate in an infinite-dimension of feature space.
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ABSTRACT 
To advance our understanding of learning in massive open online 
courses (MOOCs), we need to understand how learners interact 
with course resources. Prior explorations of learner interactions 
with MOOC materials have often described these interactions 
through stereotypes, which does not account for the full spectrum 
of potential learner activities. A focus on stereotypes also limits 
our ability to explore the reasons behind learner behaviors. To 
overcome these shortcomings, we apply factor analysis to learner 
activities within four MOOCs to identify emergent behavior 
factors. The factors support characterizations of learner behaviors 
as driven heavily by types of learning activities and secondarily 
by time/topic; regression revealed demographic factors (especially 
country and gender) associated with these activity and topic 
preferences. Both factor and regression analyses revealed 
structural variability in learner activity patterns across MOOCs. 
The results call for a reconceptualization of how different learning 
activities within a MOOC are designed to work together. 

Keywords 
MOOCs; learning analytics; online learning; factor analysis 

1. INTRODUCTION 
With the increasing popularity of massive open online courses 
(MOOCs), the need to investigate the relationships among learner 
characteristics, learner-selected activities, and learning outcomes 
has become critical. Determining these relationships can help us 
understand how people learn within MOOCs and inform MOOC 
design and pedagogy. Prior work identified different learning-
activity patterns [1, 3] and investigated the relationship between 
certain types of learning activities and outcomes [7]. Many of 
these studies were conducted in the context of a single domain or 
MOOC (e.g., [1]). Furthermore, little work has investigated how 
demographic variability could lead to different behavioral patterns 
in MOOCs, leaving an open question: Can the identified patterns 
be generalized across instructional domains and populations?  

Until recently, studies of learning within MOOCs focused more 
on the number of learners being served than pedagogy [6]. This 
focus on their size has left many facets of MOOCs underexplored 
and poorly understood [1]. These aspects include a need to 

understand how learners engage with MOOCs [1], their behavior 
patterns, and their motivations [3]. Understanding these factors 
may allow us to design courses that support the learning activities 
and outcomes that learners want.  

We investigate learning patterns in four MOOCs based on learner 
activities across courses from different disciplines. We used the 
activity-centered data reduction technique of factor analysis to 
identify the underlying course activities that describe learner 
activity patterns within each offering of the selected MOOCs. The 
factor analyses applied to 10 MOOC offerings enabled us to 
identify 1) factors that are common to most of these MOOCs and 
2) factors that are less common. Regression analyses were then 
used to examine the relationship between learner demographic 
variables and their participation on each factor. These analyses 
support the distinctions between factors and the presence of varied 
factors across MOOCs. 

This investigation is among the first to identify and compare 
activity patterns and demographic influences across learning 
domains. The results improve our understanding of learner 
behaviors across contexts and could inform the design of more 
domain-sensitive learning experiences.   

2. LEARNER ACTIVITIES IN MOOCS 
Research into MOOCs has spanned a range of topics, with recent 
discussions becoming more nuanced. Work that has investigated 
how learners interact with a MOOC [5] found that their behaviors 
can be characterized through a set of trajectories rather than the 
commonly used completion and attrition model. These trajectories 
through graded assignments and lecture videos within computer 
science MOOCs characterize how different types of learners used 
some of the course materials to support their learning activities 
[1]. The identified usage patterns included those who mostly 
watched lectures, mostly submitted assignments, performed some 
combination of these activities, downloaded course resources, or 
registered but did very little.       

Some researchers have taken the next step by linking these types 
of activities (watching video lectures, submitting assignments, and 
discussion forum activity, types of questions asked) to course 
performance (certificate earned, learning outcomes and gains, 
course completion) [2, 7]. To obtain a better understanding of how 
these and other factors influence learner success within MOOCs, 
the relationships among socio-demographic variables, student 
activities, and learner success have been explored. The most 
common predictors of certificate earning and completion were 
prior education [2], sex [4], and country of origin [4].   
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3. MOOC CORPUS 
Data from the 132,324 learners who performed at least one action 
(taking a quiz, posting to the forum, or watching a video) in 4 of 
the University of Pittsburgh’s Coursera MOOCs were used. To 
describe learner activities within a range of course types and 
explore generalizability across disciplines, courses from different 
domains were chosen: health sciences (nutrition for health and 
clinical terminology), education (accountable talk), and public 
health (disaster preparedness). Data from multiple offerings (Jan. 
2013 – Dec. 2015) of the same course were used when available.  

The courses lasted 6 or 7 weeks. The core materials for each week 
consisted of video lectures and a quiz. Some weeks included 
assignments, disaster preparedness used peer-assessment, and 
accountable talk had a project. Clinical terminology incorporated 
multimedia modules that enabled the learner to interact with 
learning resources. Since these modules presented core content, 
they were labeled as lectures. Only the Clinical Terminology 
instructors explicitly encouraged discussion forum use and 
provided study tips. This variability provided a cross-section of 
course formats that enables us to identify learner activities that 
apply across courses and that are specific to a course. We used the 
activity counts for each forum, quiz, and lecture video.  

4. RESULTS 
4.1 Learner Activities 
Factor analysis with varimax rotation was used to reduce the 
dimensionality of the data and identify learners’ underlying 
behavioral tendencies. Course activities that at least 1% of active 
learners performed were used. To test the stability of the patterns, 
a separate factor analysis was conducted for each course offering. 
Factors that accounted for at least 5% of the variance were kept. 

In 3 of the 4 courses, activities were largely grouped into 4 
factors: lecture activity, quiz activity, forum participation and 
participation in activities from weeks 1 and 2. In contrast, clinical 
terminology shows more depth in weekly content: lecture activity 
is represented by 4 factors, each capturing a 1-2 week span. For 
quizzes, we see three factors: summative quizzes presented at the 
end of each module, early quiz activities, and later quiz activities.  

4.2 Predicting Activities Using Demographics 
We calculated a factor score for each learner, which indicates a 
tendency towards the behavior described by that factor. For 
example, a learner with a high score for the lectures factor would 
have viewed more lectures than one with a low score. A general 
linear model (GLM) was used to predict learner factor scores from 
learners’ socio-demographic characteristics. Only those (n = 
2963) with individual demographic profiles were included. We 
applied GLM to courses that had contrastive factor structures: the 
second offering of nutrition for health represented those with 
media-based factors and the first offering of clinical terminology 
represented those with time-based factors. 

For clinical terminology, we aggregated early lecture factors, late 
lecture factors, and quiz factors to create factors that were 
comparable to the other courses. We then ran a generalized linear 
model predicting each of these aggregated factors.  

Each factor is influenced differently by learner demographics and 
are contrasted between the two courses. For example, the early 
lecture watching factor from nutrition for health was more 
strongly associated with female learners than males. This was not 
the case for clinical terminology. Late lecture watching activity 

was predicted by learner age for both courses. However, a 
difference in factor scores for the younger and older populations 
for those in the middle age groupings is visible between the 
courses. Within clinical terminology, we also see that some age 
groups are more active earlier in the course than later. Additional 
differences in how demographic variables predict factors are 
visible when considering learners’ quiz participation and their 
continent of residence. Similar factor scores are seen for those 
who live in Asia and North America when considering learner 
activities within clinical terminology. This similarity does not 
hold across courses; learners from Asia and Europe appear to be 
more similar in their quiz taking habits when considering the data 
from nutrition for health.  

5. CONCLUSION 
Our factor and regression analyses across multiple offerings of the 
same course show that learner behaviors are relatively consistent 
across time. However, differences in factors across courses 
suggest that design and domain affect how learners select learning 
content and activities, which requires further study.   

Our work is among the first applications of exploratory factor 
analyses across learner activities within MOOCs from different 
domains. Prior work has focused on a person-based approach that 
describes the behavior patterns of individuals by assigning them 
to canonical groups. This work, therefore, provides a new lens to 
examine the full range of learner behaviors in MOOCs.   
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ABSTRACT
This study looks at the text data generated from the Asyn-
chronous Peer Instruction tool, DALITE. The goals of this
work are two-fold: i) to determine whether the words stu-
dents use in their self-explanations can be predictive of their
success on the related multiple-choice item, or even reveal
their uncertainty about the concept being tested; and, ii) to
determine if the collection of words used by a student over
the course of a semester using DALITE can predict their
end-of-semester learning outcomes. Through the course of
this study, we examine the effectiveness of different statis-
tical models and document representations to explain these
data. Weak results suggest richer syntactic ans semantic
models of text are needed.

1. INTRODUCTION
The Distributed Active Learning Integrated Technology En-
vironment (DALITE)[2], implements an original peer in-
struction paradigm that relies on students providing a ratio-
nale to their choice over multiple-choice questions (MCQ).
After every MCQ, the student is prompted to provide the ra-
tionale for their choice. Once provided, the student is shown
a few other students’ rationales for the same choice, and for
an alternate choice. If the answer was right, the alternate
choice shown is for a wrong answer, else it is the right an-
swer’s rationales. The student can then decide to change
their choice or not. This instruction paradigm has recently
been integrated into the EdX platform and we believe it has
a great future in MOOCs and other environments where
educational crowdsourcing bootstraps instructional content.
However, for the bootstrap to be effective, a good under-
standing of the process of learning from this type of content
is crucial. This paper reports on early analysis of student
rationales with this aim in mind, using a text classification
framework. For this particular study, we are interested in

• identifying students who are unsure about their an-

swers (as revealed by when they switch from right-
to-wrong, or wrong-to-right in DALITE). Are there
linguistic patterns for students who are uncertain?
• studying the effect of the teacher on the development

of their students’ language. Is there a teacher effect?
• documenting group differences in language use, for sub-

populations such as strong vs. at risk students, or male
vs. female. [6] discusses the gender gap in performance
in college physics classrooms. This was observed in a
previous study of ours looking at DALITE as well[1].
Is there a measurable difference between the language
used by strong students and weak ones? Are there
gender differences?
• finding minimally disruptive, low-stakes, language based

predictors of student failure, as early in the semester
as possible. Can the results of DALITE questions as-
signed prior to any of the three midterms predict which
students ultimately fail?
• which classification algorithms perform the best in this

context? What document representations optimize clas-
sifier performance for the different target variables?

2. DATA AND METHODS
2.1 Corpus Statistics
The dataset is made up of student-generated self-explanations
for 80 different DALITE items (conceptual physics ques-
tions). On average, 97 students attempted each item, writ-
ing explanations for each question with an approximate length
of 32 words, with a type-token ratio of 0.87. The average
number of unique words used by all students to answer any
given one item was 310. The 140 students in this study
came from three different colleges in the province of Que-
bec, Canada. The course material was surrounding what
would normally be freshman physics in the U.S. Besides col-
lecting midterm grades and final course grades, each student
also completed the Force Concept Inventory[4], at the begin-
ning of the term, as well at the end. The normalized pre-post
gain (or Hake gain) on this questionnaire has become a stan-
dard measure in the physics education research community.
More aggregate statistics of the dataset rest are more fully
described in [1].

2.2 Statistical Models
Significant amount of work was done in comparing different
statistical learning algorithms for text classification. One of
the simplest yet most effective text classification approaches
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is the Naive Bayes classifier[7]. In datasets when vocabu-
lary size was small, [8] compared different event models for
the Naive Bayes family of classifiers, finding that the multi-
variate Bernoulli model (where the components of each doc-
ument vector are binary, modeling simply the presence or
absence of a word), performed better for text classification
than its multinomial counterpart (where document vectors
are the counts of the different terms in that document). [5]
shows that Support Vector Machines (SVM) are well suited
to the task of text classification, due to three factors in-
herent to the nature of the task: high dimensional feature
space, many relevant features (dense concept vectors), but
sparse document vectors. Finally, we explore the utility of
a k-nearest neighbor classifier in this setting as well, based
on the intuition that the document vectors might not be
linearly separable.

2.3 Document Vector Representations
This study also aims to explore different choices of docu-
ment representation. The most basic choice would have the
elements of document vectors simply containing raw word
counts (we ensure that the words in the original questions
item text are always included in the term-document ma-
trices).[9] showed that shifting importance to rarer words
across a corpus would improve classifier effectiveness. We
also look at N-grams to relax the independence assumption
between words, but this may require more data than we
have to avoid sparsity (we only go up to bigrams). There
is an interest in also adding syntactic information, such as
part-of-speech (POS) tags, and represent documents as bags
of POS-tags (e.g. since there is an important difference in
physics between using the word ”force” as a verb or as a
noun, which could reveal a misconception if students use it
incorrectly). Finally, document vectors can also be repre-
sented for their semantic content. One of the most success-
ful techniques for this is Latent Semantic Analysis[3], which
relies on a truncated singular value decomposition of term
co-occurrence matrices. This allows us to approximately
represent documents in a lower dimensional space, and typ-
ically removes noise such that document vectors that are
similar in meaning, cluster together. The sensitive choice
in such latent factor models is the choice of how many fac-
tors will be kept after the matrix decomposition. We do a
grid search over different possible number of dimensions to
reduce to, ranging from 2 to 10, and pick the model that
performs best in cross-validation.

3. DISCUSSION
None of the results are presented here, due to space limi-
tations.1.Our research team started this study with the fol-
lowing question: do students in different cognitive states,
use different words to explain their thinking when answer-
ing conceptual questions? In general, the poor performance
of most of the statistical models studied herein tends to con-
firm the intuition behind the body of work centered around
Latent Semantic Analysis: in most cases, the mere occur-
rences of the words is not enough to discriminate strong
students from weak ones, and that such datasets can be too
noisy and sparse. The inability of all these models to predict
item-level outcomes, such as getting the answer correct, or

1All scripts used to get the results, for this study are avail-
able at sameerbhatnagar.github.io/

whether a student is about to switch their answer, leads us
to believe that richer syntactical and semantic representa-
tions will be required.

4. FUTURE WORK
The most important facet of DALITE that has not yet been
studied lies in the patterns in student preferences: when
students are on the page where they can read their peers’
rationales, and are asked to reconsider their original an-
swer choice, they are also prompted to select which, if any,
of their peers’ rationales they thought was most convincing.
This ’crowdsourcing’ of high quality, peer-assesed rationales
if very healthy for the future of DALITE, but is also fer-
tile ground for research related to the current study: what
distinguishes language that is effective to convincing to stu-
dents (whether for the right answer, or the wrong one)?
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ABSTRACT 
We report on an effort to evaluate the efficacy of automated 
assessment and feedback of the quality of collaborative discourse 
in the context of an online project based course. Results of 
automated assessment and impact on collaborative process are 
evaluated over a semester-long course. 
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1. INTRODUCTION 
In this paper we report on an effort to evaluate the efficacy of 
automated assessment and feedback of group processes in the 
context of an online project based course.  It is well known that 
the positive effects of collaborative learning are not guaranteed.  
Instead, those benefits depend upon the quality of collaborative 
interactions that occur during activity [1]. This is problematic 
since most students lack the cognitive skills necessary to engage 
in high quality collaborative interactions [3]. Research suggests 
that developing socio-metacognitive expertise, the ability to 
understand, monitor, and regulate collective thinking processes 
that occur during collaboration, can help to mitigate group 
dysfunction and optimize collaborative interactions [4]. 
We have been working on developing activity design models to 
inform the design of Computer Supported Collaborative Learning 
(CSCL) systems to support socio-metacognitive development [4]. 
In this paper, we describe an approach to automated, collaborative 
discourse assessment and a study we ran in a real educational 
environment.  We focus on two areas of inquiry motivated by 
emerging research.  First, (RQ1) How reliably can we 
automatically assess collaborative discussion quality and (RQ2) 
does automated assessment impact future performance differently 
than human generated feedback? 

2. METHODS 
2.1 Study Context 
The study took place during a 16-week, introductory, 
undergraduate, online course on information sciences and 
technology. Fourty-one online students participated in the study, 
each belonging to one of 14 groups. As part of the course, 
students were required to read a chapter from the textbook or 
supplementary materials each week. Students were assigned to 
teams within the first four weeks of the semester.  Then, in weeks 
five, seven, nine, eleven, and fourteen, students participated in a 
synchronous discussion related to the reading materials. The 
discussion sessions were held in a collaborative workspace with 
chat capabilities called CREATE.  

2.2 Research Design  
Across the five time-points during which students engaged in a 
collaborative chat activity, we compared the effect of four 
different feedback conditions on the quality of collaboration at the 
next time point.  After each of the first four discussion tasks, 
groups were assigned to one of four feedback conditions that 
determined the type of feedback they received at that time point.   

The study was run as a within-subject manipulation.  The four 
conditions included: (1) no feedback, (2) expert feedback, (3) 
automated feedback, and (4) best practices. Those in condition 
one received no feedback about the quality of their processes. 
Those in condition two received feedback from trained research 
assistant who would analyze their processes using our coding 
construct. Condition three received feedback based on automated 
assessment of processes. Condition four was given feedback 
based on common strengths and weaknesses of collaborative 
groups [4] and not based on the group’s specific processes. All 
feedback was worded in a consistent manner such that teams 
would not know what condition they received.  

An assessment of group processes was conducted for each 
discussion based on the transcripts from the chat environment that 
housed the activity.  Team process measures at the first time point 
were used to identify groups’ initial strengths and weaknesses. 
Thus, the first assessment was treated as a baseline, and each 
subsequent measurement, controlling for the previous assessment, 
was treated as a measure of the effectiveness of the form of 
feedback experienced after the previous discussion.    

2.3 Assessment of Collaborative Discourse 
Quality  
After each discussion session, individual students completed an 
evaluation of the quality information synthesis and knowledge 
negotiation in their group.  

In the assessment rubric, there are three categories of behavior 
within each of the two core capacities, with each category 
assessed on a five-item, ordinal scale. The first core capacity, 
information synthesis, consists of three categories of discourse 
behavior: verbal participation, developing joint understanding, 
and joint idea building. Verbal participation examines the amount 
of turns of speech contributed by each member relative to the 
team’s total turns of speech. Developing joint understanding 
evaluates the extent to which teams make an effort to ensure that 
members fully understand the ideas presented by taking time to 
reword, rephrase, or ask for further clarification of shared 
information.  Joint idea building focuses on the extent to which 
team members elaborate on another member's contribution in 
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order to ensure that information introduced by any member is not 
ignored or accepted, without discussion.  

The second core capacity, knowledge negotiation, also consists of 
three categories of behavior. These categories are contributing 
alternative ideas, quality of claims, and norms of evaluation.  
Contributing alternative ideas evaluates the extent to which teams 
present and discuss alternative perspectives, claims, or 
suggestions. Quality of claims focuses on evaluating the extent to 
which teams provide logical, fact-based evidence and rationale.  
Norms of evaluation focuses on evaluating the extent to which 
teams adhere to social norms that promote the development of 
psychological safety. 

Twenty percent of the total data was double coded by the research 
assistant and another trained graduate student to determine inter-
rater reliability of the instrument: r = 0.86; p < 0.001, Kappa = 
0.64; p < 0.001. Once each item of a core capacity is rated, they 
are averaged to produce a single Collaborative Discussion Quality 
score, which is a continuous value between 0 and 5 that we use to 
track improvement over time in collaborative discussion processes 
in the analysis below. 

2.4 Automated Assessment 
A key component of the study is an evaluation of an automated 
assessment technique.  The six scales that comprise the three 
dimensions of each of the two core competencies in the 
assessment rubric were automatically predicted based on 
distributions of automatically predicted process codes. Training 
data for the macro level regression model for the 6 scales was a 
corpus of 13 discussions (with a total of 7015 turns) that were 
hand coded with a process-analysis coding scheme developed as 
part of this work. We built on a coding scheme developed for a 
laboratory study [3], but modified it for use in a real-world 
classroom setting. Each discussion was hand coded at the turn 
level using the process analysis and then assessed along the 6 
different dimensions.  We established inter-rater reliability for this 
schema of Kappa= .74, indicating substantial reliability.   
The automated process analysis models were trained using the 
LightSIDE tool bench. We extracted a feature space consisting of 
unigrams, bigrams, POS bigrams, and a line length feature, and 
used a Logistic regression classifier with L2 regularization to 
avoid over-fitting.  In a leave-one-team-out cross-validation, we 
achieved an accuracy of 86% and kappa of .77.  The assessment 
needed in order to generate feedback for the study is at the level 
of the six scales that rate two core competencies, with three 
dimensions each.  We used the counts of predicted process codes 
per team to predict these six scales using a separate linear function 
trained using a simple linear regression for each scale.   
We expected a drop in performance when applying a model 
trained in a previous experiment.  In the initial week of the study, 
we used the model trained on the earlier data to generate the six 
scores per team.  In subsequent weeks of the study, we retrained 
the simple linear regression models to predict hand coded 
assessment scores from data collected in the current study during 
the earlier weeks of the semester.  The process coding that created 
the predictor variables for those regression equations was 
computed using the original trained process coding models.   

3. RESULTS 
At each of four time points in the course, we collected automated 
assessments of collaborative process in terms of the six 

assessment dimensions.  Each time, each of three to four groups 
was assigned a rating on a 5-point scale for each of the six 
dimensions.  The same assessments were also made by human 
raters in order to assess the quality of the automated rating.  Over 
time, we continued to use the original turn level process models 
but adapted the simple linear regressions to compute the six scale 
measures from the counts of the turn level codes using the hand 
rated data collected in the second course so far.  We evaluate the 
quality of the automated rating by computing a kappa with linear 
weighting between the sets of automated ratings and human 
ratings.  At time point one, before any data from the second 
instance of the course was available, the automated ratings were 
assessed to be at random.  By time point two, the weighted kappa 
was .19.  It was better at time point three, specifically .4.  And 
finally, at time point four, it was up to .58.  Altogether ratings for 
10 sessions of the second course were needed to adapt the models 
and achieve a weighted kappa of .58. 

Given that the automated feedback generated at early time points 
in the course was based on poor quality assessments, an important 
question is how much of a negative impact these errors cause for 
students. We measured the effect of the experimental 
manipulation using a repeated measures ANCOVA for each scale 
assessment separately.  In each case, the dependent measure was 
the scale assessment at a time point rated by an expert rater, the 
covariate being that scale assessment at the previous time point, 
the independent variable being the condition that generated the 
feedback received by the team at the previous time point, and time 
point as a nominal control variable.  We did not observe any 
consistent improvement over time or significant effect of 
condition on any one of the six scale assessments.   

4. CONCLUSIONS 
In this paper we addressed important questions related to the 
automated assessment of collaborative discourse quality in real 
educational settings. Though the automated process analysis was 
evaluated as very reliable within the course that provided the 
training data, the automated assessments in the second run of the 
course were initially very poor and only improved after 3 weeks 
of data were collected to use for adapting the prediction models.  
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ABSTRACT 
This poster presents a sequence mining analysis of collaborative 
game-based learning for middle school computer science. Using 
pre-post test results, dyads were categorized into three groups 
based on learning gains. We then built first-order Markov 
models for the gameplay sequences. The models perform well 
for embedded assessment, classifying gameplay sequences with 
95% accuracy according to whether the group learned the target 
concepts or not. These results lay the groundwork for accurate 
embedded assessment of dyads in game-based learning.  

Keywords 
Embedded assessment; game-based learning; collaboration; 
Markov models 

1. INTRODUCTION 
There is growing recognition of the importance of collaborative 
learning, in which students work together to solve problems [2, 
3]. Collaboration, furthermore, can have an especially beneficial 
impact in game-based learning, where it has been shown to 
promote significant student learning gains [4] and provide 
significant motivational benefits [8], as well as deliver more 
equitable gaming experiences for diverse learners [1, 6].  

Yet collaborative learning presents unique challenges to 
educational data mining research. While much current work in 
this field relies on mapping individual students’ outputs, student 
collaboration produces learning that plays out as a joint activity, 
necessitating different approaches to understanding the 
underlying processes [7]. Recent work in educational data 
mining has demonstrated some success in predicting student 
outcomes in paired learning, as long as both students in the pair 
have similar initial knowledge [5].  

This poster examines collaborative game-based learning in the 
context of the ENGAGE game-based learning environment, with 
which middle school students learn about computer science 
through an overarching narrative situated within a fictional 
underwater research station. In this study, students played 
ENGAGE in pairs at a single computer, taking turns with one set 
of game controls. These two students’ inputs were therefore 
captured within a single gameplay log. The analysis presented 
here investigates a variation on the traditional learning question 
of, “Did student S learn the concept?” and instead asks, “Did the 
collaborative partnership P result in learning?” By building first-
order Markov models on dyads’ gameplay logs, we discovered 

that the gameplay sequences of dyads in which some learning 
occurred (i.e. at least one of the students learned the material) 
differed significantly from those in which no learning occurred, 
and moreover, that we can classify with very high accuracy the 
learning that occurred on a targeted learning objective. 

2. COLLABORATIVE LEARNING TASK 
This study focuses on a subset of the ENGAGE game. In 
ENGAGE’S Digital World level, students learn how computers 
process data using the binary number system. The current 
analysis focuses on one room in the game world, in which 
students integrate the two concepts of variables and binary 
numbers, having earlier explored both these individual concepts 
in isolation from one another. 124 middle school students played 
the game in pairs; as there is one gameplay trace for each dyad, 
this produced 62 gameplay traces. We administered individual 
pre- and post-tests to each student so that we could characterize 
each student’s learning outcomes. The goal of the present 
analysis is to utilize gameplay logs to predict learning, 
specifically to investigate how the gameplay of those dyads who 
scored higher on learning assessments differs from the gameplay 
of those who did not score higher. Accordingly, having assigned 
each individual student a grade based on pre and post test scores, 
we then classified student pairs into one of three categories: 
Learner (19 dyads), Prior Mastery (23 dyads), and Non-
Learners (20 dyads).  

3. RESULTS 
The modeling approach aims to identify differences in gameplay 
sequences between students in the Learner, Prior Mastery, and 
Non-Learner groups. We began with one of the simplest 
sequential models of all, first-order observable Markov models. 
It was expected that more sophisticated models, such as hidden 
Markov models or Conditional Random Fields, may be needed 
to characterize the gameplay sequences well; however, as this 
poster demonstrates, the simplest model was able to classify the 
gameplay sequences of Learner, Prior Mastery, and Non-
Learner groups with high accuracy.  

We built separate models for each group (Learner, Prior 
Mastery, Non-Learner) and then determined whether there were 
significant differences in the models for each group by 
comparing model fit (in terms of log-likelihood, since the 
probabilities themselves are very small in magnitude). We 
performed this pairwise comparison for all three groups, as 
described below: 
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1. For each gameplay trace sequence si in the Learner 
group:  

i. Compute logProb(si | Lleave-i-out) of observing si 
under the Learner model L (trained in a leave-
one-out fashion where si was the left-out 
sequence). 

ii. Compute the log-likelihood logProb(si | PM) of 
observing si under the Prior Mastery model PM 
trained on all Prior Mastery gameplay sequences. 

iii. Compute the log-likelihood logProb(si | NL) of 
observing si under the Non-Learner model NL 
trained on all Non-Learner gameplay sequences. 

2. Repeat the analogous process for each gameplay 
sequence in the Prior Mastery and Non-Learner groups. 

3. For each group’s sequences, test whether the set of log-
likelihoods for that group under its own model is 
significantly higher than the log-likelihoods for that 
group under the other groups’ models.  

The models were significantly different across Learners, Prior 
Mastery, and Non-Learner groups, as shown in Figure 1, which 
shows the absolute values of log likelihoods for each of the three 
categories. In this graph, a lower absolute log-likelihood 
indicates better model fit. For each category, the graph shows 
three bars, the first showing the log likelihood for the given 
category’s sequences under the Learner model, the second bar 
showing the log likelihood for the given category’s sequences 
under the Prior Mastery model, and the third bar showing the 
log likelihood for given category’s sequences under the Non-
Learner model. We conducted a series of paired t-tests to 
determine, for each group, whether there were significant 
differences between the log likelihoods for its own model and 
those for the other two models. For the Learner group model, its 
own log likelihoods were found to be significantly better than 
the log likelihoods of the other two models at the p < .01 level. 
For both of the other two models, Prior Mastery and Non-
Learner, their own log likelihoods were found to be significantly 
different than the other respective models with even greater 
significance, at the p < . 001 level.  

 
Figure 1. Absolute value of log likelihoods for each of the 
three categories. Lower values indicate better model fit. 
Finally, we investigated the extent to which these models could 
classify Learner, Prior Mastery, and Non-Learner based only on 
the observed gameplay sequences in Room 2 and using leave-
one-out cross-validation. A sequence was labeled with the group 
whose model produced the highest log-likelihood for that 
sequence (using only models that were trained with the sequence 

left out). Using this classifier, for the Learner category, 89.5% 
of pairs (17 out of 19) were correctly classified. For the Prior 
Mastery category, 100% of pairs (23 out of 23) were correctly 
classified. For the Non-Learner category, 95% (19 out of 20) 
were correctly classified. On the whole, this reflects a 95.2% 
accuracy in classifying whether a collaborative pair of students 
would be in the Learner, Prior Mastery, or Non-Learner group.  

4. CONCLUSION 
Modeling collaborative learning is an important direction for 
educational data mining research. We have demonstrated that 
sequence modeling relying on first-order Markov models can 
differentiate gameplay sequences of pairs where at least one 
partner learned from pairs who did not learn. Moreover, these 
models can classify those gameplay sequences with very high 
accuracy according to whether the dyad learned or not.  

The opportunities are numerous for empirical studies into 
collaborative gameplay, problem solving, and dialogue. For 
example, the current analysis assumes that the maximal 
knowledge of the group is expressed through gameplay, an 
assumption that needs to be investigated. Additionally, a natural 
next step is to examine prediction power of individual learning 
along with the slightly more abstracted dyadic learning 
considered here. It is hoped that this line of investigation will 
move us toward highly effective support of dyadic learning.  
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ABSTRACT 
This paper provides an alternative way of document representation 
by treating topic probabilities as a vector representation for words 
and representing a document as a combination of the word vectors. 
A comparison on summary data shows that this representation is 
more effective in document classification. 

Keywords 

Topic modeling, LDA, document clustering, cluster similarity 

1. INTRODUCTION 
Topic modeling has been one of the most important methods in 
natural language analysis. It helps to discover underlying topics in 
a collection of documents. The found topics are used to form topic 
features for documents. The topic features are then used as input to 
perform task such as document clustering [11], automated 
summarization [1], automated essay grading [6], etc. LDA (Latent 
Dirichlet Allocation) [2, 3] is the most popular way for topic 
modeling. LDA topic model provides topic proportions as a vector 
representation of document. We investigated an alternative way of 
document representation by summing up word probabilities from 
LDA topic model. The new representation is compared with the 
topic proportion representation as input of a document clustering 
task on a summarization data set. The results showed that the 
simple “probability sum” document representation performs better. 

2. LDA and Document Representations 
Latent Dirichlet allocation (LDA), first introduced by Blei, Ng and 
Jordan in 2003 [3], is one of the most popular methods in topic 
modeling. LDA represents topics by word probabilities. Given a 
vocabulary with 𝑁  words, {𝑤1, 𝑤2, ⋯ , 𝑤𝑁} , the LDA model 
probabilities 𝑷𝑘 = (𝑝𝑘(𝑤1), 𝑝𝑘(𝑤2),⋯ , 𝑝𝑘(𝑤𝑁)) form a 
representation of the 𝑘𝑡ℎ  topic (𝑘 = 1,2,⋯ ,𝐾). The words with 
highest probabilities in each topic usually give a good idea about 
what the topic is.  

In LDA, a document 𝑑 has an inferred topic proportion which is 
usually used as topic features to represent the document: 

𝑻(𝑑)~(𝑡1(𝑑), 𝑡2(𝑑),⋯ , 𝑡𝐾(𝑑)). 

From the point of view of statistics, topic proportion is probably the 
only choice for LDA-based document representation. However, if 
we jump out of the box of statistics, we can simply view the word 
probabilities across the 𝐾  topics as a 𝐾 -dimensional vector 

representation for each word. Thus, a document can be represented 
by summing up the word probability vectors:  

𝑠𝑘(𝑑) =∑𝑝𝑘(𝑤𝑖

𝑁

𝑖=1

) log(1 +𝑓(𝑤𝑖 , 𝑑)) , (𝑘 = 1, 2,⋯ , 𝐾) 

In the above formula, 𝑠𝑘(𝑑)  is the “probability sum” of the 
document 𝑑 on the 𝑘𝑡ℎ topic, 𝑝𝑘(𝑤𝑖) is the probability of the word 
𝑤𝑖 on the 𝑘𝑡ℎ topic, and 𝑓(𝑤𝑖 , 𝑑) is the frequency of the word 𝑤𝑖 
in the document 𝑑. The logarithm of word frequency is known as 
Zipf scale [9].  

3. Corpus for Document Clustering 
201 participants wrote 1481 summaries for 8 passages, about 185 
for each passage [10]. The lengths of the passages ranged from 195 
to 399. The Flesch-Kincaid grade level was from 8.6 to 11.7. Some 
passages had similar topics: Working and Running, Kobe and 
Jordan, and Effects of Exercising on sports and exercising; and 
Floods and Hurricane on disasters.  

The summaries were collected from an online experiment. The 
original goal was to evaluate the effect of an online AutoTutor [5, 
9] lesson that teaches summarization. Each subject composed 
summaries for 2 texts before learning the lesson, 2 after learning, 
and 4 during learning with a counter-balanced design. The 
participant wrote each summary immediately after reading a 
passage. The system automatically controlled summary length (50-
100 words) and plagiarism. The summary could not be submitted 
when it was out of range or when it had 10 consecutive words 
copied from the original passage.  

Each summary was treated as a document for topic modeling. The 
vocabulary size was 4275 after removing stop words. 6 topic 
models were built for different numbers of topics (4, 8, 12, 16, 20 
and 24), respectively. For each model, the topic proportions and the 
probability sums were computed for each summary. The LDA 
package used for topic modeling was infer.net from Microsoft [8]. 

Topic proportions and probability sums were then used as 
document features for clustering. We used K-Mean clustering 
method and fixed the number of clusters to 8 for all 6 topic models.  

4. Results 
We define the similarity of two clustering results by 

𝑆𝑖𝑚 =
∑ 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠ℎ𝑎𝑟𝑒𝑑𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑖𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑝𝑎𝑖𝑟𝑖𝐶
𝑖=1

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
. 

Proceedings of the 9th International Conference on Educational Data Mining 577



The cluster pairs were best arranged using “Hungarian Algorithm” 
[7] so that the similarity is the highest under the paring. For each of 
the two document representations, we first compared the cluster 
similarity between models with the number of topics 4 and 8, 8 and 
12, 12 and 16, 16 and 20, and 20 and 24. We aimed to check 
whether or not the clusters converge as the number of topics 
increases. 

The results showed that when the number of topics increased, 
clustering based on probability sum quickly converged. The 
similarity between 12 topics and 16 topics was 0.96. For topic-
proportion-based clustering, the similarity between 8 and 12 topics 
went close to probability sum. However, it dropped at 12 and 16, 
and then went up to 0.81 for 20 and 24.  

While both representations converged to some clusters, the topic- 
proportion-based clustering converged to the unevenly distributed 
clusters. The largest two clusters contained 908 documents out of 
1480. In contrast, probability-sum-based clustering converged to 
clusters of sizes almost the same as the original summary groups. 

Table 1 shows the best matched clusters to the original passages for 
24-topic model. Topic-proportion-based clusters matches the 
original passage groups with a similarity of 0.60, whereas 
probability-sum-based clustering did surprisingly better. The 
cluster similarity to the original summary grouping was 0.98.  

Table 1 Best matched clusters to original passages  
 1 2 3 4 5 6 7 8 
 Topic Proportion Based Clusters 
BM 160 0 0 0 0 20 1 2 
Di 6 5 101 1 0 69 0 0 
EE 0 1 186 0 1 1 0 0 
Fl 11 7 21 1 1 139 5 1 
Hu 1 0 1 1 173 3 5 0 
JM 0 0 1 0 0 179 0 1 
KJ 0 0 0 0 1 1 185 1 
WR 1 0 164 0 1 20 0 1 
 Probability Sum Based Clusters 
BM 180 0 0 1 0 1 1 0 
Di 0 176 0 0 0 6 0 0 
EE 0 1 182 0 0 5 1 0 
Fl 0 0 0 179 1 6 0 0 
Hu 0 0 0 0 180 4 0 0 
JM 0 1 0 0 0 179 1 0 
KJ 0 0 0 0 1 1 186 0 
WR 0 0 2 0 0 4 0 181 

Note: BM=Butterfly and Moth, Di=Diabetes, EE=Effects of 
Exercising, Fl=Floods, Hu=Hurricane, JM=Job Market, KJ=Kobe 
and Jordan and WR=Working and Running.  
The cluster similarity changed when the number of topics increased 
in topic modeling. The topic-proportion-based clustering had its 
highest cluster similarity 0.77 to the original grouping when the 
number of topics is 12. It then dropped below 0.60. The probability-
sum-based clustering had higher similarities for all models than 
topic proportion and consistently converged toward 1.  
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ABSTRACT 
Earlier research on problem solving suggested that including a 
diagram in a physics problem brings little, if any, benefit to 
students’ problem solving success. In 6 AB experiments conducted 
in our MOOC, we tested the usefulness of problem diagram on 12 
different physics problems, collecting over 8000 student responses 
in total. We found that including a problem diagram that contains 
no additional information very slightly improves the first attempt 
correct rate. On the other hand, in half of the cases, removing the 
diagram significantly increased the fraction of students who elected 
to draw their own diagram during problem solving. The results 
suggest that in contrast to conventional wisdom, the benefit of 
including a problem diagram rarely justifies the cost of creating 
one. 

Keywords   AB experiments, MOOC, problem diagrams. 

1. INTRODUCTION 
As instructors, we often feel obliged to accompany the problems 
we write with a figure or a diagram, even when all the necessary 
information is already included in the problem body. However in 
many cases, creating a “good looking” diagram or figure can be 
significantly time consuming and expensive. Therefore, it is a 
valuable question to ask whether a problem diagram does indeed 
help students solve problems more accurately or more quickly, and 
if so, does the benefit justify the cost of creating one? 
Cognitive learning theories, such as dual coding hypothesis [7] and 
multimedia learning theories [6, 8] indirectly suggest, that diagrams 
can be potentially beneficial to problem solving. On the other hand, 
a series of recent experiments by Lin, Maris and Sigh[2–4]found 
that for the problems involved in their study, the accompanying 
diagrams have no detectable benefit for problem solving, and 
sometimes hurt performance by discouraging students to draw their 
own diagrams during problem solving.  
Using the “split test” feature of the edX platform [1], this study 
addresses the following research questions in the context of a 
calculus based introductory mechanics course: 

1. Do diagrams in general have an impact on students’ problem 
solving performance (either percentage of correct answer or time 
spent on problem solving)? If so, to what extent? 
2. Do diagrams change students’ problem solving behavior, or 
more specifically, their decision to draw their own diagram? 

2. MATERIALS AND METHODS 
2.1 AB experiment on the edX platform 

The edX platform allows the course creator to create 
controlled AB experiments by splitting the student population into 
two or more groups (called “partitions”), and presenting each group 
with a different version of content, such as a problem or a series of 
problems and html pages. Every student who tries to access the 
experimental course content for the first time is randomly assigned 
to one of the groups at the time of the access. 

2.2 Experiment Design 
A total of six experiments with identical design were implemented 
throughout the first eight units of the course. Each experiment 
involves two problems chosen from either the homework or the 
quiz section of a given unit, so the study involves twelve different 
problems in total. The problems were chosen from the first eight 
units of the course, covering kinematics, Newton’s laws, circular 
motion, conservation of momentum, and conservation of energy. 

 
Figure 1: Experiment design. Each experiment consists of a 
pair of problems differing only in whether (DG) or not (NDG) 
they had a diagram. The same design is used for all 6 
experiments conducted. 
In each two-problem experiment, the student population was 
randomly partitioned into two groups: A and B (Figure 1). Group 
A saw the first problem in DG format and the second problem in 
NDG format. Group B saw the two problems in the same order, but 
the DG/NDG condition was reversed. The group assignment for 
each experiment is independent, reducing systematic bias. 
Depending on when each experiment was released to students in 
the course, the number of students in each group ranged from ~480 
(week 2) to ~180 (week 7).  
 The following survey question was asked after each problem: 
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Only students who answered both the problem and the survey were 
included in the analysis. 

3. RESULTS AND DISCUSSION 
3.1 Results 
We first look at the impact of including a diagram on the percentage 
of correct answer on students’ first attempt. In most cases (see Fig 
2 below) the presence or absence of a diagram has little impact on 
the difficulty of the problem itself. Only 3 out of 12 problems (P3, 
P4 and P8) showed a significant difference in difficulty between 
the two conditions (𝑝 < 0.05, 𝜒2 > 5). 

 
Figure 2: Percentage of first attempt correct for each problem. 
*Difference is significant at the 0.05 level. ** Difference is 
significant at the 0.01 level. (Chi-squared test) 
Since we carefully balanced systematic bias in the population in our 
experiment design, it is meaningful to add up the data from all 12 
problems and compare the overall success rate between the DG vs. 
NDG conditions (rightmost column in Fig 2). The overall correct 
rate under the DG condition is higher than that in the NDG 
condition by 3 ±  0.8 %. The difference, although small, is still 
statistically significant due to the large cumulative sample size (~ 
3500 observations per condition, 𝑝 <  0.01, 𝜒2 = 6.9).  

 
Figure 3: Percentage of students who drew a diagram solving 
each problem. *Difference is significant at the 0.05 level. ** 
Difference is significant at the 0.01 level. (Chi-squared test) 
The presence/absence of a problem diagram impacts students’ 
tendency to draw their own diagram as measured by the survey 
question. As shown in Figure 3, on 7 out of 12 problems, a 
significantly lower fraction of students (𝑝 < 0.01, 𝜒2 > 7, Chi-
square test) in the DG condition reported drawing their own 

diagram during problem solving than in the NDG condition. A 
noteworthy observation (Fig. 3) is the high variation in sensitivity 
of different problems to the DG/NDG condition. Combining the 
data across all 12 problems, students in the DG condition are 10% 
less likely to draw their own diagram than in the NDG condition 
(𝑝 < 0.001, 𝜒2 =  65).  

3.2 Discussion 
Perhaps the most surprising observation of this study is how little 
students benefit from a problem diagram. Even with the large 
sample size provided by MOOC, significant difference between the 
two conditions are only observed for 3 out of 12 problems, with the 
largest difference at 10% and the overall difference at merely 3%.   

Those results suggest that even though the benefits predicted by 
conventional wisdom and dual-coding hypothesis may still exist, 
the effect size might be small in an in vivo situation and only 
significant in the more extreme cases. For the majority of “normal” 
physics problems, our findings are consistent with previous studies 
[2–5] indicating that the benefit of a diagram is small. 

In stark contrast to the correct rate, the decision to draw is very 
sensitive to the DG/NDG condition on 7 out of 12 problems: when 
the problem diagram is removed, students are 10% more likely to 
draw their own. 

For instructors, the study suggests that for common physics 
problems of average difficulty, the benefit of adding a diagram may 
be too small to justify the resource and effort required to create it.  
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ABSTRACT 
ALEKS (Assessment and Learning in Knowledge Spaces) has 
recently shown promise for effectively training mathematics at 
equivalent levels to human teachers. However, not much is known 
about how the system accomplished this. In this paper, we 
describe the use of three data mining techniques used to analyze 
student data from an afterschool program with ALEKS. Our first 
analysis used DMM modeling and k-clustering to identify 
important groups of behaviors within ALEKS users and to show 
the importance of context for elements. Our second analysis 
focused on identifying learner behaviors that predict student 
learning during the program. The final analysis presents a method 
for determine learner persistence within the afterschool program. 

Keywords 

ALEKS, Afterschool programs, learning strategies, help seeking, 
persistence 

1. INTRODUCTION 
ALEKS is a web-based learning system with artificial intelligence 
components that are based in Knowledge Space Theory [1]. 
Instead of giving scores to measure a student’s overall mastery of 
the subject, the theory allows for a precise assessment of what the 
student knows, does not know, and is ready to learn next. The 
probability of mastery for a knowledge state increases as students 
correctly answer questions containing that problem type.  
ALEKS is a highly effective educational technology program 
shown to perform at the same level as other major ITS systems in 
mathematics [2]. In a four year evaluation of ALEKS in an 
afterschool setting, the students tutored by ALEKS or taught by 
expert teachers in one after-school program showed the same level 
of performance in a mathematics state test [3,4], and 
outperformed controls not participating in the program[5].  

1.1 Current investigation 
1.1.1 ALEKS afterschool program 
The afterschool program was implemented for 25-week after 
school. It was held twice a week for 2 hours each day. Students 
received three 20-minute learning segments with a 20-minute 
break between each. Student logs were recorded by ALEKS. The 
students were from five middle schools in west Tennessee. The 
schools were located in a mid-sized city and the surrounding rural 
area, having a largely economically disadvantaged population 
(68.2%) and large minority student enrollment (56.3% African 
American, 39.3% White, and 4.4% others). None of the five 
schools reach an average SES level of Tennessee (i.e., 54.4% of 
the students eligible for free or reduced-price lunch).  

1.1.2 Research question 
While the afterschool program demonstrated that students using 
ALEKS could perform at the same levels as student in teacher-led 
classrooms [3.5], the student’s learning process that led to this 
result is still unclear. Summaries of three methods are presented to 
show how popular data mining techniques can be applied to 
ALEKS log files to better understand student’s behavior in the 
ALEKS afterschool program. 

2. Learning strategies with DMM 
There are distinct advantages for analyzing sequences over raw 
frequencies. The frequency counts could indicate that the two 
students used the same strategy. However in context, the two 
students act differently because the patters have different 
sequences. Modeling learning sequences is not as direct as 
frequency counting. One way to measure sequence is to calculate 
similarities in sequences, and then cluster the sequences using the 
similarities. A method, modeling learning sequences with Discrete 
Markov Models (DMM) and clustering with a k-means algorithm, 
has successfully discovered help-seeking strategies in ITS [6].  

The analysis used 55,281 learning sequences of 372 students on 
ALEKS system. Typical activities students made include: correct, 
wrong, explain, mastery (added to pie), failed, and left the 
attempt. We recoded the same actions in a row as action - action2 
- action3 – action3 for easy interpretation.  

With DMM modeling and k-means clustering for all transitions, 
ten learning strategies emerged. These strategies were Cluster 1 – 
three correct practices in a row and reach mastery (9%), Cluster 2 
– Quick mastery (11%),  Cluster 3 – keep practice after mastery 
(6%),  Cluster 4 – Frequently request worked examples and only 
try when confident (7%), Cluster 5 – Request worked examples 
after wrong and get correct and mastery finally (12%), Cluster 6 – 
Request worked examples then quit without practice (13%), 
Cluster 7 – Request worked examples after wrong but still get 
wrong then quit (17%), Cluster 8 – Correct at 1st practice but 
wrong at 2nd & 3rd, then request worked examples but only get 
half practices correct then. (6%), Cluster 9 – All practice are 
wrong, request worked example after 2 wrongs, still get wrong, 
quit or reach failure. (9%), and Cluster 10 – All practice are 
wrong, reach failure and then 2nd failure (9%). 

3. Learning behaviors and learning outcome 
A sample from 204 students was used to predict students learning 
using behaviors within ALEKS. The learning behaviors recorded 
in ALEKS log files were categorized into help-seeking and 
practice. We utilized logistic mixed effects models to investigate 
the relationship of help-seeking and practice with learning 
outcome. Topics and students were random variables. The model 
also included student’s pretest which was measured by 5th grade 
TCAP score. The learning outcome was topic mastery (1 or 0).  
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3.1 Help-seeking and learning outcome 
The results of logistic mixed effects model indicated four 
significant help-seeking behaviors were predictive of learning (R2 

= .81, For full results See Table 1). We used 10-fold cross 
validation to validate the mixed effects model of help-seeking.  

Table 1. 
Student help-seeking behaviors that predict learning outcomes 
Learning behaviors Coefficient Std. Err z p 
Pretest .35 .08 4.32 .000 
Reading Explain first .42 .14 3.12 .00 
Proportion explain -46.86 1.51 -

31.13 
.000 

Explain after mistake -.36 .35 -1.05 .29 
Explain request latency -.01 1.29 27.79 .000 
Explain avoid mistake 35.99 .01 -2.40 .02 

3.2 Practice and learning outcome 
The results of logistic mixed effect model indicated five 

significant patters of making mistakes were related to learning (R2 

= .75, See Table 2 for results). A 10-fold cross validation was 
adopted to validate the mixed effects model of practice.  

Table 2 
Student practice behaviors that predict learning outcomes 
Learning behaviors Coefficient Std. Err z  p 
Pretest .17 .10 1.64 .10 
Initial Mistake .64 .09 7.23 .000 
Mistake (%) -5.35 .32 -16.85 .000 
Success (%) 12.65 .49 26.04 .000 
Self-correction -1.3 .24 -5.52 .000 
Self-correction time .01 .003 2.23 .03 

4. Prior knowledge, difficulty on persistence 
A sample from 114 student log files utilizing 92,235 lines of log 
files data from years two and three of the program that included 
date, time, topics attempted and the result of each trial were used 
to predict student’s persistence using prior knowledge topic 
difficulty and time period. The number of trials (T) was chosen as 
the measure of persistence. Then, three levels of persistence were 
defined: high persistence (T>15), medium persistence 
(10<=T<15), and non-persistence (T<5 and not reach mastery). 

4.1 Results  
Logistic regressions were performed to explore the effects of prior 
knowledge, topic difficulty and time period the learning took 
place on the likelihood of participant’s persistence related 
behavior. For high persistence, the model was significant, χ2(3) = 
124.14, p < .001, explaining 2.8% (Nagelkerke R2) of the variance 
of highly persistence students and correctly classified 96.2% of 
cases.  For medium persistence, the model was significant, χ2(3) = 
118.68, p < .001, explaining 1.8% (Nagelkerke R2) of the variance 
in medium persistence and correctly classified 93.3% of cases. 
Increasing topic difficulty was associated with increased 
persistence, but increasing prior knowledge and days learning in 
the system was associated with a reduction in persistence. For 
non-persistence, the model was statistically significant, χ2(3) = 

864.88, p < .001, explaining 6.8% (Nagelkerke R2) of the variance 
in non-persistence and correctly classified 62.5% of cases. 
Increasing topic difficulty was associated with an increased non-
persistence. Increasing prior knowledge was associated with a 
reduction in non-persistence. 

5. Discussion/conclusion 
The current paper present three methods to analyze learner 
performance which identify important clusters of learner strategies 
during learning with ALEKS, help seeking behaviors that predict 
learning, and persistence. The first analysis clustered learner 
strategies and demonstrated that context is important when 
looking at clusters. Thus identical elements or techniques can 
serve different functions when the sequence occurs at a different 
point in the learning process. The second two analyses use 
features from the ALEKS data logs to predict learning and 
persistence. The second analysis found that latency to seek help 
was negatively related to mastering a topic. This is a validation 
that ALEKS is working in that increase practice with the system 
was predictive of mastery of topics. For student persistence, while 
predicted variability was small, the models were very reliable and 
able to classify a large proportion of the data. The pattern of data 
for non-persistent behavior was interesting finding that lower 
prior knowledge students work on problems projected to be of 
greater individual difficulty which is predictive of lower 
persistence. Taken together these techniques indicate patterns that 
are easily detected and corrected within systems like ALEKS.  
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Extracting Measures of Active Learning and Student 
Self-Regulated Learning Strategies from MOOC Data

ABSTRACT 
Previous work has demonstrated that in the context of Massively 
Open Online Courses (MOOCs), doing activities is more 
predictive of learning than reading text or watching videos 
(Koedinger et al., 2015). This paper breaks down the general 
behaviors of reading and watching into finer behaviors, and 
considers how these finer behaviors may provide evidence for 
active learning as well. By characterizing learner strategies 
through patterns in their data, we can evaluate which strategies (or 
measures of them) are predictive of learning outcomes. We 
investigated strategies such as page re-reading (active reading) 
and video watching in response to an incorrect attempt (active 
watching) and found that they add predictive power beyond mere 
counts of the amount of doing, reading, and watching.   

Keywords 

MOOCs, active learning, self-regulated learning 

1. INTRODUCTION 
The growing popularity of MOOCs has prompted an examination 
of the effectiveness of prototypical MOOC activities such as 
watching video lectures. Most recently, Koedinger et al. (2015) 
explored the impact of watching video lectures, reading course 
content, and doing interactive activities. They found that doing 
activities had a larger impact than reading course content or 
watching videos. The authors attribute this effect, at least in part, 
to the fact that doing activities is necessarily an active form of 
learning, whereas reading content and watching videos is 
generally passive. 
However, not all reading and watching is done passively. This 
study returns to the dataset used in Koedinger et al. (2015) and 
attempts to extract new features that are representative of different 
types of active learning behaviors and student strategies. By 
exploring these finer-grained measures of student behavior, we 
are able to: 1) support the results of Koedinger et al. (2015) by 
providing more evidence that active learning behaviors are 
associated with better learning outcomes, and 2) demonstrate that 
evidence of active learning can not only be mined from doing 
data, but from reading and watching data as well. 

2. BACKGROUND 
2.1 Previously Explored Features 
Koedinger et al. (2015) designed three features to capture doing, 
watching, and reading behavior within a MOOC. Doing behavior 
was characterized by the total number of activities started 
throughout the course. Watching behavior was characterized by 
the number of times the user clicked play while viewing a video in 
the MOOC (referred to by the feature name “video”). In this 
count, consecutive plays of the same video were not counted. 

The course content and interactive activities often appeared on the 
same page, so estimating a measure of reading behavior was 
slightly more complex. Reading was estimated using a ratio of 
about 3.4 activities per page, and then subtracting pages viewed 
for activity access from total pages viewed. While not as precise 
as some other measures, the goal of this measure is to capture 
variation in student reading.  

Left unexplored are more complex features dependent on patterns 
of actions. We build off of the features previously explored in 
Koedinger et al. (2015) to generate features representative of 
student strategies embedded in watching and reading data. 

2.2 Finer-grained Features 
With respect to watching behavior, we extended beyond raw 
counts and instead looked at possible interactions between 
watching and doing. We hypothesized that students who complete 
problems while watching videos, and students who reference 
videos after incorrect attempts do better on the final exam. For 
reading behavior, we examined the impact of the common, albeit 
surface-level strategy of reviewing a page to re-read content [1,2], 
hypothesizing that students who review content do better on the 
final exam. 

3. DATA AND METHOD 
3.1 Data 
The data used are from a 12-week survey course titled 
“Introduction to Psychology as a Science.” The lectures, along 
with slides, a discussion form, quizzes, and exams, were provided 
via Coursera. The Open Learning Initiative (OLI) Learning 
Environment was embedded into Coursera to provide readings 
and interactive activities.  

The current study used a subset of this dataset, which contains 
only students who registered for the OLI portion of the course and 
took the final exam (N=939). On average each student generated 
2757 transactions, though the actual number varied greatly among 
students (SD=1909). This dataset is freely available (with 
administrator permission) via the online learning data repository 
and analysis service, DataShop [3] at:  

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=863. 

3.2 Model Building 
To understand the impact of the new features on learning 
outcomes relative to the previously explored features, a linear 
regression model was generated that included the three original 
watching, reading, and doing features. This model serves as a 
baseline. A new linear model was generated for each new feature. 
The new feature was added alongside the previously explored 
features to predict final exam score, unless it was redundant with 
another feature. 
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4. RESULTS AND DISCUSSION 
4.1 Baseline Model 
As expected, the baseline model showed that the doing measure 
had a high impact on final exam performance (p<.001). Neither 
the reading nor the watching measures were significant 
predictors. The results of this model can be seen in Table 1 in the 
row labeled “Baseline.” 

4.2 Watching 
4.2.1 Attempting Activities During Video Playback 
We hypothesized that some students may be watching videos and 
doing activities simultaneously, potentially answering questions 
as the relevant material is covered in the video lecture. To test this 
hypothesis, we extracted a new feature that represents the 
proportion of all activity attempts that occurred during video 
playback. When added to the baseline model, the proportion of 
attempts that occurred during video playback was predictive of 
final exam performance, though marginally significant (p<.1). 
This may indicate that some students are answering problems 
while watching relevant videos, and that this is a successful 
strategy. The results of this model can be seen in Table 1 in the 
row labeled ”% attempts during playback.” 

4.2.2 Referencing Videos After Incorrect Attempts 
We similarly hypothesized that some students may reference the 
video lectures after an incorrect attempt on an activity. To test 
this, we extracted a new feature representing the proportion of all 
video play actions that occurred after an incorrect attempt, but 
before the next attempt on the same problem. When added to the 
baseline model, the proportion of video play actions that occurred 
between attempts on the same problem was predictive of final 
exam performance, though again, marginally significant (p<.1). 
This may indicate that some students are referring back to videos 
to find correct answers. The results of this model can be seen in 
Table 1 in the row labeled ”% plays after incorrect attempts.” 

4.3 Reading 
4.3.1 Only-Reading Page Views 
In the current version of OLI course content and activities appear 
on the same page. To compensate for this, we counted the number 
of pages viewed without any activity attempts. To mitigate pages 
viewed quickly on the way to another page, we eliminated any 
page viewed less than 10 seconds from this count. When added to 
the baseline model (with “non-activity page views” removed for 
redundancy), the number of only-reading page views is predictive 
of final exam performance (p<.05). The results of this model can 

be seen in Table 1 in the row labeled “Only-reading page views.” 
Note that this is by no means a complete measure of all reading 
behavior because it misses any reading done on pages where the 
student also attempted activities. 

4.3.2 Re-reading Page Views 
We also found that, when added to the baseline model (again with 
“non-activity page views” removed for redundancy), the number 
of second page views that are reading only page views  (i.e., pages 
revisited with 0 activity attempts) is predictive (p<.001). This 
suggests at least some students review material by re-reading 
course content, and that this strategic reading is predictive of final 
exam performance. The results of this model can be seen in Table 
1 in the row labeled “pages re-read.” 

5. CONCLUSION 
Our work examines how evidence of active learning can be 
extracted from reading and watching data as well as doing data, 
and demonstrates that these measures can be predictive of 
learning outcomes. Re-reading pages (a measure of active 
reading) and attempting activities while watching videos (active 
watching) improved prediction of learning outcomes beyond the 
simple measure of active doing. While more research is needed to 
test their generality, these features may help establish a more 
nuanced characterization of learner strategies. 
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Table 1. Linear regression models that include new features. 

Added Feature Activities 
Started 

Non-Activity 
Page Views Video Added 

Feature(s) RMSE Adj. r2 AIC 

N/A (baseline) 1.8206*** 0.3632 0.1509 - 6.768 0.0785 6261.855 

% attempts during playback 1.8990*** 0.2776 0.2241 0.3753. 6.472 0.0781 5541.207 

% plays after incorrect attempts 1.9263*** 0.2653 0.1361 0.3845. 6.66 0.0811 5986.356 

Only-reading page views 1.7775*** - 0.1458 0.5129* 6.759 0.0808 6259.458 

Pages re-read 1.5436*** - 0.1437 0.8468*** 6.736 0.0871 6253.016 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 .' 0.1 ' ' 1 
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ABSTRACT
This research investigates the usage distribution of instruc-
tional resources shared among educators in an online learning
community. The usage of a resource is defined by the number
of unique educators who use (click on) it. We explored what
the usage distribution of these resources looks like and we
investigated what underlying mechanisms may have gener-
ated the observed distribution. Our results indicate that the
usage distribution of resources follows a power law. Further-
more, our results also suggest that an educator’s decision to
use a resource may be influenced by the prior decisions of
others. 82.6% of 2500 simulations of an information cascade
model developed to model the resource selection process of
educators resulted in a power law distribution as observed
in our data. Information cascades provide a natural way
of understanding how individuals may imitate the decisions
of others even when such decisions do not align with their
perssonal preferences.

1. INTRODUCTION
Research consistently indicates that online learning communi-
ties can improve the instructional practices of educators and
produce increases in student learning outcomes by providing
educators with access to learning resources and best prac-
tices shared by their peers [5]. Given the importance of these
community-contributed resources to educator instruction,
understanding the factors that encourage their usage is an
intriguing question with important implications for educator
instruction, student learning and agencies that support these
communities.

We explored this question in the context of a community

of Earth Science educators that used an online curriculum
planning tool called the Curriculum Customization Service
(CCS). The CCS provides educators with access to digital
versions of their class textbook, digital library resources and
community-contributed resources. This study is based on
6th-9th grade Earth Science educators that shared and used
community-contributed resources in the CCS over a period
of four academic years.

We began by exploring the observed usage distribution of
community-contributed resources in the CCS, and then turned
our attention to the influence of three mechanisms on the ob-
served usage distribution. First, we investigated how resource
visibility influences resource selection—postulating that the
position or rank of a resource in the list it is displayed in
may impact selection behavior. Second, we investigated how
the quality (or perceived quality) of a resource might have
influence on selection. Finally, we examine how social factors,
specifically how the decisions of others in the community,
provide insights into the observed resource usage distribution.

2. METHODS AND RESULTS
We discovered that the usage distribution of community-
contributed resources follows a power law. Also known as
Zipf, Pareto-Levy or scale-free distributions [4], a quantity
x obeys a power law if it is drawn from a probability dis-
tribution p(x) / x�↵ where ↵ is known as the exponent or
scaling parameter. Power laws appear in a wide array of man
made and natural phenomena [3] such as the distribution
of calls to telephone numbers, scientific paper citations and
the frequency of use of English words [4]. We determined
that the usage distribution of resources followed a power law
using software implementations1 2 of the rigorous statistical
approach of Clauset et al. [3] for detecting power laws in
empirical data. [3]. Our empirical data was found to follow a
power law with an ↵ of 4.44 and an xmin value of 15. Figure
1 illustrates that a power law provides a closer fit to the
complimentary cumulative distribution function (CCDF) 3

1plfit: https://pypi.python.org/pypi/plfit
2powerlaw: https://pypi.python.org/pypi/powerlaw
3The CCDF is defined by Pr(X � x)
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of the empirical data in comparison to the lognormal and
exponential distribution.

Figure 1: Comparisons of the complimentary cum-
mulative distribution function (CCDF) of the empir-
ical data, the power law, lognormal and exponential
distribution fits to the data.

2.1 Mechanisms behind the power law distri-
bution of resources

Resource position: Correlation tests between the mode,
median and last click position of resources and their us-
age show only a very weak correlation between the usage
of a resource and its position during the 2012-2013 school
year. This suggests that a resource position had little to no
influence on usage.

Resource quality: We then investigated the relationship
between resource quality (inferred before a user clicks on it)
and its usage in two steps. First, we used the presence of
a description in the listing of a resource as a marker of its
quality. Thus, resources with a description were deemed as
having high quality and those without a description were
regarded as low quality. We then investigated if there was a
statistically significant di↵erence in usage between resources
of high quality and those of low quality, and consequently dis-
covered no statistically significant di↵erence in usage between
resources of both groups. Our next investigation into the
impact of a resource’s quality on usage investigated whether
there was any correlation between the number of quality sig-
nals of a resource and its usage. To do this, we developed a
composite resource quality score that incorporated all signals
of a resource’s quality that can be inferred by a user before
clicking. These signals were mapped to the resource quality
indicators developed by Bethard et al. [1]. Our results show
only a weak correlation of 0.124 between resource quality
and usage (t = 2.8343, df = 516, p = 0.002387)

Social influence: Finally, we looked at the impact of aggre-
gate social influence on the usage of community-contributed
resources. We found a statistically significant positive cor-
relation of 0.634 at a p-value of 2.2e�16 between saves and
usage. Unlike our earlier tests on position and quality, this in-
dicates that the social influence conveyed through the saving
of resources may be in part responsible for driving usage.

We then explored if an information cascade model simulating
the decision making processes of educators can generate a
power law usage distribution as observed in our data. Our
model extends the informational cascade model of Bikchan-
dani, Hirshleifer, and Welch (BHW) [2] in three ways. First,
instead of the binary decision model of BHW, a decision
will be made between 1..r resources at any time. Second, in
contrast to the BHW model, the decision of an individual
is not always visible to others as a public signal. In our
context, the only public signal available is whether or not a
user saves a resource. After clicking on a resource, users will
leave public signals with a uniform random probably p. This
probability is exogenously fixed at 0.41—determined from
computing the ratio of saves to unique clicks on all resources
across all school years. Finally, a user’s private signal ps for
a resource r is drawn from a discrete uniform probability
distribution such that ps 2 [0, 1]. 2500 simulations of the
information cascade model described above were processed
with each simulation evaluated to see if they follow a power
law using the procedure of Clauset et al. [3]. Consequently,
82.6% of these simulations were determined to follow a power
law distribution. The outcomes of this experiment strongly
suggests that an information cascade model simulating the
decision making process of educators can lead to a power
law usage distribution as observed in our data. This pro-
vides strong support for the social influence hypothesis as a
generative mechanism for the observed usage distribution.

3. DISCUSSION & CONCLUSION
For agencies that support online learning communities, this
research has important implications for resource presentation
and recommendation. In presenting resources, social influ-
ence signals can be de-emphasized to limit the chances that
they will detract users from evaluating a resource’s inherent
quality. For example, in the CCS, the number of educators
that have saved a resource can be hidden and require active
e↵ort from users to be revealed. In recommending resources,
high quality but barely used resources can be recommended
to educators in ways that give them high precedence. This
could include personalized recommendations while active on
the platform or email recommendations. This paper is based
upon research supported by National Science Foundation
awards #1043638 and #1147590.
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ABSTRACT 
To enable teachers to monitor student engagement and improve 
classroom instruction, a data mining method and an Excel macro 
are developed in this work. The data mining method is based on a 
Time Series Cross Section (TSCS) framework and designed for 
application to students’ page views of course materials that are 
created over Moodle. The Excel macro generates TSCS tables of 
students’ page views and reflect the viewing behaviors of students 
over time as transitioning numerical values.  

Keywords 

 Time Series, Cross Section, page views student engagement, 
educational data mining 

1. INTRODUCTION 
A teacher is responsible for ensuring proper delivery of lessons in 
the classroom while simultaneously understanding the individual 
reactions and progress of students. Effectively satisfying these 
roles are essential to improving the quality of education. The 
problem is that in a class comprising dozens of students, 
accurately measuring individual reactions and progress is difficult 
even for experienced teachers. Another challenge is how such data 
can be provided to both educators and learners. A favorable 
strategy is to supply teachers with the results of appropriately 
conducted analyses in a timely manner so that analytical insights 
can be used to advance teaching enhancement. A tool that can be 
employed frequently in class for such purpose is equally desirable. 
We propose an Excel macro that semi-automatically generates 
TCSC tables from Moodle logs. The system monitors and records 
the time that students spend on browsing and their page views in 
class. It also provides data and suggestions that can be used as 
reference for reinforcing classroom instruction and keeping track 
of student engagement. 

2. RELATED RESEARCH 
Currently, analyzing Moodle logs [6] is primarily based on Excel 
or CSV data. Because the macro developed in this study is 
grounded in Excel and pivot table functions, teachers can easily 

obtain the summaries of the frequency at which students view 
course materials [1, 2]. Moodog [7] that Zhang and Almeroth has 
developed that incorporated an analysis function of log in Moodle. 
This system is able to analyze the course materials browsing rate, 
page views and viewing time of students. The analytical results are 
displayed on the Moodle screens, it represents interaction of the 
students and Moodle using graphs and the tables. 

Mazza and Dimitrova has been developed a system called  
CourseVis [3] that to track the student's behavior in an online 
class, it can be visualized by the graph along the access status to 
the content page to the course schedule. Also Gismo [4] also take 
advantage of the access history of Moodle and visualized using the 
access graph to the students of the courses and teaching materials, 
it is to understand the behavior of the students. In the current it 
has been provided so that it can be installed as part of the Moodle. 

Google Analytics [2] provides a website analysis service that 
enables data analyses grounded in different perspectives. Such 
service also helps educators improve course materials and lessons. 
Whereas Google Analytics can be used only by a Moodle 
administrator, the method proposed in this paper can be employed 
by any Moodle user. The developed macro is equally accessible to 
any Moodle course administrator. 

3. METHOD AND EXPERIMENTS 
Excel has several features designed to process qualitative data. 
Among these, the pivot table feature enables users to count 
qualitative data, such as strings; create a cross section table; and 
quantify input data. These functions were applied in this work. 
The tabulation generated in this study is referred to as a “Time 
Series Cross Section table” because an aggregated pivot table was 
created to incorporate time series data into the analysis. 

  
Figure 1. Overview of processing 

This study primarily used PDF files that are viewable through a 
PDF viewer by clicking on a link in the table of contents created 
in the Moodle topics format, which is commonly used in Moodle 
based courses. The TSCS tables generated in this research features 
columns on time, user full name, action, and information. These 
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data are aggregated by using Excel’s statistical functions and pivot 
table features to semi-automatically generate the TSCS tables. 

While delivering a lesson, the teacher can assess student status and 
if necessary, download Moodle logs to a specified folder and run 
the macro. Downloading of logs and macro processing take only 
tens of seconds. These features guarantee that sufficient time and 
focus is devoted to a lesson. After a lesson is completed, the 
teacher can run the macro (if necessary) without having to worry 
about processing time during a class. 

The developed macro was applied in the Introduction to “Social 
Data Analysis” class offered at the case university to demonstrate 
how a TSCS table is generated. Table 1 is the TSCS table of page 
views for course items (1-minute intervals). On December 9, 2015, 
the teacher discussed the lesson on attribute correlation for 90 
minutes. The lesson was initiated at 13:00 and ended at 14:30. 
Table 1 shows the TSCS table generated at 1-minute intervals, 
downloaded at 13:28 from Moodle logs, and aggregated. Page 
views of the course items were counted from the beginning of the 
lesson up to 13:28 (Table 1). 

The TSCS table for students (generated 2-minutes intervals) 
shows that viewing was concentrated from 13:12 to 13:16 and at 
13:24 (Table 2). Some students exhibited a delay in accessing the 
materials at 13:18, 13:20, 13:26, and 13:28. With a TSCS table for 
each student, the teacher can determine which students are 
viewing materials and which have recently browsed the materials 
(Table 2).  

Table 1. Example of TSCS table for course items generated 2-
minutes intervals 

 
Table 2 Example of TSCS table of students’ page views generated 
2-minutes intervals 

 

4. DISCUSSION AND CONCLUSION 
Processing of the macro is completed in several seconds. About 
using the macro during class, the application of the macro to 
produce a TSCS table for an actual class reveals that such table 

can be generated without any problems. Depending on the manner 
by which teacher proceeds with a lesson, however, certain cases 
have not enough time to use the macro. If students are asked to 
perform lesson related tasks, such as computing practice, a teacher 
can run the macro more than once. Aside from enabling teachers 
to understand the transitions that underlie students’ page views, a 
TSCS table for course items also provide data on variations in 
students’ levels of concentration (Table 1). In the classroom, the 
teacher manipulated the computer at the teacher's desk and 
displayed the course materials on the projector. Therefore, the 
number of students viewing the course materials is smaller 
because they were looking at the projector screen while listening 
to the teacher’s instruction; i.e. they received the lesson without 
opening the course materials on their own PC.  

Note that certain risks are associated with the use of the TSCS 
tables. The TSCS table has undeniable possibility of looking at the 
downloaded materials. Furthermore, after a teacher provides 
directions on opening a course material, students spend about 1 to 
2 minutes accessing the resource. The aforementioned issues 
should be considered before teachers advance to the next lesson. 
TSCS tables reflect the viewing behaviors of students over time as 
transitioning numerical values. During class, teachers can use the 
tables to visualize the responses of students to instructions. 
Additionally, the tables provide information regarding which 
student access teaching materials without following a teacher’s 
instructions and those who exhibit a delay in opening the materials 
(Table 2). These learners can be distinguished on the basis of 
transitioning numerical data. 
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ABSTRACT 
Learning management systems log users’ behaviors, which can be 
used to predict achievement in a course. This paper examines the 
implications of data representations (e.g., dichotomous vs. count 
vs. principled, per learning theory) and applies forward selection 
algorithms to predict achievement in a biology course. Accuracy 
is compared across models. The paper closes with a description of 
an ongoing experiment that employs the prediction model, tests 
how multiple versions of an early alert message impact students’ 
access of learning resources, and compares the influence of 
messaging approaches related to personalization and feedback. 

Keywords 
Learning Management Systems, Prediction Modeling, Early 
Warning Systems, STEM learning, Learning Theory 

1. INTRODUCTION 
In response to issues with student performance, retention, 
progression, and completion [5], universities and educational 
software providers are developing “early warning systems” to 
identify students likely to obtain poor outcomes [3]. This paper 
explores whether logs of students’ use of course content can 
inform models that predict these students’ performance. Further, if 
models can be developed that rely on only behaviors occurring in 
the earliest weeks of a semester [1], intervention activities can be 
initiated in time to help students prevent negative outcomes [2].  
Undergraduate students utilize a learning management system 
(LMS) for multiple functions. Based on design features of LMS 
resources, patterns of student activity may implicate how to 
represent data in prediction models [4]. For instance, it is more 
appropriate to model use of a downloadable file as a dichotomous 
event that should impact learning if it occurs once (indicating that 
a student has obtained the file) compared to zero times (indicating 
the student has not). In contrast, resources designed for repeated 
use online, such as practice quizzes, are best captured as count 
data. We examine implications of different representations of 
LMS resource use on the accuracy of prediction models, examine 
whether the most accuracy model predicts performance in 
subsequent samples, and whether the model can provide a basis 
for alerting students about their potential for poor achievement. 

2. METHODS 
2.1 Participants 
For the development of the prediction model, LMS logs capturing 
behavioral data were gathered for 326 students of an Anatomy and 
Physiology course at a large, public university in the U.S. Of 

those sampled, 73% were female and 36% were from 
underrepresented minority groups. To examine the application of 
the prediction model on future students, additional samples of 298 
and 349 students were drawn from the subsequent Spring and 
following Fall semesters. All three semesters employed an 
identical syllabus, an analogous schedule through the observation 
period, and a cloned set of LMS-hosted materials. 

2.2 Materials 
Prediction modeling used machine data extracted from server logs 
of users’ behavior-based activity in the LMS from the first four 
weeks of the course (i.e., prior to any exam).  Early warning could 
then be generated and sent in time for learners to adjust tactics or 
seek help prior to their first unit exam (i.e., in Week 5). The logs 
were aggregated and enriched using Splunk [7], a platform for 
search and modeling of machine data, and tables of metadata 
about content items. Classification of items into resource types 
was handled by human research programmers. Models were built 
and evaluated in RapidMiner [6]. 

2.3 Procedure 
The course that provided data was a traditional large lecture class 
with a companion site on the LMS, Blackboard Learn. Students 
could access course materials at any time from the start of the 
semester, and all use was optional. The frequency and timing of 
each resource access was recorded and coded by a unique item 
identifier and time stamp. To represent planful, timely, and 
recurring use of content items, counts of accesses were captured 
on a weekly basis. Total use was captured per week and for the 
four-week period. Behavioral data were merged with performance 
data. The final grade served as the outcome label. Grades were 
converted to a binary outcome reflecting students’ success (1) or 
failure (0) to earn a grade of 80%, the minimum “B” score needed 
to earn credit for STEM majors. Data were parsed into tabular 
form, enriched, and pivoted into counts per week per student in 
Splunk. Forward Selection, Weka logistic regression algorithms 
employing Leave-One-Out cross validation were produced for the 
models, which were evaluated for accuracy (e.g., κ, recall).  

2.4 Model Estimation and Application 
Four versions of the data were generated. The first version 
included the count of times a student accessed each content item. 
The second version treated all data as dichotomously used or not 
used in a period. The third version included both count of logs and 
the dichotomous versions of the data. The final version was a 
principled model guided by learning theory and awareness of 
instructional design intentions of the instructor; a dichotomous 
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representation was used for items that could be used only once 
(i.e. the download of a notes document) and count representations 
for resources that should provide benefits when used repeatedly 
(e.g., accessing a quiz to repeatedly self-test). 
Based on the Kappa (κ) statistic and supplemented with recall 
metric (i.e., critical for identifying those predicted to struggle), the 
most accurate model produced during the test phase was then 
applied to the subsequent two semesters of the same biology 
course. Content names and date ranges of access were aligned and 
all potential attributes, as both dichotomous and count, were 
transformed using the prediction model equation to calculate z-
values for all students, which was then converted to probability. A 
probability greater than 0.5 corresponded to passing with a B or 
better and a probability less than 0.5 corresponded to C or worse.  

3. RESULTS & DISCUSSION 
Differences in prediction accuracy appear in Table 1. 
Representing the data as only count or dichotomous produced 
models with accuracy better than chance, (κ = .161 and κ = .165, 
respectively). The model with data as both count and dichotomous 
improved the accuracy to κ = .224, however the recall of students 
to be targeted by the early warning system (i.e., those who fail to 
obtain a B or Better) fell. Compared to the metrics obtained by the 
first three models, the model employing principled representation 
produced the best combined accuracy, κ = .212; recall = 84.24%. 
It appears that drawing inferences from LMS design features and 
learning theory to make data representation choices maximizes the 
predictive accuracy of a model. We next tested its subsequent 
utility for identifying students at risk of poor outcomes. 

3.1 Application of Prediction Models to 
Subsequent Samples  
Using the most accurate model (Principled, Table 1), attributes 
and weights were applied to the new data sets to generate 
predictions. Kappa decreased to .071 compared to training and 
testing phase (κ = .212). Recall achieved with spring data was 
85.14%, on par with recall obtained with the training (84.24%). 
This model accurately identified more than 4 of 5 future biology 
students who would eventually fail to earn a B. Of those labeled, 
half did obtain a B or Better (precision = 51.85%, initial 
principled model precision was 63.01%). This level of accuracy is 
sufficient to warrant consideration of the model for utilization in 
an early warning system as it is high enough to provide accurate 
warnings to students at risk of a poor outcome. 

4. ONGOING RESEARCH 
4.1 Implementation of Early Warning 
Systems 
A follow-up study is currently underway to examine the 
application of the prediction model in an early alert system and 
whether issuing an alert to students could change student behavior 
or achievement. The principled version of the data model was 
programmed into Splunk in order to calculate the likelihood the 
students (N = 430) in the current semester would obtain a B or 
better. An early warning message was sent from the instructor 
through the LMS correspondence tool. Each message included a 
salutation, indication of the upcoming exam, and a redirect of the 
student to helpful resources available on the LMS for students to 
use (i.e., advice from A or B-earners from prior semesters, about 
tactics used; modules training students to apply these tactics). The 
students were randomly assigned to 8 groups, which included 

varying combinations of the message to test the importance of 
personalizing the message and framing with feedback. The 
message was sent Monday of Week 5, four days before their 
exam. 

4.2 Preliminary Findings 
Of the 326 students that were messaged, 26.4% accessed the 
Advice page within 24 hours after receiving the message. In total, 
37.4% of the messaged students accessed the Advice page before 
the exam later that week. Effects on motivation, behavior, and 
achievement will be analyzed when available. 

Table 1. Prediction models using different versions of data 
and using best model on subsequent semesters 

Data 
representation κ 

A
cc
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(%

) 
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R
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l (

%
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True: Predicted 

1:1 1:0 0:1 0:0 

count .16 61 61 82 48 94 34 150 
dichotomous .17 60 63 72 63 79 52 132 

both .22 63 65 73 69 73 49 135 
principled .21 63 63 84 51 91 29 155 

Future Semesters 
Spring .07 53 52 85 33 117 22 126 

Fall .15 58 57 81 56 112 34 147 
Note. The baseline for test data versions (count, dichotomous, 
both & principled) is 56%. The baseline for the Spring use data is 
51% and the baseline for Fall use data is 52%. 
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ABSTRACT
This paper extends our previous work on a Multi-Feature
Hierarchical Sequential PAttern Mining (MFH-SPAM) algo-
rithm for deriving students’ behavior patterns from their ac-
tivity logs in an Open-Ended Learning Environment(OELE).
The new algorithm is computationally efficient, and we com-
pare the results generated by the two algorithms.

1. INTRODUCTION
Open-Ended Learning Environments [2, 5] present students
with a challenging problem-solving task, along with informa-
tion resources and tools for solving the task. The complexity
of the learning task drives a need for dynamic and adaptive
scaffolding to help novice students become effective learners.
Learner models and formative assessments need to include
representations that capture students’ problem-solving pro-
cesses in addition to their knowledge and performance in the
task domain. The wealth of data that can be collected from
computer-based environments provides opportunities for de-
veloping algorithms to accurately model, understand, assess
students’ learning behaviors and strategies.

In past work, we have developed a hierarchical sequence min-
ing methods [3] for assessing and comparing students’ learn-
ing strategies and behaviors from their interaction traces
collected from OELEs. We then applied a classifier wrap-
per method [4] to discover smaller subsets of mined patterns
that better differentiate students behavior patterns between
two groups of students [7]. To address the computational
complexity problems with this method while retaining the
advantages of the hierarchical approach, this paper applies
another selection criteria: Information Gain [6] to derive
differential patterns. We conduct experimental studies to
analyze student behaviors and compare the two methods.

2. BACKGROUND: MFH-SPAM
Sequential PAttern Mining (Sequential PAttern Mining) al-
gorithm performs a Depth First Search (DFS) traversal to
find all possible patterns that exceed a pre-defined frequen-
cy threshold from a data set that contains sequences of item
sets [1]. SPAM employs a bitmap representation for the
patterns and data sequences, which makes it easy to (1)
derive pattern extensions and (2) find pattern matches in
data sequences during traversal. The DFS search proceed-
s by extending action sequences with (1)Sequence-extension
step (S-step), which extends pattern by adding a new item-
set to the end of current pattern sequence, and (2)itemset-
extension step (I-step), which adds a new item to the last
itemset of a current sequence as an extension.

The MFH-SPAM algorithm further extends the original S-
PAM algorithm by adding two steps: (1) the hierarchical-
extension step (H-step), which provides a way to get into
more details for given actions by bringing in hierarchical
representations, and (2) the feature-extension step (F-step)
which makes patterns more informative by associating fea-
tures with corresponding actions [7]. As a result, MFH-
SPAM finds many more patterns compared to the SPAM
algorithm. MFH-SPAM also allows for gaps between item-
s(actions) that make up a pattern [3] to accommodate noise
tolerance in the action sequences.

In general, even for reasonably-sized domains, the basic MFH-
SPAM algorithm returns thousands of patterns, and this
presents challenges in extracting the more important pat-
terns that best characterize and differentiate student behav-
ior. Given the computational complexities of the classifier-
wrapper method used earlier [7], this paper develops a new
selection criterion based on information gain [6] to identify
activity patterns that distinguishes students based on their
pre- to post-test learning gains measured outside of the sys-
tem. The information gain for a given pattern P1 is comput-
ed from the reduction in Shannon entropy when P1 becomes
known, where Shannon entropy for a sample data is a mea-
sure of its homogeneity. We focus on analyzing patterns with
high information gain that are good differentiators between
student groups.

3. CASE STUDY AND RESULTS
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We run our case study on a dataset that was generated from
an experiment we ran with 98 middle school students who
used a learning by teaching environment, Betty’s Brain, in a
science class for a period of approximately six weeks. Learn-
er are tasked to construct a correct causal map of a science
process by reading resources, and use the knowledge learned
to construct and assess the correctness of their causal map
during the study. In one of our current study, students
worked on a thermoregulation unit.

The students’ learning gains from pre- to post-test provided
us with two equally distributed groups: 49 high performers
in Group 1, and 49 low performers in Group 2. We then
ran the two versions of the MFH-SPAM algorithm: (1) with
the classifier wrapper method, and (2) with the information
gain methods to select the top 10 patterns that best differ-
entiate the two groups. The results, presented in Tables 1
and 2 respectively, list the mean frequency of usage and the
standard deviation for each selected pattern.

Table 1: Classifier Wrapper method.
Pattern Mean(STD) Mean(STD)

High Group Low Group
editlink;quiztaken 25.9(21.9) 10.6(13.3)
editmap-eff-sup 24.1(17.6) 12.3(11.5)
quiz;editmap 14.0(18.5) 7.5(12.7)
editmap-eff;quiz;expl 11.2(9.7) 5.9(8.6)
quiz;editlink;read 6.1(7.6) 2.3(2.5)
read-shrt;read;editmap;linkadd 4.0(3.3) 2.4(1.7)
read-long 19.8(30.2) 34.0(29.2)
read-shrt;editlink 13.8(9.1) 19.7(10.1)
editmap;quizview 6.8(5.6) 9.7(10.9)
editmap-ineff-unsup;read 5.6(5.1) 8.5(6.4)

Table 2: Patterns with High Information Gain
Pattern Mean(STD) Mean(STD)

High Group Low Group
quiz 95.3(51.2) 72.9(51.1)
expl 90.4(75.8) 70.0(68.9)
editlink;quiztaken 25.9(21.9) 10.6(13.3)
editmap-eff-sup 24.1(17.6) 12.3(11.5)
editmap-ineff;quiz 20.3(16.3) 14.6(12.7)
editlink;quiz;editmap 16.7(21.4) 7.2(16.1)
quiz;editmap;read 6.4(7.7) 2.8(2.9)
quiz;editlink;read 6.1(7.6) 2.3(2.5)
read-long 19.8(30.2) 34.0(29.2)
take-notes 9.5(11.3) 23.9(24.4)

Both methods find patterns that are good differentiators
between the two groups of students. For example, read-
long (sufficiently long duration read actions) has a high to
low performer use ratio of 1 : 2. On the other hand, the
quiz followed by an edit link followed by a resource read
(quiz;editlink;read) has a high to low performer use ratio of
2.75 : 1. Another pattern editlink;quiztaken (high to low per-
former use ratio of 2.5 : 1) found by both methods indicates
high performers are better able to use the quizzes(quiztaken)
to check the correctness of their maps, and to direct their in-
formation seeking activities. The classifier wrapper method

applying cross validation where decision tree is built multi-
ple times for each chosen pattern, results in larger amount of
calculations for information gain, whereas our new method
which theoretically finds patterns with highest information
gain based on i-frequency, calculates information gain on-
ly once for each pattern. Moreover, the new method tends
to find shorter patterns because that shorter patterns occu-
pying fewer bits in action sequences for i-frequency based
information gain calculation, have lower value of pattern
entropy which lead to higher information gain compare to
longer patterns with similar usage ratio [6].

4. DISCUSSION AND CONCLUSIONS
In this paper, we have extended an initial version of MFH-
SPAM by developing additional selection criteria for pattern
selection and also allowing for gaps in the pattern generation
from action sequences. The new method is computationally
efficient than the previous approach(running time reduced
from 28 seconds to 16 seconds) while retaining the strength
of finding frequent patterns that are good differentiators.

In future work, we will perform more systematic analysis
of the differences between groups using hypothesis testing
methods. In addition, we will use correlational analysis to
study in more depth the relations between behaviors and
performance. We will also work toward using the patterns
derived to detect learner behaviors online, and develop s-
caffolding and hint mechanisms that combine behavior and
performance analysis to help students become better learn-
ers in OELEs.
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ABSTRACT
This paper explores the problem of modeling student knowl-
edge in complex learning activities where multiple skills are
required at the same time and combinations of skills might
carry extra specific knowledge. We argue that in such cases
mastery should be asserted only when a student can flu-
ently apply skills in combination with other skills. We pro-
pose a data-driven framework to model skill combinations
for tracing students’ deeper knowledge, and also propose a
novel evaluation framework which primarily focuses on the
mastery inference quality. Our experiments on two real-
world datasets show that proposed model significantly in-
creases mastery inference accuracy and more reasonably dis-
tributes students’ efforts comparing with traditional Knowl-
edge Tracing models and its non-hierarchical counterparts.

Keywords
complex skill, multiple skill, composition effect, robust learn-
ing, deep learning, Knowledge Tracing, Bayesian Network

1. INTRODUCTION
Knowledge Tracing (KT) [2] has been established as an ef-
ficient approach to model student skill acquisition in intel-
ligent tutoring systems. The essence of this approach is to
decompose overall domain knowledge into elementary skills
and map each step’s performance to the knowledge level of
a single skill. However, KT assumes skill independence in
problems that involve multiple skills, and it is not always
clear how to decompose overall domain knowledge. Recent
research demonstrated that there is additional knowledge
related to specific skill combinations; in other words, the
knowledge about a set of skills is greater than the “sum”
of the knowledge of individual skills [6], some skill must be
integrated (or connected) with other skills to produce behav-
ior [9]. For example, students were found to be significantly
worse at translating two-step algebra story problems into ex-
pressions (e.g., 800-40x) than they were at translating two
closely matched one-step problems (with answers 800-y and
40x) [6]. In particular, research on computer science ed-
ucation has long argued that knowledge of a programming
language cannot be reduced to a sum of knowledge about dif-
ferent constructs since there are many stable combinations
(patterns, schemas, or plans) that have to be taught. We
present a data-driven framework for modeling skill combi-
nations and evaluating student models for adaptive tutoring
in order to achieve deeper knowledge tracing.

2. PROPOSED FRAMEWORK

Figure 1: The Bayesian network structure of CKM-HSC.

We construct a Bayesian network called conjunctive knowl-
edge modeling with hierarchical skill combinations (CKM-
HSC) with the following knowledge structure:

I The first layer consists of basic individual skills (e.g.,
K1) that capture the basic understanding of each skill.

II The intermediate layers consist of skill combinations
(e.g., K1,2), which can be derived from smaller skill
units that capture a deeper knowledge level of each in-
dividual skill. Now, we consider only skill combinations
from two basic individual skills.

III The last layer consists of Mastery nodes (e.g., M1) for
each individual skill, which reflects the idea of granting
a skill’s mastery based on relevant skill combinations’
knowledge levels. Now, we compute the joint probabil-
ity of each relevant skill combination being known as
the probability of the current skill being mastered.

To learn the network structure, we propose a greedy search
algorithm where a pre-ordering of the skill combination can-
didates is given as input, and during each iteration, the data
likelihood of the network incorporating a new skill combina-
tion is compared to that of the optimal network so far. We
now replace the search procedure with an empirical thresh-
olding method, which generates an almost identical network
with much less time. It selects combinations based on the
following criteria: 1) the difficulty difference between the
combined skill and its hardest individual one should be pos-
itive and large; 2) the difficulty of the combined skills should
be high; 3) an item with higher difficulty should be more
likely to require combined skills; and 4) each item can only
have a limited number of skill combinations. To perform a
dynamic knowledge estimation, we use the roll-up mecha-
nism, as in [1]. For performance prediction, we apply Noisy-
and gates on item nodes (e.g., O1) as in [1, 3].
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Table 1: Dataset descriptive statistics.

Dataset #obs. #items #skills avg #skills/item #users %correct
SQL 17,197 45 34 5 (from 1 to 10) 366 58%
Java 25,988 45 56 5 (from 1 to 11) 347 67%

To address the limitation of predictive performance met-
rics [7, 5], we propose a multifaceted data-driven evaluation
framework that includes mastery accuracy and effort, the
item discriminative index [3], and performance prediction
metrics. The basic idea of the mastery accuracy metric is
that once a student model asserts mastery for an item’s re-
quired skills, the student should be unlikely to fail the cur-
rent item. Meanwhile, the mastery effort metric empirically
quantifies the number of practices that are needed to reach
a level of mastery for a given set of skills. These metrics
extend our recent learner effort-outcome paradigm [5] and
Polygon multifaceted evaluation framework [7].

3. STUDIES
We used datasets collected from SQL and Java program-
ming learning systems from 2013 to 2015 at the University
of Pittsburgh. Table 1 shows the descriptive statistics (with
multiple attempts). We conducted a 10-fold student strati-
fied cross-validation. For each metric, we reported the aver-
age value across 10 folds and with a 95% confidence interval,
based on the t-distribution. We used the Bayes Net Tool-
box to construct all the models. On average, we extracted
14 and 30 skill combinations on SQL and Java datasets.
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Figure 2: Mastery accuracy and effort comparison on Java
dataset. Grey lines denote regions with enough data points
to compute mastery metrics and with high enough values to
be considered as proper mastery thresholds.

Our first study investigates whether the proposed skill com-
bination incorporated model is better than traditional KT
models. We compare classic Knowledge Tracing (KT-Single)
[2], Weakest Knowledge Tracing (WKT) [4], and our pro-
posed conjunctive knowledge modeling without (CKM) or
with skill combinations (CKM-HSC) (Figure 2). On both
datasets, CKM-HSC has a comparable predictive perfor-
mance to other models, but it has significantly better mas-
tery accuracy than other models. Although it requires more
efforts to reach mastery, we think that such “extra” prac-
tices is necessary for reaching an acceptable mastery infer-
ence accuracy. We further conduct a drill-down analysis
for mastery effort by splitting skills into two groups based
on whether they involve skill combinations. We find out
that for skills that involve skill combinations, WKT would
blindly distribute students’ efforts among different applica-
tion contexts, risk students reaching mastery by practicing
simple problems, and also guide students to spending more
efforts on skills without combinations. On the other hand,
CKM-HSC saves students’ efforts on basic individual skill
understanding and on skills without skill combinations. It

requires students to focus more on applying skills in differ-
ent contexts combined with other skills. We further conduct
two studies demonstrating that using a hierarchical struc-
ture is better than using a flat independent structure for
incorporating skill combinations, and that our modeling can
be improved by adding external knowledge (such as expert
knowledge or skill combinations’ textual proximity) for skill
combination extraction. Details are reported in [8].

4. CONCLUSIONS
Our work serves as a first attempt to consider the skill appli-
cation context for modeling deeper knowledge in a student
model using data-driven techniques. We also propose a novel
data-driven evaluation framework for such complex skill stu-
dent models. We only consider pairwise skill combinations as
the skill application context; it will be to interesting to con-
sider more complex skill combinations. Such combinations
should have a natural connection with the concept of chunk
in cognitive psychology for defining expertise. Meanwhile,
to address the problem of computational complexity we now
employ some heuristics. We should explore alternative ap-
proaches and more efficient techniques. We will also consider
working with larger datasets and datasets with more sparse
connections among variables. We expect that our model can
provide more benefits when deployed in real-world tutoring
systems. For example, it might enable better remediation
and raise students’ awareness of pursuing true mastery.
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ABSTRACT
The task of re-organizing the teaching materials to generate concept
maps for MOOCs is significant to improve the experience of learning
process, e.g. adaptive learning. This paper introduces a novel and
tailored Semantic Concept Map (SCM), and we design a two-phase
approach based on machine learning methods to generate it.

1. INTRODUCTION
With the increasing development of Massive Open Online Courses
(MOOCs) in recent years, it is believed that how to efficiently re-
organize the course materials to serve for better learning is worthy
of discussion [6].

In the traditional computer-assisted education, concept map is useful
but usually involves domain experts. Considering the large amount
of MOOCs, an information system that behaves like an expert and
provides the skeleton of a concept map can be more effective.

Unlike partially organized e-textbooks, we can not directly identify
concepts from various MOOC materials merely through stylistic
features, so machine learning based method is leveraged. Moreover,
in order to reduce the cost of labelling, semi-supervised framework
is adopted in this paper. Rather than generating various relationships
between concepts, we define a novel Semantic Concept Map (SCM)
which considers semantic similarity as the only relationship without
regard to complex and hierarchy ones. Due to its concision and uni-
versality, this map can be applied widely to more courses. Figure 1
shows the two-phase approach including 1) concept extraction and
2) relationship establishment.

2. RELATED WORK
Plenty of work about automatically constructing concept maps has
been studied with data mining techniques, such as association-rule
mining, text mining and specific algorithms [7]. However, these
methods are designed for either specific data sources or special
learning settings. Due to the diversity of MOOCs settings, they can
hardly be leveraged here.

Figure 1: Procedure of Semantic Concept Map generation.

The task of terminology extraction in computer science field is
similar to our machine learning based concept extraction [1], but
those methods mainly concern about proper nouns or named entity
recognition (NER) for generating knowledge graph [5]. Actually
this kind of task is corpus-dependent.

3. GENERATING SEMANTIC CONCEPT MAP
Semantic Concept Map. SCM is composed of entities and edges.
Formally, denote SCM = {C,R} where C = {c1,c2, ...,cn} is a set
of concepts. Each concept ci is denoted by a terminology (including
phrase), and unique in C. R = {r11,r12, ...,ri j, ...,rnn} is a set of
relationships between concepts. Each weight value ri j means the
degree of semantic similarity between ci and c j. The key steps
shown in Figure 1 are following.

1.Textual Preprocessing. This step includes tokenization, filtering
stop words and removing code and html tags, as well as word
segment for Chinese if necessary. We also conduct conflation. All
data are randomly shuffled before being learnt and tested, which is
partially equivalent to cross-fold validation.

2.Concept Extraction. We leverage CRF+semi-supervised frame-
work to solve this task as a problem of sequence annotation [2].
The labels needed to be predicted of each word are defined as three
categories: B, I and O, which respectively mean the beginning word
of a concept, the internal word of a concept and not a concept.
Feature definition is a key part of machine learning method. Then
we design the course- and instructor-agnostic features to meet the
diverse materials including stylistic, structural, contextual, semantic
and dictionary features. In order to reduce the heavy cost of human
labeling, the idea of self-training is leveraged when training data [3].

3.Definition of Node and Edge. The weights of nodes could have
different definitions. For example, the more frequent a concept is
present in the lecture notes, the more fundamental it is. So the metric
of term frequency (tf ) can be defined as the node weights, named
for fundamentality. The diverse teaching materials put together are
partitioned to documents corresponding to each video. Moreover,
low-frequency concepts may be the key ones of each corresponding
unit. So we can define the second metric, Term Frequency and
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Table 1: Performance of different concept extraction methods.
Precision Recall F1

TF@500 0.402 0.500 0.446
TF@1000 0.600 0.746 0.665
BT 0.099 0.627 0.171
SC-CRF 0.890 0.842 0.865
SSC-CRF 0.875 0.783 0.826

Inverted Document Frequency (tfidf ) which is ideal for quantifying
the importance of a concept. As to the weights of edges, the Cosine
distance of two word vectors of concepts are defined as the semantic
similarity, because the word vectors learnt by word2vec have a
natural trait that semantically similar vectors are close in the Cosine
space and vise verse [4].

4.Learning Path Generation. The learning path depends on the
definition of node and edge in the last step. For example in terms of
importance, starting from some concept, each time we choose top k
most semantically similar concepts and regard the most important
one within the top k as the next node of the path. When choosing the
subset of top k candidates, we also consider their locational order of
first appearance in the lecture notes.

4. EXPERIMENTS
We collect the teaching materials of an interdisciplinary course
conducted on Coursera, including lecture notes (video transcripts),
PPTs, questions. The instructors and two TAs help label the data.

We select several baselines to extract concepts from MOOCs mate-
rials for comparison. The preprocessing is identical for baselines.

• Term Frequency (TF): This is a statistic baseline.
• Bootstraping (BT): A rule-based iterative algorithm given

several patterns which contain true concepts.
• Supervised Concept-CRF (SC-CRF): A supervised CRF

with all features but semi-supervised algorithm.

Table 1 shows the performance between baselines and our approach
(SSC-CRF). The results also show the necessity of machine learning
based methods. Figure 2 manifests that semi-supervised learning
is competitive with supervised learning. But considering only half
labor consumed, semi-supervised learning is feasible and necessary.

Based on the definitions of node and edge mentioned before, the
two kinds of SCMs generated look like Figure 3. Starting from the
most fundamental concept, Node, the first five successors on the
path are: Edge→ Element→ Set→ Alternative→ Vote, which are
from basic concepts to advanced ones. Starting from the most im-
portant concept, PageRank, the first five successors on the path are:
PageRankAlgorithm→ SmallWorld→ Balance→ NashBalance→
StructuralBalance. We can see they are not only important along
with the course syllabus, but also semantically similar.

5. CONCLUSION
In this paper we mainly propose an approach to re-organize existing
teaching materials to generate a novelly-defined SCM for facilitat-
ing the learning process in MOOCs. This work is a promising start
for content-based adaptive learning since hierarchical and multiple
relationships of a complete concept map can be incrementally replen-
ished, and meanwhile this map can be extended to more courses and
domains. Experiments show a good efficacy of the semi-supervised

Figure 2: Performance of supervised and semi-supervised learning.

(a) For fundamentality (b) For importance
Figure 3: Two kinds of Semantic Concept Map.

machine learning algorithm and the CRF framework. And the learn-
ing paths defined based on SCMs can be humanly modified further
to satisfy the requirements of different learners. In future work
SCM could be utilized for generating course Wiki via crowdsourc-
ing, hinting concept in forum discussions, etc. Large-scale student
knowledge tracing in MOOCs is also doable by associating concepts
with questions. Moreover, methods of transfer learning and deep
learning may be more effective to extract the abstract concepts from
multiple courses and diverse materials.
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ABSTRACT 
The popularity of online education environment is growing due to 
the Massive Open Online Course (MOOC) movement. Many types 
of research in educational data mining (EDM) and Learning 
Analytics have focused on solving assessment challenges; however, 
the large number of students enrolled in MOOCs makes it difficult 
to assess learning outcomes. Thus, it is necessary to develop an 
automatic learning judgment system. In this study, we designed and 
developed a minimum learning judgment system that assesses 
minimal learning using a word game performance measure. In the 
system, a student watches a video containing educational content 
and is subsequently tested on information retention by playing a 
word game that tests the student on the video content. This learning 
judgment system tests minimal learning of educational content 
without requiring significant effort from either the instructor or the 
student. We conducted experiments to show a performance of the 
system and the result shows about 95% (Pass judgment: 95.1%, Fail 
judgment: 94.8%) performance. 

Keywords 

MOOC, Flipped Learning, Judge System, Online Education, Data 
Collection, Educational Data Mining. 

1. INTRODUCTION 
Over 10 million people participate in online learning courses, 

which has resulted in the proliferation of the use of MOOCs. 
Consequently, the number of online courses that implement online 
learning platforms, such as Moodle, Coursera, and edX has steadily 
increased in online education. Online learning platforms provide 
useful learning data for learner modeling and learning analysis. 
Learning data provide various types of information that can assess 
student participation in online courses, such as the number of logins, 
the number of postings made to discussion boards, and various 
types of learning outcomes [1]. However, due to the high number 
of students participating in MOOCs, one critical problem that must 
be addressed is how instructors can conduct learning assessments 
that determine learning. Traditional assessment methods are not 
suitable for online education. Most existing most online learning 
platforms require a simple quiz and online exam based on 
traditional assessment methods [2]. Many quizzes and exams can 
be a burden to both instructors and students. Thus, it is necessary 
to develop an automatic learning judgment system that can quickly 
and simply assess learning. 

                                                                 
1 Minimum Learning Judgment System: http://www.mljs.org 

In this paper, we aim to design and develop a minimum learning 
judgment system. Our approach aims to solve learning assessment 
challenges in online education in order to minimize the amount of 
effort required by teachers and learners in assessing learning. 
Anyone can access and utilize this system 1  at no cost for the 
purposes of conducting research and collecting educational data. 
We will present the overall system process and the experiments that 
were conducted to test the system. 

2. MINIMUM LEARNING JUDGMENT 
In this paper, we define minimum learning as a behavior state of 
initial learning, which is automatically determined after a student 
watches a video and is assessed using a recognition process that 
measures the frequency effect theory of words used in the video 
content [3]. In other words, watching video content is the minimal 
behavior of learning apart from understanding. It does not mean 
that system can assess understanding of content knowledge. 

 
Figure 1. Overall System Process 

Figure 1 presents the overall system process for users. After 
registering an instructor, the instructor can add classes and upload 
video contents. Words are extracted from the uploaded video 
content and word frequency is automatically calculated. After 
registering a learner with a class, the student can learn by viewing 
video content that the instructor has uploaded. After viewing the 
video, the student can begin the word game. In the word game, the 
student decides whether words did or did not appear in the video. 
The system judges minimum learning by measuring the student’s 
response time and accuracy in the word game. Finally, the 
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instructor checks the minimum learning results, the word game logs 
and a response time for each word.  

The words that appear in the word game use word frequency from 
uploaded video content and the Sejong corpus (made by 
www.sejong.or.kr). In order to select words for the word game, 
words are selected by measuring the weight of each word, which is 
based on both previous videos that the student learned and on the 
current video content that student is watching. Each student plays a 
word game with a different word set in which different weights 
correspond to different learning logs. The weight of a word is 
calculated as follow: 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖  × 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑁𝑁
𝑛𝑛
� + 1                                               (1) 

A weight wij > 0 is associated with each word i in a video content j. 
Let tfij refer to the frequency of word i in video content j. Let N refer 
to the number of video contents viewed by the student in the entire 
set of video contents. Let n be the number of video contents where 
wij appears in N. 

In total, 14 words are selected for the word game. The seven 
highest-frequency words are selected from video content and seven 
words that have the same word length as the video content words 
are selected randomly from the Sejong corpus. These latter seven 
words that do not appear in video content will referred to as “noisy 
words.” The reasoning behind choosing seven words is that the 
video content is based on short-term memory (STM) [4]. When the 
word appears, the student chooses the word within two seconds. 
According to language cognition theory, cognition time of a known 
word takes between from 700ms to 1200ms [3]. Taking into 
consideration the conditions that may affect the speed of web 
environment networks, this system adds and subtracts 500ms to the 
recorded response time. 

3. EXPERIMENTS 
3.1 Participants and Analysis 
In order to get a criteria score, we conducted an experiment in 
which we tested 60 undergraduate students. Thirty-two of the 
students were male, 28 of the students were Female, and the ages 
of the selected participants ranged from 19 to 27. Each participant 
viewed video content and then played the word game. Then, 
participants’ attention levels were assessed on a five-point scale 
using the Likert-type scale. The data collected from the system was 
analyzed based on the expectation-maximization (EM) algorithm 
using WEKA. Table 1 presents the results of our analysis. 

Table 1. Result of Clustering 

Cluster A B 

Attention 1.004 (SD. 0.027) 3.6084 (SD. 1.0678) 

Score 6.0588 (SD. 2.0694) 9.5569 (SD. 2.566) 
 

Cluster A refers to the set of participants who did not pay attention 
while watching the video content. On average, the members in 
Group A selected six of the 14 words correctly. Cluster B refers to 
the set of participants who paid attention while watching the video 
content. On average, the members in Group B selected 9 of the 14 
words correctly. Therefore, the criteria for the minimum learning 
judgment system correspond to seven correctly selected words. 

3.2 Test and Results 
Finally, we ran a minimum learning assessment to determine 
whether learners watched the video content or not. In a test set, 240 
undergraduate students participated in the experiment. Participants 
were divided into two groups: an experiment group, which 
consisted of 120 students who watched the video content, (Pass) 
and a control group, which consisted of 120 students who did not 
watch the video content (Fail). Table 2 presents the results of the 
test, which measured precision and recall. 

Table 2. Result of Test Table 
  Real    

  Pass Fail Precision Recall F1 

System 
Pass 118 10 92.1875 98.3333 95.1 
Fail 2 110 98.2142 91.6666 94.8 

 

For the Passing group, the result of minimum learning judgment 
demonstrated a precision rate of 92% and a recall rate of 98%. For 
the Failing group, the result of minimum learning judgment 
demonstrated a precision rate of 98% and a recall rate 91%. Finally, 
the performance of system shows about 95%. 

4. CONCLUSIONS AND FUTURE WORK 
This paper presents how a minimum learning judgment system can 
solve assessment challenges in online education environments by 
reducing the work required by both instructors and learners. This 
system shows about 95% performance but it is optimized for the 
training data set. Thus, we need to conduct further experiments and 
analyses using machine learning algorithms and educational data 
mining technologies in order to develop and strengthen our system. 
Finally, we hope this system can be utilized by instructors and 
researchers for their educational and research purposes. 
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ABSTRACT 
This paper presents an exploratory data mining methodology for 
discovering frequent high-utility learning paths from a database of 
student interactions with an adaptable tutoring system. The 
discovered paths are used to present recommendations to students 
in order to make the learning process more efficient. The novelty 
of our approach is twofold: a) the process of data preparation, 
path evaluation and path discovery is completely autonomous; 
and b) the process is executed on a growing dataset of learning 
traces while the students are advancing through the knowledge 
domain. We present the system overview and the obtained results. 

Keywords 

Sequential pattern mining, computer-based learning environment, 
high-utility patterns, recommendations. 

1. INTRODUCTION 
The objective of a tutoring system is to guide each student 
towards a predefined goal such as completing a lesson, task, or 
mastering a skill. Guiding students is more complex in ill-defined 
domains [4] where it is not possible to break down the learning 
units into single skill tasks, and the students have the freedom to 
choose/create their own path through the domain. One such web-
based system has been developed at our institution to serve as an 
additional learning platform in a blended learning approach 
applied in a number of courses. The process presented in this 
paper is the third and final part (the first two being: 1) a 
communication layer that enables the system to communicate with 
DM tools, and 2) a clustering method [3] that discovers groups of 
students that use the system in a similar manner) of a new 
infrastructure developed with the goal of improving the adaptivity 
of our system [2].  

While attempting to master the knowledge domain presented in 
our system, each student creates a large number of learning paths. 
Most of the students will need multiple interactions with a unit 
until it is mastered/completed, e.g., after a failed attempt they 
realize they need to learn some other (lower-level) units and then 
they come back to complete the first unit. The objective of the 
system is to offer recommendations to students about which unit 
to select (when the student is just starting a session or a new 
learning “run”) or which unit to learn next (right after finishing 
learning a unit). For this, we need to discover productive frequent 
paths leading to, and following after, each unit. To discriminate 
between productive and unproductive frequent patterns we 
decided to construct a new dataset based on the database of 
learning paths and then feed that dataset into a high-utility 
sequential pattern mining algorithm USPAN [5] which requires a 

sequence database that contains both the unit IDs and their 
“profit” (in our case – the calculated efficiency of each path). 

2. DISCOVERING FREQUENT HIGH-
UTILITY PATHS 
The system supports two types of learning activities: 
a) LEARNING - presenting learning materials followed by a 
question about the unit, and initial questions about the connected 
underlying units (units below in the domain structure created by 
teacher). If the student answers all the questions correctly, the 
path is considered optimal and the change in the student’s overlay 
model is calculated. If the student offers an incorrect answer to a 
question about a connected unit, the system will transfer the 
student to learn that unit, and the whole process is recursively 
repeated. Therefore, one learning “run” can consist of a number of 
learning units and a number of questions answered;  
b) REPETITION - answering a series of questions about a unit 
without presenting learning materials. A visualization of four 
possible paths for a sample domain consisting of five units (A-E) 
is presented in Figure 1. 

A

D

B C

E
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B LB QB IQ

C LC QC IQ
D LD QD IQ

E LE QE
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û ü

ü

QALA IQ
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D
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û û ü ü

Domain model Some possible tutoring model situations for A
L   = Learning, 
Q  = Question, 
IQ = Initial question
     = correct
     = incorrect
ü

û

 
Figure 1. Possible variations in learning path lengths 

The basic components for profit calculation, based on four paths 
presented in Figure 1, are presented in Table 2. Each unit has a set 
threshold value t that the student has to reach (by answering the 
questions). The current value of t for each unit in the domain 
model represents the student’s model. 

Table  1. Path profit calculation 
UNITS      

A B C D E ∑ PL Ls Qs IQs 
t=10 t=10 t=6 t=8 t=10      
+2 +0.2 +0.2   2.4 4 1 1 2 
+3 -0.1 

+2 
+0.2   5.1 6 2 2 2 

+2 -0.1 
+2 

-0.1 
+2 

+0.2 +0.2 6.2 10 3 3 4 

+1 -0.1 
+1 

-0.1 
+1 

-0.1 
+2 

-0.1 
+2 

6.6 14 5 5 4 

 
The following expression is used to calculate “profit” P of path x: 
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𝑃𝑥 =  
 𝑐𝑞𝑖/𝑡𝑖
𝑈𝑛𝑖𝑡𝑠
𝑖=1

𝑄
+
 𝑐𝑖𝑞𝑖/𝑡𝑖
𝑈𝑛𝑖𝑡𝑠
𝑖=1

𝐼𝑄
 ∗  

𝑃𝐿𝑚𝑖𝑛
𝑃𝐿

 

We summarize the changes c that followed from answering a 
question about each of the units (Units) occurring in x, divided by 
the unit threshold value t. This accounts for the difficulty of the 
presented questions. The sum is then divided by the total number 
of questions answered (Q). The same is done for initial questions 
(IQ). Finally, the total change is multiplied by the difference 
between minimal and actual path length (PL). This penalizes 
longer paths as they are caused by incorrect answers to initial 
questions. Minimum path length (PLmin) is calculated based on the 
number of units added to the learning structure at the time the 
learning activity took place. The tutoring model determines the 
number of items in the learning structure based on the student’s 
overlay model state, e.g., according to Figure 1, if the student 
starts the LEARNING activity with unit A, having previously 
completed units B and C, the tutoring module will not add any 
units to the learning structure (except for A, making PLmin = 1).  
After the learning traces of all the students that are using the 
knowledge domain have been evaluated, they can be transformed 
into a sequence database for the USPAN algorithm. The 
transformation algorithm creates two databases for each unit in 
the domain – a set of paths consisting of units learned before the 
current unit (“prefix”) and a set of paths consisting of units 
learned after (“suffix”). Each transformed sequence has a 
maximum length of 6 units. Both datasets are then converted to 
the correct format of the USPAN algorithm implementation in 
SPMF [1]. The system is now ready to discover high-utility 
frequent paths (HUFP). We run the algorithm on each dataset 
under the condition that a unit has been learned by at least five 
students, i.e., we must have a minimum of five paths in the 
dataset, although there can be much more if the students have 
been struggling with the unit. When the process is complete, all 
the discovered high-utility frequent paths are written to the 
database. Once the system has updated the HUF paths database 
the recommendation selection algorithm chooses the unit to be 
recommended at the beginning and the end of each learning 
activity. The algorithm considers: a) the student model; b) 
whether the unit has already been recommended and/or followed 
by this student; and c) which recommendation was most followed 
by other students. 

3. RESULTS 
We tested our system in two different knowledge domains, with 
31 and 69 learning units, used by 30 and 20 students, respectively. 
The results are presented in Table 2. The “D.SET” column 
contains the number of learning traces in the system at the time 
the process was executed. The number of HUFPs discovered at 
each execution (divided by “prefix” and “suffix” paths) is 
presented in the next three columns. Column “UNITS” presents 
the number of units for which HUFPs were discovered. As 
expected, the unique number of units reached the total number of 
units in the domain in last two executions. The number of 
recommendations presented to students and the unique number of 
units for which the recommendations were presented are 
displayed in the next two columns.  

Table  2. Results for first domain 

No D.SET HUFPs PRE SUF UNITS REC. UN. REC FOL. 

1 1206 21 5 16 7 12 5 5 

2 1616 35 20 15 15 83 24 39 

3 2068 115 65 50 22 204 15 36 

4 2504 121 79 42 18 225 15 12 

5 2912 89 52 37 21 47 12 13 

6 3314 418 227 191 31 417 23 35 

7 3604 538 289 249 31 332 24 22 

 
Finally, the last column presents the number of recommendations 
followed (clicked) by students. The percentage of followed versus 
total number of recommendations varied from 5 to 47 percent. 
Further analysis will be performed to evaluate the overall impact 
of the recommendation mechanism on the learning process.  

4. CONCLUSION 
The presented methodology was implemented in a web-based ITS 
and tested on two different domains. We believe that the main 
improvements to the system can be made in: a) the interaction-to-
path transformation algorithm, by implementing additional logic 
to recognize branch/level changes in the domain hierarchy which 
can reflect student’s strategy, and b) the recommendation 
selection algorithm, by implementing additional logic to minimize 
repetition and optimize the selection process.  
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ABSTRACT
We examine algorithms for creating indexes into ordered se-
ries of instructional lecture video transcripts. The goal is for
students and industry practitioners to use the indexes to-
wards review or reference. Lecture videos differ from often-
examined document collections such as newspaper articles
in that the transcript ordering generally reflects pedagogical
intent. One challenge is therefore to identify where a con-
cept is primarily introduced, and where the resulting index
should thus direct students. The typically applied TF-IDF
approach gets tricked in this context by artifacts such as
worked examples whose associated vocabulary may domi-
nate a lecture, but should not be included in a good index.
We contrast the TF-IDF approach with algorithms that con-
sult Wikipedia documents to vouch for term importance.
This method helps filter the harmful artifacts. We measure
the algorithms against three human-created indexes over the
90 lecture videos of a popular database course. We found
that (i) humans have low inter-rater reliability, whether they
are experts in the field or not, and that (ii) one of the ex-
amined algorithms approaches the inter-rater reliability with
humans.

1. INTRODUCTION
Lecture videos of online classes are clumsy when students
wish to review course materials. It is impossible to access
just a particular portion of interest. A solution would be an
automatically created index similar to the reference at the
end of a book. The facility would allow access into portion
of videos where a particular topic is discussed.

We compared several algorithms that create such an index
for every course video. Raw material are the closed caption
files that are often available for educational video. Those
files contain transcripts of the audio, paired with timing in-
formation at roughly sentence granularity.

We paid three humans with varying domain expertise to
carefully index the video transcripts from a Stanford online
database course. We compared the three resulting indexes
to each other, and to results from the algorithms. We make
the three reference indexes and the database course video

∗A full version of this paper is available at
http://ilpubs.stanford.edu:8090/1140/1/indexer.pdf

caption files available to the public in hope of eliciting in-
dexing approaches beyond those that we explored.

2. EXPERIMENTS
Our first experiment took a traditional approach, selecting
words for the index that appeared disproportionately often
in certain lectures (TF-IDF [1]). We then incorporated lex-
ical information, by only considering phrases that followed
certain part-of-speech patterns. Finally, we introduced ex-
ternal knowledge from Wikipedia into an algorithm’s index-
ing decisions. Note that none of the algorithms included
supervised learning, as we do not assume the existence of a
training set for all courses. The following subsections intro-
duce the algorithm (families) beyond the TF-IDF version.

2.1 Leveraging Linguistic Information
The first algorithm tags parts of speech in the lecture tran-
scripts. It then extracts as index candidates phrases that
consist of adjectives followed by one or more nouns. For
example, “equality condition” or “XML data” would be in-
cluded.

2.2 Adding External Knowledge
Note that phrases gain importance because of both their
role in a document but also from their semantic meaning in
the broader world. Variants of our next algorithms therefore
integrate Wikipedia as a knowledge source.

2.2.1 Boosting Documents
The first variant concatenates to each lecture a closely re-
lated Wikipedia page, and then uses the techniques of Sec-
tion 2.1 to choose phrases for the index. For example, lec-
ture title “View Modifications Using Triggers”, yields as the
first Wikipedia result a page titled “Database trigger.” This
page is appended to the lecture transcript. Using either n-
grams or adjective-noun phrases as candidate keywords, the
algorithm chooses phrases with TF-IDF over the combined
document for the index.

2.2.2 Boosting Phrases
This algorithm first creates a list of candidate index terms
using adjective-noun phrases. These candidates are ranked
by their TF-IDF score summed over all Wikipedia docu-
ments.
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View Modifications 
Using Triggers

In this video, which will mostly 
be live demo, we'll talk about 
modifying views through 
triggers…

Database trigger
A database trigger is procedural 
code that is automatically 
executed in response to certain 
events on a particular table or 
view in a database…

In this video, which will mostly be live 
demo, we'll talk about modifying views 
through triggers…A database trigger is 
procedural code that is automatically 
executed in response to certain events 
on a particular table or view in a 
database…

TF-IDF

Figure 1: The Document Boosting algorithm searches for a
Wikipedia page using the title of the lecture, concatenates the
result to the lecture, and then runs TF-IDF over the combined
document.

Next, this global candidate ranking is combined with a basic
TF-IDF approach to form a final score that combines global
knowledge (from Wikipedia) with local knowledge (from the
specific lecture video).

We also experimented with only boosting phrases of at least
two words, based on the intution that longer phrases are
often meaningful, but appear infrequently and are therefore
given low scores by TF-IDF. We call this alternative“Phrase
Boosting N-Grams” in Figure 3.

Rank Phrase
1 view
2 materialized view
3 materialized
4 query
5 view query
6 virtual view
7 modify
8 user query
9 base table
10 modify command
11 index
12 insert command
13 multivalued dependency
14 database design
15 user

Figure 2: The top 15 keywords from ‘Materialized Views’ by
Phrase Boosting with N-grams. Phrases that also appear in the
gold index are marked in bold.

2.3 Results
We evaluated each algorithm by computing Cohen’s Kappa
agreement between the algorithm and a gold set created by
unifying two of the human indexes1. We chose a widely
employed inter-rater reliability measure because indexing is
highly subjective. Given this absence of absolute truth we
therefore treated the algorithms as we would have measured

1One of the human indexes was excluded because it some-
times included words that did not appear in the lecture.

reliability of an additional human indexer.

Kappa values do not have a universally agreed upon inter-
pretation, but values in the range we observe (about 0.15
to 0.3) have been interpreted as indicating “slight” to “fair”
agreement. We measured agreement of 0.325 between the
humans in the gold index. This value is therefore the mea-
sure to beat.

Algorithm κ
TF-IDF 0.205

TF-IDF with Adjective-Noun Chunks 0.079
Document Boosting 0.209

Document Boosting with Adjective-Noun Chunks 0.142
Phrase Boosting 0.204

Phrase Boosting N-Grams 0.237

Figure 3

The metrics for all of the algorithms are shown in Fig-
ure 3. The Phrase Boosting N-Grams algorithm, which fa-
vors longer words, performed best with a Cohen’s Kappa of
0.237. The Document Boosting algorithm is able to slightly
improve on TF-IDF, by filtering superfluous keywords us-
ing the external knowledge from Wikipedia. Note that Co-
hen’s Kappa can sometimes be problematic when using an
unbalanced dataset. In our full paper, we evaluate the al-
gorithms with complementary metrics to guard against po-
tential pathological cases.

Figure 2 shows the set of keywords extracted from a lec-
ture on ‘Materialized Views’ by the Phrase Boosting with
N-grams algorithm, in Figure 2 . Of the top 15 keywords
marked by the algorithm, 11 were included in the gold index
marked by humans (for this lecture there were 18 keywords
in the gold set), and the algorithm produces a ranking that
is similar to the humans. Of the keywords ranked highly by
the algorithm that were not in the gold index, some (‘ma-
terialized’, ‘insert command’, ‘multivalued dependency’) are
relevant to the course, but perhaps not essential to the spe-
cific lecture. The last two keywords, ‘user’ and ‘user query’
expose a weakness of the algorithm, where it is difficult to
discern phrases that are used frequently, but not essential to
the lecture concept.

3. CONCLUSION
We started to tackle the task of choosing the most important
phrases from a collection of lectures, to construct a random-
access index analogous to those in the back of books. Go-
ing forward we will use this capability to construct student
support facilities such as automatically answering learner
questions with references to relevant lecture clips, and rec-
ommendation tasks, such as finding the best study materials
given a student’s progress through a course.

4. REFERENCES
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ABSTRACT 
This paper presents a form of visual data analytics to help 
examine and understand how patterns of student activity – 
automatically recorded as they interact with course materials 
while using a Learning Management System (LMS) – are related 
to their learning outcomes. In particular, we apply a data mining 
and pattern visualization methodology in which usage patterns are 
clustered using hierarchical cluster analysis (HCA) then 
visualized using heatmaps to produce what is called a clustergram. 
We illustrate the application of this methodology by building two 
clustergrams in order to explore university students’ LMS activity 
patterns using both semester and weekly summary data. The 
resulting clustergrams reveal differences in LMS usage between 
high-achieving and low-achieving/dropout students.  

Keywords 

Hierarchical Cluster Analysis, Heatmap, Learning Management 
System, Visual Data Analytics  

1. INTRODUCTION 
With the explosive growth in the use of LMS to support 
instructional activities, several recent studies have applied 
Educational Data Mining (EDM) to analyze the vast datasets 
collected by LMS. Results from such studies can help identify at-
risk learners, monitor student performance, and inform course re-
design [4, 5].  
 Some approaches tend to take a variable-centered approach, 
examining features and trends in key usage variables. In contrast, 
a person-centered approach can highlight individual sub-groups of 
students that share common data patterns [1, 7], that when pattern 
analyzed, link to important differences in overall course or 
educational outcomes. In this way, data points are not aggregated, 
thereby obscuring their individual patterns [6]. 

This study takes the latter, person-centered approach. As a form of 
visual data analytics, we describe and apply a data mining and 
pattern visualization methodology, in which usage patterns are 
clustered using hierarchical cluster analysis (HCA) then 
visualized using heatmaps to produce what is called a clustergram 
[1]. We illustrate the application of this methodology by analyzing 
data collected from a widely used LMS, Canvas. In particular, we 
address two questions: To what extent do clustergrams help 
understand patterns of student activity in the course? How do 
these patterns of activity relate to student learning outcomes?  

2. BACKGROUND  
2.1 EDM and LMS 
Much prior EDM research applied to LMS data has typically 
taken a variable-centered approach by examining usage at an 
aggregated level [3]. While useful, these results aggregate and 

average users’ behaviors, and thus make it difficult to recognize 
the diverse patterns displayed by different groups of users [6]. 
Thus, in the present study, we take a more person-centered 
approach to visually investigate what sub-groups of students may 
share common patterns, and how these relate to their learning 
outcomes.  

2.2 Hierarchical Cluster Analysis Heatmaps 
HCA is a multivariate statistical method for classifying related 
units in an analysis across high dimensionality data. More 
recently, HCA has been combined with heatmap visualizations, 
called a clustergram [1]. The clustergrams represent each 
participant’s row of data across each of the columns of variables 
as a color block, using stronger intensities of one color to 
represent lower levels of the variable, and increasing intensities of 
a different color to represent higher levels. We apply cluster 
analysis heatmap visualizations to Canvas LMS data from a large, 
online course. In this way, we test the utility of the analysis and 
visualization technique when applied to the potentially larger data 
patterning and visualization issues around these types of student 
interaction data. 
3. METHODS AND DATA SOURCES 
The data are drawn from a larger dataset containing all student 
recorded by the Canvas LMS at a medium-sized U.S. western 
university. For the present study, we extracted the student 
interaction data from a large (N=139) introductory level 
mathematics online course taught during the fall 2014 semester. 
Two clustergrams were built, one with semester summary data 
and the other with weekly summary data. First, for the 
clustergram using the semester summary data, all student activity 
data were transformed to z-scores in order to standardize variance. 
HCA was applied to cluster both rows and columns. Color 
gradients ranges from colder blue for -3 SD below the mean to a 
hotter red for value +3 SD above the mean. Second, for the 
clustergrams using the weekly summary data, we used raw data 
and HCA was applied to only the rows. In addition, we applied k-
means clustering on the rows for more precise interpretation of 
clustergrams. Lastly, student final course grade was included as 
an overall outcome variable in the final column. For all analyses, 
we used the R studio with the “ComplexHeatmap” packages. 
Regarding algorithms, the clustergrams were clustered using K-
means, then HCA (using average linkage and Euclidean distance) 
was applied to each row-cluster.  

4. RESULTS 
4.1 Clustergram using semester summary  
Figure 1 presents a section of the clustergram using the semester 
summary data. As shown in Figure 1, most students with lower 
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activity (Cluster 1) either received a grade of F or withdrew (W) 
from the course, whereas many students with higher activity 
(Cluster 3) received a grade of A. 
 

 
Figure 1. Section of the clustergram using the semester 
summary data (for full image: goo.gl/Y7VFHJ) 

A correlational analysis revealed that the variables related to 
engaging with ‘assignment’ features had the highest positive 
correlations with final grades (r = .70, p < .05). Variables related 
to views of grades (r = .56, p < .05), wiki (r = .42, p < .05), 
syllabus (r = .35, p < .05), and attachments (r = .35, p < .05) had 
the next highest positive correlations with final grades. The 
remaining variables (views of announcements, participation in 
discussions) were not significantly correlated with final grades.  

4.2 Clustergram using weekly summary 
 

 
Figure 2. Section of the clustergram for the number of students’ 
attachment views by week (for full image: goo.gl/IwcCch) 

In order to investigate how student activities changed over the 
course of the semester, we built a clustergram using the weekly 
summary data. Figure 2 presents a section of the clustergram for 
the number of students’ ‘attachment’ views by week. 
The clustergram shows that the students with a grade of A (sub-
cluster B) showed relatively consistent views of attachments over 
the course of the semester. Interestingly, the students with a grade 
of A (sub-cluster B) tended to show higher attachment views at 
the beginning of the course and more consistently throughout the 
semester. However, the students with grades of C/D (sub-cluster 
C) tended to have higher attachment views at the end of the 
course, representing perhaps a less-successful ‘cramming’ 
strategy. 

5. CONCLUSION  
This study demonstrates the utility of cluster analysis heatmap 
visualizations as a means to use visual data analytics to examine 
student patterns of activity at different grain sizes (week vs. 
semester). Combining this technique with the large sets of LMS 
provides a unique opportunity to examine the patterns of student 
activity as they relate to overall student outcomes. This type of 
visual data analytics expands the number of tools available for 
instructors and administrators to help identify the features and 
specific LMS interaction data that are most useful to their 
students. As recent critiques of LMS interaction data have shown 
that past analytic methods are insufficient to understand the rich 
complexity of how students learn through an LMS [2], this study 
provides an additional means to approach these complex data 
analytic issues. 
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ABSTRACT 
Previous studies about engagement in MOOCs has focused 
primarily on behavioral engagement and less attention has been 
paid to cognitive engagement. This may lead to incomplete or 
even incorrect understandings about students experience and 
learning in MOOCs. In this study, we use number of lectures 
watched as a proxy for behavioral engagement and number of 
pauses in lectures watched as a proxy for cognitive engagement. 
Results show that a large proportion of students who were 
behaviorally engaged (watching lectures) were not cognitively 
engaged—they almost never paused the lectures or they paused 
fewer and fewer times as the course went on. This may indicate 
that being behaviorally engaged does not necessarily mean being 
cognitively engaged. In addition, we also found that students’ 
number of pauses in lectures is positively associated with 
achievement and improves the prediction of achievement.  
 

Keywords 

Cognitive engagement, behavioral engagement, MOOCs  

1. INTRODUCTION 
Engagement in MOOCs is usually measured by whether students 
complete learning activities or not (e.g. watching lectures and 
submitting assessments) and low engagement is used as an 
indicator of “at-risk” students [4]. However, studies of school 
engagement have proposed that engagement has three components: 
behavioral engagement, cognitive engagement, and emotional 
engagement, and that measuring engagement solely as task 
completion may focus only on behavioral engagement and 
overlook the multifaceted nature of engagement [1]. To explore 
the importance of cognitive engagement in MOOCs, this study 
measured both behavioral engagement and cognitive engagement 
in MOOC lecture watching to see: 1) whether individuals who 
were behaviorally engaged were also cognitively engaged, and 2) 
whether cognitive engagement adds information that is helpful in 
predicting academic achievement. 

1.1 Behavioral engagement  
Most of previous studies about engagement in MOOCs have 
focused on behavioral engagement: participation in academic 
activities [1]. One of the most commonly used engagement 
indicators in MOOC studies is participation in lecture watching. 
For instance, in the most frequently cited paper about engagement 

patterns in MOOCs, Kizilcec et al (2013) measured student 
weekly engagement as a function of whether they watched any 
lecture and submitted any assessment. By using these metrics of 
task completion, this study inherently conceptualized engagement 
as behavioral engagement. Similarly, measurements centered 
around behavioral engagement, such as time spent on lecture 
resources, have also been used in studies about the relationship 
between engagement and dropout [4].  

1.2 Cognitive engagement 
Cognitive engagement refers to the psychological investment in 
learning and ranges from memorizing to using self-regulated 
strategies to promote one’s understanding [1]. In this study, we 
measure student’s weekly cognitive engagement by how often 
they paused the lectures they watched (i.e., students stop the 
lecture while watching it). Some studies about MOOCs have 
explored the possibility of using video lecture clickstream data, 
the record of student click events, to measure cognitive 
engagement [3]. Among all the click events, the pausing event 
may indicate a higher level of cognitive engagement [3].  

2. METHODS 

2.1 Sample 
This study uses data from one Coursera MOOC, Pre-calculus, 
offered by University of California, Irvine. It began on October 
7th, 2013 and lasted for ten weeks. 50,676 students registered the 
course and data on 19,548 students who watched at leased one 
lecture after registration was used in this study.  

2.2 Measurement 
In this study, weekly behavioral engagement was measured by the 
number of lectures student watched each week while weekly 
cognitive engagement was measured by the number of pauses in 
lectures watched in a given week. In addition, we measured 
weekly academic achievement in two ways: students’ total quiz 
score (the sum of scores a student got on each quiz he/she 
attempted each week) and students’ average quiz score (the 
average score on quizzes attempted each week).  

2.3 Analysis 
We applied a standard clustering technique, K-means, to discover 
student engagement patterns based on the two measurements to 
see whether individuals who were behaviorally engaged were also 
cognitively engaged. We first standardized the engagement score 
within each week to take into account the difference in 
participation across weeks and thus to cluster students based on 
their relative similarity in engagement within each week. Then, 
we performed the clustering analysis separately for behavioral 
engagement and cognitive engagement. To get an optimal 
“goodness of fit” for the data, cluster silhouette, a measure of how 
similar an individual is to his/her own cluster compared to other 
clusters, was used to determine the number of clusters. For 
behavioral engagement, 4 to 9 clusters produced similar cluster 

 

 

Proceedings of the 9th International Conference on Educational Data Mining 605



silhouette (above 0.7) and for cognitive engagement, 4 to 8 
clusters produced similar cluster silhouette (above 0.6). 
Accordingly, we performed cluster analysis with all the possible 
choices. Finally, we chose 4 clusters for both of the two 
measurements because it gave us enough individuals in each 
cluster and all the clusters made sense from an educational 
perspective. In addition, to answer the second research question, 
we used regression with individual fixed effect to test whether 
cognitive engagement could predict academic achievement after 
controlling for behavioral engagement.  

3. RESULTS 

3.1 Clusters based on different engagement 
The four types of behavioral engagement trajectories are: 
1)“Strong enders” (n=157; 0.8%) who watched more lectures 
than other groups and their average number of lectures watched 
decreased in the first six weeks but then increased to 50 at the end 
of the course; 2)“Slow decreasers”  (n=1367; 7.0%) who had a 
very similar pattern as “stronger enders” except that they kept 
watching fewer and fewer lectures till the end of the course; 
3)“Quick decreasers”(n=1598; 8.2%) who started at the same 
place as both “strong enders” and “slow decreasers”, but the 
number decreased at a much faster rate; and 
4)“Disengagers”(n=16426; 84.0%) who watched around 2 
lectures in week 1 on average and the number was kept under 1 
for the following 9 weeks.  
The four types of cognitive engagement trajectories are:1)“Active 
stoppers”(n=41; 0.21%) who, on average, paused each of the 
lecture they watched more than 10 times in most of the weeks; 
2)“Constant stoppers”(n=367; 1.9%) who, on average, paused 
each lecture they watched around 5 times in most of the weeks; 
3)“Switchers”(n=1719; 8.8%) who started at the same place as 
“constant stoppers”, but their average number of pauses in 
lectures watched decreased quickly in the following weeks; and 
4)“Continuers”(n=17421; 89.1%) who almost never paused the 
lectures they watched or they didn’t watch any lectures at all in 
some of the weeks.  
Combining the two types of engagement (see Figure 1), we found 
that students in clusters with higher levels of behavioral 
engagement had a larger proportion of individuals who were 
cognitively engaged. For example, compared with “disengagers” 
and “quick decreasers”, “strong enders” and “slow decreasers” 
have a smaller percent of “continuers” and larger percent of both 
“active stoppers” and “constant stoppers”. However, being 
behaviorally engaged does not necessarily mean being cognitively 
engaged. For example, even though “strong enders” and “slow 
decreasers” watched the most lectures every week, around 45% 
them conducted fewer and fewer pauses as the course went on 
(defined as “switchers”) and more than 20% of them almost never 
paused the lectures (defined as “continuers”). 

 
Figure 1. Distribution of cognitive engagement trajectories 

3.2 Cognitive engagement and achievement  
Using individual fixed effect model (see Table 1), we found that 
the number of pauses in lectures watched is predictive of both 
total and average quiz score after controlling for the number of 
lectures watched. For total quiz score, one more pause is 
associated with 0.33 points increase in total quiz score and 0.23 
points increase in average quiz score. In addition, for both total 
and average quiz score, the models with the number of pauses in 
lectures watched fit significantly better than the models that only 
have number of lectures watched as the predictor. Overall, the 
results show that our measurement of cognitive engagement is 
positively associated with achievement and it can make a unique 
contribution in predicting achievement.  
Table 1. Regression of engagement on academic achievement 

with individual fixed effect 

4. DISCUSSION 
Our preliminary results indicate that it is important to take into 
account cognitive engagement. First of all, using only behavioral 
engagement may lead to an incomplete or even incorrect 
understanding about the activeness of students. As we found in 
this study, some students had relatively high behavioral 
engagement while decreasing or low cognitive engagement. We 
may fail to identity some “at-risk” students who visited most of 
materials but didn’t truly engage with the content if we only 
measure behavioral engagement. In addition, cognitive 
engagement is found to have its unique contribution in predicting 
academic achievement and thus can give instructors extra 
information about student performance in a given course. 
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* p < 0.05, ** p < 0.01, *** p < 0.001 
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ABSTRACT 
We have developed a wheel spinning detector for cognitive 
tutors that uses a simplified method compared to existing 
wheel spinning detectors. The detector reads a sequence of 
the correctness of applying particular skill performed by a 
student using the cognitive tutor. The response sequence is 
first fed to Bayesian knowledge tracing to compute a 
sequence of probability of mastery at each time a skill was 
applied. The detector uses a neural-network model to make 
a binary classification for a response sequence into wheel-
spinning and none-wheel spinning. To test the accuracy of 
the detector, we validated the detector using learning 
interaction data taken from a school study where students 
used a Geometry cognitive tutor. Human coders manually 
tagged the data to identify wheel spinning. The results 
show that the neural-network based detector has high recall 
(0.79) but relatively low precision (0.25) when combined 
with Bayesian knowledge tracing that detects mastery 
cases. The result suggests that the neural-network based 
detector is practical and has a potential for scalable use 
such as adaptive online course where cognitive tutors are 
embedded into online courseware. 

Keywords 

Wheel spinning; detector; neural network; Intelligent 
tutoring system; student modeling 

1. INTRODUCTION 
Cognitive tutors provide mastery learning on cognitive skills [3]. 
Mastery learning is controlled by a student-modeling technique 
called knowledge tracing [2] that computes the likelihood of 
mastering individual cognitive skills to be learned. The output 
from the knowledge tracer is used to compute an optimal 
sequence of training problems in such a way a student will 
achieve the mastery for all cognitive skills quickly [4]. 

One of the challenges under the paradigm of model-tracing based 
mastery learning happens when the student model does not detect 
a mastery within a reasonable amount of time. From the students’ 
point of view, this means that they are continuously posed 

problems one after another for considerably long time. This 
phenomenon is called wheel spinning that has been coined by 
Beck and Gong [1]. 

Wheel spinning, by definition, means a situation in which a 
student does not reach to a pre-defined mastery level according to 
the mastery estimation computed by the knowledge-tracing 
algorithm. Although some students may eventually reach mastery 
only after working on a considerably many number of problems, it 
is not practical to assume that students would be persistent under 
such situation. When students do not see any improvement in their 
performance and the system merely provide more problems, then 
they would quickly get frustrated and lose their motivation. It is 
therefore quite important to detect wheel spinning as soon as 
possible. A reliable student-modeling technique to predict wheel 
spinning is there required. 

The goal of current study is to develop a detector that detects a 
risk of wheel-spinning at an early phase of learning in the context 
of cognitive tutoring. The simplicity and scalability of the 
technology is one of the most important issues. We therefore only 
use response sequences (i.e., a series of 0’s and 1’s showing the 
correctness of application of a particular skill performed by a 
particular student) as an input to the detector in the current study. 

A higher level research question is if we can detect wheel 
spinning at all: Can we detect wheel-spinning only from the 
sequence of response accuracy? If so, how accurate the detection 
is? We hypothesize that if teachers can systematically identify the 
moment of wheel-spinning only by observing the correctness of 
student’s response, then a neural-network model should be able to 
learn to detect the moment of wheel-spinning in the same way as 
teachers do. 

2. THE DETECTOR 
Our basis for identifying wheel spinning is to analyze the 
correctness of student responses for a particular skill. We then 
attempted to test our hypothesis by comparing the predictions of 
our detector with examples classified by human coders. We asked 
two human coders to qualify the student's response data to identify 
wheel-spinning cases based on our coding manual. Table 1 shows 
a contingency table showing the agreement between two coders.  
The inter-coder reliability (the Cohen’s kappa) on this final 
coding is 0.90.   

Table 1. Inter-coder agreement of wheel-spinning coding 

  Coder 2  
  W C Total 

Coder 1 W 72 13 85 
C 5 752 757 

 Total 77 765 842 

Having identified the wheel spinning cases, we attempted to train 
a neural network to learn a latent pattern in a gradual change in a 
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sequence of 1s and 0s, representing the first attempt a student has 
a step for a certain skill.  

 

The input of the NN-based detector is a response sequence 
(denoted as R1, R2, …, Rn in the figure) that shows a 
chronological record of the correctness of skill application made 
by the student on a particular skill. Each time a new response is 
observed (i.e., Rn in the figure), the response sequence is fed into 
the Bayesian Knowledge Tracer (BKT) to update a predicted 
mastery level up to the point of the latest response observation 
(denoted as L1, L2, …, Ln).  

The first part of our neural network computes the change in the 
predicted mastery level represented as a slope of a linear 
regression model with the L value as a dependent variable and the 
opportunity count (i.e., i in Li) as an independent variable. The 
slope of this line represents how gradual the student's learning has 
been. The second part of the neural network computes the deltas 
for each of the consecutive slope values. Students who are 
consistently learning have deltas greater than or equal to 0, 
because overall the trials that those students make forward 
progress. However, in the case of wheel spinning, the slopes 
decrease more often than they increase. 

The output from the neural network is a weighted sum of the delta 
values (in the second hidden layer) representing the likelihood of 
wheel spinning. We train the neural network to learn weights for 
each delta values in such a way that the output less than zero 
indicates a potential of wheel spinning and the smaller the output 
value the more likely the student would wheel spin. The neural 
network updates weights using back propagation to converge on a 
set of weights that minimize the classification error during the 
training.  

3. RESULTS 
We used the dataset "Cog Model Discovery Experiment Spring 
2010" in the study called "Geometry Cognitive Model Discovery 
Closing-the-Loop", taken from DataShop1. This dataset contained 
5385 student-skill responses. Among 5385 student-skill response 
sequences, there are 2883 response sequences that have more than 
and equal to 5 responses. We filtered out response sequences with 
less than 5, because there would not be enough attempts to 
determine wheel spinning. Out of 2883, there are 842 response 
sequences that do not reach to the mastery according to BKT 
(hence potentially wheel spinning). In these 842 response 

                                                             
1 https://pslcdatashop.web.cmu.edu 

sequences, there are 122 unique students and 44 unique skills 
included.  

For our validation study, we decided to use only student-skill 
response sequences that had greater than or equal to 10 
opportunities, because we were trying to find out the best number 
of opportunities to predict from 5 to 10. After filtering out 
instances with less than 10 attempts, we were left with 141 
student-skill response sequences. We then randomly dropped one 
response sequence to have 140 student-skill response sequences 
for a 10-fold cross-validation. On the 9 folds training data, each of 
the skill-specific neural networks was trained until it classified 
training instances with the minimum classification errors. The 
accuracy of the prediction was computed as an overall average 
across 10 cross-validations. We computed a precision and recall 
score for each 10-fold-validation, along with a corresponding F1 
score. Figure 3 shows precision, recall, and F1 (which is 
2*P*R/(P+R) where P and R shows precision and recall 
respectively) scores for N = 5 to 10. 
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Figure 1. The precision, recall, and F1 scores computed on the 
first N response observations. 
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ABSTRACT 
In this paper, we explore methods of analysing data obtained from 
an autograding system involving weekly tasks and a finite set of 
possible strategies for completing these tasks. We present an 
approach to handling partially missing information and also 
investigate the usefulness of a sliding window rule mining 
technique in following changes in student strategy over time.  

Keywords 
Mining student behaviour and strategies, autograding system 

1. INTRODUCTION 
Teaching activities are often not offered in a linear way: it is 
sometimes useful to provide students with several choices of task, 
or to provide a gradual approach to learning by allowing a choice 
of tasks of varying difficulty. Maximum points could be achieved 
through implementing all the hard tasks, but students unsure of 
their ability might choose to take a more gradual approach, 
starting with the easy task and working up. We wish to understand 
how students manage their learning when presented with such 
choices by analysing the order in which students attempt such 
tasks. We investigate the following research questions: What 
strategies do students take in attempting the different tasks each 
week? Are there differences between the strategies of the regular 
and advanced students? In this work we report on several 
techniques applied to the data collected through an autograding 
system in a university database course. Our main contribution is 
in showing how to represent and mine data from student attempts 
of tasks with different levels of difficulty.  

2. DATA 
The data comes from weekly programming tasks in a third-year 
database course with students in a regular stream [2] (n=92), and 
an advanced stream [3] (n=20). Part of the assessment, for 10% of 
the final grade, was a set of weekly programming tasks for which 
students were required to implement various algorithms in Java 
and submit these implementations using the PASTA online 
submission platform 0. Tasks included skeleton code and unit 
tests, and students were encouraged to write and test their 
implementations locally before submitting. Once submitted to 
PASTA, the unit tests were applied again, and students received 
automated feedback of the outcomes of these tests. Students then 
had the option of submitting a revised attempt, or trying another 
of the three tasks, until the submission deadline had been reached. 

Each week there was a choice of three tasks with different levels 
of difficulty - easy, medium and hard. More marks were allocated 
for the more difficult tasks: 4 points for hard, 3 for medium, and 2 
for easy tasks. Partial implementation of any task received 1 point. 
The data extracted from PASTA consisted of the marks for every 
student’s attempt on each task. 

3.  STRATEGIES 
There are 16 possible strategies that can be taken by a student for 
each weekly set of tasks: the 15 possible permutations of Easy 
(E), Medium (M) and Hard (H) tasks attempted, and no attempt at 
any task (None). Figure 1 shows the relative frequency of the 
different strategies taken by all students each week, and in total 
across all weeks. We labelled each strategy according to the order 
in which the tasks were completed. So, for instance, in the 
strategy EH a student completes that week's Easy task first, 
followed by the Hard task. Note though that this information is 
imperfect: students were only awarded marks for the most difficult 
task completed and had access to the unit tests at home, so may 
have completed multiple tasks while only submitting the most 
difficult of these. In addition, due to dependencies in tasks in 
some weeks, certain completion orders were forced. For example, 
in some weeks the medium task extended the easy task, so 
students were required to complete easy before medium. 
However, the most common strategies according to our data are 
None (30%), E (31%), EM (11%), EMH (15%), EH (4%), H 
(6%). The remaining 4% is a mixture of the other combinations 
with support less than 1%, including some where easier questions 
attempted later: we saw at least one instance of EHM, ME, MH, 
HE, HM and HME. Two strategies, MHE and HEM, were not 
observed at all. 

 
Figure 1. Relative frequency of strategies used by students in 

each week, and in total across all weeks 

4. CLUSTERING 
Since students had been allowed to test their code at home, we did 
not have access to perfect information about the order in which 
they completed the tasks. We therefore clustered students based 
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only on the highest difficulty task completed each week, ranking 
difficulties from 1 (easy) to 3 (hard). E.g., <3, 2, 3, … > would 
represent a student who completed the hard task in Week 2, the 
medium task in Week 3 and the hard task in Week 4. Using this 
representation we applied the k-means algorithm with k=5 
(determined empirically). Cluster centroids are shown in Figure 2.  

 

 
Figure 2. Average highest difficulty of tasks completed by 

students in each cluster, each week 

We complemented the cluster analysis with the information on 
completion order which involved student submissions with and 
without potentially missing information. For example, if a 
student’s strategy was EMH, then they definitely completed all 
three tasks. However, if a student’s strategy was H, then they may 
have only completed the hard task, or they may have completed 
all three at home and only submitted the hard task. Since 
strategies with missing information were less frequent, we took 
the mode weekly strategy for each cluster as shown in 1, which 
allowed us to still compare student strategies despite the missing 
information.  
Table 1. Mode weekly strategy per cluster. Last column shows 
proportion of regular and advanced (in parentheses) students. 
Cluster W2 W3 W4 W5 W6 W7 %(adv) 

0 EMH EMH EMH EMH EMH EMH 9(50) 
1 EMH EM E None EM None 13(0) 
2 E E E E E None 18(20) 
3 None None E None None None 45(15) 
4 EMH EM E EMH EM E 15(15) 

We note that in some weeks there may have been dependencies 
between tasks that are ignored in this analysis. This limitation 
notwithstanding, we can broadly summarise behaviour in each 
clusters. Cluster 0 students complete the hardest task every week, 
by starting from the easy task and gradually progressing to the 
hardest task (EMH strategy). Cluster 1 students start well in Week 
1 but then gradual drop in the difficulty of the completed tasks 
towards Week 7. Cluster 2 students start poorly but improve 
gradually, completing mainly easy tasks. Cluster 3 students 
consistently make very few submissions, and only of the lowest 
difficulty. Cluster 4 students generally perform well, often 
working through tasks of increasing difficulty but not always 
completing the medium or hard tasks. We speculate that Cluster 3 
students may be investing little effort due to the relatively low 
weighting of the weekly tasks, while Cluster 4 students may have 
run out of time or found the later tasks too difficult to complete. 

5. SLIDING WINDOW RULE MINING 
To find trends in changes of strategy we looked for association 
rules X → Y in which X occurred before Y in time, since only 
these rules are likely to be of use. We further restricted our 
analysis to periods of three week. We extracted length-3 itemsets 

by using a sliding 3-week window over each student’s strategy 
vector. Hence a student’s 6-week behaviour vector <2EMH 3EM 
4E 5EMH 6EM 7E> would generate 4 item sets <1EMH 2EM 
3E>, <1EM 2E 3EMH>, <1E 2EMH 3EM>, <1EMH 2EM 3E>. 
This process is similar to rule mining in time-series subsequences 
[1], but here we encode the time into each item to allow us to use 
traditional association rule techniques. 
Table 2. Highest-confidence rules found using length-3 sliding 

window rule mining technique 

Rule Support Confidence Lift 
1None,2None → 3None 14% 85% 2.70 
1EMH,2EMH → 3EMH 5% 62% 4.63 
1EMH,2EM → 3E 3% 57% 2.00 
1None,2E → 3E 3% 45% 1.58 
1None,2E → 3None 3% 45% 1.43 

From these item sets (n = 448) we searched for rules 1a,2b → 3c 
where a, b and c were the strategies used in consecutive weeks. 
The 5 highest confidence rules are shown in Table 2. The first rule 
shows that the likelihood of not attempting a task was very high if 
the student had not submitted two previous tasks. The second two 
rules suggest a student is likely to work through all three tasks 
progressively if they did so in the previous two tasks. Most other 
rules indicate that many students’ strategies were on the 
borderline between completing the task only or none at all. Our 
technique was limited by task dependencies; we believe its 
effectiveness could be improved if applied to data without these 
deficiencies. 

6. CONCLUSION 
We have demonstrated how clustering can be applied to data from 
tasks in which students have choices between several activities, 
with a particular focus on handling missing information. We have 
also demonstrated how rule mining can elucidate trends in 
behaviour over a window of time, though the application of this 
technique was limited by missing information. These techniques 
were both limited by variability in dependencies in the different 
tasks, but still demonstrate how useful knowledge can be 
extracted from such data. 
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ABSTRACT 
To study the correlation between student behavior and 
performance, we propose using high-level behavior features and a 
random forest algorithm. Considering a course with 10 periods, 
our results indicate that our models can reach 70% accuracy in the 
first period and 90% in the first 5 periods and starting to study 
earlier is important in individual behaviors and behavior 
combinations. 

1. INTRODUCTION 
The main goal of this study is to identify student behaviors in the 
first half of the semester that are correlated to strong performance 
so that we can provide feedback and encourage more appropriate 
behavior. The contributions of our study include: (1) we introduce 
high-level behavioral features derived from the course syllabus 
and sequential patterns; (2) we propose a random forest algorithm 
with cross-validation; (3) considering a course with ten periods, 
our empirical results indicate that our models can reach at least 
70% accuracy from behavior features in the first cumulative 
period and 90% from features in the fifth cumulative period; (4) 
our approach can identify both important single behavior and 
behavior combinations. Our empirical results indicate that starting 
to access course materials early (a high-level feature) is important 
in individual behaviors and behavior combinations. 

2. RELATED WORK 
Many studies, e.g. [5], generally use how frequent activities occur 
and how long activities take as main features in their models. We 
call such features low-level features. Besides low-level features, 
related studies [4, 6] propose sequence of activities as features 
that come from a sequential pattern mining algorithm [4].  
Further, Jo et al. [2] measure the interval of login sessions to find 
the regularity of login interval. Coffrin et al. [2] analyze the 
ordering of materials used in a course. We call features that not 
only simply measuring frequency and duration of activities as 
high-level features. For learning algorithms, many related studies, 
e.g. [8], use a single learning algorithm to predict student 
performance.  However, Elbadrawy and Studham [3] propose 
using linear multi-regression, which is a weighted sum of multiple 
linear regression models. Many related studies perform 
performance prediction based on analysis using student activities 
from the entire term, which does not allow intervention during the 
term.  Some related studies, e.g. [3], use non-behavior features 
such as quiz or assignment scores in their model. A number of 
studies only analyze individual behaviors separately. However, 
some studies analyze behavior combinations.  Elbadrawy and 
Studham [3] use a weighted sum of multiple linear regression 
models, each of which can be considered as a behavior 
combination.  Kinnebrew and Biswas [6] use SPAM [4] to 
identify important sequence of learning behaviors. Our approach 
uses high and low-level behavior features early in the term with 
an ensemble learning algorithm to identify both important single 
behaviors and behavior combinations.  

3. APPROACH 
In this study we focus on three steps. The first step is to generate 
features that can represent students’ behavior. The second step is 
to use a machine learning algorithm to find correlations between 
behavioral features and performance. The third step is to identify 
important behaviors from the learned models. 

3.1 Generating Features 
Based on our experience, we identify low-level features that 
characterize the amount of different activities. Activities include 
number of logins, number of videos watched, number of questions 
asked and so on. ASRs (Active Student Responding Exercises) are 
questions that are embedded in the instructional video and 
students enter their answers after watching the video.  

For high-level features, we focus on measuring beyond just “how 
frequent” or “how much” from the log files. For example, a 
motivated student would likely schedule a regular study time.  To 
measure how regular a student studies, we first identify the day of 
the week that the student studies the most. For example, if a 
student studies most on Wednesdays, the student is quite regular 
in using Wednesday for studying. We then divide the frequency of 
the most studied weekday (e.g. Wednesday) by the frequency of 
the weekday (e.g. Wednesday) in the behavior period. The course 
syllabus has due dates and test dates. We generate features of 
student behavior with respect to those dates. For example, number 
of days the student studies before a test, number of days to submit 
a test before it is due. The syllabus also specifies when materials 
are released. We generate features that measure how soon the 
student starts accessing the released materials. We use SPAM [4] 
to identify high-level features based on behavior sequences.  
SPAM finds sequential patterns that meet the minimum support 
and maximum gap constraints. Support is the count of a sequence, 
while gap is the number of “wide cards” between items in a 
sequence.   

3.2 Random Forests with Cross Validation 
To improve effectiveness, we propose using the random forest 
algorithm [16] which builds multiple less-correlated decision trees 
and combines the classifications from individual trees. The 
random forest algorithm has two key parameters: forest size 
(number of trees) and feature subset size (number of features that 
can be considered in each node).  To find a suitable combination 
of forest size and feature subset size, we vary the two parameters, 
build a forest, estimate the quality of the forest via cross 
validation (by splitting the training set), and select the parameter 
combination that yields the most accurate forest. 

3.3 Identifying Important Behaviors 
Given a random forest, we identify the most frequent feature used 
in the root nodes as the most important single behavior. In a 
random forest, the root of each tree is selected from a random 
subset of all the features.  Hence, the most frequent feature in the 
root nodes is most likely to be the most important behavior.  
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Considering a single behavior might not be sufficient, we desire to 
study behavior combinations that are correlated with higher 
performance. Consider a forest that has n trees, we calculate a 
quality score for each feature combination that appears in the top 
two levels of a tree. The score of feature combination 𝑓𝑖   in tree r 
is the number of positive examples 𝑃𝑟(𝑓𝑖)  divided by the total 
number of examples 𝑇𝑟(𝑓𝑖) for this combination. The score of a 
feature combination S(𝑓𝑖 ) in the forest is the sum of scores from 
the trees:  S(𝑓𝑖) = ∑

𝑃𝑟(𝑓𝑖)

𝑇𝑟(𝑓𝑖)
𝑛
𝑟=1  .  

4. EXPERIMENTAL EVALUATION 
Our main task is to find important behaviors in the first half of the 
term that correlate with an above average score on the final exam. 
Also, we identify behaviors that we can encourage later, instead of 
just asking students to perform better on assignments and tests. 
Within the first half of the term, we would like to study how early 
we can identify important behaviors that estimate performance 
accurately. We divide the first half of the term into multiple 
periods (e.g. weeks). Features are generated from behavior in 
period 1 through k. We call such periods as “cumulative” periods.   

This study analyzes BEHP5000 “Concepts and Principles of 
Behavior Analysis” that was offered in 2013 at Florida Institute of 
Technology. We obtained data for 110 students from the course. 
Our evaluation criterion is prediction accuracy on the test set.  
Two thirds of students are randomly selected to form the training 
set and the rest of students are in the test set. To generate 
sequential patterns with the SPAM algorithm, we use 70% as the 
minimum support and 2 as the maximum gap. 

To compare the effectiveness of our proposed approach with 
existing approaches, we select a decision tree learning algorithm 
without and with rule post-pruning [7]. We also choose the 
original random forest algorithm [1] that uses 100 as the forest 
size, and log2*M as the feature subset size, where M is the 
number of features.  We use k=5 in the k-fold cross-validation for 
our random forest algorithm. For each k-fold cross-validation, we 
vary the forest size from 99 to 999 and the feature subset size 
from log2*M to 55. 

4.1 Predicting Performance on Final Exam 
According to Figure 1, random forest with k-fold cross-validation 
is the most accurate among the four algorithms. Random forest 
based models are more accurate than other algorithms. Our 
approach reaches 74% of accuracy in the first cumulative period, 
and 90% of accuracy in the fifth cumulative period.  

 
Fig. 1. Accuracy of 4 algorithms from 10 cumulative periods. 

4.2 Important Student Behaviors 
In the first half of the semester the most frequent feature is 
days_after_unit_release and appears in every cumulative period. 

This behavior measures, after the unit materials have been 
released, how many days the student takes to start accessing the 
materials. The behavior indicates how early a student starts to 
study, and hence, how motivated the student is. The second most 
frequent feature is total(asr_times) which appears 3 times. This 
behavior measures the number of times a student attempts ASR, 
which tries to improve student engagement and understanding of 
concepts presented in videos.  More ASR attempts indicate a 
student is more engaged and yields deeper understanding.   

The most frequent behavior combination is 
total(days_after_unit_release)>x and test_submit_before_due <=y 
which is marked in blue. Both features are high-level features.  
total(days_after_unit_release) represents how early the student 
starts to access to the unit material after it has been released. 
test_submit_before_due represents how early students submit test 
before the due date that is stated in the syllabus. Both features are 
highly related to study motivation of students. Smaller x and 
larger y values indicate higher motivation. That is, we expect 
total(days_after_unit_release) “<” x and test_submit_before_due 
“>=” y would indicate a highly motivated student. However, we 
found total(days_after_unit_release)  “>” x and 
test_submit_before_due “<=” y is the most frequent. In other 
words, the student begins accessing the materials later and 
submits the test later, which is counter intuitive. One possible 
reason is that the behavior combination identifies a small group of 
students who are smart, therefore, they start studying later and 
submit test later. Another reason is that the behavior combination 
appears in cumulative periods 2 and 3, which include less data for 
the student behavior, therefore, the behavior combination might 
be less reliable.  

Due to space limitation, further details can be found at: 
cs.fit.edu/~pkc/papers/edm16long.pdf . 
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ABSTRACT
Virtual Learning Environments (VLE), such as Moodle, are
purpose-built platforms in which teachers and students in-
teract to exchange, review, and submit learning material
and information. In this paper, we examine a complex VLE
dataset from a large Irish university in an attempt to charac-
terize student behavior with respect to deadlines and grades.
We demonstrate that, by clustering activity profiles rep-
resented as time series using Dynamic Time Warping, we
can uncover meaningful clusters of students exhibiting sim-
ilar behaviors even in a sparsely-populated system. We use
these clusters to identify distinct activity patterns among
students, such as Procrastinators, Strugglers, and Experts.
These patterns can provide us with an insight into the be-
havior of students, and ultimately help institutions to ex-
ploit deployed learning platforms so as to better structure
their courses.

Keywords
Learning analytics, Data mining, Moodle, Time series, VLE

1. INTRODUCTION
The availability of log data from virtual learning environ-
ments (VLEs) such as Moodle presents an opportunity to
improve learning outcomes and address challenges in the
third level sector. We propose representing a student’s ef-
forts as a complete time-series of activity counts. We anal-
yse yearly anonymised Moodle activity data from 13 Com-
puter Science courses at University College Dublin (UCD),
Ireland, and seek to identify patterns and relationships be-
tween more than one attribute that might lead to a student
failing a course. A major potential benefit of this would be
to introduce mechanisms identifying issues in the learning
system early during the semester, supporting interventions
and changes in the way in which a course is delivered.

A large amount of previous research in this area relates to
different activity types, which are most predictive for a sin-

gle dataset [1, 3]. This makes it difficult to generalise those
methods to systems where the type and volume of Moo-
dle activity can vary significantly. In order to facilitate
the performance prediction on less structured systems, we
need methods incorporating multiple features to deal with
the sparsity problem. As a solution, we present a method
for mining student activity on sparse data via Time Series
Clustering. We explore the use of Dynamic Time Warp-
ing (DTW) as an appropriate distance measure to cluster
students based on their activity patterns, so as to achieve
clustering indicating more structured activity patterns influ-
encing students’ grades. DTW allows two time series that
are similar but out of phase to be aligned to one another.
To gain a macro-level view regarding whether these pat-
terns occur across all assignments, we subsequently perform
a second level aggregate clustering on the clusters coming
from each assignment. This results in seven prototypical
behaviour patterns (see example in Figure 1), that we be-
lieve can lead to better understanding of the behaviour of
larger groups of students in VLEs.

2. TIME SERIES ANALYSIS
To perform clustering, the Moodle activity data was trans-
formed into a series of equispaced points in time. In our
case, a time series is a three week timeline – from two weeks
before a given assignment submission date until one week af-
ter the deadline. These timelines were divided into 12 hour
buckets of activity counts. We applied k-means clustering
using DTW as a distance measure to cluster the timelines
for each assignment. For a given number of clusters k, the
algorithm was repeated 10 times and the best clustering was
selected (based on the fitness score explained below). Due
to the fact that DTW is not a true metric, k-means is not
guaranteed to converge, so we limited each run to a maxi-
mum of 50 iterations. To choose the size of the DTW time
window, we ran k-means for window sizes ∈ [0, 3]. The re-
sults did not conclusively indicate that any single window
size leads to a significant decrease in cluster grade variance,
which is unsurprising. In cases where there are many time
series exhibiting little activity, it will be difficult to differen-
tiate between the series and so a larger window size will be
more appropriate. Based on this rationale, we believe that
window size selection should be run for each assignment sep-
arately when applying this type of analysis in practice. The
fitness function helping in selection of the best clustering
needs to take into consideration that two clusters of differ-
ent sizes might have the same variance value; this issue can
be solved by applying a penalty to smaller clusters. We also
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Figure 1: Two of the seven prototype activity pat-
terns that occurred in Assignment #1. The black
trend-line represents the prototype pattern. The
coloured lines represent the activities of individual
students. Negative numbers on the Time axis rep-
resent time after the deadline.

would like a “balanced clustering” where the variance of the
cluster sizes is as small as possible. Based on these require-
ments, the fitness score calculation for a clustering generated
by k-means consists of three steps:

1. The mean variance of the k-means clustering is calcu-
lated using the weighted average of all the clusters’ vari-
ances, where the weight is based on the size of the clus-
ter. This way the clusterings containing larger clusters
with lower variances will be awarded better scores.

2. It is crucial to test the difference between a baseline
clustering and actual results to define the significance
of the clustering. For that purpose we run multiple
random assignments of time series to calculate the ex-
pected score which could be achieved by chance for a
given number of clusters.

3. To incorporate the baseline comparison in the score,
the weighted average variance score from Step 1 is nor-
malised with respect to the random assignment score
from Step 2. A good clustering should achieve a low
resulting score.

3. DISCUSSION
In our analysis, we took into account 52 two weeks assign-
ments due to their longer and richer time series. We applied
the time series clustering methodology described in previ-
ous section to the activity data for each of the assignments
in the dataset, which are naturally split into two semesters.
The Semester 1 clusterings appeared to show a number of
frequently-appearing patterns across different courses. To
gain a deeper insight into these patterns, we applied a second
level of clustering – i.e. a clustering of the original clusters
from all assignments. To support the comparison of clusters

originating from different modules, the mean time series for
each cluster was normalised. Based on the associated as-
signment scores, these normalised series were then stratified
into low, medium, and high grade groups. We subsequently
applied time series clustering with k = 4 and window size
1 to the normalised series in each of the stratified groups.
Grade group names chosen by us were motivated by the
behavioural pattern of students and some of them were in-
spired by previous research [2]. This second level of cluster-
ing revealed seven distinct prototypical patterns, which are
present across multiple assignments and courses: Procrasti-
nators, Unmotivated, Strugglers, Systematic, Hard-workers,
Strategists and Experts.

The students rewarded with low grades were the second
largest group of submissions after medium graded submis-
sions having the smallest average activity per submission.
The first out of 3 largest clusters was a group barely active
on Moodle, performing submission activity at the deadline
only (See Figure 1). As mentioned by Cerezo et al. [2], these
could be labelled as Procrastinators. The black trend-line
on the graph depicts prototype activity pattern and group
of time series represents activity of students from the sam-
ple cluster. The third biggest group contains those students
doing the minimum amount of work and showing larger ac-
tivity towards the deadline (see Figure 1). The second aca-
demic semester courses mostly exhibit similar clusters from
the first semester. The percentages indicate that for the
Low Grade group, the Strugglers were most common and
Procrastinators were less common.

While we did observe significant numbers of outliers, the rel-
evant courses should be considered using a separate analysis
to determine whether external factors are at play (e.g. con-
tinuous assessment rather than discrete assignments, lack of
material provided on Moodle for a specific course). Finally,
it is worth exploring anomalous clusters in the context of ac-
tivity outside that assignment or course. We are currently
in the process of extending our research to address the be-
havioural patterns of knowledge seekers in alternative, more
complex learning environments.
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1. INTRODUCTION 
The creation and availability of ever-larger datasets is motivating 
the development of new distributed technologies to store and 
process data across clusters of servers. Apache Spark has emerged 
as the new standard platform for developing highly scalable cluster 
computing applications. It offers a wide range of connectors to 
numerous databases and enterprise data management systems, an 
ever growing library of machine-learning algorithms and the ability 
to process streaming data in near-realtime. Developers can write 
their applications in Java, Scala, Python and R. Applications can be 
run locally (for easy development and testing), and deployed to 
dedicated clusters or on clusters leased from cloud-computing 
providers. 
2. TUTORIAL 
This day-long tutorial will provide a hands-on introduction to 
developing massively scalable machine learning and data mining 
applications with Spark. Participants will be expected to follow 
along with all examples on their own laptops throughout the 
tutorial, and to collaborate in small groups. All code used in the 
tutorial will either be taken from publicly available examples, or be 
available for download from the IEDMS github repository1, and 
made available under a very liberal open source license. All 
examples will be designed to process a modestly sized sample of 
the KDD cup dataset available from the PSLC DataShop2.  
In advance of the day, participants will be given instructions on 
how to install and configure Spark and Scala on their laptops, so 
that they might arrive at the tutorial ready to begin. Throughout the 
tutorial, participants will be given exercises and problems to solve 
in small groups. This will give them experience with the material 
as it is presented and hands-on practice with structuring a 
distributed application in Spark. 

2.1 Outline 
The following material will be covered in the course of the tutorial: 

• An overview and history of cluster computing and the 
development of map-reduce 

• An example of a very simple map-reduce algorithm 
(distributed word-count) in Spark 

 

                                                                    
1 https://github.com/IEDMS/spark-tutorial 

• An introduction to the Spark runtime model, including: 

o Basic import and export operations 

o Resilient distributed datasets (RDDs) 

o RDD transformations and actions 

o How Spark optimizes the execution of 
distributed computation 

• An overview to the different deployment options for 
Spark, including: 

o Launching and using the interactive spark 
command-line shell program 

o Running spark programs locally on a single 
machine 

o Launching a Spark cluster on Amazon Web 
Services 

o Submitting applications to remote clusters 

• An introduction to Spark streaming 

• An introduction to SparkSQL and working with 
DataFrames 

o How to load and manipulate an EDM dataset 
(KDD cup data) 

o Data representations needed to fit various 
EDM algorithms 

• An introduction to Spark’s Machine learning library 
MLib, including: 

o Transformers and Estimators 

o Chaining transformers into machine-learning 
pipelines 

o Examples of common EDM algorithms in 
Spark: 

§ IRT algorithms using logistic 
regression (AFM, PFM, IFM) 

§ BKT parameter fitting: (brute-force, 
HMMs) 

Any remaining time will be devoted to discussing potential 
applications that participants may have in mind for their own data 
or projects. 

2 https://pslcdatashop.web.cmu.edu/KDDCup/ 
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ABSTRACT 
In this paper, we evaluate the automatic scoring of a descriptive 

type test. In the experiments, three test similarity measures are 
compared in terms of automatic scoring quality. Two of them are 
BLEU and RIBES, which are n-gram and word-level matching 
processes respectively, originally used for automatic evaluation of 
machine translation output. The other similarity process is 
Doc2Vec, which utilizes distributed representation to calculate 
the cosine distance. It was finally found that, according to the 
experimental results, the most efficient process used to calculate 
the text similarity depends on the type of the question. 

Keywords 

Doc2Vec, BLEU, RIBES, Text Similarity, auto-scoring 

1. INTRODUCTION 
Recently, the importance of "21st Century Skills" has been 

advocated in educational circles. A descriptive type of test is one 
of the methods to measure this skill; hence, this type of test is 
becoming more important than a multiple choice test.  

In this paper, we carried out experiments on automatic scoring of 
a descriptive type test. There are two types of methods for 
automatic descriptive type test scoring. The first method is a 
similarity-based method, which computes the similarity between a 
student’s answer and a model answer. The second method does 
not require a model answer; however, it requires several natural 
language processing (NLP) tools that compute cohesion, 
coherence, etc. [1]. In this research, we adopt the first approach 
because our target language for automatic scoring is Japanese and 
some of the NLP tools are not supported in Japanese. Furthermore, 
our research partner could provide test items and model answers. 
In this paper, section 2 describes similarity measures that are used 
for automatic scoring. Section 3 demonstrates the experiments 
and their corresponding results, and finally, section 4 describes 
the conclusions and future work. 

 

2. SIMILARITY MEASURES 
In this research, we apply two similarity measures based on 

surface expression. Both of them were proposed for automatic 
evaluation of machine translation output. We also apply the 
similarity measures in a distributed expression to the automatic 
scoring experiments. In this subsection, we explain these 
similarity measures. 

2.1 Similarity in surface expression  
BLEU [2] is proposed for the evaluation of machine translations. 

It uses n-gram matching between a reference sentence and a 
machine translation output. A sentence that is shorter compared to 
the reference is penalized in the BLEU score calculation. 

 RIBES [3] is also an automatic evaluation measure for machine 
translations. First, it compares the machine translation output with 
a reference at the word level. Then, it inspects the word order for 
common words based on the rank correlation coefficient. 

2.2 Similarity in distributed expression 
Recently, by using deep learning technology, a word or sentence 

can be converted into a distributed expression that is a vector of 
several hundred dimensions. According to previous research [4, 5], 
the cosine similarity between the distributed expressions is fairly 
close to a semantic similarity. In this research, the gensim1 
version of Doc2Vec is used to build the model that converts the 
document into a distributed expression. 

Table 1: Statistics of the Training Corpus for Doc2Vec 

 # of words Lexicon size 

Japanese wiki abstract (WIKI) 29,944,313 1,398,558 

Mainichi-News-Paper (1991-
2014) (NP) 

504,844,192 5,578,327 

WIKI + NP 534,788,505 6,376,935 

3. EXPERIMENTS 
3.1 Experimental settings 
Doc2Vec requires a text corpus for model training. For the 

experiments, we use a Wikipedia corpus (WIKI) and a Mainichi 
Newspaper corpus (NP). In addition, three models are trained: one 
using WIKI, one using NP and one using both WIKI and NP. 
Then, the best model is chosen for each test item in terms of the 
automatic scoring performance. Table 1 demonstrates the 
statistics of each particular corpus. In the experiments, we use ten 
                                                                 
1 https://radimrehurek.com/gensim/ 
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test items.  
Table 2 Answer Text-Data Specification 

Item 
ID 

Topic of 
question 

Question 
type  

Ave. 
length 

of 
student 
answers 
(words) 

Lexicon 
size of 
student 
answers 

Number 
of 
students 
 

ID01 Book Graph reading 112.2 62.5  21  

ID02 Fisherman Summarization 49.7 33.4  21  

ID03 Food Graph reading 96.4 49.0  24  

ID04 Fishery Graph reading 87.8 53.5  22  

ID05 Supermarket Summarization 101.4 59.7  22  

ID06 University Summarization 110.7 71.6 20  

ID07 Japanese Summarization 77.7 46.8  32  

ID08 Mail Summarization 58.9 44.6 42  

ID09 Vietnam Graph reading 57.5 31.2 29  

ID10 Beef Graph reading 90.2 44.2 24  

ID01-
10 

Average   84.3 49.6 25.7  

 
All test items are answered by at least twenty students, aged 

between 10 and 16 years. Each question has its own target grade. 
Table 2 demonstrates the data set. In the table, “Graph reading” 
indicates the situation where the students are asked to describe a 
fact that can be read from the given graphs. Normally this type of 
question is a short sentence. Further, “Summarization” indicates 
the situation where the students are asked to summarize a given 
text between 300 to 800 words long. In each test item, four model 
answers are made by four teachers. Each answer is also scored by 
four teachers. Averaged scores are used as the recorded 
evaluation results in the experiments. 
 

3.2 Experimental results and Discussion 
Figure1 shows the correlation between the subjective score and 

automatic similarity. For Doc2Vec, we trained models with three 
conditions: Newspaper corpus only (D2V/NP), Wikipedia corpus 
only  (D2V/WIKI) and both Newspaper and Wikipedia (D2V/NP 
+ WIKI).  

The methods that use similarity in surface expression are partly 
advantageous in the summarization question type. In this type of 
question, students tend to use the expression in the given question 
sentence, and the variety of their word choice is small. Thus, the 
possibility of matching words on the model answer could be high. 
In fact, the correlation values of BLEU and RIBES for ID02, 
ID05, ID06, ID07 and ID08 are relatively high. 

The methods that use similarity in distributed expression are 
partly advantageous for the automatic scoring of graph reading 
questions. In general, the answer for this kind of question has a 
wide variation of words because students are free to choose their  
own words.  

Both types of results, however, are shown on the graph of 
reading questions. First, the correlation value from Doc2Vec is 
better than the other methods for ID03, ID04 and ID10. This is 
due to the reason described previously. Second, the value of 
Doc2Vec is inferior for ID01, though it is a graph reading 
question. In this case, we understand that the corpus used does not 
share many similar words with the model answer sentences. The 

result also shows that the Doc2Vec similarity sometimes also 
works as a complemental similarity. 

 

Figure 1 Correlation between subjective score and automatic 
method  

4. CONCLUSIONS AND FUTURE WORK 
For automatic scoring, we compared the Doc2Vec, the BLEU, 

and the RIBES similarities. In the case where the answers include 
a wide variation of words among students, the method using 
distributed expression seems to be more advantageous.  

In future work, we will conduct research to use several 
similarities in a complementary way. We will also compare 
several methods, including the method using cohesion and 
coherence [1] that is described in the introduction section as a 
second method. 

5. ACKNOWLEDGMENTS 
This work uses model answers, student’s answers, and scoring 

data that came from the Lojim clam school. (http://lojim.jp/). 

6. REFERENCES 
[1] Scott A. Crossley, Danielle S. McNamara.: Cohesion, 

coherence, and expert evaluations of writing proficiency, 
Proc. of the 32nd annual conference of the Cognitive Science 
Society, pp. 984-989, 2010. 

[2] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.: BLEU: a 
method for automatic evaluation of machine translation, in 
Proc. of the Annual Meeting of the Association of 
Computational Linguistics (ACL), pp. 311–318 (2002) 

[3] Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, 
Hajime Tsukada.: Automatic Evaluation of Translation 
Quality for Distant Language Pairs, Conference on Empirical 
Methods on Natural Language Processing (EMNLP), Oct. 
2010. 

[4] Tomas Mikolov and Kai Chen and Greg Corrado and Jeffrey 
Dean.: Efficient Estimation of Word Representations in 
Vector Space, http://arxiv.org/pdf/1301.3781.pdf 

[5] Quoc Le, Tomas Mikolov.: Distributed Representations of 
Sentences and Documents, http://arxiv.org/abs/1405.4053 

 

Proceedings of the 9th International Conference on Educational Data Mining 617



Equity of Learning Opportunities in the Chicago City of
Learning Program

David Quigley*, Ogheneovo Dibie, Arafat
Sultan, Katie Van Horne, William R.

Penuel, Tamara Sumner
University of Colorado Boulder

Boulder, CO 80309-0594
*david.quigley@colorado.edu

Ugochi Acholonu, Nichole Pinkard
Digital Youth Network
2320 N Kenmore Ave

Chicago, IL 60614

ABSTRACT
A novel method for understanding the equity of extracurric-
ular learning opportunities within a regional learning ecosys-
tem is presented. We apply the ecosystems concepts of abun-
dance, richness, and evenness to understand the distribution
of learning opportunities within the Chicago City of Learn-
ing. This analysis highlights the differences in learning op-
portunities across different neighborhoods the city. This ar-
ticle includes discussion of the ways these analyses can be
used as a starting point for understanding city-wide informal
learning communities.

1. INTRODUCTION
This work uses computational approaches to understand the
spatial distribution of informal learning opportunities avail-
able to youth within the Chicago City of Learning (CCOL),
a unique partnership and infrastructure built around sup-
porting youth access to learning opportunities outside of
school. Local organizations list their program offerings on
the CCOL website and place them in one or more of eleven
learning areas such as sports, science, or design. Youth ac-
cess the site to browse and sign up for these programs. Our
aim is to understand the degree to which these afterschool
and summer opportunities are accessible to youth. The ac-
cessibility of programs relative to where youth live is a mat-
ter of spatial equity [4].

This research reports on the first year of efforts by CCOL
members to document summer informal learning opportu-
nities in Chicago, which resulted in over 4500 searchable
learning opportunities. We developed a novel theoretical
framework, inspired by concepts from the study of biologi-
cal ecosystems, that draws on concepts of species richness,
abundance, and evenness, and extends these concepts to
characterize learning opportunities in a geographic space.
We developed data mining approaches for operationalizing
these concepts, drawing on data collected through the CCOL
system. We present the theory, data mining approaches,
and results on a specific question of interest: How are learn-
ing activities distributed across different neighborhoods in
Chicago?

2. THEORETICAL FRAMEWORK
This framework extends Barron and colleagues’ descriptions
of learning ecologies as linked contexts that provide youth
opportunities for learning (e.g. [1]). Human and ecologi-
cal systems are constantly adapting to changing conditions,

including conditions brought about by human activities. Re-
silient natural ecosystems - that is, ecosystems that have the
capacity to adapt to a wide range of unexpected changes -
are ones that have both an abundance of organisms and di-
versity of species [5]. Abundance refers to the number of
organisms of a particular species in an ecosystem. Species
diversity can be measured in two different ways: species
richness and species evenness. Richness is a measure of the
number of different kinds of organisms present in a particu-
lar area. Evenness measures the relative abundance of each
species, or how close in numbers each species in an area are
to the others.

These ideas about ecosystems have direct relevance to the
study of youths’ learning opportunities at the scale of a
city. Young peoples’ learning pathways are embedded within
larger ecosystems of opportunity (e.g. [2]), and these con-
cepts help describe those ecosystems. As in nature where all
individual organisms are unique, each program is unique in
the learning opportunities it provides to young people. Here,
richness, abundance, and evenness refer to program offerings
in different neighborhoods, where each individual program
is analogous to an individual organism in an ecosystem, a
program type is analogous to a species, and a neighborhood
is considered a distinct ecosystem.

3. DATA SOURCES AND ANALYSIS
Our team analyzed programs offered through the CCOL
website during the summer of 2014, from June 1st to Septem-
ber 30th. We extracted two pieces of information about each
program: the program type and the program location. Pro-
gram type refers to the eleven categories assigned within
the CCOL system. Program location is the address of the
program as entered by the hosting organization. We normal-
ized the address of each program into a consistent format.
We analyzed 3,931 face-to-face scheduled programs at 755
unique locations within the city limits of Chicago.

Program richness provides us with a way to characterize
the diversity of opportunities, namely the degree to which
program offerings of many different types are accessible from
a particular neighborhood. This is determined for each zip
code by counting the number of program types that have at
least one program hosted in that area. Program abundance
refers to the total number of unique programs within a given
zip code. Program evenness allows us to measure the degree
to which programs of a particular type may predominate
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(a) Richness (b) Abundance (c) Evenness

Figure 1: Heatmaps of richness, abundance, and evenness metrics for zip codes in Chicago

in a neighborhood. This measure considers both the types
of programs that are accessible and the overall number of
programs of each type. We calculated evenness using the
Shannon index, the same formula for species evenness in
the study of ecosystems [3]. The Shannon index gives an
evenness score from zero to one.

4. RESULTS
Figure 1a shows the richness metric - the number of pro-
gram types with at least one program offering - for each zip
code. Our analysis shows that many zipcodes exhibit high
richness, with 39 out of the 59 zipcodes having programs
spanning 9 or more of the 11 possible program types. Only
one zipcode had a single program type being offered.

While many zipcodes exhibit richness, program abundance
and program evenness tell a different story. Figure 1b shows
the abundance - the total number of program offerings across
all program types within each zip code. Here, we see that
many of the programs are clustered in certain areas within
the city. The large number of programs just south of down-
town in particular highlights a hub of programs at cultural
institutions such as museums. Other areas, such as the lake-
front zip codes north of downtown, host fewer local programs
on the CCOL site. Figure 1c shows the program evenness -
demonstrated by Shannon index metrics - for each zip code.
The indecies in all zip codes are relatively low (0 - .234),
showing that all areas’ offerings are skewed towards certain
categories, rather than hosting a strong representation of
programs of all types. In addition, program evenness has
a degree of variance between zip codes in the city. Areas
west of downtown show slightly better evenness scores than
many of those to the south. This metric helps shed further
light on the abundance figures shown in 1b. Though the
area immediately south of downtown has high measures of
abundance, the evenness scores in those same zip codes are
lower than scores found in other parts of the city.

5. DISCUSSION
This work establishes a strong understanding of the distri-
bution of learning programs across the city of Chicago. In
some areas, cultural institutions are providing many pro-
grams in their area, which can skew the evenness metrics
in those areas. In others, there are simply relatively few
programs being offered. These results illustrate the utility
of a data-driven ecological framework for analyzing the dis-
tribution of informal learning opportunities within a large
urban environment. As the abundance, richness, and even-
ness heatmaps illustrate, no one metric is sufficient, as each

captures different aspects of the larger ecosystem. These
three measures, when visualized through the heatmaps in
figure 1, provide a concise way to understand distribution of
different learning opportunities across the city.

It is important to note the limitations of this approach.
First, we used zip codes as our distinct ecosystem bound-
aries. Some zip codes cover large spaces and have odd
shapes, so the presence of a program within that zip code
is only a rough proxy of accessibility. Local transit infras-
tructure can have a significant impact on how well a learner
can access a program, even if that program is hosted on the
other side of the city. Also, this analysis covers only the
first summer of operations of the the CCOL. As such, it is
very likely that many learning opportunities taking place in
churches, community centers, and other locales are not yet
represented in the system. Thus, this analysis presents a
single snapshot of only a portion of the total opportunities
available to youth in the city.
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1. INTRODUCTION
Research shows that complex interactive activities such as team
work and collaboration are more effective when participants are
not only engaged in the task but also exhibit behaviors that facili-
tate interaction [5]. Successful collaboration is often manifested in
what is known as “entrainment” or convergence between the par-
ticipants of such collaboration. In the educational context, entrain-
ment between collaborators or between student and the tutoring
system is important in understanding learning dynamics, learning
gains and student performance in different learning environments
[6]. Recently Luna Bazaldua et al. demonstrated a statistically sig-
nificant synchronicity of cognitive and non-cognitive behavior be-
tween dyads engaged in online collaborative activity [1]. However,
in their study participants were not able to see each other and only
interacted over a text-based chat interface. This is an important
point to note since the ability to converse face-to-face can signifi-
cantly impact the nature of the dyadic interaction. Therefore, in this
paper we focus on behavioral patterns of emotional expressions be-
tween dyads during face-to-face conversation through a video con-
ferencing system. Our hypothesis is that dyads engaged in face-to-
face collaborative activity demonstrate a significantly different pat-
tern of behavior as opposed to nominal dyads who are artificially
paired up with each other. Notation-wise, we use the term nominal
dyad or artificial dyad interchangeably to mean two subjects whose
data are analyzed as if they were interacting dyadically, but were
actually not.

Explicitly modeling temporal information in such dyadic interac-
tion data is important because each person’s emotional state or be-
havior need not stay constant over the course of the interaction –
they could get fatigued over time, or be more nervous at the very
beginning (resulting in repetitive, cyclic fidgeting behavior), but
gradually settle into a comfort zone later, as they get more famil-
iar with the task and each other. For similar reasons their body
language and emotional state can also fluctuate over the time se-
ries. However, current feature extraction approaches that aggregate
information across time do not explicitly model temporal cooccur-
rence patterns; consider for instance that one person’s emotional
state – joy – generally follows his interlocutor’s emotional state –

say neutral – in a definitive pattern during certain parts of the inter-
action. Capturing such patterns might help us (i) explicitly under-
stand the predictive power of different features (such as the occur-
rence of a given pair of emotions) in temporal context (such as how
often did the emotional state of one person in the dyad occur given
the previous occurrence of another emotional state of the other per-
son in the dyad), thus allowing us to (ii) obtain features that are
more interpretable on visual inspection. We would like to take an
initial stab at bridging this gap in this paper. Specifically, we pro-
pose to adapt a feature based on histograms of cooccurrences [4]
that was developed earlier for analyzing a single time-series (say,
from one person), and extend it to the case of dyads (see Figure 1).
The feature models how different “template” emotional states of
one person in a dyad co-occur within different time lags of a “tem-
plate” emotional states of the other person in the dyad over time.
Such a feature explicitly takes into account the temporal evolution
of emotional states in different interaction contexts.

2. DATA
2.1 The Tetralogue CPS Platform
We used an online collaborative research environment developed
in-house – the Tetralogue [2, 1]. The participants, who may be in
different locations, interact through an online chat box and system
help requests (selecting to view educational videos on the subject
matter). The main avatar, Dr. Garcia, introduces information on
volcanoes, facilitates the simulation, and requires the participants
to answer a set of individual and group questions and tasks. A sec-
ond avatar, Art, takes the role of another student who shows his
own answers to the questions posed by Dr. Garcia, in order to con-
trast his information with that produced by the dyad. Twenty-six
subjects participated in this study and were paired in dyads using
random selection.

3. ANALYSES AND OBSERVATIONS
In order to observe how well HoC features capture dyadic behavior,
we randomly extracted 100 time-intervals (each 10 seconds long)
from the post-processed and synchronized feature streams for all
26 subjects. We then computed HoC features for each of these in-
tervals for each subject, respectively. Now recall that in this pool of
subjects, each subject has one true dyad with whom they completed
the Tetralogue task collaboratively. We hypothesize that the HoC
features computed for true dyads will be significantly different as
compared to the HoC features computed between artificial or nom-
inal dyads (who did not actually engage in a dyadic interaction).
We found that the distances computed between HoC features ex-
tracted from true dyads were significantly lower (p≈ 0) than those
of distances between HoC features computed on artificial dyads.
This finding suggests that (i) not only do true dyads engaged in a
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Figure 1: Schematic depiction of the computation of histograms of cooccur-
rences (HoC) (adapted from [3]).
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Figure 2: Schematic illustrations of the emotion feature clusters computed for
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particular distribution of emotional state activations. There are 10 dimensions
that describe an emotional state, represented by different rows. The colors repre-
sent the odds, in logarithmic (base 10) scale, of a target expression being present
(typically range: [−5,+5]).

collaborative interaction exhibit specific characteristic patterns of
emotional state cooccurences that clearly sets them apart from ar-
tificial dyads, but (ii) such HoC features allow us to capture these
differences in an effective manner.

Figures 2 and 3 gives us some more insight into why these features
perform well. Figure 2 depicts the 16 cluster centroids computed on
(and therefore common to) all speakers. Notice that each column of
Figure 2 represents one cluster centroid, comprising different rel-
ative activation of different emotions – for instance, cluster 2 rep-
resents an emotional state with a higher activation of joy and pos-
itive emotion, while cluster 6 represents a more neutral emotional
state, encompassing an equal (and approximately zero) activation
of all emotions. Recall that these emotion clusters are common
to all speakers. Figure 3 shows feature distributions of HoC fea-
tures computed on one particular speaker and his/her actual dyadic
partner, and those computed on that same speaker and an artifi-
cial dyadic partner. We observe that the feature distributions of the
former are more peaky, with specific certain clusters of emotions
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Figure 3: Average HoC feature distributions (across lags) for the true and
nominal dyad, respectively, of one particular speaker in the database. The color
in the (m,n)th square represents the average normalized activation (between 0
and 1) of cluster m of the speaker represented along the y-axis co-occuring with
cluster n of the speaker represented along the x-axis.

co-occurring more often than others. However, in the case of the
latter, this distribution is more flat and uniformly distributed. Note
that while specific results shown in Figure 3 are particular to the
chosen speaker, we observe the aforementioned trends are in gen-
eral for all speakers. In other words, true dyads display specific
patterns of behavioral cooccurrence and synchronicity that are not
observed in artificial dyads, and such a HoC feature is helpful in
understanding and bringing out these differences.

4. CONCLUSIONS AND OUTLOOK
This paper has made an initial attempt at proposing a novel fea-
ture, dubbed histograms of cooccurrences, that captures how often
different prototypical behavioral states exhibited by one person co-
occur with those exhibited by his/her partner over different tempo-
ral lags. We have shown that not only does this feature bring out the
differences between dyads and non-dyads, but is also interpretable
in that it tells us which behavioral states are most likely to occur in
dyads as opposed to non-dyads.
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ABSTRACT 
Visual representations are ubiquitous in STEM instruction. 
Representation skills allow students to use visual representations 
to learn about concepts. It seems reasonable to hypothesize that 
we can gather useful information about representation skills from 
eye-tracking AOI data that assesses how students pay attention to 
representations. We tested this hypothesis by comparing cognitive 
models with and without eye-tracking AOI data. Specifically, we 
used Bayesian Knowledge Tracing and Long Short Term Memory 
models. We evaluated these models based on their accuracy in 
predicting students learning of knowledge components that assess 
representation skills. Eye-tracking AOI data did not improve the 
prediction accuracy of our cognitive models. We compare our 
results to prior research to generate hypotheses for future research. 

Keywords 

Visual representations, intelligent tutoring system, eye-tracking, 
Bayesian Knowledge Tracing, Long Short Term Memory models. 

1. INTRODUCTION 
STEM instruction typically uses visual representations that depict 
to-be-learned content [1]. To learn content knowledge, students 
have acquire representation skills: the ability to use visual 
representations to learn [2]. Instructional support is most effective 
if it not only focuses on students’ learning of content knowledge, 
but also on their learning of representation skills [1]. Intelligent 
tutoring systems (ITSs) have the capability to adapt to the 
individual student’s needs [3]. They do so based on a cognitive 
model that infers the student’s knowledge level based on 
interactions with the ITS [3]. Hence, the goal of cognitive 
modeling is to accurately model students’ learning in real time 
[4]. A limitation of this research is that it has mostly focused on 
students’ content knowledge, not on representation skills. 
It seems reasonable to assume that we can gather useful 
information about students’ learning of representation skills from 
their visual attention to representations [5]. However, most prior 
eye-tracking research involved relatively simple learning 
materials; typically expository text paired with one additional 
visual representation. By contrast, ITSs are more complex. 
Second, prior research has not focused on using eye-tracking AOI 
data to model students’ learning of representation skills. For 
example, Conati's research group used eye-tracking data in 
cognitive models found that it can improve predictions of 
students’ learning of content knowledge [6]. This paper tests the 
hypothesis that eye-tracking AOI data improves cognitive models. 

2. DATASET 
We used data from a lab experiment that collected students’ eye-
tracking data while they worked with an ITS for chemistry for 3h 
[7]. 117 undergraduates participated in the experiment. For our 

analyses, we used log data from the ITS and eye-tracking data. To 
analyze the log data, we constructed a knowledge component 
(KC) model that relates each problem-solving step to the 
underlying skill. KCs corresponded to representation skills. To 
analyze the eye-tracking data, we generated visual attention 
features that assess how students process the visual 
representations with areas of interest (AOIs) that correspond to 
the representations. We also created AOIs for the parts of the 
screen where students solve problems, for the hint window, and 
for the periodic table that students could show and hide. We 
included only logged events and first attempts that were tagged 
with a KC with more than 30 data points. Our final dataset 
comprised a total of 30,893AOI and log events. 

3. ANALYSES 
We used two cognitive modeling approaches: Bayesian 
Knowledge Tracing (BKT) and Long Short Term Memory 
(LSTM) models. Both analyses used a 5 fold cross validation 
scheme which was created by assigning students to folds once.  
BKT is the standard cognitive modeling procedure in research on 
ITSs [8]. We used BKT to evaluate a cognitive model 
representing performance prediction based on a student’s history 
of incorrect and correct responses to questions of the same 
knowledge component. Following standard practice, we evaluated 
different guess and slip equivalence classes, which included using 
a different guess and slip per problem or per step. In previous 
work [9], separate guess and slip classes at the problem level 
resulted in a 10% gain in accuracy on ITS dataset. We applied this 
model to KCs without eye-tracking AOI data and to a version 
with eye-tracking AOI data. For the latter model, we fit a separate 
learning rate for each AOI within a problem. 
All BKT models were fit with expectation maximization (EM) 
with max iteration of 100 and epsilon of 1e-6 as stop criteria. The 
best models in terms of log-likelihood used 40 EM restarts with 
initial parameter values. Tor prior these were drawn from a 
uniform random distribution, while the values for learn, guess, 
and slip were capped at 0.40, 0.40, and 0.30 respectively.  
LSTM models are a subset of Recurrent Neural Networks (RNN). 
Recent progress in image classification with convolutional neural 
networks utilizes its ability to learn features that have more 
predictive power than manually crafted features (e.g., edge 
detection), previously the state of the art for image classification. 
In a similar vein, we used LSTM so that features of eye-tracking 
AOI data not yet known to be important could potentially be 
picked up. Therefore, the LSTM in represents a powerful detector 
to find out if there is a useful predictive signal in our sequences of 
eye-tracking AOI data. 
We used two LSTM variants on RNNs that add a state to the 
hidden layer called the cell state which allows the network to 
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more effectively remember actions that occurred in the past when 
piecing together patterns in sequential input. We compared 
versions that utilized eye-tracking AOI data to versions that did 
not. Both LSTM models utilized the identical amount of 
information as their BKT with-eye and without-eye data counter 
parts and both trained a separate model per KC. In the case of 
LSTM models; eyeHeader, problemID-AOI, and Outcome 
comprised the feature vector. In both LSTM models, there is an 
instance of training data for every response given by a student. 
While non eye-tracking models were trained on sequence lengths 
that extend as long as the longest response sequence, AOI 
sequences were limited to the most recent N events, where N was 
defined as the maximum number of responses of any student in 
the training data + the median number of AOI events per student. 
This was done so that the data could fit into memory using 8bit 
signed integer matrices on a single large memory compute node. 

4. RESULTS 
After the 5 fold cross validation, RMSE was calculated per 
student. For a baseline reference, the RMSE of predicting the 
average percent correct for each KC was 0.39062. Models without 
eye-tracking data performed better than all of the models with 
eye-tracking data. Among the BKT models, problem was the 
better choice for assigning guess and slips over stepname, 
agreeing with prior work on ITS data [9]. Among LSTM models, 
extending the number of training epochs from 5 to 10 resulted in 
the most substantial gain of any model when not using eye-
tracking but more epochs lead to overfit with the eye-tracking 
model. LSTMs, given the same problem-id and response data, 
were better able to leverage the information towards prediction 
accuracy than BKT, although both relied on a KC model. 
Differences between predictions were statistically reliable (ps < 
0.05), as determined by a paired t-test of squared residuals 
between all adjacent models in the list with the exception of the 
LSTM model with 5 epochs and the BKT model with problem-id 
as guess/slip, which both used eye-tracking AOI data. 

5. DISCUSSION 
Our results stand in contrast to our hypothesis: using two 
cognitive modeling approaches, we did not find evidence that eye-
tracking AOI data improves the accuracy of the model’s 
prediction. This finding is noteworthy for the following reasons. 
First, it is counterintuitive because we tend to assume that visual 
attention is an important factor in assessing representation skills. 
Second, our finding stands in contrast to prior research on 
learning with text paired with one additional visual representation, 
where students view rather than interact with the material. The 
difference between prior work and our work is that our study used 
a complex learning environment, where students manipulated 
visual representations to solve problems. Third, our results stand 
in contrast to prior work, which found that eye-tracking AOI data 
can improve the accuracy of cognitive models of students’ 
learning of content knowledge. The difference between prior work 
and our work is that our cognitive model assessed students’ 
learning of representation skills, which reflects students’ 
knowledge about the content and about visual representations.  

One possible explanation is that prior eye-tracking research on 
learning with simple materials did not assess whether eye-tracking 
AOI data adds predictive accuracy to log data—because these 
materials do not generate log data. Second, representation skills 
may reflect not how students inspect visual representations, but 
how they use information from the representations to solve 
problems, which is sufficiently captured by the log data—

particularly if the representations themselves are interactive and 
hence generate log data that can be used in cognitive models. 
Third, the fact that we modeled representation skills rather than 
content knowledge may explain why our results stand in contrast 
to prior work by Conati’s group. We used a KC model that was 
specifically designed to assess students’ representation skills. 
Even if eye-tracking AOI data assesses representation skills, it 
may simply not improve the accuracy of our cognitive model 
because the KC model already captures this information.  

A limitation of our research results from the fact that the 
granularity of our AOIs was fairly coarse. Subtle cognitive signals 
may exist at fine grained resolutions which may require diving 
into the raw eye-tracking AOI coordinates. A second limitation 
was the exploration of hyper parameters. While this is always a 
caveat of any analysis using machine learning, a particular set of 
hyper parameters may exist which unlocks the predictive utility of 
the existing eye-tracking AOI data.  
In sum, our findings suggest that eye-tracking AOI data does not 
necessarily add information relevant to students’ representation 
skills, compared to what can be captured by a well-crafted KC 
model of representation skills. This rationale amounts to a new 
hypothesis that should be tested in future research: namely that 
adding representation skills to cognitive models of content 
knowledge may improve prediction accuracy in the same way as 
the addition of eye-tracking AOI data would. 
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ABSTRACT 
MATHia X is the next generation implementation of Carnegie 
Learning’s Cognitive Tutor (CT), a widely deployed, research-
based mathematics curriculum that has provided data for many 
educational data mining studies. While many researchers are 
familiar with the basic operation of the system, there are several 
features that may affect analysis and interpretation of data that are 
less well known. We describe features of MATHia X and CT, as 
well as aspects of its practical implementation in real-world 
classrooms, that may be important for researchers using MATHia 
X and CT datasets.   
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1. MATHIA X & COGNITIVE TUTOR   
MATHia X is the next generation platform for Carnegie 
Learning’s Cognitive Tutor (CT) [5], an intelligent tutoring 
system (ITS) for mathematics used by hundreds of thousands of 
learners in middle schools, high schools, and universities across 
the US (and to a lesser extent internationally, e.g., [4]). 

MATHia X provides an HTML5/JavaScript, web-based 
implementation of the Cognitive Tutor technology and 
mathematics curricula; for our mid-2016 release we will have 
content for middle school grades 6-8 and Algebra I, with 
subsequent content covering Algebra II and Geometry. While 
MATHia X provides a technology and user interface refresh 
(including a space-themed interface “skin” in the initial release), 
fundamentally, most user interface and ITS affordances (including 
fine-grained data collected about learner interactions in the ITS) 
are essentially the same as they were in the Java-based Cognitive 
Tutor and MATHia products that have been in use for well over a 
decade. As such, we expect to continue in our long-standing 
tradition of partnering with education, educational data mining, 
and cognitive science researchers on basic and applied research 
about how students think and learn, as well as to continue 
providing data to these communities. The present demo explains a 
number of features common to both our legacy CT product as 
well as our next generation MATHia X product, many of which 
are important to data analyses carried by educational data mining 
researchers. 

Datasets from CT are widely used in a variety of educational 
data mining (EDM) and education research projects, including in 
a substantial number of papers in the proceedings of the present 
conference. Many experimental and observational datasets 
(comprising hundreds of millions of learner actions in CT) have 
also been made available via the Pittsburgh Science of Learning 
Center’s DataShop repository [3]. While many aspects of 
MATHia X and CT, such as their use of mastery learning and 

Bayesian Knowledge Tracing (BKT) are well known, there are 
many features and details of implementation and context of use 
that are less well known but important for appropriate analysis of 
CT (and eventually MATHia X) data. We describe a number of 
these characteristics here, in the hope that this information can 
inform EDM researchers’ understanding of CT and MATHia X 
and contribute to future research that uses such data. 

2. FEATURES & IMPLEMENTATION 
2.1 Basal and Supplementary Use 
Carnegie Learning produces text materials in addition to software, 
and the “blended” product (text and software) is often used as a 
“basal” curriculum, meaning that it is the primary source of 
instructional materials for a class. Our recommendation for 
blended implementations is that the software be used 
approximately 40% of the time (two class periods/week), with the 
text materials used for 60% of classroom time. Depending on 
school schedules, computer availability, and other factors, the 
amount of software usage varies considerably between schools. 

In addition to “basal” usage, some schools use CT as a 
supplement to other educational materials. Such usage may follow 
the 60%-40% model, using a different textbook, but most 
supplemental usage is irregular. One consequence of such usage is 
that estimates of student knowledge can be highly inaccurate, 
since students may learn (or forget) substantial amounts in the 
long gaps between use of the tutor. Some supplementary use is for 
a specific purpose (e.g., summer school). In both types of 
implementations, schools may use the software for all students or 
for only a subpopulation thereof (e.g., those below grade level).  

2.2 (Custom) Curricular Structure 
Within K-12, there are a variety of main Carnegie Learning 
curricula: Algebra 1, Geometry and Algebra 2 (the high school 
sequence) are provided by our legacy CT product; a three-year 
middle school sequence and Algebra I are provided by the new 
MATHia X product in its initial release; and Bridge to Algebra, a 
one-year review of the middle school sequence is also provided on 
our legacy platform. Soon all of our curricula will be provided on 
the web-based technology that drives MATHia X. Overall, these 
curricula correspond to typical US courses. However, depending 
on state standards and other needs, schools may construct 
“custom” curricula that incorporate topics from one or more of 
these prototypical curricula. Custom curricula are popular, and the 
majority of CT data is now collected within such custom 
sequences. CT validates custom sequences for redundancies and 
violations of prerequisites; schools can ignore warnings about 
violations, but this is rare. 

A curriculum consists of a set of modules, which represents a 
major topic in the curriculum. A full course may contain 6-8 
modules. Modules consist of units, which consist of sections. 
Each section contains a large set of problems. Mastery learning 
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operates at the section level; students work within a section until 
they have mastered all associated knowledge components (KCs) 
(i.e., skills). The next section (or unit, if the section mastered is 
the final one in the unit) is automatically presented to the student. 
The module level is different. Although students will 
automatically progress to the next module when they complete the 
final section in the prior module, teachers can also “unlock” 
modules, allowing students to work on any open modules. Thus, 
at any given time, a student has a single position within a module 
(representing the current section) but may have positions within 
multiple modules. This feature is intended to allow movement 
among topics that do not have a prerequisite relationship. 

2.3 Violations of Mastery Learning 
Although we say CT and MATHia X implement mastery learning, 
in practice, there are several cases where students are not asked to 
work until they complete with mastery. Within each section of a 
curriculum, we specify a maximum number of problems that will 
be presented to students (often 25, but this varies, depending on 
the complexity of problems; for technical reasons, there are also 
cases where students might be promoted before reaching this 
maximum). If students complete this maximum without mastering 
their skills, they will advance to the next section of the 
curriculum. We call these advances “promotion,” and these are 
flagged and communicated to teachers in our reporting system. 
The underlying idea is similar to the concept of “wheel-spinning” 
[1]. If students are not able to master the material in the tutor in a 
reasonable period of time, then it is likely that, for whatever 
reason, the tutor’s mode of instruction for this topic is not 
resonating with the student, and so an alternate instructional 
approach is preferable. The teacher is responsible for presenting 
the alternative approach. Promotion is not rare; students are 
promoted from about 12% of sections. Promotions vary quite a bit 
by section and by student. Teachers also have the ability to 
manually move a student to a different position in the curriculum. 
Such placement changes also violate the mastery assumption. 
They happen for various reasons, most commonly because the 
teacher wants the student to “catch up” to the placement of the 
rest of the class. Such mastery learning violations due to 
placement changes are associated with greater error rates (and 
greater variability in error rates) over time than those experienced 
by students in classes that do not violate mastery learning [6]. 

2.4 Instructional Resources 
Many analyses of CT data have looked at help seeking (e.g., [7]). 
Such work typically considers student use of problem-specific 
help, which is the only resource that affects CT’s assessment of 
student knowledge. However, there are other sources of assistance 
available. Each unit has “lesson” content, which provides 
declarative instruction, worked examples, manipulatives, and 
topic-related video. A glossary is always available to students, and 
references to math terms within lesson text or hints are linked to 
it. Students also often use calculators and communicate with 
teachers and other students as they use the software.  

Step-by-step examples provide another form of assistance. At 
least one example problem in each unit illustrates the basic 
problem-solving approach [2]. Unlike “regular” problems, step-
by-step examples expose only one possible path through the 
problem, and text that would be used as a hint in problem solving 
is automatically presented to students as they go through the step-
by-step example. This experience is intermediate between looking 
at a worked example and problem solving. Students can refer back 
to the step-by-step example as they work, and work in the step-by-
step example is not used to assess student knowledge. 

2.5 Non-persistent Student Model 
Math knowledge is cumulative, so one expects that new topics 
incorporate many KCs mastered in earlier topics. Each section in 
CT and MATHia X monitors a small set of KCs, among the large 
set that is actually needed to solve problems in the section. While 
each section does introduce new knowledge, for various reasons, 
some sections list KCs that have been addressed in previous 
sections. These KCs take their preset values, not values based on 
students’ prior work. In other words, CT and MATHia X do not 
assume that such KCs have been mastered. There is little practical 
consequence to listing such KCs; if the student learned them, CT 
will quickly recognize that fact, but researchers should be aware 
that the CT’s assessment of skills is always within a section. Since 
skill values (i.e., estimates of student knowledge of a skill) do not 
carry over from section to section, researchers should not 
automatically assume that KCs with identical names in different 
sections are, in fact, identical KCs for purposes of data analysis. 

3. DEMO + THE FUTURE 
In this demo, we will exhibit basic problem solving in MATHia 
X, introducing the Cognitive Tutor technology to those unfamiliar 
with it and showing the refreshed technology to those already 
familiar with our products. Carnegie Learning looks forward to 
broad adoption of the next generation MATHia X software as a 
part of its blended mathematics curricula. Combining 
observational data sets from such adoptions with experimental 
data sets that will be collected by investigators using MATHia X 
as a platform for research will provide rich data to be mining and 
analyzed for many years to come in the educational data mining, 
learning analytics, cognitive science, and other research 
communities. 
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ABSTRACT 
We envision next generation learners having access to both 
automated and human sources of instruction in a variety of 
learning contexts. In such contexts, it will be most effective if 
students can be assisted to appropriately navigate between these 
sources of instruction. For example, human tutors, when helping a 
struggling student, might benefit from having access to the 
learning profile an automated tutor possesses on the student, 
including what the student already knows, detected 
misconceptions, inferred affective state and details about the 
student's work with the automated system before requesting 
human help. Similarly, an automated tutoring system would 
benefit from knowledge of interactions during human tutoring 
session. To facilitate student transitions between these types of 
systems, we need to understand the factors that best aid students 
in transitioning between such systems. This poster reports 
preliminary analyses, suggesting that students who are struggling 
with the course are more likely to take advantage of the optional 
human tutoring support and that such use is associated with 
increased course completion rates, regardless of the student’s 
level of preparation. 

Keywords 

Human tutoring, intelligent tutoring system, blended approach. 

1. INTRODUCTION  
Intelligent tutoring systems (ITSs) frequently seek to mimic the 
best practices of one-on-one human tutors to drive improved 
student learning outcomes in a manner that is both scalable and 
cost effective. While extensive research considers a learning 
context in which a student uses an ITS while having a human 
instructor available (e.g., in K-12 computer labs), little work 
considers situations in which students use an automated tutoring 
system like an ITS alone (e.g., in their homes) while having 
human tutors available optionally for tutoring sessions via online 
chat. Data collected under such circumstances has the potential to 
generate important insight into how instructional “hand-offs” 
should proceed between such instructional modalities as well as 
general best practices for human and automated tutoring.  

This project builds on more than a decade and a half of research 
on Carnegie Learning’s Cognitive Tutor (CT) ITS [1]. The project 
leverages a unique dataset comprised of detailed learning records 
for thousands of students taking an online developmental math 
course. Students had required CT assignments as well as access to 
an online chat-based human tutoring service. This dataset allows 
us to explore the reasons that may lead students to choose to seek 

help from human tutors while using an intelligent tutoring system. 
The project also heavily draws on extensive work on tutorial 
dialogue data [2-3], allowing us to understand the human tutoring 
interactions that lead to the greatest learning gains within this 
context. At a technical level, the work further extends prior work 
exploring tutorial dialogue interactions and their automated 
classification by incorporating new and previously unavailable 
machine tutor data. 

To the best of our knowledge, the proposed approach we are 
starting to work towards is the first attempt to address the creation 
and evaluation of an integrated approach to capitalize on the joint 
compensatory nature and data exchange between computerized 
tutors like ITSs and human tutors. We expect tools and results to 
generalize beyond the specific automated and human tutoring 
systems examined. For example, we expect knowledge gained 
from this work to inform us about how to better educate teachers 
about how to assist students in classrooms using the educational 
software in physical classrooms and how to build better reporting 
systems for human tutors helping students in a wide variety of 
educational applications.  

As our first step in understanding how students navigate between 
CT and human tutoring (HT), we were particularly interested in 
understanding whether the subset of students who chose to use HT 
differed substantially in their use of CT and in their outcomes 
from students who did not use HT. In order to understand whether 
student preparation for the course affects use of HT, we use 
student performance in the first week of the course as a proxy for 
their initial ability in the course. 

2. DATA 
We collected data from two developmental college mathematics 
courses (one is a prerequisite for the other) deployed online at a 
degree-granting institution. Each course took place over five 
weeks, and the assignment for each week consisted of one large 
CT module. Each of these modules was broken into sections of 
content that grouped roughly similar problems. The instructional 
model within CT employs a mastery learning approach, in which, 
new problems are given until the CT’s estimates of the underlying 
skills surpasses mastery thresholds. New sections of each math 
course begin every week; our dataset consists of all CT and HT 
interactions taking place from June 1 to December 31, 2014. The 
subject population consists of 16,905 CT users, approximately 
3,300 of whom opted to request HT help during the selected 
period. These students produced over 19,000 human-tutored 
sessions, with an average length of 22 minutes.  Students were 
predominantly adult learners of college age and older. 
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3. RESULTS 
Table 1 shows primary descriptive statistics for these populations. 
Statistics for both courses were merged for simplicity since they 
are quite similar. The data indicate that students who opt to use 
HT struggled with the courses more than students who did not 
take advantage of HT. Students using HT have a higher assistance 
score (number of hints plus number of errors) in CT, as opposed 
to those who did not use HT. Perhaps as a result of asking for 
more hints and making more errors, students using HT worked 
more slowly, completing fewer sections per hour. The measure of 
sections per hour has been previously found to be predictive of 
overall course achievement [4]. 

These results are consistent with the idea that students who are 
struggling with the course are more likely to take advantage of 
HT. It seems unlikely that use of HT would have strong effects on 
course-level measures like amount of assistance or completion of 
sections per hour, since, on average, students who used HT used it 
fewer than 6 times in a course covering between 25 and 50 topics. 

In contrast to these indicators that students using HT struggle with 
the course is the data showing that such students are more likely 
to complete sections in the course. That is, despite the fact that 
students turning to HT struggle with the course, they complete 
more sections of the course, indicating that HT may have a broad 
effect on student persistence.  

To further investigate this effect, we use performance in the first 
module in the course as a proxy for students’ initial preparation 
for the course. To better align Course 1 and Course 2, module 1 
performance was converted to a z-score relative to the mean for 
that course and binned. Bin size was set to 0.5 standard 
deviations. Figure 1 shows means of course completion 
probability for each bin for users and non-users of HT with the 
number of students printed next to each point. At all levels of 
course preparation, students using HT, although, as we have seen, 
struggling, are more likely to complete the CT course material. 

4. Conclusion 
These preliminary analyses provide a basis for understanding the 
factors that lead students to use HT and for understanding the 
broad influence of HT on students. These data are suggestive that 
students who are struggling with mathematics are more likely to 
use HT. Interestingly, the data are also suggestive that use of HT 
may have a broad affective influence on students. Despite the 
relatively small amount of contact with human tutors during the 
course, it appears that students who take advantage of such 
contact appear to be more willing to stick with the course and 
complete more work, despite their struggles with the mathematics. 

5. ACKNOWLEDGMENTS 
This work is supported by the contract with Advanced Distributed 
Learning agency of the Department of Defence (award W911QY-
15-C-0070). 

6. REFERENCES 
[1] Ritter, S., Anderson, J.R., Koedinger, K.R., & Corbett, A. 

(2007). The Cognitive Tutor: Applied research in 
mathematics education. Psychonomic Bulletin & Review, 
14(2), pp. 249-255. 

[2] Morrison, D. M., Nye, B., & Hu, X. (2014). Where in the 
data stream are we?: Analyzing the flow of text in dialogue-
based systems for learning. In R. A. Sottilare, X. Hu, H. 
Holden, & K. Brawner (Eds.) Design Recommendations for 
Intelligent Tutoring Systems: Volume 2: Adaptive 
Instructional Strategies and Tactics (pp. 217–223). U.S. 
Army Research Laboratory. 

[3] Rus, V., D’Mello, S., Hu, X., & Graesser, A.C. (2013). 
Recent Advances in Conversational Intelligent Tutoring 
Systems, AI Magazine, 34(3):42-54. 

[4] Ritter, S., Joshi, A., Fancsali, S.E., and Nixon, T. (2013). 
Predicting Standardized Test Scores from Cognitive Tutor 
Interactions. In Proc. of the 6th International Conf. on 
Educational Data Mining (Memphis, TN, July 6-9, 2013). 
169-176. 

 

 

  
Figure 1. Standardized performance on module 1 vs. overall 

course completion probability. 

Table 1. CT and HT statistics: means (standard errors). 

 Students using HT Students not 
using HT 

Parameter Course 1 Course 1 
CT sections 
attempted 50.25 (0.25) 50.25 (0.25) 

CT problems 
attempted 493.22 (3.39) 359.38 (2.95) 

CT assistance 
score 3003.16 (47.40) 2621.52 (47.70) 

CT assistance 
score per section 62.78 (1.05) 71.36 (1.24) 

CT time per 
student (hours) 35.41 (0.47) 35.85 (0.50) 

CT sections 
mastered per hour 1.57 (0.03) 0.99 (0.02) 

HT time per 
student (minutes) 110.05 (5.14) N/A 

HT utterances per 
student 352.82 (17.13) N/A 
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ABSTRACT 
Revising is an essential writing process yet automated writing 
evaluation systems tend to give feedback on discrete essay drafts 
rather than changes across drafts. We explore the feasibility of 
automated revision detection and its potential to guide feedback. 
Relationships between revising behaviors and linguistic features of 
students’ essays are discussed.    

Keywords 

Automated Writing Evaluation; Writing; Revising; Intelligent 
Tutoring Systems; Natural Language Processing; Feedback 

1. INTRODUCTION 
Automated writing evaluation (AWE) systems provide computer-
based scores and feedback on students’ writing, and can promote 
modest gains in writing quality [1, 2]. One concern is that students 
receive feedback on their current drafts that ignores patterns of 
change from draft to draft. We argue AWE tools should include 
feedback models that incorporate data on students’ revising 
behaviors and textual changes. These innovations may afford 
greater personalization of formative feedback that helps students 
recognize how their editing actions affect writing quality.  
This study used Writing Pal (W-Pal), a tutoring and AWE system 
that supports writing instruction and practice [3, 4]. When 
submitting essays to W-Pal, students receive scores (6-point scale) 
and feedback with actionable suggestions for improvement. 
Scoring and feedback are driven by natural language processing 
(NLP) algorithms that evaluate lexical, syntactic, semantic, and 
rhetorical text features [1, 5]. One goal for W-Pal development is 
feedback that promotes more effective revising [see 4].  

2. METHOD 
2.1 Context and Corpus 
High school students (n = 85) used W-Pal to write persuasive essays 
on the topic of “fame.” Most identified as native English speakers 
(56%) and others as English-language learners (44%).  

2.2 Detection and Annotation of Revising 
We calculated difference scores between drafts for several NLP 
measures (via Coh-Metrix [5, 6]). Lexical measures assessed word 
choice and vocabulary, such as word frequency and hypernymy. 
Cohesion indices assessed factors such as overall essay cohesion, 
semantic relatedness (using LSA), and structure. 
Human annotation of revisions adapted methods from prior 
research [7, 8]. Writers can alter their text via adding, deleting, 
substituting, or reorganizing actions. Human coding of these 
revision actions showed high reliability (κ = .92). Revisions can 
also maintain (superficial edits) or transform (substantive edits) the 
meaning of surrounding text. Human coding of revision impact on 
text meaning also demonstrated high reliability (κ = .81). 

3. RESULTS 
3.1 Automated Detection of Revising 
Essays demonstrated detectable changes in linguistic features from 
original to revised drafts. Revised essays were longer, included 
more transitional phrases and first-person pronouns, and were 
somewhat more cohesive (see Table 1). 

Table 1. Linguistic Changes and Correlations with Scores 

 Linguistic 
Change 

Correlation with 
Score Change 

Linguistic Change t(84) p r(84) p 

Basic     
Word Count 6.24 < .001 .06 .593 
Sentence Count 4.33 < .001 -.09 .393 

Lexical     
Lexical Diversity -0.28 .781 .17 .124 
Word Concreteness 0.83 .410 .34 .002 
Word Familiarity -0.74 .463 -.01 .954 
Word Hypernymy 0.80 .424 .24 .028 
1st Person 2.09 .040 -.07 .545 
2nd Person -1.06 .294 -.22 .043 
3rd Person -0.23 .818 -.10 .342 

Cohesion     
Connectives 1.67 .099 .03 .809 
LSA Given/New 2.98 .004 .08 .484 
LSA Sentences 0.58 .562 .24 .029 
LSA Paragraphs 1.86 .066 -.08 .465 
Deep Cohesion 0.71 .478 .18 .098 
Referential Cohesion 0.52 .607 .01 .893 
Narrativity 1.05 .296 -.25 .023 
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Essay quality increased from original (M = 2.7, SD = 1.0) to revised 
drafts (M = 2.9, SD = 1.1), t(84) = 3.64, p < .001, d = .19. Gains 
correlated with increased concreteness, specificity, objectivity (i.e., 
fewer 2nd-person pronouns and less story-like), and cohesion. 
Importantly, the linguistic changes linked to gains were not the 
most typical changes. This finding reinforces the idea that students 
are not skilled revisers—their revising behaviors can be dissociated 
from actions that improve the quality of their work.  

3.2 Human Annotation of Revising 
The most common revisions were additions (47.5%) and 
substitutions (33.6%). Deletions (15.4%) and reorganizations 
(2.5%) occurred less often. None of the revising actions were 
correlated with changes in essay score. This finding reiterates the 
point that high school students are not necessarily skilled revisers.  

3.3 Relationships between Modes of Analysis 
The total number of revisions was not related to linguistic changes 
across drafts (range of rs from -.18 to .12). Simply revising more 
had minimal effects. Additions, substitutions, and reorganization 
had few effects. In contrast, deletions were associated with 
reductions in narrativity and third-person pronouns. Along with 
reduced word familiarity, this pattern suggests that students were 
removing story-like language. Deletions were also associated with 
reduced given information, semantic similarity across paragraphs, 
and referential cohesion. Thus, as students removed content from 
their essays, the cohesive flow of ideas was perhaps hindered. 
Overall, deletions seemed to be linked to both gains and setbacks 
in essay quality (see Table 2). 

Table 2. Correlations of Revision Types and Linguistic 
Change 

Linguistic Change Add Delete Subst. Reorg. 
Basic     

Word Count .29b -.36a -.18 -.10 
Sentence Count .37a -.18 -.16 .05 

Lexical     
Lexical Diversity .01 .26c -.04 .07 
Word Concreteness .00 .29b .08 .06 
Word Familiarity -.04 -.28c .15 -.09 
Word Hypernmy -.10 .11 .02 -.18 
1st Person .04 -.11 .11 .07 
2nd Person -.09 -.03 -.05 -.04 
3rd Person -.01 -.26c -.07 .00 

Cohesion     
Connectives -.07 .16 .09 -.03 
LSA Given/New -.02 -.32c -.07 -.07 
LSA Sentences -.20 -.09 .06 -.12 
LSA Paragraphs .07 -.24c -.05 .04 
Deep Cohesion .00 -.11 .07 -.07 
Referential Cohesion -.10 -.25c .12 -.03 
Narrativity -.07 -.34a -.01 .01 

Note. ap ≤ .001. bp ≤ .01. cp ≤ .05. 

A final analysis examined revisions by both type and impact. As in 
the previous analysis, the most meaningful linguistic changes were 
associated with deletions, with substantive deletions appearing to 
have the strongest influence. Superficial deletions tended to make 
essays more personalized (i.e., more 1st-person pronouns) and less 
specific. Substantive deletions tended to make essays shorter, less 
story-like, more sophisticated in terms of vocabulary, and less 
cohesive. 

4. Discussion 
Our results provide evidence that automated tools can detect 
linguistic changes in students’ writing. Formative feedback based 
on such measures might help students appreciate when and how 
their drafts evolve over time. For instance, when an increase in 
narrativity or decrease in cohesion are detected, feedback could flag 
the edited sections of text so that conscientious students can draw 
inferences about the impact of their revisions.  
Ideally, AWEs should also be able to detect and give feedback on 
revising behaviors. From the current study, however, it is unclear 
whether linguistic data could be used to identify such behaviors. 
With the exception of deletions, students’ revising actions did not 
have a profound impact on linguistic properties. 
One solution may reside in keystroke logging [9]. Keyboard and 
mouse clicks made while interacting with an AWE system may be 
interpretable with respect to revising. For example, backspace 
presses may indicate deletion. The use of mouse buttons to select 
text, along with “CTRL-X” and “CTRL-V” hotkey functions, could 
signal reorganization. If such tools can be added to AWEs, they 
may provide real-time measures of writing and revising behaviors 
that can be explicitly linked to linguistic consequences.  
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ABSTRACT 
We present in this paper preliminary results with dialogue act 
classification in human-to-human tutorial dialogues. Dialogue acts 
are ways to characterize the intentions and actions of the speakers 
in dialogues based on the language-as-action theory. This work 
serves our larger goal of identifying patterns of tutors’ actions, in 
the form of dialogue act and subact sequences, that relate to 
various aspects of learning. The preliminary results we obtained 
for dialogue act classification using a supervised machine learning 
approach are promising. 
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1. INTRODUCTION 
A key research question in intelligent tutoring systems and in the 
broader instructional research community is understanding what 
expert tutors do. A typical operationalization of this goal of 
understanding what expert tutors do is to define the behavior of 
tutors based on their actions. 

In our case, because the focus is tutorial dialogues, we model the 
actions of tutors using dialogue acts inspired from the language-
as-action theory [1, 7]. According to the language-as-action 
theory, when we say something we do something. Therefore, we 
map all utterances in a tutorial dialogue onto corresponding 
dialogue acts using a predefined dialogue act taxonomy, which is 
described later. It should be noted that automatically discovered 
dialogue act taxonomies are currently being built [6]. However, 
we chose to work with an expert-defined taxonomy of dialogue 
acts, developed by experts based on dialogue and pedagogical 
theories [5], because it better serves our larger research goals of 
testing such theories. 

2. THE APPROACH 
We adopted a supervised machine learning method to automate 
the process of dialogue act classification. This implies the design 
of a feature set which can then be used together with various 
supervised machine learning algorithms such as Naive Bayes, 
Decision Trees, and Bayes Nets. For automated dialogue act 
classification, researchers have considered rich feature sets that 
include the actual words (possibly lemmatized or stemmed) and n-
grams (sequences of consecutive words). Besides the 
computational challenges posed by such feature-rich methods, it is 
not clear whether there is need for so many features to solve the 
problem of dialogue act classification. 

Our approach is based on the observation that humans infer 
speakers’ intention after hearing only a few of the leading words 
of an utterance [4]. One argument in favor of this assumption is 
the evidence that hearers start responding immediately (within 
milliseconds) or sometimes before speakers finish their utterances 
([5] - pp.814). 

Intuitively, the first few words of a dialog utterance are very 
informative of that utterance’s dialogue act. We could even show 
that some categories follow certain patterns. For instance, 
Questions usually begin with a Wh-word while dialogue acts such 
as Greetings use a relatively small bag of frozen words and 
expressions.  

In the case of other dialogue act categories, distinguishing the 
dialogue act after just the first few words is not trivial, but 
possible. It should be noted that in typed dialogue, which is a 
variation of spoken dialogue, some information is not directly 
available. For instance, humans use spoken indicators such as the 
intonation to identify the dialogue act of a spoken utterance. We 
must also recognize that the indicators allowing humans to 
classify dialogue acts also include the expectations created by 
previous dialogue acts, which are discourse patterns learned 
naturally. For instance, after a first Greeting another Greeting that 
replies to the first one is more likely. We used intonational clues 
in our work to the extent that such information is indirectly 
available to us, in the form of punctuation marks, in typed/chat-
based dialogues. We did incorporate contextual clues in our 
preliminary experiments, e.g. we used as a feature the dialogue act 
of the previous utterance, but the results did not improve 
significantly. It is important to note that the present study assumes 
there is one direct speech act per utterance. 

3. THE TAXONOMY 
The current coding taxonomy builds on an earlier taxonomy that 
sought to identify patterns of language use in a large corpus of 
online tutoring sessions conducted by human tutors in the 
domains of Algebra and Physics [5]. The taxonomy is 
considerably more granular than previous schemes such as the one 
used by Boyer and colleagues [2]. 
The most recent version of the taxonomy employs two levels of 
description. At the top level, it identifies 16 standard dialogue 
categories including Questions, Answers, Assertions, 
Clarifications, Confirmations, Corrections, Directives, 
Explanations, Promises, Suggestions, and so forth. It also includes 
two categories, Prompts and Hints, that have particular 
pedagogical purposes. Within each of these major dialogue act 
categories we identify between 4 and 22 subcategories or subacts. 
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4. EXPERIMENTS AND RESULTS 
We have used in our experiments 288 tutorial sessions (containing 
about 17,537 utterances) between professional human tutors and 
actual college-level, adult students. These sessions are a subset of 
of a larger sample of 500 sessions randomly selected from a 
corpus of 17,711 sessions we obtained from an organization that 
offers online human tutoring services. Students taking two 
college-level developmental mathematics courses (pre-Algebra 
and Algebra) were offered these online human tutoring services at 
no cost. The same students had access to computer-based tutoring 
sessions through Adaptive Math Practice, a variant of Carnegie 
Learning’ Cognitive Tutor. It should be noted that students may 
or may not initiate a tutorial dialogue with a human tutor while 
attending those courses. This is important to note as there could 
be a self-selection bias in those tutorial dialogues that we used. 

Expert Annotation Process 

The 288 sessions we used here were manually labelled by a team 
of 6 trained annotators, all of whom were experienced classroom 
math teachers. Each session was first manually tagged by two 
independent annotators, i.e. they did not see each other’s tags. 
Then, the tags of the two independent annotators were double-
checked by a verifier, who also happens to be the designer of the 
taxonomy. The verifier had full access to the tags assigned by the 
independent taggers. The role of the verifier was to resolve 
discrepancies. The inter-annotator agreement for the two 
independent annotators was Cohen’s kappa=0.72 for dialogue acts 
and kappa=0.60 for dialogue acts and subacts combined. 

The agreement was best for Expressives (0.88), Assertions (0.81), 
Requests (0.78) and worst for Hints (0.2), Clarifications (0.33), 
and Explanations (0.42). 

Results 

For space reasons, we summarize the results of our supervised 
machine learning approach in terms of accuracy and Cohen’s 
kappa relative to the final tag adjudicated by the verifier using a 
10-fold cross-validation approach. We only provide results on 
dialogue act classification (no subacts) for the same space reasons. 

The model 

Our model for predicting dialogue acts consists of the following 
five features/predictors: the leading three tokens in an utterance, 
the last token such as a question mark (‘?’) at the end of a 
question, and the length of the utterance. We experimented with 
other features such as the speaker (student vs. tutor), the position 
of the utterance in the dialogue, e.g. an utterance at the beginning 
of a session is more likely a Greeting, the previous dialogue act, 
but we have not noticed any significant impact on performance 
relative to the five-feature model mentioned above. More 
powerful models that do account explicitly for sequential 
observations are needed, e.g. Conditional Random Fields. 

We experimented with our 5-feature model in combination with a 
number of machine learning algorithms including Naïve Bayes, 
Decision Trees, and Bayes Nets. We also experimented with 
sequential models based on Conditional Random Fields but the 

results, again, were not better. The best results, obtained with 
BayesNets, are summarized below. 

D-Act classification Results 

Using all features leads to 67.27% accuracy and Cohen’s kappa of 
0.58. The speaker does not seem to have an impact as the results 
accuracy is 66.74%. The same for position, if removed the 
resulting accuracy is 66.77%. The remaining features are indeed 
important as if another is removed the accuracy drops 
significantly below 60.00%. 

Our plan next is to annotate more sessions up to 500 and retrain 
our models. Once the accuracy is at acceptable level, we will use 
the classifiers to automatically tag tens of thousands of sessions 
with dialogue acts and subacts. Once the sequences of actions and 
subactions are available, we will identify patterns of tutor and 
student actions that related to learning and affect and which could 
then be used in the development of automated intelligent tutoring 
systems or in a hybrid system where both human and intelligent 
tutors co-exist. 
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ABSTRACT 
Researchers in the EDM community have always relied on 
sophisticated tools to analyze data and build models. As the amount 
of data that can be collected and stored grows, the need for tools 
capable of handling “big data” becomes ever more prevalent. SAS® 

Analytics U is a new initiative for making SAS data analysis and 
mining tools available for free to educational researchers and 
instructors. These tools are designed for handling very large data 
sets and can be run in the cloud, saving researchers valuable time 
and resources.  Furthermore, SAS Analytics U provides a 
community of SAS educators and learners to share resources and 
information about SAS tools and techniques. 

This tutorial aims to introduce researchers to the tools available 
through SAS Analytics U and how they can be applied to the field 
of Educational Data Mining. We will provide an overview of the 
SAS architecture and provide instruction on the key features of 
each tool in the suite. We will guide participants through examples 
using relevant educational data sources to help researchers 
understand how the tools can be applied to their own work. 

REQUIREMENTS: In order to participate in the hands on 
exercises, please bring a laptop on which you have installed SAS 
University Edition. The free download is available at 
http://www.sas.com/en_us/software/university-edition/download-
software.html. The download and installation may take up to 1 hour 
so there will not be time to get set up during the tutorial. 

 

1. TUTORIAL DESCRIPTION 
This tutorial will focus on introducing SAS to participants and 
guiding them through the use of the suite of tools using relevant 
educational data sets. The tools that will be covered include:  

SAS® Programming Language. SAS programming language is a 
powerful language designed specifically for intensive data analysis. 
This highly flexible and extensible fourth generation programming 
language has a clear syntax and hundreds of language elements and 
functions. It supports programming everything from data 
extraction, formatting and cleansing to data analysis, building 
sophisticated models, and generating reports. The SAS 
programming language is at the heart of the SAS University Edition 
tools.  

SAS® Studio. SAS Studio is the development environment for SAS 
University Edition and runs through the web browser as well as in 
the cloud. It offers a powerful GUI interface that allows novice 
programmers to interact with data and perform analyses without 
writing any SAS code themselves. However, the SAS code is all 
generated behind the scenes and is visible to help users learn.  

SAS® Enterprise Miner. SAS Enterprise Miner helps users 
streamline the data mining process to create highly accurate 

predictive and descriptive models based on analysis of vast 
amounts of data. It includes innovative algorithms in the areas of 
statistics and machine learning to enhance the stability and 
accuracy of predictions, which can be verified easily by visual 
model assessment and validation.  Users build process flow 
diagrams that serve as self-documenting procedures. These 
diagrams can be updated easily or applied to new problems without 
starting over from scratch. In addition to process flow diagrams, 
Enterprise Miner provides a programming interface for advanced 
users. Enterprise Miner allows integration with open source 
software for data manipulation and model comparison, the open 
standard PMML, and databases for scoring models without data 
movement. 

Additional SAS tools that may be covered if it is of interest to the 
participants include tools for time series analysis, forecasting, 
matrix manipulations, and advanced statistics. 

2. JUSTIFICATION 
Educational data miners rely on computational tools to understand 
and explore their data. These tools must be robust and flexible in 
order to allow for innovation. They must be able to handle ever 
increasing amounts of data. Ideally, they are easy to use by both 
programmers and non-programmers alike due to the 
interdisciplinary nature of this research area. Finally, most 
researchers rely upon tools that are freely available and do not 
require excessive resources.  

SAS University Edition is a new option that addresses many of 
these needs. This suite of powerful SAS software was made 
available to all learners for free in May of 2014.  SAS Enterprise 
Miner, Text Miner, and Forecast Server have been available 
through SAS OnDemand for Academics since late 2010.  However, 
the biggest barrier to adopting new tools is learning how to use 
them. SAS Analytics U is a community centered around these free 
offerings and is designed to support SAS learners and educators. 
This tutorial seeks to introduce participants to these resources and 
suite of tools and demonstrate how they can be applied to EDM 
research. The goal is that participants will be able to add another 
set of tools to their every growing toolbox for conducting EDM 
research. 

3. PRESENTERS 
The presenters for this tutorial include both researchers who are 
active in the EDM community and trained SAS educators who are 
experienced in leading tutorials of SAS products. 

Jennifer Sabourin. Sabourin has a dual role as a research scientist 
and software developer on the Curriculum Pathways team at SAS 
Institute. As a research scientist she works on identifying research 
questions and using machine learning and analytical techniques to 
improve the efficacy of Curriculum Pathways products. She also 
serves as a consultant aiding external researchers with using SAS 
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software to better understand and make decisions from their 
educational data. As a software developer she works on creating 
innovative applications for K-12 that are offered at no-cost. 

Sabourin received her Ph.D. from North Carolina State University 
in 2013. Her graduate work focused on data mining and artificial 
intelligence in game-based learning environments. She has been an 
active member of the EDM community since beginning her 
graduate work.  

Scott McQuiggan. McQuiggan leads SAS Curriculum Pathways, 
an interdisciplinary team focused on the development of no-cost 
educational software in the core disciplines at SAS Institute Inc. 
Curriculum Pathways includes more than 1,500 resources, tools, 
and apps for K-12 education used in all 50 states and more than 90 
countries around the world. He regularly uses data mining and 
analytics to better understand the behaviors exhibited in 
Curriculum Pathways resources and improve the efficacy of the 
products themselves.  

McQuiggan received his PhD in computer science from North 
Carolina State University, where his research focused on affective 
reasoning in intelligent game-based learning environments. He also 
holds an MS in computer science from North Carolina State 
University and a Bachelor of Science in computer science from 
Susquehanna University. Scott is co-author of the book, Mobile 
Learning: A Handbook for Developers, Educators, and Learners.     

André de Waal. De Waal is an Analytical Consultant with SAS 
Institute and his work focuses on teaching users how they can use 
SAS to best meet their analytic needs. He received his Ph.D. in 
theoretical computer science from the University of Bristol during 
1994. He spent the next year in Germany and Belgium continuing 
his research in Logic Programming and Automated Theorem 
Proving. During 1996 he returned to South Africa to take up his 
position as lecturer at the School of Computer Science and 
Information Systems at the then Potchefstroom University for 
Christian  Higher Education (which later became the North-West 
University), where he was later promoted to Associated Professor. 
During 1999 he became one of the founder members of the Centre 
for Business Mathematics and Informatics at the same university. 
He became responsible for the Data Mining Program in the Centre 
and shifted his research focus to include Neural Networks and 
Predictive Modeling. He joined SAS Institute in Cary, NC during 
December 2010 to take up the position of Analytical Consultant in 
the Global Academic Program.  

4. PROPOSED FORMAT 
This tutorial will be presented as interactive instructions where 
users will be guided through the tools using relevant education 
data with a focus on techniques that are commonly required in the 
EDM community. The tutorial will also include an overview of 
SAS and its commitment to education research by a leading SAS 
executive. We also seek to gain feedback from participants prior 
to the event so that we can tailor the sessions to specific needs or 
questions. A tentative schedule (subject to conference timings) is 
below: 
Session 1: Introduction and SAS Studio 
9:00-9:15 Introduction – Introduction of presenters and 

participants and overview of SAS Analytics U 
9:15-10:30 SAS Studio 
   Coffee Break 
Session 2: SAS Studio 
11:00-12:30 SAS Studio 
   Lunch Break 
Session 3: Keynote and SAS Enterprise Miner 
14:00-14:30 Keynote – A SAS executive (TBD based on 

final scheduling) will present an overview of 
SAS and its commitment to education by 
discussing tools made available to researchers 
and products made available to K-12 
educators and students. 

14:30-16:00 SAS Enterprise Miner 
   Coffee Break 
Session 4: Participant Requested Instruction 
16:30-17:30 Additional Instruction – based on the goals of 

the participants we will delve deeper into 
aspects of the tools already presented or 
introduce additional tools as listed in the 
tutorial description. 

17:30-18:00 Conclusion 
 
In addition to the tutorial, instructional materials will be made 
available to participants. We will also provide guidance on avenues 
for further learning through online instruction.  
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ABSTRACT 
The author's own experience as a student and later as an active 
lecturer in Afghanistan has shown that the methods used in the 
Afghan educational systems do not provide students with the 
minimum guidance needed to select the proper course of study 
before they enter the national university entrance exam (Kankor). 
The result is often high attrition rates and poor performance in 
higher education.  

Based on the studies done in other countries, and by the author of 
this paper through online questionnaires distributed to university 
students and graduates in Herat, Afghanistan – it was found that 
proper procedures and specialized studies in high schools can 
help students in selecting their field of study more systematically. 
Additionally, there are large amounts of data available for mining 
purposes but the methods that the Ministry of Education and 
Ministry of Higher Education use to store and produce their data 
only enable them to achieve simple facts and figures. 
Furthermore, from the results it can be concluded that there are 
potential opportunities for educational data mining application in 
the domain of Afghanistan's education systems. For instance, 
predict proper field of study for high school graduates, or, identify 
first year university students who are at high risk of attrition.   

Keywords 

Educational data mining; major prediction; student placement; 
Kankor; Afghanistan education systems; value of information. 

1. INTRODUCTION 
General education in Afghanistan comprises K-12 (primary, 
secondary and high school), Islamic studies, Teacher Training, 
Technical and Vocational schools and institutes which are 
administered by the Ministry of Education (MoE). The Ministry 
of Higher Education (MoHE) supervises universities which 
provide Bachelor's, Master's, and PhD degree programs. 

Since the establishment of the new democracy in Afghanistan in 
2001, education systems have been going through a nationwide 
rebuilding process. Despite obstacles, numerous public and 
private educational institutions were established across the 
country [2]. The result is a substantial increase in the student 
enrollment rate, as reflected (see Figure 1).  

Every year more than 200,000 students graduate from high 
schools and around 300,000 participate in Kankor across the 
country [3]. 

 
Figure 1. Education and Higher Education enrollment trends. 

The MoE and MoHE as the main bodies of education systems in 
Afghanistan have been trying to standardize the quality of 
education in order to be able to meet the minimum international 
standards. In this extremely challenging process, one of the efforts 
of the MoE and MoHE has been to automate their information 
through Education Management Information System (EMIS) and 
Higher Education Management Information System (HEMIS) [6]. 
The EMIS and HEMIS are able to generate (only) basic statistics 
(e.g., total number of students and teachers based on gender, 
geographic location, schools and universities) which are not very 
helpful in decision making to improve the education systems 
effectively. For example, '10 million students in schools' is just a 
number and piece of data without a specific context and further 
useful information to describe the setting. Hence, these simple 
facts and figures do not help policy makers to improve the 
educational settings. For example, one cannot predict proper 
majors/fields of study (Major) for high school graduates, or, 
identify first year university students who are at high risk of 
attrition. This paper will be a new initiative in its kind. The 
objective is to study the opportunities and challenges of EDM 
applicability in the Afghanistan education context in order to help 
educational institutions to better prepare students for their studies 
in schools and universities. 

2. MAJOR RECOMMENDATION 
Presently in Afghanistan, school students are not divided into 
Majors. The author conducted one online survey to public and 
private university students and graduates, and another survey to 
computer science students and graduates. A total of 333 people 
participated in these surveys; 315 agreed that it is more useful if 
the students are offered specialized studies after grade 9 at school. 
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Additionally, due to general studies and insufficient orientation on 
Kankor at schools, the majority of students do not know what 
Major to choose in the Kankor. This was confirmed by the same 
online surveys. Besides, in the existing situation, it is found that 
there are no structural and specialized institutions to provide and 
guide students on career choices based on their skills and 
interests. This situation creates a vicious cycle for 
misappropriating human-capital as the most vital resource for 
development. 

The outcome of these studies [4, 7] can be customized and used to 
recommend proper Majors to high school graduates prior 
attending the Kankor, and also while specialized studies are 
introduced at schools. The following approaches can be used. 1-
Assess student performance for 10th, 11th and 12th grades to 
identify the strengths and weaknesses of the applicants in all the 
relevant Majors. 2-Since the results of high school grades could 
be misleading, this research proposes the design of a new 
standardized test in order to evaluate the interest and capabilities 
of the applicants through varied ‘Yes’ and ‘No’ intelligent 
questions. 3-Since there are no pre-collegiate courses prior to 
entering University, it is deemed efficient to evaluate the skills of 
applicants in the 12th grade through a number of Kankor practice 
tests. 4-Other simulator (self-assessment) tools as an all-
encompassing medium to self-evaluate, capitalize on improving 
and minimize the identified gaps of candidates and to evaluate the 
interest and capabilities of the applicants. 5-Of course, social, 
economic, and literacy status of student's family and other 
pedagogical factors could be significant for better evaluation and 
assessment. 6-Divide more than 100 Majors into main major areas 
including Natural and Social Sciences, Health Sciences, 
Humanities and Literature, Islamic Education, Fine Arts and 
Technical Education. 7-Last but not least, consideration of 
previous Kankor results data during data mining process would 
lead to better accuracy rate. 

3. SUPPORT AT RISK STUDENTS 
Most of the students are at risk of dropping out or performing 
poorly during their higher education studies. One of the main 
reasons is that the participants randomly select Majors in the 
Kankor without much knowledge of the requirements and 
challenges ahead of them and the inventory of their existing 
knowledge in the relevant field of study. Also, lack of specialized 
studies at schools is another major reason for attrition and poor 
performance in higher education. According to the above 
mentioned online survey conducted by the author among 
Computer Science students in Herat province out of 227 
respondents around 90% did not have the skills and knowledge of 
basic programming, database, and operating systems, as echoed in 
(see Figure 2). The result of the survey is showing that one of the 
major reasons for weak academic performance in higher education 
is lack of specialized studies in school.  
An early counseling intervention solution would be a great 
support to identify the key factors to improve their academic 
performance and to decrease rates of attrition through academic 
counseling, tutorial classes and other supportive programs [1, 5]. 
This could be achieved with evaluation and comparison of fresh 
student's data with historical data of senior students. For example, 
school performance and grades for main prerequisite subjects 
relevant to their selected Major (i.e. the required score value for 
Journalism in mathematics might be 2 out of 5, while in 
Engineering it might be, 5 out of 5), if they attended supportive 

courses and classes besides school studies, family responsibilities, 
and other social and extracurricular activities. 

 
Figure 2. IT skill of computer science students prior Kankor. 

4. CONCLUSION 
Enrolment trends in Education and Higher Education generates 
vast amounts of data. With learning and tutoring management 
systems, the amount of data will be significantly increased either 
implicitly or explicitly. The main challenge preventing the 
applicability of EDM is lack of proper data storage and 
accessibility to data in electronic format. EMIS at MoE and 
HEMIS at MoHE together could be appointed to provide the raw 
data for EDM applications to help discern patterns of abilities and 
behaviors which could be used to help educational institutions. 
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ABSTRACT
Massive Open Online Courses (MOOCs) changed the way
continuous education is perceived. Employees willing to
progress their careers can take high quality courses. Stu-
dents can develop skills outside curriculum. Studies show
that most of the MOOC users are pursuing or have received
a university degree. Therefore it is beneficial to consider mo-
tives and constraints of this class of participants while de-
signing a course. In this study we focus on time constraints
experienced by full-time and part-time employees and stu-
dents. Surprisingly, activities of students and employees are
very similar regarding timing. We found that part-time em-
ployees spend more time on forum and are more active dur-
ing the day. Employees are more active in the evening hours
from Monday till Thursday. Based on our findings we sug-
gest course design insights for practitioners.

1. INTRODUCTION
Time management in Massive Open Online Courses (MOOCs)
is indispensable for success [2]. Recent studies show that dif-
ficulty with keeping up to deadlines is the main obstacle for
engaging in a course [1]. Motivated by previous research,
we assume that problems with time management are due to
either professional constraints or issues with self-regulation
[1] as illustrated in Figure 1. In this study we plan to pro-
vide a basis for understanding motives and limitations of
MOOC participant depending on their employment status.
Our general objective is to investigate: How occupation
(student, employee or part-time activity) influences
participants time management in MOOC? How is it
reflected by their engagement?

2. DATASET
Our analysis is based on three successive offerings of an un-
dergraduate engineering MOOC offered in Coursera entitled
”Functional Programming Principles in Scala”. The initial
dataset contains 133,129 users. However information about
the employment status is provided only by 8.7% of the par-
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Figure 1: Time management is crucial for success in
MOOC. We investigate the influence of occupation
on time management.

ticipants. Based on this information, we extracted three
categories of users: full-time employed (702 users), full-time
student (110 users), part-time activity (66 users). 84% of
full-employed participants hold a master or bachelor (45%
and 39% respectively) and this ratio for the part-time group
is 64% (32% and 32% respectively). Interestingly there is a
noticeable percentage (22%) of participants with part-time
activity who do not possess an academic degree.

For the analysis of users’ performance we consider two types
of events: watching videos and forum activities including
viewing the forum (passive events) and writing or voting
messages (active events). We extracted a set of features for
each user, including final grade, count of forum events (to-
tal, active and passive), count of forum messages, average
length of messages, count of submitted assignments and av-
erage number of attempts per assignment. In addition, we
also extracted number of videos watched on different times of
the day (Midnight, Morning, Midday, Afternoon, Evening,
Night), different days of the week (Monday to Sunday) and
different times of each week day. The final set includes 63
feature which were used in the analysis and building a pre-
dictive model in the following section.

3. FINDINGS
Q1. Are employed participants more likely to en-
gage in the course? Based on χ2 test, there is a signifi-
cant relation between employment status and dropping out
(χ2 = 29.06, df = 2, p < 0.01). According to the test resid-
uals, among the three categories, employed participants are
more likely to engage in the course, whereas students are
most likely to drop out.

Q2. Do employed participants have higher achieve-
ment level? ANOVA on linear model of final grades re-
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veals marginal significant difference between grades for stu-
dents and employed participants (F[1, 810]=3.8, p=0.05):
employed participants on average achieved a higher grade
compared to the students (70 vs. 63 out of 100).

Q3. Are employed participants more engaged in
forum? Total forum activity (active and passive events)
by students and employed participants is similar, whereas
part-time participants are significantly more active in fo-
rum compared to the other two groups (87 vs. 51, Mann-
Whitney-Wilcoxon test, W=20516, p<0.01). Similarly num-
ber of posts by students and employed participants are not
significantly different, while part-time participants have sig-
nificantly more posts (M=4.6 vs. 1.7 posts, Mann-Whitney-
Wilcoxon test, W=21282, p<0.01). Posts by part-time par-
ticipants are the longest (M=83 words, t=-2.21, df=441.78,
p= 0.02) and post by students are the shortest (M=53 words,
t=3.14, df=239.35, p<0.01).

Q4. Do employed participant have different weekly
pattern of activity? Distribution of videos watched on
each week day shows that part-time participants watch more
videos during the weekdays, whereas employed users and
students are more active during weekends. Sundays and
Mondays are the most active days for all groups and the
activity level decreases from Monday to Saturday, mainly
for employees and student. This trend could be related to
the fact that video lectures were released on Sundays.

Q5. Do employed participants have different time
distribution of activities? Number of videos watched in
different parts of the day shows to be related to the em-
ployment status of participants (χ2 = 109, df = 10, p <
2.2e− 16). As shown to Figure 2, employed participants are
the most active group during evening hours (F[1, 876]=4.92,
p=0.02), students are the most active group during night
hours and part-time participants are the most active group
during mid-day. Furthermore unlike part-time participants,
the activity level of the other two groups is higher during
the afternoon and evening compared to the mid-day hours.

Figure 2: Distribution of number of videos watched
at different times of the day.

Further investigations of participants’ activity patterns in
different days of the week reveals that the observed evening
activity peak for the employed participants is related to
the working days (Monday to Thursday). On Friday their
overall activity level is low and on weekends their activity
peak time is shifted to the afternoon hours. Remarkably, all

groups are active in the mornings and during the midday.
In particular, this could suggest that full-time employees
engage in MOOCs during the morning commutes and also
during the work day. Nevertheless this finding should be
further confirmed in interviews with MOOC participants.

Q6. To what extent can we predict user’s employ-
ment status based on derived features? In order to
predict employment status of participants based on the fea-
tures described in Section 2, we trained several classifiers in-
cluding Neural Network, Penalized Multinomial Regression,
Random Fores and Support Vector Machine with linear ker-
nel. Using 10-fold cross validation, the highest Cohen’s κ
(0.45) was achieved by Random Forest classifier.

4. CONCLUSION
Our analysis revealed that employment is reflected by dif-
ferent activity patterns. This confirms our hypothesis that
time constraints influence user’s participation in MOOCs.
Our findings partially confirm previous theories. In particu-
lar, higher drop-out rate from MOOCs among students ver-
sus employees can be attributed to lower academic and social
commitment [3]. This phenomenon can also be linked to bet-
ter time management of employees (participation in MOOC
during the evening just after work) [2]. Further controlled
studies should be conducted to discover true causality.

Based on the insight from our analysis, we suggest follow-
ing design considerations while designing MOOCs courses:
(1) Choose the lecture release day depending on the
target audience. We found that activity of employed par-
ticipants drops during the weekdays. On the other hand,
video release on Sunday make participants work on Monday
despite the general lower activity during workdays. There-
fore, releasing lectures on Saturday might increase overall
activity. (2) Choose activities convenient for com-
mute time and short sessions. Our analysis showed
activities during potential commuting hours, therefore de-
signing short and mobile-friendly videos and activities could
facilitate users engagement during this time. (3) Choose
accurate timing for communication with users, such
as the time when they are most likely to visit the MOOC
(4) Include temporal activity indicators in predic-
tive models, as time-related features showed to be corre-
lated not only with employment status but also with the
success in a MOOC.
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ABSTRACT 
The current study employs transitional probabilities as a way to 
classify and trace students’ interactions within an online learning 
system. Results revealed that students’ interaction patterns within 
the system varied in relation to their performances on embedded 
assessments. The results and methodologies presented here are 
designed to provide practitioners with a starting place for how to 
extract information concerning how and why their students 
interact within an online environment.  
Keywords 
Blended Learning, Transitional Probabilities, Online Technology 
1. INTRODUCTION 
The use of blended learning techniques has become increasingly 
prevalent within high school classrooms [1]. One goal of blended 
learning is that information concerning students’ behaviors and 
performance within various technologies can be used to inform 
instructional practice [2]. However, trace-level data from most 
technologies are often inaccessible or unusable for practitioners 
[3]. The current work aims to better understand what 
methodologies and tools are useful for helping practitioners make 
sense of how students interact with assessments and resources 
within online technologies. Using transitional probabilities we 
examined how 812 middle and high school students interacted 
with an online learning system (OLS) as part of their regular Math 
classroom instruction and how these behaviors varied as a 
function of students’ performance within the system. 

2. METHODS 
2.1 Participants 
The participants included 812 students from a large charter 
management organization (CMO) in the San Francisco Bay area. 
Over 60% of students who attend this CMO come from 
underserved populations (e.g., African American and Hispanic or 
Latino) and over 40% qualify for free or reduced priced lunches. 
The participating students regularly interact with the OLS as part 
of their Math curriculum.  
 

2.2 Procedure, Measures, and Data Processing 
Students interacted with the Math content on the OLS throughout 
the 2014-2015 school year. In the work presented here we 
examined how students interacted in one lesson for their Math 
curriculum, Linear Equations. During this lesson, students could 
freely choose to engage in a variety of activities at their own pace. 
These activities can be grouped into three categories that represent 
a different type of functionality within the system; these 
functionalities are Post Assessments (Linear Equation content 
gleaned from system resources), Pre Assessments (baseline 
measure of students’ Linear Equation knowledge), and Resources 
(unique items –PDFs, videos, images- that provide Linear 
Equation content). These categories afforded the opportunity to 
trace students’ choice of interactions within the system while also 
providing a means of surfacing reoccurring patterns of behavior 
that students exhibit throughout the school year. All interactions 
are logged within the system and provide valuable insight into 
how students interact with the OLS.  
3. QUANTITATIVE METHODS 
To examine variations in students’ behavior patterns within the 
Linear Equation curriculum of the OLS, transitional probabilities 
were conducted. This analytical tool provides a means to provide 
teachers with a visualization of students’ learning trajectories. 
This is particularly useful for practitioners interested in examining 
how closely students’ choices followed the intended system 
curriculum. The following section provides a brief description and 
explanation of transitional probabilities and their application to 
the current data set. 
3.1 Transitional Probabilities  
Transitional probabilities were calculated using a statistical 
sequencing procedure established in D’Mello, Taylor, and 
Graesser (2007; [4]). This sequencing procedure is calculated 
using the formula L[It→Xt+1]. In this formula, L is the likelihood 
function of the student’s current choice in the system (I) at 
specific time point t, and X is their next interaction choice at the 
next time point (t+1). Thus, this sequencing procedure surfaces 
the probability of a student’s interaction choice given their 
previous choice. For instance, if Zach chooses to take a Pre 
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Assessment, the above formula will be used to surface what 
choice Zach is most likely to choose next  (e.g., another Pre 
Assessment, a Post Assessment, or a Resource). These 
probabilities were calculated for each of the 812 students, which 
resulted in a unique pattern of choices for each student. The 
results reported below address students’ interactions with the Pre 
Assessment, Post Assessment, and Resources associated with 
Linear Equations content within a 9th grade Math course. 
4. RESULTS 
Overall, 812 students interacted with the Linear Equation content 
within the OLS system. Teachers recommended that students take 
the Pre Assessment, interact with system Resources, and then take 
the Post Assessment to measure changes in learned material. 
However, as this was a blended learning environment students 
were free to choose how they would spend their time and what 
features they would interact with. Using system log data, we 
classified students’ interactions into one of three orthogonal 
categories (i.e., Post Assessments, Pre Assessments, and 
Resources). We classified students as passing if they scored at or 
above 80% and failing if the scored below 80%. To examine how 
students interacted with the system, we calculated the total 
frequency of students’ interactions with each of these three 
categories. On average, students made 38 interactions within the 
system and spent the majority of their time interacting with Pre 
Assessments (53%), followed by taking Post Assessments (32%) 
and interacting with Resources (15%).  
4.1 Interaction Transitions 
The current work aimed to better understand how students’ 
performance in Math 9 influenced their next interaction within the 
OLS. Figure 1, displays the conditional transition probabilities for 
students who passed a Post Assessment for Linear Equations. In 
this figure, there are three possible interactions, retrying a Post 
Assessment, transitioning to a Pre Assessment, or transitioning to 
a Resource. Students can also choose to move onto another topic. 
This analysis revealed that after students’ passed a Post 
Assessment, .01% of the time they tried another Post Assessment, 
1% of the time they took a Pre Assessment, and 17% of the time 
they interacted with a Resource. Most often after passing a Post 
Assessment, students left that content area to start another (72%).   

 
Figure 1. Conditional probabilities after passing Post Assessment. 
Figure 2, displays the conditional transition probabilities if a 
student fails a Post Assessment for Linear Equations. Similar to 
Figure 2, there are three possible interactions along with students’ 
choice to leave the curriculum. This analysis revealed that after 
students’ failed a Post Assessment, 48% of the time they retook 
the Post Assessment, 43% of the time they took a Pre Assessment 
and 7% of the time they interacted with a Resource. Unlike 

students who passed a Post assessment (Figure 1), students who 
failed a Post Assessment were less likely to exit the curriculum 
(2%) and instead most often interacted with another form of 
assessment (Pre or Post).  

 
Figure 2. Conditional probabilities after failing a Post Assessment. 

5. DISCUSSION 
These exploratory findings are promising for both educational 
researchers and practitioners as they reveal how students’ 
behavior patterns manifest and vary as a function of performance. 
The current work begins to shed light upon the nuanced ways in 
which students’ interactions can be traced and classified within 
online environments. In the future, this work will be expanded to 
examine students’ behavior patterns across multiple classrooms 
and courses. The goal will then be to examine how students’ 
behaviors vary as a function of performance and domain. This 
information may prove useful to practitioners wishing to better 
understand how information extracted from technology can be 
used to inform instructional practices.  
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ABSTRACT 
Educational technology (edtech) products are ubiquitous in 
schools, but a paucity of research has evaluated their impact on 
education outcomes. Herein we describe a platform (i.e., 
LearnPlatform) that enables users to integrate and analyze data to 
rigorously evaluate the impacts of edtech. The platform also 
enables users to mine large and diverse datasets to identify patterns 
and trends in edtech usage and impact, and to build statistical 
models through predictive analytics that use multiple predictors to 
forecast future events, trends, and probabilities. Ultimately, 
educators and researchers can use LearnPlatform to generate 
evidence-based insights about edtech ecosystems within and across 
schools, districts, and states, which will improve the discovery, 
purchasing, and evaluation of edtech products in myriad 
educational contexts. 
Keywords 
Educational technology, efficacy, data, evaluation, education 
outcomes 
1. INTRODUCTION 
Educational technology (edtech) is increasingly pervasive. Each 
year, billions of dollars are spent and innumerous products are 
released. Despite immense resources invested, there has not been a 
standard system for monitoring and evaluating the use, quality, and 
efficacy of edtech products, leaving school leaders without access 
to critical data when making instructional, operational, and fiscal 
decisions. These decision makers need timely, reliable, evidence-
based information on edtech interventions to know what to buy, how 
to support instruction and implementation, and how to improve 
student outcomes. Accordingly, Lea(R)n, Inc. worked with thousands 
of educators, state and district leaders, subject matter experts, and 
researchers to develop an online edtech management platform, called 
LearnPlatform, to help education organizations and institutions 
understand and manage which edtech products are best for their needs. 
2. EDTECH MANAGEMENT PLATFORM  
LearnPlatform is an edtech management platform that helps 
schools and districts understand which edtech products are best for 
their classrooms and students. To ensure valuable and trustworthy 

insights, the platform was built to support sound research methods 
and study designs1 that enable systematic investigations within 
authentic educational contexts. The platform offers a research-
based system for educators to understand, manage, and evaluate 
edtech products. Among other things, the platform allows users to 
(a) identify, catalogue, and monitor the products that are being used 
in their classrooms; (b) grade products on a valid and reliable 
rubric;2 (c) connect with colleagues to share insights and ask 
questions; and, (d) conduct edtech evaluations that range from 
rapid-cycle pilots to randomized control studies (RCTs) to multi-
product factorial studies. The analytics module of the platform, 
called LearnTrials IMPACT (Integrating Metrics for Producing 
Analytics on Classroom Technology), allows users to rapidly 
integrate disparate datasets and analyze those data to generate 
evidence-based insights on edtech interventions. 
3. ANALYTICS MODULE 
The platform’s analytics module (LearnTrials IMPACT) has 
several noteworthy components. First, the platform maintains and 
continuously updates a relational database with over 4,000 edtech 
products that are available to educators (see Figure 1).3  
 

 
Figure 1. Screenshot of product library with product grades. 
 
Second, a structured architecture allows educators to leverage 
useful features, including managing portfolios of products, sharing 
experiences with tools, asking colleagues questions, viewing 
products’ grade reports, and comparing products side by side (see 
Figure 2 for example of an administrator view). 
Third, capabilities of the platform allow districts to collect rapid 
feedback on the products they already use, launch evaluations of 
products, and analyze findings filtered by dozens of criteria (e.g., 
purpose of product use, frequency of use, student groups with 
which the product is used; see Figure 3).  
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Figure 2. Administrator view of LearnPlatform. 
 

 
Figure 3. Screenshot of functionality in the IMPACT layer. 
 
Fourth, the platform aggregates educators’ evaluations of products 
into interpretable and actionable recommendations about the 
product and its optimal use with various student populations. 
Finally, a data integration and automated analytics layer allows 
users to rapidly de-identify, upload, and analyze product usage 
(e.g., time on system, modules completed), student outcomes (e.g., 
achievement, motivation, engagement), and other data to produce 
dynamic reports and dashboards that inform instructional, 
operational, and budgetary decisions (see Figure 4 for example of 
Impact Analysis Report with simulated data and a fake product). 
4. CASE STUDY 
Schools, districts, and states across the US are using LearnPlatform. 
One of the nation’s largest school districts leveraged LearnPlatform 
to conduct a controlled trial with a quasi-experimental design that 
generated insights for budgeting and implementation. In the 
efficacy trial, the district studied a widely used edtech product for 
elementary literacy. The sample included 18 schools who used the 
product (treatment group; nT > 8,000) and 18 schools who did not 
use the product (control group; nC > 8000). We tested for baseline 
equivalence on multiple measures, including demographics and 
prior achievement. We also applied statistical adjustments to 
control for variance attributable to extraneous factors and 
covariates. We first computed covariate-adjusted effect sizes to 
determine the extent to which the product exhibited an impact on 
the treatment versus the control, then conducted cluster analysis to 
identify student clusters of product usage and examined 
achievement for different clusters. Results were confirmed through 
a separate, blind analysis by the district’s data and accountability 
office. Additional analysis of costs informed the district’s 
purchasing and budgeting decisions.  

 
Figure 4. Example of an impact report (fake product and school). 
5. FUTURE DIRECTIONS 
First, LearnPlatform will enable users to mine datasets to identify 
patterns and trends in edtech usage and impact, and to build 
statistical models through predictive analytics that forecast future 
events, trends, and probabilities. Second, once enough data are 
available, users will be able to leverage LearnPlatform to conduct 
meta-analyses to begin to elucidate conditional and contextual 
effects that may differentiate the efficacy of a given intervention 
based on factors that vary across schools, districts, or states. 
Ultimately, educators and researchers will use LearnPlatform to 
gain data-driven insights into edtech ecosystems across schools, 
districts, and states, and to improve discovery, purchasing, and 
evaluation of what works for educators and their organizations. 
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ABSTRACT 
Educational technology (edtech) products are ubiquitous in 
schools, yet there is a dearth of research examining their use and 
efficacy. This leaves schools and districts without evidence to 
inform important decisions about edtech budgeting, instruction, 
impact, and implementation. We report results from a study that 
uncovered startling trends in edtech usage across multiple paid 
products and dozens of schools. Notably, 36.6% of purchased 
student licenses were never used. An additional 28.2% of the 
licenses were used negligibly, failing to meet a quarter of the 
fidelity goal set by the product companies or districts. Further, 
anecdotal evidence suggests school- and district-level leaders are 
unaware of these realities. This suggests a vast amount of 
resources are being unknowingly squandered or misallocated. 
Combined with analysis of how product usage impacts student 
achievement, these results demonstrate how schools and districts 
can utilize data to understand and manage their edtech ecosystems 
while improving critical edtech decisions. 
Keywords 
Educational technology, efficacy, fidelity, evaluation, education 

1. INTRODUCTION 
Educational technology (edtech) presents both opportunities and 
challenges for educators and their organizations. Challenges 
include allocating resources appropriately, implementing products 
with fidelity, and ensuring product efficacy. Unfortunately, these 
challenges have been exacerbated because heretofore districts 
have not had systems or methods for collecting, comparing, and 
analyzing disparate data sources in a way that informs budgetary 
or instructional decisions. To address that lack of evidence, 
schools and districts across the nation have been using 
LearnTrials—a module on the LearnPlatform—to measure an 
integrated system of data and variables, enabling them to generate 
key insights and rapidly make informed decisions. In this paper, 
we report a specific set of early findings from a synthesis of 
systematic research focusing on edtech usage patterns, and we 
discuss the implications for implementation, impact, and 
budgeting. 

More than $8 billion (PreK-12 alone) are spent annually on 
edtech products in the US with the goal to improve important 
education outcomes.1 Both producers and consumers of edtech 
products worry about using them with fidelity—that is, ensuring 
students receive the “recommended dosage” to achieve the 
intended outcomes. Most agree that implementation and its 
impacts on budget and achievement are interrelated and worthy of 
treatment as a system; however, limited research has examined 
fidelity of edtech usage. This has led dozens of schools and 
districts to use LearnTrials to conduct rapid, cost-effective 
evaluation of multiple products, analyzing both edtech usage and 
efficacy. 

2. METHODS 
2.1 SAMPLE 
The sample for this study is 49 K-12 schools in multiple districts 
and states. Overall, the sample included over 17,000 students 
from a diverse set of schools. For each school, we examined data 
on product usage collected during the 2014-2015 academic year. 
Specifically, we tracked the extent to which students used their 
licenses for six well-known digital math and literacy tools. Each 
of these products was well-established in the marketplace, used 
for primary instruction (rather than supplemental), and ranged in 
price from $16 to over $100 per student, per year. 
2.2 ANALYSIS 
The main analysis for this study involved descriptive statistics on 
the extent to which students used their product licenses. Each of 
the six products prescribe a specific amount of student usage, 
often called the recommended dosage. In other words, these 
products have predetermined metrics for usage goals (e.g., time 
logged in, progress through syllabus, number of lessons passed) 
intended to promote marketed outcomes. Based on these 
measures, we analyzed the extent to which students met certain 
expectations. Specifically, we examined whether students (a) 
never used the product, (b) used the product but failed to meet 
even 25% of the goal, (c) met 25% of the usage goal, (d) met 50% 
of the usage goal, or (e) fully met the usage goal. 
3. RESULTS 
We found consistent patterns of usage across the schools and 
across the products. The main finding: 36.6% of purchased 
product licenses were never activated. An additional 28.2% of 
students activated their license, but did not use the product 
enough to meet even 25% of the established goal. Thus, 
approximately 64.8% of students exhibited zero or trivial use. 
Moreover, only 5.2% of students actually received the full 
recommended dosage (Figure 1; see Figure 2 for a breakdown of 
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use by product). In summary, schools are paying significant 
amounts of money for products that students are not using. 

 
Figure 1. Percent of paid product licenses meeting dosage goals. 
 

 
Figure 2. Paid product licenses meeting dosage goals by product. 
(Product names undisclosed for sake of anonymity.) 
4. DISCUSSION 
To be clear, the startling lack of product usage across schools is 
not an indictment of edtech products or the schools that use 
them—classroom technologies are valuable, and have the 
potential to amplify learning. While these are early findings, they 
have numerous implications for schools and districts. 
Implementing learning technologies in schools and districts 
presents opportunities and challenges. One way to maximize the 
former and minimize the latter is understanding important 
contextual factors. Recognizing the specific factors that impact 
use within local contexts can uncover opportunities for growth. 
Structured pilots, rapid feedback cycles, and scaled roll-outs do 
not have to be cumbersome. Leveraging data-rich product pilots 
can address common challenges. By using research-backed, 
standardized edtech management systems in their local contexts, 
districts can lower opportunity costs, reduce negative impacts on 
teaching and learning, and mitigate political consequences of “all-
in, all-at-once” implementations. 
Understanding product efficacy—the extent to which a product 
impacts intended educational outcomes—is important. The U.S. 
Dept. of Education, the Bill and Melinda Gates Foundation, and 
others have recently invested in rigorous and realistic evaluation 
of products at every stage. If students do not use a product, they 
cannot capitalize on its potential benefits. Discovering that edtech 
products are consistently underused (or never used) is a first step. 
Providing schools and districts insights into situational variables 
(e.g., student characteristics, school types, demographics, or 

pedagogical styles) would help educators and product companies 
understand the contexts in which products have positive, negative, 
or negligible impact. Our research has shown times when minimal 
(and even significant) usage had deleterious effects on student 
achievement. In other cases, specific student groups using certain 
edtech products saw greater gains than did their peers. Delivering 
context-specific insights that are based on statistical analysis via 
timely, easy-to-understand dashboards and reports help schools 
and districts identify the best tools for their situations and 
instructional needs. 
A final implication is the obvious impact on budget. If we 
extrapolate the findings reported herein, it is likely that last year 
schools spent nearly $3 billion on product licenses that were 
never activated (37% of the $8 billion spent across U.S. schools). 
However, edtech purchasing decisions do not exist in a vacuum; 
rather, they are richly contextualized and made based on 
budgetary constraints, merit of competing products, politics, and 
precedent. Challenges also include current business models, lack 
of pricing transparency, and unknown usage data. Furthermore, 
edtech purchasing has decentralized rapidly, meaning individual 
educators and schools are making more decisions, which creates 
organizational challenges for district and state leaders. 
Educators and their organizations need a systematic approach for 
gathering evidence,2 and for rapidly understanding organization-
wide product usage and efficacy. Analysis of local data as well as 
analysis of large-scale databases can greatly enhance our ability to 
evaluate edtech phenomena.3 Then, implementing edtech 
management systems, service level agreements, and performance 
contracts (based on successful usage or other measurable 
milestones) are not only possible, but also capable of improving 
instruction, finances, and educational outcomes. 
The consistent patterns of usage—specifically the limited use of 
paid licenses—across edtech products in education environments 
offers a massive opportunity to improve a complex system. Until 
recently, edtech decisions lacked a systematic approach for 
measuring and collecting evidence on the most important 
variables. However, dozens of schools and districts are using the 
edtech management LearnPlatform and its LearnTrials module to 
analyze their edtech ecosystems in unbiased and rapid ways, so 
they can make evidence-based decisions that enhance the fidelity 
of implementation, boost product impact on student achievement, 
and maximize resources (e.g., time and money).4 
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ABSTRACT
The Knowledge Component (KC) picture of learning has
proven useful for constructing models of student learning in a
number of subject areas. However, it is still unclear how well
this picture generalizes to other contexts and subject areas.
A corpus of 62,000 exercises for 10 textbooks on the Mas-
tering platform has been tagged by content experts. In this
report, I introduce a strategy for investigating the importance
of a given set of KCs in describing student performance as the
students solve problems. The strategy is to see how much of
the student’s performance on an exercise is explained by the
associated KC and how much it is predicted by a problem-
specific difficulty parameter. To do this, I introduce a model
that is a combination of the Rasch model and the learning
curves from the KC picture. For this corpus and set of KC
tags, a rather striking picture emerges: problem difficulty ac-
counts for most of the student behavior while KC learning
accounts for only a small portion of the student behavior. I
hypothesize that these KC tags do not accurately capture the
skills students are using while doing their homework.

Author Keywords
Learning Curves, Knowledge Components

ACM Classification Keywords
I.2.6 Learning: Knowledge acquisition

Knowledge components (KCs) are bits of information needed
to solve a problem [5, 2]. KCs generally have some sort of
pre-requisite relations. However, aside from prerequisites, a
KC can, by definition, be mastered independently from other
KCs. This definition assumes that KCs are context indepen-
dent. That is, the student’s ability to apply that KC correctly
or quickly does not depend on the particular problem the stu-
dent is solving or the other KCs needed to solve that problem.

Since KCs are defined to have these properties, then it re-
mains to be seen whether a given set of KC labels for a par-
ticular curriculum provides a useful description of skill ac-
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Table 1. Some Knowledge Components for Chapter 32 of “University
Physics” by Young, Freedman, and Lewis [6].
1 Relationship between speed of electromagnetic (EM)

waves, wavelength and frequency
2 Writing Maxwell’s equations for free space. Using

Faraday’s Law.
3 Direction of propagation of an electromagnetic wave

quisition. Much of the pioneering work on KCs focused on
middle school math [4]. It is unclear whether this picture ex-
tends to the corpus examined here.

One way to determine how well the KC picture is working
is to examine the associated learning curves. If the curves
increase/decrease more-or-less monotonically (depending on
the measure of competence) then the KC picture is working.
A smooth learning curve implies that the associated KCs ac-
count for most of the student performance on a problem while
other aspects of the problem are less important.

A corpus of over 62,000 exercises on the Mastering platform
has been tagged by content experts. This corpus covers home-
work exercises for 10 college-level textbooks in anatomy and
physiology, biology, organic chemistry, general chemistry,
and physics. An typical set of KCs is shown in Table 1. On
average, there are about a dozen KCs per chapter.

We examined log data from problems solved on the Mastering
platform during the Spring of 2014. We selected students
whose coursework spanned more than 25 days and who were
enrolled in a course containing more than 50 students.

Before we address the main question of the validity of the KC
picture for this corpus, we mention some general properties of
the log data. The learning curves (see Fig. 1) are expressed in
terms of “difficulty” which is defined to be minus the logistic
of the probability of “correct on first try.”

The mean number of opportunities to practice a given KC is
3.84, averaged over students and KCs. So, students have very
few opportunities to practice a given KC.

Also, the number of students practicing a KC usually de-
creases rapidly with increasing opportunity number t. This
can result in a selection bias, since the population is changing
with t. Thus, to produce a learning curve for a given KC, we
rank the students by the total number of opportunities for that
KC and take the uppermost portion as our student population.
An example learning curve is shown in Fig. 1. In general, we
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Figure 1. Learning curves for the first KC listed in Table 1. Difficulty
should decrease as students learn. The shaded region represents the rel-
ative number of students who completed that opportunity and the num-
ber in the upper left corner is the initial number of students.

find that learning curves are not monotonically decreasing. In
fact most do not even show a decreasing trend.

There must be important aspects of the exercises that are not
captured by these KCs. Thus, we introduce problem diffi-
culty βp to capture the aspects of a problem not explained by
the KCs. This leads us to introduce the Rasch/KC model: a
hybrid of the Rasch model [3], and the learning curve picture.

If Ps,p is the probability that student s gets problem p correct,
then we define Ps,p by the logistic equation:

logit (Ps,p) = θs − βp −
∑

(k,t)∈Ts,p
ζk,t (1)

where θs is the skill of student s, βp is the difficulty of ex-
ercise p, and ζk,t is the difficulty of applying KC k on op-
portunity t. Ts,p is the set of KC, opportunity pairs where
(k, t) ∈ Ts,p means that problem p is opportunity t for stu-
dent s to apply KC k. The log-likelihood for a set of students
and problems to obtain a particular set of outcomes is

log (L) =
∑

s,p∈Cs
log (Ps,p) +

∑

s,p∈Is
log (1− Ps,p)+ (2)

where Cs/Is is the set of problems s got correct/incorrect.

If we drop ζk,t, then we obtain the usual Rasch model. Like-
wise, if we drop θs and βp and fit the resulting model to stu-
dent data, a plot of ζk,t versus opportunity t will yield the
conventional learning curve for KC k; this is precisely what
we have plotted in Fig. 1. This model is similar to the Addi-
tive Factors Models (AFM) [1] except that AFM restricts ζk,t
to be linear in t.

We can apply this model to student log data associated with
the KCs listed in Table 1. We find that both student skills
{θs} and problem difficulties {βp} are Gaussian distributed
with standard deviations of 1.02 and 1.15, respectively.

Looking at the KC difficulties ζk,t in Fig. 2 we see that the dif-
ficulties vary little with opportunity number. We also, see that
the associated problem difficulties, represented by the Gaus-
sian distribution on the right, vary significantly more than the
KC difficulties. The same qualitative behavior is seen for all
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Figure 2. KC difficulties ζk,t versus opportunity number t from the
Rasch/KC model applied to student log data for the first KC in Table 1.
The curve on the right is a gaussian that represents the distribution of
problem difficulties for the exercises labeled with the associated KC.

KCs we have analyzed. We conclude that, for this corpus
and KC labeling, problem difficulty is much more important
than KC mastery when predicting student performance on an
exercise.

If we look at the KCs, see Table 1, we see that they represent
content knowledge rather than more abstract problem solv-
ing skills. It may be that the students have already learned
the content knowledge in lecture or reading and, during their
homework, they are really learning how to apply that content
knowledge to various physical situations. If this is the case,
it may be more appropriate to label problems with labels that
are more oriented towards problem-solving skills, like “given
description of situation, determine that one should relate ve-
locity, frequency, and wavelength.” Also, it may mean that
one can explain student performance with just a few KCs like
“solve physics word problem” or “solve problem with kine-
matics graphs.”
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ABSTRACT 
Prior research on individual courses has demonstrated a 
significant relationship between use of the Learning Management 
System (LMS) and student course grade.  Blackboard has created 
rule-based algorithms in a new LMS interface to notify students 
and faculty of students who may be at risk based on relative 
activity and grades received, and recognize positive behavior and 
grade achievement.  This research project investigated the 
relationships underlying these algorithms against a large data set 
of LMS activity (1.2M student course weeks, 34,519 courses, 788 
institutions).  Findings included a small effect size in the 
relationship between time spent in the LMS and student grade; 
however, a small set of courses had a strong relationship that 
merits further research and consideration.  

Keywords 

Learning Analytics, Student Persistence, Student Retention, 
Higher Education, Learning Management Systems, LMS 

1. INTRODUCTION 
Multiple research studies on individual courses have found a 
significant relationship between use of the LMS and student grade 
[8, 7, 2, 3, 9, 10].  The value of LMS data in these courses has 
been larger than what is found in conventional demographic or 
academic experience variables in explaining variation in course 
grades.  However, when analysis is expanded to all courses at an 
institution, several studies have found no relationship or an 
extremely small effect size in this relationship [1, 5, 4].  Does 
Learning Analytics only apply to only a small number of courses, 
or is it broadly applicable?  What is the magnitude of this 
relationship, and is sufficiently large to include algorithms based 
on this relationship as a core functionality in academic technology 
platforms? 

This question is of great practical significance for academic 
technology providers.  Analytics functionality has typically been 
provided through custom data warehouses and analytics tools that 
include multiple data sources and systems, with custom 
integrations and algorithms.  While useful and with accuracy that 
can be proven, these applications require significant resources to 
create and maintain, whether procured from a vendor or built in-
house.  They also require significant time to implement and 
deploy.   

As part of Blackboard’s new “Ultra” LMS course interface, rule-
based triggers and notifications were created.  For example, these 
rules would analyze course use and send the student and instructor 
a notification if a student’s LMS activity dropped more than 10% 

from one week to the next. In addition to alerts of potentially at-
risk students, positive encouragement alerts were also created to 
recognize outstanding achievement relative to self and others in 
the same course. 

The rules were created based in prior research findings and an 
initial small data sample.  However, additional validation with a 
larger data sample was required to ensure that the rules were 
meaningful predictors of student grade.  This poster presents 
findings from this research on the question of accuracy and draws 
broader conclusions about the potential utility and generalizability 
of LMS activity data. 

2. DATA SET AND ANALYSIS 
The data analyzed for this project was sampled from log data 
recorded by Blackboard Learn.  These logs were transformed into 
normalized data sets, and calculations made to estimate duration 
of time spent in the LMS by calculating the difference between 
start end end times for sessions.  The data was aggregated at the 
institution-course-week-user level (e.g. one row per user per week 
per course per institution).  The data sample included a complete 
set of students active for each course week, but did not include all 
weeks for each course.  Each row also contained final course 
duration and final grade. A z-score of duration was calculated to 
provide a course-specific measure of student activity. 

Given the importance of analyzing grade triggers and the 
relationship between activity and grade, only course-weeks with a 
graded entry for that week were included in the sample.  Further, 
students with no activity have no logs and are therefore missing.  
This biases the sample toward courses making more intensive use 
of the LMS than a random sample.   

Exploratory data analysis revealed a large number of rows with 
invalid grades and duration.  The data was filtered to include 
courses with valid data and a potential for instructional use, 
namely: grade range between 0% and 120%, a minimum of 60 
average minutes in the course, and a maximum of 5,040 minutes 
in the course per week, and enrollment more than 10 student and 
less than 500 students.  

The final data set analyzed had the following profile:  

Table 1. Data Set Characteristics 

Records Courses Institutions 

1.2M 34,591 788 
Exploratory data analysis and distributions were conducted to 
ensure that the data was normally distributed and ensure other 
assumptions required for linear regression analysis were met.  A 
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linear regression of final course grade on course duration and a 
logistic regression of course pass/fail on duration was run.  Next, 
a separate linear regression was run for each course.  

3. FINDINGS 
As indicated in the scatterplot in Figure 1, there was a significant 
relationship between duration and grade.  However, the effect size 
was extremely small (adjusted R2=0.01537). Further, most of this 
effect was created by the intercept value; the coefficient for 
duration was 5.74e-04.  Converted into practical effect, this 
coefficient indicates that for each additional hour spent in the 
LMS, students would gain 0.034% in their final course grade. 
Using course-relative measures of duration (e.g. z-scores by 
course) only increased the effect slightly (R2=0.017). Logistic 
regression led to similar results. 

When this regression was re-run at the course level, a high 
variation in this effect size was found.  There were 7,648 (22%) 
courses with p < 0.05; the distribution in effect size is plotted 
below.  Although skewed toward low values, there are a 
substantial number of courses with low to moderate effect sizes.   

Initial data subsetting by available criteria (e.g. enrollment size, 
institution, average activity) did not identify a factor strongly 
related to this difference in effect.  

4. IMPLICATIONS 
These findings indicate that while rule-based triggers may not be 
predictive of student course achievement for all LMS courses, 
they are predictive for a substantial number of courses.  Given 
known variability in how the LMS is used for instruction, these 
results provide an encouraging indication of potential value in this 
data.  However, the reasons for this strong relationship among 
some courses and not among others is an important area for 
further research.  We anticipate investigating issues in course 
design and early participation as identifiers of higher effect size. 

As a result of this research, multiple modifications to the existing 
triggers in Blackboard Ultra have been made to refine and reduce 
the number of notifications sent.  Further, a new configuration 
setting will be provided to disable these algorithms by course.  
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ABSTRACT
This paper reports an application to educational interven-
tion of Principal Stratification, a statistical method for esti-
mating the effect of a treatment even when there are differ-
ent rates of dropout in experimental and control conditions.
We consider the potential value for using principal stratifica-
tion to identify “Tough Love Interventions” – interventions
that have a large effect but also increase the propensity of
students to drop out. This method allowed us to generate
an estimate of the treatment effect in an RCT without the
selection bias induced by differential attrition by restrict-
ing analysis to just the inferred “stratum” of students who
would not drop out in either condition. This paper provides
a case study of how to appropriate the method of principal
stratification from statistics and medical research fields to
educational data mining, where it has been largely absent
despite increasing relevance to online learning.

Keywords
principal stratification; selection bias; statistics; attrition;
noncompliance; randomized controlled trial; experiment; on-
line education

1. INTRODUCTION
A persistent problem in interpreting randomized experimen-
tal comparisons in learning environments is that the fre-
quency of student dropout may vary between conditions .
This is known as differential attrition, and causes problems
with statistical inference [3] regarding the magnitude and
direction of differences between treatment and control con-
ditions. In cases where student completion is the metric of
interest, such differences in condition are easily measured by
the number of students to complete each; a problem arises,

however, when performance is the metric of interest, as if
less students drop out of one condition than the other, it is
over-represented in the analysis causing unreliable results.

Differential attrition can mask the existence of what we la-
bel “tough love” interventions (TLIs). A TLI describes an
intervention which introduces a treatment condition with
features that cause some students to drop out, but has ben-
eficial effects for students who persist. It is important to
know how much such interventions impact a potential out-
come in order to perform a cost-benefit comparison against
the dropout rate. We believe that principal stratification
is one tool that can be used to measure the effect of condi-
tions in the presence of differential attrition and help identify
TLIs.

2. ILLUSTRATIVE EXPERIMENT: IMPACT
OF QUESTIONS ABOUT CONFIDENCE

In the preliminary data presented here, we consider a ran-
domized controlled experiment (RCE) conducted within AS-
SISTments, a K-12 online and blended learning platform,
reported in EDM 2015 [4]. Students were randomly as-
signed to either a condition of Treatment, where students
were asked about their confidence in solving problems, or
Control, where students were asked about technology us-
age. The data set used for analysis consists of 712 12-14 year
olds in the eighth grade of a school district in the North East
of the United States with 5,861 log records collected while
students were solving math problems. The goal here is to
estimate how the conditions differ in their impact on Mas-
tery Speed, the number of problems needed to reach three
consecutive correct responses indicating a sufficient level of
understanding. It is important to note that a lower value in
this metric indicates better performance.

3. ANALYTIC STRATEGY
Principal stratification [2, 5] is an approach to modeling
causal effects for a subset of subjects defined subsequently to
treatment assignment. For instance, it applies when issues of
noncompliance, censoring-by-death, and surrogate outcomes
within conditions have occurred. It uses two models, labeled
here as the Attrition and Outcome models, to first stratify
students and then estimate effects on a single stratum. Our
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Attition model identifies four strata based on a student’s
likelihood to attrite: 1) AA or Always Attriters: Stu-
dents who drop out regardless of condition. 2) AC: Stu-
dents who complete if assigned to Treatment but drop out if
assigned to control group. 3) CA: Students who only com-
plete if assigned to Control. 4) CC or “Never-Attriters”:
Students who always complete regardless of condition; this
is the stratum of interest for our work here, as it is the only
group for which a treatment effect is well-defined.

True stratum membership is never observed, but must be
inferred by the Attrition model using observed covariates,
for which this work uses only the student’s prior percent
correctness labeled as acci. As attrition for one condition is
known for each student, only the likelihood that the student
would complete the opposing condition is inferred as seen in
the following equations:

logit(Pr(completesi,ctrl = 1)) = αctrl + βctrl ∗ acci

logit(Pr(completesi,treat = 1)) = αtreat + βtreat ∗ acci

The Outcome model then observes only students placed in to
the “Never-Attriter” stratum to estimate treatment effects.
The equation used here utilizes the same covariates as the
Attrition model with the addition of a dichotomized value
of condition and a class-level variance term:

masteryspeedi = β0s + β1s ∗ acci + β2 ∗ condi + σi

The model parameters were estimated with Markov Chain
Monte Carlo (MCMC) using four chains over 16000 itera-
tions of which the first 8000 are omitted as a burn-in period
allowing for convergence. The Rhat value shown in Table 1
reflects the degree of convergence of the Markov Chains,
with the values near 1 indicating proper convergence. The
results of the analysis are also seen in that table, and indi-
cate that a TLI is not found as the effects of condition are
not significant, falling within the confidence interval.

mean sd 0.95 CI Rhat
Constant 1.78 0.13 (1.52,2.04) 1

Prior Percent Correct -0.14 0.18 (-0.49,0.21) 1
Treatment 0.02 0.05 (-0.08,0.11) 1

mean sd 0.95 CI Rhat
Constant 2.95 0.31 (2.34,3.55) 1

Prior Percent Correct -1.33 0.39 (-2.09,-0.56) 1
Treatment 0.02 0.06 (-0.1,0.14) 1

Table 1: Typical Analysis: Coefficients for outcome
model that predicts Mastery Speed based on Con-
dition and Prior Accuracy, without using principal
stratification (top) versus those coefficients using
principal stratification (bottom).

4. SIMULATION STUDY
As no significance was found for coefficients in either case, a
further comparison of principal stratification to traditional
methods was conducted to verify principal stratification is
beneficial in identifying such interventions when ground truth
is known. The data generating model was designed to cap-

ture a tough-love intervention in which reliable difference
could be found between conditions for students who would
never drop out. For each simulated student, we assumed two
latent/unobserved variables, intended to capture notions of
Grit and Ability. There were two observed covariates, prior
percent complete, which was a function of grit, and prior per-
cent correct, which was a function of ability. The Outcome
Variable (which might correspond to a post-homework quiz
score) was a continuous variable that was a linear function
of Ability.

A similar methodology to that described on the non-simulated
dataset was then conducted. The coefficient for condition
gave us a treatment effect for the never-attritor stratum.
For comparison, we also conducted a Typical Analysis that
estimated a treatment effect using ordinary least squares re-
gression on all the data without using principal stratification
and after 500 runs of the simulation, the 95% confidence in-
terval from OLS included the average treatment effect for the
never-attritors 62% of the time. In contrast, the principal
stratification credible intervals were more efficient/reliable,
including the true treatment effect 91% of the time.

5. CONCLUSION
This paper presented an explanation and case study appli-
cation of principal stratification, to illustrate its potential as
a method for analyzing randomized experiments and inter-
ventions in digital learning environments. One example from
our analysis was identifying“Tough Love Interventions”, but
differential attrition pose a wide range of challenges to an-
alyzing data from experiments, especially as learners gain
flexibility in online environments such as Massive Open On-
line Courses (MOOCs). This makes the reliable analysis of
experiments with variable dropout and attrition of increas-
ing importance to the educational data mining community.
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ABSTRACT
Our work is motivated by a belief that social learning, where
a community of students interact with eachother to co-create
and share knowledge, is key to our students developing 21st
century skills. However, convincing students to engage in
and value this kind of activity is challenging. In this paper,
we employ a technique from AI research called a Markov De-
cision Process (MDP) to model social learning activity then
to suggest interventions that might increase the activity. We
describe the model and its validation in simulation and draw
conclusions about the effectiveness of this approach in gen-
eral. The main contributions of the paper is to (i) show
how it is possible to model education data as an MDP (ii)
show that the resulting decision policy succeeds in guiding
the system towards goal states in simulation.

Keywords
Social learning; Education system modelling, MDP, MOOC

Categories and Subject Descriptors
K.3.1 [ Collaborative learning]: K.3.2 Computer science
education G.3 Markov processes

1. INTRODUCTION
In this paper, we use a Markov Decision Process (MDP)
to model social learning activity in terms of content con-
sumption and content creation. This allows us to derive an
‘action policy’ which can potentially inform tutors and stu-
dents what type of content to create and when to create it
in order to maximise the levels of consumption of content
in a social learning system. MDPs [2] are a commonly used
method for sequential decision making under uncertainty,
and they have been used in education technology e.g. [1].
The work presented here represents a novel application of
MDP in a social learning context1.

1A full version of the paper can be found at
http://dx.doi.org/10.13140/RG.2.1.3592.0242

1.1 The case study and data set
The data used for the analysis presented here was collected
during a 10 week case study involving 174 students on an
introductory undergraduate programming course who were
learning how to program using the Processing IDE. The
students were using our social learning environment [3], as
shown in Figure 1, which allow in-browser execution of pro-
grams as well as sharing, commenting and replying to com-
ments on specific sections of code.

Figure 1: The code discussion UI. 1) mode buttons:
view running program, view code, download code,

2) the code viewer 3) the people who have
commented on this code 4) a comment about a

section of the code 5) my uploaded content 6) my
communities.

1
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2. THE MODEL
MDP problems are formulated in terms of states, actions,
state transitions, reward functions and action policies. The
action policy dictates what is the best action to take in a
given state in order to maximise future reward, where reward
is defined in terms of the value of each state.

We begin by slicing the dataset into time windows and count-
ing the number of activity types per window, split into con-
tent consumption and content creation activities. We define
state as a 5 dimensional vector describing levels of 5 types
of content consumption activity, namely read code, login,
open thread, preview comment (pre-comm) and run code.
The size of the state space is reduced by converting the raw
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Table 1: An excerpt from the action policy, showing
its proposed content creation actions for the most
commonly observed content consumption states
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State Action

log counts (e.g. number of times ‘read code’ happened) into
3 bands indicating low (0), medium (1) or high (2) activity
relative to other time slices. For example, a state of 01012
would indicate low read code (0), medium login (1), low open
thread (0), medium preview comment (1) and high run code
(2). Some states are shown in Table 1. We define action as
a 5 dimensional vector describing the levels of 5 content cre-
ation activities, namely comment, reply, share, grade com-
ment (grade-comm) and grade code. As for state, they are
reduced to low, medium or high relative to other time slices.
For example, an action of 01012 would mean low comments,
medium replies, low shares, medium comment grading, and
high code grading (where we refer to the amount of grading,
not the grades themselves). We can then gather observations
of state-action-state tuples in the dataset, i.e. we observed
this action being taken in this state and it was followed by
this state. This is converted to a state transition matrix,
an example entry in which is: ”20020x00000” : ”02002” :
0.5,”02222” : 0.5. In this example, state 20020 and action
00000 are observed to be followed by states 02002 and 02222
in an equal number of cases.

The next part of the MDP formulation is the reward function
which involves assigning a value to every possible state plus
a reward and cost for every possible state-action pair. State
values are essentially sums of the elements of the state vector
(state 00120 is worth 3). The values of state-action pairs are
a sum of the values of all states observed to follow that state-
action pair weighted by the number of observations of each
follow on state. The cost for an action is calculated based on
the frequency of that action in the observed set of actions,
where we assume that infrequent actions are costly.

3. SIMULATION
Having derived an action policy, we will now evaluate it
by runing it in simulation against a state transition matrix
derived from a different period of the case study than the
period the action policy was trained on. In this case, the
training and test sets contained data derived from the same
student cohort, just gathered during different time periods.
The aim of this simulation is to examine the ability of the
policy to generalise (to the same students in a different time
window), and therefore to assess the potential usefulness of
this system in a real world context.

Figure 2: Test performance of the action policy in
simulation vs. real world performance with varying

time slice length. With 1 hour time slices, the
MDP provides 1.25 times more value. Error bars

are based on standard deviation over 100
simulation runs.

Figure 2 shows the results of running the action policy in
simulation, where the training was carried out with varying
time slice lengths. For each time slice length, the simulation
was run 100 times to establish the typical range of perfor-
mance. The one hour time slice provides the best perfor-
mance, where the accumulated state values over the simula-
tion were 1.25 times the value accumulated in the real case
study data. It should be noted that the deteriorating per-
formance as time slice length increases is likely to be caused
by the smaller number of samples: there are less 6 hour
slices than there are 1 hour slices. This means the transi-
tion matrix becomes very sparse, resulting in very limited
simulation detail. This positive result demonstrates that the
MDP approach could be a viable method to model and ad-
vise about online educational systems based around content
consumption and creation.

4. CONCLUSION
We have described how social learning activity data can be
formulated into an MDP and that this formulation allows
the derivation of an action policy that can be used to decide
what kind of content to create and when to create it, in
order to maximise content consumption activity. We have
also presented a preliminary validation of the action policy
in a simulation based on real data, showing that the action
policy selects actions that lead to higher levels of content
consumption.
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ABSTRACT
We describe a collaborative video annotation system that
aims to engage learners in a focused, collaborative process of
content sharing and discussion, and explain how it was used
in an online creative programming MOOC on Coursera. We
explore the use of K-NN (K nearest neighbour) to predict
which of a variable number of evenly spaced, final grade
bands students will fall into based solely on a feature vector
consisting of the total number of UI click and mouseover
events they generated during the course. We were able to
classify students into pass/fail bands with 88% precision;
with 3 grade bands, precision was 77%, going down to 31%
with 10 grade bands. Typically, a feature subset containing
less than half of the available features provided the best
performance.

Categories and Subject Descriptors
K.3.1 [ Collaborative learning]: K.3.2 Computer science
education

1. INTRODUCTION
Our work is concerned with the development and analysis
of systems that enable online, collaborative learning driven
by different types of feedback. In this paper, we show how
it is possible to predict student grades using user interface
telemetry data gathered from a case study involving 993
students who completed all assessments for a creative pro-
gramming course on MOOC platform Coursera. The stu-
dents used a collaborative video annotation tool as part of
their peer assessment, which we developed as part of an EU
funded research project [5]. Previous work with collabora-
tive media annotation systems and grade prediction includes
[1, 3] and [2, 4] respectively1.

2. THE CASE STUDY AND DATA SET
1A full version of the paper can be found at
http://dx.doi.org/10.13140/RG.2.1.4525.9129

Three times during the course, the students were set a graded
peer assessment wherein they had to extend our example
programs and create a 5 minute video of themselves ex-
plaining their code and running their program. The videos
were uploaded to our collaborative video annotation system
wherein they could look at each others’ videos and create
annotations along a ‘social timeline’. The system logged
click and mouseover events on the UI elements shown in
Figure 1, 3,716 unique users logged into our system. Of
these, 3558 viewed one or more videos, 827 made one or more
comments, and 258 made one or more replies to comments.
2,898 videos were submitted for three separate assessments,
and were viewed a total of 112,189 times. 7,370 comments
were made, and 978 replies. For this paper, we filtered the
data down to all logged click and mouseover events for stu-
dents who gained a final grade on the course, a total of 993
students.

Figure 1: A screen shot of the video annotation and
discussion system. The numbered labels show all of
the elements of the UI for which events are logged

automatically.
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3. ANALYSIS
To predict student grades, we created a 16 dimension feature
vector consisting of total numbers of clicks and mouseover
events on each of the GUI elements shown in Figure 1 plus
the final grade achieved by the student. We began by at-
tempting to correlate individual elements of the feature vec-
tor to the final grade but individual correlations were too
weak to predict grades, ranging between 0.53 and 0.18. This
motivated us to try a multivariate classification approach.
For our first analysis, we assigned labels to the students
based on which of N evenly spaced grade boundaries they
fell into. For example, if N = 2, then students were labelled
1 if final grade < 50 and 2 if final grade ≥ 50. We split
the dataset into equally sized training and test sets and at-
tempted to train a K-NN classifier to assign labels to the
test set, with varying numbers of mark bands and multiple
run cross validation.

Figure 2 shows the proportion of correctly assigned labels
in the test set as number of mark bands N varies from 1 to
10. For example, the pass/fail classification where N = 2
achieved 88% true positives. We note that the distribution
of marks across the bands has a significant impact on the
meaning of accuracy, and that for N = 2, for example, there
are a large number of examples in each class which are being
correctly classified.

Figure 2: Performance of the classifier with k = 6
and number of mark bands N = 1...10.
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For our second analysis, we tried out all possible combina-
tions of feature elements to see which combination achieved
the highest classification accuracy. Since the number of fea-
tures was 15, the number of permutations was 32768 (215).
K was set to 6 and number of mark bands N varied from
1-10. Figure 3 highlights the most reliable features in the
feature set by showing how much the prediction score varied
(the standard deviation) across the set of all permutations
per N which involved that specific feature. To be clear, it
does not differentiate between features that reliably provide
good or bad results. The most reliable feature was ‘playing’,
which is triggered automatically while a video is playing.
The second most reliable feature was ‘region block’, which
is logged when a user clicks on a comment on the timeline
to open the discussion thread. More work is needed to un-

derstand this result more deeply.

Figure 3: Heat plot showing the standard deviation
in the prediction results when different features are

present. Low variation (lighter) is desirable,
meaning a feature makes a reliable contribution to

the results.
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Standard deviation of results when feature is present (feature reliability)

’feature_impact.tsv’ using 1:2:3:xticlabels(4)
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 0.02

 0.025
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4. CONCLUSION
We have briefly described a collaborative video annotation
tool we have developed. Using interface telemetry data gath-
ered describing click and mouseover events generated by the
user interface of the system, we were able use a K-NN clas-
sifier to classify students into pass/fail bands with 88% pre-
cision; with 3 grade bands, precision was 77%, and with 10
bands it was 31%. We measured the prediction power of
different combinations of the features and were able to iden-
tify the most reliable features, which relate to playing back
videos, exploring content menus and reading comments.
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ABSTRACT 
The problem of recommending learning objects to a group of 
users or instructors is much more difficult than the traditional 
problem of recommending to only one individual. To resolve this 
problem, this paper proposes to use meta-learning for predicting 
the best voting aggregation strategy in order to automatically 
obtain the final ratings without having to reach a consensus 
between all the instructors. We have carried out an experiment 
using data from 50 groups of instructors doing a collaborative 
search of LOs in AGORA repository. 

Keywords 

Meta-learning, Classification, LOs Collaborative Search 

1. INTRODUCTION 
Nowadays, there is a wide variety of e-learning repositories that 
provide digital resources for education in the form of Learning 
Objetcs (LOs). The search for and recommendation of LOs are 
traditionally viewed as a solitary and individual task but this is 
changing. On the one hand, collaborative search can be more 
effective than an individual search, for example in our case, a 
group of instructors may be interested in searching and selecting 
together the educational resources most appropriate to develop a 
new digital course. On the other hand, the goal of group 
recommendation is to compute a recommendation score for each 
item (in our case, each LO) that reflects the interests and 
preferences of all group members. The problem is that all group 
members may not always have the same tastes, and a consensus 
score for each item needs to be carefully designed. So, to 
recommend to user groups is more complicated than 
recommending to individuals [2]. The main problem that group 
recommendation needs to solve is how to adapt to the group as a 
whole, based on information about individual users’ likes and 
dislikes. A solution is to use group decision strategies or 
aggregation methods that are inspired by social choice theory, and 
establish different automatic ways of how a group of people can 
reach a consensus. However, groups are very diverse, and no 
single group decision strategy works best for all groups. A way to 
address this issue is to identify the inherent characteristics of 

different groups and to determine their impacts on the group 
decision process [1]. Following this idea, in this paper we propose 
to use meta-learning for predicting the best aggregation method 
recommended for a group based on its characteristics. In this way, 
the traditional time-consuming consensus-taking among users can 
be avoided by using an automatic method based on meta-learning. 

2. PROPOSED METHODOLOGY 
In order to resolve the problem of determining which aggregation 
method is the most appropriate for each type of collaborative 
search group, we propose to use a meta-learning process (Fig. 1). 
The idea is to obtain automatically the aggregation method which 
provided/gave the best performance for a group of instructors 
based on its characteristics and previous rating of other similar 
groups. As seen in Fig. 1, the meta-learning process starts from a 
dataset which contains descriptive information about groups, the 
individual ratings of each member to all the LO’s selected by the 
group during the collaborative search, and the consensus about 
the final rating assigned to all selected LO’s. Next, the groups’ 
characteristics are defined and the performance of the rating 
aggregation methods is evaluated in order to form a new metadata 
set. Then we select a classification algorithm that it used each 
time we have a new group of users/instructors in order to can 
recommend an aggregation method of their LO’s rating. 

Firstly, in order to create metadata, we use the following 
previously proposed descriptors or characteristics [1]: group size, 
social contact level, experience level and dissimilarity level. 
Additionally, we also propose a new descriptor based on the 
activity level of the group members in using LO repositories.  
Then, an evaluation phase is necessary in order to determine 
which aggregation method obtains the lowest error with respect to 
the actual consensual final rating of group members for all LOs. 
This actual or real rating is the final score of the group, obtained 
after consensus between all the members. So, it is necessary that 
the group have an in-person reunion or online communication in 
order to achieve the final score, starting with each individual 
rating/score and opinion. Various aggregation methods can be 
used to automatically obtain the final group rating for each LO 
[2]. We propose to use eight traditional aggregation methods 

 
Figure 1. Meta-learning process for recommending a voting aggregation method. 
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(plurality voting, average, median, approval voting, least misery, 
most pleasure, average without misery, and fairness) plus three  
new weighted versions (active, social and experience user) of the 
average method based on [3]. In our case, instead of assuming 
equal weights for all the members, we give more weight to some 
users based on their characteristics, assuming that some members 
are more influential and can persuade others to agree with them. 
Next, a new metadata set is created by using both the 
characteristics of each group and the obtained aggregation method 
that provided the best group performance. After that, a 
classification algorithm is used to predict which aggregation 
method is most appropriate for a new group, given its 
characteristics. However, because there are a lot of classification 
techniques, we must therefore select a representative number of 
classification algorithms in order to compare their performance 
when using our metadata set.  Finally, the classification algorithm 
that provides a better general performance will be the one selected 
for predicting the aggregation method most appropriate for each 
new group. In this way, the classification model obtained by the 
selected algorithm will be used for selecting, in real time, the best 
aggregation method for a new group according to the 
characteristics of the group and their individual ratings. 

3. EXPERIMENTAL WORK 
We have carried out an experiment in order to test our proposal of 
predicting the most appropriate aggregation method to use with a 
new group, based on the characteristics of the group members and 
the previous rating of similar groups. We have used data from a 
collaborative search of LOs in DELPHOS system [5]. We sent 
invitations, without using any incentive, to all instructors and 
final-year students of the Faculty of Education of the Autonomous 
University of Yucatan in Mexico to participate in the experiment. 
Only 75 users accepted our invitation: 27 professors or university 
teachers at different levels (assistant, associate and full) and 48 
final-year students. We defined a total of 50 different groups of 
instructors and students with different typologies on their 
characteristics. We created a metadata set that contains both the 
previous characteristics/descriptors of the 50 groups as well as the 
best aggregation methods for each group by evaluating the 
performance of the 11 used rating aggregation strategies (see 
Table 1). In order to do this, we have used RMSE (Root-Mean-
Square Error) of each aggregation method in each group. Starting 
from this metadata set, it is possible to predict the best 
aggregation method to a new group by using a classification 
algorithm. This is a classification in which the class or attribute to 
predict is precisely the aggregation method that obtains the best 
ranking. To this end, we have used different classification 
algorithms provided by the WEKA software, which is one of the 
most popular and most used tools for data mining. We have 
selected a representative number of the best known classification 
algorithms available in WEKA: JRip (implementation of RIPPER 
algorithm), J48 (implementation of C4.5 algorithm), 
NaiveBayesSimple (implementation of Bayes classifier), SMO 
(implementation of support vector classifier) and IBk 
(implementation of KNN or Nearest Neighbours algorithm). We 
have executed the previous five classification algorithms using 
their default parameter values and 10-fold cross-validation. In 
order to evaluate the classification performance and to determine 
the best algorithm for each group, we have used two measures that 
have previously been used to evaluate classification algorithm 
recommendation methods [4]. The first is called ARE (Average 

Recommendation Error) and it measures the average error of the 
current recommendation (predicted aggregation method) 
regarding the best and the worst recommendation (best and worst 
aggregation methods from the list of methods ordered from the 
lowest to the highest RMSE). The second measure is the 
Reciprocal Average Hit Rate, also known as Mean Reciprocal 
Rank (MRR), which measures the median position occupied by 
the method currently predicted for each of the groups in the 
complete list of methods ordered by RMSE. 

Table 1. Average Recommendation Error and Mean 
Reciprocal Rank obtained by the 5 classification algorithms. 

Algorithm ARE MRR 
IBk 0,9418 0,3506 

J48 0,9492 0,4239 

JRIP 0,9594 0,5453 

NaiveBayes 0,9458 0,4113 

SMO 0,9583 0,4689 

As we can see in Table 1, IBk was the best 
classification/prediction algorithm (followed by NaiveBayes and 
J48) because it obtained the lowest value of Average 
Recommendation Error and the lowest value of Mean Reciprocal 
Rank. So, since the algorithm IBk achieved the best results, it is 
our selected classification algorithm to automatically recommend 
the best aggregation method of the most similar group or nearest 
neighbours to every new group as the best method for rating all 
the LOs added to the group. In this way, the moderator of the 
group would use the recommended aggregation method obtained 
by the IBk algorithm instead of having to conduct the traditional 
consensual decision process. 
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ABSTRACT
Students often possess multiple, conflicting misconceptions
which may be activated and expressed in different contexts.
In this paper, we use a mixed membership model to ex-
plore the patterns of misconceptions in introductory physics.
Mixed membership models have been widely used for mod-
eling observations that have partial membership in several
latent groups. The latent groups in the current study are
misconception patterns. This model allows us to examine
whether students are likely to hold a few or many misconcep-
tions, as well as which misconceptions are likely to co-exist.
Physics knowledge was measured with the Force concepts
inventory (FCI). We found three dominant response pat-
terns, with different misconceptions prominent within each
pattern.

1. INTRODUCTION
Student misconceptions can be persistent, and interfere with
learning unless they are addressed directly. One impor-
tant characteristic of misconceptions is that students pos-
sess many different knowledge components simultaneously,
so that the particular schema or rule a student uses to solve
a question depends on many different factors, including the
context of the question [4]. This paper presents a case-study
for using a mixed-membership model [1] to capture the char-
acteristics and coherent patterns among students’ miscon-
ceptions in introductory physics. Mixed membership model
allows students to possess different misconception patterns
(profile) across test questions. In this study, we focus on two
questions: (1) What are the common misconception pattern
students possess across the test, and which misconceptions
tend to co-occur. (2) How much does each student exhibit
each pattern?

2. METHODS

2.1 Mixed membership model
Mixed membership models allow an individual to switch pro-
files across contexts, test items. How much each individual
uses each profile is parametrized by θi = (θi1, . . . , θiK). The
components of θi are nonnegative and sum up to 1. Zij

indicates the profile that student i uses for item j, so that

Zij |θi ∼Multinomial(θi).

Each latent profile has its own probability distribution for
observed variables. Since the items from the case study are
multiple choice, if Xij denotes the observed response for stu-
dent i on item j, thenXij |Zij = k ∼Multinomial(β(j|Zij=k)),
where β(j|Zij=k) = (βkj1, . . . , βkjm, . . . , βkjM ), βkjm denotes
the probability that a student using profile k on item j will
select option m, and M is the number of options.

In the mixed membership model, the generative process is
given by [5,6]:

1. For each item j = 1, . . . , J , draw β(j|Z=k) ∼ Dirichlet(η),
for k = 1, . . . ,K.

2. For each individual i = 1, . . . , N

(a) Draw θi ∼ Dirichlet(α)

(b) For each item j = 1, . . . , J ,

i. Draw Zij |θi ∼Multinomial(θi).

ii. Draw Xij |Zij ∼Multinomial(β(j|Zij=k)),

Here η and α are prior parameters. These could be estimated
in an empirical-Bayes fashion. We choose to set these pa-
rameters to incorporate prior information, and stabilize the
model.

2.2 FCI Data
From 1995-1999, 4450 high school students responded to The
Force Concept Inventory (FCI), one of the most commonly
used assessments in physics to measure students’ under-
standing of concepts on Newtonian mechanics. We foucsed
on the pre-test scores from a larger study [3]. The FCI con-
sists of 30 multiple-choice items, with 18 items measuring
Newton’s Second Law. Most of the distractor options on this
test were designed to map to a common physics misconcep-
tion, though some distractors are statements that cannot be
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explained by physics theories. More detailed explanation of
these misconceptions can be found in [2].

3. RESULTS
We estimated the mixed membership model using MCMC
with 5,000 iterations (1,000 burn-in). We placed a weakly
informative prior on β(j|Z=1), of ηj1 = (50, 1, 1, 1, 1), and a
flat prior to all the other parameters.

3.1 Number of Profiles
We fit mixed membership model with three to seven profiles.
The same misconceptions were found to co-exist regardless
of the number of profiles. In the 3-profile model, students
have the most distinct probabilities of selecting a particular
response across profiles, and were more likely to exclusively
belong to one of the profiles (θik > 0.8). Thus, we can say
that three profiles is representative of students’ misconcep-
tion patterns and in this paper, we focus on the 3-profile
model.

3.2 Students’ Membership in the Profiles
Profile memberhsip of each student is captured by the pa-
rameter θi = (θi1, θi2, θi3) shown in Figure 1. The propor-
tion of students who exclusively belong to profile 3 is the
highest, followed by profile 2 and profile 1. There are many
students who are between profile 2 and profile 3 as well as
between profile 3 and profile 1. Far fewer students fall be-
tween profile 2 and profile 1.
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8
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Figure 1: Contour map of posterior distribution for
students’ membership in the three profiles. X nad
Y axes represent θi1 for Profile 1 and Profile 2 (θi1)
respectively. Profile 3 can be obtained by θi3 = 1 =
θ1i − θi2

3.3 Characteristics of Profiles
Each profile is parameterized by a probability distribution
over the responses to each item, β(j|Z=k) = (βkj1, . . . , βkj5).
We illustrate the characteristics of each profile using items
that measure Newton’s Second Law of Motion, and these
characteristics hold up for all the items in the FCI instru-
ment.

Misconception Profile (profile 3) This profile is characterized
by high probability on responses containing misconceptions.
Recall also, that this profile had the most students that be-
longed to it exclusively, as well as large numbers of students
who were between it and the other profiles (Figure 1). In

this profile, some misconceptions, such as impetus dissipa-
tion are observed repeatedly across items. However, we also
observe that the activation of a misconception depends on
items. For example, the misconception impetus supplied by
“hit” is likely to be observed in item 30 even though it is
also associated with item 11. This profile has the most pro-
found implications for instruction since it is the largest, and
demonstrates that students tend to not hold a single miscon-
ception, but rather many misconceptions that co-exist and
may be expressed in different contexts.

Mostly Correct Profile (profile 1). This profile places a high
probability on the correct response for most items, and has
the smallest number of students that have high membership
in the profile. However, on a few items, this profile is also
associated with misconceptions. Some of these misconcep-
tions, such as largest force determines motion were shared
by the other profiles which instructors will want to address,
and some of them tend to be of a higher-level.

Uniform Profile (profile 2). In general, the probability of
choosing an option was similar across at least three options
for most of the items. This profile has a large number of
students who belong almost exclusively to it. Even when we
increased the number of profiles, it did not disappear, nor
decompose into separate profiles. These observations indi-
cate that students in this profile do not have any coherent
pattern in their responses.

4. CONCLUSION AND DISCUSSION
This study illustrates how mixed membership models can be
a good tool to summarize a number of misconceptions into
fewer numbers of profiles by identifying misconceptions that
are likely to co-exist. Among the three profiles we found
with FCI data, the majority of students had partial or com-
plete membership in the misconception profile. The high
coherence of co-existing misconceptions across a large num-
ber of students in this profile demonstrates the real power of
this mixed membership analysis. By finding coherent pat-
terns exhibited by many students at least some of the time,
we find evidence that may suggest new theory. Future work
can focus on the challenge of deciding an optimal number
of profiles when conducting mixed membership models and
the assumption that Zij depends on both i and j. Profile
transitions between pre- and post-test should also be exam-
ined.
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ABSTRACT 
As a teacher or administrator, seeing a student scoring 100% in 
an exercise series within an online learning system would 
typically raise no immediate worries. This paper analyzes the 
"one hundred percenter" sessions in a math learning system. We 
argue that some student sessions with 100% score may actually 
not be predictive of student's learning success, and that a 
frequently exhibited student strategy of getting a perfect score 
by skipping exercises and repeating series is not ideal. 

Keywords 

Learning Analytics; Educational Data Mining; User Modelling; 
Student Behavior; Gamification 

1. INTRODUCTION 
Many educational technology systems allow students to take 
exercises multiple times and thus follow a resubmission policy 
[4; 6]. In this model, students have a chance to revise their 
answers by looking closely at their errors and the system gives 
feedback accordingly (which may vary in form and degree of 
detail). This resubmission policy certainly benefits self-regulated 
learning. Some of these learning systems limit the number of 
resubmissions, whereas others leave it unlimited [6]. 
Nevertheless, a possible negative side effect of this policy is 
evident as well. Under a resubmission policy, students can 
potentially take a trail-and-error strategy with little or even no 
thinking about the exercises and still try to get a high score [1; 
4]. To address this issue, randomized initial data can be used to 
generate new (but structurally similar) exercises and thus 
avoiding repetitive occurrences of same exercises [5]. This 
strategy has shown to have a positive impact on students’ 
learning results [6]. 

In this paper, we conduct an investigation in the context of a 
math learning system with a feature of resubmission. Log files 
indicate that a portion of students were eager to achieve a 100% 
success rate by taking a strategy of skipping exercises with a 
‘help’ of resubmission. As far as we know, this phenomenon has 
not been studied extensively up to now. Nevertheless, skipping 
behavior itself is quite common in computer-supported learning 
systems. If a resubmission policy is allowed, restarting an 
exercise series or a quiz is technically possible and not as 
expensive as in paper-and-pencil tests in physical classroom 
settings. One may argue that students’ motivation of achieving a 
100% success is not surprising too. In a traditional classroom 
this happens quite often because students desire their teacher’s 
praise or want to show off their talent with such a high learning 

performance. In this paper we thus do not primarily intend to 
discuss the phenomenon as such, but want to investigate two 
related questions. First, is this skipping strategy (aborting and 
restarting an exercise series after a mistake) actually a fast way 
to achieve a 100% success score, or are there more efficient 
strategies to reach this goal? Second, from a pedagogical 
viewpoint, do students who take this strategy perform as good as 
their learning outcomes seem to indicate – i.e., perfectly?  

2. DATA 
Bettermarks1 is an online math learning system. It delivers math 
learning content in cooperation with K-12 schools (grades 4-
10). Since the system provides flexibility to choose math topics 
and exercise series according to needs of different curriculums, 
it is frequently blended into classroom teaching by school 
teachers. Typically, teachers assign exercises (organized in 
exercise series) to their students and their achievement is in turn 
reported back to the teachers via the system. Bettermarks 
employs an unlimited resubmission strategy, which means that 
students can make as many attempts as they want. With such a 
feature, students are expected to iteratively make use of more 
attempts to correct their errors with helps of the system’s 
feedback and/or hints. 

After a close look at the sever log file, we found that plenty of 
the students made many skipping attempts before a 100% 
success. We termed such an interesting phenomenon as a “one 
hundred percenter with skipping”. They did not take the 
exercises one after another as some of their peers did. Instead 
they skipped all the remaining exercises and made a new attempt 
once an error occurred. From January 2014 till November 2014 
we found 8,640 (6.4%) sessions involved in such a phenomenon 
out of totally 687,688 sessions. 

3. ANALYSES AND RESULTS 
We identified another two different groups of student sessions 
with least one 100% success in one attempt of the exercise 
series. One group is the sessions without any skipping behavior 
but at least a 100% success once (59,941 in total). The other 
group contains sessions with a 100% success at the first attempt, 
but still with next attempts in the same exercise series. We 
termed this group “strong one hundred percenters” (3,854). The 
one hundred percenters with skipping showed a totally different 
learning style than their counterparts without skipping. Upon 
realizing a problem (e.g., a mistake made or an apparent difficult 
                                                                 
1 http://bettermarks.com/ 
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exercise), the former group decided to skip over this exercise 
and the remaining ones in the series, and restarted the series. To 
the contrary, the ones without skipping chose to continue with 
the current work. They took every learning chance (as the 
system designer or the teacher would probably have hoped). 
Through this behavior, they could still probably learn something 
from the feedback or the next exercises in the series even though 
they had made an error. However, their desire to achieve a 100% 
success was evident through their behavior. The question which 
style (with or without skips) leads to the shared goal (100% 
success) quicker is interesting. To answer this question, we 
counted the students’ attempts to a 100% success respectively. 
Students with the skipping strategy in fact needed more attempts 
to achieve their desired perfect score (3.6 attempts vs 2.4 
attempts). This difference is statistically significant (Welch’s t-
test with different variance, p<0.001). In other words, students 
that chose to do all the exercises instead of skipping achieved a 
100% success faster. Note that we took the number of attempts 
as a measure instead of time spent because that would bring 
individual’s faster or slower learning pace as a noise into our 
analysis. 

Interestingly, some of the one hundred percenters continued 
with their learning activities even after having obtained a perfect 
score. They even made more attempts right after their 
achievement of 100% success. In this case, we can hypothesize 
that the reward-oriented motivation was lower than the intrinsic, 
learning-oriented motivation: the system would reward students 
achievement badges once they achieved a 100% success but no 
more afterwards. We got 129 (1.4%) of such sessions out of the 
one hundred percenters with skipping, 1,414 (2.3%) sessions out 
of the one hundred percenters without skipping, and 3,854 (by 
definition, 100%) sessions out of the strong one hundred 
percenters. Solely from the participation we can intuitively see 
that very few one hundred percenters with skipping engaged in 
their learning activities once they had got the achievement 
badges in comparison of another two groups. We sought to 
investigate their learning performance under this situation (only 
with intrinsic motivation). We calculated their average success 
rate over attempts after that 100% success attempt. The average 
learning performance of one hundred percenters with skipping 
(0.78) is much lower than without skipping (0.91). 
Unsurprisingly, the strong one hundred percenters take the 
leading position (0.94). A Kruskal-Wallis H-test confirmed 
significant difference (p<0.001). 

We can now give some answers to our questions stated in 
Section 1. First, the skipping strategy does not show any 
advantage when compared to the non-skipping strategy. To the 
contrary, students who take this strategy needed more attempts 
to achieve a 100% success at the end. More importantly, one 
hundred percenters with skipping reveal significantly weaker 
capabilities than their peers during the attempts after a 100% 
success. This would put this portion of students at risk 
especially when teachers only take their best outcome as a rating 
criterion. Since they do not show any weakness solely on that 
indicator, their teachers would overlook them (assuming they do 
fine) and move their attention to the weak students. As such, one 
hundred percenter behavior with skipping is not a fruitful 
strategy – it does not make the process of getting the 100% 
badge more efficient, and in fact students that pursue this 
strategy did not learn as much as their scores indicate, and less 
than their peers. 

4. CONCLUSION 
This work analyzes a portion of students in a math learning 
environment who achieve a 100% success in an exercise series 
through skipping exercises and then repeating the series. A 
closer look at the data in the learning system yielded several 
insights. The first one is that the adoption of the skipping 
strategy does not help to speed up to a 100% success. Instead, a 
non-skipping strategy leads students to achieve a perfect score 
faster. Another yet more important finding is that one hundred 
percenter behavior could put students at risk of being 
overlooked by teachers. They actually do not perform as 
excellent as their learning performance indicates. 
With regard to the motivation of one hundred percenters, 
achievement badges available in the system, a gamification 
strategy often used in educational systems, could explain their 
motivation. Still there could be some other incentives, for 
example, encouragement or rewards coming from somewhere 
outside of the learning system. The learning system we studied 
is integrated into blended teaching settings in most cases. Thus 
teachers should have much space to motivate their students 
without a need to solely rely on the learning system’s rewarding 
strategy. Apart from motivation factors, carelessness or a slip [2; 
3] could explain one hundred percenters’ skipping behavior as 
well. 
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ABSTRACT
Nonverbal behaviors such as facial expressions, eye contact,
gestures, postures and their coordination with voice tone
and prosody have strong impact on the process of commu-
nicative interactions. Successful employment of nonverbal
behaviors plays an important role in interpersonal commu-
nication in the classroom between students and the teacher.
Student teachers need to improve their teaching skills, from
communication to management, and prior to entering the
classroom. To support these aspects of teacher preparation,
we developed a virtual classroom environment, TeachLivETM

for teacher training, reflection and assessment purposes. In
this work we investigate the connections between gestures
and vocalization characteristics of participants in a teaching
context for two settings within the TeachLivE environment.

We have developed an immediate feedback application that
is presented to the participants in one of the study settings.
It provides visual cues to the participant in front of the track-
ing sensor any time that she exhibits a closed stance. Iden-
tification of these type of connections between acoustic and
gestural components of communication provides an added
dimension that could assist us in using machine learning
methodologies to extract multimodal features as teaching
competency measures.

Keywords
gesture; vocalization; nonverbal behavior; Microsoft Kinect;
virtual teaching rehearsal environment.

1. INTRODUCTION
Interpersonal communication involves a variety of modes
and components in communication. We might think that ac-
tual words are the primary part of communication; however,
the majority of interaction between individuals, including
students and teachers, is nonverbal, encompassing between
65 and 93 percent of what occurs related to learning [7].
These nonverbal elements include both nonvocal (e.g. body
language) and vocal components (e.g. voice pitch and in-
tonation). Body language by itself include several aspects:
facial expressions, eye contact, posture or stance, gestures,
touch and appearance. This research investigates the con-
nection of postures and/or gestures with acoustic compo-
nents of the nonverbal communication in the teaching con-
text.

Multimodal analysis co-processes two or more parallel in-
put streams (modes) from human-centered interactions that

contain rich high-level semantic information [9]. Teaching
and learning have always been multimodal as both are uni-
fied with speech, gesture, writing, image and spatial setting
[12]. Multimodal data analysis in a teaching context helps
us to have an informed understanding of the performances
of the teacher participants.

TeachLivE is a simulated classroom setting used to pre-
pare teachers for the challenges of working in K-12 class-
rooms. Its primary use is to provide teachers the opportu-
nity to rehearse their classroom management, pedagogical
and content delivery skills in an environment that neither
harms real children, nor causes the teacher to be seen as
weak or insecure by an actual classroom full of students.
TeachLivE uses its underlying multi-client-server architec-
ture called AMITIES- Avatar Mediated Interactive Training
and Individualized Experience System [8]. A human-in-the
loop (called an interactor) orchestrates the behavior of the
virtual students in real-time based on each character’s per-
sonality and backstory, a teaching plan, various genres of be-
haviors and the participant’s input. The virtual classroom
is displayed on a large TV screen to the participant and
the view of the virtual classroom scene dynamically changes
based on the participant’s movements in front of the track-
ing sensor. We have developed a real-time gesture recog-
nition application for nonverbal communication skill train-
ing, based on the Microsoft Kinect SDK [1] as part of Re-
flectLivE, the TeachLivE integrated reflection tool [3]. The
hypothesis is that our developed feedback application has
positive impact on the participants’ body language, leading
to more open and fewer closed stances. The open stance
has arms and legs not crossed in any way. To explore the
validity of this hypothesis and system usability evaluation,
we report the results from the conducted case study with
two settings using the feedback application (section 2.1).

We are also interested in looking at the connections between
the participant’s gestures and acoustic characteristics in dif-
ferent situations in the classroom, such as while asking ques-
tions from virtual students, conversation turn-taking after
students’ responses, introducing a new topic, etc. The anal-
ysis of the recorded sessions from a gesture-voice aspect is
another motivation for this research that seeks a broader
understanding of communication practices that reflect and
support teaching competency.

Investigating the related research, there have been a num-
ber of prior attempts to develop social skill training and
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feedback applications using interactive environments. Pre-
sentation Trainer [10] collects multimodal data using the
Microsoft Kinect and provides immediate cues about the
trainee’s body posture, embodiment and voice volume dur-
ing her presentation. Similarly, Dermody and Sutherland
[5] present a multimodal prototype for public speaking pur-
poses that uses the Kinect sensor. Their system provides
real-time feedback on gaze direction, body pose and gesture,
vocal tonality, vocal dysfluencies and speaking rate.

At first glance, gesture and speech may be coupled less di-
rectly than, e.g., prosody and speech, as both originate in
very different physiological systems. However, some views
and findings suggest a close connection between both, espe-
cially in production. This mutual co-occurence of speech and
gesture reflects a deep association between the two modes
that transcends the intentions of the speaker to communi-
cate [11].

2. APPROACH
We present our research to understand the gesture and vo-
calization connections in the following two separate subsec-
tions since most of our currently reported research has been
done independently with our effort to fuse the collected mul-
timodal data still under development.

2.1 Gesture
This research evolved based on the existing literature ex-
pressing the importance of open body gesturing in successful
interactive teaching (teaching competency) [2]. Reviewing
the existing recordings of teaching sessions in TeachLivE
gave us a baseline about the way teachers use their body
in the virtual classroom. In our observations, most of the
teachers were not thoughtful of their body movements and
many of them exhibited closed stances most of the time in
their teaching sessions. The recognized frequent closed pos-
tures (or closed gestures) were hands folded in front and
back, hands on hips, and crossed arms. These gestures are
noted as closed or “not-recommended” gestures. We are in-
terested in detecting these closed gestures and reminding
the trainees about their closed body language. In social skill
training, the impact of immediate and real-time feedback in
the rehearsal process has been reported as very positive in
comparison to other types of feedback provision such as de-
layed feedback [10]. The developed feedback application is
capable of providing visual or haptic (vibration wrist band)
prompts in real-time for targeted closed gestures. The ef-
fectiveness of the implemented visual feedback application
was evaluated by conducting a user study. It was a single-
time within-subjects, counterbalanced study with two set-
tings (TeachLivE with and without feedback application)
and each session was 7-minute long. Participants (N=30,
6M, 24F) were asked to attend both of the settings, and
complete pre and post questionnaires (the total recruitment
time was approximately 45 minutes per participant). We
randomly assigned the participants into two groups A and
B, where group A (N=15, 3M, 12 F) experienced TeachLivE
with feedback setting in their second session and group B
had this experience in their first session. The collected full-
body tracking data from the participants was processed [3]
to extract the percentage of time that a subject exhibited
closed gestures (CGP) in the recorded sessions. Our expec-
tation based on the hypothesis (section 1) was that we would

observe a considerable difference between groups A and B
in the first session and a slight difference between the two
groups in the closed body gesture employment in the second
session. To evaluate the impact of our proposed feedback
application on body language thoughtfulness, we calculated
CGP for 60 recorded clips from 30 participants. The box-
plot in Figure 1 presents the distribution of CGP between
two groups of participants.

Figure 1: Medians and interquartile ranges of CGP
exhibition in two sessions (observations) among
groups A and B. Circle represent outliers.

Figure 1 shows some of key findings from this study. It
presents the wide range (from 95% to 16%) of closed ges-
ture employment for group A in the first session. It also in-
dicates the median of CGP for group B participants is lower
than group A (6.4 % and 7.2% for two sessions for group B
and 78% and 5.9% for group A). As Figure 1 indicates, the
hypothesized statement is supported for the participants of
the study. The average time that all of the participants in
group A exhibited closed gestures reduced significantly from
their first session to their second session. Most interestingly,
the participants in group B exhibited open gestures most of
the time even in the second unaided session.

2.2 Vocalization
In this study, we recorded video, audio, full body tracking
data and event logging information (including virtual stu-
dents’ talk-time and behaviors) from the TeachLivE system.
The reader can find further recording details in [3].

After collecting the data, we processed the recorded audio
from video sessions using Audacity software to extract the
Waveform Audio File Format from recorded avi files. We
opened the .wav files in the Praat tool [4] and extracted
some basic vocal characteristics (pitch and intensity objects)
from the audio files. Praat is a free computer software pack-
age for the analysis of speech. Voice pitch is the perceptual
correlate of vocal fundamental frequency and voice inten-
sity indicates voice loudness in db. A PitchTier object rep-
resents a time-stamped pitch contour (hereby feature), i.e.
it contains a number of (time, pitch (Hz)) points, without
voiced/unvoiced information. An IntensityTier object rep-
resents a time-stamped intensity contour, i.e., it contains
a series of (time, intensity) points [4]. Pitch and intensity
tier associated with our recorded sessions were exported for
multimodal analysis purpose to the ANVIL [6]. ANVIL is
a video annotation tool that offers multi-layered annotation
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based on a user-defined coding scheme. Figure 2 shows the
ANVIL tool.

Figure 2: TeachLivE video sessions (including the
participant front view and virtual classroom scene)
within the ANVIL annotation tool [6]. Three acous-
tic contours waveform, pitch (blue) and intensity
(pink) [4] are imported to the annotation project.

We intend to add our gesture recognition application out-
put as an extended contour in the ANVIL. This will auto-
matically present the types and timing for different closed
gestures during the recorded session. The current version
of the ANVIL does not support the exported (closed) labels
of frames from the Kinect V2 gesture recognition tool as a
contour, so we are working on this open-source tool to de-
velop our desired contour structure. As mentioned earlier,
our goal of using ANVIL is to understand the correlations of
acoustic features with gesturing in these three main cases:
1) when the participant teacher asks a question from virtual
classroom, 2) when the teacher listens to the responses from
the class (conversation turn taking between students and
teacher), and finally 3) when the teacher introduces a new
or abstract topic or is summarizing the discussion. Litera-
ture supports that teachers gesture more in the mentioned
cases [2]. We will annotate the recorded videos based on the
teaching plan, conversational cases, open/closed, and affir-
mative gesture employment. The automatically generated
vocalization information would be exported in conjunction
with manual annotation data for further analysis.

3. CLOSING REMARKS
The study reported here fills a gap in multimodal research
for education. In this paper, we first explained the impact
of nonverbal behaviors in teaching competency. We then
reported a case study to evaluate the performance of our
developed feedback application for nonverbal communica-
tion skill training. We used the Microsoft Kinect sensor and
its full-body tracking data stream to develop our real-time
gesture feedback application. The results from the recorded
body tracking data indicated the positive impact of informed
body language and gesture in communication proficiency.
We also introduced relevant tools and techniques for multi-
modal feature extraction for teaching competency, and we
expect to report the results after developing an appropriate
coding scheme framework and the annotation procedure.

For future research, we are looking forward to uncovering
additional teaching evaluation insights with the analysis and
evaluation of multimodal recorded data, as multimodality is
an integral part of teaching.
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ABSTRACT
Traditional Knowledge Tracing, which traces students’ knowl-
edge of each decomposed individual skill, has been a pop-
ular student model for adaptive tutoring. Unfortunately,
such a model fails to model complex skill practices where
simple decompositions cannot capture potential additional
skills that underlie the context as a whole constituting an
interconnected chunk. In this work, we propose a data-
driven approach to extract and model potential chunk units
in a Knowledge Tracing framework for tracing deeper knowl-
edge, which is primarily based on Bayesian network tech-
niques. We argue that traditional prediction metrics are un-
able to provide a “deep” evaluation for such student models,
and propose novel data-driven evaluations combined with
classroom studies in order to examine our proposed student
model’s real-world impact on students’ learning.

Keywords
complex skill, chunk, robust learning, deep learning, Knowl-
edge Tracing, Bayesian network, regression

1. INTRODUCTION
Knowledge Tracing (KT) [4] has established itself as an ef-
ficient approach to model student skill acquisition in intel-
ligent tutoring systems. The essence of this approach is to
decompose domain knowledge into elementary skills, map
each step’s performance into the knowledge level of each sin-
gle skill and maintain a dynamic knowledge estimation for
each skill. However, KT assumes skill independence in prob-
lems that involve multiple skills, and it is not always clear
how to decompose the overall domain knowledge. Recent re-
search demonstrated that the knowledge about a set of skills
can be greater than the“sum”of the knowledge of individual
skills [8], some skills must be integrated (or connected) with
other skills to produce behavior [11]. For example, students
were found to be significantly worse at translating two-step
algebra story problems into expressions (e.g., 800-40x) than

they were at translating two closely matched one-step prob-
lems (with answers 800-y and 40x) [8]. Also, recent research
that has applied a difficulty factor assessment [1] demon-
strated that some factors underlying the context combined
with original skills can cause extra difficulty, and should be
included in the skill model representation. Meanwhile, re-
search on computer science education has long argued that
knowledge of a programming language cannot be reduced to
simply the “sum” of knowledge about different constructs,
since there are many stable patterns (schemas, or plans) that
have to be taught or practiced [16]. We summarize the above
findings and connect them with a long-established concept
in cognitive psychology called chunks. According to Tulving
and Craik [17], a chunk is defined as “a familiar collection of
more elementary units that have been inter-associated and
stored in memory repeatedly and act as a coherent, inte-
grated group when retrieved”. It has been used to define
expertise in many domains since Chase and Simon’s early
research in chess [2]. We argue that modeling chunks is
important but it hasn’t been well-addressed in the current
Knowledge Tracing framework. In order to identify chunks
in a modern data-driven manner, we propose starting from
automatic extraction of stable combinations between indi-
vidual skills, or between skills and difficulty factors from
huge volumes of data available from digital learning systems.
We think that such chunk units contain different complex-
ity levels, and more complex chunk units can be constructed
from simpler chunk units, so they could and should be ar-
ranged hierarchically. So we propose a hierarchical Bayesian
network which we consider a natural fit for the skill and stu-
dent model, rather than alternative frameworks [1, 14, 12].

Meanwhile, complex skill knowledge modeling has been a
challenge. Starting from simple variants based on tradi-
tional KT [5], more advanced models have been put forward.
However, these student models use a “flat” knowledge struc-
ture, and research works that consider relationships among
skills mostly focus on prerequisite relations [3] or granular-
ity hierarchy [13]. Regarding the data-driven evaluations
of student models, problem-solving performance prediction
metrics [7, 5] have raised some growing concerns [6, 9]. A
recent learner outcome-effort paradigm and a multifaceted
evaluation framework [6, 9] offer promising methods that we
plan to extend. We also plan to conduct classroom studies
that deploy a new adaptive learning system that is based on
our proposed student model.
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2. PROPOSED CONTRIBUTIONS
The first contribution we expect to achieve is to present
a novel perspective and data-driven approach for building
(skill and) student models with chunks. Second, we aim to
present a novel multifaceted data-driven evaluation frame-
work for student models that considers practically impor-
tant aspects. Third, we aim to demonstrate our proposed
model’s impact for real-world student learning such as help-
ing differentiating shallow and deep learning, enabling better
remediation, and ultimately promoting deep learning.

3. APPROACH AND EVALUATION
3.1 Model Construction
Our proposed student model will conduct performance pre-
dictions, dynamic knowledge estimations, and mastery de-
cisions when deployed in a tutoring system. To save space,
we only describe the major components here.

3.1.1 Representing Chunk Units
To start, we plan to use the Bayesian network (BN) frame-
work for the final skill and student model. We call our pro-
posed model conjunctive knowledge modeling with hierarchi-
cal chunk units (CKM-HC) (Figure 1).

- The first layer consists of basic individual skills (e.g.,
K1) that capture a student’s basic knowledge of a skill.

- The intermediate layers consist of chunk units (e.g.,
K1,2), which can be derived from smaller units that cap-
ture deeper knowledge.

- The last layer consists of Mastery nodes (e.g., M1) for
each individual skill, which reflects the idea of granting a
skill’s mastery based on the knowledge levels of relevant
chunk units. We now assert mastery of a skill by comput-
ing the joint probability of the required chunk units being
known.

Figure 1: The BN structure of CKM-HC, with pairwise skill
combinations as chunk units, in one practice time slice.

3.1.2 Identifying Chunk Units
We consider the following two frameworks to extract chunk
units, with Bayesian network as the major framework:

- Regression-based feature selection or structure learn-
ing framework. Based on regression models, many ef-
ficient feature selection or structure learning methods al-
ready exist. However, the limitations of this approach in-
clude: 1) the compensatory relationship among skills is
assumed; 2) it’s hard to realize the evidence propagation
among skills in a probabilistic way; and 3) it doesn’t pro-
vide the explicit knowledge level of each individual skill.
Still, we might be able to use this framework for exploratory
analysis or for pre-selection, due to its potential efficiency.

- BN-based score-and-search framework. We can em-
ploy a search procedure for learning the structure; namely,
what chunk units to include. However, if we don’t limit
the search space, the complexity will grow exponentially.
As a result, we propose a greedy search procedural that
requires a pre-ranking of the candidates for chunk units.
During each iteration, it compares the cost function value
of the network with a chunk unit that is newly incorpo-
rated with that of the optimal network so far.

To rank chunk units, we use the following general informa-
tion that should be available across datasets or domains:

- Frequency information based on skill to problem q-
matrix. Chunk units with higher frequencies, according
to the q-matrix, can be considered to be more typical or
stable patterns to be modeled.

- Performance information based on student perfor-
mance data. We can employ various strategies, such as
giving higher scores to chunk units with larger difference
in the estimated difficulty between the current chunk unit
and its hardest constituent skill (unit).

- Natural language processing on the problem (so-
lution) text. We can consider information such as the
textual proximity and semantics that can be obtained by
automatic text analysis (or natural language processing).

To further improve the interpretability, robustness and gen-
erality, we can also use some domain-specific knowledge to
extract more meaningful or typical chunk units. For exam-
ple, in programming, we can use the abstract syntax tree as
in [15]. However, there are still two other challenges:

- Model run-time complexity. Since the network in-
volves latent variables, we use Expectation-Maximization,
which computes the posteriors of latent variables in each
iteration, which can be a time-consuming process.

- Temporal learning effect. It is also challenging to con-
sider the temporal learning effect in such a complex net-
work. As a first step, we ignore it during the model learn-
ing process, while maintaining the dynamic knowledge es-
timation during the application phase, as in [3].

We expect to explore some efficient implementations and
techniques (such as re-using some posteriors or using ap-
proximate inference) to address these two challenges.

3.2 Model Evaluation
We will conduct both data-driven and classroom study eval-
uations to compare our model with alternatives, including
traditional KT-based models [4, 5], and BN-based models
with chunk units incorporated in a non-hierarchical way.

3.2.1 Data-driven Evaluation
First, we will conduct data-driven evaluations that consider:
- Mastery accuracy and effort. The basic idea of the

mastery accuracy metric is that once a student model as-
serts mastery for an item’s required skills, the student
should be very unlikely to fail the current item. Mean-
while, the mastery effort metric empirically quantifies the
number of practices that are needed to reach mastery of a
set of skills. These metrics extend our approach in [6].

- Parameter plausibility. This metric investigates how
much the fitted parameters can satisfy a model’s assump-
tions and can be interpreted by a human. This is based
on our recent Polygon evaluation framework [9].
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- Predictive accuracy of student answers. This metric
evaluates how well the new model predicts the correctness
of a student’s answer, or the content of a student’s solu-
tion, based on the problem type.

3.2.2 Classroom study evaluation
We will conduct classroom studies, based on an adaptive
learning system that applies our new student model. This
system will contain a new open student model interface and
a new recommendation engine that will be enabled by our
new student model. We will focus on following questions:

1. Do students agree more with the knowledge and mas-
tery inference obtained from the new student model?

2. Does the new student model increase students’ aware-
ness of pursuing true mastery?

3. Does the new student model enable more helpful rec-
ommendation or remediation?

4. Do students using the new adaptive learning system
enabled by the new student model achieve deeper learn-
ing which is measured by specifically designed tests?

4. CURRENT WORK
We have conducted preliminary studies with skill chunk units
extracted from pairwise skill combinations on a Java pro-
gramming comprehension dataset and a SQL generation dataset
collected across two years from University of Pittsburgh
classes. Due to the runtime limitation, we employed a heuris-
tic approach to choose skill combinations (without a com-
plete search procedural), and conducted data-driven eval-
uations (by 10-fold cross validation). We found that in-
corporating pairwise skill combinations can significantly in-
crease mastery accuracy and more reasonably direct stu-
dents’ practice efforts, compared to traditional Knowledge
Tracing models and its non-hierarchical counterparts. The
details of this study are reported in [10].

5. ADVICE FOR FUTURE WORK
I am seeking advice on any of the following aspects:

1. Is this idea both significant and valuable? For exam-
ple, can it be connected or applied in a broad range of
tutoring systems or domains?

2. Are there any datasets, domains or tutoring systems
suitable for exploring this idea? What should be the
desirable characteristics of the datasets?

3. Are there better representations for skill chunks within
or beyond Bayesian networks (e.g., Markov random
field, case-base reasoning)? Are there better techniques
to identify such units?

4. Are there any suggestions for the overall procedures of
this research? For example, should we do a user study
to investigate this phenomenon before data mining? If
so, how should we design such a study, since we can
only test limited chunk units? Should we construct
ideal datasets where chunk units are expected to be
significant, rather than focusing on existing datasets?

5. How should we situate our definition of chunk units in
a broader context considering different domains, prob-
lem (task) types and cognitive psychology theories? Is
chunk the right word? What’s its connection with pro-
duction rules, declarative and procedural knowledge,
Bloom’s taxonomy?
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ABSTRACT
My research explores methods for automatic generation of
high-quality feedback for computer programming exercises.
This work is motivated by problems with current automated
assessment systems, which usually provide binary (“Cor-
rect”/“Incorrect”) feedback on programming exercises. Bi-
nary feedback is not conducive to student learning, and has
also been linked to undesirable consequences, such as pla-
giarism and disengagement.

We propose a Case-Based Reasoning approach to utilize
knowledge created by human instructors in order to auto-
matically generate comparable responses for students that
submit incorrect solutions to programming exercises. Such
a system would offer significant labor savings for instructors,
without sacrificing the quality of student learning.

Preliminary experiments have demonstrated the strength of
our Case-Based Reasoning approach and its potential im-
pact, especially in MOOCs. Further research is being con-
ducted in order to refine the procedure and to evaluate it
effect on student learning.

1. INTRODUCTION
Computer programming is becoming an essential skill in
today’s economic climate. This has led to significant en-
rollment increases for introductory Computer Science (CS)
courses, as students from virtually all disciplines are required
to learn programming. In order to cope with the increased
workload, many CS educators rely on automated assessment
systems for programming exercises.

Automated Assessment systems for computer programming
exercises have been studied widely. [1] provides an overview
of automated assessment approaches, and [7] studied the
effectiveness of automated assessment on student learning.
The authors found that systems which offer instant feedback
and allow for multiple resubmissions are helping students to
learn.

Some researchers are opposed to using such systems, mainly
because of the poor quality of feedback they offer students.
In many cases feedback is limited to a binary response (“Cor-
rect”/“Incorrect”). [2, 6] argue that in order for learning to
take place, students who have generated incorrect solutions
to a particular programming exercise, need to be given guid-
ance by an expert programmer, and that simply pointing out
the presence of an error is not enough.

We studied the effects of binary feedback on students and
found that it increases their propensity to cheat on program-
ming assignments and/or disengage from the course material
[4]. A possible explanation for this is that since a binary re-
sponse does not explain the reasons for failure, nor does it
suggest a possible strategy to resolve the problem, students
are often left with little choice but to cheat or given up on
the exercise.

In [3], we proposed a Case-Based Reasoning approach to ad-
dress the issues surrounding binary instant feedback. The
idea is to use knowledge previously generated by human
instructors in order to automatically build meaningful re-
sponses to incorrect programs submitted by students. In
practice, such a system would have a signifiant impact in
both traditional classroom environments as well as Mas-
sive Online Open Courses (MOOCs). We believe that auto-
mated feedback, comparable in quality to human-generated
responses, will address motivation problems in MOOCs, which
is expected to lead to increased completion rates. In regular
university settings, the labor savings will allow instructors
and teaching assistants to spend more time on activities ben-
eficial to their students, rather than grading or debugging
students’ code.

The rest of the paper is organized as follows. Section 2.1 is
an overview of our research, and a motivation for the chosen
directions. Section 3 presents preliminary results, and high-
lights the potential contributions of this work. Section 4
outlines research questions that will be explored in future
studies, and Section 5 contains concluding remarks.

2. RESEARCH TOPIC
2.1 Case-Based Reasoning
Case-Based Reasoning (CBR), first introduced by Schank
[5], is a problem solving framework that uses past experi-
ences to solve problems. Past experiences, referred to as a
cases, are stored in a database, known as the case base. A
single case consists of a problem description and a solution.
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When a new problem, or a query, is encountered, the CBR
system retrieves past cases whose problem descriptions are
similar to the new problem, and uses the past solutions to
generate instructions on how to solve the query. If executing
the instructions does not lead to a solution of the problem,
then the instructions are revised and evaluated again. Revi-
sions may take place multiple times, until the solution gen-
erated by the system is accepted. At this point a new case,
made up of the query and the accepted solution, is stored
in the case base, making additional knowledge available for
future queries. Due to its ability to create new knowledge in
this way, CBR is considered a machine learning technique.

The CBR process can be summarized as the following four
stages, illustrated graphically in figure 1:

1. Retrieve: Retrieve past cases that are similar to the
query.

2. Reuse: The retrieved cases are used to generate a
solution to the query.

3. Revise: The solution generated in the last step is eval-
uated and modified if necessary.

4. Retain: A new case, made up of the query and the
solution are stored in the case base.

Case Base

Query___ Retrieve
Reuse

Revise
Retain

Figure 1: The case-based reasoning methodology

2.2 Proposed System
The automated assessment system we propose utilizes a Case-
Based Reasoning approach to automatically assess computer
programming exercises and provide feedback to students.
We define a case to be a pair made of an incorrect computer
program P , and instructor-generated feedback F . A com-
puter program is deemed incorrect if it does not produce the
expected outputs for a given programming exercise. Cases
are therefore exercise-specific. Our case base is simply a
collection of such cases.

For the retrieval stage, we need to define method of com-
puting similarity between cases. Two cases (P1, F1), and
(P2, F2) are said to be similar if P1 is similarly incorrect to
P2. Two programs are similarly incorrect if they both con-
tain the same bugs, therefore corrective feedback for one of
the programs is equally appropriate for the other. In the
reuse stage, we use the feedback retrieved at the previous

step, without any modifications. This is possible due to the
way we have defined the similarity metric for two cases.

The revise step, if necessary, will be performed by a human
instructor. This is the way the system creates new knowl-
edge. The revise procedure will be invoked if the student
repeatedly submits an incorrect solution to the same exer-
cise. This would suggest that the feedback offered by the
system has not been helpful to the student. Once a correct
solution has been submitted by the student, a new case is
stored in the database. This case is made up of the origi-
nal incorrect source code and the feedback that led to the
submission of a correct solution. Figure 2 is a graphical
representation of the proposed system.

Is 
Solution 
Correct?

Submission

Update Case Baseyes

no

CBR System Feedback

Is 
Intervention 
Needed?

no

yes         InstructorsUpdated Feedback

✓

Resubmission

Figure 2: A flowchart of proposed system

2.3 Motivation
Previous research on Case-Based Reasoning has shown that
the technique is most effective when similar problems are
encountered often and when similar problems have similar
solutions. Both of these conditions hold in the context of
computer programming exercises. Indeed, CS educators of-
ten see the same mistake made by many students, and due
to the asynchronous nature of laboratory sessions, the in-
structor is forced to give the same explanation to multiple
students. The second condition, that similar problems have
similar solutions holds true as well. If two or more students
have all made the same mistake, they will all benefit from the
same explanation. There could be multiple ways to explain
the same mistake, and some students may find one expla-
nation more beneficial than others. This is easily addressed
by allowing the system to store multiple feedback comments
per case, and present them sequentially upon unsuccessful
attempts. The system can also keep track of the likelihood
a particular feedback comment will lead to a successful re-
submission and use this information to determine the order
in which comments will be presented. Both conditions have
been verified experimentally, with results presented in Sec-
tion 3.

3. PRELIMINARY RESULTS
To test the soundness of our proposed system, we gathered
student submissions from an undergraduate Computer Sci-
ence course where students were required to complete pro-
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gramming exercises on a weekly basis. Students uploaded
their solutions to an automated assessment system that eval-
uated their correctness using unit testing.

The first research question we sought to answer was whether
or not our proposed system was feasible. We randomly se-
lected 5 exercises and extracted all the incorrect submissions
for each one. We then manually clustered them according
to their incorrectness. The results from this clustering pro-
cedure are presented in Table 1.

Exercise Incorrect Cluster Largest Smallest

Number Submissions Count Cluster Cluster

1 111 4 54 2
2 82 10 18 1
3 73 11 19 1
4 28 8 15 1
5 26 8 13 1

Table 1: Summary of clustering experiment

It is clear from Table 1 that the same mistakes are made by
many different students. This is indicated by the large values
in the “Largest Cluster” column. In 4 of the 5 exercises
we considered, there were mistakes committed by only one
student, but small clusters are generally rare.

A more interesting and significant finding was that the num-
ber of clusters is relatively small compared to the total num-
ber of incorrect submissions. The average number of clus-
ters is 8. This means that there are only 8 different mistakes
that students are making, on average. This result is signif-
icant because an instructor with an empty case base will
only need to grade 8 exercises by hand. The CBR system
would be able to provide the appropriate feedback to every
subsequent incorrect submission. The number of clusters is
also not expected to grow with the number of students en-
rolled in the class. This is because the number of clusters is
a function of the problem, not the number of students.

If the system scales well, it would enable MOOC instruc-
tors to provide corrective feedback to tens of thousands of
students who have submitted incorrect solutions to program-
ming exercises. This is likely to increase student engagement
with the material and improve overall completion rates.

4. FUTURE WORK
In order to realize our system design, we need a reliable way
to automatically detect similarity with respect to incorrect-
ness between two programs. Our initial approach was to
compute this similarity based on the unit tests. That is if
two programs fail the exact same set of unit tests then they
are deemed to be similarly incorrect. This is a reasonable
first approach but it generates many false positives and false
negatives. To ensure true scalability, the false matches need
to be kept to a minimum. Methods involving static analysis
of source code will likely need to be employed.

Further investigation of our scalability claims is also needed.
More submission data would have to be analyzed and rela-
tionships between class size and number of clusters would
need to be formally established.

Once the system has been completed, it should be deployed
in a classroom and its effectiveness should be studied.

5. CONCLUSION
My research is focused on improving the quality of instant
feedback generated by automated assessment systems for
programming exercises. Many instructors are using auto-
matic grading systems that are limited to providing binary
feedback, which has been shown to hinder student learning
and lead to plagiarism and disengagement.

We propose a Case-Based Reasoning approach to designing
an automated assessment system for programming exercises
capable of instantly delivering high-quality feedback, com-
parable to guidance a human instructor might provide to
a struggling student. The system uses feedback previously
generated by human instructors and delivers it to students
who make similar mistakes to ones seen before.

This is an effective technique since the same mistakes are
made by many different students and there are relatively
few distinct mistakes. This translates into significant labor
savings for instructors and teaching assistants. With our
system in place, an instructor will only have to address a
specific problem once. All subsequent occurrences will be
handled automatically by the system.

Further research is currently being conducted on finding a
reliable metric for similarity with respect to incorrectness of
computer programs. Several static analysis techniques are
being explored. Attempts are also being made to formal-
ize relationships between the class size and the number of
unique errors that can be made on an exercise. We postulate
that for reasonably sized programming exercises, the number
of unique errors will stay low even in MOOC environments
where class sizes can be in the hundreds of thousands.
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ABSTRACT
In many studies, engagement has been considered as an
important aspect of effective learning. Retaining student
engagement is thus an important goal in intelligent tutor-
ing systems (ITS). My current studies with collaborators
on Dynamic Support of Contextual Vocabulary Acquisition
for Reading (DSCoVAR) include building prediction models
for students’ off-task behaviors. By extracting linguistically
meaningful features and historical context information from
interaction log data, these studies illustrate how some types
of off-task behavior can be modeled from behavioral logs.
The results of this research contribute to existing studies by
providing examples of how to extract behavioral measures
and predict off-task behaviors within a vocabulary learning
system. Identifying off-task behaviors can improve students’
learning by providing personalized learning materials: for
example, off-task behavior classifiers can be used to achieve
more accurate predictions of the student’s vocabulary mas-
tery level, which in turn can improve the system’s adaptive
performance. Toward our goal of developing highly effec-
tive personalized vocabulary learning systems, this research
would benefit from expert feedback on issues that include:
principled approaches for adaptive assessment and feedback
in a vocabulary learning system; and alternative methods
for defining and generating off-task labels.

Keywords
Engagement, off-task behaviors, prediction model, log data,
intelligent tutoring system, adaptive system

1. INTRODUCTION
Engagement has long been considered as an important as-
pect of learning [17, 16]. Engagement is a comprehensive
behavior that reflects an integration of different aspects of a
person’s cognitive state [11, 6, 7]. A student’s engagement
level while using the system can vary with time, and it can
be influenced by many factors, such as the difficulty of ques-
tions, prior experience with similar technology, and individ-
ual interests or motivation [14, 1]. Thus, measures related

to engagement need to consider the multidimensional con-
struct of engagement and clarify which types of engagement
are going to be measured in the study [18].

Other studies based on digital learning environments tend
to capture engagement based on behavioral signals. Studies
on intelligent tutoring systems (ITS) often used features like
response time, number of erroneous attempts, and frequent
accessing of hint messages to predict students’ engagement
[2, 4]. Studies in Massive Online Open Courses (MOOC)
included features like the number of lecture videos seen,
participation in pop-up quizzes, and social interactions like
frequency of article posting or comments in the discussion
forum, to predict the student’s overall participation level
[10, 15]. These studies showed that data traces of observ-
able behavior can be used to predict student engagement,
often operationalized as a classroom attitude observed from
instructors or a survival rate of enlisted courses in a MOOC.

The purpose of this research topic is to model a particu-
lar subset of students’ off-task behaviors while they use a
vocabulary learning system, based on observations of their
interaction from log data. In our study, each student re-
sponse to an assessment question posed by the system was
defined as an off-task behavior if it contained less serious,
patterned, or repetitive errors [13, 12]. Key research ques-
tions on this topic that I will explore include: (1) identifying
important predictive features of off-task behaviors in vocab-
ulary learning systems that can be collected from log data,
(2) evaluating different modeling methods that can help to
develop more accurate prediction models for off-task behav-
iors, and (3) suggesting effective adaptive strategies for vo-
cabulary learning systems that will help to sustain student’s
engagement and thus improve their learning outcomes and
experience. The results from our current studies are ex-
pected to be used maximize the efficiency and long-term
effectiveness of student learning outcomes.

2. CURRENT WORK AND RESULTS
Currently, I am working on developing a contextual word
learning (CWL) system called Dynamic Support of Con-
textual Vocabulary Acquisition for Reading (DSCoVAR)1.
DSCoVAR is an online vocabulary learning system that teaches
K-12 students how to figure out the meaning of a word they
don’t know (sometimes called the target word) by using clues
from the target word’s surrounding context[8].

The DSCoVAR curriculum consists of three sessions: pre-

1http://dscovar.org
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test, training, and post-test sessions. Questions in the pre-
and post-test sessions include multiple types of questions
measuring the student’s knowledge on vocabulary before and
after the training session. The training session consists of
an instructional video and practice questions that teach the
student different strategies for figuring out the meaning of
an unknown target word by using clues from nearby words
in the surrounding sentence. Students learned, and were
tested on, a family of words known as Tier-2 words, which
are words that are critical for understanding more advanced
texts, but that are relatively rare in everyday use. These tar-
get words were expected to be difficult, but at least familiar
or known to a small number of students. (In our first exper-
iment, participants reported that they were Familiar with
26% of the Tier 2 target words, followed by 21% Known,
and 53% Unknown (N=33) [13].)

2.1 Feature Extraction
In previous studies [13, 12], we analyzed students’ responses
in the pretest session and developed prediction models for
off-task behaviors based on behavioral features extracted
from log data. During sessions, DSCoVAR recorded how
students interacted with the system by storing time-stamped
event data and students’ text responses. Based on the col-
lected log data, we extracted two types of variables: response-
time variables (RTV) and context-based variables (CTV).
These variables contain more meaningful student behavior
information than the raw log data, and are used as predictor
variables in our off-task behavior classifiers.

RTVs collect information right after the student submits his
or her response for each question, including time spent to ini-
tiate and finish typing a response, the number of spelling and
response formatting errors, and orthographic and semantic
similarity between the response and the target word. CTVs
include history-based measures relating to how the student
performed in previous trials (with different window sizes of
1, 3, 5, and 7), such as the average proportion of off-task
responses in previous trials and average orthographic or se-
mantic overlap between the current response and previous
responses. Lastly, human raters created labels for off-task
behaviors from log data. By using criteria based on Baker et
al. [3], we obtain labels for certain types of off-task behav-
ior, i.e. when responses seemed less serious and patterned,
or when they involved repetitive errors.

2.2 Modeling Off-task Behaviors
With the RTVs and CTV features described above, we build
off-task prediction models via mixed effect models and struc-
ture learning algorithms. Mixed effect models, such as the
generalized linear mixed effect model (GLMM) or hierarchi-
cal Bayesian model, are suitable for analyzing the log data
from ITS since they can account for variance across repeated
measures like multiple responses from a single student or a
particular target word.

Table 1 and 2 show the results of the GLMM model learned
by the stepwise algorithm for predicting the off-task labels
from RTV and CTV variables. GLMM includes random
intercepts for target words and students, and the effect of
random slopes for the student’s prior familiarity level to the
target word mentioned above 2 [13, 12]. The results show
that RTV features like response length and orthographic
similarity between the response and the target word are sta-

Table 1: GLMM results for fixed effect variables (all
predictors are statistically significant (p < 0.001))

Variables Coeff SE z
(Intercept) 0.50 0.62 0.82
RTV: Response Length -0.22 0.05 -4.10
RTV: Ort. Similarity -5.98 1.79 -3.34
CTV: Sem. Similarity (prev. 3) 0.11 0.03 4.35
CTV: Ort. Similarity (prev. 7) 11.4 1.81 6.33

Table 2: GLMM results for random effect variables
Variables Var. Corr.
Target (Intercept) 1.05
Target-Unknown:Known 2.47 -1.00
Target-Unknown:Familiar 23.0 -1.00
Subject (Intercept) 3.67

tistically significant for explaining the specific types of off-
task behavior that we identified for the study. CTVs like av-
erage semantic similarity between the current response and
previous three responses and orthographic similarities with
previous seven responses were also significant. This model
showed a better area under the curve statistic from ROC
curve (0.970) than the RTV-only GLMM model (0.918).

Structure learning algorithms, such as the stepwise regres-
sion and the Hill-climbing algorithm, were used for auto-
matically learning the model structure of off-task predic-
tion models. The stepwise algorithm was useful in selecting
which variables can bring the better fit to the regression
model based on criteria like AIC or BIC. The Hill-climbing
algorithm was helpful for identifying the complex interaction
structures between variables based on conditional probabili-
ties. By combining findings from different structure learning
algorithms, we confirmed that adding interaction structures
is helpful for prediction, especially with RTV-only models.
An example of interaction structures learned from the Hill-
climbing algorithm is shown in Figure 1.

3. PROPOSED CONTRIBUTIONS
First, the current work contributes to existing ITS studies
by suggesting methods for extracting meaningful informa-
tion from log data. For example, RTVs provided meaningful
information to understand student performance on specific
questions by using various language processing techniques,
such as orthographic similarities measured using character
trigrams, and semantic similarities measured using Markov
Estimation of Semantic Association [9]. CTVs provided in-
formation on historical patterns of off-task behaviors. Com-
bined with mixed effect models, our results suggest that tra-
ditional predictive features, such as time spent for initiating
and finishing the response or number of error messages, can
be substituted (when available) with features based on vari-
ance in repeated measures and contextual information.

Second, identifying off-task status at the item level can be a
starting point for managing student engagement systemati-
cally, by letting the learning system know when to intervene
in helping the student regain their engagement to the task.
Off-task classifiers in the current studies provided examples
of automatized models for checking student engagement in
a vocabulary learning system.
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Figure 1: Interaction structure of RTVs learned by
the Hill-climbing algorithm (Node J: Off-task label)

Third, this research can be helpful for achieving more accu-
rate predictions on the student’s vocabulary mastery level.
For example, suggested classifiers provide item-level pre-
diction for off-task behaviors based on previous responses.
These results can be helpful for distinguishing between in-
tentionally missed questions and accidentally erroneous re-
sponses, which in turn can be used to improve estimates pro-
vided by existing student learning prediction models, such
as item response theory [5].

4. FUTURE DIRECTIONS
A key goal of this research is to build an adaptive vocab-
ulary learning system. By using results from our current
studies, we will implement an initial adaptive mechanism in
DSCoVAR that personalizes the difficulty of training ses-
sion’s questions based on a student’s estimated vocabulary
mastery. This approach is expected to help retain student
engagement with the system by providing the right level of
‘desirable difficulty’ while also making more efficient use of
the student’s learning time. However, it is unclear how fea-
tures related to perceived question difficulty, such as amount
of information given from feedback messages or size of spac-
ing between questions that share the same target, could be
used to model the overall student engagement with the ques-
tion. Advice from experienced researchers on adaptively
controlling task difficulty would help guide this research on
personalized training to students.

Our current work depends on defining a specific type of
off-task behavior, with labels generated from two human
judges. While the inter-rater agreement was reasonable (Co-
hen’s Kappa of 0.695) [12], it is an expensive process and the
number of collectible judgments are limited. An alternative
approach could be to use crowd-sourcing for labeling the log
data. However, converting this expert labeling task into a
fragmentary job for anonymous workers may require more
carefully designed instructions and robust methods for vali-
dating the credibility of labels. Expert guidance on alternate
definitions of off-task behavior, and improved approaches for
gathering larger amounts of labeled data based on these def-
initions, would be helpful for expanding future studies.
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ABSTRACT 
Learning sequences are important aspects in learning 
environments. Students should learn by moving gradually from 
simpler to more complex concepts, promoting deeper levels of 
learning. This feature is usually embedded in most intelligent 
learning environments to guide the student in the study of subject 
matter. The organization of this knowledge structure is usually an 
intensive effort of human experts, in creating a logical ordering of 
what is to be taught - determining the concepts and the 
prerequisite relations among them. In recent years, some methods 
have been developed for dealing with this knowledge structuring 
using data coming from logs of learning environments, applying 
data mining techniques to discover prerequisite rules and create 
directed graphs of prerequisites. These methods model both 
assessment items and skills underlying those items. The automatic 
methods developed so far present a semantic gap between the 
probabilistic analysis and the expert knowledge, sometimes 
causing confusion with the results. This research aims to bridge 
this gap by adding a minimal layer of semantic information to 
help in the data mining process. As an application, we intend to 
analyze large-scale assessment datasets, considering its 
specificities, and evaluate if those hybrid models can improve the 
prediction of item success.  

Keywords 

Skill model, knowledge structure, data mining, semantic data 
mining. 

1. INTRODUCTION 
Skills prerequisite structure is an important component in domain 
modeling, used in intelligent learning environments and which 
serve as a basis for planning learning sequences and adaptive 
strategies for tutoring systems. Analogously, most intelligent 
learning environments uses a student model for the automatic 
adaptation of teaching strategies and as a overlay of domain 
model, influencing how the automatic intervention is carried out. 
Human experts usually define such prerequisite structure; 
however, they are rarely validated empirically and improved for 
better results.  
For most of the large scale assessments, the current approach 
considers all knowledge in a single unidimensional scale, which 
considers the item difficulty in its ordination. Computer adaptive 
tests tend to use predominantly this ordination for item selection 
in diagnostic assessments. This approach raises some issues: the 
interpretability of results, since a single value is used to represent 
a knowledge in a large domain; and the agreement about the 
structure, since most experts cannot see a direct, unidimensional 

relationship among skills. Given the amplitude of skills, experts 
seem to agree on other sorts of dependencies, not just the simple 
ordination for item difficulty. For instance, in the field of Physics, 
an easy item of spatial movement might not be considered as a 
prerequisite for a difficult item in geometric optics, since they 
belong to different branches. 
On the other hand, the process of manual creation of these 
dependencies is highly costly, time-consuming and presents large 
disagreement among experts modeling the same domain. Pavlik et 
al. [1] point to 3 other factors: the description of irrelevant skills, 
redundancy among skills and the ordination of those skills  
There seems to be a semantic gap between the automatic 
extraction from data and the mapping made by human experts. 
This research aims to explore this gap, trying to bridge it using 
semantic data mining, and combining the advantages of both 
approaches. 

2. PREVIOUS WORK 
The process of prerequisite structure derivation from observable 
variables (such as assessment items) from data has been 
investigated by many researchers; yet, the skill modeling is still an 
open issue, since a student’s knowledge is a latent variable, not 
being observed directly. In [2] it is proposed the POKS (Partial 
Order Knowledge Structure) algorithm to learn the dependency 
structure among items, composed only by the observable nodes 
(answers to the items), outperforming Bayesian networks 
algorithm, both in predictive performance and computational 
efficiency. In [1] POKS algorithm is applied to analyze the 
relations among skills, using observable items and use the result 
to cluster redundant skills, with a high degree of covariance, 
simplifying the domain model and determining it structure. In [3] 
a method is proposed to determine dependency relations among 
curricular units from student’s performance data, using a binomial 
test for every pair of skills, to evaluate the existence of a 
prerequisite relationship between them. In [4] a frequent 
association rules mining method is proposed to discover concept 
maps, but not considering the uncertainty in the process of 
knowledge transfer of the student to his performance. In [5] the 
structure is derived from noisy observations using log likelihood 
calculated between the precondition model and the model in 
which the skills are all independent on each pair of skills to 
estimate which model better fits the student’s data. In [6] causal 
discovery algorithms are used to find a skill prerequisite structure 
applying statistical tests in the latent variables. In [7] is proposed 
a probabilistic association rules mining method, having the 
probabilistic knowledge states estimated by an evidence model, to 
find a structure from performance data. 
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In semantic technologies, ontologies are explicit specifications of 
conceptualization and a formal way to define the semantics of 
knowledge and data. Dou et al. [8] surveys this semantic data 
mining in multiple domains - formal ontologies have been 
introduced to semantic data mining to: i) bridge the semantic gap 
between data, data mining algorithms and results; ii) provide data 
mining algorithms with a priori knowledge, guiding the mining 
process or reducing the search space; iii) provide a formal way for 
representing the data mining flow, from data preprocessing to 
mining results. Bellandi et al. [9] presented an ontology-based 
association rule mining method, using the ontology to filter 
instances in the process, constraining the search space of itemsets, 
excluding items and characterizing others according to an 
abstraction level, enabling generalization of an item to a concept 
of the ontology. Marinica and Guillet [10] presented a post-
processing method for the results of the association mining, 
pruning invalid or inconsistent association rules with the help of 
the ontology. 

Large scale assessments present some specificities: they are very 
strict in their skill model, with reference matrices specifying what 
is expected in the test; they are periodic, meaning that they are 
applied, in some cases, in an annual basis, with no single item in 
common between applications; the test items are organized in 
blocks (incomplete balanced blocks) and the test is comprised of a 
few blocks with a fixed number of items, so that many versions of 
the test are available at a time; the items are all pre-tested before 
the actual application, to estimate psychometric parameters 
(following Item Response Theory principles) being equalized into 
the same scale. A challenge for this research is to work with 
datasets from multiple years (i.e., no common items), balanced in 
blocks trying to discover generalizations in the underlying skill 
model.  

3. METHOD AND MATERIAL 
In this work, we will work with microdata from ENEM – an 
annual Brazilian exam for high school students, used as a 
classification ranking for admission in many public federal 
universities in Brazil. This exam is composed by 4 knowledge 
areas (Mathematics, Natural Sciences, Human Sciences and 
Languages), each composed by 30 skills in the reference matrix 
specified for this exam. Each item is mapped to a single skill and 
a score is given for each of these knowledge areas. The test is 
composed by 45 multiple-choice items for each knowledge area, 
along with an essay, in a 2-day time span. Different tests are 
organized in an incomplete balanced blocks design. In this 
approach, each test is composed by multiple blocks of items, with 
fixed ordination and in increasing order of difficulty. The blocks 
are arranged in different tests so to alleviate possible biases like 
the position of an item and a fatigue factor for items in the end of 
the test. 
The datasets contain every alternative selected by every student 
whom participated in the exam. We plan to conduct this study 
using the Mathematics dataset, from 2009 to 2014, in a sum of 
270 items answered my tens of millions of students. 
Working along with Math experts, we will try to create simple 
ontologies, just with constraints of what should or not be 
considered in the final model, to prune some of the spurious 
results. 
This research will adopt a quantitative approach and use data 
mining techniques as a method to construct the mapping of the 

prerequisite structure which, from the items mapped to their 
respective skills and the performance data (correct and incorrect 
answers) for every respondent, is able to extract relations among 
the skills, generalized by different observations in different items.  
The evaluation of the method will be based on the capacity of 
prediction of success on the items individually, assessing the 
goodness of fit against the human experts mapping. The method 
will be compared to state-of-the-art algorithms such as POKS, 
probabilistic association rules mining and with some expert 
mapping. 

4. PRELIMINARY WORK 
This is a research project in its earlier stages, narrowing the 
research questions to be pursued. As an initial effort, I found that 
more simplistic approaches tend to model just the difficulty of 
items in the creation of a prerequisite structure, i.e., an easier item 
is a prerequisite for a more difficult item, disregarding contextual 
information on the respective topics. 

Early examples for ENEM using data from Mathematics test 
applied in 2014 are depicted in Figure 1 (skill prerequisites). They 
were generated by the author using the POKS algorithm, with 
source code available in [11] and show the algorithm results.  

In Figure 1, the previous items were mapped to their respective 
skills and the algorithm was run. Skills are numbered according to 
the official codes available at ENEM website. We can see that 
some skills are more fundamental, specially numbers 1, 3, 4 and 
17. Skills 12, 15 and 22 were not assessed in this test. 

 
Figure 1. Prerequisite skills derived from Math assessment. 

 

We hope, by the end of this research, discover possible 
prerequisite relations among skills that constitute the ENEM 
exam, complementing the traditional model of ordination by item 
difficulty in the IRT model, by creating a generalized graph of 
dependencies among skills, estimated from empirical data of 
application and combined with ontology constraints.  
From this mapping, it should be possible to build an intelligent 
learning environment that might diagnose in which point of the 
graph the student is and the possible sequences he can choose to 
study. Another practical implication may be the interpretation of 
results and extension to practices in public policies. As this sort of 
exam is applied in different moments in K-12, the model could 
generalize and describe how learning happens in public education 
system, since literacy through high school. 
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5. ADVICES SOUGHT 
For this doctoral consortium, advice is sought regarding some 
concerns:  

a) What data mining methods should be used to model these 
prerequisite skills? At first, POKS was used but other methods 
could also be evaluated, like LFA, Rule Space and BKT. As this 
is a high stake exam, the skills are wider, different from other 
more granular skill models from ITS domains. An example (skill 
17, a basic skill from Figure 1): “analyze information involving 
variations in quantity as a resource for argument construction”. In 
addition, the same skill can vary a lot depending on the items 
being assessed. Second, items being that different and having 
different difficulty parameter,  

b) Should difficulty be embedded in the model? so that different 
items of a same skill can influence differently in the model.  

c) Should these information be included in the model? which may 
result in different graphs for different populations. Besides the 
standard item accuracy prediction. This dataset has no other 
interaction data, as in ITS systems, but has contextual data about 
the respondents, with high impact features in performance, like 
geographic region and socioeconomic status. 

d) Is it valid to measure a interrater agreement metric (like 
Kappa) to compare the generated model with those from experts? 
as a means of comparing how close the model fit the expert 
modeling. 
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ABSTRACT 
Concept mapping is a tool to represent interrelationships among 
concepts. Relevant research has consistently shown the positive 
impacts of concept mapping on students’ meaningful learning. 
However, concerns have been raised that concept mapping can be 
time consuming and may impose a high cognitive load on 
students. To alleviate these concerns, research has explored 
facilitating concept map construction by presenting students with 
incomplete templates and concept map based navigational 
assistance on the learning material. However, it’s not clear how 
these incomplete templates should be designed to address 
individual student needs and how concept map-based navigation 
can support students in creating concept maps and developing 
personalized navigation patterns. In this paper, I discuss my 
previous research in providing personalized scaffolding in concept 
mapping activities and describe plans of my research in exploring 
how personalized concept map scaffolding supported by 
navigational assistance could enhance student learning.   

Keywords 
Data mining, concept mapping, navigation, personalization, adaptive 
scaffolding, expert skeleton concept map. 

1. Research Topic 
Concept maps are graphical representations of knowledge 
structures, where labeled nodes denote concepts and links 
represent relationships among concepts. Concept mapping has 
been widely employed in educational settings to support student 
learning. Research has examined how concept mapping tools 
assist students in summarizing, relating, and organizing concepts 
[1][4]. However, there are limitations in using concept mapping. 
The main disadvantage of concept mapping is that the map 
construction is time-consuming and it requires some expertise to 
learn [3]. In addition, the complexity of the task often imposes 
high cognitive load and reduces student motivation [10].  

Cañas and colleagues developed CmapTools, a computer-based 
concept mapping system, to support concept mapping by making 
it easier to construct and manage large representations for 
complex knowledge structures [6]. Although CmapTools provides 
a convenient platform for concept map construction, the system is 
independent from the learning content and students may encounter 
difficulties relating maps with resources and comparing linked 
concepts. To enhance concept maps with relevant resources, 
McClellan and colleagues designed a system that attaches 
resources like demos, homework and tutorials to the concept maps 
via keyword matching [11]. However, it might cause extraneous 
effort for students to process this additional information.  

Apart from providing computer systems for concept map 
construction, other research canvassed the effect of providing 

students with incomplete templates called expert skeleton maps, 
within which some nodes and links were set as blanks, as a 
scaffolding aid [5]. Although studies show that the scaffolding 
had more positive effects on student learning than those who 
created concept maps from scratch [3], it’s not clear how expert 
skeleton maps should be designed to provide better learning 
results. Questions like what concept nodes should be presented 
and what concept nodes should be left blank, how big should the 
expert skeleton map be, and should all students be given the same 
expert skeleton map, still remain unsolved. To address these 
challenges and the opportunities from the two directions discussed 
above, I propose a design of a personalized and interactive 
concept mapping learning environment that integrates a textbook 
with a concept mapping tool. This system will enable students to 
create maps directly from the textbook. Students will relate the 
created maps to the textbook content and the system will offer 
personalized scaffolding to facilitate concept map construction 
and meaningful learning. I also describe my plan of conducting an 
Amazon Mechanical Turk Study and an in-classroom study to test 
the system.  

2. Proposed Contribution 
2.1 Previous Work 
Towards designing a personalized and interactive concept 
mapping learning environment, my prior work has examined how 
personalized expert skeleton maps affect student learning. More 
specifically, I studied the potential effects of an adaptive expert 
skeleton scaffold that contains concepts and relationships for 
which the student has demonstrated prior knowledge [7]. To 
create the adaptive expert skeleton maps, an expert concept map 
representing the knowledge structure from the chapter was first 
created as a foundation. I then mapped each question on the 
pretest to a certain part of the expert map to modify the expert 
skeleton map based on students’ pretests scores. For example, if a 
student incorrectly answered question 4 as shown in Figure 1, the 
correct concept (“flower”) was replaced with ‘???” and left open 
for the student to fill in. By presenting students with a map that 
contained their prior knowledge, I hypothesized that students 
would spend more effort on unknown concepts and be better 
supported in integrating new knowledge into prior existing 
knowledge structure, thus improving learning.  

 
Figure 1. Modifying the expert map based on pre test answers. 
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To test my hypothesis, I conducted a study with 38 non-biology 
major students who were randomly assigned into three conditions: 
(1) adaptive scaffolding, (2) fixed scaffolding and (3) non-
scaffolding. Students in the adaptive scaffolding condition 
received an expert skeleton map that contained nodes and links 
which they got correct in the pretest. Students in the fixed 
scaffolding condition also received a skeleton map. However, 
instead of tailoring the map to the student’s prior knowledge, I 
presented them with maps from the adaptive scaffolding condition 
through yoked control. In this way, I was able to control for 
content across conditions. Finally, in the non-scaffolding 
condition, students constructed a map from scratch. Although I 
did not discover significant differences in learning gains between 
conditions, I found that different types of nodes in the template 
did lead to different learning gains on related concepts. To further 
investigate, I coded the key ideas in the expert map as being:  
added to the map by the student, already in the template, or not 
added. For the already existing concepts in the expert map, I 
further categorized the concepts that were adjacent to the newly 
added concepts as “close” and the ones which were more than one 
link away as “far”. Results indicate that students benefit most 
from adding concept nodes to the map and benefiting more from 
the in template “close” nodes than the “far” and not added ones. 

However, there were several limitations in the data collection that 
might have influenced the results. First, the number of graduate 
students and undergraduates was not balanced across conditions, 
and the learning differences in these two populations may have 
added extraneous noise to the learning gains. Another potential 
problem was that the expert skeleton maps students received 
might have been too large. While I assessed students on 9 key 
ideas, these ideas spanned more than 70 nodes in our expert map. 
The complexity of the given template might have imposed high 
cognitive load on students, reducing the benefits of the expert 
skeleton maps. What’s more, the concept mapping system used in 
the study, the CmapTools, required students to type the words to 
create nodes. The system was also limited in terms of searching 
and comparing resources related to the concept maps. 

2.2 System Design  
Incorporating my finding discussed above, I present an iPad-based 
interactive concept mapping tool that is integrated with a digital 
textbook. When held in landscape mode, the screen splits into two, 
with the left side displaying the textbook and the right side 
showing the concept mapping panel. The built-in concept 
mapping view is directly associated with the learning material, so 
that students can construct concept maps directly from the words 
in the textbook, shown in Figure 2. An example of this process 
would be a student reads the textbook and find the concept “seed” 
that should be contained in the concept map, he can long click on 
the word and tap on the add concept button to add a node named 
“seed” to the concept mapping panel on the right. He can click on 
other concepts to add and delete links. This feature eliminates the 
tedious process of manually adding nodes and typing all the text 
while encouraging the cognitively beneficial processes of finding 
the important concepts and identifying the relations among them. 
Apart from that, a hyperlink between the node in the concept map 
and the words in textbook is created through the “click and add” 
action, allowing students to navigate through the textbook by 
clicking on the concept nodes. During their navigation, related 
concepts in the concept map and the text in the textbook are both 
highlighted, providing a visual comparison of key information. 
Since the concept maps are created by students themselves, the 
system enables students to form their own navigation patterns to 

assist them in locating key information in the textbook resource. 
The system is able to provide pre and post tests, which can be 
used to dynamically modify the expert skeleton map based on the 
student’s prior knowledge. Furthermore, leveraging the 
hyperlinking navigation feature, the system enables students to 
click on the nodes in the expert skeleton to navigate directly to 
related pages.  

I hypothesize that the system can alleviate the challenges 
discussed in the introduction and benefit students in different 
ways. It first allows students to easily construct concept maps via 
the “click and add” feature, which reduces the work of tediously 
typing words into the nodes while preserving the beneficial work 
of searching and identifying concepts to be added. The 
hyperlinking navigation provides more flexibility in comparing 
and finding connections between concepts that are located in 
different pages. Hyperlinking the expert skeleton map with the 
textbook enables students to click on the nodes provided in the 
expert skeleton map to see where these concepts are mentioned in 
the textbook. This would reduce the cognitive load of the template, 
which is a potential cause of reducing the effect of adaptive 
scaffolding in my previous work. What’s more, providing students 
with expert skeleton maps that contain their prior knowledge 
would facilitate meaningful learning while they add new concept 
nodes to templates that represent their own knowledge structures. 
Since the concept nodes are already mastered by students, this 
approach also avoids potential shallow learning, which is a 
problem faced by many forms of computer-based instruction [8]. 

 
Figure 2. Interactive concept mapping system interface. 

3. Results So Far 
My previous study showed that types of interactions with the 
concept map have an effect on student learning gains [8]. 
However, limitations of the CmapTools and the complexity of the 
expert skeleton map reduced the effect of adaptive scaffolding. To 
solve these problems, I have implemented the proposed iPad-
based concept mapping system and I’m currently running two 
studies to explore how different designs of expert skeleton maps 
and hyperlinking navigation effect learning out comes.  

To test the effect of different types of scaffolding, I’m running an 
online study using Amazon Mechanical Turk, a human intelligent 
task market in which anyone can post tasks to be completed and 
specify prices paid for completing them. The literature indicates 
that Amazon Mechanical Turk could be a promising approach to 
get inexpensive, yet high quality data for research in psychology 
and social sciences [9]. However, few research has examined the 
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quality of Mechanical Turk data in educational studies. Thus, I 
plan to explore how Mechanical Turk can be used as a cost 
effective way to get high quality data for educational studies. In 
this study, participants use an online iPad simulator running the 
concept mapping application to construct a concept map while 
they learn a chapter of a high school science textbook. First, 
students are given a 2-minute pretest to assess prior knowledge on 
water pollution. Next, students are given a 3-minute training about 
what concept maps are and how to use the application to construct 
one. After the tutorial and practice, students are given a randomly 
modified expert skeleton map and are given 20 minutes to 
construct or complete the map based on the template. Finally, a 
posttest is given. Instead of tailoring the scaffolding specifically to 
student prior knowledge, I’m randomly selecting the size and 
concept nodes that appear in the template, in order to generate 
more variations of the expert skeleton map. Learning outcomes 
based on these different designs of expert skeleton maps could 
help us understand how the expert skeleton map should be 
designed to better facilitate learning. 

Furthermore, I plan to examine how concept map-based 
navigation facilitates concept map construction and how it helps 
students to form personalized navigation patterns. I am currently 
working with a high school teacher to conduct a study in one of 
her classes, which has been using concept maps as a class activity. 
The study will last 20 minutes per day for 5 days and it will be a 
substitute for a paper-and-pencil based concept mapping activity. 
Students will construct the concept maps while they learn about 
the current textbook chapter. Students will be randomly assigned 
into two conditions: The hyperlinking condition, where nodes in 
the concept maps are hyperlinked with the textbook, and the non-
hyperlinking condition. Pre and post tests will be given before and 
after the study. To investigate the effect of hyperlinking, I will 
compare the learning gains between condition. Furthermore, I 
plan to use data mining techniques to extract patterns within 
student navigation activities. For example, if a student is 
navigating by clicking back and forwards on two linked concept 
nodes, it might indicate that the student is using the textbook 
content to compare the concepts. If a student is navigating by 
clicking on a series of connected nodes, it might indicate that the 
student is comparing multiple concepts to understand some 
knowledge structure in a higher level.   

4. Advice Sought 
For this doctoral consortium, advice is sought regarding two 
major concerns. First, how should I validate the Amazon 
Mechanical Turk study results? I’m currently using Amazon 
Mechanical Turk platform for the expert skeleton map study. As 
I’m randomly varying the size and the concept nodes which 
appear in the template, I need a large number of participants to 
form overlaps between the student prior knowledge and the given 
expert skeleton map. Amazon Mechanical Turk would be a cost-
efficient approach to get large amount data. However, due to the 
large variations in the participant population, the results from the 
study might not truly reveal the effect of expert skeleton map 
scaffolding on high school students. How could I make use of the 
Mechanical Turk study data to design concept mapping 
scaffolding to better facilitate learning?  

Second, what data mining techniques can be used to analyze the 
hyperlinking study data? I’m interested in discovering what 
student behavior patterns correlate to learning outcomes and what 

interactions are tedious and counterproductive, and can be 
potentially be supported or replaced by computer technologies.  

Problems discussed above are major challenges I encounter to 
analyze the data from the studies. Advice on these two problems 
will be very helpful to my work of designing personalized expert 
skeleton maps to facilitate concept map construction and 
providing hyperlinking navigation to reinforce student learning. 
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ABSTRACT 
Competency based training has become a major thrust in the 
development of instruction in both civilian and military pilot 
training. This paper reports on a joint effort by CAE and the 
National Research Council to identify data analytics methods 
relevant for the analysis, and refinements of competency based 
pilot training. In particular, these methods aim to identify 
correlations between 1) student actions and behaviours while 
engaging in training, and 2) students’ success and incremental 
progression in the corresponding competencies being acquired. 
The paper presents some of our main results in applying sequence 
mining and additive factor modelling to small sets of pilot training 
data.   

Keywords 

Aviation pilots, competency-based training, sequence mining, 
additive factor models. 

1. INTRODUCTION 
Over the years, CAE has developed many research collaborations 
with universities and government research laboratories. The 
current paper presents some results from a project between CAE1, 
the Advanced Technologies for Learning in Authentic Settings 
(ATLAS) research team from McGill University, and the 
Learning and Performance System Support program at the 
National Research Council Canada. The research efforts were 
focused on the identification of education data mining methods 
with practical outcomes for the improvement of pilot training. The 
main objective is to be able to analyse performance, and use 
competency models in order to refine simulation scenarios and 
CBT courseware. The contributions to the project represent 
different perspectives from sequence mining (descriptive method), 
to logistic regression models (predictive method). The objective 
was to explore the data from different points of view.  

The following section presents an overview of the main trends in 
pilot training including competency, evidence, and scenario-based 
training. The next section briefly presents the data set that was 
used for all the analysis, and the remaining two sections presents 

                                                                    
1 http://www.cae.com/about-cae/corporate-information/faq/ 

the main results of applying sequence mining and additive factor 
modeling to this data. 

2. TRENDS IN PILOT TRAINING 
To address the challenges of pilot training in the early 2000s, civil 
aviation stakeholders like the Civil Aviation Safety Alert (CASA), 
the International Civil Aviation Organization (ICAO), and 
concurrently the United States Air Force (USAF) have been 
promoting competency and evidence based training as a training 
model [1]–[3]. This position was in reaction to hours-based 
training where the number of flight hours or sorties done by a 
pilot determined flight or mission readiness. With the increase of 
flight operation complexities, it became obvious that achievement 
of a certain performance level on a task would be a better 
indication of a pilot competency, than the number of hours of 
practice, even though flight hours could be an indirect measure of 
a competency level.  

There are many views about what a competency is. The 
International Civil Aviation Organization defines a competency as 
“a combination of skills, knowledge and attitudes required to 
perform a task to the prescribed standard” [4]. The USAF has 
developed an elaborate competency framework [5]. The Mission 
Essential Competencies (MEC) framework is intended to blend 
training task lists, and mission essential task lists. The MECs 
incorporate a wide range of pilot competencies, beyond the 
operational requirements, to include teams and inter-team 
competencies [3]. The Federal Aviation Administration (FAA) 
also recognizes that pilot competencies need to be defined at a 
higher-level than simply the low-level operations of an aircraft, 
especially with the increased level of automation because 
automated systems are not adapted to unforeseen situations [6]. 
Competency frameworks are usually the result of an analysis 
performed by subject matter experts who identify key 
competencies based on standards of performance and means to 
measure them.  

Another important trend in pilot training is evidence-based 
training. The ICAO defines evidence-based training as “Training 
and assessment based on operational data that is characterized by 
developing and assessing the overall capability of a trainee across 
a range of core competencies rather than by measuring the 
performance in individual events or manoeuvres” [1]. The 
essential element evidence-based training introduces to 
competency based-training is the reference to operational data as a 
means to identify key competencies, in addition to the analysis 
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performed by subject matter experts.  Evidence-based training 
applies the principles of competency-based training for safe, 
effective and efficient airline operations, while addressing safety 
threats. The term evidence refers to the fact that safety threats are 
identified from actual flight monitoring data, such as those 
provided by the Flight Operational Quality Assurance (FOQA) 
program, Aviation Safety Action Program (ASAP) data for 
business aviation [7], as well as Automatic Dependent 
Surveillance-Broadcast (ADS-B) data.  

A literature review also revealed that a combination of 
competency, evidence, and scenario-based training approaches 
can form the basis for the next generation of pilot training system. 
The combination requires links between the development of 
simulated scenario events and performance measures, both driven 
by training objectives [8]. This combination is well integrated in 
the specification of evidence-based training as defined by the 
ICAO [1], and the focus on scenarios and simulations provides the 
foundation of a strong learner centred approach. 

Simulation scenarios are central to evidence-based training as the 
main instructional content a trainee pilot interacts with, for 
evaluation and learning. The approach is consistent with the 
principles of situated learning theory, which argues that learning 
best takes place in the context in which it is going to be used. 
Scenario-based training is mostly suitable for procedure-oriented 
tasks requiring decision-making and critical thinking in complex 
situations, and is learner centered as the scenario provides a 
unique opportunity for the trainee to perform and acquire 
competencies based on his/her competency level. 

 

Figure 1. Competency, evidence and  
scenario-based training systems 

Figure 1, inspired from [8], tries to capture the relationships 
between competency-based training, evidence-based training as 
flight data monitoring programs feed in information for training 
development at all levels, and scenario-based training which 
constitutes an essential element for providing learner centered 
experiences. In addition to the closed workflow between 
A) training goals and objectives; B) competencies, knowledge, 
and skills; C) tasks; and D) scenarios, Figure 1 distinguishes on 
the left hand side training development including: the 
specification of competency frameworks, sociotechnical task 
analysis, and scenario generation. The right hand side of the figure 
presents key elements related to the measure and evaluation 
including: performance measurement, knowledge component 
assessment, and program evaluation. 

The remaining sections of the paper fall essentially within the 
right hand side of Figure 1 under “Knowledge Component 
Assessment”. The courseware delivery software gathered the 
student learning performance data during the learning process, 
including the sequences of activities selected by the students, 
timestamps, and question answers. 

3. DATA DESCRIPTION 
The data consists of two sets of web training sessions engaging 
students on scenarios requiring information gathering, review and 
assessment of new flight procedures with demands on both 
knowledge and skill acquisition related to taking off and landing 
operations. The two data sets correspond to two separate groups 
of students, and had respectively eight and six students in them. 
Table 1 presents the frequency distribution of events either as 
being assessments or information-gathering events for each 
student in the two groups. The counts in Table 1 refer to the sum 
of single events. For example, student 1 in Group 1 was assessed 
46 times and gathered information 503 times. Essentially, 
information-gathering events refer to pages containing texts or 
videos, and assessment events refer to pages where an evaluation 
of knowledge or skills is performed. Overall the student pilots in 
the first group had a ratio of about 9% of assessment for 
information gathering events, while the pilot students in the 
second group had a ratio of about 13%. The number of 
assessments includes repeated trials on assessment items. Given 
that the following sections focus on specific subsets of 
observations (ex. frequent sequences, or first attempt assessments 
only), Table 1 provides a high-level view and context for these 
learning events analysis.   
Table 1. Distribution of assessment and information events for 
each student in the two groups.  

Students Assessment Information Total 

Group 1    
1 46 503 549 
2 45 497 542 
3 51 514 565 
4 42 495 537 
5 52 477 529 
6 49 512 561 
7 47 547 594 
8 57 478 535 
Group 1 Total 389 4023 4412 
Group 2    
a 42 305 347 
b 55 323 378 
c 37 259 296 
d 34 280 314 
e 41 311 352 
f 37 284 321 
Group 2 Total 246 1762 2008 
Grand Total 635 5785 6420 
 

4. SEQUENCE MINING 
The objective of the application of sequence mining techniques to 
the learner dataset was to test the hypothesis that students who 
acted similarly in training would also perform similarly in the 
assessments. Results indicate that a significant relationship 
between students’ behavioural patterns during training and 
performance on test problems exists.  
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For the analysis in this section, we utilized a data-driven approach 
to classify student activity and behaviour patterns in the web 
training courseware, with the purpose of identifying dependencies 
between the way students interact with the training material, and 
how the students perform on subsequent assessment-based tests 
and exercises. At a high level, the working hypothesis for this part 
of the study is thus that students who behave similarly (i.e. by 
exhibiting similar patterns of navigation activity when interacting 
with the courseware) will perform similarly in the assessments. 

To test this hypothesis, we classified the students into two groups, 
using three different criteria: 1) those who scored above the 
median score on the assessments versus those who scored below 
the median, 2) those who scored above average on assessments 
versus those who scored below, and 3) classification according to 
response similarity. For this final classification scheme, we 
considered similarities in student success on a question-by-
question basis. A distance function was introduced, with the 
distance between two students defined as the number of 
assessment questions for which one student gave the correct 
response and the other gave an incorrect response. K-means 
clustering was then used to divide the students into two groups in 
which in-class distances were minimized. Thus two students in the 
same class were likely to have scored the same (correct or 
incorrect) more often than two students in different classes. This 
particular analysis thus more closely strives to validate the 
working hypothesis that students who behave similarly will 
perform similarly in the assessments.  So, rather than only judging 
similarity between two students only in terms of total score, we 
also took a view of how they scored in relation to each other in 
terms of the number of assessments in which both responded 
correctly or both responded incorrectly. 

For each classification scheme above, the hypothesis is that 
students classified in the same group (i.e. those whose score 
similarly in assessments in terms of total score or response 
similarity) should have exhibited more similarities in how they 
interacted with the courseware during the learning phase. To test 
this, we utilized sequential pattern mining (using the SPAM [9] 
algorithm) to mine sequences of behaviour that were 
discriminative of each group (i.e. sequences of pages visited that 
were found to be highly frequent in one group and highly 
infrequent in the other), and then used leave-one-out cross-
validation to test our ability to correctly classify each student 
based on the existence of these mined behavioural sequences. 

Figure 2 shows the accuracy of our classifier for each 
classification scheme. For example, the leftmost bar indicates that 
we were able to correctly classify whether a student scored above 
or below the median score in 93% of the cases (as well as 
above/below average in 100% of cases and according to response 
similarity in 86% of cases), solely through analysis of behaviour 
patterns exhibited by the students when navigating through the 
courseware. The p-value for each statistic indicates the probability 
of achieving these results (or better) purely by chance. This 
indicates that a significant relationship exists between students’ 
behavioural patterns during training and performance on test 
problems. 

p	=	0.0009
p	=	0.00006

p	=	0.0065

0%

20%

40%
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Above/Below	Median Above/Below	Average Response	similarity
 

Figure 2. Results of sequence classification on students 

To further examine the relationship between behaviour and 
results, we took a closer examination of the similarities between 
students when classified as either above or below average score, 
the scheme that was most successful in the test above. Here we 
generated the set of frequent behaviour patterns exhibited by each 
student, and then computed the Jaccard similarity of each pair by 
quantifying the degree of overlap in the set of frequent patterns 
for each student, where the Jaccard similarity of two sets A and B 
is equal to the size of the intersection of A and B, divided by the 
size of the union. Table 2 summarizes these results by showing, 
for each student, the average similarity to students who placed 
above and below the average. On average, students achieving a 
lower than average score had more similar behaviour to other 
students who achieved a lower than average score, and vice-versa. 
In fact, in all cases but one, each student behaved more similarly 
on average to students in its own group. 

Table 2. Average similarity for each student to students with 
below/above average score 

Below Average Students Above Average Students 

Student 

Similarity 
with below 

average 
students 

Similarity 
with above 

average 
students 

Student 

Similarity 
with below 

average 
students 

Similarity 
with above 

average 
students 

1 0.125 0.080 3 0.059 0.071 
2 0.078 0.068 4 0.100 0.075 
5 0.047 0.033 a 0.051 0.068 
6 0.070 0.061 b 0.063 0.112 
7 0.032 0.026 c 0.024 0.042 
8 0.127 0.075 d 0.063 0.133 
   e 0.040 0.072 
   f 0.059 0.142 

Average 0.080 0.057  0.057 0.090 
 

While there are wide-ranging behaviours that differentiate the two 
groups, Figures 3 and 4 point to two interesting behaviour patterns 
that were particularly prevalent in the initial dataset of 8 students. 
The first instance, in Figure 3, was highly frequent among the 
higher-achieving group, and quite infrequent among the lower-
achieving group. This behaviour shows a lot of activity reviewing 
notes before completing a particular section and moving on. This 
could indicate that this note review had an impact on the success 
of the students. The second instance, in Figure 4, was highly 
frequent among the lower-achieving group, and quite infrequent 
among the higher-achieving group. This behaviour shows a lot of 
activity around calculations regarding take-off. This could provide 
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a clue into where the less successful students are going wrong, 
and thus where improvements to the courseware may be made.  

1. Review_Introduction_1, Review_Introduction_2,  
2. Full_Review_Notes_Mission_Planning_1,  
3. Full_Review_Notes_Landing_Limits_and_Procedures_2,  
4. Full_Review_Notes_Landing_Crosswinds_3,  
5. Full_Review_Notes_Takeoff_Procedure_4,  
6. Full_Review_Notes_Takeoff_Conditions_5,  
7. Full_Review_Notes_Takeoff_Crosswinds_6,  
8. Full_Review_Notes_Landing_Calculations_7,  
9. Full_Review_Notes_Takeoff_Calculations_8,  
10. Full_Review_Notes_ControlUnit_Invalid_9,  
11. Full_Review_Notes_ControlUnit_Calculations_10,  
12. Transition_To_Test-GUI_MAP, 
13. Lesson_Conclusion_Pass 

Figure 3. Example behaviour of the higher-performing group 

 
1. Select_Calculation-Takeoff_Crosswinds_1-  
2. Select_Calculation-Takeoff_Pitch_1-Takeoff_Pitch_2,  
3. GUI_MAP-Calculations_Introduction_1-

Calculations_Introduction_2-
Calculations_Introduction_3- Invalid_11-Invalid_12,  

4. Invalid_14-How_To_Use_Introduction_1-
How_To_Use_Introduction_2,  

Figure 4. Example behaviour of the lower-performing group 

This result has a number of implications. First, it demonstrates a 
tangible correlation between how students choose to navigate the 
courseware and how well they perform on assessments. Second, it 
establishes clear evidence that opportunities exist to predict 
student achievement during the learning phase, when remedial 
action can be taken to improve comprehension. Finally, the ability 
to identify the key behaviours that have the highest impact on how 
a student will perform can facilitate strategic managerial decision 
making on how to direct the flow of student activity through the 
courseware. 

5. ADDITIVE FACTOR MODELS 
The Additive Factor Model (AFM) was chosen because it 
represents a common technique in educational data mining [12]. 
By using this data analysis technique, we were seeking 
estimations for parameters for student proficiencies, as well as 
items difficulty, and competencies easiness.  AFM is a model for 
assessing the quality of an items-to-skills mapping, based on its 
ability to predict empirical observations of student results [10]. It 
may be seen as a generalization of Item Response Theory [11], 
where the response depends not only on item difficulty and 
student proficiency, but also on underlying knowledge 
components (KC) and the sequence in which they are met. In 
AFM, these knowledge components can be associated with 
competencies, skills, or declarative knowledge that are 
responsible for a student’s performance. The mapping between an 
item (question, task, problem) and knowledge components is 
provided in the form of a binary Q-matrix Q=[qik], where qik=1 
indicates that item i is associated to knowledge component k  [13]. 
The probability that a student j will correctly answer an item i is 
modelled using a mixed-effect logistic regression 

𝑃 𝑌!" = 1 𝛼,𝛽, 𝛾 = !
!!!"# (!(!!! !!!!"! !!!!"!!"))!!

         (1) 

where αj is the proficiency of student j (higher proficiency yields 
higher success rate), βk is the easiness and γk the learning rate for 
knowledge component k (higher easiness yields higher success, 

higher learning rate means increased success on subsequent 
trials)2. The observed student sequence is summarized in the 
opportunity tjk, i.e. the number of times student j has met 
knowledge component k. As learning progresses, increasing 
opportunity translates into higher probability of success in items 
associated with that KC. 

Our learner dataset contains 38 items, taken by 14 students (in two 
sessions of eight and six) between zero and four times each, 
resulting in 533 transactions.3 The course designers provided the 
Q-matrix mapping the 38 items to 14 knowledge components 
(Figure 5, where the items are the specific questions or problems 
that the students had to answer or solve, while the knowledge 
components are the underlying knowledge and skills accounting 
for the learner’s performance on those questions or problems.  

 
Figure 5: Q-matrix from courseware designer: 38 items x14 KCs. 

Estimation of the AFM model parameters is done by maximizing 
the likelihood4 on the transactions, with the constraint that 
learning rates are kept positive, and a slight regularization on the 
alpha parameters in order to keep them within the [-3; 3] range. 

5.1 Student Proficiency 
We analyse the proficiency of the two groups of students using 
the estimated alpha parameters. Figure 6 shows that the first group 
of students (1-8) has overall a lower proficiency than the second 
group (a-f). The two students with lower proficiency in the second 
group (b and c) have estimated proficiencies on par with the best 
two students from the first group (3 and 4). Student 5 clearly 
displays the lowest proficiency by far. 
This is partly reflected in the observed success rates, which range 
from 58.5% for student 5, to 100% for student d. We learned post 
analysis that the second group had received an improved set of 
instructions. Although there was no difference between the first 
and second groups in expectations, motivation or engagement 
with the training material, the improved instructions have a clear 

                                                                    
2 Proficiency and easiness values are relative to the other values in 

the set, and should not be interpreted as actual success rates. 
3 Each transaction records one student’s result on one item. 
4 We use a conjugate gradient algorithm. Any optimization 

method would work similarly as the log-likelihood is convex. 
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impact on the estimated proficiency for the second group. This 
validates the effectiveness of the change. 

 
Figure 6: Student proficiency, estimated by AFM. 

 

5.2 Competency Analysis 
We analyse the competencies through the estimated beta and 
gamma parameters. Note that the actual parameter values are 
difficult to interpret separately, as various combinations of beta, 
gamma and opportunity may yield similar probabilities (Eq. 1). 
They do make sense in combination of the base “easiness” beta 
and learning rate gamma, to explain how the probability of 
success changes as the number of opportunity increases. As a 
consequence, rather than looking at actual parameter values, we 
relate them to the corresponding prediction ability. We analyse 
competencies by looking at the probability to fail on items 
associated by each knowledge component on the first three 
opportunities, for a hypothetical student with a proficiency 
parameter of zero. Figure 7 shows this for 11 knowledge 
components (The easiest KCs, 1, 4 and 11, get 0% for both 
predicted and observed error from the first attempts). 

 
Figure 7: Probability of error for several knowledge components. 

Note that due to the constraint that the learning rate is positive the 
probability to fail is always decreasing (Eq. 1). Learning is clearly 
apparent for several competencies (C3, C10 and C12), as shown 
by the clear drop in probability to fail as the KC is addressed. For 
C5 and C6, learning is much slower, and the error rate stays 
around 41%. However, this observation should be mitigated by 
the fact that these knowledge components are only associated with 
one item and always together (Figure 5). There is therefore very 
little data to estimate learning on these competencies, as most 
students took that item only once. When considered in 
combination in item #30, KCs C5 and C6 yield a predicted error 

on this item of 36%. In addition, this points to a possible 
refinement of the Q-matrix: these two knowledge components 
could be merged with no loss of modelling capacity. 
Probability of failure seems consistently high for C8. However, 
Figure 5 shows that this knowledge component always appear 
together with C7 (which also appears alone). Due to the additive 
nature of the AFM model, the actual probability of success for 
items featuring C8 actually combine the easiness and learning 
rates for both C7 and C8, resulting in a probability of failure of 
30.3%. Items involving both C7 and C8 are significantly harder 
than items involving C7 alone, and the AFM model adjusts for 
this fact by estimating a low easiness (high difficulty) for 
knowledge component C8. 
The analysis of the AFM results therefore provides us with non-
trivial insight into 1) the proficiency of the students taking the 
course, and 2) the difficulty and learning rates of the various 
competencies addressed in the course. It also suggests possible 
refinements of the competency framework produced by the course 
designer. Finally, despite the clear difference between the two 
groups of students, we have also observed that the estimates for 
the parameters related to competencies (βk and γk) are consistent 
across the two groups. 

6. CONCLUSION 
To address the challenges of pilot training in the early 2000s, civil 
aviation stakeholders like CASA, ICAO, and concurrently the 
USAF have been promoting competency-based training as a 
training model. In addition to focusing on competencies rather 
than hours, the industry has also brought to bear actual flight 
monitoring data as a source to determine learning objectives. The 
essential element evidence-based training introduces to 
competency based-training is the reference to operational data as a 
means to identify key competencies, in addition to the analysis 
performed by subject matter experts. A literature review also 
revealed that a combination of competency, evidence, and 
scenario-based training approaches can form the basis for the next 
generation of pilot training system. The latter approach being 
consistent with the principles of situated learning theory, which 
argues that learning best takes place in the context in which it is 
going to be used. The paper focused essentially on the assessment 
of knowledge components using sequence mining and logistic 
regression for the purpose of understanding learning processes 
and improving learning scenarios. The data used for these 
analyses was collected in the context of pilot training using a 
scenario-based approach for reviewing basic landing and taking 
off flight operations. 

The objective of the application of sequence mining techniques to 
the learner dataset was to test the hypothesis that students who 
acted similarly in training would also perform similarly in the 
assessments. Results indicate that a significant relationship 
between students’ behavioural patterns during training and 
performance on test problems exists. 

The Additive Factor Model, a model for assessing the quality of 
an items-to-skills mapping based on empirical observations of 
student results, was used to estimate student proficiency and 
knowledge components difficulty. Our analysis indicated a clear 
difference between students from two groups in the data. It also 
helped us identify competencies that are inherently easy, as well 
as hard competencies for which learning allows the probability of 
failure to quickly drop over subsequent attempts. It also suggests 
changes in the competency framework in which knowledge 
components could be merged with no loss of modelling capacity. 
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Together, the application of the descriptive method of sequence 
mining, and the predictive technique of additive factor models, 
provide results that may be used to evaluate and improve 
instructional design.  
Some potential future directions for the project include: 
a) collecting more data, using the same approach for additional 
data sets, and comparing the result; b) developing alternative 
methods, and using the methods on same data sets to test and 
compare results; and c) conducting validation with instructional 
design experts in the relevant domain.  
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ABSTRACT
In this paper, we describe a scalable learning analytics plat-
form which runs generalized analytics models on educational
data in parallel. As a proof of concept, we use this platform
as a base for an end-to-end automated writing feedback sys-
tem. The system allows students to view feedback on their
writing in near real-time, edit their writing based on the
feedback provided, and observe the progression of their per-
formance over time. Providing students with detailed feed-
back is an important part of improving writing skills and an
essential component towards solving Bloom’s “two sigma”
problem in education.

We evaluate our feedback system in two ways. First, we
evaluate the effectiveness of the feedback for students with
an ongoing pilot study with eight hundred students who are
using the learning analytics platform in a college English
course. In addition, we process an existing set of graded
student essays and analyze the performance feedback. Re-
sults show a correlation between feedback values and human
graded scores.

Keywords
Analytic Tools for Learners; Automated Essay Feedback;
Scalable Analytics; Performance Feedback; Natural Lan-
guage Processing

1. INTRODUCTION
Performance feedback is essential for self-regulated learn-
ing, which is an attribute of highly effective learners [3, 18].
Bloom has shown that providing formative feedback to stu-
dents increases performance, compared to only providing fi-

nal feedback [1]. This allows students to develop and im-
plement actionable strategies for improving performance as
they progress. Formative feedback is even more effective if
it can be given in near real-time [7, 13].

In this paper we describe a scalable platform for learning
analytics called OpenACRE (Analytics Collaborative Re-
search Environment) which is currently in development to
be released as open source. OpenACRE allows for inges-
tion of heterogeneous educational data from multiple source
systems, long-term storage of raw data, running arbitrary
models on the raw data using a parallel analytics engine,
and short-term storage of resulting analytics for use by stu-
dents, teachers, and researchers. As a proof of concept, we
implement an end-to-end writing feedback system utilizing
OpenACRE. Writing feedback is especially hard to provide
in real-time and at scale as it is computationally expensive,
making it well suited for the capabilities provided by Ope-
nACRE.

There are several other existing writing feedback systems
which provide various feedback to students, for example Re-
vision Assistant, WriteToLearn, and Writing Pal [17, 14,
12]. While these systems provide useful information, they
are either commercial black boxes which do not allow for
modification, or are intelligent tutoring systems which pro-
vide writing instruction through customized modules. Ope-
nACRE stands apart by providing the ability to develop and
deploy new analytical models at scale, making it useful for
researchers to test new feedback algorithms, predictive mod-
els, or reporting dashboards on a large number of students.

To evaluate our proof of concept system in a classroom set-
ting, an efficacy study is currently underway to investigate
the usefulness of the feedback to improve student perfor-
mance. The study consists of eight hundred college students
who are learning English at VNR VJIET in India. Addition-
ally, we evaluate the feedback from 13,000 existing student
essays and compare it to the human graded scores.
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Figure 1: Architecture diagram of the learning analytics platform, corresponding to the middle box in Figure
2. Data is ingested by the input API and placed into a distributed queueing system which is implemented
using Kafka. A collection service, implemented in Scala, pulls data from the queue and stores it in long-
term storage, which is implemented using Hadoop Distributed File System (HDFS). The compute cluster
runs models in parallel on the data in long-term storage and persists output views to the results store,
implemented in PostgreSQL. Output views can then be accessed through the output API. Both the input
and output APIs are RESTful and implemented in Python using Flask.

2. OPENACRE
The OpenACRE platform consists of an input and output
API, long- and short-term databases, and a parallel com-
putation cluster. A low-level diagram is shown in Figure 1.
This platform is designed to handle the challenges of scala-
bility, resiliency to data loss, and fault tolerance. Addition-
ally, OpenACRE is built to be extensible for future mod-
els, without the need for drastic modification to the system
as a whole. For example, models which perform machine
learning algorithms, complex aggregations, and graph anal-
ysis could all be implemented to run on OpenACRE. These
models could include traditional classroom statistics, score
predictions, or personalized learning recommendations.

Learning event data is ingested into OpenACRE through
the input API and persisted to the long-term data store.
The input API for OpenACRE is implemented in a REST-
ful fashion using Python with the Flask package. RESTful
APIs are used because they are stateless, easily extended for
future functionality, and agnostic to programming language.
The input API accepts event data from external sources and
temporarily stores the events in a queueing system. We uti-
lized open source Apache Kafka for our queueing system
as it is distributed, durable, and supports APIs in several
commonly used languages. Next, a collection service takes
events from the queue and stores them in a long term data
store. Here we use the open source Hadoop Distributed File
System (HDFS) since it is distributed and fault tolerant.
The collection service in OpenACRE is written in Scala,
but any language supported by the Kafka and Hadoop APIs
could also be used. The event data stored in HDFS is kept
in its original “raw” form and is never altered. Storing un-
altered event data allows for arbitrary computation and the
implementation of future models without knowledge of those
models beforehand.

Next, the computation engine runs analytical models by tak-
ing data from the long term store and performing transfor-
mations/aggregations to create new output views. These
output views can be accessed by users through the output
API. Open source Apache Spark was used for our compu-
tation engine as it allows for user-friendly parallel compu-

tation, horizontal scalability on commodity hardware, and
contains a rich set of APIs ranging from simple map-reduce
to machine learning algorithms. Additionally, Apache Spark
currently implements APIs in Java, Python, and Scala.

Output views from a given model are written to the results
store database which is implemented using PostgreSQL in
OpenACRE. PostgreSQL was used as it is open source, has
APIs in several languages, and provides a familiar SQL in-
terface for queries. From the results store, output views are
provided to external users through the output API. Similar
to the input API, this is implemented as a RESTful API so
it is stateless and can be easily accessed from the majority
of modern languages. The output API can then accessed by
other backend systems or user facing systems, such as dash-
boards. The combination of all the OpenACRE components
listed above results in a learning analytics platform which
can ingest arbitrary learning event data, apply parallel an-
alytic models to the data, and provide the results of the
analytics to external systems and dashboards in a generic
fashion.

Figure 2: High-level diagram of the end-to-end writ-
ing feedback system. The learning management sys-
tem and feedback visualizations are student-facing
while the learning analytics platform stores writing
data and computes feedback.
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While any type of data format could be ingested into Ope-
nACRE, we chose the standardized learning event format
called Caliper, supported by IMS Global [4]. Caliper defines
a set of standard learning events composed of actor-action-
object triples. An example event is ‘student-submits-quiz1’.
While actor-action-object triples are also used in other stan-
dardized learning event formats like TinCan [16], Caliper
has a significant benefit in that is uses JSON-LD, which is
a schema-based JSON format. In addition to being schema-
based, JSON-LD allows for easy mappings from JSON to
domain-specific ontologies.

3. END-TO-END WRITING FEEDBACK SYS-
TEM

As a proof of concept, we built an end-to-end writing feed-
back system with OpenACRE at the core. Writing feedback
is an excellent use case for OpenACRE as it is very com-
putationally expensive, requiring approximately 12 seconds
per essay for our feedback model. This large processing time
results in almost 7 days of computation for a single assign-
ment in a large MOOC of 50,000 students. Implementing
our writing feedback model on OpenACRE allows that com-
putation time to be cut to hours or minutes, depending on
the size of the computation cluster.

The end-to-end proof of concept system includes the student
facing system, which collects student writing data from their
learning management system (LMS) and displays the auto-
mated feedback visualizations, and the backend system built
on OpenACRE, which stores and analyzes the student data.
Figure 2 shows a high-level view of this system, including
both the student facing and backend systems.

The typical workflow for a student using this system in-
cludes:

1. Log in to writing course using an LMS

2. Start a writing assignment

3. Save the writing assignment

4. View visualizations of writing feedback

5. Edit writing assignment based on provided feedback

6. Save the writing assignment

7. Repeat steps 4-6 as needed

8. Submit assignment

This workflow provides feedback to students at regular in-
tervals and gives students the opportunity to improve their
writing before submitting their assignment. The ongoing
pilot provides feedback in 24 hour increments due to cost
constraints on the size of the computation cluster. Since the
LMS which students are using is instrumented to directly
collect writing data, there is no need to use an additional
feedback system. This allows for an intuitive interaction be-
tween the student and their LMS, while collecting data for
feedback at the same time. In our implementation, we uti-
lized Moodle for our LMS as it is open source, familiar to
both students and educators, and was easily instrumented to

collect writing data as Caliper events and send those events
to OpenACRE.

We designed a custom dashboard to display feedback visu-
alizations to students and instructors. These include both a
snapshot of overall feedback and the progression of feedback
over time.

3.1 Feedback Competences
The feedback provided by our system is composed of seven-
teen writing competences which have been developed over
the last several years [9]. These include traditional writing
metrics such as spelling and grammatical accuracy as well as
more advanced metrics that capture sentiment and writing
flow. In the following sections, we describe several groups of
writing metrics and define the competences we implement
within them.

3.1.1 Traditional Metrics
Traditional writing metrics include competences that are of-
ten used by teachers to evaluate student writing. The com-
petences implemented in our system from this category in-
clude vocabulary, spelling, grammatical accuracy, and lex-
ical diversity. The vocabulary competence represents the
amount of unique words in the student’s text. As the stu-
dent uses more unique words in their writing, the vocabulary
competence increases. The spelling competence measures
the percentage of incorrectly spelled words used. This com-
petence increases as the percentage of misspelled words in
the text decreases. Similar to spelling, the grammatical ac-
curacy competence measures the percentage of grammatical
errors in the text. This competence value increases as the
percentage of grammatical errors decreases. Finally, the lex-
ical diversity competence measures the percentage of unique
words in the text. The value increases as students use more
unique words relative to the size of the text.

3.1.2 Advanced Metrics
Advanced writing metrics highlight more subtle and com-
plex characteristics of English writing. While not always
explicitly listed in a writing rubric, these metrics are impor-
tant for proficient English writing. The competences imple-
mented in our system from this category include modifier
complexity, noun phrase complexity, and tense agreement.
The modifier complexity competence represents the amount
of noun or verb modifiers which are used in the student’s
text. A high number of noun or verb modifiers indicates
that the writing is more complex and expressive. The noun
phrase complexity competence analyzes the number of noun
phrases in the student’s text. This metric attempts to mea-
sure the linguistic complexity for a piece of writing, as more
noun phrases typically indicates richer sentences. Finally,
the tense agreement competence measures the consistency
of verb conjugations in the text. This competence value in-
creases when verbs are conjugated consistently throughout
a piece of writing.

3.1.3 Flow Metrics
Writing flow metrics measure how ideas are connected both
within adjacent sentences and throughout entire pieces of
text. The competences we implement in this category are
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local cohesion, global cohesion, and connectivity. Local co-
hesion tracks the flow of ideas from sentence to sentence.
Writing that contains adjacent sentences with similar nouns
and verbs receives a higher local cohesion score. Similarly,
global cohesion tracks the flow of ideas throughout an entire
piece of writing, which is also measured by the similarity
of nouns and verbs throughout the text. Connectivity mea-
sures the use of phrases that connect ideas to one another.
Text with more coordinating conjunctions receives a higher
connectivity score.

3.1.4 Descriptive Metrics
These writing metrics measure how descriptive a piece of
writing is in several different ways. The competences we
implement in this category are concreteness, imagery, famil-
iarity, and conciseness. Concreteness measures the degree to
which the text refers to tangible objects. Higher concrete-
ness scores are obtained by using more words that refer to
tangible objects. Imagery gives a measure of the amount of
words within the text which evoke a mental image. Similarly,
familiarity measures the amount of words in a text that are
commonly used. The calculation of concreteness, imagery
and familiarity are based on pre-defined scores in each cat-
egory for commonly used words. These pre-defined scores
were determined experimentally by asking human subjects
to rate words in these three categories [5]. Conciseness mea-
sures the ratio of content words in the text. Writing that
includes more nouns, verbs, adverbs and adjectives receives
a higher conciseness score.

3.1.5 Sentiment Metrics
Sentiment metrics reflect the tone or feel of a piece of writ-
ing. These are computed using state-of-the-art techniques
with the Stanford CoreNLP library [10, 15]. The required
sentiment may vary based on the type of writing or subject
matter. The competences we implement in this category in-
clude negative tone, neutral tone, and positive tone. The
negative tone competence describes the degree to which the
writing exhibits negative sentiment. Similarly, the neutral
and positive tone competences describe the degree to which
the writing exhibits neutral or positive sentiment. All three
of these competences measure the amount of negative, neu-
tral, or positive words in the writing.

Figure 3: High-level diagram showing the flow of
the openSCALE algorithm from caliper events to
competence scores.

3.2 OpenSCALE
The analytics model implemented in this automatic writ-
ing feedback system is called OpenSCALE [2]. This model
parses text with Stanford CoreNLP library [10], creates on-
tologies and facts from the annotated text, and aggregates
the facts into competence scores for students.

A high-level view of the transformations which go from text
to competence scores is described in Figure 3. First, the
text is annotated using the Stanford CoreNLP library [10].
The annotations include tokenization of the text into words
and sentences, part of speech tagging, syntactic parsing and
sentiment analysis. These annotations are used to create an
ontology of the relationships between words, sentences and
paragraphs in the text, including both their structure and
semantic meaning. For each piece of text, openSCALE cre-
ates one ontology using the open source Apache Jena library.

Next, each ontology is put through an inferencing layer,
which looks for patterns in the ontology that show evidence
of students having a particular skill/competence and cre-
ates proficiency facts. Each fact includes information about
the degree of competence (weight) for a unique student-
assignment attempt-time. Many facts are generated from a
single ontology going through the inferencing layer. The in-
ferencing layer in openSCALE is implemented using VIStol-
ogy’s BaseVISor framework [11]. BaseVISor works by pass-
ing a set of rules dictating how facts are generated for a given
ontology. The ability for users to specify specific rules allows
for great flexibility as different instructors could potentially
dictate what is seen as evidence of different skills/competences.
The current implementation of openSCALE uses a default
set of rules which are used by BaseVISor.

Finally, the proficiency facts are aggregated to generate fi-
nal scores for each competence. The main flow of the fact
aggregations for student, competence, assignment attempt,
and time is:

1. Sum the weights for all facts with the same student-
competence-assignment attempt-time

2. For each fact F (student S - assignment attempt A -
competence C - time T ):

(a) Find all facts at or before time T with the student
S - competence C

(b) Keep the facts of the newest attempt for each as-
signment

(c) Sum the competence weights and update F

The final, aggregated facts are used to generate the compe-
tence progression view in the results store. The view dis-
playing a snapshot of overall feedback is created by taking
the latest aggregated facts for each competence.

4. PILOT RESEARCH STUDY
We are currently running a pilot research study to test the
usefulness of the feedback system for increasing student writ-
ing performance. Eight hundred first year engineering stu-
dents at VNR VJIET in India are using our system to com-
plete up to twenty writing assignments.
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Figure 4: Scatter plots showing two competence scores plotted against each other all essays in the dataset.
Data points are colored to distinguish essays from 7th, 8th, and 10th grades.

The current pilot study is an observational study and will
use the method of propensity score analysis to determine the
effectiveness of the feedback visualizations [6]. Students will
also fill out surveys about the feedback they received and its
usefulness.

5. ANALYSIS WITH EXAMPLE STUDENT
ESSAYS

While the pilot is in progress, to additionally evaluate the
usefulness of the writing feedback system, feedback was gen-
erated from a dataset containing about 13,000 anonymized
student essays which have been graded by humans. The
dataset was obtained from the Kaggle competition for auto-
mated essay scoring [8] and includes essays for students in
7th, 8th, and 10th grade. A total of eight different groups of
essays are contained within the dataset, each with a different
writing prompt and grading rubric. For our experiments,
all essays were mixed together, grouped only by grade of
the student, and all human grades have been normalized to
range between 0-100.

First, we investigated correlations between competence types.
Figure 4 shows competence vs competence scatter plots for
grammatical accuracy, vocabulary, spelling, and lexical di-
versity. Data points are colored to distinguish between 7th,
8th, and 10th grade essays. Strong linear relationships can
be seen for both plots containing grammatical accuracy in
addition to vocabulary vs spelling. Additionally, an inter-
esting relationship between lexical diversity and spelling can
be seen in Figure 4. This plot shows that no students have
high values in both lexical diversity and spelling simultane-
ously. To achieve high scores in the spelling competence,
a longer essay is required with the majority of the words
spelled correctly. In contrast, long essays tend to have lower
lexical diversity competence values as more words are re-
peated in longer writings. The resulting balance of these
two competences can be clearly seen in Figure 4.

Next, we plotted competence values against human graded
scores. Figure 5 shows competence values for connectiv-
ity, grammatical accuracy, modifier complexity, and noun
phrase complexity plotted against the graded score. Con-
nectivity, grammatical accuracy, and noun phrase complex-
ity all show the trend that increased competence values cor-
relate to higher graded scores. The plot displaying modifier
complexity shows the graded score initially increasing with
competence value. There is a point which this trend stops
and the average score stays constant, or even decreases, as
the competence value increases. This data suggests that es-
says with a lot of complex modifier usage score the same or
even lower than corresponding essays with moderate mod-
ifier usage. The above analysis gives us confidence in the
usefulness of the competence feedback for improving perfor-
mance.

6. CONCLUSIONS
Providing real-time feedback to students is an important
component to solving Bloom’s two sigma problem. In this
paper we described a scalable learning analytics platform
(OpenACRE) which is able to ingest educational data from
multiple external systems and provide analytics on that data
in near real-time. We demonstrated the usefulness of this
platform with the implementation of a writing feedback sys-
tem and are currently running a pilot research study to eval-
uate its effectiveness with eight hundred first-year engineer-
ing students at a university in India. We also showed that
competence values correlated with human graded scores on
a set of existing student essays. Development is currently
underway to release OpenACRE as an open source project
for other educational researchers.

7. ACKNOWLEDGMENTS
This paper is based on work supported by the McGraw-
Hill Education Digital Platform Group (MHE DPG). De-
spite provided support, any opinions, findings, conclusions

Proceedings of the 9th International Conference on Educational Data Mining 692
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ABSTRACT
Motor skills are required in a large number of blue collar
jobs today. However, no automated means exist to test and
provide feedback on these skills. In this paper, we explore
the use of touch-screen surfaces and tablet-apps to mea-
sure these skills. We design novel app-based gamified-tests
to measure one’s motor skills. We show this information
to strongly predict the job performance of skilled workers
in three different occupational roles. The results presented
in this work make a strong case for using such automated,
touch-screen based tests in job selection and to provide auto-
matic feedback. To the best of the authors’ knowledge, this
is the first attempt at using touch-screen devices to scalably
and reliably measure motor skills.

Keywords
Motor skills; Touch-screen devices; Tablets; Assessments;
Blue collar jobs.

1. INTRODUCTION
There are many standardized automated tests of language,
knowledge, cognitive skills and personality [8, 1, 2]. These
tests, often taken on a computer, are good predictors of aca-
demic achievement and job performance in the knowledge
economy. They have also enabled automated feedback and
credentials for learners.

We are interested in automating assessments of motor skills
required for vocational jobs such as tailoring, plumbing and
carpentry. In the Occupational Information Network (O*NET)
database of job descriptions [11], 350 out of 1,065 jobs need
moderate to high motor skills. There has been tremendous
interest worldwide among employers and professional orga-
nizations in training and efficiently identifying people that
possess the skills for such hands-on occupations [3, 9]. There
have been several validated, non-automated tests like the
Purdue Pegboard test [13] and the O’Connor Tweezer Dex-
terity test [12]. However, no serious attempt has been made

to develop and validate automated tests for this purpose.
Automated assessments so far have exploited the power of
PCs and laptops. We wish to make use of a touch interface,
in the form of tablet devices, to test motor skills.

The ability to test motor skills automatically using touch in-
terfaces would allow it to scale extremely well, given the high
market penetration of inexpensive tablet devices in the last
five years. This would enable people to measure their motor
skills right from their homes and receive feedback toward
self-improvement. There is substantial evidence that motor
skills among adults can be improved [14] and that explicit
motor skills feedback and instructions help do so [7, 5, 10].
Also, test takers can learn how suitable they are for a given
job, get credentials for the skills they have acquired and
apply for jobs that are the best match for their particular
skill sets. Companies, for their part, can remotely admin-
ister these tests and can use the scores registered and the
certificates offered to find a quality workforce, making the
identification of suitable candidates easy, cheap, and scal-
able. This has the potential to make the blue-collar labor
market considerably more efficient, similar to the effect au-
tomated testing has had on the white-collar labor market.

We apply the classical procedure used in developing skill as-
sessments to develop tests which measure motor skills. We
first identify the skills that are most useful to test. We
then develop app-based tests that run on tablets and have
the potential to measure these skills.1 We use capacitive
touch interfaces in this work, which are very popular these
days. The app-based tests are designed in such a way that
they exercise the motor skills of a person and are of varying
degrees of difficulty. Candidates undergo testing through
various movements of their fingers, hands and arms. We
develop scores for each app based on the test taker’s inter-
action with it. We then test whether these scores are pre-
dictive of job/task performance in three occupational roles:
tailors, machinists/grinders and machine operators. If our
test scores can indeed predict performance in job roles, they
could be useful both to provide corporations with a way to
filter/evaluate candidates for such jobs and to give feedback
to job seekers and those interested in training for such spe-
cific fields.

We found that the app-based test scores can predict job per-
formance across multiple parameters that are considered in

1We consider tablets instead of smartphones to assess wider
movements of arms and shoulders.
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evaluating the three job roles enumerated above. The cor-
relation values range from 0.19 to 0.38. These are compara-
ble to, and in cases outperform, those reported historically
for manual motor skill tests in predicting job performance
(0.06− 0.30, Table 1). This provides strong support for the
use of automated touch-screen tests for measuring motor
skills for job selection and recruitment. The paper makes
the following contributions:

• It is the first attempt to design a touch-screen based
test of motor skills. We design a number of novel apps
for this purpose.

• We show that there is firm supporting evidence for
using app-based scores in the job selection/recruitment
process for multiple jobs. This can yield tremendous
scalability in the process of hiring blue-collar workers
and providing them feedback.

This paper is organized as follows: §2 discusses the motor
skills we measure; §3 discusses the design of our apps; §4
lays out the experiment objective and analyzes our results
and finally, §5 concludes the paper.

2. MOTOR SKILLS TO MEASURE
We wished to identify motor skills that predict job perfor-
mance for a range of jobs. We considered Fleishman’s tax-
onomy of 52 human abilities [4] which includes skills such
as verbal comprehension and selective attention. Ten of
these, which are motor skills such as finger dexterity and
arm steadiness, constitute the most widely recognized tax-
onomy of skills. These ten skills also figure prominently in
the O*NET job and skill database.

It was found in [6] that four of these ten motor skills con-
sistently predicted job performance based on empirical ev-
idence. The four skills reported to correlate consistently
with job performance are - finger dexterity, manual dexter-
ity, wrist finger speed and multiple coordination (see Table
1). Detailed definitions of these skills can be obtained in
[4]. In brief, finger dexterity refers to the accuracy in finger
movements while manual dexterity refers to the speed of arm
movements. Wrist finger speed refers to the speed of wrist
and finger movements and multiple coordination refers to
the proficiency in performing coordinated movements with
two or more limbs.

A large number of manual tests have been used to measure
these motor skills. In all these tests, a candidate is asked to
perform a task and is rated on the time taken to complete it
and the accuracy achieved, if applicable. For example, one
test to measure manual dexterity requires a candidate to un-
screw pegs from one board, turn them over and attach them
to another board [6]. A test for finger dexterity requires
a candidate to insert a rivet in a hole and secure it with a
washer, where this process is repeated multiple times. These
tests measuring motor skills correlate with job performance
in the range of 0.06− 0.30 (Table 1).

We seek to develop automated assessments to measure these
four skills, which could serve as an alternate to the man-
ual tests described. Our intuition is that these skills in-
volve movements of different joints: wrist/finger accuracy

Skill Correlations
[min-max]

Weighted
Mean

Correlations

Finger Dexterity 0.07 − 0.21 0.19

Manual Dexterity 0.08 − 0.24 0.22

Wrist-Finger Speed 0.14 − 0.30 0.18

Multiple Coordina-
tion

0.06 − 0.15 0.14

Table 1: Skills and their minimum, maximum and weighted
average correlation values with job performance [6].

and speed - movements of finger and wrist joints; manual
dexterity - movement of shoulder and elbow joints and mul-
tiple coordination - coordinated manual dexterity. We de-
velop apps based on this intuition. We limited our work to
the action of hands and no other limbs.

3. DESIGN OF APPS
In this section, we describe the design of our touch screen
apps to measure motor skills. We constructed each app to
elicit specific hand and finger movements. We considered the
simplicity and ease of comprehension of the apps as a key
criterion. One should not be penalized for not understanding
what has to be done, which could happen as a result of either
cognitive or knowledge limitations. A set of instructions and
a video/animation was shown before each app, to show how
to perform the task. Each of these apps is described below:

1. Douse the Fire (DOUSE): In this app, the candi-
date is shown ‘fire’ at random spots on a house shown
on the screen (see Figure 1a). A candidate has to tap
on the fire to douse it. As soon as the fire is doused
at one spot, it appears at another spot on the house.
In order to ensure that the fire occurs randomly, the
distance between the two spots is probabilistically con-
trolled using a uniform distribution between 0 and a
number. The candidate has to douse as many fires
within 30 seconds. We observed that the task requires
elbow and shoulder movements and thus possibly mea-
sures manual dexterity.

2. Trace a triangle-A (TRI A): In this app, the can-
didate traces a path shown on the screen by dragging
a finger over it. We initially considered having the
candidate trace a line. However, we recognized that
a candidate could not do this accurately because of
the large surface area of the finger tip, restricting vi-
sual feedback of performing the activity incorrectly.
We thus modified our exercise to contain two concen-
tric equilateral triangles. The candidate was required
to trace the path in between the triangles (see Figure
1b). The candidate was given feedback on the path
traced by her through the use of colors. The path
traced was green as long as it was confined to the des-
ignated area (space between the concentric triangles)
and would turn red as soon as it went off the area. The
width of the path is set to be more than the width of
the fingertip (roughly 1 cm) to keep the task simple.
The edge-lengths of the inner and outer triangles were
4.2 cm and 5.8 cm respectively. The candidate has
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(a) Douse the Fire (b) Trace Triangle-A (c) Trace Path-A. (All dimensions are in cm)

(d) Roll Ball-B (e) Resize (f) Draw an arc-A

Figure 1: Snapshots of the apps

to trace as many triangles as possible in 30 seconds.
As soon as one triangle was traced, another would ap-
pear. The app required moving one’s hand quickly to
trace the triangles and was designed to measure the
speed element of manual dexterity. In principle, the
task could be completed by finger movements, but we
found that the default action made by the candidates
which was comfortable to them involved shoulder and
elbow movements.

3. Trace a triangle-B (TRI B): This app is similar to
TRI A with a difference that the width of the path
was decreased. The width was kept a little lesser than
the width of the finger tip. We hypothesized that the
app required careful tracing and measured the accu-
racy element of manual dexterity.

4. Trace a path-A and B (PATH A and PATH B):
These apps are similar to the previous triangle apps.
The difference is that candidates would trace over paths
of much larger concentric polygons instead of a trian-
gle, which shall require arm/hand movements (see Fig-
ure 1c). The polygons included rectangles, ellipses and
those having zig-zag patterns. Figure 1c describes the
dimensions of a sample path which was used. The path
width shown in PATH A is larger than those shown in
PATH B. The candidate has a maximum of two min-
utes to complete both the exercises and is required
to trace as many polygons in the least possible time.
These apps are designed to measure manual dexterity
by tracing larger lengths and shapes, requiring differ-
ent kinds of manual movements.

5. Roll the ball-A (ROLL A): In this app, a circle
(symbolizing a hole) is positioned at the center of the

screen and a ball is positioned at one of its corner. The
ball rolls around on the screen on tilting the surface of
the tablet. This is based on the tablet’s accelerome-
ter readings.2 The candidate is required to guide the
ball completely inside the circle. On the completion
of one such exercise, the screen is refreshed with the
ball placed at another point on the screen. The can-
didate has to complete four such exercises in the least
possible time. The total time allotted is 40 seconds.
The candidate moves the tablet with both her hands
to guide the ball in the right direction. The test hence
measures multiple coordination.

6. Roll the ball-B (ROLL B): This app is similar to
ROLL A. In this app, obstructions are placed in the
path of the ball’s movement (see Figure 1d). This is
introduced to increase the degree of difficulty of the
exercise. The time allotted to complete this exercise is
60 seconds.

7. Fit a circle (FIT): We designed an app similar to the
act of grabbing an object. The candidate is asked to
perform a pinching action in a controlled environment.
Two concentric circles were shown on the screen. The
diameter of the inner concentric circle was fixed while
that of the outer circle could be changed by the candi-
date. In order to change the diameter, the candidate
had to place her thumb and her index finger on two
points provided on its circumference and move them
inwards or outwards without lifting them up. The di-
ameter changed as the person dragged the two points.

2The accelerometer is calibrated at the beginning of the test
by asking the candidate to place it on a flat table.
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Skill Type TT

Spot Douse the Fire

Trace
Trace Triangle A and B

Trace Path A and B

Multiple Roll Ball - A and B

Grab/Pinch
Fit Circle

Resize Circle

Rotate
Draw an Arc - A

Draw an Arc - B

Table 2: List of tablet-based tests (TT).

The objective was to reduce the outer circle’s circum-
ference to match that of the inner circle. As soon as
the two circles coincide, the screen is refreshed with
two circles of different radii picked randomly. The can-
didate was required to perform this pinching action as
many times as possible in 40 seconds. The app re-
quires the rapid movements of fingers, say in grabbing
many objects, one after the other and thus measures
wrist-finger speed.

8. Resize the circle (RESIZE): This is similar to the
FIT app. The difference is that the outer circle now
has to be shrunk and fit into a target ring as against
placing it in a smaller concentric circle (see Figure 1e).
On placing the outer circle within the target ring, the
candidate is expected to lift her fingers from the screen,
which then triggers the appearance of another target
ring on the screen. The action is not considered until
the fingers are lifted from the screen. This test mea-
sures the accuracy aspect, i.e. finger dexterity.

9. Draw an arc-A (ARC A): This app attempts to
capture a candidate’s wrist and finger rotation move-
ment, as required, say, to screw or unscrew a nut and
bolt. An arc is shown on the screen along with a pivot
point (see Figure 1f). The candidate has to place her
thumb on the pivot point and trace an arc shaped
path with her index finger. On completing a trace,
the screen is refreshed and a path with a different ra-
dius is presented. The candidate is required to trace
six paths of varying radii in the least possible time.
The arc paths are narrow (0.8 cm) requiring the can-
didate to be precise in her tracing. The entire task
needs to be completed within 30 seconds. This test
requires controlled and precise circular movements of
the fingers. This test measures finger dexterity.

10. Draw an arc-B (ARC B): This app is similar to the
ARC A app but has wider arc paths. These arcs have
200% wider paths as compared to the arc paths pre-
sented in ARC A. The candidate is required to trace as
many arcs as possible in 30 seconds. This test requires
rapid movement of wrists, say, in screwing a light bulb
into a socket. This test measures wrist finger speed.

For each app, the candidate is instructed whether to place
the tab on a table or hold it in her hands.

Skills measured MST

Finger dexterity O’Connor Tweezer Dexterity test [12]

Manual dexterity GATB Manual Dexterity test [6]

Wrist-finger speed Large Tapping test [6]

Multiple coordination Purdue Pegboard test [13]
We used the specific part of the test correspond-
ing to coordination of both hands.

Table 3: List of non-automated manual motor skill tests
(MST).

# App Score

1 Douse the Fire Number of Correct douses

2 Trace Triangle - A In-distance - Out-distance

3 Trace Triangle - B In-distance

4 Trace Path - A Time
In-distance−Out-distance

5 Trace Path - B Time
In-distance

6 Roll Ball - A Number of Rolls
Time taken

7 Roll Ball - B Number of Rolls
Time taken

8 Fit Circle 1
Number of fits

9 Resize Circle 1
Number of resizes

10 Draw an Arc - A Arcs
Time taken

11 Draw an Arc - B In-distance

Table 4: Selected scores for each app. In-distance: Distance
traced within path. Out-distance: Distance traced outside
path.

4. EXPERIMENTS
We wish to answer whether the performance on tablet-based
tasks can predict job performance. Specifically, we find out
how our tablet-based tests and manual, non-automated mo-
tor skill tests compare in predicting job performance in in-
dustrial tasks like operating a lathe machine or tailoring
clothes. This would act as a true indictor to suggest the
practical use of the tablet-based tests in talent hiring. We
note here that critical steps of non-automated motor skill
tests like setting up the equipment, conducting the exercises
and reporting scores are prone to human errors. Tablet-
based tests have the distinct advantage of being devoid of
such standardization issues. This advantage is likely to con-
tribute towards its better predictive power.

4.1 Setup
The tests were administered to a workforce (referred to as
candidates henceforth) belonging to three different occupa-
tions - tailors at a garment manufacturer, machinists and
grinders at a machine-shop training company and machine
operators at a skill training company. Each candidate was
administered two sets of tests - tablet-based tests (TT hence-
forth) and non-automated, manual motor skill tests (MST
henceforth). Four tests, as described in Table 3, were part
of the MSTs. The standard set-up as described in [6] was
followed in administering these tests. The eleven app-based
tests described in §3 were part of the TTs.

TT and MST scores: In order to quantify a candidate’s
performance on our apps, we derived a single score for each
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Job Performance Metrics
TT Scores MST Scores ATD Scores

Spot Trace Grab/Pinch Rotate MD WFS FD MC ATD ATT

Tailors (N = 74)(Age range: 20− 55 years)

Rate the tailor on the neatness
of his/her completed work.

0.22* 0.37** 0.08 0.08 -0.09 -0.09 0.10 -0.10 NA NA

Would you entrust him/her
with a complicated task?

0.16 0.33** -0.10 -0.04 -0.08 -0.33** 0.20* -0.14 NA NA

Rate how quickly s/he is able to
complete her/his tasks.

0.21* 0.21* -0.02 0.04 -0.13 -0.20* 0.01 -0.13 NA NA

Machinists and Grinders (N = 68)(Age range: 17− 24 years)

Practical scores 0.38** 0.29** 0.34** 0.07 0.07 -0.14 0.13 0.02 -0.06 NA

Electric Machine Shop score 0.27** 0.11 0.21* -0.15 0.22* -0.29** -0.03 0.10 0.12 NA

Machine Operators (N = 78)(Age range: 19− 38 years)

Is s/he able to finish all the sub-
tasks in a given operation?

0.15 0.23** 0.00 -0.02 0.05 0.00 0.11 0.01 0.20* 0.27**

Rate how quickly s/he is able
to complete the assigned oper-
ations.

0.17 0.19* 0.04 -0.07 -0.14 -0.19* -0.01 -0.03 0.06 NA

* p<0.1; ** p<0.05; ATD : Attention to Detail scores; ATT : ATD + Best TT score;

FD - Finger Dexterity; WFS - Wrist-Finger Speed; MD - Manual Dexterity; MC - Manual Coordination.

Table 5: Correlations with job performance.

app (tabulated in Table 4). Further, the 11 tests were
grouped into 5 skill types: Spot (DOUSE), Trace (TRI A,
TRI B, PATH A, PATH B), Multiple (ROLL A, ROLL B),
Grab/Pinch (FIT, RESIZE) and Rotate (ARC A, ARC B)
(see Table 2). Each of these 5 skills was represented by a sep-
arate score. These scores were calculated by averaging the
z-scores of apps contained in the skill3. For the four MSTs,
scores were calculated as described in [6]. They generally
measured the time taken to complete the task.

4.2 Data Set
The tests were administered to candidates belonging to three
different occupations - 81 tailors, 74 machinists and grinders
and 82 machine operators. The sample size was limited by
the strength of the organizations. All three tests were ad-
ministered by two event managers who had received a week’s
training on setting up the tests. Candidates performed the
two tests (TTs and MSTs) with a gap of 5-6 hours. Each
candidate’s test was fully video-recorded. A review of these
videos revealed that the standard process was not followed
in 7.2% of the sample. These were discarded. The time
recorded in nearly 3.7% samples for one or more of the MSTs
was corrected. Post these changes, we finally had samples
from 74 tailors, 68 machinists and grinders and 78 machine
operators. We only considered the dominant hand in our
analysis, except in the case for multiple-coordination which
involves co-ordination between both hands. For machinists,
grinders and machine operators, we also administered a mul-
tiple choice test of attention to detail (ATD)4. This was
done to find what additional predictive power the TT scores

3Considering scores separately added no insight but in-
creased complexity
4This is a criterion valid test used in hiring professionals in
retail, sales, marketing etc. The 74 tailors had no formal
education and hence could not take this test.

added over the cognitive ability test scores to predict job
performance.

Job performance scores: In the case of tailors and ma-
chine operators, a performance questionnaire (column 1 of
Table 5) was developed on discussing with the candidates’
managers. The managers were then asked to score the can-
didates on these metrics on a scale of 1 to 5. In the case
of machinists and grinders, the training organization had
documented scores from the candidates’ lab-sessions. These
scores were based on their performance on various job tasks
given to them during their training. These ratings and scores
formed the job performance data for our analysis.

4.3 Analysis and Observations
We compute the Pearson correlation coefficient (r) of all TT
scores, MST scores and ATD scores (where available) with
each metric contributing to job performance. The TT scores
are fashioned to signal higher skill with higher magnitude
whereas MST scores are fashioned to signal lower skill with
higher magnitude. Hence, the correlation of job performance
scores with TT scores is expected to be positive while the
correlation with MST scores is expected to be negative. In
our analysis, we observed the correlation between TT scores
and MST scores to be in the range −0.27 to −0.34. This
shows shared variance between the two scores. We noticed
however that the scores of Multiple Coordination (one of
the TTs) correlated positively with other MST scores. We
hence do not include it in any further analysis. Additionally,
by doing a regression, we found what incremental value the
best correlating TT scores added over and above the ATD
scores. These values and their respective significances are
reported in Table 5.

First, and most importantly, we find that for every job per-
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formance metric, at least one TT score shows a significant
correlation (at p ≤ 0.1) ranging from 0.19 − 0.38 (mean:
0.27). This clearly establishes that TT scores are able to
predict job performance and can be used for hiring/selection
decisions by following standard practices. Second, MST
scores show a significant correlation with four out of the
seven performance metrics, where they range from −0.19
to −0.33 (mean:−0.25). We note here that the correlations
between the four MSTs and job performance scores are in
line with historically observed values (Table 1). ATD scores
show a significant correlation in one case, where the Trace
score adds significant incremental correlation (0.07) over and
above it (column ATT, Table 5).

Among the app scores, there is maximum support for the
Trace app which shows the highest correlation with job per-
formance in five out of the seven metrics. In the remaining
two metrics, the Spot app scores show the maximum corre-
lation with job performance. While there is some support
for the Grab/Pinch scores, there is hardly any support for
the Rotate app scores. Among MST scores, the Wrist-finger
Speed scores consistently correlate with job performance.

Discussion: We find that the TT scores are predictive of
job performance in all cases in our study. The validity in-
dices are comparable (and in cases bests) those observed for
MST scores in the past (Table 1). The maximum support
is for the Trace app. These are extremely encouraging re-
sults. This implies that the test may practically be used in
making hiring decisions. The best way to do this would be
to first perform a validity study with incumbents in a job in
order to establish which TT apps distinguish on-job perfor-
mance. These apps could then be used on new applicants
and their scores be considered in the hiring process. While
there is evidence for the Trace scores to be a universal pre-
dictor, the same may be established with further validity
studies and meta-analysis. We envision that through such
extended studies, a mapping could be formed between job
roles and TT scores, akin to what has been established for
MST scores. One would then know a priori which TT app
and scores to use when hiring for a particular job role.

In four out of seven metrics, the MST and TT scores do
equally well. One may observe that the MST scores did
not do as well as the TT scores in three cases. This was
surprising to us. A couple of reasons could explain this -
first, the TT scores measure a larger variety of movements
than the MST scores and some of these could potentially
correlate better with job performance. For instance, there
isn’t any MST task similar to the structured tracing task in
the TT. The other reason, as noted earlier, could be non-
standardization and human errors in MST as compared to
a controlled, completely standardized tablet-based test.

5. CONCLUSION AND FUTURE WORK
In this work, we explore the use of touch screen surfaces
to measure motor skills. We show the scores of blue-collar
workers on tasks performed on touch screen tablets to cor-
relate with their respective job performances in the range
of 0.19 to 0.38. These results make a strong case for us-
ing such automated, touch-screen based tests in job selec-
tion processes and in providing automated feedback. Such
tests would make the process of identifying and credentialing

skilled labor highly scalable and efficient, thereby benefiting
both, individuals and corporations.

Our current work paves the way for substantial future work.
The design of novel apps for motor skill measurement is a
nascent area of research and could be further developed. By
analyzing scores from such apps, we could create a map to
suggest what scores are suitable for a given job role. Having
such a map would help in automatically providing feedback
to candidates on the skills they have. We could also per-
form the current tab tests for a number of other different job
roles, which would help validate its design. Other devices
and technologies such as smartphones5 and resistive touch-
screens could be experimented with, which could potentially
make these tests more accessible, help do more accurate as-
sessment and also grade new skills. For instance, a pressure
detecting screen may help measure how soft the touch is,
which might be relevant in nursing. We believe that the
ideas introduced in this work can lead to substantial inno-
vations in the blue-collar labor market.
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Jyväskylä, 2007.

[11] O. I. Network. O*net online, 1998.
https://www.onetonline.org.

[12] J. O’Connor. Instructions for the o’connor tweezer dexterity
test. Indiana: Lafayette Instrument, pages 1–5, 1998.

[13] J. Tiffin. Purdue pegboard examiner manual. Science
Research Associates, 1968.

[14] L. G. Ungerleider. Functional mri evidence for adult motor
cortex plasticity during motor skill learning. Nature,
377(6545):155–158, 1995.

5Most apps here can be used on a smartphone with some
adjustment in the scale and aspect ratio of the apps and
recalibration of scores. It may not effectively measure wider
movements of the arms.

Proceedings of the 9th International Conference on Educational Data Mining 699



Industry Track - Posters

Proceedings of the 9th International Conference on Educational Data Mining 700



Studying Assignment Size and Student Performance 
Using Propensity Score Matching 

 Shirin Mojarad 
McGraw-Hill Education 

281 Summer Street,  
Boston, MA USA 

Shirin.mojarad@mheducation.com  
 
 

ABSTRACT 
 

Teachers and instructors assign students homework of varying 
lengths. There is considerable evidence that factors such as 
cognitive load play a role in student performance and learning, but 
there has not been sufficient study of how these phenomena play 
out in the specific case of the length of homework. In this paper, 
we study the impact of assignment size on student performance. 
This paper represents the first attempt we are aware of to study 
how long assignments should be, in real-world data, in order to 
maximize student performance and learning. However, natural 
assignments of different lengths often vary in other ways. We 
control for this limitation using propensity score matching (PSM), 
an approach that helps to control for variables affecting outcome 
besides the intervention of interest. As such, we can conduct our 
analysis on large-scale data naturalistically collected through a 
digital educational platform. We use PSM to study the effect of 
assignment size on student performance while controlling for 
assignment difficulty, discrimination and reliability. We find that 
shorter assignments result in higher performance. These results 
can be used as a guideline for instructors and instructional 
designers when designing course assignments. 

Keywords 

Propensity score matching, assignment size, classical item 
analysis, item difficulty, item discrimination, student 
performance, test reliability 

1. INTRODUCTION 
Graded assignments are used as an effective method to improve 
students’ performance on final tests and improve learning [1]. 
Considering multiple shorter assignments as opposed to few, 
larger assignments is amongst the recommendations by USC for 
designing effective homework assignments [2]. This is because 
shorter assignments are less intimidating and help enhancing 
student motivation by minimizing the negative effects of a poor 
grade on student learning experience. In this study we investigate 
whether assignment size affects student performance. Since 
assignments of different sizes often vary in other ways, other 
assignment characteristics affecting the performance should be 
isolated to enable the study of assignment size effect on student 
performance.  

Randomized control trials are considered the gold standard in 
conducting studies to investigate the effect of a particular 
intervention on a specific outcome [3]. However, their application 
is limited in educational settings as they can be conducted on a 
limited number of students. Results from the comparison of RCTs 
and OSs show that OSs can expand upon RCTs due to the use of 

large and diverse sample population [4]. Propensity score 
matching (PSM) is a common method in OSs to study the causal 
effect of an intervention on a particular outcome [4]. In this paper, 
we have used PSM to leverage the large amounts of data available 
through McGraw Hill Education digital platforms. 

The goal of this paper is to study the impact of assignment size on 
student performance in isolation from other assignment 
characteristics including assignment difficulty, discrimination and 
reliability. This is the first effort of its kind in measuring an 
optimal assignment size to maximize student performance.  
 

2. Materials and Methods 
2.1 Data 
We study these issues using data from assignments completed 
through McGraw-Hill Education’s higher education platform, 
Connect. Connect is one of the most widely used digital platforms 
in higher education with over two million students and 25,000 
instructors [5][6]. Connect allows instructors to design 
assignments in form of homework, practice, exams, or quizzes. 
Here, we refer to assignments as a set of items that either test 
student on knowledge and skills or allow students to practice what 
they have learnt on the course. Most Connect assignments are 
graded by the system automatically.  
The dataset in this study is retrieved from all the courses created 
from the title Managerial Accounting 2nd Edition, by Robert 
Libby. We include all data for this title between September 2014 
and January 2016. The original dataset included 362 classes, 
where 12,588 students responded on 3,072 items on 5,330 
assignments, for a total of 1,031,298 student-item pairs. We have 
kept only assignments that have 10 or more student submissions. 
After applying this filter, there are 2,826 assignments left in the 
data. From the four of types of assignments in Connect, i.e. 
homework, practice, exam and quiz, we have focused on 
homework assignments. The reason is that in homework 
assignments, score is not as a strong motivator as exams and 
quizzes since homework assignments have a low weight in final 
score and are mainly aimed for development of self-study habits 
in students [7]. Hence, students are more motivated by learning to 
finish homework assignments. Therefore, size of a homework 
assignment will be an important factor in keeping students 
engaged throughout the assignment.  

2.2 Exploratory Data Analysis 
The dataset includes assignments’ size, difficulty, discrimination, 
reliability, and average score where difficulty, discrimination and 
reliability are calculated using classical item analysis [8]. The 
assignment size in this dataset varies between 1 to 101 items. 
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Based on the rarity of very large assignments (and the likelihood 
that an assignment with over 100 items represents test practice or 
something different than briefer assignments), we have filtered 
down to assignments of size 16 or less. Filtering in this fashion 
still retains 98% of the assignments. We categorized assignments 
into short and long assignments by using a cut off for number of 
items within that assignment. Frequency of assignments drops for 
assignment sizes of larger than 5, which indicates most instructors 
prefer shorter assignments of size 5 or less. We have used this as a 
reference to decide a cut off value for number of items for short 
and long assignments. Following this definition, there were 1,787 
short and 1,039 long assignments.  

Figure 4 shows the mean score of different assignment sizes. As 
shown in this figure, the mean score of assignments drops as the 
assignment size increases.  
 

 
Figure 4. Assignment size versus assignment mean score 

 

3. Results 
Overall, students achieve an average 8.7 (on a scale of 0 to 100) 
higher score on short assignments than long assignments. When 
we control for difficulty, discrimination and reliability using PSM, 
students still achieve a 6.8 (on a scale of 0 to 100) higher average 
score on short assignments compared to long assignments.  
The differences between the characteristics of short and long 
assignments matched using PSM are shown in Table 2. We have 
used Algina’s d to compute the effect size of the difference of 
means between the two assignment groups [9].  
As shown in this table, the effect size of difficulty, discrimination 
and reliability between two groups of assignments is negligible, 
indicating that these factors are no longer significant once we 
control for them using propensity score matching.  
 

Table 2. P-value and the effect size of short versus long 
assignments, matched using PSM method 

Attribute Mean 
Difference 

Effect Size 
(Algina's d) P-value 

Average Score 6.8 0.40 <0.001 
Difficulty 0.00 0.00 0.99 

Discrimination 0.00 0.01 0.53 
Reliability 0.00  - 0.01 0.44 

 

4. Conclusion 
In this study, we investigated the effect of assignment size on 
student performance. Results of EDA show that student 
performance drops as the assignment size increases. The relation 
between assignment size and average score indicated that 
performance drops dramatically in assignments sizes of higher 
than 6. Hence, we used a cut off value of 6 to define short and 
long assignments. In order to investigate the statistical 
significance of this difference in two groups of assignments, in 
isolation from other factors affecting assignment performance, we 
used propensity score matching (PSM). The effect size and 
average performance difference of short versus long assignments 
is still significant when matching assignments with similar 
difficulty, discrimination and reliability. This indicates that longer 
assignments may increase cognitive load for students and 
negatively affect student performance and learning. These results 
can be used in form of recommendations to instructors when they 
are designing homework assignments on the Connect platform.  
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ABSTRACT 
Formative, content-level feedback on student writing has been 
shown to have positive impacts on both writing and learning out-
comes. However, many teachers struggle to provide this type of 
feedback to large classrooms of students. This paper takes an 
initial step towards supporting teacher-facilitated feedback 
through the use of automated and user-directed topic discovery. 
114 student essays were collected from a local underperforming 
middle school as part of a pilot study for Write Local, a digital 
repository and workspace for authentic problem-based learning 
activities. Predictive models were built and evaluated to explore 
the impact of different topic discovery approaches as well as 
correction of student spelling errors on model accuracy. The re-
sulting models provide promising direction for scaffolding teach-
ers in providing formative feedback on content-level features of 
students’ problem-based writing. 
Keywords 

Problem-based writing, formative feedback, teacher-facilitated 
feedback, automated writing assessment, topic discovery 

1.! INTRODUCTION 
Problem-based writing tasks seek to elicit high-quality student 
writing by contextualizing the purpose of the task and providing 
an authentic audience [4]. These tasks also tend to extend across 
several days or learning periods offering more opportunities for 
formative assessment and feedback, which is expected to yield 
improved writing outcomes [1]. However, it is often difficult for 
teachers to focus on high-level features such as the focus, accura-
cy, and organization of student writing when working with a large 
classroom of students. Instead, teachers are more likely to focus 
on surface level features such as spelling, grammar, and mechan-
ics. This is especially true in underperforming schools [2].  

This work serves as an initial investigation into automated as-
sessment of student writing in order to scaffold teachers in provid-
ing higher-level formative feedback. A pilot study was conducted 
as an initial step in the Write Local project. Write Local is intend-
ed to be a digital repository and workspace to facilitate both 
teachers and students in authentic problem-based writing activi-
ties. As part of a pilot study, 114 student writing samples were 
collected from students at an underperforming [3], local middle 
school as part of a multi-day problem-based learning activity. 
Student essays were manually coded for essay focus and accuracy. 
A variety of models for predicting these features were constructed 
and evaluated as an initial exploration for scaffolding teacher-
facilitated feedback. In particular, this work sought to explore the 
role of automated and user-directed topic discovery in predicting 

content-level essay features. Additionally, we sought to investi-
gate the importance of correction of student spelling mistakes 
prior to model construction. The results indicate that these initial 
models can serve as a starting point for supporting teachers in 
providing feedback on content-level features in problem-based 
writing and inform several directions for future work. 

2.! PILOT STUDY 
This investigation uses data collected during a pilot study of Write 
Local. Write Local seeks to employ crowdsourcing to ensure 
teachers and students have immediate access to a large repository 
of writing prompts that cover the entire spectrum of text types and 
audiences—persuasive, informative/explanatory and narrative. 
Local businesses, and in particular, those employing STEM-
related positions, can post various letters of need as well as any 
supplemental documentation such as images or vocabulary lists. 
Teachers can then select a call from the repository and assign the 
project to their students. Students will use the integrated work-
space to plan, research, document, draft, revise, present, and sub-
mit their response in one central space.  

The entire sixth grade from a local, underperforming [3] middle 
school (54% free/reduced lunch) participated in this study as part 
of their regular social studies class. Of the 168 participants, 86 
were male and 82 were female with a mean age of 11.5. Of the 
168 participants, 114 completed all components of the procedure. 
For the remaining analyses only data from these 114 students is 
used.  

For the study, students were divided by class into one of two 
conditions: experimental and control. On the first day of the study, 
students in the experimental condition viewed a 3-minute intro-
duction video that contained problem context: a frozen yogurt 
company plans to open a new location and asked students to write 
a letter with their researched opinions about 1) which 5 toppings 
should be available on the topping bar and 2) where the new shop 
should be located. Students used authentic data and a map of the 
area to make their decisions. Students in the control condition 
were given a similar task without real-world contextualization. 
Students in both conditions were given two full 50-minute class 
periods to plan and write their letters. 

Three researchers then transcribed and coded the essays with 
sufficient inter-rater reliability (k = .89). Essays were given a 
composite score for essay focus and accuracy. Using the final 
composite scores, students were divided into 3 evenly distributed 
categories (High, Medium, and Low) for both focus and accuracy. 
These groupings are intended to be presented to teachers to inform 
formative feedback for their students. 
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3.! TEXT ANALYSIS AND MODELING 
The first step in building predictive models of student essay con-
tent classifications was to extract meaningful features from the 
student text. In total, the corpus for analysis included 114 student 
essays. The average length of the essays was 130.0 (SD = 91.4) 
words and 9.6 (SD = 7.6) sentences. The writing samples provid-
ed by the students were analyzed using SAS® Text Miner® and 
SAS® Enterprise Miner®.   
For the purpose of this analysis we focused on the document topic 
analysis features of SAS Text Miner. The text topic procedure 
identifies terms that are strongly associated within the corpus. It 
also provides a strength of each topics’ presence within the docu-
ment. Topics can be automatically learned from the corpus or they 
can be provided or fine-tuned manually. Both approaches were 
used for this work. For automatic topic discovery, the limits were 
set at 25 multi-term topics. Manually-created topics were generat-
ed by highlighting terms in the text of the prompt and identifying 
whether each term applied to the problem context, the problem 
request, or the task instructions. In total 27 terms were identified; 
8 context terms, 13 request terms, and 6 instruction terms.  These 
terms were provided as user-created topics to the topic discovery 
procedure. In addition, up to 25 multi-term topics could be auto-
matically generated; though because the engine tries to remove 
correlated topics, only 22 new topics were created. Of the 27 user-
provided topics, only 17 occurred in the corpus of student data; 6 
context terms, 9 request terms, and 2 instruction terms.  
During essay transcription and coding, it was noted that there 
were a significant number of spelling errors present in the corpus. 
This may be due to the fact that essays were handwritten without 
the support of automated spell checking tools that many students 
are familiar with. In order to investigate the importance of correct 
spelling in modeling content-level features such as essay focus 
and accuracy, we chose to build models using different levels of 
spelling correction. Three different corpora of student essays were 
provided to the text topic discovery procedures: 1) the students’ 
original texts, 2) an automatically spell-corrected version of the 
text, and 3) a manually spell-corrected version of the text.  
For this exploration, we evaluated models across both topic dis-
covery type (fully-automated and user-facilitated) and spelling 
correction type (manual, automated, and no correction). Addition-
ally, we built separate models to predict both essay focus classifi-
cation and essay accuracy classification. Finally, we used three 
modeling approaches for each corpus: logistic regression, decision 
tree, and neural network.  
Each model was evaluated using 10-fold cross validation and 
predictive accuracies were compared against a baseline of most 
frequent class. This measure was 33.0% and 40.4% for essay 
focus and accuracy, respectively. The most common class for 
each evaluation type was Medium. With one exception, all models 
outperformed baseline with statistical significance at the 0.05 
level (Table 1).  
Overall, the models built using manual spelling correction and 
prompt-based topics outperformed other models in predicting 
essay focus and accuracy. This suggests that the prompt-based 
topics centered on the components of problem-based learning 
activities were beneficial in improving predictive accuracy. Un-
fortunately, this step requires manual annotation for each prompt. 
At present, this task, while manual, is not particularly labor inten-
sive and can scale as we assess whether this benefit holds for 
future, unseen prompts. However, since the objective of Write 
Local is to scale with a large number of problem-based prompts, 

this may no longer be feasible. If we determine that this type of 
prompt annotation continues to be beneficial for predicting essay 
accuracy and focus we may investigate possible methods for 
automating or facilitating this task.  
Secondly, we note that the models using manual spelling correc-
tion tended to outperform models using automatic or no spelling 
correction, though this finding was less reliable. Since the “manu-
al” spelling correction was done primarily using feedback from a 
word processor, it may be the case that had the essays been writ-
ten digitally with spell check options available, many of the errors 
that were corrected would have been found by the student them-
selves. Future work will be necessary to determine if word pro-
cessor spell check features are sufficient for this task. 
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Table 1. Predictive accuracy for essay focus and accuracy 
using (a) discovered topics and (b) prompt-based topics 

Discovered Topics 

 
Spelling Correction 

Model Manual Auto None 

Neural Net F: 57.4 F: 48.9 F: 45.5 
 A: 55.0 A: 51.9 A: 52.6 

Log. Reg. F: 46.5 F: 45.5 F: 44.6 
 A: 56.1 A: 46.4 A: 47.3 

Decision Tree F: 51.3 F: 46.4 F: 47.3 
 A: 55.2 A: 45.3 A: 43.9 

Average F: 48.9 F: 46.9 F: 45.8 
 A: 55.7 A: 47.9 A: 47.9 

    
Prompt-Based Topics 

 
Spelling Correction 

Model Manual Auto None 

Neural Net F: 61.4 F: 50.8 F: 55.4 
 A: 56.1 A: 57.1 A: 50.0 

Log. Reg. F: 56.1 F: 46.4 F: 49.1 
 A: 68.4 A: 62.5 A: 52.7 

Decision Tree F: 53.5 F: 50.0 F: 46.5 
 A: 61.4 A: 54.5 A: 57.1 

Average F: 57.0 F: 49.1 F: 50.3 
 A: 62.0 A: 58.0 A: 53.3 
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ABSTRACT
One significant impact of the Massive Open Online Courses (MOOCs)
phenomenon is that they have accelerated the widespread availabil-
ity of quality education content. We refer to this content as the
Open Educational Resources (OERs). It is our hypothesis that the
OERs can be used to supplement classroom teaching for improved
teacher efficiency and better student outcomes. We present a plat-
form called TutorSpace which helps in curating OER content from
multiple sources, integrating this content into a curricular setting in
the context of what the lecturer is teaching and delivering it to stu-
dents in a personalized way. A particular novelty of the TutorSpace
platform is its capability for content-driven non-linear navigation
of video content.

1. INTRODUCTION
The developing economies such as India, Brazil, China, etc face
acute shortage of quality instructors, which is one of the primary
reason for large number of unemployable graduates [2, 3]. Qual-
ity educational content (i.e. videos, slides, assignments) generated
by the MOOCs can be potentially used to improve student learning
and engagement in developing countries. However, instructors find
it hard to use OER content directly in their course due to many rea-
sons such as lack of context, no easy way of cross-source content
aggregation, limited content search and curation capabilities of ex-
isting systems, and network bandwidth constraints. For example,
Alice is an instructor of an Algorithms course in XY Z university
and she had taught some of the basic sorting algorithms to the stu-
dents of her class. She wants to find specific videos for the “heap
sort" algorithm concept, which can be given as an homework to the
students. As, there would be different videos available online for
this concept with varying duration, difficulty level, sources, etc. Al-
ice is likely to spend a lot of time navigating through the available
videos to finally select a video which suits her class’ requirement.

We present a platform called TutorSpace that helps in searching
and curating OER content from multiple sources, allows integration
this content into a curricular setting in the context of what the lec-
turer is teaching and helps delivering it to students in a personalized
way. TutorSpace uses advance multimedia concepts to support fea-
tures such as quick and efficient video navigation, identification of
topic transitions in a video, adding annotations on a video, etc. For
the students, TutorSpace enables self-paced and ubiquitous learn-
ing where they can see course material posted by the instructor. Tu-
torSpace also provides capabilities for students to share their notes,
video bookmarks with their peers and discuss the topic of mutual
interest in discussion forums.

2. TUTORSPACE PLATFORM

The proposed TutorSpace platform [1] provides content-centric ca-
pabilities to help instructors in the course curation. It allows in-
structors to have a digital presence of a classroom-based course,
ability to search relevant course materials, and inclusion of selected
education content in the curriculum. One of the key features of
TutorSpace is that it provide a lecture planning workbench where
the instructor can pool content from different sources and inter-
sperse outside content with snippets of his/her pre-created content
or classroom teaching. For students, TutorSpace enables self-paced
and ubiquitous learning where they can see course material posted
by the instructor. It also allows students to share their notes, video
bookmarks with their peers and discuss topics of mutual interest in
discussion forums. Some of the primary functional components of
TutorSpace are as follows:

Figure 1: Step-by-step overview of instructor-led content curation
and selection
2.1 Content Aggregation, Indexing & Search
TutorSpace aggregates content from different sources i.e. MOOCs
(Coursera, EdX, Udacity), YouTube, etc. The content aggregation
includes indexing meta-data about the course (i.e., information, syl-
labus), and video lecture specific meta-data (title, description, tran-
script of the video, duration, etc). Similarly, TutorSpace provides
flexibility to the instructor to upload/link his/her own self-generated
content too. Figure 2a presents a snapshot of the search dashboard
in TutorSpace. Instructor can search for any concept and the sys-
tem returns a set of relevant video lectures. The instructor has the
flexibility to add search filters w.r.t. the source of the content (e.g.,
known-OER or all-YouTube) as well as other advanced filters such
as duration, presentation style (e.g., slide or black-board), etc. Ad-
ditionally, TutorSpace indexes meta-data about each video and fur-
ther, this meta-data is presented to provide additional cues to the
instructor as shown in Figure 2b. One of these cues is customized
word-cloud which contain some of important concepts covered in
the video (i.e., video preview). A detailed step-to-step creation pro-
cess of customized word-cloud is presented in one of our earlier
work [5]. These cues can help in the first-level decision making
of whether to play a video or not. For example, word-cloud can
help instructor in answering broad question about the video such
as, “does this video contain algorithms for both linear and binary
search" or “does this video explain heap sort with implementation
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(a) (b)
Figure 2: (a) A snapshot of content search dashboard of Tu-
torSpace. (b) Snapshot of concept relationship for a video

in Python programming language". In low bandwidth settings, it
can save significant amount of time for the instructors [5].

2.2 Content Exploration and Selection
The instructors need to take a deep-dive and explore the content
completely before including it in the teaching plan. Content explo-
ration, specifically for a video, is a time-consuming task where of-
ten videos have long durations. The instructor can select any video
for detailed exploration from the search results shown in Figure 2a.
TutorSpace makes content exploration less time-consuming by pro-
viding techniques for non-linear navigation in a video with the help
of customized word-cloud and parallel 2-D timeline as shown in
Figure 3. Consider a video with the duration of nearly 60 min-
utes which discusses different sorting algorithms, the information
provided by the customized word-cloud will include the name and
time sequence of different algorithms along with other important
terms discussed, which can help an instructor in getting a time-
aware representation of a video [5]. Further, the customized word-
cloud is interactive and instructor can click on any of keyword and
its occurrences are highlighted on the 2-D timeline. The keyword
occurrences represent different time instances where the keyword
appears in the video. Further, mouse-hover event on any of these
occurrences provide the context (i.e. an adjacent sentence) where a
given keyword has been spoken. The click on any of occurrences
will navigate the video to the point, where it was spoken in the
video.

Figure 3: A snapshot of non-linear video navigation dashboard in
TutorSpace with the help of customized word-cloud

Sometime, instructors may want to select a part of the content as
opposed to the complete video. For example, in a 60 minute video
on sorting algorithms, she may want to select only “merge sort"
concept and share it with the students. TutorSpace enables par-
tial selection of a content using its easy “video stripping" method.
As shown in Figure 3, The instructor can move “start" and “end"
(blue color) markers on the video timeline to highlight part of video
content and click on “strip" button to select the content. After se-
lecting the content, the instructor can drag and drop the content in
their lecture plan as shown in Figure 4.

Figure 4: A snapshot of selected content (lecture plan) in Tu-
torSpace

2.3 Other Features
TutorSpace provides a simple and user-friendly way to add notes
and bookmarks on a video. After curation, the instructor can play
the video and add annotations in terms of textual notes, images,
external links/documents, etc with a click of a button. TutorSpace
maintains detailed logs of interaction of the students with the con-
tent. It provides descriptive analytics on shared content to the in-
structors. The analytics include simple student-specific viewing
statistics to fine-grained interaction pattern (i.e., time spent, pauses,
play, etc). The instructor can use these findings to adapt the course
curation strategies or to infer perceived difficulty of certain con-
cepts. For example, if many students are spending a considerable
amount of time on a specific portion of a video, it may need to
be clarified during the class. Furthermore, TutorSpace provides
standard learning management system (LMS) specific features such
as course management, deadline creation and submission, quizzes,
discussion forums, and student information management.

3. DISCUSSION
In developing countries such as India, quality of education is yet
to improve substantially. We presented TutorSpace platform which
can seamlessly enable integration of high-quality OER content in
traditional classroom settings. TutorSpace provides rich multime-
dia capabilities w.r.t. content-indexing, search, non-linear naviga-
tion, and rich curation of the content. These capabilities are specif-
ically designed to help instructor in developing countries. In our
initial field-trial with the instructors, they appreciated the capabili-
ties of the platform and provided several valuable feedback, which
will be crucial for a long term acceptance of such a platform. We
are in process of deploying TutorSpace to many engineering col-
leges in India and will be discussing our experiences in a future
study.
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