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We explore ways that university students handle proving statements that have the overall 
structure of a conditional implies a conditional, i.e., (p # q) ! (r # s).  We structure our 
analysis using the theory of conceptual blending. We find conceptual blending useful for 
describing the creation of powerful new ideas necessary for proof construction as well as for 
describing the creation of blends that slow or hinder student efforts at proof construction. 

Introduction 
The purpose of this paper is to illustrate the power of the theory of conceptual blending to 

clarify issues that students have in proving statements having the overall structure of a 
conditional implies a conditional, i.e., (p 1 q) % (r 1 s). This logical structure occurs often in 
statements to be proven at the university level.  For example, since the definition of A  is a subset 
of B  ( A B! ) is a conditional statement ( x A!  implies x B! ), then a simple set theory 
statement such as “If A B! , then A B B! " ” has this logical form.  

The research literature indicates that students’ misunderstanding of logical rules and 
misinterpretation of logical statements result in their difficulty with structuring their proofs 
(Brown, 2003; Duran-Guerrier, 2003; Harel, 2001; Roh, 2010; Selden & Selden, 1995). Students 
tend to structure their proofs in terms of the chronological order of their thought processes 
instead of rearranging it with careful consideration of proper implications (Dreyfus, 1999). The 
literature also shows that students are often unable to bring useful syntactic knowledge to mind. 
Such knowledge includes formal definitions (Knapp, 2006) as well as theorems and properties 
(Weber & Alcock, 2004) of the mathematical concepts. Likewise, research calls attention to 
various forms of personal knowledge of mathematical concepts. Such knowledge is internally 
meaningful to an individual student (Pinto & Tall, 2002; Vinner, 1991), and helps a student 
recall conceptual ideas to apply when attempting to construct a proof (Knapp & Roh, 2008). 
Because of its private and informal nature, students’ personal knowledge is often insufficient for 
them to know how to get started on a proof (Moore, 1994). Raman (2003) suggested the key idea 
as a means of connecting personal intuitive ideas and procedural knowledge when constructing a 
proof. When students possess a key idea for a proof, it gives them conviction and the basis for 
the formal mathematical proof.  

Theoretical Background: Conceptual Blending  
Fauconnier and Turner (2002) posit conceptual blending as a powerful unifying theory to 
describe how people think across multiple domains. They argue that blending “makes possible 
… diverse human accomplishments … [in] language, art, religion, [and] science [as well as 
being] indispensable for basic everyday thought” (p. vi). This theory has begun to be used to 
describe student understanding of mathematical concepts (Gerson & Walter, 2008; Megowan & 
Zandieh, 2005; Núñez, 2005). In this section we give a brief example describing three of the 
main mechanisms of the theory of conceptual blending. 
Conceptual blending is a subconscious process that entails the blending of two or more mental 
spaces (inputs) to form a new stable conceptual model for use in reasoning (See Figure 1). A 
mental space consists of an array of elements and their relationships to one another, being 
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Figure 3. Playfair’s Parallel Postulate 

activated as a single unit. Two (or more) mental spaces are activated and crucial elements of 
each are integrated and mapped to a third space to form a blended space. As part of completing 
the blend, a conceptual frame may be recruited to 
help organize the information in the blend. Once 
the blend is complete it can be manipulated to make 
inferences or answer questions. This manipulation 
is referred to as running the blend. The blended 
concept is treated as a simulation that can be run 
imaginatively according to principles and properties 
that the input spaces bring to the blend. 
For example Coulson and Oakley (2001) consider 
the nursery rhyme “the cow jumps over the moon.” 
Children easily comprehend this statement by 
blending an input space of animals which includes 
cows, a second input space for the moon and sky, and a conceptual frame of jumping.  In the 
blended space the cow is mapped to the thing that jumps and the moon is mapped to an object 
which is jumped over. Whereas children easily construct this blend, adults might have to inhibit 
their notions of reality and instead bring to bear a “nursery rhyme” frame which allows them to 
think of real things, the cow and moon, in impossible situations. Running the blend might 
include imagining the cow taking off from the ground, being over the moon, and landing on the 
ground on the other side of the moon. 

Methods and Setting 
 The data for this study was originally collected as part of a semester long teaching experiment 
(Cobb, 2000) in an upper division geometry course at a university in the USA. Data consisted of 
videotape recordings of each 75 minute class session as well as copies of student written work. 
For the purpose of this paper we chose to analyze one day of class where we recognized 
something powerful was happening with student reasoning.  Maher and Martino (1996) refer to 
such occasions as “critical events.” The class period consisted of a brief introduction of the 
problem by the teacher (the first author), followed by small group work on the problem and 
whole class discussion. For the purpose of this paper we focus on the small group consisting of 
students we call Andrea, Nate, Paul and Stacey. The curriculum consisted of a series of activities 
in which students would need to define, conjecture, and prove results in geometry on the plane 
and the sphere (Henderson, 2001).  This study focuses on one day late in the semester in which 
students were asked to prove either Euclid’s Fifth Postulate (EFP) implies Playfair’s Parallel 
Postulate (PPP) or PPP implies EFP.  
 
 
 
 
 

Henderson (2001) states EFP as, “If a straight line intersecting two straight lines makes the 
interior angles on the same side less than two right angles, then the two lines (if extended 
indefinitely) will meet on that side on which are the angles less than two right angles,” (p. 123) 
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and PPP as, “For every line l and every point P not on l, there is a unique line l’ which passes 
through P and does not intersect (is parallel to) l” (p. 124).  The instructor told the students that 
the two postulates are equivalent and gave them the option to “use” EFP in order to prove PPP or 
vice versa. In her introduction of the task the instructor drew the two figures shown (see Figure 2 
and Figure 3) while explaining each of the postulates. The instructor’s initial drawing showed 
only the part of the statement that was given. For example, for the PPP picture (see Figure 3), she 
initially just drew the bottom line, l, and a point, P, not on that line. However, when she 
explained the conclusion of each statement she completed the picture and these completed 
pictures were left on the board for students to reference. A second visual reference was available 
to students. The two pictures in the book for these two statements were also completed pictures 
similar to what the teacher had drawn. 

Results and Analysis 
In our first pass through the data, we noticed that elements of conceptual blending occurred both 
in students structuring of their proof and in their combining of the pictures and statements of EFP 
and PPP.  We then read through the data looking to specify what blends the students were 
creating. We noticed the students were creating three types of blends: structural, geometric, and a 
combination of the two. We also noticed that the same blends occurred whether students were 
attempting to prove EFP implies PPP or PPP implies EFP. To better illuminate when each blend 
occurred in the data, each of the authors color coded a portion of the data and then all three 
authors came to a consensus on the coding for each of the following aspects:  

! How students were blending the pictures associated with EFP and PPP: the key 
geometric blend (KGB) used by most students or Stacey’s geometric blend (SGB). 

! The logical construct that the students were using to frame their proof: a simple 
proving frame (SPF) or a conditional implies conditional proving frame (CICF). 

! The direction of the proof: EFP implies PPP (EtoP) or PPP implies EFP (PtoE). 
As we coded the data it became clear that there were four combined blends each of which could 
be described as an episode. In Figure 4 we summarize the evolution of student thinking through 
the four episodes, highlighting the three aspects of the combined blend: a structural blend (SPF 
or CICF), a geometric blend (KGB or SGB) and the direction of the implication (EtoP or PtoE). 
In addition to the main blend, we note a secondary blend if there were contrasting remarks or 
questions from other students during the episode that seemed to refer to a different combined 
blend.   

As illustrated in Figure 4, we found conceptual blending useful for describing the evolution of 
student thinking while proving.  Using the three aspects of the combined blends, we were able to 
track the progression of the main thrust of the small group discussion as well as the contrasting 
voices in those discussions. In a longer paper (Zandieh, Roh, & Knapp, 2010) we describe the 
blends involved in each episode. Here we focus on three salient examples that illustrate the 
power of blending to describe student reasoning that moves the proof construction forward as 

Episode Main Blend Secondary Blend 
 Time Structure Direction Geometry Presenter Structure Direction Geometry Presenter 
E1 9:00-  SPF EtoP KGB Paul CICF EtoP KGB Nate 
E2 15:13- SPF EtoP SGB Stacey     
E3 17:48-  SPF PtoE KGB Andrea CICF EtoP KGB Nate 
E4 24:38- CICF EtoP KGB Nate  SPF EtoP KGB Paul 

Figure 4: Summary of the progression of student proving ideas. 
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Figure 5. Key Geometric Blend (KGB) 

well as student reasoning that slows proof construction.  

The Key Geometric Blend (KGB) 
From the beginning of Episode 1, students looked for a way to blend together the picture and 
statement of the two postulates geometrically and conceptually. They did this by creating the key 
geometric blend (KGB) which turned out to be the key idea of the proof for the students. 
Stacey: Because no matter what we can put any P out there [reaching out her arms to touch her 

finger tips together] at our point of intersection [pointing to Andrea’s notebook]. [Nate: 
That’s a good point.] And then we know that, that it is unique [tracing a line with her 
pen], that it is not going to come back and intersect somehow.  […] 

(Silence 1 minute -- Paul flips pages, Stacey flips pages (x2)) 
Paul: Well, if you assume the first one [EFP], would there be three cases that $ + % < &, $ + % 

= &, or $ + % > &? And then the uniqueness part of it would be proved by the $ + % = & 
and in that case they wouldn’t meet.  

As students flipped pages between the picture and statement for EFP and the picture and 
statement for PPP they began mapping to a blend.  The two figures in the text functioned as 
input spaces for a blended space (see Figure 5). Paul’s three cases take the EFP picture and lay it 
on the PPP picture such that the bottom line from each of the input spaces (m from EFP and l 

from PPP) is mapped into the bottom line of 
the blended space. The transversal (n) from 
the EFP input space is included in the 
blended space, and the top line from each 
space is mapped into a line in the blended 
space. Finally, the point P from the PPP 
space is mapped onto the intersection of the 
transversal and the top line from EFP in the 
blended space (see Figure 5). To complete 
the blend the students brought to bear their 
previous geometric knowledge of lines and 
angles. Notice that Paul imagined three 
different possible locations of the top line in 
the blended space and coordinated the 
different geometric positions with different 
sums for $ + %. We would say Paul’s idea of 

three cases comes from running the blend. After Paul’s comment, Andrea and Nate also 
contributed to running the blend by imagining that if $ + % > &, then the lines would intersect on 
the other side. 
The KGB was also involved similarly when the students attempted to prove the other direction, 
PPP implies EFP, in Episode 3. The main difference for the students in Episode 3 was that the 
blending of the two pictures was created by a slightly different mechanism.  Andrea started with 
the PPP picture and constructed a transversal to create line l of the EFP picture.  This 
construction does not change the basic content of the KGB, but it is significant in that it allowed 
students to see additional relationships in the geometric blend focusing on the case when the two 
lines are parallel transports of each other.  
Andrea: If we assume this [points to PPP picture] and draw a transversal through here, through 

P and through this line. So we know that since these are parallel that they add to 180, 
right? Because they are supplementary, whatever. 
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Having agreed upon the sum of the angles being 180 degrees, Andrea then made her full 
argument more clearly as follows:  
Andrea: So say that we rotate this line so that it makes it less than 180, the sum less than 180. 

[Nate: Yeah]… Oh, so, right! So that since we know that this is a unique line because 
we’ve assumed that there is only one line.  So we rotate it so that it is a different line, 
then we know that it is going to intersect because there is only the one line that won’t 
intersect.  

The students continued to discuss the issues involved in Andrea’s proof idea for a few more 
minutes, but ultimately returned to trying to prove EFP implies PPP. Although Andrea’s proof 
was not completed, the KGB was fundamental to this discussion as it was in Episode 1 when 
Paul introduced the idea. In addition, both discussions of the KGB (in Episodes 1 and in Episode 
3) played into Nate’s idea for the proof that was discussed in Episode 4.  Examples of this occur 
in the next two sections. The KGB was fundamental to discussions of the proof in Episodes 1, 3, 
and 4 and in the final write up of the proof. The KGB was the central idea of the proof, the key 
idea of the proof in the sense of Raman (2003). So the result of the blend was powerful for 
proving.  In addition, the students ran the KGB over and over imaginatively as they worked out 
issues in the proof. 

Simple Proving Frame (SPF) vs Conditional Implies Conditional Frame (CICF) 
We introduce and compare two proving structures that the students used in their proofs of 
statements of the form ( ) ( )p q r s! " ! : the Simple Proving Frame (SPF) and the Conditional 
Implies Conditional Frame (CICF). By SPF, we refer to a proving frame where there is a given 

statement (premise), then a 
series of implications, then 
a conclusion (see Figure 
6). There is nothing 
inherently wrong with the 
SPF or trying to apply it to 
a conditional implies a 
conditional statement. 
However, unless a student 
has particular theorems to 
work with that allow a 

direct proof from (p & q) to (r & s), then a simple proving frame (SPF) may be inadequate.  
The students began to work on the task by looking at the pictures and statements of the two 

postulates described on two sequential pages in their book. As they began to think about which  
direction might be easier to prove and how to prove it, three of the four students each flipped 

back and forth between the two pages multiple times. We describe their deliberations in terms of 
a simple blend in which the two input spaces are the two postulates (see Figure 7). The students 
then were bringing the SPF to bear on the problem by putting EFP in the place of what is given 
and PPP in the place of the conclusion. To the extent that there is resolution in this early 
discussion the students seem to have created a blended space that is structured by the SPF with 
EFP as the given and PPP in the conclusion.  

Case 1: (p ! q) 
Given p  

… 
Series of 

Implications 
… 

Then q 

Generic SPF 
Given  

… 
Series of  

Implications 
… 

Then  
 

Case 2:   
Given (p ! q)  
   … 

Series of Implications 
  

… 
Then (r ! s) 

Figure 6: Simple Proving Frame (SPF) 
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 … 
Use   

… 
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For the case of  
(p ! q) ! (r ! s)  
 
Given r       … 
Then p 
Since p and (p ! q)  
Then q       … 
Thus s 

Figure 8. The CICF  

On the other hand, the CICF is substantially 
different from the SPF that the students used in 
Episodes 1-3. By CICF we refer to proofs of 
statements of the form ( ) ( )p q r s! " ! , where 
one starts with r and uses a series of implications 
including p1q, to reach the conclusion, s (see 
Figure 8). In Episode 4 Nate began to lay out his 
case for the CICF more directly. 
 Nate:  […] If we assume this [points to a drawing 

of EFP] is true? [Andrea: Okay, so this 
way?] This [EFP] is true for a moment. 
[Andrea: Okay.] Now we have our little 
point over there and we draw this line. We 
know that if this line is such that the 
angles on the one side are less than 180, 
that it is not parallel based on this assumption [EFP]. We know that if they are greater 
than 180, we can apply this assumption again and show that they do [intersect] on the 
other [side].  Can we use our parallel transport proof to show that the boundary 
condition when they are equal to 180, that this angle is congruent to this angle and 
therefore they are parallel and therefore they don’t intersect? 

Nate first established that he was assuming EFP is true and therefore was proving PPP. Next, he 
hinted at the premise of PPP, “we have our little point over there and we draw this line,” 
suggesting that he was starting with r of the (p 1 q) % (r 1 s). He then stated how he could use 
EFP in the middle of the proof, “we can apply this assumption.”  This is the use of (p 1 
q) in the series of implications.  He also 
hinted at what else may be needed to get to 
the conclusion of PPP. As we will see in the 
next section, Paul, Stacey, and Andrea 
initially struggled with Nate’s proof 
structure. Towards the end of the discussion 
they began to think Nate’s idea might work. 
This was aided by the teaching assistant 
visiting the group and being supportive of 
Nate’s idea. Following her departure the 
group prepared a presentation for the class 
based on Nate’s idea. As the group began work on their presentation the three dissenters made 
contributions indicating that they understood Nate’s blend.  

Blending the Premise and Conclusion  
As explained above, students initially, from Episode 1, wanted to use a simply proving frame 
(SPF) that would start with EFP and end with PPP.  Since the SPF is a legitimate proof technique 
in many situations and one that students were very familiar with, this is understandable, and 
might have even led to a proof if the students had appropriate theorems for this. However, in this 
case, the problem with using SPF was compounded by students blending the premise and 
conclusion of EFP in a way that lost the implication structure.  We illustrate this with a transcript 
from Episode 4. As explained in the previous section, Nate had suggested his proof idea which 

EFP PPP ""  

SPF 

Given EFP 
Series of 

Implications 
… 

Then PPP 

Figure 7. A structural blend of SPF 
from EFP to PPP  
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used CICF. Other students in this group saw a similarity between their and Nate’s idea in the 
sense of using three cases (KGB). However, they struggled with Nate’s proof structure.  
Paul: So, we don’t even need to necessarily have the three cases, do we?  Just we need to prove 

that one case – uniqueness on that one.  Because we are assuming they meet on this side 
so I don’t think it really matters if. [Stacey: Exactly. Agreed.]  […] 

Nate: I disagree because you are applying EFP to your specific cases.  You’re not assuming 
that $ and % are less than.  In order to apply it, you have to show that $ and % are less 
than.  […] 

Paul: I think you are assuming that. 
Stacey: Yeah, it assumes.  Because we are assuming the whole EFP.   
Andrea: We’re assuming EFP. 
Stacey: We’re saying if we got two lines that are going to intersect on this one side, the interior 

ones right there are going to be, they have to be less than &. 
Nate: Right, right.  But now we are drawing a picture where we’re going to say that $ and % 

are less than and therefore we can apply EFP to show that they intersect.  […] 
Paul: If we’re assuming that, then how can we say that they are going to be equal to &?  Do you 

know what I am saying?   
Nate: Well, that’s my point.  You have to draw three cases. You have to draw when they sum 

less than, when they sum equal, and when they sum greater than. And you have to apply 
EFP to two of those cases. 

For Paul, Stacey and Andrea assuming EFP meant that they were assuming both the premise and 
the conclusion of EFP. In part, we see this as a faulty use of the SPF proof structure, the notion 
that we are starting with “all” of EFP and we will end the proof with the statement of PPP. In 
addition to the problem of using the SPF structure there is more specifically the idea that 
assuming “all” of EFP causes EFP to lose its implication structure.  We describe this as a 
blending of the premise and the conclusion of EFP. Using blending theory we would say that 
there is a blend with two input spaces, (1) the premise of EFP ($ + % < &) and (2) the conclusion 
of EFP (the two lines intersect on the same side as $ and %). The relationship between these two 
input spaces is that of an implication. However, when the two spaces are mapped to the blend, 
they are mapped to the same diagram with the implication having been compressed to an “and” 
or a simple coexistence without any implication structure. When the students were running this 
blend in the context of proving EFP to PPP using the SPF, they concluded that both the premise 
and conclusion of EFP were given, so it was not necessary to consider the cases when $ + % > & 
or the lines didn’t intersect, since students were assuming as part of EFP that the lines intersected 
and $ + % < &. 

Summary 
We find conceptual blending useful for describing the creation of powerful new ideas necessary 
for proof construction as well as for describing the creation of blends that slow or hinder student 
efforts at proof construction. We noted how students blended the two pictures of EFP and PPP 
and ran that blend in ways that allowed them to create a key idea (KGB) for the proof. This 
blending continued to serve as the foundation for the proof even through its final configuration. 
In addition, Nate’s use of CICF was eventually blended with the KGB to construct the final, 
correct proof that this group presented to the class. On the other hand, there were two cases of 
student blending that served to hinder or slow their proving. In the first case we saw that 
students’ initial use of an SPF structural blend hampered their efforts to structure their proof. The 
students did not have the necessary theorems to complete a proof of this conditional implies 
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conditional statement using an SPF. In a second case we saw students treating “all” of EFP as 
given. EFP was treated as a collection of parts without maintaining the appropriate implication 
structure between these parts. As a result, the students’ conceptual blends led them to blend the 
premise and conclusion in ways that obscured the implication relation between them. 
Consequently, their heavy reliance on this proof frame in the initial discussions slowed their 
efforts. It is our suggestion that instruction should be more explicit in contrasting the use of SPF 
and CICF.  
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