
DYNAMIC PROGRAM VISUALIZATION ON ANDROID
SMARTPHONES FOR NOVICE JAVA PROGRAMMERS

Elhard Kumalija, Sun Yi and Ymran Fatih

Kobe Institute of Computing

〒650-0001, Chuo Ward, Kanocho, 2−2−7, Kobe, Japan

ABSTRACT

Dynamic program visualization tools helps to reduce the cognitive load of students in learning programming. However,
to authors’ understanding there is no dynamic program visualization tool that can be used in a widely available
smartphones. In this study, we design a Dynamic visualization engine for java programs that is integrated to java code
interpreter that runs on android smartphones. This tool will be valuable to students who don’t have access to computers.
It can also increase productivity in smartphone usage among lower secondary schools students.

KEYWORDS

M-learning, E-learning, Program Visualization, Java Programming

1. INTRODUCTION

We are surrounded by digital technology everywhere we are than ever before. Computer science literacy is

now the needed basic skill as mathematics. Computer science is now being integrated in primary and

secondary schools curriculum to equip students with the basic skills needed in this digital society. The

computer science curriculum now puts emphasis in computation skills than previous. Visual approach to

teaching computational skills through program visualization has seen as an effective way to motivate students

to learn programming and reduce the cognitive load of understanding programming. Despite higher

ownership of smartphones compared to personal computers there is no program visualization tool for
learning programming using smartphones known to authors. Time spend by individual in using smartphones

is higher than time spent in using PCs. Students are always accompanied with smartphones when commuting

to school and on the way back home. More than 70% of their time is spend in social, entertainment and

gaming activities while only 4% is spent on productivity (Jesse G.R., 2015). This paper presents a design of

Dynamic program visualization on android smartphones for novice java programmers. The tool is expected

to be a great aid to lower secondary schools students in schools where there is no computer laboratories but

also to help students in schools with computer laboratories to use their smartphones in a productive way.

2. BACKGROUND

Nowadays computer science literacy is important skill for every career. Many countries are introducing

compulsory computer science subjects in all levels of education. In 1997, the Ministry of Education of China

emphasized importance of computing in college education regardless of discipline (Pan T.Y., 2017). In 1996

the Government of Tanzania launched computer science curriculum for secondary schools. These early

initiatives were focused on skills to use computer tools. However needed computer literacy skill is shifting

from learning computer tools towards equipping students with computation skills.

Every country is thriving to empower its youth in computer science and computational thinking skills. In

2016, the then President of United States America started a new initiative to empower a generation of
American students with the computer science skills they need to thrive in a digital economy. The focus of

computer science for all is students from kindergarten through high school to learn computer science and be

14th International Conference Mobile Learning 2018

173

equipped with the computational thinking skills they need to be creators in the digital economy, not just

consumers, and to be active citizens in our technology-driven world (Megan 2016). Basic computer skills for

college students (CS0) reform happening in China that shifts the focus of the course from computer tools and

skills to computational thinking (Pan T.Y., 2017). There are also different campaigns like coder dojo and
hour of code that are motivating students all over the world to learn computer science skills.

2.1 Computational Literacy and Digital Divide

Despite all efforts to teach computational skills to students in primary and secondary schools the goals are

still far from being attained. Moreover there is a big difference between developed and developing countries.
According to United Nations statistics division, data shows that the proportion of youth and adults with

information and communications technology (ICT) skills to write a computer program using any language in

all countries is less than 10% but in developing countries the results are worse, with less than 1% in some

countries. Moreover, the proportional of primary and secondary schools with access to computers for

pedagogical purposes varies from 90% to less than 7% in other countries (Sustainable Development Goals

(SDG) Indicators | United Nations Statistics Division, 2017). The low computer literacy can be attributed not

only to lack of computer laboratories in primary and secondary schools in developing countries but also the

low usage of computers among youth.

The low computation literacy is due to difficult in comprehension of computation and digital gap.

Programming is a difficult cognitive skill to learn. Mastering the basis of a programming language is a huge

problem for many students. In order to write a simple program they need to have a basic knowledge of

variables, input/output of data, control structures and other areas. There are much more complex concepts
such as pointers, abstraction or exception handling. Moreover, Students in resource challenged environments

lack opportunity to learn computation skills due to lack of computer labs.

In SDGs goal 4 is to ensure inclusive and quality education for all and promote lifelong learning. The one

of the aim is by 2030 to ensure that all girls and boys complete free, equitable and quality primary and

secondary education. Recognizing that computer science is a new basic skill necessary for economic

opportunity and social mobility to ensure that students get equitable and quality education the digital divide

needs to be addressed.

2.2 Program Visualization on Android Smartphone

Different tools have been developed to help, motivate and make learning computation skills and

programming an interesting endeavor. These tools employs visual approach to programming and can be

categorized into visual programming environments like Scratch and AppInvetor and Program visualization

tools for example Jeliot and Python tutor.

Program Visualization tools are promising programming teaching tools in early stages of the learning

path of a programmer, teaching the students the basics of programming and algorithms. Software

Visualization tries to represent software systems in ways that help the user, developer, or student to
understand them (Bhattacharya, P. Et al, 2011). A study of 600 students in a programming course with focus

on visual approach showed increase in pass rate from 12% to 23% (Cisar S.M. Et al. 2011). According to

Bhattacharya et al (2011) visualization would help novice programmer understand many abstract concepts

and how to implement the concepts easier and better.

Furthermore, there is a widespread use of smartphones and nowadays smartphones are so powerful that

there is no different between a laptop and smartphone apart from screen size. Youth are accompanied with

their smartphones when commuting from home to school and back, the mobility of smartphones make their

usage simple and everywhere.

To address the digital divide gap, dynamic program visualization on android smartphones for novice
java programmers is proposed. The proposed solution capitalizes on youth preference to use smartphones

and advantages of visual approach to learning programming. Students in resource challenged environments

will be able to write java code, compile and visualize code execution on android smartphones. The target is
primary and lower secondary school students.

ISBN: 978-989-8533-76-0 © 2018

174

3. RELEVANT WORK

This work involves two aspects the first is programming using smartphones and the second is providing

dynamic program visualization.

3.1 Program Visualization Tools

Program visualization is graphical presentation of code execution. Jeliot3 is a program visualization

application. It visualizes how a Java program is interpreted. Method calls, variables, operation are displayed

on a screen as the animation goes on, allowing the student to follow the execution of a program step by step.

Programs can be created from scratch or they can be modified from previously stored code examples; all the

visualization is automatically generated (Moreno, A. Et al. 2005).

mJeliot supports interactive visualization of program behavior where learners become actively involved

in testing their knowledge in an environment where they receive direct feedback about their own hypotheses

(Pears, et al. 2011). What is missing is program visualization tool on smartphones as all tools (known to
authors) can be used with personal computers.

3.2 Smartphones in Learning Programming

The growth of mobile technologies was evolutionary in the progress of technology; it opened a revolution in

computing in a quicker time frame. The easy availability and extreme mobility with rich set of applications

made smartphones an inevitable tool for students.
Different approaches has been adopted to utilize the potential of mobile phone to students studying

programming, example delivering education content, introduction to programming where students learn

directly by developing smartphone applications and using smartphone to write programs that will be run on

smartphones (John M.S. & Ran, M. 2015). There are mobile platforms for learning programming on

smartphones like mobProg a mobile-based application that provides students with a smart phone based

platform for learning Java programming (Hashim, A. 2007) and Microsoft TouhDevelop a programming

environment intended to enable anyone to use a phone to program the phone using scripts for their windows

based smartphones (Athreya, B. Et al. 2012).

Holz et al (2011) researched on integrating smartphones as interesting everyday objects into computer

science courses to raise motivation and the results show that using smartphones can have a highly

motivational effect on students of both sexes and the usage of the latest media and technologies is generally
far more motivating than the usage of the old and long-known ones. Eighth grade students were taught

programming using TouchDevelop the results are, 7% of the students stated that they thought the

development of a mobile application with TouchDevelop was easy, 48% thought it was somewhat difficult,

and 45% said it was difficult. However, 86% of the students wanted to create more applications using

TouchDevelop. 92% of the girls wanted to continue writing applications whereas only 38% of them had an

idea of what applications they could create prior to the class (Tillmann N. et al. 2012). This shows the

potential of using smartphones as a tool for teaching programming. However, Alsaggaf (2012) points out that

while most students today own and use mobile devices, these devices are not obviously utilized as practical

learning aids in lectures. Furthermore, these tools also lack visualization which is very important in learning

programming.

4. DYNAMIC PROGRAM VISUALIZATION ON ANDROID PHONES

Dynamic program visualization engine on android smartphones is designed to support basic common

programming concepts written in Java programming language syntax. Dynamic visualization is provided for

sequential instruction execution, variable declaration and assignment, Expression Evaluation, data input,

message output, selection, loop and function calls.

14th International Conference Mobile Learning 2018

175

4.1 System Architecture

The system contains the user interface, Tokenizer, Parser, Interpreter and visualization Engine as shown in

figure 1. User interface includes Editor and Visualization Pane. User writes code using editor and source

code is tokenized and parsed before interpretation.

Interpreter sends command to visualization engine which animates code execution on visualization pane

(4,5), during code execution visualization user can enter input to the program (6) and line of code in

execution is highlighted in the Editor (7).

 Figure 1. System Architecture Figure 2. Source Code Editor

4.2 Program Visualization and Animation Control

The first stage in dynamic program visualization is to write source code in the source code Editor The editor

contains buttons for compiling and controlling program visualization as shown in figure 2. Play button is

used for compiling and starting program animations. It changes to stop button during program visualization

so user can stop program visualization and go back to edit code. Forward and backward buttons are used for

step wise animation. Forward and backward buttons are activated by pressing pause button.

During program execution, user is provided with graphical representation of program execution. Program

in figure 2, includes sequential instructions, variable declaration and assignment, data input, message output

and Expression Evaluation is used to demonstrate the dynamic program visualization. Sequence of

instruction execution is animated by highlighting with pale dark blue color the instruction number of the
current instruction (see instruction number 4 in figure 3).

Variable declaration is shown by adding a row in a table with first column presenting variable name and

second column shows data stored in that variable. When data assignment instruction is executed, the

corresponding data field in a variable table changes from null to the assigned data value. Instruction number

7 of the source code, the program asks input. In executing this instruction a EditText view pops up to the

right side of variable declaration, where user can type in the value. The typed in value is assigned to the

corresponding variable as is entered. Figure 4 above shows the presentation.

Figure 3. Variable Declaration Figure 4. Data Input

ISBN: 978-989-8533-76-0 © 2018

176

Note that visualization designed does not support Object oriented programming concept. Hence

input.nextInt() is not related to a method nextInt() in Scanner class of the java.util package but it is defined as

the instruction to get input from the user so that user can input data during visualization. Same case applies to

System.out.println().
Expression Evaluation is visualized by a pop up TextView which appears to the right of variables

declaration. This region is used also for data input and output message. Instruction number 8 is expression

evaluation, a TextView pops up to the right of the variable declaration visualization and shows the values of

variables instead of variables names of the expression, the expression result is stored to the variable.

Expression evaluation is shown in blue color to distinguish it from data input which is shown in red color and

message output which is show in yellow.

Finally message output instruction number 9, message output is acting like a console in standard

compilers and IDE. The message is shown with yellow background TextView to the right of the variable

declaration.

5. CONCLUSION

Currently, program visualization for Selection, Loop and Functions are under development. Due to small

screen size it is challenging to visualize classes and objects therefore the visualization of these programing

concepts will not be provided. However it is expected that the tool will be useful for novice programming

learners in learning basic programming concepts. It is also expected that the tools can enable a large number

of students in resource challenged environments to learn computation skills as it can be accessed on widely

available smartphones. The process of evaluating this tool in learning environment is under way.

REFERENCES
Alsaggaf, W., 2012. Enhancement of learning programming experience by novices using mobile learning: mobile

learning in introductory programming lectures. Proceedings of the ninth annual international conference on

International computing education research, ACM , pp. 151-152.

Athreya, B. et al, (2012). End-user programmers on the loose: A study of programming on the phone for the phone.
In Visual Languages and Human-Centric Computing (VL/HCC), 2012 IEEE Symposium, pp. 75-82.

Bhattacharya, P. et al, 2011. A Collaborative Interactive Cyber-learning Platform for Anywhere Anytime Java
Programming Learning. In Advanced Learning Technologies (ICALT), 11th EEE International Conference, pp. 14-16.

Čisar, S. et al, 2011. Effectiveness of program visualization in learning java: a case study with jeliot 3. International
Journal of Computers Communications & Control, pp. 668-680.

Hashim, A., 2007. Mobile Technology for Learning Java Programming-Design and Implementation of a Programming
Tool for VISCOS Mobile. Unpublished Master’s thesis, University of Joensuu, Finland.

Holz, J. et al, 2011. Using smartphones to motivate secondary school students for informatics. In Proceedings of the 11th
Koli Calling International Conference on Computing Education Research , ACM, pp. 89-94.

Jesse, G. R., 2015. Smartphone and App Usage Among College Students: Using Smartphones Effectively for Social and
Educational Needs. In Proceedings of the EDSIG Conference, pp. 3424.

John, M. S. and Rani, M. S., 2015. Teaching Java Programming on Smartphone-pedagogy and Innovation; Proposal of its
Ontology Oriented Implementation. Procedia-Social and Behavioral Sciences, 176, 787-794.

Moreno, A. et al, 2005. Jeliot 3, an extensible tool for program visualization. In 5th Annual Finnish/Baltic Sea
Conference on Computer Science Education.

Pan TY., 2017. Reenergizing CS0 in China. In: Rich P., Hodges C. (eds) Emerging Research, Practice, and Policy on
Computational Thinking. Educational Communications and Technology: Issues and Innovations. Springer, Cham

Pears, A. and Rogalli, M., 2011. mJeliot: ICT support for interactive teaching of programming. In Frontiers in Education
Conference (FIE), IEEE, pp. T1J-1.

Smith M., 2016. Computer Science For All, https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all,
accessed Nov 2017.

Tillmann, N. et al, (2012). The future of teaching programming is on mobile devices. Proceedings of the 17th ACM

annual conference on Innovation and technology in computer science education, ACM, pp. 156-161.

United Nations Data., 2017. http://data.un.org , accessed December 2017

14th International Conference Mobile Learning 2018

177

	14TH INTERNATIONAL CONFERENCE ON MOBILE LEARNING 2018

	COPYRIGHT

	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	PANEL
	FULL PAPERS

	METHODOLOGY FOR BUILDING VIRTUAL REALITY MOBILE APPLICATIONS FOR BLIND PEOPLE ON ADVANCED VISITS TO UNKNOWN INTERIOR SPACES
	A MOBILE CLOUD COMPUTING BASED INDEPENDENT LANGUAGE LEARNING SYSTEM WITH AUTOMATIC INTELLIGIBILITY ASSESSMENT AND INSTANT FEEDBACK
	THE EduPARK MOBILE AUGMENTED REALITY GAME: LEARNING VALUE AND USABILITY
	MOBILE LEARNING CONSIDERATIONS IN HIGHER EDUCATION: POTENTIAL BENEFITS AND CHALLENGES FOR STUDENTS AND INSTITUTIONS
	THE POTENTIAL USE OF SMARTPHONE AND SOCIAL NETWORKS IN PUBLIC SCHOOLS: A CASE STUDY IN NORTH OF BRAZIL
	1-DAY MOOC ON MOBILE LEARNING: AN EXPERIENCE REPORT ON THE MODULE ‘EDUCATIONAL CONTEXTS’
	PROMOTING INTRINSIC MOTIVATION WITH A MOBILE AUGMENTED REALITY LEARNING ENVIRONMENT
	PERSONALIZING LEARNING WITH MOBILE TECHNOLOGY IN SECONDARY EDUCATION
	IDENTIFICATION OF THE PARAMETERS CONCERNING YOUNG ADULTS' TAKING EPISTEMIC RISKS IN THEIR SOCIAL MEDIA POSTS WITH ACADEMIC CONTENT
	A SYSTEMATIC REVIEW OF LEARNING AND TEACHING WITH TABLETS
	INDIVIDUALIZATION OF INSTRUCTION USING‘SOCRATIVE’ APP
	ASSESSING MOBILE INSTANT MESSAGING IN A FOREIGN LANGUAGE CLASSROOM
	MOBILE LEARNING AND DIGITAL LITERACY IN THE CONTEXT OF UNIVERSITY YOUNG ADULTS
	SELFIE AS A MOTIVATIONAL TOOL FOR CITY EXPLORATION
	HOW MOBILE ARE TOP-RATED MOBILE LANGUAGE LEARNING APPS?
	TOWARDS A MOBILE AUGMENTED REALITY PROTOTYPE FOR CORPORATE TRAINING: A NEW PERSPECTIVE

	SHORT PAPERS

	PERSONALIZED ADAPTIVE CONTENT SYSTEM FORCONTEXT-AWARE MOBILE
	MOBILE LEARNING BASED GAMIFICATION IN A HISTORY LEARNING CONTEXT
	A SWOT ANALYSIS OF BRING YOUR OWN DEVICES IN MOBILE LEARNING
	THE CATEGORISATION OF THE PUPILS’ WORK WITH IPAD IN A SPECIAL ELEMENTARY SCHOOL
	WHATSAPP AS A SITE FOR MEANINGFUL DIALOGUE
	SOFTWARE PLATFORM FOR GAMIFICATION IN THE UNIFIED STATE EXAMINATION PREPARATION ACTIVITIES
	THE INTRODUCTION OF A PEER-EVALUATION APP FOR IN-CLASS PRESENTATIONS
	DYNAMIC PROGRAM VISUALIZATION ON ANDROID SMARTPHONES FOR NOVICE JAVA PROGRAMMERS
	IMPROVING MUSIC PRACTICE WITH A MOBILE LEARNING SMARTPHONE APPLICATION
	DEVELOPMENT OF A COLORIMETRIC MEASUREMENT MOBILE APP FOR ACTIVE LEARNING IN ANALYTICAL CHEMISTRY
	EMERGING DOUBLE REPEATED MODEL FOR LANGUAGE LEARNING MOBILE APPS
	COMPARATIVE STUDY OF THE CONTEXT-AWARE ADAPTIVE M-LEARNING SYSTEMS

	REFLECTION PAPERS

	COUNTERFACTUALS, POSSIBLE WORLDS AND SMARTPHONES
	OPPORTUNITIES AND CHALLENGES OF USING AMAZON ECHO IN EDUCATION
	TACIT KNOWLEDGE IN VIRTUAL UNIVERSITY LEARNING ENVIRONMENTS
	BETTER TEACHING AND MORE LEARNING IN MOBILE LEARNING COURSES: TOWARDS A MODEL OF PERSONABLE LEARNING

	POSTER

	MAKING INNOVATION VISIBLE

	DOCTORAL CONSORTIUM

	CELLPHONE USE AND TECHNOLOGICAL APPROPRIATION AMONG HIGH SCHOOL STUDENTS IN JALISCO, EDUCATIONAL STRATEGIES AND TIES BETWEEN FORMAL AND INFORMAL EDUCATION WITHIN A SCHOOL RANGE
	MOBILE LEARNING ZIMBABWE- LECTURERS’ PERCEPTIONS

	AUTHOR INDEX

