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Instructional Strategy

Tweet

Making links (analogies) throughout their curriculum teaches 
students higher order reasoning, useful to learning math and 
other STEM fields.

Key Points

•• Reasoning about links between and across the curric-
ulum is at the core of higher order thinking skills, pro-
viding a framework to improve students’ broader 
disciplinary reasoning skills.

•• Students’ working memory, executive function, and 
ability to inhibit impulses are essential to higher order 
thinking, meaning these resources must be adequately 
supported by instruction and assessment design.

•• Standardized testing can use cognitive research on 
reasoning to determine optimal items for summative 
and formative assessment data on children’s higher 
order thinking skills.

•• Professional development can ensure teachers have 
the resources to teach for higher order thinking 
because this is not typical for U.S. teachers.

Introduction

Policy makers must attend to psychological data to meet the 
challenges of improving education. While political and educa-
tional consensus agree on producing youth with strong higher 
order thinking skills, accomplishing this task is more challenging 

than just increasing educators’ motivation, requiring more than 
financial or accountability incentives. Greater incentives cannot 
lead teachers to provide better instruction on these sorts of rea-
soning if they do not understand what they are aiming to teach. 
Rather, the complexity of the cognition underlying higher order 
thinking, shown by the psychological research on these skills, 
describes the challenges of teaching them.

Educating youth who will become innovators and experts 
in their fields is a primary policy and educational goal in the 
21st century (e.g., Obama, Strategy for American Innovation, 
2009). Aims for education are shifting away from a need to 
help students acquire vast stores of crystallized knowledge—
with much information easily accessible via technological 
resources—to a focus on the ability to create, innovate, cri-
tique, evaluate, and integrate the vast amount of information 
now available to emerging adults. While a challenging shift 
for the educational system, psychological research on insight, 
analysis, problem-solving, and expert-like thought has been 
underutilized in addressing these educational reforms. This 
article clarifies the policy relevance of attending to psycho-
logical research on children’s development and cognition 
when encouraging change in the current educational system.
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Abstract
Linking ideas, concepts, and disciplinary content is an underused yet effective educational strategy for fostering students’ 
higher order thinking. A body of psychological research on analogical reasoning can inform the challenge of encouraging 
higher order thinking in schools. We focus in particular on the teaching of mathematics and highlight alignments between 
a psychologically based definition of higher order thinking and educational goals as described within U.S. mathematical 
practice standards. Finally, this analysis implicates policies for supporting students’ higher order thinking including requiring 
assessments that capture these skills; disseminating assessment data meaningfully to help improve teachers, schools, or 
curricula; and designing professional development that draws explicit attention to these skills.
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Both education and psychological theory recommend 
drawing links and making inferences about relationships 
among ideas, concepts, principles, and other representations. 
Learning through making these connections can lead to more 
expert-like reasoning: Learners can subsequently make 
inferences about new information or contexts, adapt their 
thinking in new ways, think critically about whether insights 
are sensible, and make creative leaps of thought (e.g., 
Bransford, Brown, & Cocking, 1999; Common Core State 
Standards [CCSS], 2010; Gentner, Holyoak, & Kokinov, 
2001; National Mathematics Panel, 2008; Next Generation 
Science Standards [NGSS], 2013). Cognitively, reasoning 
about relationships takes attention and support, but enables 
learners to transfer ideas from one context to another, make 
inferences, and think flexibly (see Gick & Holyoak, 1983; 
Richland & Simms, 2015; Rittle-Johnson & Star, 2007, 2011).

Psychological research has compared disciplinary experts 
with those who know many facts within a field but are not 
known as experts. The difference is that experts view infor-
mation in their disciplines using integrative approaches, 
focusing on the relationships between ideas, problems, or 
systems, rather than individual facts or phenomena (for 
review, see Nokes, Schunn, & Chi, 2010). Although psycho-
logical research has long explored the nature of expert-like, 
adaptable, and flexible knowledge, little of that work has 
connected with educational research and policy aiming to 
support those very skills. This separation has had the conse-
quence that insights from the psychological literature have 
not been well connected to practice, and policies for support-
ing children in developing these high-quality skills have not 
been fully informed.

Integrating Psychological Research on 
Reasoning With Educational Practice

In part, the disconnect between psychological research on 
reasoning and educational practice is due to different litera-
tures and definitions of thinking and reasoning skills. A first 
step to integrating these literatures is converging on a cogni-
tively informed definition of higher order thinking skills. 
This would enable research, teaching, testing, and standards 
to share a common framework for defining educational 
goals.

We provide a definition of higher order thinking grounded 
in cognitive research, and illustrate its alignment with educa-
tional goals using mathematics as a domain, though these 
ideas have relevance for science, history, and other disci-
plines as well (see Richland & Simms, 2015, for more dis-
cussion). The reformed mathematics and science standards 
provide an important guiding list for this more complex set 
of thinking and reasoning skills and for designing assess-
ments that capture them within academic areas.

Then, we review key psychological research on analogi-
cal reasoning, highlighting for educators and policy makers 

the critical challenge of providing equitable access to higher 
order thinking and learning experiences. Finally, we describe 
specific practices for supporting students’ higher order think-
ing, shown to be successful in supporting student learning.

Defining Analogical Reasoning and 
Higher Order Thinking

Analogical reasoning is a cognitive skill that underpins the 
conceptual process of recognizing commonalities between 
systems of relationships. The formal, traditional way of 
depicting analogy is to describe a source relationship, “a” is 
to “b,” (e.g., “bee is to hive”), and finding a similar relation-
ship within a different set of objects in a target context: “c” 
is to “d” (e.g., “bird is to nest”). More broadly, however, 
analogical reasoning describes the reasoning process in 
which humans understand phenomena in the world as sys-
tems of relationships that may be manipulated and 
compared.

Analogical thought is used regularly by experts in disci-
plines such as science, where the aim of much scientific dis-
covery is to understand causal or other relational systems and 
to build these understandings based in part on analogies to 
other systems (e.g., Vitruvius, 60 BC, suggested sound waves 
spread like water waves; Holyoak & Thagard, 1996). 
Increasingly, the standards for science education are echoing 
these goals for having students think about the physical 
world as systems of relationships to be compared and manip-
ulated. Mathematics is also understood by experts as a com-
plex system of relationships. The educational aim is for 
students to attain expert-like understanding of the connec-
tions between one problem, solution, or a representation and 
another. For example, in mathematics the quotient can be 
defined as the outcome of how many times one quantity goes 
into another quantity (e.g., how many times 3 goes into 12), 
which has a special relationship with determining the valid-
ity of repeated addition (e.g., 3 + 3 + 3 + 3) or the relation-
ship of two quantities (e.g., 12 / 3). Experts recognize these 
relations as elements of a larger mathematical system. Thus, 
they flexibly draw inferences by aligning and comparing 
these representations, allowing them to notice the many sys-
tems of similarity within mathematics, including the rela-
tionships between 4 × 3 = 12 and 12 / 4 = 3.

There is wide agreement for the need to shift children’s 
learning away from purely content acquisition toward also 
training them in expert-like reasoning practices. The impli-
cations are evident in the new standards adopted in the 
United States for mathematics (Common Core State 
Standards for Mathematics [CCSSM]) and science (Next 
Generation Science Standards [NGSS]). At the same time, 
the links between these standards and cognitive research are 
not clearly made evident, meaning this research is unlikely to 
be brought to bear on instructional strategies for meeting 
these standards. Also, greater clarity on students’ cognition 
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could help inform the development of test items that capture 
the range of thought processes implied by these standards. 
We discuss illustrative places of overlap below.

Analogy and State Standards in Mathematics and 
Science

Cognitive mechanisms involved in analogical reasoning are 
key for understanding how children develop critical skills 
outlined in the current practices for mathematics and science 
standards. The CCSSM contains both content standards and 
practice standards for mathematics, with the latter being 
more focused on discipline-based higher order thinking 
skills. To clarify these relationships, we deconstruct several 
of the CCSSM standards for mathematical practice (MP) 
numbers 2, 3, 4, 5, 7, and 8, with specific attention to the way 
that analogical reasoning is central to these goals.

MP 2. Reason abstractly and quantitatively;
MP 3. Construct viable arguments and critique the reason-
ing of others;
MP 4. Model with mathematics;
MP 5. Use appropriate tools strategically;
MP 7. Look for and make use of structure;
MP 8. Look for and express regularity in repeated 
reasoning;
MP 2, 4, and 5 are consistent with NGSS practices 
(Common Core State Standards Initiative, 2010).

Reasoning abstractly (MP 2) about problems requires stu-
dents to decontextualize a problem by representing it only 
through abstract symbols, such as numbers or shapes, and to 
reflect on symbols and contextualize them into their refer-
ents (Common Core State Standards Initiative, 2010). 
Specifically, students are expected to understand the symbols 
and their referents as relational elements of a mathematical 
structure.

From an analogy perspective, children have to first repre-
sent the relationship characterized `by each symbol. In the 
example above, the relation of “bee is to hive” was “lives in.” 
Likewise, to accomplish this mathematical standard, a child 
would need to recognize the commonalities between multi-
ple representations of the same mathematical relationship. 
Imagine a ratio problem, such as “There are 3 pencils in a 
box with 9 pens. What is the ratio of pencils to pens?” consti-
tutes multiple relations. Although a teacher may easily repre-
sent this as 3:9, this is actually a complex act of cognition 
that requires work on the part of a child or novice. First, the 
reasoner must understand the relations between the numbers 
3 and 9 and their respective referents to the quantity of pen-
cils and pens. Also, they must know the referent of the sym-
bol “:” representing ratio.

More broadly, they should further understand that these 
relationships are a system that can be manipulated and 

represented differently. They should be aware that one would 
produce a different ratio for the relationship between pens 
and pencils. Even further, one could also represent this infor-
mation as part–whole relations, such as 3/12 of the writing 
implements are pencils, and 9/12 are pens. Of course, these 

could also be written as fractions 
3

12 , 
9

12  representing the 

part-to-whole relationships. One could go on further, but a 
student with high proficiency would understand the full sys-
tem of relationships, with one key aspect being understand-
ing how to flexibly manipulate the abstract relationships 
within ratio and proportion.

Taken together, these systems of relations comprise an 
internal schema, or model, from which children can build 
their internal representation of a mathematics concept. One 
way to get at this process is described in the standards as 
children’s ability to construct viable arguments and critique 
the reasoning of others (MP 3).

Constructing viable arguments and critiquing the reason-
ing of others (MP 3) requires students to build on their 
knowledge of MP 2 by drawing valid inferences based on 
established assumptions, definitions, and results, or more 
broadly, relations and schemas. Furthermore, students have 
to critique the validity of others’ examples. For instance, stu-
dents may solve one problem using different strategies (e.g., 
“Lise had 3 pebbles. She gave some to Meitner and was left 
with 1” can be solved by counting down from 3 until reach-
ing 1, “3 – 1 – 1 = 1” or counting up from 1 until reaching 3, 
“1 + 1 + 1 = 3”). Students have to evaluate the elements 
consisting the relations, and how relations fit within their 
system, in order to determine how to compare them. This is 
similar to evaluating multiple examples (e.g., “bees in a 
hive,” “birds in a nest,” etc.) to examine whether the same 
relation applies (e.g., “lives in”). These types of comparisons 
are difficult for children and novices, yet under favorable 
conditions, the act of evaluating and linking multiple exam-
ples provides the foundation for developing structured rela-
tions or schemas. These form the foundation for children to 
model with mathematics (MP 4).

Modeling with mathematics (MP 4) expects students to 
flexibly traverse between real-world scenarios and mathe-
matical representations such as graphs, tables, diagrams, 
flowcharts, and formulas (e.g., the problem “Curie had 9 
pencils. She gave some to Marie and was left with 4” repre-
sented with the formula “9 – x = 4”). This is similar to under-
standing the relation “lives in” to apply it to a real-world 
situation such as “bee is to hive.” Analogical reasoning 
research suggests that children and novices are often misled 
by superficial features and regularly fail to move between the 
mathematical/scientific structures and real-world scenarios. 
For example, a division and a subtraction problem involving 
pizzas are misinterpreted as having the same mathematical 
structure. Or students might imagine a problem about speed 
in a race should be solved differently from the pizza problem 
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because they do not share the same superficial features. This 
problem is further exacerbated because students may find it 
more efficient to memorize formulas without understanding 
the relationships they represent, often memorizing based on 
superficial features. Yet, modeling with mathematics requires 
children to draw connections between at least two systems of 
mathematical structures—mathematics as symbols and 
mathematics in a real-world scenario.

Using appropriate tools strategically (MP 5) requires first 
determining the key relationships within a new problem to 
understand which tool will be relevant for this particular set 
of information, such as a pencil-paper, ruler, protractor, or 
graphing calculator. Students who are not fully successful 
may grasp at particular elements of a problem to determine 
the match to tools, for example, keywords in a word problem 
such as “how long” or “show,” which can not only be help-
ful, but also mislead the student who does not examine these 
words in the broader context of the relationships in the prob-
lem. For example, there is no need to use a ruler to measure 
the distance between two given values in a problem such as 
the following, but scratch paper might be helpful: “Seth’s toy 
drives 2 feet, and Maria’s drives twice as far. How far did 
Maria’s car go?”

Looking for and making use of structure (MP 7) and look-
ing for and expressing regularity in repeated reasoning (MP 
8) both revolve around identifying relational structures based 
on functional properties of mathematics. For MP 7, students 
are expected to evaluate problems and examine whether 
known mathematical structures can be applied with validity. 
For MP 8, students are expected to examine multiple 
instances in the formal world in an effort to discover a valid 
structure, described in the standards as a pattern.

In MP 7, students should make use of structures such as 
the commutative property, A + B = B + A and A × B = B × A; 
the associative property, A+ (B + C) = (A + B) + C and A × 
(B × C) = (A × B) × C; and the distributive property, A × (B 
+ C) = A × B + A × C. Proficient students will notice the simi-
larity relationship between 3 × 2 = 6 and 3 × (x + 1) = 6 to 
discover that x = 1. Whereas for MP 8, students may discover 
mathematical structures by comparing multiple ways of 
arriving at the same answer, for example, different ways at 
reaching 32 through fractions. Some students may represent 
32 as 64 ÷ 2, 96 ÷ 3, 128 ÷ 4 while others may represent 32 
as 320 ÷ 10; 3,200 ÷ 100; 32,000 ÷ 10,000, and such. Through 
examining these relational instances, students may align 
their functional properties to discover a general pattern or 
schema, which is nx/n = x for all n > 0.

Summary

In summary, one may identify within these MPs the role of 
analogical reasoning about relationships. This analysis has 
implications for developing a more precise definition of the 
type of children’s thinking that the standards intend for stu-
dents, getting at the core thinking—beyond a surface-level 

capacity to show some success in these areas (e.g., just using 
models or tools when explicitly told what to do with them).

This further facilitates the development of tests that align 
not only with the content standards but that also measure the 
deep thinking they are intended to capture. By considering 
the cognition underlying what it means to accomplish these 
practice standards, one may develop measures that assess not 
only ability to produce a specific type of answer (e.g., write a 
ratio) but perhaps that also measure students’ ability to manip-
ulate the information provided to show understanding of the 
broader system of relationships, for example, moving from 
ratio to proportion, or part–part to part–whole relationships.

Processing Constraints on Relational-
Thinking Skills

Highlighting the relationships between analogical thought 
and educational aims also provides a way for the psychologi-
cal research to inform teachers regarding ways that children 
will need particular support. Studies of analogy and rela-
tional reasoning suggest that, while these are powerful cog-
nitive skills, they develop over time, and learners will need 
specific supports to accomplish them successfully. Simply 
providing a mathematical analogy or having a teacher dem-
onstrate the system of relationships within a problem is not 
adequate for a younger child or novice to grasp these rela-
tions. As explained next, this may be because learners fail to 
notice the relevance of making links or lack the cognitive 
resources for processing those relationships. We next 
describe the developmental trajectory in reasoning by anal-
ogy and highlight the specific challenges that the research 
has identified for educators.

Noticing the Relevance of Making Links

Presenting learners with opportunities for making links and 
reasoning analogically can enhance their acquisition of 
expert-like knowledge and skills including learning, model-
ing, abstraction, and solution generation, but the benefits are 
not guaranteed. One well-established challenge to learning 
by analogy is that learners may not recognize the possibility 
or utility of making an analogy (e.g., Bransford, Brown, & 
Cocking, 1999; Gick & Holyoak, 1980). Thus, teachers may 
produce an analogy with the aim to clarify an idea or a solu-
tion method, yet students fail to notice that they are supposed 
to be comparing or drawing links between information.

When people identify that they should be making an anal-
ogy, they often appear competent and able to make higher 
order connections. However, young children or domain nov-
ices, in particular, tend to notice correspondences between 
based on object properties (e.g., like the appearance of a tri-
angle, including atypical cases where the edges do not con-
nect) rather than the relationships within those representations 
(e.g., the relations between angles and line segments within a 
polygon). Thus, in a classroom, students may be more likely 
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to relate situations or problems on the basis of superficial, 
non-essential features, rather than on their key underlying 
relationships, whereas teachers have more content knowl-
edge and expect the fundamental, relational commonalities 
will be apparent to their students.

Cross-cultural studies of teaching suggest that U.S. teach-
ers do not always provide pedagogical supports, including 
visual supports and gestures, to ensure that students are looking 
at the key ideas, concepts, or problems to be linked (Richland, 
2015; Richland, Zur, & Holyoak, 2007). Without these sup-
ports, students may fail to notice the relevance of higher order 
thinking despite teachers’ intentions to engage them.

Cognitive Load and Ensuring Adequate Processing 
Resources

A second challenge is that learners may be hindered by the 
high processing demands of such higher order thinking 
(Richland & McDonough, 2010). The reasoning processes of 
doing analogy and finding or manipulating relationships are 
cognitively taxing. They require a student to hold complex 
representations in mind and manipulate those representations 
to determine alignments with solution strategies or other rep-
resentations while frequently planning and executing a 
multi-step solution. Reasoning about relationships requires 
the executive function (EF) system, which is limited in capac-
ity. With the EF system, humans hold information in mind, 
manipulate it, and control their attention to add only relevant 
information into working memory and inhibit irrelevant, dis-
tracting information (see Diamond, 2002; Miyake et  al., 
2000). Holding information in working memory is important 
for mentally coordinating and manipulating representations. 
To successfully make relational links, all key relationships 
need to be available in a reasoner’s limited working-memory 
store while manipulating them to make inferences about 
their higher order relationship (Cho, Holyoak, & Cannon, 
2007; Waltz et  al., 2000). For example, when comparing 
problem solutions described by two different students, one 
must hold both in mind while mentally re-organizing them to 
determine if and how the elements correspond or whether 
they lead to different mathematics. The same would be true 
if a teacher drew a link between a prior and a new problem, 
such as by saying, “Ok this next problem is like the last one, 
only now we’ll be using a negative number for x.”

Other aspects of EF, attentional control and inhibition, are 
also integral to higher order thinking by allowing a reasoner to 
suppress irrelevant yet potentially salient mappings (e.g., the 
irrelevant similarity between two solutions that both involve 
the same numerator in different fractions; Cho et al., 2007).

EF differs across individuals (e.g., Engle & Kane, 2004; 
Miyake et  al., 2000), and variations in cognitive capacity 
may predict why some students are able to notice and benefit 
from opportunities for higher order thinking in the class-
room. Both children and adults fail to reason relationally 

when under high working-memory load, when inhibitory 
demands are high, when under stress, or when their knowl-
edge in a domain is limited (e.g., Gentner & Rattermann, 
1991; Morrison, Doumas, & Richland, 2011; Richland, 
Morrison, & Holyoak, 2006). Because children’s EF resources 
improve with age, this developmental capacity is an impor-
tant consideration for teachers and test designers.

Anxiety

Finally, another factor that may predict which students fail to 
draw connections is anxiety. This has been examined most 
specifically in mathematics. Mathematics anxiety is fear or 
apprehension about doing math or math-related tasks. Math 
anxiety is not simply a proxy for poor math performance. 
Rather, people’s anxiety about math—over and above their 
actual math ability—taxes the EF system, compromising 
thinking and reasoning. Underperformance may derive from 
engaging EF resources in distractions—verbal worry and 
emotion regulation efforts—reducing available resources for 
problem-solving and high working-memory activities (e.g., 
Ashcroft & Kirk, 2001; Beilock & Carr, 2005; Beilock & 
DeCaro, 2007). Over time, high levels of math anxiety could 
contribute to achievement gaps and a lack of interest in pur-
suing math through schooling.

Strategies for Encouraging Higher 
Order Thinking

Effective teaching that emphasizes higher order thinking is 
challenging. But, there are also opportunities to close 
achievement gaps and improve the quality of learning out-
comes. In a large-scale data set (Crosnoe, Morrison, 
Burchinal, et al., 2010), exposure to teaching that included 
high numbers of opportunities for inferential thinking helped 
close achievement gaps by raising the scores of low socio-
economic status (SES), minority students who entered school 
low in academic skills. Although this benefit for instruction 
with high opportunities for inferential thinking held only if 
the students had a positive relationship with their teachers, 
the data suggest the potential for teachers to use well-sup-
ported analogy and higher order thinking opportunities to 
close achievement gaps.

Psychological and educational research provides insight 
into the conditions that support or hinder analogies in the 
Science, Technology, Engineering, and Mathematics (STEM) 
classroom (see Alfieri, Nokes-Malach, & Schunn, 2013; 
Rittle-Johnson & Star, 2011). This work is reviewed next.

Analogy in Mathematics Classrooms

Learning opportunities from teaching by analogies partly 
depend on the instructional supports teachers provide in the 
classroom. Successfully orchestrating a classroom lesson 
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that helps students link ideas and make comparisons is chal-
lenging (Ball, 1993; Stein, Engle, Smith, & Hughes, 2008). 
This is particularly true when considering the varying factors 
that play into the successes or failures of instructional analo-
gies, such as attention, cognitive load, or anxiety as just dis-
cussed. Thus, instructional supports that offload EF resources 
may help students focus on the relevant features of analo-
gies, maximizing their learning.

Analyses of classroom mathematics instruction have 
revealed that analogy is a common part of teacher practices 
in many countries, including the United States, China (Hong 
Kong), and Japan (Richland et al., 2007). At the same time, 
there are key differences in how these countries’ teachers 
provide pedagogical cues to focus students’ attention to key 
connections and relationships of interest, rather than allow-
ing them to focus primarily on the surface-level appearance 
of the phenomena (problems, models, tools, solution strate-
gies, etc.). In parallel to achievement patterns, U.S. teachers 
were less likely to provide these cues than teachers in higher 
achieving countries—Japan and China.

Overall, U.S. teachers use analogies with close to the 
same frequency as teachers in higher achieving countries, 
but less than 1% of presented problems were identified as 
enabling students to draw connections as instruction unfolded 
(Hiebert et  al., 2005). U.S. teachers typically control the 
analogies and engage students only in procedural aspects of 
the analogy, not requiring students to attend to the structural 
alignments between representations to participate (Richland, 
Holyoak, & Stigler, 2004). This may lead to failed opportu-
nities for students to learn the deep aspects of concepts and 
transferable knowledge, as is typically found in laboratory 
studies. Further research suggests that teachers’ rationale for 
using multiple strategies is not to afford students opportuni-
ties to compare, contrast, and think critically about these rep-
resentations, but to support students’ differences in learning 
styles (Lynch & Star, 2013), despite lacking evidence of 
learning styles (Pashler, McDaniel, Rohrer, & Bjork, 2008).

Even so, teaching mathematics with analogy can lead to 
gains not only in knowledge of procedures but also concep-
tual, flexible knowledge, when supported appropriately. This 
work has been conducted in mathematics classrooms (Begolli 
& Richland, 2015; DeCaro & Rittle-Johnson, 2012; Guo & 
Pang, 2011; Richland & Hansen, 2013; Rittle-Johnson & 
Star, 2009; Rittle-Johnson, Star, & Durkin, 2009; Schwartz, 
Chase, Oppezzo, & Chin, 2011; Schwartz & Martin, 2004; 
Star & Rittle-Johnson, 2009; Vamvakoussi & Vosniadou, 
2012), and in one-on-one research with school-age children 
(Hattikudur & Alibali, 2010; Thompson & Opfer, 2010). 
Work on analogy instruction in science is also laudable 
(Aubusson, Harrison, Ritchie, & Fogwill, 2005; Brown & 
Salter, 2010; Clement, 1982, 1993; Clement & Brown, 2008; 
Else & Clement, 2003; Jee et al., 2013) in part highlighting 
the utility of analogies to bridge novel and familiar concepts 
(Clement, 1993; Kapon & diSessa, 2012).

Key Research-Based Strategies to Encourage 
Higher Order Thinking

To maximize its usability, we list key research results that 
provide insight into specific strategies for supporting ana-
logical reasoning:

a.	 Comparing solutions of the same problem yield higher 
learning gains than comparing solutions of different 
problems with equivalent mathematical structure (Rit-
tle-Johnson & Star, 2009);

•	 Multiple solutions methods were only beneficial 
for students with high prior knowledge, and com-
paring problem types may be more beneficial for 
students with low prior knowledge (Rittle-Johnson 
et al., 2009).

b.	 Presenting contrasting cases is also beneficial 
(Schwartz et al., 2011; Schwartz & Martin, 2004);

•	 Contrasting cases were shown to be beneficial 
when students were allowed to first explore and 
were given instruction after.

c.	 Comparing a correct and an incorrect example was 
more beneficial than comparing two correct examples 
(Durkin & Rittle-Johnson, 2012);

•	 Comparing correct and incorrect examples may 
only be beneficial when solutions are presented 
simultaneously (Begolli & Richland, 2015) or pro-
vided explicit feedback (Durkin & Rittle-Johnson, 
2012).

d.	 Presenting solution strategies simultaneously is better 
than presenting them sequentially;

•	 While making multiple solutions to a single prob-
lem available simultaneously has led to higher 
learning in multiple studies, some evidence sug-
gests that students with low prior knowledge ben-
efit more from sequential presentations 
(Rittle-Johnson et  al., 2009) and that solutions 
should be presented sequentially before being pre-
sented simultaneously (Guo & Pang, 2011).

e.	 Prompting students to solve problems (explore) pri-
or to providing comparisons and explicit instruction 
leads to greater learning than providing instruction 
first (DeCaro & Rittle-Johnson, 2012; Schwartz et al., 
2011; Schwartz & Martin, 2004).

f.	 Gestures that make links between key ideas, problems, 
or solutions can help students notice critical features 
to be compared and the utility of the comparison (Ali-
bali & Nathan, 2007; Alibali et  al., 2014; Richland, 
2015).

g.	 Presenting a physical object that embodies the key 
elements of the relationship being instructed (not the 
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appearance or features of the representation; for ex-
ample, “a rubber line” can be infinitely stretched like 
a number line, allowing an infinite number of points 
between 0 and 1; Vamvakoussi & Vosniadou, 2012)

These recommendations present specific strategies that 
may be useful for supporting higher order thinking in every-
day classroom settings. These are modes for supporting 
acquisition of the skills described in the CCSSM practices, 
and can be extended to the NGSS practices as well as other 
disciplines.

Summary and Policy Implications

Explicit investments in teacher professional development or 
research must provide teachers with better strategies for under-
standing and addressing these cognitively complex, higher 
order thinking skills within the constraints of students’ limited-
capacity cognitive processing systems. As laid out, the U.S. MP 
standards require analogical reasoning by students. While rec-
ognized as important for students, these standards are among 
the most challenging instructional elements for teachers. 
Psychological research can provide insight for teachers into the 
challenges and goals, as well as tools for improving the instruc-
tional context. Specific strategies can support students in mak-
ing these links and connections, though the research literature 
is broader than could be fully reviewed here.

Moreover, policy investment in high-quality testing 
(either everyday or larger scale standardized tests) can pro-
vide an opportunity for supporting the development of these 
skills despite the often-cited discrepancy between testing and 
teaching higher order thinking skills. Tests can include ques-
tions that require drawing connections and making insights 
about the relationships between representations, problems, 
reading passages, historical periods, geographical contexts, 
and so on. Tests of higher order thinking would provide an 
incentive for educators and curriculum designers to ensure 
that these skills are central to instruction. In addition, mak-
ing these results separable from student scores on basic pro-
ficiency questions would enable a national and local 
dialogue about the level at which students are being taught 
these skills.

Finally, investment in both meaningful communication of 
these results to stakeholders (e.g., teachers, families, stu-
dents, curriculum designers, policy makers), along with pro-
fessional development or curriculum reform tied to these 
results, could improve subsequent instructional quality. 
Expanding resources for communicating assessment results 
can enable them to play a more potent role in improving stu-
dent outcomes, making these results not only summative, but 
also enabling them to provide a lever for change, described 
in the literature as formative assessment (e.g., Black, 
Harrison, Lee, Marshall, & Wiliam, 2004). Support could 
range from online or instructional strategy suggestions up to 
training programs with longer term feedback.

In conclusion, connecting policy and psychological aims 
for improvement in educating students for innovation and 
critical skills within academic disciplines is essential for 
meaningful change. Specifically, conceptualizing higher order 
thinking as analogy and relational reasoning provides a more 
cognitively specified educational target than an aim of higher 
level thinking broadly construed. This will better enable 
researchers, teachers, and test designers to align in their shared 
aim to improve students’ broader disciplinary reasoning skills.
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