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Predicting Contextual Informativeness for
Vocabulary Learning

Adam Kapelner, Jeanine Soterwood, Shalev Nessaiver, Suzanne Adlof

Abstract—Vocabulary knowledge is essential to educational progress. High quality vocabulary instruction requires supportive
contextual examples to teach word meaning and proper usage. ldentifying such contexts by hand for a large number of words can be
difficult. In this work, we take a statistical learning approach to engineer a system that predicts informativeness of a context for target
words that span the range of difficulty from middle school to college level. Our database (released open source) includes 1,000
hand-selected words associated with approximately 70,000 contextual examples gathered from the Internet. Our training data included
each context rated by 10 individuals on a four-point informativeness scale. We decompose the text of each context into a novel
collection of approximately 600 numerical features that captures diverse linguistic information. We then fit a nonparametric regression
model using Random Forests and compute out-of-sample prediction performance using cross-validation. Our system performs well
enough that it can replace a human judge: for a target word not found in our dataset, we can provide curated contexts to a student
learner such that most of the contexts (54%) feature rich contextual clues and confusing contexts are rare (<1%). The quality of our
curated contexts was validated by an independent panel of high school language arts teachers.

Index Terms—Adaptive and intelligent educational systems, statistical software, machine learning, text mining, language

summarization

1 INTRODUCTION

NOWLEDGE of words, and their meanings, is essential

for spoken and written communication. Measures of
vocabulary knowledge predict literacy, academic, and cog-
nitive outcomes throughout one’s lifespan [1], [2], [3], [4]
and mastery of core vocabulary is necessary for developing
adult reading comprehension skills [5]. Improving vocabu-
lary knowledge is an important goal for many adolescent
students, including those who struggle academically [6] as
well as those preparing for college entrance exams.

How does one go about increasing vocabulary knowl-
edge? For a first language, it is well established that most
words are learned via context during normal reading [7],
[8], [9], [10], [11], [12], [13], [14] (for a summary of the
causal mechanisms and assumptions, see the introduction
section of [15]). Hence the obvious approach to increasing
vocabulary is to provide the reader with many contextual
experiences. This is best done via wide reading as printed
text provides exposure to a wider range of words than
conversation [13], [16], and there is an unequivocally strong
relationship between reading frequency and vocabulary
size in both children and adults [17], [18], [19]. However,
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some have argued that wide reading is not only inefficient
but also disadvantages individuals with reading difficulties
[20]. Thus, direct instruction of carefully selected, high
utility words is also a recommended strategy. Systematic
reviews of vocabulary intervention studies (most of which
targeted younger readers) recommend teaching word mean-
ings through a combination of dictionary definitions with
examples of word usage in context [21], [22]. Cumulative
experiences with words in varying contexts enable learners
to abstract from specific episodes [23], [24] and thereby
acquire rich representations of word meanings.

The problem of efficient vocabulary teaching is ripe
for an instructional technology solution. Toward this end,
we are developing and evaluating “DictionarySquared”, an
Internet-based vocabulary software intervention that pro-
vides targeted instruction of high utility words using au-
thentic contextual examples. The DictionarySquared system
also allows for randomized controlled experiments that
investigate aspects of vocabulary learning. Both uses are
described in detail in Adlof et al. [25].

The purpose of this paper is to describe a system that
automatically identifies informative contextual examples
for first language vocabulary instruction for high school
students. (Note that the effectiveness of second language
vocabulary acquisition via context during wide reading is
not well-established [15]). Although this constitutes a core
piece of instructional technology within DictionarySquared,
our technology presented herein can be of general interest
to anyone who wishes to curate informative contexts for
word learning, including second language practitioners and
researchers.

1.1 The Importance of Informative Contexts

As Beck et al. [26] explain, “although it may be true that
the learning of new words is facilitated by some contexts, it
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is not true that every context is an appropriate or effective
instructional means for vocabulary development.” Beck et
al. [26] describe four categories of contexts: misdirective,
non-directive, general and directive. Misdirective contexts
“direct the student to an incorrect meaning” which is harm-
ful when learning a word initially. Nondirective contexts
lack contextual clues and thereby provide no assistance.
General contexts give enough clues for the learner to frame
the word into a general category. Directive contexts are
full of rich cues and are thereby the most pedagogically
effective.

Contextual word learning experiments have demon-
strated that the informativeness of instructional contexts
impacts learning. Frishkoff et al. [11] presented adults with
target words in six sentence contexts. The informativeness
of the contexts was systematically manipulated, such that
some words were presented in six directive contexts, some
words were presented in five directive and one misdirective
contexts, and some words were presented in three directive
and three misdirective contexts. Directive contexts were con-
straining for the target word, whereas misdirective contexts
were constraining for a distractor word that had a different
meaning from the target word but overlapped in phonology
and orthography. Participants were asked to generate a
succinct definition for the target word after each contextual
experience. Analyses examining the accuracy of definitions
generated across trials revealed a significant interaction
between trial and context quality. Follow up analyses of
the generated definitions indicated no differences in perfor-
mance for words taught with five vs. six directive contexts;
however, performance for words taught with three directive
and three misdirective contexts was significantly worse than
in the other two conditions. Analyses of synonym judgment
accuracy at pre- and post-test also revealed a significant
interaction between test time and context informativeness,
such that gains in accuracy were significantly greater for
words taught with more directive contexts.

Another study presented adults with six contexts for
each target word, with context varying in their informative-
ness [27]. This time, no contexts were misdirective; instead,
some words were taught in six directive contexts, some
words were taught in six nondirective contexts, and some
words were taught with half directive and half nondirective
contexts. Results were similar to Frishkoff et al. [11]. Analy-
ses of generated definitions revealed a significant interaction
between trial number and informativeness, such that the
accuracy of definitions generated for words presented in all
nondirective contexts did not improve over trials, but the
accuracy of definitions for words presented in half or all
directive contexts significantly improved. Also, analysis of
a synonym judgment task administered at pre- and post-
test revealed significant interactions between test time and
context informativeness, such that words taught in half- or
all-directive contexts were learned better than words taught
in all nondirective contexts.

Adlof et al. [28] also examined contextual word learning
by children (aged 9-12 years) and adults. In their studies,
some words were taught in two or three directive contexts,
following zero, one, or four familiarization exposures in
nondirective contexts. A matched set of “control” words
were included on pre- and post-tests, but never appeared
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in context. Analyses of synonym generation and synonym
matching tasks administered at pre- and post-test revealed
significant differences between taught words and control
words, but no significant differences between the words that
were pre-familiarized in nondirective vs. not familiarized.

Taken together, these results suggest that in designing
an optimal vocabulary tutor, the majority of contexts should
be directive (or at least generally directive). Misdirective
contexts need to be eliminated as best as possible as they
detract from learning [11]. As for the ambiguous, non-
directive contexts, it appears they don’t facilitate learning
by themselves, and they neither hurt nor help vocabulary
learning, once supportive contexts have been provided [27].
Thus, the purpose of this paper is to describe a system that
automatically identifies contextual examples with roughly
the informativeness distribution outlined above. This sys-
tem will help to optimize the selection of contexts for
our DictionarySquared program, but can also be used by
teachers or others who wish to efficiently identify example
contexts for vocabulary instruction.

1.2 The Specifics of our Problem

We wish to engineer a system that takes as an input a target
word (a single word that we wish to teach a student) and a
context (a block of text containing that word) and output a
binary decision: “use” or “not use” in the DictionarySquared
vocabulary-teaching system.

We limit the scope of acceptable words to be from
approximately late middle school level (e.g. “relevant”,
“ethnic”, “promote”), late high school level (e.g. “surly”,
“vestige”, “primordial”) and up to college level and beyond
(e.g. “meretricious”, “vitiate”, “bucolic”). The system should
be able to take, as an input, any word intended for vocabu-
lary study in this range with an associated written context
containing the word.

DictionarySquared teaches by showing contexts whose
format is mostly textual. Its strategy is focused on students
reading many short contexts instead of a few long contexts
(see [25] for specifics). Since our system presented here will
be a core technology within Dictionarysquared, we limit
what we mean by a “context” to blocks of text between
42-65 words (on average, 54.2 + 3.4) where each features
the target word (in the target inflection) at least once, where
virtually all of the contexts (a) begin at the beginning of
a sentence, (b) end at the end of a sentence and (c) do not
span between paragraphs of the source text it was excerpted
from.

As an example, consider the target word “proclivity” (in
bold). We would like to select informative contexts such as:

Some people have a genuine proclivity for mo-
tion sickness and will undoubtedly suffer more dur-
ing rough seas. According to medical profession-
als, seasickness is more prevalent in children and
women. On the other hand, children under 2 seem
to be immune from the ailment. Of equally interest-
ing note, elderly people are less susceptible ... [29,
third paragraph]
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that is likely between general and directive, and discard
uninformative contexts such as:

Yet more additions to the links bar, and kind of by
way of addressing the massive proclivity of “Da
Phenomenon,” I'd like to shower a little love on
some of my favourite bloggers, be a little selective
for a change. Somewhat ruefully |1 was reflecting
that doing one of my pictorial bloggers break-outs
again is now becoming increasingly unlikely. [30]

that is likely between misdirective and non-directive.

Within the scope of our problem, we identify two slightly
different challenges. The first is to classify the informative-
ness of a new, never previously seen target word embedded
in a new, never previously seen context. The second is to
perform the same classification on a target word seen before
but a context never previously seen. We will refer to these
two similar challenges for the duration of this paper as
[word unseen] and [word seen] respectively.

1.3 Previous Research

Finding examples of words to promote learning has been
considered before. Brown and Eskenazi [31] developed
“REAP”, a search engine for contextual examples optimal
for personalized vocabulary learning by considering stu-
dents” grade level defined by word histograms [32] while
keeping track of words previously seen. We share the final
end-goal to foster personalized vocabulary growth, but we
focus on providing rich contexts for individual words only.
We also make implicit use of their student leveling by
including features based on word frequencies and n-grams
in our prediction models. Mostow et al. [33] developed a
method to create short (about 6-words) informative contexts
containing a single sense of a polysemous word using n-
grams. Here we focus on informativeness without regards
to the word sense. We also make implicit use of the n-grams
features developed therein. Hassan and Mihalcea [34] auto-
matically classified entire documents as “learning objects”
[35] or “learning assets” for concepts and showcased their
system on fourteen computer science concepts. Although
their goal was quite different than teaching vocabulary, we
make use of their method of hand-engineering features
and employing supervised machine learning to evaluate
educational value.

Mostow et al. [36] studied the prediction of informative-
ness for individual contexts using a subset of 13,000 contexts
for easy and medium difficulty words in our database. Their
preliminary analysis indicated that a linear model fit with
measures of context length, context word frequency, context
readability, local predictability (derived using Google n-
grams), co-occurrence and distributional similarity as co-
variates predicted informativeness better than chance. How-
ever, the binary classification of good vs. bad contexts was
insufficient to generate a set that included mostly good con-
texts. Even using the most stringent predicted probability
rating (which discarded over 95% of the contexts) resulted
in the acceptance of more bad contexts than good contexts.
In this study, we make use of the full set of available data,
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expand the features to include more sophisticated n-grams
and semantic similarity features as well as a large number of
natural language processing indices, and we use advanced
machine learning methods that lead to better performance.
Additionally, our system’s framework, model assumptions
and presentation differ considerably.

2 METHODS

To make a prediction of whether or not a context is to
be used or not used in a vocabulary learning system, we
employ supervised statistical learning [37, Chapter 2]. To do
so, we require two things: (1) training data, which includes
both (a) informativeness ratings for each contextual example
and (b) numerical “features” of the contextual examples
that correlate with the informativeness ratings, and (2) a
statistical model and a means to fit this model using the
training data. We explain these two requirements below and
discuss how the statistical model’s performance is assessed.

2.1
2.1.1

The current DictionarySquared system teaches 1,000 words
split into 10 “bands” of 100 words each. These words span
a range of difficulty to meet the needs of low, average,
and high skilled high school students. To curate our list,
we began with over 2,500 words compiled from Coxhead’s
Academic Word List [38] as well as lists of suggested
words to study in preparation for standardized tests such
as the ACT, SAT, and GRE. We derived estimates of word
difficulty based on word frequency and dispersion norms
[39] and age-of-acquisition estimates [40]. These two indices
were highly, but not perfectly correlated within the list
(r = 4+0.77). We then divided the list into 10 difficulty bands
and hand-selected 100 words in each band that would pre-
sumably be considered “useful” for instruction according
to criteria described by vocabulary experts. These included
words that: characterize written text and are general enough
to be found across academic content domains [41], [42],
might be difficult to learn from everyday conversation,
but occur frequently enough in academic texts to be of
assistance to the comprehension process [41] and further,
those that are generally explainable using familiar concepts
[43].

For each word, we query the DictionarySquared
database for contexts that contain the word in the same in-
flection. This DictionarySquared corpus was populated be-
tween 2008-2010 using the Google Web API (since defunct).
Contexts came from text separated by spaces within one
html tag (to enforce contiguous text) and result order was
randomized. Care was taken to drop contexts with duplicate
sentences (as defined by sharing one complete sentence)
to ensure uniqueness of each context. Note that unlike a
Google News search, search results from the web API were
not clustered into similar items. The contexts are devoid
of illegal characters or inappropriate words (according to
a handmade list of ~900 words) and do not have too many
non-letter characters.

We then pruned the original 1,000 word list ensuring
each word has more than 20 associated contexts (on average,

Training Data
Target Words and Associated Contexts
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the words have 72.7 + 20.7 contexts) for a total of 933
words with 67,833 associated contexts. Thus, our training
data frame has 67,833 individual rows which constitute
training data examples for use in training and validating
our statistical model.

2.1.2

After contexts were queried, each context was hand-rated
using Amazon’s Mechanical Turk (MTurk), a world-wide
market for one-off concise tasks that has been validated to be
accurate for natural language tasks [44]. Ten unique MTurk
workers rated each context for a total of approximately
700,000 ratings. The contexts were rated on the same ordinal
scale of “informativeness” pictured below:

Informativeness Ratings

o Very Helpful. After reading the context, a student
will have a very good idea of what this word means.

¢ Somewhat Helpful.

e Neutral. The context neither helps nor hinders a
student’s understanding of the word’s meaning.

« Bad. This context is misleading, too difficult, or oth-
erwise inappropriate.

The above scale choices roughly correspond to the Beck
et al. [26] scale without the use of the technical terms found
therein. We numerically code the levels in our ordinal scale
as +2, +1, 0, -1 respectively, i.e. the conventional default of
even spacing. We feel it is appropriate to code neutral as
0, bad as negative and helpful as positive but the values -
1, +1 and +2 are arbitrary. Future work can explore other
encodings.

Several steps were taken in an effort to ensure quality
of the collected MTurk ratings in accordance with methods
and recommendations from past studies [45], [46], [47], [48].
First, raters were required to initially pass a qualification
test which included contexts with known ratings. Second,
individual rater agreement was monitored over time; raters
whose response patterns appeared random or who other-
wise showed substantial deviations from the crowd were
disqualified from future rating assignments. This is similar
in spirit to more advanced algorithms [49, for example].
Lastly, we included random “attention checks”; these con-
sisted of eliciting a rating for clearly helpful and clearly
unhelpful contexts from the more difficult bands (7-10) as
determined by unanimous agreement from trained research
assistants. Raters who frequently made errors on the at-
tention checks were disqualified from future rating tasks,
a strategy similar to the work of Oppenheimer et al. [50].
Even though we took principled steps, it was still difficult
to root out all the low quality ratings. Cleaning out low
quality ratings using principled methods [51, for example]
is a worthy enterprise, but it is left to future work.

We then employ the sample average of the 10 ratings as
the gold-standard label for each context. Previous research
has found that averaging the ratings from 9 or more non-
expert raters reached agreement with expert raters [44], [52].
We henceforth denote the average rating as y, indicating
this is our dependent variable going forward. Note that the
quality of the gold-standard y (along with our modeling) is
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ultimately validated by the independent teacher validation
experiment that we describe in Section 4.

The density of our context ratings as well as a break-
down by band are pictured in Figure 1. Note the rating
distribution is approximately Gaussian with an average of
0.59 + 0.53.! These contexts make a good training data set
for developing the system we wish to build, as the examples
are drawn from a wide distribution of informativeness.

The fraction of misdirective contexts is at most 15%
(those rated less than 0) and the fraction of directive texts is
at most 19% (those rated greater than 1). The average context
in our current corpus is therefore between nondirective
and general. We can appreciate that the raw database has
quite informative contexts as it was culled from reliable text
sources. Thus, our job to curate a subset of truly excellent
contexts is very challenging, a point we will return to in
Section 4.

2.1.3 Feature Extraction

Applying learning algorithms to data requires a transfor-
mation from the raw data to a collection of features since
the raw data representation (the text itself) is a suboptimal
representation of the underlying information in the text [54].
Put another way, the raw characters of the text considered
alone have negligible correlation with the informativeness
rating.

Thus, the next task consists of creating our own data
representation — mapping the characters in the contextual
examples to numeric features, i.e. functions g; : text — R,
which is a type of “text mining” [55], one of the goals of
natural language processing (NLP). Then we will extract
patterns from these numeric features, relating them to in-
formativeness; this is a type of “machine learning”.

The literature on data representation via textual feature
extraction is vast and it is difficult to know which features
should be extracted. We began with simple features such
as number of sentences, words and punctuation counts, etc.
We then read many hundreds of contexts ourselves and tried
to conceptually isolate common attributes observed among
highly directive contexts and other attributes observed in
misdirective contexts. Through doing so, we tried to identify
useful simplifying explanations or abstractions that helped
to make sense of the rich data that is natural text; this is a
form of disentangling features with correlation from ones
without [56, Chapter 1].

We first observed that directive contexts have common
expressions and phrases that use the word. This can be
captured if we can find all such phrases for all words. Thus,
we employ the Google Book Corpus including text from
1800-2000 [57] to calculate the number of times the target
word is found in every configuration of n-grams up to 5-
grams also including blanks (or stop characters). In addition
to the probability estimate used by Mostow et al. [36], we
include the raw count. For instance, for the word defiant, we
have features for configurations found in Figure 2.

We also observed that directive contexts contain synony-
mous words (i.e. semantically related) as well as words that

1. Note that it is likely not valid to generalize this observation, as this
dataset was collected from the Internet in quite an arbitrary way, and
scored using a rating system that does not exactly reflect Beck et al.’s
[26] categorization.
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Fig. 1: The distribution of y, the informativeness metric in our training set. All plots are generated with the R package

ggplot2 [53].

defiant
defiant  wy
~wy  _defiant
defiant ws w3
~wy  _defiant  ws
~wy  wo _defiant
defiant wy; _ < STOP >
~w; _defiant < STOP >

all four grams and five grams with stops as well

Fig. 2: An illustration of the n-gram features built for the
word “defiant”. w; represents the surrounding words ap-
peared in the context. If the target word appeared multiple
times, we used the greater valued features.

frequently appear with the target words (i.e. collocated). We
used the DISCO tool, which computes the top 200 most
semantically related and collocated words for a target word
[58]. Using collocations gathered from unannotated data as
features is similar to the work by Yarowsky [59]. DISCO was
run atop Davies’ [60] Corpus of Contemporary American
English corpus (COCA, 520 million words of text from
1990-2015 equally divided among spoken, fiction, popular
magazines, newspapers, and academic texts) which confers
significant advantage over DISCO’s default Wikipedia cor-
pus (as employed in [36]). We bin these 200 words into the
top 10, the top 11-20, the top 21-50, 51-100 and 101-200. We
then count common word stems that appear in the context
within each bin and these counts constitute features. Note
that the DISCO method is one of many methods to compute
semantic similarity.

We then make use of recently developed NLP indices.
First, we use features from the Tool for the Automatic Anal-
ysis of Lexical Sophistication [61], which calculates scores
for 135 classic and newly developed lexical indices related to
word frequency, range, bigram and trigram frequency, aca-
demic language, concreteness-abstractness (a metric known
to be related to vocabulary learning, see [62]) and psycholin-
guistic word information. Second, we use features from the
Tool for the Automatic Analysis of Cohesion [63] which
calculates scores for 150 classic and recently developed
indices related to text cohesion, work closely related to the
development of “Coh-Metrix” [64]. Third, we use a subset
of the Sentiment Analysis and Cognition Engine [65] which
reports on over 3,000 classic and of lexical categories and 20
component scores related to sentiment, social cognition, and
social order.

In total, we computed 615 features that attempt to span
the high-dimensional space of linguistic information and
thus may be predictive of informativeness. For a complete
list of the features, see Appendix C. Note that the target
word itself, a categorical feature, is not one of the 615 as
this would not be generalizable nor helpful for building the
[word unseen] system. Also note that our feature extraction
strategy leverages data outside of our collected training data
set via the use of these corpuses and NLP indices, a strategy
that has been coined “cotraining” [66].

With 615 features, it is possible that many are collinear
as they express the same information about the text. To
investigate this possibility of our feature set being “over-
specified”, we ran a principal components analysis (cen-
tered and then scaled) and plotted the cumulative sorted
normed eigenvalues in Figure 3. Each of normed eigen-
values captures the percentage of the variance explained
in each principal component; the cumulative sum of these
normed eigenvalues captures the percentage of the variance
explained cumulatively among the principal components.

We see from this plot that we can cut the dimension
of the feature space by at most a factor of two and still
retain nearly all of the information (95% of the variance
is explained by 306 features). Using 300 features instead
of the full 615 is not a significant compression of the data
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Fig. 3: The cumulative sum of sorted normed eigenvalues by principal component ordinal number. The vertical blue line
illustrates the cumulative principal component number that explains 95% of the variance in our set of features.

during modeling; thus going forward we use the full feature
set. This confers the additional advantage of allowing us
to investigate individual variable importance directly in
Section 3.4.

The full dataset, 70,000 x 615, the individual Turker
ratings and the original text of the contexts is available and
open source (see Section on “Replication”).

2.2 The Statistical Model and its Use in Prediction

We begin with the continuous response variable of the
average informativeness rating (Section 2.1.2) but then must
make a binary decision on new contexts to administer a
context to the student (one) or not to administer a context
(zero). This binary decision is based on costs which vary
across the spectrum of the informativeness rating [—1, +2].
These costs are quite asymmetric as it costs more for a
student to be mistakenly presented with a poor context with
informativeness near -1 than it does for us to mistakenly
reject a good context with informativeness near +2 (see Ap-
pendix A for a mathematical description). In short, we have
a regression estimation problem where decisions are made
with a threshold based upon entire distributions. Below, we
will develop a heuristic validation scheme appropriate to
this nontraditional problem.

We employ random forests (RF) [67] to model the aver-
age informativeness rating ¥ as a function of the 615 features
in the training data. RF is widely used for non-parametric
estimation of continuous functions (regression) by flexibly
fitting complex non-linearities and high-order interactions
using its tree structure without overfitting [37, Chapter 15].
Predictions from this RF model will be continuous. In order
to make the binary decision, we use a threshold which we
denote 7o (see page 12 of [37]) i.e. if y > §o, we administer
the context (1, use) and if y < gy we do not administer
the context (0, throwout). Thus, our choice of g is chosen
to minimize the overall asymmetric costs (explained in the
next section).

2.3 Performance Validation

We now describe performance assessment for both the
[word unseen] and the [word seen] task. We first split the
full training data into a model-building set and a holdout
or “test” set. The model building set is used to fit an
RF model. The test set is then predicted via the fitted RF
model and the results are compared to its true y values
to determine performance; this is the “out-of-sample” (0os)
estimate or generalization estimate. Validations performed
00s guarantees that our performance estimate is not being
inflated by potentially dishonest in-sample overfitting.

Generally speaking, the holdout consists of a random
sample of the rows of the training data. Under this random
sampling, the oos estimate would correspond to an honest
estimate of the performance of [word seen] task only. Why?
The target words in the holdout are the same target words
(more or less) as those in the model-building set. This
simulates new contexts for words already in the word bank.

To estimate the performance of the more realistic [word
unseen] system, we randomize the target words them-
selves and holdout the rows corresponding with 10% of the
words.? Thus, when the RF model makes predictions oos,
it is predicting for contextual examples containing target
words never heretofore seen.

However, any single 10%-90% test-training split can over
or underestimate performance due to chance. To mitigate
this possibility, we employ 10-fold cross-validation [37,
Chapter 7.10].

The typical metric to consider in continuous prediction
is oos R? or RMSE. Since our primary goal is to build a
vocabulary learning system of which predicting the contin-
uous informativeness metric is only a necessary interme-
diate step, R? or RMSE are not meaningful performance
metrics. Here, our performance metric should reflect a total

2. We employ 10% as this is a common practice. There is little
statistical theory at this time that recommends a hold-out size for
estimating model performance. The largest used in practice is 20% and
the smallest used is one observation (the so-called “leave one out” cross
validation procedure).
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cost function (Appendix A, Equation 2) which varies with
the prespecified {jo threshold. Different threshold values
result in differential distributions of oos informativeness
that the system declares usable for future student con-
sumption (we call this the “use distribution”) and unusable
for student consumption (the “throwout distribution”). To
compare the use and throwout distributions, we compute
empirical quantiles. We deem three quantile-based slices
of the use distribution most important to monitor during
the design of a student learning system: ¥ < 0, the poor
contexts, Y € [0,0.5), the non-informative educationally-
neutral contexts and Y > 1, highly informative contexts.
For the throwout distribution, we tabulate how often we
throwout the very best contexts (Y > 1). A holistic view of
these quantiles informs our heuristic total cost performance
metric, not R?.

To understand more clearly our starting point, Table 1
displays these quantile-slices for the original, uncurated
data by band. We can see informativeness varies signifi-
cantly by band. The highest bands, indicating words repre-
senting more nuanced concepts, have a larger the proportion
of misdirective and non-informative contexts, as well as a
lower proportion of richly informative contexts. Thus, our
model’s curation task is much more difficult at higher bands,
a point we return to later (especially in Figure 5).

As 7y increases, the system will be more and more
conservative as to which contexts it deems useful. Thus we
can decrease the proportion of contexts with y < 0 and with
y € (0,0.5] and increase our proportion of y > 1 contexts
by raising gjo. But there is a tradeoff: the cost is greater false
negatives; the system will throw out many contexts that are
good for student learning. If our pool of potential contexts
is large (such as the Internet), this is not a problem except on
the very rare words (which are rare even across the entire
Internet).

3 RESULTS

Here, we focus on results for the [word unseen] system and
we discuss results for the [word seen] system in Appendix B.

3.1

We vary the gy threshold in order to investigate the pos-
sible binary decision systems that can be created from our
continuous RF model.® For each threshold, we compute the
empirical cumulative probabilities for the important metrics
of Table 1 as well as the throwout percentage and display
the results in Table 2. Each row of Table 2 estimates future
performance: the cost of misdirective contexts, the cost of
uninformative contexts, the reward of directive contexts
and the cost in throwout percentage. Each row provides
multivariate performance metrics.

For our purpose, we stress that misdirective contexts
are costly since their appearance in a vocabulary training
program for a given word has the potential to confuse the
student [11], [27]. Thus, we believe our target proportion

RF Results for the [word unseen] System

3. Note that binary classification decisions are popularly made with
the help of a Receiver Operator Curve or Detection Error Tradeoff plot
[68] (which plots throwout versus “errors”). Here we have two full
distributions with differential costs; thus, analogous visual aids are not
practical nor appropriate.
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should be about 1-2% corresponding to a 7.5-15.1x fold
reduction over the original contextual examples from the
Internet (the training data). The system that performs at
this level has ¢ cutoffs 0.845-0.895 (highlighted in Table 2).
In this range, we have approximately 10% of the contexts
as uninformative. Most importantly, between 47-54% of
the contexts will be general and directive featuring rich
contextual clues that are supportive of rapid vocabulary
learning. Put another way, the ratio of directive to misdirec-
tive contexts (after discarding) is 25:1 — 54:1. The price we
pay is 91.6-96.6% throwout of our potential pool of directive
contexts. We address the implications of this high cost in the
discussion section. For the model with threshold 35 = 0.895,
we illustrate the future use distribution compared to the
training data in Figure 4.

3.2 Linear Model Results for the [word unseen] System

To demonstrate the predictive advantage of RE, we fit a
linear model (via ordinary least squares regression). We
varied 9o similarly and attempted to display the results that
exhibit the 1-2% misdirective context proportion in Table 3
as a comparison. However, the linear model was not able
to perform at that error rate (without ~100% throwout).
At higher rates, such as 3%, other cutoff performance was
similar with the RF implementation but the throwout rate
was higher.

3.3 Differential Performance by Band of the [word un-
seen] System

Note that the results in Table 2 and the use distribution
illustration in Figure 4 represent an average across all words
(and bands). It is likely that the system will have better
performance on contextual examples with target words
from lower bands. This association is expected as there are
both more misdirective contexts and less directive contexts
as band increases (review the differential distributions in
Table 1).

We illustrate throwout rate by band in Figure 5. Note
here that the throwout rate increases as the word band
increases. The system does not work beyond band 6. Band
7 has 99.2% throwout and band 10 has 99.6% throwout.

Therefore, we recomputed the main results for just bands
1-6 and display them in Table 4. Our metrics of interest in
the usage distribution largely remain the same but throwout
has significantly improved. It seems the model’s solution
to uncertainty of usability among contexts in bands 7-10 is
simply to omit them.

3.4 Feature Importance

Which of the 615 features contribute to predictive per-
formance in the [word unseen] model? We queried our
RF model* for its variable importance data and we plot
the mean decrease in accuracy as measured by out-of-bag
increase in mean squared error in Figure 6 (see [67] for
more information). This metric is analogous to effect size
in a multivariate regression. It accounts for collinearity

4. We used the entire dataset, default hyperparameter values, n =
10,000 samples per tree and 500 trees. Fitting more trees or raising the
subsampling would be more computationally burdensome.
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Description Proportion (Count) by Band

Cutoff of contexts 1 2 3 4 5 6 7 8 9 10

y<0 potentially 0.14 0.18 0.17 0.15 0.13 0.13 0.10 0.12 0.17 0.25
misleading (671) (815) (762) (637) (590) (624) (419) (524) (763)  (1120)

y € (0,0.5] non-infor- 0.25 0.27 0.31 0.33 0.31 0.28 0.32 0.37 0.33 0.34
mative (1470)  (1576)  (1941) (2068) (1912) (2165) (2176) (2799) (2035) (2154)

y>1 rich in con- 0.26 0.21 0.16 0.14 0.19 0.25 0.22 0.15 0.19 0.12

textual clues  (1664) (1238) (1046)  (901)  (1298) (1968) (1639) (1168) (1205)  (764)

TABLE 1: Metrics computed about the oos use distribution. The cutoffs are for the real y values (the average rating). We
then show the differential cutoffs by word band. Note: the columns do not sum to 1 as the range y € (0.5, 1] is not shown.

0.9-

density

0.3-

0.0-

Average Rating

Fig. 4: The density of the informativeness use distribution (green) versus the training data distribution of informativeness
(red) at go = 0.895. Contexts above the blue dotted line feature rich contextual clues that optimize student learning.

1.00-

0.95-

o
0.90-

throwout proportion

band

Fig. 5: Box-and-whisker plots of differential throwout by word organized by band for the RF model in the [word unseen]
system at §jo = 0.895. The blue line plots the average throwout by band. Each point represents the throwout rate for a
single word; they are randomly jittered in the z axis only for easier display.
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go threshold P(Y <0) P(Y €[0,0.5)) P(Y >1) P(throwoutofY > 1) #accepted
-0.755 0.151 0.312 0.190 0.000 67833
0.495 0.091 0.291 0.228 0.110 50399
0.520 0.083 0.282 0.237 0.145 46755
0.545 0.077 0.274 0.247 0.184 42931
0.570 0.071 0.265 0.257 0.234 38758
0.595 0.065 0.254 0.269 0.288 34562
0.620 0.057 0.246 0.282 0.351 30208
0.645 0.053 0.232 0.297 0.418 25867
0.670 0.047 0.220 0.312 0.488 21735
0.695 0.044 0.207 0.329 0.561 17873
0.720 0.039 0.192 0.350 0.635 14160
0.745 0.033 0.175 0.370 0.704 10905
0.770 0.030 0.157 0.389 0.772 8039
0.795 0.025 0.142 0.414 0.831 5670
0.820 0.022 0.126 0.447 0.877 3855
0.845 0.019 0.118 0.474 0.916 2491
0.855 0.019 0.112 0.477 0.930 2048
0.865 0.018 0.103 0.491 0.941 1694
0.875 0.017 0.101 0.509 0.951 1381
0.885 0.013 0.096 0.524 0.959 1100
0.895 0.010 0.086 0.541 0.966 909
0.905 0.008 0.078 0.552 0.973 717
0.915 0.009 0.074 0.573 0.978 571
0.925 0.004 0.057 0.604 0.981 454
0.935 0.006 0.054 0.605 0.985 354
0.945 0.008 0.057 0.630 0.989 262
0.955 0.010 0.060 0.648 0.991 199

TABLE 2: Oos RF performance results for the [word unseen] system operating under a variety of gy thresholds (oos
R? = 0.177). We compute empirical cumulative distribution function values of interest as well as the cost (the throwout
rate of informative contexts). We also display the number of contexts marked as acceptable of the 67,833 contexts in the
original training data. At low thresholds (below 0.5), the system keeps all contexts, so these thresholds are not relevant
and are colored gray. Past a threshold of 0.925, we have 98.1% throwout of our good contexts and acceptability is so low,
we lose the ability to accurately estimate empirical probabilities; they are also colored gray. Cutoffs usable in practice are
colored yellow (see main text). The last column displays the number of contexts accepted from the 67,833 in the training
data to inform intuition on the confidence intervals of the estimated probabilities; low values are not stable.

15 20 25

%lncMSE

Fig. 6: Variable importance for all 615 features as measured by the increase in percent mean squared error. The red line is
the cutoff for features that no longer increase out-of-bag accuracy of the RF model. 50 features (8%) are in this category.
Feature names are omitted due to space restrictions.

between the features by permutating values of one feature
but keeping the other feature values the same.

the question “how many variables matter?” without further
work.

Which variables likely contribute the most to perfor-
mance? In Figure 7, we illustrate the top 30 most important
variables of Figure 6 (the right tail) and print their variable
names. We now describe the top seven variables and spec-

We learn here that the vast majority of features con-
tribute synergistically to oos predictive performance. If the
model had only a few variables contributing, there would
be many more scores with near zero or negative oos mean

squared error increase.

It is possible we could drop some of the 50 non-
contributing variables in a stepwise fashion without perfor-
mance loss, but running the stepwise elimination would be
computationally prohibitive. Thus, Figure 6 cannot answer

ulate as to why they contain the most information about
context quality.

1. similar_1_10 tallies the number of the most similar
word stems to the target word (the top 10 most similar
as returned by the DISCO system querying the COCA
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go threshold P(Y <0) P(Y €[0,0.5)) P(Y >1) P(throwoutofY > 1) #accepted
0.445 0.091 0.297 0.226 0.110 51116
0.470 0.086 0.293 0.231 0.136 48696
0.495 0.082 0.289 0.236 0.165 46111
0.520 0.078 0.283 0.242 0.196 43356
0.545 0.072 0.278 0.249 0.231 40424
0.570 0.068 0.272 0.256 0.272 37352
0.595 0.064 0.265 0.264 0.314 34259
0.620 0.062 0.257 0.273 0.357 31130
0.645 0.057 0.250 0.282 0.406 27992
0.670 0.054 0.243 0.290 0.457 24921
0.695 0.051 0.236 0.300 0.507 21964
0.720 0.048 0.230 0.310 0.557 19113
0.745 0.046 0.222 0.320 0.610 16367
0.770 0.043 0.216 0.332 0.657 13999
0.795 0.040 0.208 0.343 0.699 11899
0.820 0.039 0.200 0.355 0.741 9953
0.845 0.035 0.191 0.369 0.778 8227
0.870 0.032 0.183 0.383 0.811 6788
0.895 0.032 0.174 0.394 0.840 5614
0.920 0.029 0.168 0.410 0.868 4492
0.945 0.028 0.160 0.424 0.893 3563
0.970 0.027 0.155 0.438 0.913 2856
0.995 0.027 0.152 0.443 0.928 2307
1.020 0.026 0.145 0.454 0.942 1802
1.045 0.024 0.149 0.459 0.954 1411
1.070 0.025 0.149 0.474 0.963 1096
1.095 0.022 0.146 0.491 0.971 862
1.345 0.020 0.177 0.503 0.995 147
1.370 0.015 0.174 0.492 0.996 132
1.395 0.017 0.197 0.453 0.996 117
1.420 0.019 0.202 0.452 0.997 104
1.570 0.015 0.191 0.412 0.998 68
1.670 0.000 0.152 0.435 0.999 46

TABLE 3: Oos linear model performance results for the [word unseen] system operating under ¢y thresholds which
produce similar P (Y < 0) quantiles as Table 2. Here, oos R? = 0.167 which is approximately the same as the RF model
but performance based on our holistic cost metric is considerably lower. Again, R? is not an appropriate guage of fit for
our model’s performance.

Jo threshold P(Y <0) P(Y €[0,0.5)) P(Y >1) P(throwoutofY >1) #accepted
0.840 0.019 0.122 0.466 0.881 2259
0.845 0.020 0.120 0.471 0.890 2068
0.855 0.020 0.113 0.474 0.908 1720
0.865 0.019 0.102 0.492 0.921 1434
0.880 0.014 0.095 0.521 0.940 1038
0.890 0.011 0.096 0.529 0.949 875
0.895 0.010 0.085 0.542 0.953 788

corpus). This information is likely important because
the reiteration of words related to the meaning of the
target word provides contextual clues.

TABLE 4: Same as Table 2 but now we only look at oos results for bands 1-6. Note the proportion of directive contexts is
about the same but throwout has improved substantially.

that tallies the age of acquisition (a scale created by
[40]) for all words in the context. This is likely a proxy
for difficulty of the context.

. collocation_1_10 is the same as similar_1_10 5. Kuperman.AoA.CW is the same as above except it
except it tallies the top most collocated words. Similar tallies for content words only. We assume these two
to words with related meaning, these words aid in features are collinear (future work can verify), thereby
scoping and limiting the meaning of the target word. sharing places in the split rules in the Random Forest.

. politeness_component is a feature returned by the If so, then Kuperman’s scale should occupy the number
Sentiment Analysis and Cognition Engine [65] that 1 position.
measures politeness using the dictionary lists of “po- 6. count.wordl.target.word2 is a feature computed
lite” words found in Stone’s [69] General Inquirer and from our trigrams database illustrated on line 5 of
Lasswell and Namenwirth’s [70] dictionary lists. As to Figure 2. Higher counts indicate the specific use in
why this feature is important for informativeness, we this context is prevalent. These two words sandwiching
do not know, but the explanation to number 7 below the target word likely provide information about its
may apply. meaning.

. Kuperman.AoA. AW is a feature returned by the Tool for 7. MRC.Meaningfulness.CW is a feature returned by

the Automatic Analysis of Lexical Sophistication [61]

the Tool for the Automatic Analysis of Lexical Sophis-
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Fig. 7: Variable importance for the top 30 most important features as measured by the increase in percent mean squared
error. Descriptions of each individual variable is found in Appendix C.

tication [61] that tallies the number of content words
that are included among the Medical Research Council
Psycholinguistic Database of English words [71] related
to “meaningfulness”. This score has been shown to
be correlated to both writing quality [72] and lexical
proficiency [73]. High values may explain why these
contexts are rated highly by the Turkers, but it is our
intuition that it does not truly relate to informativeness.

Higher likely corresponds to better to all of the above
features except the Kuperman metrics. As a demonstration,
consider the context below that was rated as highly
informative (y = 1.6) for the band 8 word “infrastructure”.

Yet if we look closely at our transportation system,
we see that the broad term ”infrastructure” covers a
dazzling variety of technologies serving very differ-
ent needs. From cow paths to eight-lane express-
ways, from cars to trucks to barges to supersonic
transports, our transportation infrastructure means
many different technologies carrying many types of
traffic at widely varying speeds. ... [74, Section 1]
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Due to the presence of words “transportation”, “trans-
port”, “expressways”, “traffic”, etc., the similar_1_10
value was 5 (a z-score of +6.4) and the collocation_1_10
value was 3 (a z-score of +3.8) meaning that this context is
chock full of related words. The politeness_component
scored 0.047 (a z-score of -0.8) i.e. about average. The
Kuperman.AoA.AW value was 6.15 (a z-score of +0.4) and
the Kuperman.AoA.CW value was 7.22 (a z-score of +0.2)
indicating about average word difficulty and hence smooth
readability: the reader won’t be overburdened with addi-
tional new words especially in this context of a band 8 target
word. The count .wordl.target .word2 value was 14221
(a z-score of -0.03) meaning that an average number texts
shared the trigram “transportation infrastructure means”
suggesting that this is not a nonstandard contextual usage.
Finally, the MRC .Meaningfulness.CW metric was 470.6 (a
z-score of +2.2) indicating this context’s writer had above
average proficiency and writing ability.

This exercise illustrates the main thrust of the technology
— by boiling down a context into numeric features that
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correlate with informativeness, contexts can be sorted based
on educational value. Space limitations preclude us from
discussing more features, the features in greater depth and
how our RF model uses feature interactions. There is no
doubt much can be learned about the “why” of context
informativeness by querying our model.

3.5 Ordering of the Contexts

As discussed during our problem setup, we prefer uninfor-
mative contexts to appear at the later stages of learning. To
test this, we use the model in Table 2 corresponding to the
threshold of 0.845. We examine all words with five or more
contexts in the oos use distribution and plot the probability
of seeing an uninformative or misdirective context by order
of appearance once we order by predicted informativeness
best to worst (Figure 8). As shown, about 47% of the words
ever had such a context and it was uncommon to see that
type of context early on; only 11% of words in the first two
exposures and 31% within the first 5 exposures.

4 EXTERNAL TEACHER VALIDATION

The stated purpose of our system is to automatically identify
informative contextual examples for vocabulary instruction
in high school students. To externally validate the quality
of our [word unseen] system’s output, we conducted a
randomized experiment with high school teachers.

4.1 Methods

Participants included 31 high school language arts teach-
ers from the United States (30 from South Carolina and
1 from Connecticut). They were recruited through social
media advertising and an email campaign. Each participant
was asked to complete a web-based survey asking basic
demographic information and 18 experimental questions.

Each participant was shown different experimental ques-
tions created as follows. First, three target words were ran-
domly selected without replacement from each of the first
six difficulty bands for a total of 18 unique words. For each
word, one context was drawn at random from the original
DictionarySquared database (uncurated) and one context
was drawn at random from the future use distribution,
the set predicted to be used by [word unseen] model at
y = 0.895 (curated). Put another way, one context was
drawn randomly from the red distribution in Figure 4 and
one is drawn randomly from the green distribution. For each
word, the teacher was asked which context would be better
for teaching the word. The two contexts were presented
randomly side-by-side below the prompt. A screenshot of
the experimental question is provided in Figure 9. Each
question was a separate web page and teachers were not
allowed to change responses upon each page submission.

Collecting many comparisons of a curated context and
an uncurated context drawn at random is an honest way
to test if our out-of-sample results of Table 2 comport with
professional language arts educators’ preferences. Here we
are testing the superiority of the median informativeness of
the set of contexts sifted by our model.

27 participants answered all 18 questions, and the re-
maining 4 participants answered between 1 and 11 ques-
tions for a total of n = 502 trials. The 27 teachers that
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completed the survey were rewarded with a $5 Amazon gift
card, an incentive that was known before their participation.

4.2 Results

Of the 502 trials, the curated set was selected 305 times or
60.7%, a significant result when testing the null hypothesis
that there is no preference between the curated and uncu-
rated contexts (p ~ 1.8 x 107%). This test is only valid if all
teachers’ responses are statistically independent. To test this
assumption, we tested the differential performance between
the teachers using a logistic regression with dummy vari-
ables for each teacher. Pitting this model versus a simple
model of only an intercept turns up insignificant via the
likelihood ratio test (p = 0.46). Thus, there is no reason to
believe the assumption of independence is not justified.
These results provide unequivocal external validation
that our [word unseen] model selects contexts that are more
suitable for teaching than the original DictionarySquared
database. However, it may seem that the teachers’ choices
of the curated set 60.7% of the time is low — you may
wonder why the teachers could not select the context from
the curated set 100% of the time. An analysis of Figure 4 will
demonstrate that perfect discrimination is not possible: the
average context in the uncurated set is between nondirective
and general and due to random sampling, the context from
the uncurated set can be more informative than the context
from the curated set. When running simulations, 60.7% is
in the ballpark of expected discrimination, especially when
considering the fact that there are inevitable judgment calls
when the two contexts are similar in informativeness.

5 DISCUSSION

Considering our RF model for the [word unseen] system,
we argue that our predictive performance is good enough to
implement this system in a context-collection effort without
the need for a human rater. However, we limit our uncon-
ditional recommendation to future target words within the
level defined by our band 1-6, words that were externally
validated by high school teachers and words of which the
throwout rate is not overly punitive.

The following example may demonstrate a typical fi-
nal product of our model’s curation. For the target word
“malevolent” in band 6, the following context

From Scotland comes stories of the Old Hag or
Night Hag. The Old Hag is a malevolent spirit that
visits people in the middle of the night while they
sleep. Those who survive this nocturnal visit report
being awoken with a feeling of dread or unease but
unable to move or speak. [75, third paragraph]

received an average MTurk rating of 0.7 i.e. directive and
highly informative as we can see from all the contextual
clues. The RF oos prediction here is 0.89. Let’s compare this
to

If you or someone you know has gotten nothing
but heartache this Valentine’s Day (or any other
occasion involving that malevolent blood-pumping
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Fig. 8: Under the use distribution, the cumulative probability distribution of the first exposure to a context with a true
rating less than 0.5 (non-informative or misdirective). We limit words here to those with 5 or more contexts.

Read both contexts for the word provided. Click the context that you believe would be the most useful for teaching the word to select
it. Once you have selected the most useful context, please click the next button. Once you move on, you will not be allowed to go back.

distinct

... They found that, in contrast to most adult stem cells,
these cells are distinct from those that fuel the initial
growth of this important organ. The results suggest a novel
way that the hormone-secreting gland may adapt, even in
adolescents and adults, to traumatic stress or to normal life
changes like pregnancy.

Next —

Fig. 9: A screenshot of a typical experimental question for the teacher validation study. Here, the target word was “distinct”
and the teacher has already selected the context on the right by clicking on its box. By pressing “Next —”, the choice would

be finalized and the next question would be presented.

organ), this 12-song collection offers the perfect an-
tidote. Includes the J. Geils Band’s immortal “Love
Stinks,” Gram Parsons’ defining version of “Love
Hurts,” Joy Division’s “Love Will Tear Us Apart,” and
more. [76, fourth paragraph]

which received an average MTurk rating of -0.1 indicating
it is non-directive and possibly even misdirective. Here, the
RF oos prediction is 0.48.

Thus, when implementing the RF model for the [word
unseen] system in Table 4 for a highlighted threshold, the
first context would be administered to students in our
vocabulary instruction system and the second would not
be administered.

The last point to discuss is the high throwout rates of
our best contextual examples of the target word. In order for
this system to be practical, we would query massive corpora
(such as the Internet) for contextual examples and we would
optimize our routines that compute the 615 features. Both
are possible and thus we do not anticipate the high throwout
rate to be a problem in practice.

Once again, we have developed a system that has the
ability to automatically identify informative contexts for
learning arbitrary words of interest and our technology can
be greatly beneficial to educators and researchers.

5.1

This work represents our initial steps toward automatic
identification of useful contexts for vocabulary learning.

Future Directions
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Here we note three areas for future work.

First, we would like to extend the model by considering
other relevant features. Given that nearly all of our already-
tested features were found to be important in the RF models,
we are nearly certain that other intelligent features can
provide additional predictive power due to our current
R? ~ 20%.

Second, although the current system is useful, it is quite
cumbersome to obtain a large corpus, calculate 615 features,
and subsequently discard 85-95% of retrieved contexts in
order to identify useful ones. As we continue to explore
new features that can be added, we like to give further
consideration to the costs and benefits of models that use
fewer features, perhaps ordered by ease of feature calcula-
tion. Reducing the effort required to obtain predictions of
context informativeness would likely increase the practical
utility of this approach.

Third, selecting features believed to be predictive of the
response is known as “hand-engineering” and claimed to be
a failing due to arbitrariness of the specific features collected
as well as non-generalizability of the specific features to
other tasks [77]. However, given the relative uncharted
territory of predicting informativeness (in comparison to
the well-trod NLP problems of “part-of-speech tagging” or
“named entity recognition”), we believe this to be a good
first pass at the problem that we hope will be iteratively
improved. State-of-the-art systems for solving NLP prob-
lems seem to be gravitating towards deep learning [77],
using many-layered neural networks operating on the raw
text data itself as well as clever text representations (see
e.g. the work of Socher [78]). This may help us employ
features without the need for explicitly specifying them,
a concept known as representation learning. These learned
representations often result in much better performance
than can be obtained with our strategy herein of hand-
designed features [56]. Such strategies are left to future
work and may even be synthesized together with ours in
an ensemble “superlearner” [79].

DATA

The full training data set and the teacher validation
dataset can be found at github.com/kapelner/predicting_
contextual_informativeness with the GPL3 license.
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