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Abstract 
Using data on academic citations, career and educational histories of mathematicians, and disaggregated distance 
data for the world's top 1000 math departments, we study how geography and ties affect knowledge flows among 
scholars. The ties we consider are co-authorship, past colocation, advisor-mediated relationships, and alma mater 
relationships (holding a Ph.D. from the institution where another scholar is affiliated). Logit regressions using 
fixed effects that control for subject similarity, article quality, and temporal lags, show linkages are strongly 
associated with citation. Controlling for ties generally halves the negative impact of geographic barriers on 
citations. Ties matter more for less prominent and more recent papers and show no decline in importance in 
recent years. The impact of distance - controlling for ties - has fallen and is statistically insignificant after 2004. 
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1 Introduction

Mounting evidence points to the importance of geographic barriers to knowledge flows.

Arguing that citations provide the “paper trail” for knowledge flows, Jaffe et al. (1993)

establish that cites to patents are geographically localized.1 Keller (2002) shows that

research spillovers on productivity decay with distance and Comin et al. (2012) find

the likelihood of adopting new technologies declines with distance to the origin of the

invention. Ellison et al. (2010) show that industries that share ideas (proxied by R&D

and patent citation flows) have a stronger tendency to coagglomerate in space. While

much of the literature focuses on technology diffusion, spatial separation impedes the

spread of many other types of information. For example, information frictions account

for half of the distance effect in the Allen’s (2014) study of differences in rice prices

between Philippine islands. Urbanization continues to increase despite rising land prices

and congestion, a fact Glaeser (2011) attributes to the spread of innovations “from person

to person across crowded city streets.”

All the above evidence notwithstanding, the notion that borders or distance could

prove to be practical obstacles to flows of knowledge seems hard to square with the fact

that information can move anywhere without incurring either tariffs or freight costs. As

Keller and Yeaple (2013) put it “Knowledge, as an intangible, seems ideally suited to

overcoming spatial frictions ...” Especially in the age of Google, whose self-described

mission is to “Organize the world’s information and make it universally accessible and

useful,” the microfoundations for geographic knowledge frictions are far from obvious. To

the extent there is a standard explanation, it is often mentioned that tacit knowledge is

easier to communicate face to face. However, one study shows that even the transmission

of highly codified information benefits from proximity. Lissoni (2001) examined a cluster

of mechanical firms in Brescia, Italy and found they engaged primarily in the transfer of

CAD encoded designs.

In this paper we hypothesize that distance’s impact on knowledge arises in large part

due to spatially concentrated personal ties. Proximity facilitates tie formation and those

ties foster knowledge flows. The general mechanism we envision is that an agent trying to

solve a problem becomes aware of potential solutions by tapping the knowledge residing

in their network of personal relationships. This hypothesis can only be tested in a specific

context where interpersonal ties, geography, and knowledge flows can all be tracked in a

systematic way. We argue that the rich data available on mathematicians makes them,

despite their idiosyncrasies, an insightful group to study for this purpose. Our first key

finding is that adding controls for a comprehensive set of career and educational linkages

between authors of mathematics papers, leads to a halving of estimated geography effects.

1Successive studies including Peri (2005), Belenzon and Schankerman (2013), Singh and Marx (2013),
and Li (2014) estimate robust negative distance effects on patent citation propensities.
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The role of ties in attenuating the negative effect of distance on citations echoes Keller’s

(2001) finding that including trade flows and FDI in the equation for technological knowl-

edge spillovers shrinks the estimated negative effect of distance. The paper proceeds to

combine additional results to establish the microfoundations for why ties matter so much.

Prior work on patent citation has already pointed towards ties as an important deter-

minant of knowledge flows. Invoking the idea of “social proximity” Agrawal et al. (2008)

and Kerr (2008) show that inventors have a higher propensity to cite patents by those who

share their ethnic origins (as revealed by their surnames). While social connections are

known to be richer within ethnic groups, sharing surnames with the same ethnic origin

does not imply a personal connection between citing and cited inventors. Co-ethnicity

can reflect cultural similarities between inventors who do not know each other personally.

In order to capture the effect of person-to-person ties on knowledge flows, we need data

sources from which we can extract the histories of personal relationships. Patent appli-

cations provide enough information to determine past collaboration; Singh (2005) and

Breschi and Lissoni (2009) find this type of tie increases citation. Agrawal et al. (2006)

investigate a second tie, past colocation. They find that inventors who move institutions

are still disproportionately cited in patent applications by their former colleagues.

To capture a richer set of social ties between individuals who potentially transmit

knowledge to each other, we believe it useful to consider academics, for whom it is possible

to identify ties based on educational histories. We take advantage of the fact that in

mathematics, Ph.D. institutions and advisors have been tracked globally for a long time

by the Mathematics Genealogy Project (MGP).2 There is strong evidence from Waldinger

(2010) that the quality of mathematics faculty causally increases subsequent academic

success of their doctoral students. The MGP allows us trace the patterns of citation

between advisors and advisees, classmates, and the academic “extended family.”

No one would claim that the process through which mathematicians (or anyone else)

form ties is entirely random. A concern for the estimation of the effect of ties is that

the same unobservables that promote scholars to form ties with each other also affect

the likelihood of them citing each other. The educational ties we focus on have the

advantage of being predetermined with respect to the citation process, since it is rare for

an academic to cite or be cited prior to obtaining doctoral education. Unlike colocation

and collaboration, educational linkages do not change over time in response to shocks

to the interests of citing authors. While there is substantial randomness involved in

determining classmates, the matching between advisors and advisees is likely to be shaped

by common interests. The worry is that author A may be more likely to cite a paper

by a tied author B than author C who has no tie with B because A and B write on the

2Borjas and Doran (2012) use the MGP to identify immigrant mathematicians who received Ph.D.s
from Soviet institutions.
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same topics. The way we respond to this concern is to compare citation probabilities

only between authors A and C who have written papers in the same 3-digit field of

mathematics. We show that this control for article subject is essential. Without it,

estimates of ties are substantially inflated. Controlling for 3 or 5 digit fields or even

keywords, ties have reduced—but still large—estimated effects on citation. With the

controls that give the lowest magnitude, 5-digit subject and a cocitation indicator, a

single tie on average boosts the odds of citation by 46%.

In addition to the strength of its academic genealogy data, mathematics offers two

additional advantages relative to other academic fields. First, mathematics employs a

common language of communication. This suggests transmission of mathematics knowl-

edge would be less influenced by linguistic and cultural factors. In many social sciences

and humanities fields, there are journals that focus on certain regions or countries. For ex-

ample, in the fields of history and literature, there are obvious reasons to expect national

borders and language to influence citation patterns. A second advantage of studying

mathematics comes from the citation norms of the discipline. New theorems build upon

previous theorems, which must be cited. There also appears to be a norm against gra-

tuitous citation, as evidenced by the relatively low number of references in each paper.

Althouse et al. (2009) report that math papers cite 18 papers on average, compared to

30 in economics and 45–51 in sociology, psychology, business and marketing.

Our first set of results establish that ties are an important mechanism underlying

estimated geography effects on citations. But what is the mechanism underlying the

importance of ties? We present two lines of evidence to argue that ties matter because

they transmit information. The first follows from the idea of Arrow (1969) that knowledge

flows can be generally thought of as interactions between a teacher (sender) and a student

(receiver). We find evidence that citations are stronger to the authors who are more likely

to be senders of information. The odds of citation are seven times higher if a paper is

written by the advisor of the citing author. The impact of the author being a former

advisee is weaker, albeit still very large. Moving one step further apart in the advisor

network, we find advisors of advisors have three times the normal odds of being cited, but

there are no significant differences in their propensity to cite their advisees’ advisees. The

second line of evidence is that ties matter more for the types of papers where information

is harder to acquire. Our estimates show that ties (and geographic separation) have

stronger impacts for papers that were only recently published, or not heavily cited, or

just in a different field.

The role of distance—after controlling for ties—even becomes statistically insignificant

in recent years. This finding of declining geographic barriers extends the results of two

earlier studies using very different methodologies. Keller (2002) estimates the rate of

distance decay in the benefits that one country receives from R&D conducted in another
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country. He finds that the distance decay rate fell by two thirds from the period 1970–

1982 to 1983–1995. Griffith et al. (2011) analyze the number of days until the first

citation of a newly granted patent. They find home inventors take fewer days on average

to be the first to cite home-invented patents than foreign-based inventors. This home-bias

declined substantially between 1975–1989 and 1990–1999. Our study shows that distance

effects have fallen by two thirds from the early 1990s to the late 2000s. This extends

the evidence from the previous literature to the decade in which internet usage becomes

pervasive. Our investigation of time-varying coefficients also reveals that, despite the

advances in scholar’s ability to search for information over the internet, the impact of

personal ties remains as strong as ever.

While we do not wish to draw conclusions that stray too far from the context of our

estimation, the whole rationale for studying citations in mathematics is to obtain insights

with broader applicability to knowledge flows. The extent that ties facilitate transfer of

valuable knowledge in one context (math) provides a prima facie case for their potential

importance in all cumulative, collaborative discovery processes. Collaboration in mathe-

matics often takes the form of tied researchers making suggestions of previously proven

theorems that could help prove new theorems. In other research contexts, from drug

invention to financial engineering, there would be analogous ways that lessons learned by

one person could help a tied person to solve a new problem.

Going beyond research, there is a wealth of suggestive evidence that entrepreneurs

learn about potential business opportunities from their web of connections. For example,

Kerr and Mandorff (2015) explain the remarkable concentration of ethnic groups in cer-

tain occupations (Gujarati-speaking Indians are over-represented in the motel industry

by a factor of 108) by invoking knowledge acquired through social interactions. Learning

from ties might also explain the robust empirical association between bilateral immigra-

tion stocks and trade flows.3 Such work generally lacks individual-level evidence on the

relevant social ties. Using our person-to-person measures of ties provides insight into the

processes underlying the patterns seen in aggregated data.

The remainder of the paper is organized as follows. Section 2 posits a simple citation

model to serve as the estimating framework for relating a paper-to-paper citation indicator

to the ties and geography variables measured at the author level. Section 3 describes our

data on citations, geography and ties and explains how we construct the estimating

sample. Section 4 presents the results of our regressions. In the final section we re-

interpret other research findings in light of our results. We also suggest the potential

policy implications.

3Gould (1994) is the seminal paper. Rauch and Trindade (2002) show that countries with larger
ethnic Chinese diaspora populations trade more with each other. Combes et al. (2005) use migration
and investment data to infer that social and business networks create trade within France.
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2 Specification of citation probability equation

To guide estimation and interpretation, we provide a simple model of the citation pro-

cess, leading to a reduced-form estimating equation for the probability of one article

citing another. We then specify the observed determinants of citation and a method for

controlling for key unobservables.

At the article level, citation is a binary choice and we therefore follow the standard

approach of defining a latent variable C∗id which leads to a realized citation, Cid = 1 of

paper d by paper i when a threshold κ is exceeded. Thus the probability of citation is

P(C∗id > κ).

Articles should cite the relevant preceding work. However, author teams can only

cite papers if they are aware of them. These truisms suggest that citation probabilities

should be increasing in the product of relevance and awareness. We therefore model

C∗id = AidRid where Aid denotes the level of awareness of citing team i of paper d and

Rid scores the relevance of the content of paper d for paper i. The marginal effect of

awareness is zero for irrelevant (Rid = 0) papers and the marginal effect of relevance is

zero under the condition of ignorance (Aid = 0).

We model awareness as an exponential function of a vector of indicators of geographic

separation, Gid, and of the educational and career linkages, Lid, between members of

the two author teams. Geographic proximity matters because it increases the frequency

of face-to-face interactions (from “water-cooler” conversations to conference meetings).

Information flows can overcome geographic barriers if authors of papers i and d are con-

nected via overlapping career and/or educational histories. Past colocation or just indirect

linkages such as having the same advisor at different times create a kind of connective

tissue that facilitates knowledge flows. In summary we hypothesize that ∂A/∂G(k) < 0

for all k elements of geographic separation and ∂A/∂L(k) > 0 for all k indicators of ties

between author teams.

We model relevance to depend on an article-d specific function of the subject area of

the citing article, s(i), the year the citing article is published, t(i), and a random term,

εid, representing idiosyncratic factors operating between the article pair. Thus, we have

Rid = exp(αs(i)t(i)d + εid).

The d component of αs(i)t(i)d embodies the general importance of article d to all math-

ematics articles. The “intellectual distance” between the subject of article i and article

d enters via the s(i)d component of α. The t(i)d component captures the idea that rel-

evance of article d to all subjects may decrease over time due to obsolescence of older

ideas. The particular usefulness of the combined fixed effect is that it allows article d
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to have time-varying patterns of relevance that differ across subject areas. Consider an

example familiar to trade economists. Hopenhayn (1992) became more important for the

subject of international trade after the publication of Melitz (2003). This subject-specific

rise in relevance of an article would not be captured via time or subject or article fixed

effects introduced separately. However, the triad fixed effect αs(i)t(i)d is able to absorb it.

We can take monotonic transformations of C∗ and the threshold without affecting

probabilities so we take logs, leading to

lnC∗id = G′idγ + L′idλ + αs(i)t(i)d + εid, (1)

The probability of citation is the probability C∗id > κ and is given by

P(Cid = 1) = P(−εid < G′idγ + L′idλ + αs(i)t(i)d − lnκ) (2)

For ε distributed logistically with parameters µ and σ the probability of citation takes

the familiar logit form:

P(Cid = 1) = Λ[(G′idγ + L′idλ + αs(i)t(i)d − lnκ− µ)/σ], (3)

where Λ(x) = (1 + exp(−x))−1.

We use logit as the primary estimator (and discuss linear probability model results

in the robustness section 4.5) since it constrains predicted citation probabilities to be

non-negative. Logit coefficients provide the marginal effect on changes in the log odds.4

The αs(i)t(i)d fixed effects are a critical part of our estimation strategy since there

is no reason to expect the geography and ties variables to be orthogonal to the triadic

relevance term. Indeed, it is likely that authors of more important articles would be

better connected. Moreover, authors who tend to work on similar subjects are more

likely to be connected. That is, intellectual separation between s(i) and article d may be

negatively related to Lid. We therefore estimate our model controlling for αs(i)t(i)d, the

triad of subject of i, year of i, and article d.

While we have modeled awareness as a function of geography and ties only, we could

easily introduce s(i)t(i)d effects and random article-pair effects. They would simply be

incorporated into α and ε. This means, for example, that we allow for a completely

general pattern of diffusion of awareness of article d on different subjects s.

Estimating αs(i)t(i)d with a large number of articles is computationally difficult and

4In the context of rare events such as citations, marginal effects on probabilities can be tiny. Singh
(2005) multiplies his marginal effects by one million for reporting purposes. We find odds ratios are more
intuitive, but as with rare diseases, one must keep in mind that a large odds ratio does not imply a large
change in the probability of a positive outcome.
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raises concerns over the incidental parameters problem. Instead we take advantage of

the logit feature that the total number of cites received by each triad is a sufficient

statistic for αs(i)t(i)d. This permits estimation in terms of a conditional density to obtain

consistent estimators of the γ and λ parameters. Prior work has included fixed effects for

time lags (Singh, 2005), cited patents (Thompson, 2006), and cited institutions (Belenzon

and Schankerman, 2013). This is the first study to control for the triad of citing article

subject, citing article publication year, and cited article.

The unit of observation for citations is the article pair. However, the geography and

ties variables underlying Gid and Lid are measured at the author -pair level. Mathematics

has traditionally been characterized by more sole authorship than other fields. The

average number of authors in mathematics has risen over time5 but remains just 1.88 in

2009.6

For multiple-author article pairs, we must decide how to aggregate geography and ties

of coauthors. For example suppose paper i has authors A and B, whereas the authors

of paper d are C and D. Then there are four combinations (A-C, A-D, B-C, B-D) of

primitive G and L variables (e.g. distance between A’s and C’s respective institutions or

whether A was C’s Ph.D. advisor). There are two obvious ways to aggregate and both

have been employed in prior papers. The min/max approach (used by Singh (2005) in

defining past collaboration between citing and cited inventor teams) implicitly assumes

perfect information flow between coauthors. Thus, it takes the minimal value of each

measure of geographic separation (since separation is hypothesized to reduce flows). For

example, the distance between article i and article d is defined as the minimum distance

between the institutions to which citing authors are located and the institutions to which

cited authors are located. For connections, which are hypothesized to increase flows,

we use the maximal value between the author pairs. Thus the advisor citing indicator

would “turn on” if either A or B was the Ph.D. advisor of either C or D. The min/max

approach may be thought of as making the most optimistic assumption about flows of

information between members of the same author team: if one knows about a paper,

then all do.

A natural alternative is to average across the sets of bilateral relationships. The

averaging approach implicitly assumes that knowledge transfer within teams is imperfect.

More linkages therefore increase information flow. Under averaging, advisor citing would

take a value of 1 only if A advised C and D and so did B. In other cases it would take

fractional values. We use min/max as our main specification because we find the binary

5Agrawal et al. (2016) show that Soviet-rich fields of math have seen disproportionately large increases
in coauthorship, suggesting that the integration of Soviet mathematicians has increased the gains from
collaboration by shifting out the knowledge frontier.

6In contrast, the average number of authors in evolutionary biology articles was 4 in 2005 (Agrawal
et al., 2013), 3.75 in biomedical research (1961–2000), and 2.5 in physics (1991–2000,) 2.22 in computer
science (1991–2000) (Newman, 2004), and 2.19 in economics (2011) (Hamermesh, 2013).
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ties and geography variables are easier to interpret. We show in a robustness table that

the averaging approach yields results that are similar for geography variables but stronger

for ties.

3 Data

In this section we describe the four sources of data we have used in this study and how we

obtained the geography and ties indicators. We then show how we combined the different

sources to construct the estimating sample using a matching methodology. We also detail

important features of the estimation method that arise because citation is a rare event.

3.1 Sources of data

Our data set combines four main sources:

1. Web of Science (WOS):7 citations, author affiliations, keywords.

2. Mathematics Genealogy Project (MGP): place and time of Ph.D., names of the

dissertation supervisor(s).

3. Zentralblatt MATH (zbMATH): 5-digit mathematical subject classifications (MSC)

for citing and cited articles.

4. Google Maps: longitudes and latitudes for 1000 mathematics institutions used to

calculate geodesic distance data between citing and cited author teams.

Web of Science

We use the WOS to record citations (the dependent variable), the author lists to

obtain coauthorship links, and to find the affiliations of authors. The affiliations allow

us to construct ties variables from career histories and to measure geographic proximity.

The WOS provides a record per each article published in the journals covered in the

database. The record provides data on the title of the article, the journal in which it

was published, the year of publication, the authors, the affiliation of the authors, and the

cited articles.

From WOS we select all 255 journals included in the category “Mathematics” in 2009.

Our database covers all the articles published in these journals in the period 1975–2009.

However, for a large number of journals abstracting and indexing of articles started later

7This database was previously called Thomson Reuters’ ISI Web of Knowledge.
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than 1975. With these limitations, the database contains information about 339,613 ar-

ticles. A shortcoming of WOS is that it does not provide the affiliation for a substantial

number of authors. The WOS provides affiliations for 69% of the author-article combina-

tions. Following procedures described in Appendix A.1 we raise the fraction of affiliation

identifications to 84%.

The WOS contributes three indicators of ties based on past coauthors and past affil-

iations. Each tie variable is based on actions taken prior to the publication year of the

relevant citing article.

• “Coauthors” indicates whether author pairs have collaborated on a paper published

in one of the 255 math journals included in WOS since 1975.

• Location history: “Coincided past” requires colocation at the same institution in

the same year but the authors no longer work at the same place. “Worked same

place” indicates that two authors worked at the same institution in different years

in the past.

Academic genealogy data

The second main database used by this paper is the Mathematics Genealogy Project

(MGP). The MGP records the doctoral degrees awarded in mathematics since the 14th

century. The MGP provides the university and year in which each degree recipient

completed their Ph.D., as well as the names of their doctoral advisors. We merged this

data set with the citing authors and cited authors in our database. The MGP is not an

exhaustive list of all mathematicians but we were able to match the records by author

for around 44% of records.

The MGP data allow us to construct eleven additional measures of ties based on three

types of relationships.

• Classmate relationships: “Share Ph.D.” denotes author pairs who graduated from

the same Ph.D. program within a 5-year period and who are therefore assumed to

have overlapped.

• Academic “family” relationships: “Advisor citing” takes the value of 1 if the au-

thor of the citing article was the PhD advisor of the author of the cited article.

For “Advisor cited” the citing author was the advisee. Academic siblings were

both supervised by the same professor. Academic grandparents are the advisors of

the citing or cited authors’ advisors. Academic cousins are authors that share a

grandparent. Academic uncles are the advisees of one’s academic grandparent.

• Alma Mater relationships: These variables indicate when the citing or cited author

is affiliated to the institution where the other author received her PhD. For example
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“Alma Mater cited” takes a value of 1 when an Princeton alumnus cites a professor

currently affiliated with Princeton.

All ties are computed as dummy variables, taking the value of one if the tie exists.

These dummy variables are additive: if author i has co-authored with author d who is

also i’s Ph.D. advisor, there would be ones for both co-author and advisor cited.

Table 1: MGP vs Non-MGP authors

Author Career duration #Institutions USA(%) #Coauthors Productivity
MGP 5.8 2.0 31.5 4.0 2.3

(6.6) (1.3) (46.5) (5.2) (7.5)
Non-MGP 5.1 1.9 22.7 3.7 1.9

(6.1) (1.3) (41.9) (5.1) (7.0)

Note: Career duration is the difference between the last year and the first year in which the author appears
in the database. USA reports the percentage of authors affiliated to a US university. Productivity is
computed dividing the total citations received by the author by her career duration. Standard deviations
in parentheses.

The MGP data are central to the analysis conducted here because they permit the

construction of detailed educational ties that are pre-determined at the time the authors’

careers begin. However, a natural concern is that these authors were selected for inclusion

in the data set based on special characteristics. Table 1 compares MGP authors with

other authors on several relevant dimensions. The MGP authors have longer careers:

the period over which they publish averages eight months more than non-MGP authors.

Both types of authors work at two institutions on average and have four co-authors. The

MGP authors receive on average 0.4 more citations per year but there is huge variation

in productivity within both groups. In sum, MGP authors tend to be more active and

prominent but the between-group differences seem small relative to intra-group variation.

The most salient difference is that US-based mathematicians seem over-represented in

the MGP. To the extent that mathematicians at US departments have different citation

patterns, this will be more heavily weighted in the MGP sample. We address this in our

empirical analysis by estimating distinct geography and ties effects for US-residents.

Mathematics subject classification data

We used Zentralblatt MATH (zbMATH) to obtain the Mathematics Subject Classifi-

cation (MSC) for the articles in our sample.8 The MSC is a 5-digit classification scheme

maintained by Mathematical Reviews and zbMATH which is used to categorize items

in mathematics (broadly defined). We focus on the 3-digit codes (two numerical and

one letter), of which there are 422 in the year 2000 revision. We also use 5-digit codes,

8zbMATH describes itself as “the world’s most comprehensive and longest running abstracting and
reviewing service in pure and applied mathematics.” https://zbmath.org/about/
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which gives extra detail (2175 fields). An example of a 3-digit code is 15A, “basic linear

algebra.” Within that “inequalities involving eigenvalues and eigenvectors” is a 5-digit

code. The drawback of using the 5-digit codes is a massive reduction in the estimating

sample (which we explain in the results section).

Geographic data

We consider three geography variables, distance, borders, and language difference.

Each variable is expressed such that a large value indicates greater separation. The

national border dummy takes the value of 1 if none of the authors of the citing papers

are based in the same country as any of the cited authors. The language dummy is based

on the official language of the country hosting each authors’ institution, which need not

be the native language of the author in question.

We extracted the latitude and longitude information for all top 1000 institutions from

Google Maps, enabling construction of distances between each institution pair. We code

the distance of authors at the same institution as zero. Much of the prior work uses coarse

measures of location such as residing in the same metropolitan area. Even Belenzon and

Schankerman (2013), who measure intercity distances, cannot calculate decay in citation

propensities within cities. For example, within the Boston metro area, the distance

between Harvard and MIT is only 3km but the distance of MIT to Brandeis University

is 14km. This permits us to estimate the profile of information decay non-parametrically

over fine and broad scales.

Using publications to track author locations over time, we calculate distances (and

other measures of geographic separation) at the time the citing article is written. Past

work using patents calculated distances between inventors using the cited inventors’ ad-

dresses in the year the cited patent was obtained. For example, suppose paper i is being

written in 2005. It may be more likely to cite paper d, written in 1980 at a very distant

institution, if the authors of paper d had by 2005 moved closer to the authors of paper i,

thus increasing their likelihood of interacting around the time paper i is written. Thus,

our contemporaneous distance measure more precisely captures the geographic separation

when the true knowledge flow occurs, i.e., when the new knowledge is created rather than

at the time that the prior knowledge was created.

There is an important caveat regarding our contemporaneous distances. Location of

each mathematician is revealed from their affiliations only in the years when they publish

an article. Not surprisingly, there were many gaps in affiliation histories. As described in

Appendix A.1, we fill these gaps through interpolation and extrapolation, assuming that

moves occur in the midpoint between the periods we observe location.

There has been a notable increase in the number of articles and authors per year;

moreover, the rate of increase seems to have accelerated from the early 2000s onwards.
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The number of articles published in 1975 was 5,830, written by 5,193 different authors.

The number of articles published in 2009 was 19,699, written by 22,787 different authors.

Much of this huge expansion comes from the WOS adding 195 journals to the data base

between 1975 and 2009. Considering only the journals included in 1975, we find a 30%

increase in the number of articles and a doubling in the number of authors.

Figure 1: Number of institutions and countries, 1975–2009
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Note: Dashed lines correspond to the count of distinct institutions (left) and countries (right) represented
in the sample of math citations obtained from entries in the Web of Science (WOS) database. Solid lines
count only within the subset of citations from and to authors included in the Mathematics Genealogy
Project (MGP).

Meanwhile, the numbers of institutions and countries represented in the WOS cita-

tion data increase over time. Figure 1 shows that during the period 1975–2009 the set of

institutions with citing or cited author affiliations rises to nearly 1000 (some institutions

disappear) and the corresponding number of countries rises to 71. The sample containing

MGP information on all authors starts very small but eventually represents 504 institu-

tions located in 50 countries. Over the whole period there are 65 citing countries and

62 cited countries with a total of 1,113 dyads with at least one citation. This number

of country pairs in our analysis is unprecedented in the citations literature, which has

mainly focused on cross-metropolitan area citations within the United States.9

Before estimating any regressions, it is useful to see whether geographic impediments

to knowledge flows can be seen in a fully non-parametric context. Figure 2 displays the

geography of citation patterns in mathematics. It graphs survival functions for citation

9Peri (2005) and Singh and Marx (2013) include international citations but the challenge of deter-
mining locations for individual patentees limited Peri’s sample to 18 countries, whereas Singh and Marx
(2013) limit their sample to cited patents with US-resident inventors.
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Figure 2: Distribution of distances for math citations and trade in goods
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Note: Solid lines represent actual flows of citations or goods between origins and destinations. Inter-
national flows of value-added in manufacturing (blue lines in left figure) come from the OECD/WTO
TiVA database (2009) whereas state-to-state flows come from the FAF database (2007). Dashed lines
are “frictionless” benchmarks for citations or trade (calculation detailed in the text).

flows as a function of distance between the authors of the citing and cited papers. Sc(D) is

the share of all cites that occur with distance ≥ D. Citations from one nation to another

are calculated by summing the citations from papers written by authors affiliated with

institutions in country j to papers written by authors in country n.10

The benchmark for cites is a dartboard model that takes as given each country’s

outward citations, Cj ≡
∑

nCjn and inward citations, Cn ≡
∑

j Cjn. The international

allocation of these citations is completely random; that is, each paper is equally likely

to cite any other paper regardless of distance. Randomness implies that outgoing cites

from j go to country n with probability given by n’s share of all received cites. Thus, the

aggregate flow of benchmark cites from j to n is given by F c
jn ≡ Cj(Cn/Cw), where Cw

sums all cites in the world. F c
jn can be thought of as the “frictionless” flow of citations

from j to n. The survival curve for the benchmark is S̄c(D) =
(∑

distjn≥D F
c
jn

)
/Cw.

Figure 2 displays Sc(D) and S̄c(D) using solid and dashed black lines. The vertical gap

between S̄c(D) and Sc(D) measures the frictions that divert citations away from the

dartboard benchmark.

The blue lines in Figure 2 permit comparison with actual and benchmark flows of

10For papers with multiple authors from different countries, citations are allocated fractionally. Thus,
a paper co-authored by two scholars from countries A and B to a paper written by two other authors
from countries C and D would generate four international citation flows of 0.25 each. This fractional
accounting of citations ensures that the sum of all citations in the world, Cw, is the same regardless of
whether one sums across paper dyads or country dyads; that is Cw =

∑
jn Cjn =

∑
id Cid.
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trade in goods. Research using gravity equations has established that distance is a major

friction impeding trade in goods.11 To facilitate comparisons with the citation data, we

employ trade data sets that measure each origin’s aggregate flows including those that

remain within that origin. Thus, trade flows to self are value-added minus exports of

value-added to the rest of the world.

Panel (a) displays flows of manufacturing value-added between and within 63 coun-

tries derived from the Trade in Value Added (TiVA) dataset made available through a

joint effort of the World Trade Organization (WTO) and the Organization for Economic

Cooperation and Development (OECD). One prominent aspect of Panel (a) is that a very

large share of trade takes place within countries. The precipitous drops in the survival

functions for both cites and goods seen at 1854km correspond to the CEPII internal

distance of the United States (the average distance between 20 major cities).

To see what is happening within this important set of intra-national flows, we display

the survival functions for state to state citations and trade in Panel (b). Citations are

aggregated up to the state level just as they were for countries in Panel (a). The value

of goods transported in 2007 between and within the 50 states and Washington, DC

come from the Freight Analysis Framework (FAF) database. We display distances up

to 5000km (excluding some Hawaii and Alaska dyads) because by that distance both

benchmarks and actual flows are indistinguishable visually from zero.

What we learn from Figure 2 is that distance attenuates knowledge flows in mathe-

matics leading them to occur over shorter ranges than one would expect in a frictionless

world. This is true at international scale and also true within the United States. The gap

between actual and benchmark citation flows is much smaller than what we observe for

goods flows. This is consistent with the hypothesis that trade flows are attenuated by both

transport costs and information decay. Moreover, distance decay effects in commercial

activities may be larger than those that apply to researchers.

3.2 Construction of estimating sample

The Web of Science data we extracted begins with 339,613 citing articles that yield a set

of nearly five million citations to over a million distinct articles. Table 2 shows how our

sample declines to the much smaller sets (the last two rows) that we use in regressions.

The first cut we make is to limit the period of cited articles to the period 1975–2009.

Absence of pre-1975 WOS data papers reduces the set of cited articles by 21%. The WOS

only identifies the first author of the cited articles. To identify the institutional affiliation

of the first author, and the identity and affiliations of any coauthors, we matched the

11See Head and Mayer (2014) for explanation of the gravity methodology and results and Head and
Mayer (2013) for a version of the distance distribution figure that considers only gross trade flows between
countries.
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Table 2: Citation Data: Web of Science (WOS)

Citing Cited Realized
articles articles citations

Start 339,613 1,247,171 4,915,374
Study period∗ 339,613 987,056 3,665,145
Math. category journals 339,613 321,447 1,788,981
Partial affiliation data 221,908 162,457 1,044,673
Full affiliation data 187,062 133,429 749,257
Excluding self-citations 168,054 108,214 562,024
Authors at top 1000 inst. 131,347 86,536 425,399
With 5-digit MSC field 69,558 68,755 268,527
MGP data all authors 13,256 12,608 29,404

Note:∗ 1980–2009 for citing papers and 1975–2009 for cited papers.

cited articles with our original database providing more complete information on the

citing authors. As our database is restricted to the 255 journals included in Mathematics

category, we can only identify the authors and coauthors of the cited articles belonging

to this set. Only one third of the cited papers (containing about half the citations)

were published in the pure math journals included in our database.12 Inability to obtain

complete affiliation information for the citing authors and the cited authors reduces the

number of realized citations by 58% (0.75 million compared to 1.8 million). We then

remove all self-citations, that is all article pairs where any of the citing authors has the

same zbMATH author code as any of the cited authors.13 This subtracts a surprisingly

high one quarter of the realized citations.

There are 11,383 different affiliations for the citing authors and 7,722 different affilia-

tions for the cited authors. To keep the set of required geographic information manage-

able, we select the 1000 affiliations with the highest number of citing articles. The top

1000 affiliations account for 76% of the realized citations observations (after all previous

cleaning steps). Failure to obtain a subject classification from Zentralblatt MATH further

shrinks the sample of realized citations by 37%.14

Applying the filters described above leaves us with 269 thousand realized citations

to use in our initial estimations that omit educational histories. The biggest decline in

realized citations occurs when we require MGP data to be available on all authors. The

89% reduction in realized citations in the last row of Table 2 raises concerns that the new

sample might not be representative. We shall show in Table 3 that the MGP sample is

12The lost citations include books, book chapters, and proceedings. We also lose citations due to
spelling discrepancies.

13Appendix A.2 describes how we identified and removed self-citations.
14We match the Zentralblatt MATH and the WOS databases using the title of the article.
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remarkably similar to the larger sample with respect to the means of the variables we

can measure for both sets.

A standard “exogenous sampling” approach would entail picking a set of citing articles

and constructing the universe of papers they might cite and predicting which potential

cites are actually realized. Applying such an approach in the case of citations creates

both conceptual and practical problems. First, it is hard to determine the appropriate

“universe.” Should we consider the applied math papers that might have cited a given

paper, the physics papers, the economics papers? The data gathering challenge for a

true universe of potential citing papers would be formidable. There would also be com-

putational difficulties with incorporating so many non-citation observations. Citations

are an example of a rare event problem. In the Web of Science sample (before imposing

the requirement of MGP data on all authors), there are approximately 3 billion potential

cites and about 269,000 realized cites. Thus, the rate of citation is only 9 per 100,000. In

response to this problem, the patent citation literature has generally adopted a choice-

based sampling approach following the matching methodology of Jaffe et al. (1993). For

each realized citation (case), a single non-realized citation (control) is selected at random

from a larger set of matched potential controls.15

We adopt the one case per control approach when using the whole WOS sample.

However, the sample featuring our full set of ties has a small enough number of realized

citations that we can incorporate all potentially cited papers that meet certain criteria.

Our baseline matching criteria is that controls be published in the same year and the

same 3-digit field as the original citing paper (case). The union of the realized citations

and the control group constitutes the sample that is used in the econometric analysis.16

The presence of triadic fixed effects means that we have effectively the full set of control

observations. To see this imagine another field A in which none of the papers cite a

given paper d. Then the A-d part of the triadic fixed effect would be a perfect predictor

for non-citation so all such observations would be automatically dropped from the fixed

effects logit estimation.

Table 3 displays the differences between the characteristics of realized citations and

the control citations. In line with our expectations, we see that realized citations are

more likely to be at the same university, same country, and from countries that use the

same official language. Citing authors reside on average half the distance to the nearest

cited author of non-citing (control) authors.17 In terms of ties, citing authors are many

times more likely to coauthor with the (realized) cited authors. They are also more than

15Singh (2005) uses five controls per realized citation in his weighted exogenous sampling maximum-
likelihood (WESML) estimator.

16Kerr and Kominers (2015) use an alternative method that randomly samples patent distances to
calculate expected citations within a fixed ring.

17The calculation is exp(6.990− 7.741) = 0.47 for the MGP sample and exp(7.099− 7.800) = 0.50 for
the WOS.
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Table 3: Comparison of means in the Web of Science (WOS) and Mathematics Genealogy
Project (MGP) samples

Only realized citations Only control citations
WOS MGP WOS MGP

mean of variables (1) (2) (3) (4)

Different institution (Distance > 0) 0.922 0.917 0.984 0.987

ln Distance | Distance > 0 7.099 6.990 7.800 7.741

Different country 0.637 0.634 0.749 0.758

Different language 0.500 0.476 0.600 0.578

Co-authors 0.099 0.090 0.019 0.014

Coincided past 0.085 0.088 0.030 0.027

Worked same place 0.049 0.048 0.029 0.030

Observations 268,527 29,404 268,527 412,388

Note: Realized citations are article pairs in which i cites d. Control Citations are articles
matched to i by citing year and 3-digit field that did not cite d.

twice as likely to have worked at the same university either at the same or different times.

Since all these variables are correlated we will need to estimate regressions to determine

the partial relationships.

Comparing columns (1) and (2) and columns (3) and (4) of Table 3 we see that the

average characteristics of the WOS and MGP samples are very similar. Imposing the

criteria that all citing and cited authors have MGP data leaves a much smaller sample of

realized citations but it does not seem to change the average values of the geography and

ties variables in a systematic way. The number of observations in column (4) is much

higher than column (3) because the WOS sample only contains one control per case in

column (1) whereas there are on average 14 controls per case in the MGP sample.

4 Regression results

This section presents the main results regarding the effect of geography and ties on

knowledge flows. All regressions are logits with fixed effects for each group defined by

citing field (3-digit subject codes), citing year, and cited article. The assumption is

that conditional on these fixed effects, variation in geography and ties can be viewed

as random, allowing for a causal interpretation of the estimates. We recognize this is a

strong assumption but provide evidence that our subject controls are effective at reducing

bias due to endogeneity. The reported coefficients have the interpretation of marginal

effects on the log odds. Standard errors are clustered at the cited article level to allow
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for correlations in the errors across potentially citing articles for the same cited article.

There are four key findings. First, the effects of distance, borders, and language

differences are about half as strong once educational and career links are taken into

account. Second, 13 of the 14 measures of ties have positive effects that are significant

at the 5% level in our final specification. On average the effect of adding a tie raise the

odds of citation by 80%, with some ties having much bigger effects. While this magnitude

depends on the specific way we control for subject of the citing paper, a large, highly

significant association between ties and citations holds up with even the most stringent

measure of subject (using the same keywords). Third, ties and geography affect different

types of papers differently. In particular, less prominent and more recently published

papers exhibit stronger effects. Finally, while the importance of distance has declined to

the point of statistical insignificance in recent years, ties remain as valuable as ever.

4.1 Baseline

Table 4 reports the result of baseline logit regressions.18 The first specification includes

only the four geographic explanatory variables: an indicator for distance greater than

zero (not being at the same institution), log distance (interacted with the positive dis-

tance indicator), and indicators for residing in different countries and from countries that

have different official languages. The two-part distance function is necessary because

there is no good way to directly measure the distance between two scholars at the same

institution. The first of the two parts implicitly estimates this distance. The indicator for

distance greater than zero is equivalent to a “different university” dummy. The two-part

formulation has a jump from zero to positive distances, but thereafter the elasticity of

citations odds with respect to distance is constant. While a constant elasticity of dis-

tance in trade equations is the standard assumption underlying gravity equations, there

is little a priori reason to expect this relationship to carry over to citations. Therefore we

re-estimate specifications (3) and (5) with distance-interval step functions in columns (4)

and (6).

The second specification adds ties constructed from the WOS database. The third

to sixth specifications restrict the sample to the articles with full information from the

MGP database. The overall estimating sample does not decline much because the MGP

sample uses all available controls (non-citations in the same subject-year), whereas the

WOS sample has just one control per case. As in the first two columns, we first show

the effects of geography without ties (columns 3 and 4) and then with the full set of ties

available in the MGP data (columns 5 and 6).

18The entire table is re-estimated using the linear probability model in appendix table C.5, with the
results compared in section 4.5.

19



Table 4: Baseline: matching by MSC-3d, full author information

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects logit (TFE-Λ)
Sample WOS WOS MGP MGP MGP MGP

Geography :

Distance > 0 -1.008? -0.936? -1.243? -0.571?

(0.029) (0.031) (0.065) (0.073)

ln Dist | Dist > 0 -0.073? -0.052? -0.068? Figure 3 -0.037? Figure 3
(0.003) (0.003) (0.008) (0.008)

Different country -0.198? -0.140? -0.232? -0.270? -0.090? -0.103?

(0.014) (0.014) (0.031) (0.032) (0.031) (0.033)

Different language -0.104? -0.066? -0.082? -0.079? -0.025 -0.025
(0.011) (0.012) (0.026) (0.026) (0.026) (0.027)

Ties :

Co-authors 1.672? 1.572? 1.581?

(0.021) (0.050) (0.050)

Coincided past 0.712? 0.378? 0.378?

(0.019) (0.043) (0.043)

Worked same place 0.478? 0.342? 0.339?

(0.020) (0.043) (0.043)

Share Ph.D. (5 years) 0.463? 0.457?

(0.067) (0.067)

PhD siblings 0.663? 0.666?

(0.100) (0.100)

PhD cousins 0.365? 0.362?

(0.082) (0.082)

Advisor citing 1.090? 1.079?

(0.164) (0.164)

Advisor cited 1.377? 1.375?

(0.102) (0.103)

Academic grandparent citing -0.284 -0.254
(0.392) (0.390)

Academic grandparent cited 1.028? 1.023?

(0.155) (0.155)

Academic uncle citing 0.227∼ 0.236†

(0.118) (0.118)

Academic uncle cited 0.616? 0.619?

(0.076) (0.076)

Alma Mater citing 0.239? 0.233?

(0.055) (0.055)

Alma Mater cited 0.120† 0.119†

(0.056) (0.057)
Observations 537054 537054 441792 441792 441792 441792
pseudo-R2 0.044 0.085 0.033 0.034 0.091 0.091

Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Specification (1) presents significantly negative coefficients on distance and borders,

suggesting that physical distance and borders indeed impede knowledge flows. We esti-

mate smaller border and distance effects than those obtained by Singh and Marx (2013)

using citations of US patents. Whereas we find that crossing a national border reduces

citation odds by exp(−0.198) − 1 = −18% they find a 41% reduction (specification (6)

of Table 5).19 Our distance elasticity is −0.073 whereas theirs is −0.137. While it is

tempting to attribute this halving of geography effects to differences between academic

and commercial diffusion of ideas, other evidence on patent effects obtains similar magni-

tudes to our column (1). As the coefficients show the marginal effects on the log odds of

citation and citation is rare, the dependent variable approximates the log probability and

should therefore be proportionate to the log citation flow in aggregated data. This means

we can compare our estimates directly to the results from the gravity-type regressions on

patent citations estimated by Peri (2005) and Li (2014). The different country (border)

effect we estimate is −0.198, whereas the baseline estimate of Peri (2005) is −0.19. Li

(2014), also estimating a patent citation gravity equation, reports distance elasticities (af-

ter controlling for subnational borders) from −0.03 to −0.067, which are slightly weaker

than those reported in our column (1). All these results support the conclusion that

border and distance decay of citations are considerably smaller than the effects typically

estimated for trade in goods. Nevertheless, it may be surprising to many that geography

has a significant impact on academic citations at all. We now show that the estimated

effects are substantially reduced by controlling for ties.

The second specification shows that the three measures of career ties (past coauthor-

ship, past colocation, and past work at the same institution) all have strong positive

associations with citation. As exponentiating the coefficients in a logit expresses the ef-

fects in terms of the change in citation odds ratios the 0.712 coefficient on past colocation

implies that even after colleagues have moved to separate institutions, they have 104%

higher odds of citing each other (exp(0.712)− 1 = 104%). Prior coauthors are even more

likely to cite each other. We also see that the inclusion of career ties lowers geography

effects somewhat.

Comparing columns (1) and (3) we see that estimating the same specification on the

MGP-restricted sample does not change the geography coefficients by more than one

would expect given the standard errors.20 Comparing columns (3) and (5) we see one

of the headline results of this paper: Controlling for ties shrinks the negative effects of

geographic separation by about 50%. The ratios of the four geography coefficients in

19The gap between our results would be narrowed by including an additional -10% citation odds
reduction from not sharing a common language, which would be the case on the majority of cross-border
country pairs.

20Additional investigation of the possibility of MGP sample selection bias is reported in the robustness
subsection 4.5.
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column (5) to the corresponding coefficients of column (3) are 0.46, 0.54, 0.39, and 0.30.

The omitted variable bias formula tells us that this means that ties and geography are

correlated and that the pure partial effect of being far away or in a foreign country is

overestimated in regressions that omit controls for ties.

Table 4, columns (5) and (6) show that, with just one exception, ties have system-

atically positive effects on citation probability. All of the estimates are statistically sig-

nificant at the 5% level except “grandparent citing” which has an imprecisely measured

negative effect and “uncle citing” which has a borderline significant result in column (5).

The average over all fourteen ties coefficients is 0.59, implying that the average tie raises

the odds of citation by 80%. The addition of the full set of ties in column (5) dramati-

cally increases the fit of the logit to the data: the pseudo R2 nearly triples from 0.033 to

0.091.21

There are three tie relationships where one can identify the more “senior” of the two

authors: advisors, uncles, and grandparents. In each case we observe the author in the

teaching role is more likely to be cited than to cite. Advisees massively over-cite their

advisor’s papers by a factor of four (the second largest impact of the 14 types of ties). In

the reverse direction, we find advisors over-cite their advisees’ articles by a factor of three.

The academic “nephew” overcites his “uncle” by 86% but the reverse direction features a

bias of just 26%. The most pronounced asymmetry emerges when we skip a generation.

Authors over-cite their advisor’s advisors (academic grandparents) by a factor of three.

Yet this intergenerational flow is not reciprocated; the grandparents’ propensity to cite

advisees of their advisees is not significantly different from zero. These vertical patterns

support the hypothesis that citations transmit knowledge.

Figure 3 illustrates the coefficients on each of the 12 steps in the non-parametric

estimation of distance effects conducted in specification (6) of Table 4, represented with

black circles. The vertical axis depicts the reduction in the log odds of citation associated

with each step, relative to working at the same institution. We also show with blue

squares the corresponding estimates for the 12-step specification omitting ties. For each

set of steps, we overlay the implied reduction in the log odds of citation based on the

2-part coefficients from specifications (3) and (4). The key finding illustrated in the

figure is that after the dramatic fall associated with positive distance, the subsequent

declines are consistent with a constant elasticity decay rate. Controlling for ties moves

the decay function up (lower effect of being at different institutions) and flattens it.

After controlling for ties, the two-part prediction lies within two standard errors for 11

21Pseudo R2 is measured as 1− L1/L0 where L0 is the likelihood of the constant-only model. Hence
it rises with the number of estimated parameters. It is therefore worth noting that the inclusion of ties
reduces the Akaike Information Criterion (AIC) by 7995 points compared to column (3), indicating that
the rise in the likelihood from adding ties is large enough to offset the penalty AIC imposes for adding
14 parameters.
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Figure 3: Non-parametric estimated geography effects
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Note: Black circles and whiskers correspond to estimates and confidence intervals for 12 distance bins
for specification (6) in Table 4. Blue square estimates are from a specification that omits ties.

out of 12 steps.22 Clearly there is a big discontinuity between zero and positive distances

corresponding to a same-university effect. Conditional on positive distance, the figure

shows that it is hard to distinguish empirically between a decay function that is flat

after 1000 kilometers and one that exhibits regular decay with a constant elasticity of

−0.037. Since the 2-part approach adequately captures distance effects, we use it for all

the subsequent estimations.

The negative effect of geographic barriers on citation probabilities is presumed to arise

because these barriers reduce the frequency of face-to-face interactions. In academics (as

well as other areas) co-attendance at conferences provides one of the most important

opportunities to meet in person with scholars doing related work. We collected data on

papers presented between 1990 and 2009 at one of the most important conferences, the

Joint Mathematics Meetings (JMM). Held annually in the United States, an average of

1459 participants present 1037 papers.

The first exercise we conduct, reported in Table B.1, is to show that there is a strong

22The exceptional case is the 25–50km bin, which is driven by the dyad Rutgers-CUNY (45km apart).
Both of these math departments are very active in the Set Theory 3-digit code but they do not cite each
other’s papers. The apparent cause is that while Rutgers papers span the field, CUNY authors specialize
in two sub-fields, Consistency and Independence Results and Large Cardinals, which comprise 52 out of
CUNY’s 58 papers.
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and precisely estimated negative effect of distance on the probability of attending a

conference. Because the conference venue moves each year, the data exhibit substantial

variation in distance for a given scholar. This permits estimation of the logit with author-

specific fixed effects. The distance elasticity in this specification is −0.136 with a 0.016

standard error (clustered by author).23

The second exercise, reported in Table B.3, uses the conference data to show the

impact of attendance on citation. Using the Table 4 column 5 specification, we add

indicators of coinciding at the same conference (as presenters or session organizers). While

just coinciding has a negligible effect on citation, coinciding when the (potentially) cited

paper is presented increases the odds of citation by a factor of 8.3. Table B.3 also shows a

positive effect of presenting at the same session, regardless of whether it was the citing or

cited paper. Contrary to our own observation of presenters being encouraged to cite the

work of co-attendees at a session, we find no significant evidence of a citing paper effect in

this data. While these two exercises are confined to the one conference for which we could

obtain long-term conference participation data, they illustrate a broader mechanism that

we view as underlying distance effects on citation. Proximate authors are more likely

to present at the same conferences and, when they do so, this makes the citing authors

aware of new relevant research which they build upon in their own work.24

Why does controlling for academic linkages lead to the large reduction in distance

effects shown in Table 4? It must be that ties are negatively correlated with geographic

barriers. We illustrate this in Figure 4(a), which shows that linked authors tend to

be closer to each other than authors who have no ties. For example, about 33% of

tied authors are more than 5000 kilometers apart, compared to almost 60% of non-tied

authors. Similarly, tied authors are much more likely than non-tied authors to reside

in the same country (51% vs 16%) or countries that share a common language (65% vs

32%).

Figure 4(b) reveals the phenomenon that helps to understand our baseline results:

Mathematicians tend to remain close to the university where they obtained their doctor-

ates. Thirty percent either do not leave or have returned and only 18% move more than

5,000km away.25 Proximity to the alma mater is likely to beget proximity to one’s advisor

(and his advisor), former classmates, etc. The story underlying our baseline results is a

23This estimation includes only those authors who attended at least one meeting but not every one (no
perfect predictors). Appendix B also presents an estimation without author fixed effects that includes
all potential attendees. The distance effect in this estimation is not as strong (−0.05) but negative and
significant border and language effects show up in this specification.

24Our results align with the finding of Iaria et al. (2018) that the ban on Central scientists from
participating at international conferences during and after World War I was associated with a drop in
citations between Allied and Central scientists.

25There is substantial heterogeneity in the tendency to work at the Ph.D. granting institution, with the
just 20% of US-educated authors staying/returning compared to 46% in Spain. The sample comprises
2213 MGP authors who published in pure mathematics journals in 2009.
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Figure 4: The spatial concentration of tied authors

(a) Geography of ties (b) Distances from Doctoral Institution

>1 tie

1 tie

No ties

0
.2

.4
.6

.8
1

S
ha

re
 o

f p
ai

rs
 a

t a
 la

rg
er

 d
is

ta
nc

e

0 5000 10000 15000 20000
Distance (km.)

All author pairs

Alma Mater

0
.2

.4
.6

.8
1

S
ha

re
 o

f p
ai

rs
 a

t a
 la

rg
er

 d
is

ta
nc

e

0 5000 10000 15000 20000
Distance (km.)

Note: Panel (a) constructs the complementary CDF for distances between authors of 2009 papers,
distinguishing author dyads by the presence of ties. The blue line in panel (b) aggregates all the author
pairs from panel (b). The black line plots the distribution of distances to the author’s Ph.D. granting
institution (alma mater).

simple but important illustration of omitted variable bias. Ties are very important for

citation but ties are negatively correlated with distance. Thus a failure to control for ties

leads to the inference that distance has a greater direct impact on knowledge flows than

is truly the case. Authors are unlikely to cite papers written by faraway authors partly

because they are less likely to have interacted at conferences, but an equally important

factor is that they are less likely to have an academic or career tie with each other.

4.2 How controls for relevance affect estimates

The fixed effects in our baseline results control for the 3-digit subject field of the citing

paper. The goal is to neutralize the issue of paper relevance so as to estimate the impact

of geographic separation and ties on awareness. Table 5 shows how the results vary as we

tighten the criteria for the subject component of the fixed effect (and the corresponding

set of control observations). The purpose is to see whether the effects of geography and

ties are stable. To trim down the number of effects to be compared across specifications,

we average the coefficients of all fourteen tie indicators. The table is organized such that

the first column removes matching based on subject altogether and instead considers a

randomly selected article published in the same year as the case observation. Not needing

MSC data, the number of realized citations rises to 47,670. We add up to 25 random

controls per case, with an average of 24.5. This number was chosen to approximately
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match the sample size of column (2), where the control set comprises all other papers pub-

lished in the same journal and the same year as the citing paper. Column (3) reproduces

column (5) from the previous table.

Table 5: Sensitivity of results to alternative controls for article relevance

(1) (2) (3) (4) (5) (6)
Control group: nil journal MSC-3d MSC-5d keyword

Distance > 0 -0.840? -0.782? -0.571? -0.589? -0.367? -0.529?

(0.062) (0.059) (0.073) (0.073) (0.091) (0.163)

ln Dist | Dist > 0 -0.045? -0.030? -0.037? -0.034? -0.033? -0.047?

(0.007) (0.007) (0.008) (0.008) (0.010) (0.017)

Different country -0.035 -0.041 -0.090? -0.098? -0.086† -0.098
(0.027) (0.027) (0.031) (0.031) (0.041) (0.068)

Different language -0.014 0.026 -0.025 -0.020 0.007 -0.127†

(0.023) (0.023) (0.026) (0.026) (0.035) (0.054)

Average effect of ties 1.639? 1.114? 0.585? 0.570? 0.379? 0.419?

(0.048) (0.037) (0.033) (0.031) (0.034) (0.069)

Cocitation 3.277? 2.151? 1.704?

(0.057) (0.077) (0.197)
Observations 1215286 1135825 441792 441792 75926 22680
pseudo-R2 0.181 0.144 0.091 0.127 0.097 0.114

Notes: Average effect of ties refer to the mean effect of 14 (3 WOS and 11 MGP) ties. Signifi-
cance: ?: 1%, †: 5%, ∼: 10%. Robust standard errors clustered by cited article in parentheses.

The results shown in specification (1) of Table 5 make it clear that the use of subject

fixed effects and corresponding control observations is a crucially important element of

the method. With random controls, the average coefficient on ties rises from 0.585 to 1.64.

This means that the presence of a linkage goes from multiplying the odds of citation by

1.80 up to 5.15. This is a statistical confirmation of what introspection would already have

made obvious: our connections are influenced by common topics of interest. Column (2)

finds that an intermediate form of matching, forcing the control to come from the same

journal as the case, leads to intermediate results for ties (implying multiplication of

citation odds by three).

The fourth, fifth, and sixth specifications impose tighter controls for relevance. Col-

umn (4) begins with a new proxy for topic similarity, cocitation. Reasoning that two

articles that have been cited together in other papers are likely to deal with related

topics, we add a co-citation dummy set equal to one if there exists a paper j that cites

both i and d (and set to zero if the papers have never appeared jointly in the reference

sections of the papers in our sample). We find this proxy for similarity in topic massively

increases citation probability (factor of 26) and inclusion of the cocitation dummy lowers
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the estimated network effects. However, the reduction is minor (2%) and the network

effects remain strong and statistically significant.

Column (5) of Table 5 changes the data set by imposing that the control observation

must be a paper in the same 5-digit field as the case. At the same time the triad fixed

effect is modified to depend on the 5-digit citing subject. The cost of tighter matching

is that we now find far fewer control observations—the sample falls by 83% to 75,926

observations. The coefficients on ties decline but the effects remain large (increasing

citation odds by 46% on average) and precisely estimated.

The final estimation of Table 5 specifies the triad and control observations based on

the criteria of common “keywords.” This presents an even stronger cut in the availability

of controls than the 5-digit fields. The same-keywords sample has 95% fewer observations

than the same 3-digit sample and 70% fewer than the same 5-digit sample. This possibly

non-random attrition seems unacceptably high. The average standard error for network

effects and distance effects almost doubles. The average coefficient on ties actually rises

slightly when using the keywords control, suggesting that finer controls would not wipe

out the estimated effects of ties. Indeed, an unavoidable trade-off emerges between tighter

matching restrictions and sample size. If we defined the subject of the citing article

sufficiently narrowly, there would be no other potential citing papers for a given cited

paper. We view the 3-digit controls as hitting the “sweet spot” between controlling

adequately for relevance and retaining a full set of comparison non-citing articles.26

Appendix Table C.2 removes the ties indicators, but is otherwise identical to Table 5.

Failure to control for ties dramatically magnifies the estimated impact of the geography

variables. Generally speaking they are twice as large, regardless of which fixed effect for

relevance is employed. Thus we see that this key result from the baseline estimates is

very robust.

4.3 Evidence for information mechanisms

The results we have obtained so far point to an important role for educational and career

ties in fostering citations. The underlying mechanism we imagine is one of communication

along the network of ties that causes one set of authors to become aware of useful theorems

and conjectures provided by other authors. This information transfer mechanism predicts

that the presence of ties should matter more for certain types of papers than others.

Specifically, we conjecture that authors rely more on their ties to find out about work

26The trade-off between fineness of comparisons and sample attrition recalls the debate between
Thompson and Fox-Kean (2005) and Henderson et al. (2005). The former argued that using more
detailed (6-digit) technology classes for the control sample eliminates localization of patent citations.
The counterargument was that such fine controls cause excessive non-random reductions in the sample.
Using a novel method, Murata et al. (2014) show that distance matters even for 6-digit controls.
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that is less widely known, more recently written, and further from the author’s field

of expertise. To the extent that face-to-face interactions matter more for such papers,

geographic barriers should be stronger as well.

Table 6: Obscure, Recent, and Different-field papers are more impacted by ties and geography

(1) (2) (3) (4) (5) (6) (7)
Specification: Obscure Recent Different field

base interact base interact base interact

Geography :

Distance > 0 -0.571? -0.541? -0.011 -0.321? -0.339† -0.804? 0.147
(0.073) (0.083) (0.166) (0.107) (0.137) (0.136) (0.198)

ln Dist | Dist > 0 -0.037? -0.031? -0.037∼ -0.021∼ -0.028∼ -0.026∼ -0.004
(0.008) (0.009) (0.019) (0.011) (0.015) (0.014) (0.021)

Different country -0.090? -0.082† -0.061 -0.095† 0.002 -0.072 0.022
(0.031) (0.034) (0.079) (0.044) (0.060) (0.056) (0.088)

Different language -0.025 -0.028 0.014 -0.017 -0.015 -0.037 -0.075
(0.026) (0.029) (0.064) (0.037) (0.048) (0.047) (0.072)

Ties :

Average effect of ties 0.652? 0.619? 0.135? 0.543? 0.176? 0.572? 0.223?

(0.018) (0.020) (0.059) (0.027) (0.036) (0.036) (0.057)
Observations 441792 441792 441792 225768
pseudo-R2 0.091 0.092 0.093 0.100

Notes: 1. Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%,
∼: 10%. 2. Average effect of ties is the mean of the base and interaction coefficients of 13 ties (3 WOS
and 10 MGP). “Obscure” indicates that total citations received for this article are less than or equal to
the median number of citations received among all articles, “recent” corresponds to citation lags less than
or equal to the median, and “different field” equals 1 if citing article and cited article belong to different
2-digit MSCs.

We develop three proxies for papers that researchers are less likely to know about.

First, we categorize papers as “obscure” if they receive less than or equal to the median

number of cites (three). Our second proxy for low awareness is the gap in time between

when the citing and potentially cited papers were published. A paper is “recent” if the

gap is less than or equal to the median gap in our data (nine years). The third awareness

measure follows from the observation that authors are more familiar with work in their

own fields than in other subject areas. We classify papers as different field if their 2-

digit mathematical subject classifications (MSC) differ (for example 11 Number Theory

vs 14 Algebraic Geometry). As we show in a subsequent table, these specific rules for

categorizing obscure, recent, and different field are not critical for the results.

Table C.3 in the appendix provides summary statistics on these variables. Not sur-

prisingly, there are lower average number of cites for obscure papers and recent papers.

We see approximate balance between the average number of cites to the same and to
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different fields. There are more observations in total featuring cites within the same field

so this suggests that cross-field citations go mainly to more prominent papers. In terms

of ties, on average the differences between obscure and recent papers are small. The fact

that ties are higher for same-field papers probably reflects greater ties within the same

field. This is an important reason why our fixed effects control for the citing paper’s

3-digit subject code.

Table 6 reports the detailed results for the three awareness proxies. To reduce the

number of parameters to be displayed and discussed, we report the average of 13 ties

indicators, followed in the next column by the averages over 13 interaction terms.27 Col-

umn (1) reports the corresponding regression without interactions for comparison pur-

poses. Compared to column (3) of Table 5, the average effect of ties rises because we

excluded the grandparent citing indicator in this table (it has a negative and insignificant

effect in Table 4).

The first set of interactions in Table 6 shows the results of interacting geography

and ties with an indicator for obscure papers. Column (2) shows the base effects cor-

responding to non-obscure papers and column (3) shows the coefficient on each corre-

sponding interaction. We find that the more prominent papers (> 3 cites) have a 18%

(= 0.135/(0.619 + 0.135)) smaller coefficient on the average of ties than the lesser known

papers. This is consistent with the interpretation that ties facilitate awareness. Papers

that are big successes require less help from networks to promote transmission. The

coefficient on log distance is about 1.2 times as large for obscure papers.

When the interaction is changed to distinguish recent versus older papers, the results

are similar as shown in columns (4) and (5). Recent papers have a 24% higher coefficient

on the average effects of ties. Distance decays are estimated at −0.021− 0.028 = −0.049

for papers in their first nine years after publication (the median age of papers in our

sample) and −0.021 thereafter. These numbers are remarkably similar to those reported

by Li (2014) in a gravity-style study of inter-city patent citation flows. She finds that

the distance elasticity declines monotonically with age from a −0.028 in the first five

years to −0.014 for patents granted 20 or more years before. These combined findings of

significantly higher geographic concentration of “new knowledge” are intuitively appealing

and provide some guidance for models of knowledge diffusion.28

Ties also have larger impacts for papers in different fields, with a coefficient, reported

in column (7) that is 28% larger than for same-field papers. None of the different-field

27We drop “grandparent citing” in this table because of a logit perfect predictor problem. In the
different-field specification, there were only 9 grandparent citing instances and all of them were for
control observations, rather than realized cites. We reinstate grandparent-citing back in a robustness
check where it is a component in a sum of ties variable.

28A recent paper studying patents finds corroborating results. Packalen and Bhattacharya (2015) show
that denser cities are responsible for patents that make use of newer knowledge, as measured by textual
analysis of the patent applications.
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geographic interactions are statistically significant, suggesting that face-to-face commu-

nication matters more for obscure and recent papers than for different fields.

All three sets of interactions therefore support the premise that scholars draw more

heavily on their connections when obtaining less familiar information. The positive in-

teractions between ties and information proxies have similar magnitudes and strong sta-

tistical significance in five alternative specifications described in subsection 4.5. These

robustness regressions also find statistically significant (10% or better) negative effects

for the geography-information interactions in 11 out of 30 estimates. The remaining

estimates are mainly negative but not statistically different from zero.

Tables 6 and C.6 show strong and robust evidence that ties matter more for three

types of papers where awareness poses a more serious challenge. We also find that geo-

graphic barriers pose a greater impediment to citation for recent papers in nearly every

specification. This evidence supports the interpretation of ties as facilitating information

transfer rather than an alternative mechanism involving “citation cliques.” Under this

alternative, scholars have perfect awareness of the relevant research in their field but

choose to cite specific prior work because it was written by the scholars for whom they

have some kind of social affiliation. If ties are just proxies for intra-group loyalties, it is

not obvious why such forces should be relatively more important specifically for the types

of papers where the awareness gap is predictably larger.29

There is a third mechanism, combining elements of information and affiliation, which

is also consistent with our results. In this story, mathematicians are aware of relevant

work but uncertain of whether the proofs those papers contain are all correct. Since the

validity of one’s own results hinges on the correctness of the proofs of the cited theorems,

the mathematicians we have spoken to claim to check all proofs, regardless of the author.

In practice, this may not always occur. There could be cases where, for example, an

author would cite her advisors papers because she knows his proofs have always stood

up to scrutiny. This trust mechanism would likely be stronger for lesser known and

more recent papers because they are less likely to have been thoroughly checked by

others. Trust could also matter more for papers outside one’s field because those involve

unfamiliar techniques that make it difficult for an outsider to verify the proof.

We see the awareness and trust mechanisms as both emphasizing ties as conduits of

information. In the first case, the information is about the existence of a useful theorem;

in the second case the information is about the reliability of the theorem. This echoes

the situation in international trade where Rauch (2001) summarizes a number of studies

showing that “transnational business and social networks promote international trade by

alleviating problems of contract enforcement and providing information about trading

29The fixed effects control for the overall tendency to cite each article d so the interactions measure
how ties boost the relative tendency to cite specific types of papers.
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opportunities.” Thus, networks help exporters by making them aware of the specific

needs of foreign buyers, while also promoting trust that buyer and seller will comply with

the terms of their contract with each other.

4.4 Time-varying effects of distance and ties

The estimates presented so far pool citations made from 1980 to 2009. This section

investigates whether the effects of distance and ties on more recent citations differ from

the past. The results of Keller (2002) and Griffith et al. (2011) show a decline in the

importance of geographic separation between the 1980s and late 1990s. We extend the

investigation these authors initiated by including more recent data and also estimating

the time-varying effect of ties. We examine changes since 1990 because our 1980s citation

data are too sparse. Estimation of time-varying coefficients from 1990 to 2009 is of great

interest given the many relevant advances observed over this period.

Figure 5: Distance effects shrinking while ties matter more over time

(a) Distance elasticities (b) Coefficient on sum of ties

1990 1995 2000 2005

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00

D
is

ta
nc

e 
el

as
tic

ity

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●
●

● ●

Geo + Ties

Coef: lag <= 10
Smoother: lag<=10
lag <=5 
All lags
95% Conf Int

●

Geo only

Coef: lag <= 10
Smoother: lag<=10
95% Conf Int

1990 1995 2000 2005

0.
4

0.
5

0.
6

0.
7

0.
8

E
ffe

ct
 o

f a
n 

ad
di

tio
na

l t
ie

Coef: lag <= 10
Smoother: lag<=10
lag <=5 
All lags
95% Conf Int

Note: Plotted coefficients are marginal effects on the log odds of citation. Confidence intervals based on
standard errors clustered at cited-article level. Red-shaded interval corresponds to estimates that do
not control for ties. Blue-shaded estimates control for the sum of 14 ties. Estimation window moves
by one year for each point, with citing papers published in years t − 2 to t + 2 and citation lags (time
between publication of citing and cited papers) less than or equal to 5 or 10 years.

To investigate whether the impact of distance and ties have been changing, we estimate

regressions based on a moving sample window. We construct the estimation windows by

first restricting the citing papers to be published within a 5-year period centered around

year t. This implies citing years, tc, in the interval t+2 ≥ tc ≥ t−2. To make the sample
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size in later years comparable to that of earlier years, we impose a fixed maximum citation

lag L set equal to 5 or 10 years. This implies cited years, td in the interval tc ≥ td ≥ tc−L.

The first mid-year t we use is 1990 and the last is 2007 (since our data set runs to 2009).

Figure 5 shows the effects of distance in panel (a) and ties in panel (b). In both panels

we use blue squares to depict the point estimates for 10 year maximum citation lags. A

solid LOWESS smoother passes through the point estimates. The dashed smoother line

depicts the results for a 5-year citation lag and the dot-dash line corresponds to an

estimation with no restriction on citation lag (all years). The points in panel (a) are

estimated distance elasticities, that is, the marginal effect on the log odds of citation of

increasing log distance between citing and cited authors. The time-pattern of distance

effects depends on whether the regressions controls for ties or not. We depict these

differing results using blue for estimates that control for the sum of 14 ties and red for

those that do not. 95% confidence intervals (as before standard errors are clustered at the

cited article level) are shaded blue and red for estimates that do and do not (respectively)

control for the sum of ties.30

All the specifications plotted in Figure 5(a) show absolute distance elasticities becom-

ing much smaller over time since the early 1990s. In the geography-only specification

shown in red, distance remains a statistically significant impediment to citation up to

and including the final interval, 2005–2009, when its elasticity is −0.06 (standard error:

0.013). However, the magnitude falls by two thirds from its 1990 value of −0.18. The

confidence intervals also shrink over time, since increasing numbers of digitalized articles

raise
√
N in the standard error calculation. Controlling for the sum of ties, we see the

absolute elasticities are uniformly smaller in all periods, with the largest gap between the

smoother lines appearing in the last estimation windows. Starting around 2005, the con-

fidence intervals mainly include zero. The final estimated distance elasticity controlling

for ties is −0.017 (standard error: 0.012).

Panel (b) of Figure 5 shows the evolution of the coefficient on the sum of ties. The

impact of ties on citation has been mainly rising over the 1990s and 2000s. The increase

in citation odds from adding a tie rises from 72% in 1990 to 94% in 2007.31

In all the results presented to this point we have used a world-wide sample. This

contrasts with much of the work we cited in the introduction on the geography of knowl-

edge flows that uses citations within the United States. It is therefore worth investigating

whether the patterns shown in Figure 5 reflect global phenomena or whether the US is

special.

Figure 6 graphs the results for a moving-window specification similar to that depicted

in Figure 5 except that it estimates separate distance> 0, and (sum of) ties coefficients

30The purple area corresponds to the intersection of the two intervals.
31Exponentiate the 10-year lag coefficients shown in Figure 5 and subtract one to obtain these amounts.
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Figure 6: Effects of distance and ties smaller within US

(a) Distance elasticities (b) Coefficient on sum of ties
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Note: Red-shaded interval corresponds to estimates where citing and cited authors reside in US. Blue-
shaded estimates have at least one of citing or cited team from country other than US. Citation lags
(time between publication of citing and cited papers) less than or equal to 10 years. Other details same
as Figure 5.

for pairs where both i and d are US residents and others (1−both USid). Panel (a)

reveals that the shrinking distance effects depicted in Figure 5(a) derive from author

pairs where at least one set is not US-based. Distance effects between US pairs have not

been significantly different from zero throughout the period of study. Another difference

between US pairs and others is that the latter exhibit rising effects of ties, becoming

significantly larger than those between US pairs since the 2000s.

It is obviously tempting to try to explain the temporal patterns in the coefficients

with reference to the technological advances we have observed since the 1990s. However,

it is not possible to identify one cause or the other with so many trends at work during

this period. Advances affecting information flows include, but are not limited to, the rise

of web browsers in the mid 1990s, and the introduction of the Google search engine in

1998 and Google Scholar in 2004. Of particular importance to scientists was the creation

of arXiv.org, a repository of pre-prints, which has included mathematics since 1992.

Figure 7(a) plots the growth of the number of arXiv papers in mathematics over time

and compares (it on a second scale) with the spectacular increase in Google searches in

the 2000s. Panel (a) also depicts the introductions of Skype and Google Scholar. The

combination of all these technologies would be expected to have reduced the importance

of face-to-face interactions, implying declining geographic separation effects since 1990.
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Figure 7: Trends in internet use (arXiv, Google), communication costs, and air transport
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The smoother line for the distance elasticity in Figure 5(a) begins to trend up in the

late 1990s, coinciding with the rise of arXiv shown in Figure 7(a). However, the stable

importance of ties between US authors and the growing role of ties elsewhere shown in

Figure 6(b) is not consistent with the view that arXiv and Google searches have been

making all information universally accessible. Furthermore, the rise of internet article

depositories and search engines cannot explain why distance effects between US author

teams have been insignificantly different from zero during the whole period.

While internet advances capture the most attention, other contemporaneous changes

could reasonably affect the importance of geography and ties in knowledge transmission.

Figure 7(b) shows the dramatic decline in the costs of making international calls to and

from the US.32 In real terms international calls fell by 95% between 1990 and 2007,

compared to a 75% decline over the same period for interstate calls. As we cannot find

comparable series on domestic and international air fares, we use data on the volume

of travel as a proxy. Figure 7(c) shows that air travel has been rising relative to the

population size.33 The rate of growth outside the US has been much larger, partly

because the US started from a much higher base. In 1990 the US had 1.3 air passengers

per capita compared to 0.11 for the nine other countries that comprise the top 10 countries

in mathematics (measured by number of citing authors in 2009). Two decades later the

US ratio had risen by 20% whereas the other countries rose by 140%.

The data shown in Figures 7(b) and (c) suggest an alternative interpretation of ad-

32Data from Federal Communications Commission (2010) Table 13.4, deflated by the CPI.
33Data from World Development Indicators series “Air transport, passengers carried.”
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vances since the 1990s. Perhaps cheaper phone calls and improved air travel makes it

easier for scholars to stay in touch with their ties. Improved contact allows them to

share the kind of complex knowledge that is hard to procure via Google searches. Thus

communication cost reductions lower the need for face-to-face interactions but raise the

opportunities for drawing upon one’s ties.34 Similarly lower costs for flying to conferences

or visiting collaborators could also contribute to the explanation of why distance matters

less, but ties matter more.

The greater drop in the effect of distance and the larger increase in the effect of ties

for non-US based authors is in line with the big decline in call costs between the US and

other countries shown in Figure 7(b) and the rise of air travellers per capita in the rest

of countries relative to the US shown in Figure 7(c). While we find this story linking the

coefficient patterns in Figures 5 and 6 to the trends in Figure 7 to be plausible, future

work with different identification strategies would be needed to confirm it.

4.5 Subsamples and other robustness checks

This subsection reports the findings of additional robustness checks. The underlying

tabular results are reported in Appendix Tables C.1–C.13. Our baseline table in subsec-

tion 4.1 first shows estimates for all the authors in the WOS before restricting the sample

to papers where all the authors have MGP data. Appendix Table C.1 splits the WOS

sample used in our baseline estimates columns (1) and (2) into MGP (11%) and non-MGP

(89%) subsets in order to provide an additional check for selection bias. The coefficients

on geography and career ties in the MGP sample have confidence intervals (CI) that are

wide enough to include the non-MGP coefficients in every case except distance> 0 which

lies just outside the CI. These results provide some assurance that the MGP sample does

not suffer from selection bias.

Table C.4 in the Appendix adds an indicator for No Shared Association to the set of

geographic barriers employed in Table 4. The idea is to test whether continental confer-

ence blocs might be an important omitted variable in our specification of the geography

variables. There are four major continental mathematics associations: the African Math-

ematical Union, the European Mathematical Society, the South East Asian Mathematical

Society, and the Latin American Society. We code two papers as sharing an association

if (1) any member of the citing team is located in an institution in the same continental

(or bi-national) association as any member of the cited team, or (2) any citing author

is in the same country as any cited author and that country has a national association.

No Shared Association enters significantly only in specifications that lack full controls for

34This story is consistent with the model of complementarity between proximity and communication
technology in Gaspar and Glaeser (1998).
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distance and ties. In those cases it enters with a positive sign, which is unexpected since

the variable is coded (like the other geography indicators) in the form of a barrier. The

inclusion of No Shared Association reduces the Different Country and Different language

effects but by less than a standard error in each case.

Table C.5 shows the results obtained by re-estimating our logit regressions using

the linear probability model (LPM), employed in some studies including Belenzon and

Schankerman (2013). While the magnitudes of logit coefficients are much larger, the

results are very similar in other dimensions.35 All 51 coefficients in this table have the

same sign as the corresponding coefficient in Table 4. Significance levels are the same

for 47 coefficients. In general, an effect that is stronger in the logit (e.g. advisor cited

vs grandparent cited) is also stronger in the LPM. Some relative magnitudes are nearly

the same: The distance effect in column (5) is 54% of that in column (3) in the logit and

50% in the LPM.

Table C.6 shows the robustness of the interaction effects to changes in the sample,

specification, and the method for constructing the three proxies for awareness gaps. In

each case we provide the interaction with log distance, the average of the three geographic

barrier indicators (different university, different country, and different language), and the

average of the 13 ties interactions.

The first robustness check is to estimate the interactions using just the career ties

which are available in the WOS sample. The point is to ensure that the interactions are

not driven by some feature of the MGP sample. The second specification is a linear prob-

ability model (LPM). Since the LPM estimates differences in absolute risk of citation, the

coefficients are expected to be much smaller. The third specification sums all 14 ties (in-

cluding grandparent citing) and interacts them with the information proxies rather than

averaging the interacting coefficients. Finally the last two specifications experiment with

alternative constructions of the proxies. The “Means” specification sets binary Obscure

and Recent to one when the underlying variables are less than their means (6.02 cites and

10.73 years) rather their medians (3 and 9). The continuous measures of obscurity and

recentness are based on the empirical cumulative distribution functions (ECDF) of cita-

tion counts and lags. Obscure and Recent are defined as one minus the respective ECDF.

This has the advantage of keeping these variables in the unit interval. Although the tie

interactions for the continuous measures of recent and obscure have larger coefficients,

the continuous formulations of these variables have about half the standard deviations.

Interaction sizes are again similar if expressed in terms of standard deviations. Neither

35The smaller size of LPM coefficients follows from the fact that they estimate marginal effects on
probabilities rather than log odds. With logit on one explanatory variable, xi, the probability of a positive
outcome is pi = (1 + exp[−βxi])−1. Differentiating by xi, we see that blpm ≈ (1/N)

∑
i pi(1 − pi)β ≈

p̄(1 − p̄)β. In our data p̄(1 − p̄) = 0.06 so we expect logit coefficients to be about 17 times higher than
LPM coefficients. The log distance effect in Table 4 is 18.5 times larger than the one in Table C.5.
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the mean nor the continuous reformulations have analogous transformations for the differ-

ences in fields so we implement alternative robustness measures. In the row with means,

different field is defined as papers in different 3-digit fields (instead of 2-digit). In the

row with continuous measures we calculate the “tree-distance” in the field classification

codes. Thus, papers in the same 5-digit field have distance 0; papers in different 5-digits

but same 3-digit fields are distance 1, and so forth. In this specification it is necessary to

control for the tree-distance as well as its interactions with ties and geography.

The results of the investigation of the robustness of information interactions can be

summarized as follows. First, the positive ties interactions retain their strong statistical

significance across a variety of specifications. Second, with two explicable exceptions,

the magnitudes of the ties interactions are very similar. Third, the interactions with log

distance and the other geographic barrier indicators are generally negative as expected.

While not uniformly negative (5 out of the 30 reported in Table C.6 are positive), the

geography/distance interactions are negative when they differ significantly from zero.

Tables C.7 to C.12 break our sample into two periods. The main interest in this is

that the 2005 to 2009 period accounts for the majority of the observations in the full

sample. There are too many results to compare individually but the exercise of splitting

the sample leads to the following conclusions. Unsurprisingly, the decline in distance

effects we observe in Figure 5 also shows up in the comparison of before and after 2005.

On the other hand, residing in a different country becomes more important after 2005.

The effects of ties are remarkably stable with 25 out of 28 ties coefficients in columns (5)

of Tables C.7 and C.8 being less than a standard error from the values in Table 4. The

magnitudes of some ties hardly change: advisor cited has a coefficient of 1.396 before

2005 and 1.349 afterwards.

The main finding of Table 5—that the estimated impact of ties falls with tighter

controls for article subject until it rises slightly with keywords—is replicated in the before

and after 2005 periods shown in Tables C.9 and C.10. The Table 6 finding that ties

matter more for recent and obscure papers holds up in both periods but the different-

field interaction is only statistically significant before 2005.

Table C.13 reports the results of four additional specifications designed to explore the

robustness of our main results. The first specification is closely related to Figure 6. As

in the figure, we interact a “bothUS” dummy with the geography and ties variables. The

big difference is that the figure uses moving windows, whereas this regression uses the

whole data. Moreover, the table reports all the geography interactions rather than just

the distance effects. The main novel finding is that when both citing and potentially

cited author teams are based in the US, the odds of a realized citation rise by 45%. As

seen in the figure, the effect of distance is near zero (−0.044−0.040 = −0.004) within the

US. A surprising effect shown in this column is that being at the same university matters
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more for both-US pairs, but this interaction is only significant conditional on ties, which

matter less in the US.

Column (2) replaces the min/max approach to aggregating geographic and network

variables across coauthors with averages over all the author pairs. The coefficient for

average effect of ties is 28% larger (0.837 vs 0.652).36 This suggests the existence of more

than one tie among the author-pairs is reinforcing. On the other hand, the geography

effects do not change much: the continuous effect of distance is −0.041 with averaging

versus −0.037 under min/max. The overall fits of the two methods, as measured by the

pseudo-R2 are almost the same (0.092 vs 0.091). The similarity in results is partly due

to the fact, discussed earlier, that there is relatively little coauthorship in mathematics.

Column (3) measures the geographic variables at the time the cited article was published

rather than when it was cited. Thus, it does not capture movement of the authors

following the publication of the cited article. The contemporaneous geography used in

the earlier specification leads to a similar fit (0.091 vs 0.090).The larger distance effect

estimated for original geography is within a two-standard-error margin. Column (4)

vastly increases the sample size by using observations that had previously been rejected

because affiliation information or MGP data was missing for at least one of the co-authors.

The distance greater than zero and the average effect of ties coefficients are significantly

smaller than in the baseline specification. The remaining coefficients are within the two

standard errors margin.

5 Conclusion

Our results add further evidence to the diverse strands of the literature finding geographic

separation impedes knowledge flows. Geography matters in large part because of its

role in shaping the personal ties between citing and cited scholars. In the full sample,

including 14 linkages based on career and educational histories as controls cuts geography

coefficients approximately in half. For the subsample where both citing and cited authors

reside in the US, a region where communication and travel costs have long been relatively

low, the marginal effect of greater distance between institutions is insignificantly different

from zero. The distance effect also disappears in the most recent five years of the world-

wide sample. These “zero” partial effects of distance are obtained only in those regressions

that control for ties.

Despite the increase in global access to knowledge provided by the internet, the

strength of the impact of ties on citation probabilities has not been declining. Because

ties matter most for papers where awareness gaps are most acute (recent, obscure, and

different-field articles), we infer that ties matter because connected scholars transmit

36The baseline coefficient for the average effect of ties comes from Table 6 column(1).
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knowledge to each other. This view is further supported by the finding that scholars

whose formal role is to impart knowledge (advisors and the academic parents and sib-

lings of advisors) have larger impacts on subsequent academic generations than vice versa.

In sum, the evidence suggests that “what you know” depends a great deal on “whom you

know.” It is increasingly unrelated to “where you work”—except insofar as where you

work influences whom you know.

To the extent that we can generalize from the study of mathematicians, our study

suggests novel interpretations of existing empirical findings. Cities may be valuable not

just because of daily face-to-face interactions, but also because they are good places

to build networks. Such a view points to a different takeaway from the De La Roca

and Puga’s (2017) finding that wages rise with experience in big cities but retain much

of this growth even when the individual returns to a smaller city. While the authors

attribute the wage premium to increased ability, our framework suggests it might also

have arisen via an expanded set of professional ties. Since ties created at short distances

can be maintained over longer distances, the ties explanation is also consistent with the

continued prosperity of city leavers.

In trade, Feyrer (2009) estimates that changes in distance caused by the Suez canal

closure have much lower impacts than cross-sectional differences in distance. Our inter-

pretation would be that the lengthening of the shipping route has no impact on the ties

between importer and exporter that predated the closure. The puzzle posed by Head and

Mayer (2013) calculations that observable barriers such as tariffs and freight charges can

only explain less than half the estimated magnitudes of border and distance effects has

a simple resolution in light of our results. Traders depend on their networks and those

networks are nationally and spatially biased.

It bears repeating that the broader lessons we draw from observing mathematicians

are necessarily tentative; they beg for corroboration in other contexts. This is especially

true when it comes to policy implications. However, a ties-centered view of knowledge

flows does suggest certain types of government actions could be fruitful. To promote

more geographically dispersed networks, universities could be strongly discouraged from

hiring their own students straight out of graduate school. Another policy to broaden

ties of researchers is for the government to fund and promote doctoral study abroad.

Invitations to foreign faculty for short and long term visits often lead to the formation

of new collaborative ties. Analogous versions of these policies can expand the networks

for non-academics. For example, easing visa requirements to facilitate medium-run stays

by employees of multinationals should thicken the set of connections between foreign and

domestic knowledge creators.
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Online Appendix (Not for Publication)

A Data construction

A list of the journals included in the database along, with the year of earliest article from

that journal can be found at the following URL: http://yaoli.people.ust.hk/HLM_

Annex1.pdf

A.1 Affiliation identification and histories

There are 536,454 author-article combinations included in our database, of which 31%

lack affiliations We recover affiliation information for many of these authors by applying

the procedures developed by Tang and Walsh (2010), as implemented in Agrawal et al.

(2013). For each record without author’s affiliation we check whether there is another

record with the same author name (full surname and name or full surname and initials)

with an affiliation. We assign this latter affiliation to the missing record as long as both

articles cite, at least, two articles that are not highly cited. The low citation benchmark is

set at less than 50 citations. This increases the author-article combinations with affiliation

information for some authors from 69% to 80%. Of those, 84% have affiliations for all

authors.

We impute affiliation information for years in which an author does not publish by

using his or her affiliation before or after those years. Our algorithm uses, iteratively, the

closest information relative to the information gap. For example, suppose that author A

published an article in 1990 when she was affiliated to MIT, and then published her next

article in 1994 when she was affiliated to Princeton. In this example, we have holes in

the affiliation history of this mathematician from 1991 to 1993. In the first iteration, the

algorithm will fill the 1991 hole with information from 1990 (the closest available year),

and the 1993 hole with information from 1994. After the first iteration we will still have

a hole for the year 1992. We apply the second iteration to the algorithm. In this case,

the author will have a double affiliation for the year 1992, because she has two different

affiliations in the closest years (1991 and 1993).

A.2 Self-citation

To identify self-citations, we developed a unique author code that combines data from

WOS, MGP and zbMATH databases (see below). MGP and zbMATH provide the name

and surname of the authors, plus a unique author identification code. WOS only provides

the surname and initials of the author. As zbMATH identifies the author at the article
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level, for those articles included in the zbMATH database, we were able to match WOS

authors with zbMATH author codes. The personnel at zbMATH also provided us with

a correspondence between zbMATH author codes and MGP author codes. For the rest

of authors, we assigned a zbMATH author code if there was only one author code for

a surname+initials combination. For the remaining cases, we created a unique author

code. To be conservative, we consider a self-citation if any of the citing authors has the

same zbMATH code as any of the cited authors; and when any citing author has the

same surname and initials of any of the cited authors.

B Conference Data

We draw data from the American Mathematical Society Annual Meetings over the 1990–

2009 period. This conference is also known as the Joint Mathematics Meetings, since it

is organized jointly with the Mathematical Association of America. It gathers the largest

number of mathematicians in America, and is considered the most important annual

conference in mathematics.37

For each annual meeting, we extract the information contained in the full program web

page.38 It provides the name of the presenter, the title of the paper, and the session. The

full program also identifies the special sessions’ organizers. On average, 1459 scholars

participate in the conference every year as presenters or session organizers, and 1037

papers are presented.

We merge the conference participation database with our citations sample using the

name of the scholar and the title of the paper as links. First, we analyze whether geo-

graphical barriers impede participating in a conference. We pool the observations and

estimate a Logit model with year fixed effects. As shown in Table B.1-column 1, a larger

distance, being located in a different city and in a country whose official language is not

English reduce the likelihood of attending the conference. In contrast, a scholar affiliated

to a Canadian university has a higher likelihood of attending the conference. In column 2

we control for participant fixed effects. All coefficients, except for different country, keep

their sign, although distance is the only coefficient which remains statistically significant.

In columns 3 and 4, we estimate a linear probability model. As expected, the value of

the coefficients is much lower. However, results are qualitative similar.

Second, we analyze whether coinciding at a conference raises the likelihood of citation.

37Worldwide, the most important meeting is the International Congress of Mathematics, organized by
the International Mathematical Union, which takes places every four years. The winners of the Fields
Medal are announced in this congress. Since the Joint Mathematics Meetings takes place every year,
and its web page provides more information about papers and presenters, we chose this latter meeting
to maximize observations.

38It can be accessed from http://www.ams.org/meetings/national/national_past.html
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Table B.1: The effect of geographical barriers on the probability of attending a conference,
1990–2009 (pooled data)

(1) (2) (3) (4)
Different city -0.618? -0.158 -0.043? -0.022?

(0.216) (0.167) (0.015) (0.009)
ln Distance -0.050† -0.136? -0.002∼ -0.004?

(0.025) (0.016) (0.001) (0.000)
Different country -1.331? 0.041 -0.028? 0.001

(0.063) (0.074) (0.002) (0.002)
Participant from Canada 0.611? 0.001 0.008? -0.000

(0.080) (0.145) (0.002) (0.004)
Different language -0.060 -0.047 -0.001 -0.001

(0.074) (0.111) (0.001) (0.002)
N. obs. 667399 97867 667399 667399
Participant FE No Yes No Yes
Model Logit Logit LPM LPM

Note: ?, †, ∼ statistically significant at 1%. 5% and 10% respectively. In specifications (1) and (3)

standard errors clustered by the location of the conference and the location of the institution in which the

conference participant is affiliated. In specifications (2) and (4) standard errors clustered by participant.

To test this hypothesis, we build four new tie variables:

1. Some citing and cited authors coincided at a conference before the citation.

2. Some citing and cited authors coincided at a conference and session before the

citation.

3. Some citing and cited author coincided at a conference where the cited paper was

presented before the citation.

4. Some citing and cited authors coincided at a conference where the citing paper was

presented before the citation.

Table B.2 presents the absolute and mean values for these variables. We report data

for the realized and the control citations. All the probabilities are very low. For example,

the probability that some citing and cited authors have coincided at a conference before

the citation is 0.03, and the probability that some citing and cited author coincided at a

session in the same conference before the citation is 0.0041. Few citing or cited papers in-

cluded in our citations’ database were presented at the Joints Mathematics Meetings. For

all variables, the probabilities are larger for realized than for control citations, suggesting

a positive correlation between coinciding at a conference and citation.
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Table B.2: New conference-participation tie variables. Realized vs. Control citations

Variable Total Average
Realized Control Realized Control

Citations 29,404 412,388
Coincided at a conference 918 9,895 0.0312 0.0240
Coincided at a conference and session 121 770 0.0041 0.0019
Coincided at a conference where the cited paper was presented 10 22 0.0003 0.0001
Coincided at a conference where the citing paper was presented 15 158 0.0005 0.0004

Source: Authors’ own calculations, based on Joint Meetings full programs and the citations
database.

Table B.3 presents the estimates of the baseline regression including the four new

conference variables. Since conferences provide an opportunity to share information about

research, we expect all conference coefficients to be positive. As expected, both in the

Logit and LPM estimations, we find a positive and statistically significant effect for

coinciding at the same session, and coinciding at a conference where the cited paper was

presented. Coinciding at a conference is not precisely estimated, even when the citing

paper was presented in it.

Table B.3: Baseline regression with conference variables

(1) (2)
Logit LPM

Coincided conference -0.032 -0.003
(0.065) (0.004)

Coincided conference+session 0.423? 0.032†

(0.151) (0.013)

Coincided conference cited paper presented 2.122† 0.205†

(0.835) (0.081)

Coincided conference citing paper presented 0.083 0.012
(0.307) (0.021)

4 Geography variables YES YES

14 Ties variables YES YES
pseudo-R2 or R2 0.091 0.058

Notes: Robust standard errors clustered by cited article in parentheses.
∼p < 0.1,† p < 0.05,? p < 0.01
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C Supplementary Tables

Table C.1: MGP vs. Non-MGP

(1) (2) (3) (4)
MGP Non-MGP MGP Non-MGP

Distance > 0 -1.209? -0.983? -1.146? -0.911?

(0.092) (0.031) (0.093) (0.032)

ln Distance -0.069? -0.074? -0.051? -0.052?

(0.009) (0.004) (0.010) (0.004)

Different country -0.166? -0.202? -0.097† -0.145?

(0.037) (0.015) (0.038) (0.015)

Different language -0.089? -0.106? -0.065† -0.066?

(0.032) (0.012) (0.032) (0.012)

Co-authors 1.799? 1.662?

(0.071) (0.022)

Coincided past 0.788? 0.704?

(0.052) (0.020)

Worked same place 0.530? 0.475?

(0.056) (0.021)
Observations 58802 478252 58802 478252
pseudo-R2 0.049 0.044 0.093 0.085

Notes: Robust standard errors clustered by cited article in parentheses.

Significance: ?: 1%, †: 5%, ∼: 10%.
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Table C.2: Sensitivity of results to alternative controls for article relevance (excluding ties)

(1) (2) (3) (4) (5) (6)
Control group: nil journal MSC-3d MSC-5d keyword

Distance > 0 -1.846? -1.663? -1.243? -1.254? -0.914? -1.043?

(0.051) (0.051) (0.065) (0.065) (0.083) (0.141)

ln Dist | Dist > 0 -0.082? -0.066? -0.068? -0.066? -0.058? -0.080?

(0.006) (0.006) (0.008) (0.008) (0.010) (0.017)

Different country -0.239? -0.213? -0.232? -0.236? -0.193? -0.266?

(0.026) (0.026) (0.031) (0.031) (0.040) (0.065)

Different language -0.115? -0.052† -0.082? -0.074? -0.039 -0.159?

(0.022) (0.022) (0.026) (0.026) (0.034) (0.052)

Cocitation 3.339? 2.203? 1.670?

(0.055) (0.074) (0.192)
Observations 1215286 1135825 441792 441792 75926 22680
pseudo-R2 0.045 0.037 0.033 0.073 0.055 0.056

Notes: Significance: ?: 1%, †: 5%, ∼: 10%. Robust standard errors clustered by cited article
in parentheses.

Table C.3: Summary statistics for categories of papers included in the information mechanisms
analysis.

Obscure? Recent? Field
yes no yes no different same

# of observations 76978 364814 231929 209863 82795 142973
Avg. dist. between cites 4711 4620 4567 4712 4667 4579
Avg. # of cites 1.29 6.88 4.01 7.99 5.22 4.86
Avg. # of ties
Total 0.20 0.21 0.22 0.20 0.17 0.24
Co-authors 0.02 0.02 0.02 0.02 0.01 0.02
Coincided past 0.03 0.03 0.03 0.03 0.03 0.03
Worked same place 0.03 0.03 0.03 0.03 0.03 0.03
Share PhD (5 years) 0.01 0.01 0.01 0.01 0.01 0.01
PhD siblings 0.01 0.01 0.02 0.01 0.01 0.02
PhD cousins 0.02 0.02 0.03 0.02 0.02 0.03
Advisor citing 0.00 0.00 0.00 0.00 0.00 0.00
Advisor cited 0.00 0.01 0.01 0.01 0.01 0.01
Grandparent citing 0.00 0.00 0.00 0.00 0.00 0.00
Grandparent cited 0.00 0.00 0.00 0.00 0.00 0.00
Uncle citing 0.01 0.00 0.01 0.00 0.00 0.00
Uncle cited 0.01 0.02 0.02 0.02 0.02 0.02
Alma Mater citing 0.02 0.02 0.02 0.02 0.02 0.02
Alma Mater cited 0.02 0.02 0.02 0.02 0.02 0.02

Notes: Sample includes both realized and non-realized citations.
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Table C.4: Baseline Results with No-Shared-Association

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects logit (TFE-Λ)
Sample WOS WOS MGP MGP MGP MGP

Geography :

Distance > 0 -0.905? -0.862? -1.086? -0.562?

(0.033) (0.034) (0.070) (0.078)

ln Dist | Dist > 0 -0.089? -0.063? -0.091? -0.038?

(0.004) (0.004) (0.009) (0.009)

Different country -0.247? -0.175? -0.308? -0.268? -0.094? -0.077†

(0.016) (0.016) (0.035) (0.037) (0.035) (0.037)

Different language -0.095? -0.059? -0.060† -0.080? -0.024 -0.037
(0.011) (0.012) (0.027) (0.028) (0.027) (0.028)

No shared association 0.094? 0.067? 0.143? -0.005 0.008 -0.074
(0.013) (0.014) (0.029) (0.050) (0.029) (0.051)

Ties:

Co-authors 1.672? 1.572? 1.581?

(0.021) (0.050) (0.050)

Coincided past 0.710? 0.378? 0.378?

(0.019) (0.043) (0.043)

Worked same place 0.476? 0.342? 0.339?

(0.020) (0.043) (0.043)

Share Ph.D. (5 years) 0.463? 0.457?

(0.067) (0.067)

PhD siblings 0.664? 0.665?

(0.100) (0.100)

PhD cousins 0.365? 0.364?

(0.082) (0.082)

Advisor citing 1.090? 1.079?

(0.164) (0.164)

Advisor cited 1.376? 1.375?

(0.102) (0.103)

Academic grandparent citing -0.284 -0.255
(0.392) (0.390)

Academic grandparent cited 1.028? 1.024?

(0.155) (0.154)

Academic uncle citing 0.227∼ 0.237†

(0.118) (0.118)

Academic uncle cited 0.616? 0.620?

(0.076) (0.076)

Alma Mater citing 0.238? 0.234?

(0.055) (0.055)

Alma Mater cited 0.120† 0.120†

(0.057) (0.057)
Observations 537054 537054 441792 441792 441792 441792
pseudo-R2 0.044 0.085 0.033 0.034 0.091 0.091

Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table C.5: Baseline Results Using LPM

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects LPM (TFE-LPM)
Sample WOS WOS MGP MGP MGP MGP

Geography :

Distance > 0 -0.313? -0.254? -0.209? -0.093?

(0.010) (0.010) (0.008) (0.008)

ln Dist | Dist > 0 -0.030? -0.021? -0.004? -0.002?

(0.001) (0.001) (0.000) (0.000)

Different country -0.086? -0.058? -0.014? -0.016? -0.004† -0.005?

(0.006) (0.006) (0.002) (0.002) (0.002) (0.002)

Different language -0.044? -0.029? -0.005? -0.005? -0.002 -0.002
(0.005) (0.005) (0.001) (0.001) (0.001) (0.001)

Ties :

Co-authors 0.509? 0.180? 0.182?

(0.005) (0.007) (0.007)

Coincided past 0.235? 0.022? 0.022?

(0.006) (0.004) (0.004)

Worked same place 0.182? 0.018? 0.018?

(0.007) (0.003) (0.003)

Share Ph.D. (5 years) 0.061? 0.061?

(0.008) (0.008)

PhD siblings 0.107? 0.107?

(0.010) (0.010)

PhD cousins 0.022? 0.022?

(0.006) (0.006)

Advisor citing 0.206? 0.205?

(0.023) (0.023)

Advisor cited 0.275? 0.274?

(0.014) (0.014)

Academic grandparent citing -0.050 -0.049
(0.050) (0.049)

Academic grandparent cited 0.118? 0.117?

(0.020) (0.020)

Academic uncle citing 0.018∼ 0.019∼

(0.011) (0.011)

Academic uncle cited 0.047? 0.047?

(0.007) (0.007)

Alma Mater citing 0.028? 0.028?

(0.006) (0.006)

Alma Mater cited 0.008 0.008
(0.006) (0.006)

Observations 537054 537054 441792 441792 441792 441792
Overall R2 0.029 0.052 0.020 0.020 0.058 0.059

Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table C.6: Robustness of interaction coefficients between ties and obscure, recent and different-
field papers.

Interaction Obscure Recent Different-field
WOS sample ln Distance -0.050? -0.006 -0.019†

Geography indicators (3) -0.117? -0.228? 0.032
Ties (13) 0.170? 0.184? 0.273?

Observations 537054 537054 275084
Pseudo-R2 0.086 0.086 0.094

LPM estimation ln Distance -0.001 -0.002? -0.001
Geography indicators (3) -0.006 -0.021? 0.004
Ties (13) 0.014† 0.029? 0.047?

Observations 441792 441792 225768
R2 0.062 0.064 0.068

Sum of ties ln Distance -0.031 -0.029∼ -0.003
Geography indicators (3) -0.070 -0.124† 0.039
Ties (14) 0.134? 0.121? 0.117?

Observations 441792 441792 225768
Pseudo-R2 0.080 0.081 0.086

Means / 3-digit field lndist -0.006 -0.033† 0.013
Geography indicators (3) -0.087 -0.090∼ -0.023
Ties (13) 0.198? 0.175? 0.179?

Observations 441792 441792 225768
Pseudo-R2 0.093 0.093 0.100

Continuous measure ln Distance -0.029 -0.079? 0.003
(see note 2) Geography indicators (3) -0.134 -0.137 -0.025

Ties (13) 0.417? 0.427? 0.124?

Observations 441792 441792 225768
Pseudo-R2 0.093 0.094 0.137

Notes: 1. Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%,
∼: 10%. 2. The continuous measure of field difference takes the value of 0, 1, 2 or 3, depending on

whether field difference is at the 5, 3, or 2-digit level. This specification controls for differences in

5-digit field as a base effect (since the triadic fixed effect does not capture this). The continuous

obscure and recent measures are calculated as one minus the empirical CDFs of citations and years

since publication.
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Table C.7: Baseline Results before 2005

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects logit (TFE-Λ)
Sample WOS WOS MGP MGP MGP MGP

Geography :

Distance > 0 -0.974? -0.907? -1.087? -0.439?

(0.040) (0.042) (0.089) (0.100)

ln Distance -0.071? -0.055? -0.089? -0.060?

(0.005) (0.005) (0.010) (0.011)

Different country -0.188? -0.133? -0.166? -0.204? -0.030 -0.038
(0.019) (0.019) (0.042) (0.044) (0.043) (0.045)

Different language -0.069? -0.036† -0.057 -0.052 -0.002 -0.006
(0.016) (0.016) (0.036) (0.036) (0.036) (0.037)

Ties :

Co-authors 1.638? 1.499? 1.510?

(0.030) (0.069) (0.069)

Coincided past 0.678? 0.321? 0.318?

(0.025) (0.058) (0.058)

Worked same place 0.519? 0.349? 0.347?

(0.028) (0.059) (0.059)

Share Ph.D. (5 years) 0.302? 0.297?

(0.095) (0.095)

PhD siblings 0.685? 0.697?

(0.141) (0.141)

PhD cousins 0.349? 0.341?

(0.113) (0.113)

Advisor citing 0.938? 0.929?

(0.222) (0.222)

Advisor cited 1.394? 1.396?

(0.140) (0.140)

Academic grandparent citing -0.376 -0.362
(0.595) (0.596)

Academic grandparent cited 1.058? 1.057?

(0.223) (0.222)

Academic uncle citing 0.358† 0.368†

(0.152) (0.153)

Academic uncle cited 0.651? 0.654?

(0.106) (0.106)

Alma Mater citing 0.303? 0.289?

(0.072) (0.073)

Alma Mater cited 0.087 0.082
(0.076) (0.076)

Observations 267322 267322 177000 177000 177000 177000
pseudo-R2 0.041 0.077 0.033 0.034 0.091 0.091

Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table C.8: Baseline Results after 2005

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects logit (TFE-Λ)
Sample WOS WOS MGP MGP MGP MGP

Geography :

Distance > 0 -1.043? -0.966? -1.395? -0.705?

(0.040) (0.042) (0.082) (0.092)

ln Distance -0.075? -0.049? -0.046? -0.011
(0.004) (0.005) (0.010) (0.010)

Different country -0.213? -0.150? -0.299? -0.337? -0.152? -0.168?

(0.018) (0.019) (0.041) (0.043) (0.042) (0.044)

Different language -0.137? -0.094? -0.108? -0.105? -0.048 -0.042
(0.015) (0.015) (0.034) (0.034) (0.034) (0.035)

Ties :

Co-authors 1.699? 1.630? 1.637?

(0.028) (0.063) (0.063)

Coincided past 0.742? 0.434? 0.436?

(0.025) (0.057) (0.057)

Worked same place 0.440? 0.333? 0.332?

(0.026) (0.056) (0.056)

Share Ph.D. (5 years) 0.636? 0.631?

(0.082) (0.083)

PhD siblings 0.634? 0.628?

(0.124) (0.124)

PhD cousins 0.390? 0.393?

(0.105) (0.105)

Advisor citing 1.255? 1.250?

(0.231) (0.231)

Advisor cited 1.355? 1.349?

(0.131) (0.131)

Academic grandparent citing -0.184 -0.182
(0.517) (0.511)

Academic grandparent cited 1.004? 1.001?

(0.180) (0.180)

Academic uncle citing 0.082 0.087
(0.167) (0.166)

Academic uncle cited 0.580? 0.582?

(0.096) (0.096)

Alma Mater citing 0.173† 0.172†

(0.074) (0.074)

Alma Mater cited 0.157† 0.161†

(0.075) (0.075)
Observations 269732 269732 264792 264792 264792 264792
pseudo-R2 0.048 0.092 0.033 0.034 0.092 0.092

Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table C.9: Sensitivity of results to alternative controls for article relevance before 2005

(1) (2) (3) (4) (5) (6)
Control group: nil journal MSC-3d MSC-5d keyword

Panel A: including ties

Distance > 0 -0.715? -0.645? -0.438? -0.472? -0.275† -1.062?

(0.078) (0.075) (0.100) (0.101) (0.135) (0.316)

ln Dist | Dist > 0 -0.059? -0.045? -0.060? -0.057? -0.066? -0.013
(0.008) (0.009) (0.011) (0.011) (0.015) (0.033)

Different country -0.013 -0.004 -0.030 -0.041 0.029 -0.062
(0.034) (0.034) (0.043) (0.044) (0.060) (0.133)

Different language 0.026 0.053∼ -0.002 0.015 0.040 -0.214†

(0.029) (0.029) (0.036) (0.036) (0.052) (0.100)

Average effect of ties 1.646? 1.179? 0.638? 0.620? 0.457? 0.692?

(0.028) (0.025) (0.027) (0.027) (0.035) (0.107)

Cocitation 3.325? 2.180? 2.986?

(0.066) (0.093) (0.502)
Observations 727976 613686 177000 177000 32129 5414
pseudo-R2 0.178 0.142 0.091 0.151 0.112 0.145

Panel B: excluding ties

Distance > 0 -1.757? -1.567? -1.087? -1.117? -0.699? -1.298?

(0.062) (0.063) (0.089) (0.090) (0.125) (0.275)

ln Dist | Dist > 0 -0.091? -0.077? -0.089? -0.086? -0.094? -0.070†

(0.008) (0.008) (0.010) (0.010) (0.014) (0.031)

Different country -0.206? -0.165? -0.166? -0.172? -0.057 -0.215∼

(0.032) (0.033) (0.042) (0.043) (0.059) (0.127)

Different language -0.078? -0.022 -0.057 -0.036 -0.008 -0.198†

(0.028) (0.029) (0.036) (0.036) (0.051) (0.097)

Cocitation 3.371? 2.207? 2.762?

(0.063) (0.091) (0.459)
Observations 727976 613686 177000 177000 32129 5414
pseudo-R2 0.043 0.036 0.033 0.099 0.070 0.075

Notes: Average effect of ties refer to the mean effect of 13 (3 WOS and 10 MGP) ties.
Significance: ?: 1%, †: 5%, ∼: 10%. Robust standard errors clustered by cited article in
parentheses.
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Table C.10: Sensitivity of results to alternative controls for article relevance after 2005

(1) (2) (3) (4) (5) (6)
Control group: nil journal MSC-3d MSC-5d keyword

Panel A: including ties

Distance > 0 -1.031? -0.978? -0.705? -0.700? -0.433? -0.348∼

(0.088) (0.085) (0.092) (0.092) (0.117) (0.189)

ln Dist | Dist > 0 -0.024† -0.009 -0.011 -0.010 -0.007 -0.059?

(0.009) (0.009) (0.010) (0.010) (0.013) (0.020)

Different country -0.075∼ -0.098† -0.152? -0.155? -0.183? -0.106
(0.039) (0.039) (0.042) (0.042) (0.054) (0.079)

Different language -0.073† -0.015 -0.048 -0.053 -0.019 -0.094
(0.032) (0.032) (0.034) (0.034) (0.044) (0.062)

Average effect of ties 1.620? 1.151? 0.666? 0.658? 0.475? 0.573?

(0.032) (0.025) (0.022) (0.022) (0.028) (0.049)

Cocitation 3.144? 2.077? 1.177?

(0.105) (0.129) (0.241)
Observations 487310 522139 264792 264792 43797 17266
pseudo-R2 0.187 0.146 0.092 0.107 0.087 0.107

Panel B: excluding ties

Distance > 0 -1.980? -1.800? -1.395? -1.383? -1.082? -0.954?

(0.072) (0.071) (0.082) (0.082) (0.106) (0.162)

ln Dist | Dist > 0 -0.068? -0.049? -0.046? -0.046? -0.029† -0.084?

(0.009) (0.009) (0.010) (0.010) (0.013) (0.019)

Different country -0.294? -0.290? -0.299? -0.299? -0.303? -0.283?

(0.036) (0.037) (0.041) (0.041) (0.053) (0.075)

Different language -0.167? -0.093? -0.108? -0.111? -0.064 -0.143†

(0.031) (0.031) (0.034) (0.034) (0.043) (0.060)

Cocitation 3.253? 2.186? 1.211?

(0.101) (0.125) (0.238)
Observations 487310 522139 264792 264792 43797 17266
pseudo-R2 0.049 0.040 0.033 0.051 0.043 0.051

Notes: Average effect of ties refer to the mean effect of 13 (3 WOS and 10 MGP) ties.
Significance: ?: 1%, †: 5%, ∼: 10%. Robust standard errors clustered by cited article in
parentheses.
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Table C.11: Obscure, Recent, and Different-field papers are more impacted by ties and geog-
raphy (before 2005)

(1) (2) (3) (4) (5) (6) (7)
Specification: Obscure Recent Different field

base interact base interact base interact

Geography :

Distance > 0 -0.438? -0.383? -0.400 -0.311? -0.143 -0.610? 0.072
(0.100) (0.109) (0.267) (0.164) (0.199) (0.203) (0.298)

ln Dist | Dist > 0 -0.060? -0.062? 0.017 -0.035† -0.043† -0.062? -0.008
(0.011) (0.011) (0.031) (0.016) (0.020) (0.021) (0.032)

Different country -0.030 -0.031 0.022 -0.052 0.033 0.036 0.053
(0.043) (0.046) (0.126) (0.063) (0.083) (0.080) (0.128)

Different language -0.002 0.008 -0.096 0.004 -0.016 0.011 -0.149
(0.036) (0.039) (0.100) (0.052) (0.069) (0.069) (0.100)

Ties :

Average effect of ties 0.638? 0.619? 0.208∼ 0.547? 0.156? 0.499? 0.423?

(0.027) (0.028) (0.040) (0.027) (0.050) (0.055) (0.091)
Observations 177000 177000 177000 76152
pseudo-R2 0.091 0.092 0.093 0.098

Notes: 1. Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%,
∼: 10%. 2. Average effect of ties is the mean of the base and interaction coefficients of 13 ties (3 WOS
and 10 MGP). “Obscure” indicates that total citations received for this article are less than or equal to
the median number of citations received among all articles, “recent” corresponds to citation lags less than
or equal to the median, and “different field” equals 1 if citing article and cited article belong to different
2-digit MSCs.
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Table C.12: Obscure, Recent, and Different-field papers are more impacted by ties and geog-
raphy (after 2005)

(1) (2) (3) (4) (5) (6) (7)
Specification: Obscure Recent Different field

base interact base interact base interact

Geography :

Distance > 0 -0.705? -0.729? 0.325 -0.320† -0.561? -0.946? 0.164
(0.092) (0.108) (0.207) (0.133) (0.180) (0.156) (0.240)

ln Dist | Dist > 0 -0.011 0.005 -0.085? -0.007 -0.007 0.002 0.001
(0.010) (0.012) (0.024) (0.015) (0.020) (0.018) (0.027)

Different country -0.152? -0.139? -0.082 -0.134† -0.047 -0.154† -0.012
(0.042) (0.047) (0.101) (0.058) (0.084) (0.075) (0.114)

Different language -0.048 -0.068∼ 0.098 -0.037 -0.020 -0.072 -0.026
(0.034) (0.039) (0.082) (0.047) (0.067) (0.057) (0.094)

Ties :

Average effect of ties 0.666? 0.619? 0.133† 0.534? 0.197? 0.628? 0.085
(0.022) (0.026) (0.058) (0.032) (0.051) (0.038) (0.066)

Observations 264792 264792 264792 149616
pseudo-R2 0.092 0.094 0.095 0.103

Notes: 1. Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%,
∼: 10%. 2. Average effect of ties is the mean of the base and interaction coefficients of 13 ties (3 WOS
and 10 MGP). “Obscure” indicates that total citations received for this article are less than or equal to
the median number of citations received among all articles, “recent” corresponds to citation lags less than
or equal to the median, and “different field” equals 1 if citing article and cited article belong to different
2-digit MSCs.
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Table C.13: Robustness

(1) (2) (3) (4)
Sample: bothUS average original available

geography author

Panel A: including ties

Distance > 0 -0.397? -0.523? -0.394? -0.459?

(0.081) (0.087) (0.073) (0.042)
× bothUS -0.575?

(0.158)

ln Dist | Dist > 0 -0.044? -0.041? -0.049? -0.031?

(0.009) (0.009) (0.007) (0.005)
× bothUS 0.040†

(0.017)

Different country -0.029 -0.144? -0.136? -0.110?

(0.039) (0.035) (0.041) (0.019)

Different language -0.007 -0.027 -0.031 -0.017
(0.027) (0.029) (0.023) (0.015)

bothUS 0.372?

(0.112)

Average effect of ties 0.639? 0.837? 0.571? 0.548?

(0.014) (0.044) (0.034) (0.018)
× bothUS -0.126?

(0.022)

Observations 441792 441792 441792 1449153
pseudo-R2 0.081 0.092 0.090 0.069

Panel B: excluding ties

Distance > 0 -1.243? -1.332? -1.043? -1.121?

(0.075) (0.076) (0.063) (0.038)
× bothUS -0.086

(0.155)

ln Dist | Dist > 0 -0.081? -0.072? -0.074? -0.059?

(0.009) (0.009) (0.007) (0.004)
× bothUS 0.054?

(0.017)

Different country -0.264? -0.324? -0.444? -0.231?

(0.039) (0.034) (0.039) (0.018)

Different language -0.074? -0.092? -0.110? -0.070?

(0.026) (0.028) (0.023) (0.015)

bothUS -0.380?

(0.093)
Observations 441792 441792 441792 1449153
pseudo-R2 0.033 0.028 0.031 0.023

Notes: Average effect of ties refer to the mean effect of 14 (3 WOS and 11 MGP)
ties, except that in the first column, we use the sum of the 14 ties variables instead
of average effect of ties, for the simplicity of the interaction term with bothUS
dummy. Significance: ?: 1%, †: 5%, ∼: 10%. Robust standard errors clustered by
cited article in parentheses.
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