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ABSTRACT 

Policymakers face dilemmas when choosing a policy, program, or practice to implement. 

Researchers in education, public health, and other fields have proposed a sequential approach to 

identifying interventions worthy of broader adoption, involving pilot, efficacy, effectiveness, and scale-up 

studies.  

In this paper, we examine a scale-up of an early math intervention to the state level, using a cluster 

randomized controlled trial. The intervention, Pre-K Mathematics, has produced robust positive effects on 

children’s math ability in prior pilot, efficacy, and effectiveness studies. In the current study, we ask if it 

remains effective at a larger scale in a heterogeneous collection of pre-K programs that plausibly 

represent all low-income families with a child of pre-K age who live in California. We find that Pre-K 

Mathematics remains effective at the state level, with positive and statistically significant effects (effect 

size = 0.30, p < 0.01). 

In addition, we develop a framework of the dimensions of scale-up to explain why effect sizes might 

decrease as scale increases. Using this framework, we compare the causal estimates from the present 

study to those from earlier, smaller studies. Consistent with our framework, we find that effect sizes have 

decreased over time. 

We conclude with a discussion of the implications of our study for how we think about the external 

validity of causal relationships. 
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1. INTRODUCTION 

Policymakers at the local, state, or national level face dilemmas when choosing a policy, program, or 

practice to implement. Researchers in education, public health, and other fields have proposed a 

sequential approach to identifying interventions worthy of being recommended for broad adoption. This 

sequential approach involves classes of inquiry that increase in scope and vary in purpose.  

Pilot studies examine the feasibility of an intervention that has, along with its evaluation, been 

implemented under highly controlled conditions (Leon, Davis, & Kraemer, 2011). They are designed to 

answer the question: “Is the theory undergirding the intervention effective?” Efficacy research assesses 

the extent to which a successfully piloted intervention produces the desired outcomes under less 

controlled conditions that are still local enough for the developer to be actively involved in implementing 

and evaluating the program. The research question here is: “Can the intervention work outside of the 

laboratory or a few carefully selected sites under conditions that enable high quality implementation?”  

Effectiveness studies are less controlled, and test whether an intervention is still effective under 

conditions that approximate the real world of intended application even though the scale is still smaller 

than a policymaker’s remit, with less developer involvement in implementation and evaluation (Earle et 

al., 2013). The question here is: “Does the program work under conditions that approximate those under 

which the intervention would be delivered on a broader scale?”  

The fourth class of inquiry consists of scale-up studies. These studies examine whether a 

successfully evaluated intervention continues to be effective when all the conditions that would be in 

place if the intervention were official policy are approximated in the study (Flay et al., 2005; Gottfredson 

et al., 2015). Scale-up studies can be characterized in two ways. Relative scale-up describes a study that is 

merely larger than earlier studies, and so some uncertainty remains about identifying the target 

population—because no rules are evident for inferring the target population from the sampling specifics. 

Absolute scale-up has the goal of identifying program effectiveness in a specific population like a nation, 
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state, or local government, and also entails a valid justification for the necessary extrapolation from the 

obtained sample to the intended population.  

The preferred social science rule for extrapolation involves drawing a probability sample from a 

clearly designated population, thereby ensuring that the sample represents its target population within 

known limits of sampling error. Although random selection is a method widely used to describe human 

populations, it is rarely used to generalize knowledge about causal connections. More common are 

attempts to ground claims about causal generalization in large, heterogeneous, and purposively selected 

samples of sites and individuals from within the target population, choosing them so as to vary all the 

factors that are believed to condition the effect or that study stakeholders believe are important. In studies 

where population attributes are available in detail, it is then possible to weight the study characteristics 

that were assessed to better approximate the population, at least on measures common to the population 

description and the available measures of the sample.  

In this paper, we examine a case of absolute scale-up of an early math intervention to the state level. 

The intervention, Pre-K Mathematics, has produced robust positive effects on children’s math ability in 

prior pilot, efficacy, and effectiveness studies. In the current study, we ask: Does it remain effective when 

implemented at about double the prior scale in a more heterogeneous collection of purposively chosen 

public pre-kindergarten (pre-K) and Head Start programs that plausibly represent all low-income families 

with a child of pre-K age who live in California, the nation’s largest state?  

In addition, we develop a framework of the dimensions of scale-up to explain why effect sizes might 

change as scale increases. Using this framework, we compare the causal estimates from the present study 

to those from earlier, smaller studies. Taken together, this set of studies represents an even larger sample 

of student respondents, treatment providers, pre-K settings, time periods, and different ways of 

operationalizing both the Pre-K Mathematics treatment and the math outcome measure. As a result, the 

heterogeneity across studies is even greater than the heterogeneity within the latest and most 

heterogeneous study in the programmatic sequence we explore. Examining a scale-up study within the 
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program of studies it is part of permits an even broader examination of the external validity of any named 

intervention.  

The paper has six sections. First, we describe our framework of the dimensions of scale-up. Second, 

we describe the Pre-K Mathematics program and past evaluations of it. Third, we describe the methods 

we used to assess the effects of Pre-K Mathematics in the current study and to compare these effects with 

those found in earlier studies. Fourth, we test whether the version of Pre-K Mathematics evaluated in this 

study raises average math achievement at the statewide scale, and whether the program effects we obtain 

are robust across a wide range of student and site attributes. Fifth, we describe how effect sizes differ 

between the present study and earlier studies, in particular asking whether effect sizes tend to diminish as 

study samples get larger and more heterogeneous. Finally, we discuss the implications of our findings, 

both for scale-up studies in particular and for external validity and causal generalization writ large. 

1.1. Relevant Theory 
In this section, we provide a framework of the dimensions of scale-up and how each of these 

dimensions can influence effect sizes. In this framework, scale-up influences the number and 

heterogeneity of settings and study participants, the quality of the program content and its delivery, 

changes in the counterfactual or “business-as-usual” condition, variations in the outcome measure and 

measurement quality, and the quality of the evaluation’s design and execution. Figure 1 depicts the 

framework and the hypothesized influences of scale-up on effect sizes. 

[Figure 1 about here] 

1.1.1. Number and Heterogeneity of Settings and Study Participants  

Definitions of scale-up research tend to focus on the size of study samples. McDonald, Keesler, 

Kauffman, & Schneider (2006) emphasize the increased number of settings and participants that typically 

accompany scale-up efforts, but they do not specify how this increase might influence effect sizes. The 

Common Guidelines for Education Research and Development also describe scale-up research as an 

increase in study size, but the guidelines also link the increase in size to sample heterogeneity and 

researcher independence when emphasizing “effectiveness in a wide range of populations, contexts, and 
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circumstances, without substantial developer involvement in implementation or evaluation” (Earle et al., 

2013, p. 9).  

As the number of settings and the size of study populations rise due to scale-up, the variation in those 

settings and populations is likely to increase as well. Although studies of academic achievement usually 

reveal more variation within sites than between them (Tipton, Hallberg, Hedges, & Chan, 2016), a large 

national study of 4-year-olds will reflect a greater range of student abilities, race/ethnicity profiles, home 

circumstances, prior family exposure to pre-K services, and the like compared to what any small, local 

study can provide. The same is true for the range of parent, service provider, and site attributes. It is such 

sampling heterogeneity that allows scale-up studies to probe impacts across a wider range of 

characteristics than earlier studies could.  

It is not entirely clear how sample differences between earlier and later studies influence effect sizes. 

Such compositional differences will only lead to differences in treatment effects if the earlier and later 

study samples differ in subgroup characteristics that influence effect sizes. When they do, whether 

compositional differences increase or decrease effect size depends on whether the earlier or later study 

sample has attributes related to larger or smaller effects. In this connection, it is particularly important to 

test whether any study results in negative effects—as inferred from statistically significant effects with the 

opposite causal sign. Such effects are “iatrogenic,” and their ethical and political implications need 

serious consideration.  

Compositional differences between studies matter technically as well as substantively. Researchers 

use effect sizes to compare causal estimates within and between studies, and Formula 1 (below) describes 

the calculation of effect sizes. The numerator indexes the size of the mean post-test difference between 

the treatment and control groups in the original study metric. The denominator is an estimate of the 

standard deviation—either the control group standard deviation, or the pooled control and treatment group 

standard deviations when they do not differ. The effect size is the ratio of these two values, and it 

transforms the estimate from its original metric into a standard deviation metric that can then be compared 

across outcomes within and between studies.  
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݁ݖ݅ݏ ݐ݂݂ܿ݁ܧ (1) =
்௥௘௔௧௠௘௡௧ ௚௥௢௨௣ ௠௘௔௡ି஼௢௠௣௔௥௜௦௢  ௚௥௢௨௣ ௠௘௔௡

ௌ௧௔௡ௗ௔௥ௗ ௗ௘௩௜௔௧௜௢௡
 

Now imagine an intervention that is more effective with children who initially score lower on an 

achievement test, and for which the proportion of lower achievers is higher in the scale-up study than in 

prior studies. The numerator of Formula 1 will be larger in the scale-up study than in earlier studies and 

will result in larger effect sizes. Conversely, if the intervention were more effective for initially high-

scoring children, then the scale-up’s numerator would be lower, and its effect size would be smaller.  

Formula 1 also requires standard deviations and, if the larger scale-up sample is—as one would 

expect—more heterogeneous than samples from prior studies, the scale-up study will generate a larger 

standard deviation. For a given mean difference in the numerator, a larger standard deviation in the 

denominator would reduce the effect size. To make this clearer, imagine two evaluations of the same 

intervention. The first is conducted in a single site with children who are homogeneous in their 

socioeconomic background, their pre-intervention achievement, and other characteristics that affect 

achievement. The second is conducted with a statewide sample of children. All things being equal, the 

standard deviation will tend to be smaller in the single-site study because of the homogeneity of its 

sample, and the effect sizes would consequently be larger.   

In actual research practice, it is difficult to predict how sample heterogeneity will influence effect 

sizes—will the effect size increase because participants who benefit more from the intervention are now 

part of the sample in the larger study? Or will it decrease because the sample now includes participants 

who benefit less from the intervention, or because a larger standard deviation in the denominator swamps 

an increase in the numerator? The ambivalence of the relationship between sample size and heterogeneity 

and effect sizes is reflected in Figure 1, where a two-headed arrow (instead of a single-headed one) is 

used to illustrate how the added heterogeneity of many scale-up studies might influence effect sizes.  

1.1.2. Quality of Program Content and Delivery 

Glennan, Bodilly, Galegher, and Kerr (2004) characterize scale-up as a “non-sequential process of 

interaction, feedback, and adaptation among groups of actors” (p. 27). This definition implies that larger 

scales may entail variation in program content and delivery as well as in sample size and heterogeneity. 
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Although positive changes in content and delivery may occur when moving from the smaller to the bigger 

scale, there are many more reasons to believe such changes will be negative and reduce effect sizes.  

On the positive side, many developers and implementers refine their programs to achieve ever more 

consistent and reliable results over time (McDonald et al., 2006), leading to later implementations that are 

subtly different from earlier ones, even when the program name does not change. The hope is that such 

program changes will reflect lessons gained from experience and so increase the numerator in Formula 1.  

But scale-up can also have a negative effect on implementation quality, principally by diminishing 

the developer’s control and decreasing implementation fidelity. As the number of sites and treatment 

providers increases, developers will tend to be less involved in implementation and provide less support 

on things like training treatment providers and monitoring program activities (Earle et al., 2013). The 

consequences of this for Formula 1 are likely to be both a lower numerator and a larger denominator, and 

lower effect sizes as a result.  

But budgets must also be taken into account. If the per-site and per-person budgets are constant 

across the earlier and later studies, or even higher in the latter, then the training, implementation, and 

monitoring disadvantages of having more sites could be avoided. But it seems naïve to assume research 

budgets that automatically increase to reflect the larger scaled-up samples, for this belies an important 

rationale for scaling up—that budgets reflect the lower cost patterns likely to hold when an intervention is 

standard practice and not a promising demonstration. 

Our judgment is that, when it comes to the effect sizes that a study achieves, improved program 

design will be less consequential than diminished implementation quality. This belief rests on the 

assumption that a higher number and greater dispersal of scale-up sites will result in less intense and less 

productive relationships with program developers—for example, instead of the program developers 

training the program deliverers themselves, they would use indirect approaches, such as train-the-trainer 

or online methods. The result of such compromises might be that a larger proportion of local sites fail to 

adopt some program components, or that they inappropriately adapt others. In either case, the scaled-up 

intervention should be weakened when compared to smaller-scale implementations over which program 
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developers can “hover” more readily. Figure 1 depicts the program implementation changes from scale-up 

as a single-headed arrow pointing downward to indicate smaller effects at a larger scale. 

1.1.3. Changes in the Counterfactual Condition 

Scale-up studies take place after results from a mix of smaller studies have been so consistently 

positive that they justify a larger study. This later study by definition takes place in a different time 

period, which is characterized by its own dynamics that might affect impact estimates. Indeed, many 

topics worthy of testing on a larger and more expensive scale may have to show not only prior evidence 

of effectiveness, but also evidence that they tap into types of social change that command current 

excitement and acceptance among the public and relevant decision makers.  

Are scale-up studies more likely to happen when a policy agenda has crystallized around the 

importance and definition of both the problem and a broad class of acceptable solutions to it? If so, the 

intervention itself will not seem as novel as it did before, and—more important for our purposes—the 

comparison group used in the scale-up will reflect some part of this new policy agenda and thus perhaps 

demonstrate increases in performance over time. If the counterfactual condition that most experiments 

and quasi-experiments require has come to incorporate more elements that overlap with the content of the 

intervention, then it will still be a “business as usual” counterfactual, but one whose performance is 

different from what used to define business as usual. The results will be a higher hurdle for the treatment 

group to overcome in the scale-up study, and a corresponding reduction in the obtained effect size.  

In this connection, consider the field of early childhood research. More and more children are 

attending pre-K, pre-K instruction has become more professionalized, and instructional content has 

become more aligned with elementary school standards. Indeed, the California Preschool Instructional 

Networks were developed during the period of this study, and the Common Core State Standards for 

Mathematics have focused on getting preschool children ready to meet the standards they will face in 

kindergarten (Lewis Presser, Clements, Ginsburg, & Ertle, 2015). It is almost certain, therefore, that the 

content of the business-as-usual counterfactual has shifted, and that pre-K students in the control group 

will now perform better. Such contextual changes will decrease the numerator in Formula 1 and so reduce 
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effect sizes. Thus, Figure 1 includes a downward-facing arrow to reflect how secular changes in the 

counterfactual condition are hypothesized to reduce effect sizes. 

1.1.4. Variations in the Quality of Outcome Measurement 

In smaller studies, program developers and researchers can have considerable control over how 

measurement takes place. They can ensure that the conditions and timing of testing reflect the research 

plan, and that attrition from the testing regimen is minimal. At a larger scale, the chances of having 

consistently high quality measurement are lower. Measurement error will tend to be greater, the 

denominator in Formula 1 will increase, and smaller effect sizes should result. 

However, two factors complicate fulfillment of this expectation. The first is that outcome measures 

can change over time. Program developers or researchers evaluating an intervention can choose to use 

different outcome measures—for example, they could move from a developer-created measure to a 

nationally normed test. Even if the same outcome measure is used, the measure itself can evolve over 

time, whether or not the abstract construct the measure is meant to represent does. Then, the later scale-up 

will likely involve at least a partially novel outcome measure. If the new measure is better aligned to the 

intervention content, it will increase the numerator in Formula 1; or if it has superior psychometric 

properties, it will decrease the denominator. In either case, the effect size would increase.  

In contrast, moving from a developer-designed measure to a national- or state-normed test might 

negatively affect alignment (and, all else equal, the effect size), because no one knows the specifics of a 

program better than its developers do. It is hard to know how to weight these countervailing forces, 

though most math achievement tests are well constructed so that the marginal gains in their psychometric 

quality would seem modest in comparison with the potential loss in content alignment.  

The second complicating factor is the research budget. In scale-up studies, the total budget will 

typically be higher than it is in smaller studies. However, the per-site or per-respondent budgets are more 

important for measurement quality, and they need not increase. Indeed, they are likely not to, because, as 

noted, one rationale for scaling up is to see what happens when the costs are those of an operative 
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program instead of those motivated by the need for faithful implementation and high quality measurement 

as in smaller studies.  

All other things being equal, we judge that the larger scale is likely to lead to less control over the 

measurement process and to lower reliability when compared to the earlier and more controlled studies in 

a programmatic sequence. Anecdotal evidence indicates that a portion of the outcome testing in some 

scale-up studies has taken place in unusual (and potentially more distracting) settings like homes, 

libraries, coffee houses, and cars in order to keep children who could not be tested in school within the 

study’s measurement framework. Such practices will tend to inflate the denominator in Formula 1 and 

thus attenuate effect sizes. Hence the downward-facing arrow in Figure 1, which indicates lower effect 

sizes in later studies due to lower measurement quality. 

1.1.5. Quality of the Evaluation Design and Its Execution 

Most interventions selected for scale-up will already have evidence of their efficacy or effectiveness 

from high quality studies, including randomized controlled trials (RCTs). Although the quality of design 

plans might not differ much between earlier and later studies, control over the implementation of the 

evaluation—that is, the execution of the planned study design—will tend to be lower as the size and 

heterogeneity of a scale-up study increases. The net result is more slippage between the planned and 

achieved design, and a correspondingly lower likelihood of finding impacts as large as earlier ones found 

in smaller and more homogeneous studies, where there was greater control over implementing both the 

program and its evaluation. For example, a smaller experiment will likely entail less attrition, both overall 

and differential, and thus better pre-test balance in the post-attrition analytic sample, resulting in less 

biased impact estimates. The downward-facing arrow in Figure 1 suggests that in scale-up studies, the 

planned study will not be executed with the same faithfulness to its design, and hence will have smaller 

effect sizes. 

1.1.6. Overall Implications for Effect Sizes 

Figure 1 summarizes the expected changes in effect sizes as scale increases—first for each unique 

dimension of scale-up, then across all dimensions. Upward-facing arrows indicate larger effect sizes at 
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larger scale, double-headed arrows indicate no clear prediction of direction, and downward-facing arrows 

suggest smaller effects. Weighting the dimensions equally, the final column indicates our belief that 

scaling up is more likely to decrease effect sizes than to increase them.  

This is not a formal hypothesis, however, for an increase attributable to one factor might lead to an 

overall increase that is larger than the cumulative decreases attributable to the other factors. Moreover, the 

influence of each force compelling the study toward finding smaller effects can be mitigated by more 

care, more resources, and more foresight—not to mention more luck.  

2. THE PRE-K MATHEMATICS PROGRAM AND PAST EVALUATIONS OF IT 

In this section, we describe the intervention under study, Pre-K Mathematics, and situate the current 

study in the context of past evaluations of Pre-K Mathematics. 

2.1. The Intervention 
Pre-K Mathematics (Klein & Starkey, 2002; 2004) is a multicomponent supplementary math 

curriculum for pre-kindergarten children. Past studies at different scales have found unequivocal evidence 

of its effectiveness, and the What Works Clearinghouse (2013) currently rates it as having statistically 

significant and positive effects on math achievement. Pre-K Mathematics focuses on the pre-K classroom 

and home learning environments of young children, especially those from families experiencing 

economic hardship. Its activities are designed to support mathematical development by providing learning 

opportunities to increase children’s informal mathematical knowledge. The intervention consists of a 

sequence of small-group math activities with concrete manipulatives that teachers implement in the pre-K 

classroom. The program also includes home math activities in the form of picture strips for parents to use 

with their children.  

The content of the activities is based on developmental research about the nature and extent of early 

mathematical knowledge (see Geary, 1994 and Ginsburg, Klein, & Starkey, 1998 for early reviews of the 

research). The curriculum targets a range of pre-K mathematics concepts and skills, including number, 

operations, geometry, pattern knowledge, and measurement. Units and activities within Pre-K 
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Mathematics are designed to prepare children for each of the clusters of standards included in the 

Common Core State Standards for Mathematics at kindergarten. They are also explicitly linked to 

National Council of Teachers of Mathematics (2006) Focal Points. Downward (less challenging) 

extensions of the mathematics activities are available for children who are not ready for a given activity, 

and upward (more challenging) extensions are available for children who complete an activity easily.  

Teachers attend multi-day professional development workshops in which they learn about the 

philosophy and key features of the program as well as how to implement the math activities. In addition, 

Pre-K Mathematics employs several implementation tools, and teachers get hands-on experience with 

them in the workshops. They learn how to keep track of each child’s learning over the course of the year, 

using recording sheets that accompany each math activity and a progress monitoring tool that documents 

the child’s mastery of the math concepts targeted by the curriculum. Teachers also send home weekly 

math activities (in English or Spanish) for parents to engage with their children. During the workshops, 

teachers learn how to explain these at-home activities to parents and how to use a parent feedback form to 

document parents’ use of these activities. 

2.2. Prior Studies of Pre-K Mathematics 

The developers conducted early pilot studies of Pre-K Mathematics as part of the intervention’s 

development. These studies were either non-experimental or they did not evaluate the intervention as a 

whole. All yielded positive, statistically significant impact estimates (Starkey & Klein, 2000; Starkey, 

Klein, & Wakeley, 2004).  

In this paper, we focus on four studies of the efficacy and effectiveness of Pre-K Mathematics, 

referring to them here as Study 1 (Klein, Starkey, Clements, Sarama, & Iyer; 2008), Study 2 (Starkey, 

Klein, & DeFlorio, 2014; Starkey & Klein, 2012), Study 3 (Starkey & Klein, 2014), and Study 4 (Starkey, 

Klein, & Clarke, 2015). In the rest of this section, we discuss how the current study and the four prior 

studies differ in terms of the dimensions of scale-up from our framework. 
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2.2.1. Settings and Study Participants 

In terms of settings and study participants, the current study is the largest and most diverse, with 

unclear implications for effect sizes. The number of pre-K classrooms is 50 percent larger than the 

number in the next-largest study (140 compared to 94 in Study 2). Although Studies 1 and 2 included pre-

K sites in other states as well as in California, the California sites were all located in Northern California 

(the Bay Area for Study 1, and the greater Sacramento region for Study 2). Study 3 sites were all in the 

Bay Area and Sacramento regions, whereas Study 4 took place only in the Bay Area and Central Valley 

of California.  

In contrast, the current study took place in all major California regions: the greater Los Angeles area, 

the Central Valley, the Bay Area, and rural Northern California. The pre-K sites, which were purposively 

selected, included public pre-K and Head Start programs in urban, suburban, and rural areas with large 

proportions of low-income families from diverse racial/ethnic backgrounds. The case for absolute scale-

up to the state level rests on this heterogeneous sample and the opportunity it provides to replicate results 

across purposively (instead of randomly) selected sites (Cook, 2014).  

[Table 1 about here.] 

The sample size of children in this study is nearly twice as large as it is in Study 2 (1,373 vs. 744 at 

baseline). Studies 1, 3, and 4 were smaller (ranging from 316 to 526 children).1 Although the majority of 

Study 2 children were white, the proportions of minority children in the other studies are similar to those 

in the current study. Being larger, though, the current study has larger numbers of children from a variety 

of racial/ethnic groups. Hispanic children account for three-fourths (75 percent) of the total study sample. 

The sample also includes white, African American, Asian, and mixed-race children.  

                                                      
1 Study 3 examined two interventions: Pre-K Mathematics in the pre-K year, and Pre-Pre-K Mathematics in the year 
before pre-K. A total of 526 children participated in the study. The study had two treatment conditions: 179 children 
received Pre-Pre-K Mathematics at age 3 and Pre-K Mathematics at age 4, and 172 received only Pre-K 
Mathematics at age 4. The remaining 175 made up the control group.  
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2.2.2. Program Content and Delivery  

Our theory predicts that the program content could change as a result of scale-up—for example, 

intervention developers could improve program content to incorporate lessons learned from prior studies, 

which would imply an increase in effect sizes, all else equal. The content of the Pre-K Mathematics 

curriculum was largely similar across all four studies. The broad intervention approach and core math 

activities remained the same: incorporating classroom and home activities, emphasizing teacher training 

and coaching, and collecting detailed implementation data. In addition, all four studies included 

mathematical enrichment of the classroom learning environment (math software, teacher-created math 

centers, or both).  

However, across studies, the program developers learned from experience and refined some program 

details accordingly. For example, the developers learned in this study that some activities turned out to be 

too long to complete in one week, and they altered the curriculum schedule to allow two weeks for those 

activities. The developers also dropped some activities and added others to better align the curriculum to 

the Common Core State Standards for Mathematics, which were being stressed by the national and state 

Departments of Education. We hypothesize that any influence these incremental improvements would 

have on effect sizes would be small.  

The theory predicts that the quality of program delivery is likely to suffer at larger scales, due to less 

developer control over the implementation of the intervention. The level of developer control over how 

Pre-K Mathematics was delivered differed across the studies we examine here, with unclear implications 

for effect sizes. Study 2 used a train-the-trainers model, in which the professional development staff hired 

by the project (that is, project staff) trained program trainers, who then trained and coached the teachers 

implementing the intervention. When possible, the developers worked within the preschool programs’ 

existing professional development system for teachers. However, when programs did not have their own 

professional development staff, they hired outside contractors to train and coach the teachers.  

In contrast, Studies 1, 3, and 4 used a direct training model in which project staff trained teachers and 

coached them. In the current study, the developers used a hybrid model depending on the needs and 
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capacity of the participating preschool programs. In some sites, project staff directly trained and coached 

teachers, and in others, they used a train-the-trainers approach. These differences in training methods 

entail less developer control over training and monitoring in the current study than in Studies 1, 3, and 4, 

but somewhat more control than in Study 2. Although these differences might seem marginal and unlikely 

to have much influence on effect sizes, if operating alone, they would lead to predicting smaller effects in 

the present study than in Studies 1, 3, and 4, whereas they would predict larger effects than in Study 2. 

2.2.3. Changes in the Counterfactual Condition 

Our theory predicts that changes in the counterfactual condition can have negative consequences for 

effect sizes if the business-as-usual comparison group’s achievement has increased over time, which we 

expect is the case for preschool mathematics. The studies of Pre-K Mathematics we examine were 

conducted over a 12-year span between 2003 and 2015 (publication dates range from 2008 to 2018). All 

the studies included California preschool sites, though several also included sites in other states (New 

York and Kentucky). California adopted the Common Core State Standards in 2010, though 

implementing the curriculum, instructional materials, and assessments based on the standards will take 

several years (California Department of Education, 2016). Increased awareness of these standards will 

likely improve the state of mathematical knowledge in comparison groups over time, and thereby reduce 

effect sizes in the current study compared to past studies.  

Within this time span, California also changed its cutoff age for kindergarten entry and instituted 

transitional kindergarten statewide for eligible 4-year-olds.2 However, we do not expect this policy 

change to result in substantial time-varying differences in the state of mathematical knowledge in the 

                                                      
2 Before the 2012–2013 school year, California state law stipulated that children must turn 5 by December 2 to be 
able to start kindergarten in that year. A new law (SB 1381, which became effective in the 2012–2013 school year) 
stipulated a new cutoff date of September 2. To phase in this new age requirement, the state moved the cutoff date 
back one month each year for three years. The cutoff was November 2 in the 2012–2013 school year, October 2 in 
2013–2014, and September 2 in 2014–2015. SB1381 also established transitional kindergarten for students who 
would turn 5 between September 2 and December 2 (that is, those students who would have been able to start 
kindergarten under the old law, but could not under the new law) (Mercado-Garcia, Quick, Holod, & Manship, 
2013). State transitional kindergarten programs were not included in any of the studies of Pre-K Mathematics. 



SEQUENTIAL SCALE-UP: A CASE STUDY  

 
 
 17  

comparison groups, because transitional kindergarten was offered to only a few 4-year-olds—those who 

would otherwise have started kindergarten if not for the change in the entry cutoff.  

2.2.4. Outcome Measurement Quality 

Overall, our theory predicts that less developer control over measurement will decrease reliability 

and lower effect sizes. The studies of Pre-K Mathematics we examine differed in terms of how much the 

developer controlled the assessment process. In the four prior efficacy and effectiveness studies, research 

staff hired by the intervention developers trained all the assessors and directly monitored them. In the 

current study, funding requirements dictated that the developers use an external data collector. An 

independent research firm carried out the assessment process under contract with the intervention 

developers. A train-the-trainers model was used for all child outcome measures. That is, project research 

staff trained the trainers from the external data collection firm, and these trainers then hired and trained 

the child assessors and oversaw the assessment process.  

With regard to the measures themselves, we expect that less well-aligned measures will yield lower 

effect sizes. The current study as well as the prior studies used math assessments that differed in terms of 

their alignment with the Pre-K Mathematics intervention. All four prior studies had one primary math 

outcome measure in common: the Child Math Assessment (CMA). The CMA is a researcher-developed 

measure that is aligned with the math content of the Pre-K Mathematics intervention, but it does not use 

any of the same materials as the intervention. The CMA assesses informal mathematical knowledge 

across a broad range of skills and concepts including number, arithmetic, space and geometry, 

measurement, and patterns. Though the CMA is not a norm-referenced test, it has strong psychometric 

properties (test-retest reliability over a two-week interval is 0.91, Cronbach’s alpha over all tasks is 0.90, 

and convergent validity with the TEMA-3 is 0.74 [Klein et al., 2008]). 

Studies 2, 3, and 4 also used the Test of Early Mathematics Ability, Third Edition (TEMA-3; 

Ginsburg & Baroody, 2003) as a secondary math outcome measure. The TEMA-3 is a norm-referenced 

test (but not based on a national sample) that measures informal and formal knowledge in number and 

operations only. It is therefore not as well aligned with the intervention, whose math content in not 
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limited to number and operations, but also includes space and geometry, measurement, and pattern 

knowledge. In addition, the TEMA-3 includes a large number of items that test formal (that is, symbolic) 

number knowledge, making this measure less developmentally appropriate for preschool children. 

The current study used the Early Childhood Longitudinal Study, Birth Cohort (ECLS-B) 

Mathematics Assessment (U.S. Department of Education, 1998–1999) as the primary math outcome 

measure. The ECLS-B is an item response theory-based, adaptive test that measures a broad range of 

early math content including number and arithmetic, geometry, measurement, and pattern knowledge. 

Moreover, it is a norm-referenced test that is based on a purposive national sample. In addition to ECLS-

B, the current study used theTEMA-3 as a secondary math measure to capture growth in children’s formal 

number knowledge in the kindergarten year. Overall, the ECLS-B is better aligned with the content of 

Pre-K Mathematics than the TEMA-3, but not as well-aligned as the CMA.  

All three math assessments—the CMA, the TEMA-3, and the ECLS-B—have strong psychometric 

properties, but they differ in terms of their alignment with the Pre-K Mathematics intervention. We 

hypothesize that effect sizes will decrease as alignment decreases, so the CMA should yield the largest 

effect sizes, followed by the ECLS-B, then the TEMA-3. 

2.2.5. Quality of the Evaluation Design and Its Execution 

Though interventions selected for scale-up likely have been evaluated in high quality studies, 

including RCTs, we postulate that the execution of the planned study design will tend to be lower as the 

size and heterogeneity of a scale-up study increases, yielding lower effect sizes. Because all of the studies 

described in Table 1 were cluster RCTs, the quality of their planned evaluation study design was similar. 

Moreover, the execution of the evaluation was also similar: there are no indications that pre-test balance 

or rates of treatment contamination varied much from one study to another. It is unlikely, therefore, that 

evaluation design or execution can be responsible for any effect differences by study.  

2.2.6. Overall Predictions for Effect Sizes from Prior Efficacy and Effectiveness Studies 
and the Current Studies 

The current study differs from Studies 1–4 in three meaningful ways. It is statewide; it was 

conducted later, in a context of higher awareness of the importance of mathematics instruction in pre-K; 
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and there was less developer control over the measurement process. The first difference has unclear 

implications for effect sizes; the last two, however, suggest that the current study will have smaller effect 

sizes than the other three. 

3. METHODS IN THE SCALE-UP STUDY OF PRE-K MATHEMATICS 

In this section, we describe the methods we used to estimate the impacts of Pre-K Mathematics in 

the current study, and those we used to compare these estimates to estimates from past studies of the 

intervention. 

3.1. Experimental Design for the Statewide Scale-Up Study 
This study used a cluster RCT design in which pre-K classrooms were randomly assigned to the 

treatment or control condition. Pre-K Mathematics was the intervention implemented in the treatment 

condition, and the control condition entailed business-as-usual instruction in pre-K. Four-year-old 

children who were eligible to attend kindergarten the following year, spoke either English or Spanish, did 

not have an identified developmental disability, and had their parents’ or guardians’ consent to participate 

were eligible for the study. Consent was obtained before random assignment. Up to 12 children per pre-K 

classroom were selected (if more than 12 were eligible, 12 were randomly selected to participate). The 

intervention was implemented across two cohorts. The first began pre-K in the 2013–2014 school year, 

and the second in the following year.  

We used a heterogeneous but purposive sample of pre-K school sites and classrooms for this study. 

We recruited pre-K school sites from the greater Los Angeles area, the Central Valley, the Bay Area, and 

rural Northern California. The purposive selection included public pre-K and Head Start programs located 

in urban, suburban, and rural areas with large proportions of low-income families from diverse 

racial/ethnic backgrounds who plausibly represent all low-income families in California with a child of 

pre-K age. 

Though random sampling followed by random assignment is the ideal, we did not employ random 

sampling in the present study; indeed, for practical reasons, it is rare today and not likely to become 
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standard in the future (Cook, 2014). Nor could we weight the sample to approximate the state-level 

population, because we did not have access to a data-rich profile of all California children attending pre-

K. Finally, we did not randomize within racial and ethnic subgroups, so statistical power to detect 

meaningful treatment-control differences within these subgroups is limited. 

3.2. Measures for the Statewide Scale-Up Study 

We used the ECLS-B and the TEMA-3 to collect data on math achievement at post-test (spring pre-

K). As a pre-test measure, we used the ECLS-B, administered at the beginning of the pre-K year (fall pre-

K).3 We collected other baseline measures to serve as control variables. One was the Test of Preschool 

Early Literacy (TOPEL), which is individually administered and assesses the early literacy of children 

ages 3 to 5 (Lonigan, Wagner, Torgesen, & Rashotte, 2007). Others were demographic covariates: age, 

gender, race/ethnicity, and language.  

We collected two implementation measures during the school year. To assess fidelity, local trainers 

made visits to teachers in the treatment classrooms. They observed as a teacher conducted a small-group 

math activity and gave the teachers feedback afterward about any departures from fidelity. The second 

measure was the Early Mathematics Classroom Observation (EMCO), an observation tool used to 

determine the nature and amount of mathematics instruction that preschool teachers provided in their 

classrooms. For each teacher-participant activity involving mathematical content, trained observers 

recorded the type of mathematical content, number of children present, and the duration of the activity. 

This provided data on the number of minutes of math instruction, on average, to a child during an 

observation session.  

3.3. Sample for the Statewide Scale-Up Study 
At the time of random assignment, the sample consisted of 1,373 children (687 in the treatment 

group; 686 in the control group). They came from 140 pre-K classrooms (70 treatment; 70 control) within 

106 pre-K school sites and 10 school districts. There were 17 pre-K classrooms in the Bay Area, 31 in 

                                                      
3 We did not assess children on the TEMA-3 at pre-test, because its principal purpose was to supplement our 
assessment of children’s formal number knowledge in kindergarten. . 
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rural Northern California, 13 in the rural Central Valley, and 79 in various parts of Southern California, 

including the greater Los Angeles area. Overall, 18 percent of pre-K classrooms were in urban areas, 51 

percent in suburban areas, and 31 percent in towns or rural areas.  

These pre-K classrooms comprise an ethnically and linguistically diverse population of low-income 

families. Seventy-five percent were Hispanic, 13 percent were white, 6 percent were African American, 4 

percent were of mixed race, and 2 percent were Asian. Most of the sample were exclusively English 

speakers (68 percent); for 25 percent, Spanish was the dominant language; and 7 percent spoke both 

English and Spanish. On average, children were 4.4 years old at baseline (fall of the pre-K year), and 48 

percent were male (Table 2).  

[Table 2 about here] 

The analytic sample for the ECLS-B consisted of 1,313 children (653 in the treatment group and 660 

in the control) within 70 treatment and 70 control classrooms. For the TEMA-3, which was not 

administered in five classrooms at post-test, the sample was somewhat smaller: 1,256 children (621 

treatment, 635 control) within 135 classrooms (67 treatment, 68 control). Overall attrition was low: 4.4 

percent for the ECLS-B, and 8.5 percent for the TEMA-3. Differential attrition was also low: 1.2 percent 

for the ECLS-B, and 2.2 percent for the TEMA-3.  

Table 3 shows that the final treatment and control samples used in the analysis were well balanced 

on the available variables, showing no significant differences on pre-test or baseline demographic 

characteristics. Even though there were treatment and control classrooms within the same school, 

classroom observations, during which the EMCO was administered, revealed no borrowing of the math 

curriculum by the control classrooms. When combined with all the information presented above, it looks 

as though the experimental design was adequately implemented.  

[Table 3 about here.] 
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3.4. Hypotheses and Impact Models for the Statewide Scale-Up Study 
The null hypothesis for testing whether the pre-K math program is effective at the state level is that 

the treatment and control groups do not differ on their post-test math performance. The counter-

hypothesis is that the group exposed to Pre-K Mathematics does better.  

Because scale-up entails greater heterogeneity in the subpopulations of persons and settings sampled, 

we also test the null hypotheses that effect sizes do not depend on (1) race/ethnicity; (2) prior knowledge 

of math—that is, whether children had higher or lower performance at pre-test; and (3) urbanicity; that is, 

residence in urban, suburban, or rural sites within California. The counter-hypotheses are that intervention 

effects are heterogeneous across children and settings.  

We present regression-adjusted means for the treatment and control groups from a hierarchical linear 

model in which children are nested within pre-K classrooms, the unit of random assignment. The model 

includes the full set of child-level covariates (ECLS-B and TOPEL pre-tests, age, gender, race/ethnicity, 

language, and cohort). We then calculate effect sizes using Hedges’ g formula: 

(2) ݃ =
௠௘௔௡ෟ ೅ି௠௘ෟ ಴

ௌ஽೛೚೚೗೐೏
 

where ݉݁ܽෟ݊ ܶ equals the adjusted treatment group mean, ݉݁ܽෟ݊  ,equals the adjusted control group mean ܥ

and ݈ܵ݀݁݋݋݌ܦ is the pooled SD. We use the following formula to calculate the pooled SD:  

݈݀݁݋݋݌ܦܵ (3) = ටሺܰܶ−1)ܵܶܦ
2+ሺܰܥܦܵ(1−ܥ

2

2−ܥܰ+ܶܰ
 

as the difference between the regression-adjusted treatment and control group post-test means, divided by 

the unadjusted, pooled treatment and control group standard deviation.  

3.5. Methods for Comparing Effect Sizes across Studies  
As a simple way to compare effect sizes across studies, we examine how the authors’ preferred effect 

size calculations differ across studies by plotting the obtained effect sizes from Studies 1–4 and the 

current study against the year in which pre-K took place for each study. We plot these effect sizes for all 

math outcomes used in these studies: as discussed, Study 1 used the CMA; Studies 2, 3 and 4 used both 

the CMA and TEMA-3; and the current study used the TEMA-3 and the ECLS-B. 
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However, these different measures pose a problem for comparing effect size differences across 

studies that have grown larger, more heterogeneous, and less well controlled. The tests vary in many ways 

that might influence effect sizes, but especially in how well they are aligned with program content. To 

remove one source of variation when comparing effect sizes—different outcome measures—we will also 

compare effect sizes across the four studies that used the TEMA-3 (Studies 2, 3, and 4 and the current 

evaluation). This reduces the length of the time span examined and relies on the least well-aligned 

outcome. Even so, the time period and math measure should be enough to see if effect sizes trend 

downward due to reasons other than different outcome measures. 

Past studies also differ in the causal quantity estimated, with some computing intent-to-treat (ITT) 

estimates and others calculating treatment-on-the-treated (TOT) estimates. To hold the estimand constant, 

we calculated unadjusted ITT effect sizes for each study that used the TEMA-3, using for this purpose the 

unadjusted treatment and control group post-test means and standard deviations for the ITT sample:  

݁ݖ݅ݏ ݐ݂݂ܿ݁݁ ܶܶܫ (4) =
௎௡௔ௗ௝௨௦௧௘ௗ ௧௥௘௔௧௠௘௡௧ ௚௥௢௨௣ ௠௘௔௡ି௎௡௔ௗ௝௨௦  ௖௢௠௣௔௥௜௦௢௡ ௚௥௢௨௣ ௠௘௔௡

௎௡௔ௗ௝௨௦௧௘ௗ ௖௢௡௧௥௢௟ ௚௥௢௨௣ ௦௧௔௡ௗ௔௥ௗ ௗ௘௩௜௔௧௜௢௡
 

Such details were generously provided to us by study authors when they were not already available from 

research reports.  

4. RESULTS FOR THE STATEWIDE SCALE-UP STUDY OF PRE-K 
MATHEMATICS 

4.1. Average Effects of the Pre-K Mathematics Intervention 
Pre-K Mathematics had positive and significant effects on the math achievement of pre-

kindergartners as measured by the ECLS-B and the TEMA-3 at the end of the pre-K year. Table 4 

presents the regression-adjusted post-test means and unadjusted, pooled post-test standard deviations 

from the model described earlier, for the total scale-up effect. The program was clearly effective, as prior 

studies also showed: the effect size was 0.30 for the ECLS-B and 0.23 for the TEMA-3, with a p-value of 

less than 0.01 for both outcome measures.  

[Table 4 about here] 
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4.2. Interactions of the Intervention with Child and Site Characteristics 
In post-hoc subgroup analyses, we found that treatment effect estimates were positive in sign for all 

racial/ethnic groups, and they did not reliably differ across the groups. The group-specific effect sizes on 

the ECLS-B ranged from 0.24 for white and Asian children to 0.59 for African American children; on the 

TEMA-3, they ranged from 0.12 for white children to 0.55 for African American children (Table 5). 

Sample sizes varied considerably by group, and there were no reliable interactions of treatment and 

racial/ethnic groups within the power limits imposed by the sample sizes.4 All indications are that each 

population group benefitted from the intervention, and the consistently positive causal signs suggest that 

none was negatively affected.  

[Table 5 about here] 

We also examined average treatment effects by pre-test performance and by urbanicity. There is no 

consistent evidence that treated children who scored lower on the pre-test did appreciably better or worse 

over time than their higher-scoring counterparts (Table 6). In addition, effect sizes do not vary 

systematically among pre-K sites located in cities, suburbs, or towns/rural areas (Table 7). Statistical 

analyses confirm that neither the initial math score nor the three location categories interact with 

treatment to affect average differences in effect sizes.5 

[Tables 6 and 7 about here] 

                                                      
4 To test this, we regressed the ECLS-B scale score and the TEMA-3 at wave 2 on interactions between each 
racial/ethnic category and treatment (four interactions total) and included the other baseline control variables 
(ECLS-B and TOPEL pretests, age, gender, language, and cohort). We tested whether the coefficients on the 
interaction terms were equal and were unable to reject the null hypothesis that they were equal (p = 0.559 for the 
ECLS-B and p = 0.433 for the TEMA-3). 

5 We tested this in the same way we tested differences in treatment effects across racial/ethnic categories. In all 
cases, we were unable to reject the null hypothesis at conventional significance levels that the coefficients on the 
relevant interaction terms were equal. For the test of the equality of treatment-ECLS-B pretest quintile interaction 
coefficients, p = 0.267 for the ECLS-B and p = 0.097 for the TEMA-3. For the test of equality of treatment-
urbanicity interaction coefficients, p = 0.635 for the ECLS-B and p = 0.961 for the TEMA-3. 
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5. COMPARING EFFECT SIZES ACROSS STUDIES 

Figure 2 plots study-specific effect sizes against the year in which spring pre-K took place for 

Studies 1–4 and for the current evaluation of Pre-K Mathematics. A downward trend is clearly apparent: 

effect sizes decrease over time.  

[Figure 2 about here.] 

Of course, the study date is correlated with many other things besides time, such as the math measure 

that was used. The figure also shows the different math outcome measures used in these studies: the 

CMA, the TEMA-3, and the ECLS-B. This reveals that effect sizes are larger with better-aligned 

measures. In each pre-K year in which children were assessed using both the CMA and the TEMA-3—

that is, 2008, 2011, and 2014—CMA effect sizes were larger than TEMA-3 effect sizes. In the current 

study, effect sizes were also larger with the better-aligned measure: the ECLS-B is better aligned than the 

TEMA-3 (though not as well aligned as the CMA is), and the ECLS-B yielded a larger effect size than the 

TEMA-3.  

Table 8 shows what happens when effect sizes are calculated in exactly the same way across studies, 

but limited to the more recent studies using the TEMA-3—Studies 2, 3, and 4. A temporal pattern of 

reduced average effect sizes continues to be apparent, but it is now more modest, and ranges from a high 

of 0.45 standard deviations in Study 3 to a low of 0.20 in the present study.6  

[Table 8 about here.] 

The computation of effect sizes includes consideration of the differences in the sample sizes of each 

study, thanks to the standard deviation included in the denominator of Formula 1. Nonetheless, we might 

compute a rough measure of “total” program impact to include both program performance and 

demonstrated program reach by multiplying the average effect size by the number of children in a study. 

                                                      
6 To compare effect sizes across studies that used the TEMA-3, the effect sizes in Table 8 are calculated differently 
from the effect sizes in Table 4, the main results table. Specifically, Table 4 reports effect sizes calculated using 
adjusted treatment-control mean differences, and Table 8 reports effect sizes calculated using unadjusted mean 
differences. 
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By this metric, the study with the largest effect size, Study 2, has a relatively small total program impact 

due to its modest sample size, and the study with the smallest effect size, the current evaluation, has the 

largest total program impact of the four studies in Table 8.  

6. DISCUSSION 

This paper presented a case study of absolute scale-up of a pre-K math program to the state level in 

California. It was not possible to enumerate all pre-K students in the state, or even all pre-K students from 

low-income families. So it was not possible either to select students at random before randomly assigning 

them to the Pre-K Mathematics intervention or to weight the sample we achieved to better approximate 

the relevant population on attributes measured in both the population and the sample. Instead, our 

rationale for state-level generalization is predicated on the heterogeneity of the achieved sample in terms 

of the location of children within the state and of their demonstrated variation in many other attributes 

that past research has shown to be related to math gains. Such a sampling plan is feasible and widely 

practiced across all the social and natural sciences.  

With this proviso in mind, we tested whether the positive evaluation results that were demonstrated 

in earlier, smaller, and more homogeneous studies continued to be observed when essentially the same 

intervention was implemented on a larger and more heterogeneous scale. We showed that Pre-K 

Mathematics had consistently positive effects, and that these effects did not demonstrably differ by the 

racial/ethnic background or pre-test performance of children, or by the urbanicity of the settings.  

The present study also set out to test whether scale-up lowers achievement gains relative to those 

found in earlier research. Past evaluations of Pre-K Mathematics over more than 10 years show a 

decreasing trend over time, consistent with the hypothesis that larger, more heterogeneous, and less 

controlled studies tend to yield smaller results. However, the math outcome measures also varied over this 

period. When we use the same TEMA-3 outcome to contrast study results, we limit the analysis to the 

more recent past, and the resulting historical trend is less certain and less steep, but still evident.  
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Hence, we find support for our conjecture, based on the framework of dimensions of scale-up that 

we developed in this paper, that scale-up is associated with smaller effect sizes—as studies got larger, 

more heterogeneous, and less controlled, and used less well-aligned outcome measures, effect sizes 

tended to decrease. Of course, it is possible to imagine scenarios in which budgets increase dramatically 

with study size and experience has accumulated to counteract the forces that diminish effect sizes. 

However, we judge it likely that larger scales will often entail lower costs per study unit sampled, because 

reducing per-unit costs is one rationale for conducting scale-up studies.  

In other words, scale matters. But how it matters cannot be interpreted solely in terms of lower 

average effect sizes over time. Scale-up also tends to increase the size and heterogeneity of the group for 

which lower effects are shown. Construing total program impact to include both program performance 

and demonstrated program reach would mean that interpreting the policy implications of modestly 

smaller effect sizes would need to be conditional on the higher numbers and greater heterogeneity over 

which effects were demonstrated. In other words, the study’s higher internal validity of smaller findings 

would be balanced against its demonstrably higher external validity. 

Other early childhood education programs have claimed positive impacts on some outcomes 

assessed in adulthood instead of early childhood (Monahan, Thomas, Paulsell, & Murphy, 2015). If that is 

the emerging standard for assessing the importance of pre-K results, then children will have to build on 

the gains observed here. But the mechanisms for capitalizing on pre-K gains are not known yet, and 

perhaps the greatest challenge to pre-K education is to discover which mechanisms translate early gains in 

literacy and numeracy into more years of schooling, better employment, less involvement in the criminal 

justice system, and more stable adult relationships. A modest but broadly distributed gain in math 

achievement within a state or nation is more meaningful if it can be linked to changes in some broad set 

of cognitive and non-cognitive skill changes that might plausibly maintain or transform early achievement 

gains. 

The present study also has implications for how we think about the external validity of causal 

relationships. One formulation of causal generalization (Cook, 2014), based on work by Cronbach et al. 
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(1980) and Mackie (1975), frames external validity in terms of two dimensions. The first involves five 

domains in which generalization is explicitly or implicitly sought: the target populations of (1) times, (2) 

persons, (3) settings, (4) treatments, and (5) outcomes.  

The second dimension of external validity involves different functions of causal generalization. One 

function concerns the populations and constructs that the study-level samples and measures stand for. The 

key question here is: What do these sampling particulars “represent”?  

The second causal generalization function uses these same sampling particulars to generalize a 

causal connection to cause-and-effect constructs (that is, treatments and outcomes) and to populations of 

persons, settings, and times that manifestly differ from what the sampling particulars are judged to 

represent. The key question here is: How can we extrapolate from the obtained sampling specifics to 

constructs and populations that are manifestly different from what the sampling specifics represent? This 

latter causal generation function equates external validity with “extrapolation” instead of “representation,” 

and it probably better describes what confronts potential users of causal information. They need to know: 

How can the information from causal studies be applied to the program for which I am responsible, given 

that any changes I make (1) will be in the future and not the past, (2) will apply to the people I work with 

and not those studied in the past, (3) will be implemented in the setting where I work and not in the 

sample of settings examined earlier, (4) will have to apply to the program updates and adaptations I have 

to make or want to make, and (5) will also have to apply to the way I want to measure the effect, as 

opposed to the ways it was done before?  

The present study is part of a sequence of experiments evaluating ostensibly the same pre-K 

mathematics program. All the studies included children of similar ages whose families generally had low 

incomes. But the attributes of the children differed in other ways, including observed race/ethnicity, pre-

test scores, and many other unobserved attributes that developmental psychologists would find important 

as possible moderators of treatment effects. Yet, despite this heterogeneity in student attributes, positive 

effects were routinely obtained over time.  
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The settings are also different across the studies, including the states and urbanicity of the 

geographic regions in which the evaluations took place, the kinds of school districts, and type of the pre-

K program (state preschool and Head Start). The time period is also different, lasting over 10 years from 

the first to the last study. Yet positive effects were routinely found despite these secular changes. Also 

unique over time are the program variants we sampled, for the program theory marginally changed over 

time, as did the implementation of the program particulars and the visibility of the developer. Finally, 

several different math outcome measures have been used, each showing positive effects. There is no 

doubt, then, that the sampling particulars in this synthesis of studies indicate that Pre-K Mathematics is 

robustly effective across many sources of variation in persons, settings, time, and ways of 

operationalizing the cause and effect.  

But robust effectiveness across multiple sources of sampled heterogeneity is not the same as formal 

generalization to specifically named populations or cause and effect constructs. Random sampling is best 

for this, but it is rarely used in causal research and does not lend itself to generalizing to times or to cause-

and-effect constructs. To improve representativeness, we might have weighted sample details to better 

represent known population details, but this is impossible because no enumeration of the statewide pre-K 

population is available. Instead, we used a strategy based on demonstrating effectiveness across multiple 

sources of sampled heterogeneity, this being the current strategy for generalizing causal connections in 

the social and natural sciences. The claim we make is that the sources of heterogeneity we sampled across 

studies is unusually rich in attributes that are plausibly related to math gains, and that such gains were 

routinely observed.   

Extrapolating a causal relationship to unobserved populations and constructs is even more 

complicated. When researchers directly examine extrapolation, it is usually in the context of persons 

rather than settings, times, causes, or effects. The researchers in question then model how a causal 

relationship would change if the personal attributes sampled were differently weighted to better reflect the 

intended population. This approach is limited, however, because it cannot deal with novel attributes of the 

target population that are not measured in the obtained sample.  
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We believe that extrapolation is best promoted at present by the strategy adopted here. Within 

studies, it emphasizes the purposive but deliberately heterogeneous sampling of persons and sites and 

then emphasizes testing the generalization of the causal connection across these sources of heterogeneity. 

More important is that it also emphasizes purposive sampling between studies, for this will usually create 

even more heterogeneity than a single study achieves. The consistency of effect sizes can then be 

ascertained over this even greater heterogeneity in persons, settings, times, and cause-and-effect variants, 

defining consistency in terms either of causal signs (achieved here), or of statistically significant 

differences (also achieved here), or of effect sizes (not demonstrated here because effect sizes tended to 

decrease with time and increases in study size, as predicted by our framework).  

This operative rationale for extrapolation is admittedly inductive. It assumes that a robustly 

replicated causal relationship across the multiple sources of variation examined to date raises the odds 

that the same causal relationship will continue to be inferred in future populations and with future 

modifications to the cause-and-effect operations. Of course, there can be no guarantee of this. Because the 

future is never identical to the past, this rationale for extrapolation requires the pragmatic conditional that 

a heterogeneously demonstrated causal relationship will continue to hold until proven otherwise. 

Ontologically, it seems unlikely that causal relationships are universal; likely, all of them will be 

conditional on something. Realistically, we cannot wait until all the relevant causal contingencies have 

been identified. We have to choose to act, and our proposal is to wait to act until a causal relationship has 

been heterogeneously tested and shown to be robust, and then to act as though it were universally true 

while remaining mindful that later experiences may help identify the contingencies under which the given 

causal relationship is indeed true.  

To seek to generalize causal relationships only to persons represents an advance, but it does not 

directly speak to the other four domains that are intrinsically embedded in any causal claim. It also frames 

external validity more in the service of how a sample of persons represents the researcher’s intended 

population than in how the sample might facilitate extrapolation to targets with attributes that are not 

included among the sample details. Extrapolating a causal relationship is admittedly more complex than 



SEQUENTIAL SCALE-UP: A CASE STUDY  

 
 
 31  

representing what the sampling details in a causal study represent. Moreover, it is less amenable to 

conceptualization within the conventional sampling theory perspective that dominates recent thinking 

about external validity. Our concern is that approaching external validity and causal generalization from 

this perspective will lead to our seeing only part of the elephant. We suggest that the purposive but 

heterogeneous sampling that multiple tests of the same evolving program make possible is better for 

causal extrapolation, and probably better still when the more recent studies have larger and more 

heterogeneous sampling frames and less researcher and developer control over study details—as in the 

scale-up context examined here.  
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TABLES AND FIGURES 

Table 1. Current and past studies of Pre-K Mathematics 

Study Settings and study participants 
Program content and 

delivery 

Changes in the 
counterfactual 

condition 
Measurement 

quality 
Evaluation 

design 

Study 1  
(Klein, Starkey, 
Clements, Sarama, & 
Iyer, 2008)  

 40 classrooms in CA and NY 
 Urban areas 
 316 children at baseline 
 53 percent African American, 

22 percent white, 22 percent 
Hispanic 

 Program content: 
Classroom and home 
components of Pre-K 
Mathematics; DLM 
Express math software for 
classroom use 

 Program delivery: Direct 
teacher training 

 Spring pre-K took 
place in 2003 

 CMA 
 Direct assessor 

training and 
monitoring 

 Cluster 
RCT 

Study 2  
(Starkey, Klein, & 
DeFlorio, 2014; 
Starkey & Klein, 
2012)  

 94 classrooms in CA and KY 
 Urban and rural areas 
 744 children at baseline 
 All low-income 
 52 percent white, 18 percent 

Hispanic, 17 percent African 
American 

 Program content: 
Classroom and home 
components of Pre-K 
Mathematics 

 Program delivery: Train-
the-trainer model 

 Spring pre-K took 
place in 2007 and 
2008 

 Business-as-usual 
teaching practices in 
control group 

 CMA, TEMA-3 
 Direct assessor 

training and 
monitoring 

 Cluster 
RCT 

Study 3  
(Starkey & Klein, 
2014) 

 63 classrooms in northern CA 
(Bay Area and Sacramento) 

 Urban, suburban, and rural 
areas 

 526 children at baseline (347 in 
relevant intervention 
conditions) 

 58 percent Hispanic, 18 
percent African American, 14 
percent mixed race or other 

 Program content: 
Classroom and home 
components of Pre-K 
Mathematics 

 Program delivery: Direct 
teacher training 

 Spring pre-K took 
place in 2011 

 Business-as-usual 
teaching practices in 
control group 

 CMA, TEMA-3 
 Direct assessor 

training and 
monitoring 

 Cluster 
RCT 

Study 4  
(Starkey, Klein, & 
Clarke, 2015) 

 41 classrooms in CA (Bay Area 
and Central Valley) 

 Urban, suburban, and rural 
areas 

 389 children at baseline 
 All low-income 
 76 percent Hispanic, 8 percent 

mixed race or other, 7 percent 
white 

 Program content: 
Classroom and home 
components of Pre-K 
Mathematics 

 Program delivery: Direct 
teacher training 

 Spring pre-K took 
place in 2014 

 Business-as-usual 
teaching practices in 
control group 

 CMA, TEMA-3 
 Direct assessor 

training and 
monitoring 

 Cluster 
RCT 
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Study Settings and study participants 
Program content and 

delivery 

Changes in the 
counterfactual 

condition 
Measurement 

quality 
Evaluation 

design 

The current study  140 classrooms throughout CA 
 Urban, suburban, and rural 

areas 
 1373 children at baseline 
 All low-income 
 76 percent Hispanic, 11 

percent white, 6 percent 
African American 

 Program content: 
Classroom and home 
components of Pre-K 
Mathematics; content 
explicitly tied to K 
Common Core standards.  

 Program delivery: Hybrid 
of a train-the-trainer model 
and direct teacher training 

 Spring pre-K took 
place in 2014 and 
2015 

 Business-as-usual 
teaching practices in 
control group 

 ECLS-B, TEMA-3 
 External data 

collector 

 Cluster 
RCT 

CMA = Child Math Assessment; ECLS-B = Early Childhood Longitudinal Study, Birth Cohort Mathematics Assessment; K = 
kindergarten; RCT = randomized controlled trial; TEMA-3 = Test of Early Mathematics Ability, Third Edition. 
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Table 2. Descriptive statistics of baseline, ECLS-B, and TEMA-3 analytic samples 

 

Baseline sample  
(wave 1) 

(N = 1373) 
ECLS-B analytic sample (wave 2) 

(N = 1313) 
TEMA-3 analytic sample (wave 2) 

(N = 1256) 

Baseline characteristic Mean SE Mean SE Mean SE 

ECLS-B scale score 19.90 0.28 19.87 0.29 19.82 0.30 
TOPEL 10.73 0.34 10.71 0.35 10.65 0.36 
Age 4.44 0.01 4.45 0.01 4.44 0.01 
Male 0.48 0.01 0.48 0.01 0.48 0.01 
Hispanic 0.75 0.02 0.75 0.02 0.77 0.02 
White 0.13 0.02 0.13 0.02 0.11 0.02 
African American 0.06 0.01 0.05 0.01 0.06 0.01 
Mixed/other race 0.04 0.01 0.04 0.01 0.04 0.01 
Asian 0.02 0.01 0.02 0.01 0.02 0.01 
English 0.68 0.02 0.67 0.02 0.66 0.02 
Spanish 0.25 0.02 0.26 0.02 0.27 0.02 
English and Spanish 0.07 0.01 0.07 0.01 0.07 0.01 

Source: Direct child assessments. 

Note: Results adjusted for clustering using a two-level model: children within pre-K classrooms. 

ECLS-B = Early Childhood Longitudinal Study, Birth Cohort Mathematics Assessment; SE = standard error; TEMA-3 = Test of Early 
Mathematics Ability, Third Edition; TOPEL = Test of Preschool Early Literacy. 
  



SEQUENTIAL SCALE-UP: A CASE STUDY 

 
 
 38 09/13/18 

Table 3. Baseline equivalence on key child-level characteristics, ECLS-B and TEMA-3 analytic samples 

 ECLS-B analytic sample TEMA-3 analytic sample 

 Treatment 
(N = 653) 

Control 
(N = 660) 

  Treatment  
(N = 621) 

Control  
(N = 635) 

  

Baseline 
characteristic Mean SE Mean SE MD p-value Mean SE Mean SE MD p-value 

ECLS-B scale 
score 19.81 0.41 19.92 0.41 -0.12 0.844 19.70 0.43 19.94 0.43 -0.24 0.692 
TOPEL 10.55 0.49 10.86 0.49 -0.31 0.656 10.45 0.51 10.85 0.51 -0.39 0.584 
Age 4.45 0.01 4.44 0.01 0.01 0.500 4.45 0.01 4.44 0.01 0.01 0.621 
Male 0.49 0.02 0.48 0.02 0.01 0.852 0.48 0.02 0.48 0.02 0.00 0.899 
Hispanic 0.76 0.03 0.75 0.03 0.02 0.714 0.79 0.03 0.76 0.03 0.03 0.563 
White 0.13 0.03 0.12 0.03 0.01 0.806 0.11 0.03 0.11 0.03 0.00 0.987 
African 
American 0.05 0.01 0.05 0.01 0.00 0.877 0.06 0.01 0.05 0.01 0.00 0.829 
Mixed/other 
race 0.04 0.01 0.04 0.01 -0.01 0.597 0.03 0.01 0.04 0.01 -0.01 0.303 
Asian 0.01 0.01 0.03 0.01 -0.02 0.104 0.01 0.01 0.04 0.01 -0.02 0.111 
English 0.67 0.03 0.68 0.03 -0.01 0.798 0.65 0.03 0.67 0.03 -0.02 0.626 
Spanish 0.25 0.03 0.26 0.03 0.00 0.937 0.27 0.03 0.26 0.03 0.01 0.897 
English and 
Spanish 0.08 0.02 0.06 0.02 0.01 0.560 0.08 0.02 0.06 0.02 0.02 0.530 

Source: Direct child assessments. 

Note: Results adjusted for clustering using a two-level model: children within pre-K classrooms. 

ECLS-B = Early Childhood Longitudinal Study, Birth Cohort Mathematics Assessment; MD = mean difference; SE = standard error; 
TEMA-3 = Test of Early Mathematics Ability, Third Edition; TOPEL = Test of Preschool Early Literacy. 
  



SEQUENTIAL SCALE-UP: A CASE STUDY 

 
 
 39 09/13/18 

Table 4. Main results, ECLS-B and TEMA-3 post-tests 

 Treatment Control   

Mathematics assessment N 
Adjusted 

mean 
Unadjusted 

SD N 
Adjusted 

mean 
Unadjusted 

SD ES p-value 

ECLS-B 653 30.84 5.48 660 29.09 6.24 0.30*** 0.000 
TEMA-3 621 16.07 7.39 635 14.33 7.51 0.23*** 0.000 

Source: Direct child assessments. 

Note: Results adjusted for clustering using a two-level model: children within pre-K classrooms. We used the following baseline 
control variables: ECLS-B and TOPEL pre-tests, age, gender, race/ethnicity, language, and cohort. We calculated effect 
sizes using Hedges’ g formula:  

݉݁ܽ݊ෟ ் − ݉݁ܽ݊ෟ ஼

௣௢௢௟௘ௗܦܵ
 

where ݉݁ܽ݊ෟ ் equals the adjusted treatment group mean, ݉݁ܽ݊ෟ ஼ equals the adjusted control group mean, and ܵܦ௣௢௢௟௘ௗ is the 
pooled SD. We used the following formula to calculate the pooled SD:  

௣௢௢௟௘ௗܦܵ = ඨ
ሺ்ܰ − ்ܦܵ(1

ଶ + ሺ ஼ܰ − ஼ܦܵ(1
ଶ

்ܰ + ஼ܰ − 2
 

where ்ܰ equals the treatment group sample size, ஼ܰ equals the control group sample size, ்ܵܦ equals the unadjusted 
treatment group SD, and ܵܦ஼ equals the unadjusted control group SD.  

 We also estimated the impact on the ECLS-B for a treatment-on-the-treated (TOT) sample. The TOT sample consists of 
treatment children who received at least 75 percent of dosage in the pre-K year, and control children who attended pre-K at 
least 75 percent of the time (்ܰ = 575; ஼ܰ = 588). The TOT ES is 0.31 (p < 0.01). 

***Significantly different from zero at the 0.01 level, two-tailed test. 

ECLS-B = Early Childhood Longitudinal Study, Birth Cohort Mathematics Assessment; ES = effect size; SD = standard deviation; 
TEMA-3 = Test of Early Mathematics Ability, Third Edition. 
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Table 5. Results by racial/ethnic group, ECLS-B and TEMA-3 post-tests 

 Treatment Control     

Racial/ 
ethnic group N 

Ad-justed 
mean 

Un-
adjusted 

SD N 
Ad-justed 

mean 

Un-
adjusted 

SD 
Impact 

estimate 

SE of 
impact 

estimate ES p-value 

ECLS-B post-test 

Hispanic 500 30.26 5.52 501 28.56 6.13 1.70 0.30 0.29*** 0.000 
White 85 32.64 5.04 75 31.32 5.94 1.32 0.62 0.24** 0.034 
African 
American 36 32.54 5.14 33 29.13 6.36 3.41 0.97 0.59*** 0.000 
Mixed/other 
race 24 32.54 4.84 29 30.90 6.76 1.64 0.93 0.27* 0.076 
Asian 8 33.24 4.01 22 31.35 6.82 1.89 1.55 0.30 0.223 

TEMA-3 post-test 

Hispanic 490 15.32 7.27 493 13.68 7.23 1.63 0.40 0.22*** 0.000 
White 69 18.52 7.56 61 17.62 6.89 0.90 0.79 0.12 0.253 
African 
American 36 19.16 7.78 33 14.69 8.51 4.47 1.21 0.55*** 0.000 
Mixed/other 
race 18 17.89 6.80 26 15.46 7.53 2.43 1.41 0.34* 0.085 
Asian 8 20.30 4.90 22 18.98 9.78 1.33 2.41 0.15 0.582 

Source: Direct child assessment. 

Note: Results adjusted for clustering using a two-level model: children within pre-K classrooms. We used the following baseline 
control variables: ECLS-B and TOPEL pre-tests, age, gender, language, and cohort. We calculated effect sizes using 
Hedges’ g formula:  

݉݁ܽ݊ෟ ் − ݉݁ܽ݊ෟ ஼

௣௢௢௟௘ௗܦܵ
 

where ݉݁ܽ݊ෟ ் equals the adjusted treatment group mean, ݉݁ܽ݊ෟ ஼ equals the adjusted control group mean, and ܵܦ௣௢௢௟௘ௗ is the 
pooled SD. We use the following formula to calculate the pooled SD:  

௣௢௢௟௘ௗܦܵ = ඨ
ሺ்ܰ − ்ܦܵ(1

ଶ + ሺ ஼ܰ − ஼ܦܵ(1
ଶ

்ܰ + ஼ܰ − 2
 

where ்ܰ equals the treatment group sample size, ஼ܰ equals the control group sample size, ்ܵܦ equals the unadjusted 
treatment group SD, and ܵܦ஼ equals the unadjusted control group SD.  



SEQUENTIAL SCALE-UP: A CASE STUDY 

 
 
 41 09/13/18 

*Significantly different from zero at the 0.1 level, two-tailed test. 

**Significantly different from zero at the .05 level, two-tailed test. 

***Significantly different from zero at the 0.01 level, two-tailed test. 

ECLS-B = Early Childhood Longitudinal Study, Birth Cohort Mathematics Assessment; ES = effect size; SD = standard deviation; 
TEMA-3 = Test of Early Mathematics Ability, Third Edition. 
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Table 6. Results by quintile of pre-test performance, ECLS-B and TEMA-3 post-tests 

 Treatment Control     

Quintile of 
ECLS-B pre-
test N 

Ad-justed 
mean 

Un-
adjusted 

SD N 
Ad-justed 

mean 

Un-
adjusted 

SD 
Impact 

estimate 

SE of 
impact 

estimate ES p-value 

ECLS-B post-test 

1 133 24.86 4.79 130 22.54 5.94 2.32 0.70 0.43*** 0.001 
2 132 28.79 3.95 132 26.51 4.67 2.28 0.55 0.53*** 0.000 
3 133 31.20 3.83 133 29.13 4.41 2.06 0.49 0.50*** 0.000 
4 124 33.13 3.12 135 31.82 3.24 1.31 0.38 0.41*** 0.001 
5 131 36.31 3.47 130 35.46 3.38 0.85 0.40 0.25** 0.035 

TEMA-3 post-test 

1 131 9.28 4.50 126 8.00 4.97 1.28 0.62 0.27** 0.039 
2 126 13.12 4.89 127 10.96 4.82 2.16 0.67 0.44*** 0.001 
3 125 15.18 4.96 125 13.54 4.71 1.65 0.59 0.34*** 0.005 
4 115 18.86 5.47 133 15.92 5.59 2.94 0.70 0.53*** 0.000 
5 124 24.31 6.55 124 23.75 6.33 0.56 0.71 0.09 0.433 

Source: Direct child assessment. 

Note: Results adjusted for clustering using a two-level model: children within pre-K classrooms. We used the following baseline 
control variables: ECLS-B and TOPEL pre-tests, age, gender, race/ethnicity, language, and cohort. We calculated effect 
sizes using Hedges’ g formula:  

݉݁ܽ݊ෟ ் − ݉݁ܽ݊ෟ ஼

௣௢௢௟௘ௗܦܵ
 

where ݉݁ܽ݊ෟ ் equals the adjusted treatment group mean, ݉݁ܽ݊ෟ ஼ equals the adjusted control group mean, and ܵܦ௣௢௢௟௘ௗ is the 
pooled SD. We used the following formula to calculate the pooled SD:  

௣௢௢௟௘ௗܦܵ = ඨ
ሺ்ܰ − ்ܦܵ(1

ଶ + ሺ ஼ܰ − ஼ܦܵ(1
ଶ

்ܰ + ஼ܰ − 2
 

where ்ܰ equals the treatment group sample size, ஼ܰ equals the control group sample size, ்ܵܦ equals the unadjusted 
treatment group SD, and ܵܦ஼ equals the unadjusted control group SD.  

*Significantly different from zero at the 0.1 level, two-tailed test. 
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**Significantly different from zero at the 0.05 level, two-tailed test. 

***Significantly different from zero at the 0.01 level, two-tailed test. 

ECLS-B = Early Childhood Longitudinal Study, Birth Cohort Mathematics Assessment; ES = effect size; SD = standard deviation; 
TEMA-3 = Test of Early Mathematics Ability, Third Edition. 
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Table 7. Results by pre-K delegate urbanicity, ECLS-B and TEMA-3 post-tests 

 Treatment Control     

Pre-K 
delegate 
urbanicity N 

Ad-justed 
mean 

Un-
adjusted 

SD N 
Ad-justed 

mean 

Un-
adjusted 

SD 
Impact 

estimate 

SE of 
impact 

estimate ES p-value 

ECLS-B post-test 

Urban 119 32.06 5.36 109 30.22 6.27 1.84 0.55 0.32*** 0.001 
Suburban 339 30.90 5.40 350 29.08 6.15 1.82 0.35 0.31*** 0.000 
Town/rural 195 30.08 5.58 201 28.49 6.32 1.59 0.41 0.27*** 0.000 

TEMA-3 post-test 

Urban 119 17.37 7.40 109 16.05 8.04 1.31 0.79 0.17* 0.096 
Suburban 339 16.11 7.30 351 14.30 7.42 1.81 0.53 0.25*** 0.001 
Town/rural 163 15.06 7.44 175 13.40 7.24 1.67 0.49 0.23*** 0.001 

Source: Direct child assessment. 

Note: Results adjusted for clustering using a two-level model: children within pre-K classrooms. We used the following baseline 
control variables: ECLS-B and TOPEL pre-tests, age, gender, race/ethnicity, language, and cohort. We calculated effect 
sizes using Hedges’ g formula:  

݉݁ܽ݊ෟ ் − ݉݁ܽ݊ෟ ஼

௣௢௢௟௘ௗܦܵ
 

where ݉݁ܽ݊ෟ ் equals the adjusted treatment group mean, ݉݁ܽ݊ෟ ஼ equals the adjusted control group mean, and ܵܦ௣௢௢௟௘ௗ is the 
pooled SD. We used the following formula to calculate the pooled SD:  

௣௢௢௟௘ௗܦܵ = ඨ
ሺ்ܰ − ்ܦܵ(1

ଶ + ሺ ஼ܰ − ஼ܦܵ(1
ଶ

்ܰ + ஼ܰ − 2
 

where ்ܰ equals the treatment group sample size, ஼ܰ equals the control group sample size, ்ܵܦ equals the unadjusted 
treatment group SD, and ܵܦ஼ equals the unadjusted control group SD. To determine urbanicity, we used the Common Core 
of Data’s urban-centric locale classification corresponding to the school district office location of each pre-K delegate. 

*Significantly different from zero at the 0.1 level, two-tailed test. 

***Significantly different from zero at the 0.01 level, two-tailed test. 

ECLS-B = Early Childhood Longitudinal Study, Birth Cohort Mathematics Assessment; ES = effect size; SD = standard deviation; 
TEMA-3 = Test of Early Mathematics Ability, Third Edition. 
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Table 8. TEMA-3 effect sizes from current and recent studies, calculated consistently across studies 

Study Sample size 

Unadjusted 
treatment post-

test mean 

Unadjusted 
control post-

test mean Post-test MD 

Unadjusted 
control post-

test SD ITT ES 

“Total” 
program 
impact 

Study 2 670a 14.82 12.49 2.33 6.64 0.35 235 

Study 3 240 14.87 11.83 3.04 6.81 0.45 107 

Study 4 372 14.26 12.04 2.22 7.06 0.31 117 

The current study 1256 15.96 14.49 1.47 7.51 0.20 246 

Source: Direct child assessment; study author-reported results. 

Note: We calculated effect sizes using the following formula:  
்݉݁ܽ݊ − ݉݁ܽ݊஼

஼ܦܵ
 

where ்݉݁ܽ݊ equals the unadjusted treatment group mean, ݉݁ܽ݊஼ equals the unadjusted control group mean, and ܵܦ஼ is the 
unadjusted control group SD. 
We calculated the “total” program impact by multiplying the ITT effect size by the sample size for each study. 
a Sample size estimated from author-reported baseline sample size and overall attrition rate. 

ES = effect size; ITT = intent-to-treat; MD = mean difference; SD = standard deviation; TEMA-3 = Test of Early Mathematics Ability, 
Third Edition. 
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Figure 1. Dimensions of scale-up 
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Figure 2. Effect sizes from current and prior studies of Pre-K Mathematics, 
authors’ preferred calculations 

Source: Direct child assessment; study author-reported results. 

Note:  This figure reports study authors’ preferred effect size calculations. For the current 
study, we report ECLS-B and TEMA-3 effect sizes as calculated in Table 4. 

CMA = Child Math Assessment; ECLS-B = Early Childhood Longitudinal Study, Birth Cohort 
Mathematics Assessment; TEMA-3 = Test of Early Mathematics Ability, Third Edition. 
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