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Lack of satisfaction with the quality of the mathematical knowledge of non-mathematics majors 
has led to the design of new curricular materials. In this study, a mixed methods explanatory 
design was used to compare the performances of two groups of engineering majors enrolled in 
two courses on differential equations and investigate their written work in light of differing 
curricular and instructional approaches. 

Introduction 
Calls for curriculum and instructional reform have been expanded to include collegiate 

mathematics education  (American Mathematical Society, 2011).  Lack of satisfaction with the 
quality of mathematical knowledge of students completing service courses in the mathematics 
department has raised considerable concerns regarding how these courses are taught.  Among 
many such courses, Differential Equations (DEs) entertains a particularly prominent role since it 
caters to a variety of clients from engineering areas.  Skills fostered in a traditional theory-driven 
DE course have been claimed to be of little value to these degree programs.  For instance, in a 
survey, Varsavsky (1995) found that engineering faculty value skills like modeling over 
technical competencies like differentiation and integration.  Indeed, engineering and physical 
science faculty recommend that service courses in mathematics be made more relevant to their 
students and suggest incorporating an engineering viewpoint (Czocher, 2010; Pennell, Avitable, 
& White, 2009; Varsavsky, 1995).  These perspectives have motivated the design of new 
curricular materials that aim to frame student learning in meaningful contexts (eg, Rasmussen 
and King, 2000).  Despite such curriculum development efforts, little is known about the actual 
impact of such curricula on student learning.  The primary motive of the present study was to 
address this gap.  To this end, I compared the performances of two groups of students enrolled in 
two different sections of an introductory course on DEs to see what differences, if any, existed in 
their work on various types of tasks due to exposure to differing curricular and instructional 
approaches.  One section followed a standard commercial textbook while the other used a 
reform-based curriculum with a conceptual orientation that was built around contexts central to 
engineering fields. 

Context and Background: The Case of Differential Equations 
The study of DEs is a unique point in the trajectories of engineering and physical science 

majors.  In some instances, it serves as a capstone to the calculus sequence.  On the other hand, 
an introductory course on DEs might be the first time that these students are exposed to material 
that is specialized for their disciplines.  Many introductory undergraduate courses strip the 
equations of their natural contexts in order to treat the equations abstractly and then treat DEs 
deductively.  That is, a general equation is presented, its solution is derived, and applications 
from the physical sciences related to the target equation can then be handled by manipulating the 
generic solution. 

Researchers have argued that curriculum and instruction must align in order to support 
students’ transitions to studying advanced mathematical topics.  The study of DEs poses special 
challenges to building and implementing supportive curricula since the “switch from 
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conceptualizing solutions as numbers to conceptualizing solutions as functions is nontrivial for 
students” (Rasmussen, 2001, p. 67), and students’ documented difficulties with function extend 
to the form of the initial conditions (ICs) (Raychaudhuri, 2008).  Others have shown a related 
aversion to the use of boundary conditions (Black and Wittmann, n.d.). 

“Unifying” views of introductory DEs range from the use of linear operators to physical 
approaches that emphasize formulation (see West, 1994) to models and derivations from first 
principles (Myers, Trubatch, and Winkel, 2008). Scholars have studied student performance on 
procedural and conceptual components of DE knowledge (Arslan, 2010) and on contextual and 
de-contextualized problems (Upton, 2004), whose analyses graded student responses as either 
“right” or “wrong;” a method too coarse to account for different heuristics or representational 
schemes potentially nurtured in instruction.  Donovan (2004), in a pair of case studies, 
demonstrated the variety in students' conceptualizations of linear DEs and their representations, 
but did not address the bases for student reasoning.  In contrast, Black and Wittmann (n.d.) 
studied students' reasoning strategies and identified important connections between the physical 
and mathematical interpretations of the DE model that influence student performance.  
Bingolbali, Monaghan, & Roper (2007) found that the teacher's proclivity for a particular 
interpretation of derivative was adopted by students.  Indeed, it is likely that the student is 
heavily influenced by the values placed on types of knowledge (Hedegaard, 1998). 

These considerations guided the development of the curricular materials whose impact on 
learning was examined in this work.  The reformed curricula, Baker's (n.d.) text, supports a 
unifying solution strategy with physical reasoning by showing how a guess-and-check heuristic 
for formulating the solution mimics the physical system's response to the forcing term in the DE.  
Additional considerations, regarding the contextual domains provided for students’ 
investigations, motivated the development of examples and contexts used in the text, as well as 
how content was sequenced. The curricula are described more fully in a later section of this 
article. 

Methods 
Participants  

The participants were 51 undergraduate students enrolled in an introductory DE course and 
the two postdoctoral lecturers who taught them.  The course is intended for non-mathematics 
majors and all 51 students were engineering majors. Of the 51 volunteers, 30 were in Lecture 1 
(L1) which used a custom edition of Elementary Differential Equations and Boundary Value 
Problems by Boyce and DiPrima and 21 were in Lecture 2 (L2) which used “An Introduction to 
Differential Equations for Scientists and Engineers,” a set of course notes written by a member 
of the math department faculty.  There were 25 males and 5 females in L1 and 15 males and 6 
females in L2.  Typically, students were in the end of their freshman or sophomore years, 
depending on their level of high school mathematics preparation. However, many of the students 
had earned enough college credit to have junior standing. The students carried, on average, 
between 10 and 11 credit hours in addition to their course on DEs, the equivalent of two or three 
additional classes.  The mean grade point average (GPA) for the participants was 3.29 (SD = 
0.44) and their mean mathematics GPA was 3.14 (SD = 0.61).  Their collegiate mathematical 
preparation, in terms of coursework, was uniform.  All had completed single- and multivariable 
calculus, but not linear algebra.  In addition, all had completed at least the first two quarters of 
their engineering and physics sequences. The two groups had similar backgrounds relative to the 
number of incoming credit hours, the number of quarters enrolled, the number of credit hours 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

45



 

earned, the number of credit hours carried, overall GPA, math GPA, and the number of math, 
science, and engineering credit hours taken. 

Both lecturers held postdoctoral positions and both were familiar with their respective 
curricula. L2 had some mathematics education experience and coursework during his graduate 
studies.  L1 was a nonnative speaker of English. 
Data Collection Instrument  
Three tasks were created toward the end of the observation period from material common to both 
lectures and embedded in the groups' respective final exams. To establish content validity, the 
items were drafted and revised five times with input from both lecturers, and finally from the 
course coordinator. This type of negotiation when designing data collection instruments that 
measure student learning has precedence in mathematics education (Boaler, 2008). The values of 
parameters were different for the two classes since final exams were administered on different 
days.  The problems were written with the conventions used in each class, eg, derivatives were 
denoted by y' in L1 and by dy/dt in L2.  Values for parameters were selected in order to simplify 
calculations while maintaining structural similarity between the matched problems.  Students in 
both classes were allowed graphing calculators.  A brief description of each problem is offered 
below. 
Problem 1 (P1): A first-order linear, constant coefficient, nonhomogeneous mixing problem.  

Part (a) asked the students to find the amount of contaminant in a tank for any time t, 
supposing that initially the tank was full of pure water. In part (b), the flow of the 
contaminant is turned off at time !=t . The students were asked to find the amount of 
contaminant for times !>t .  

L1 wanted his students to derive the differential equation, while L2 did not want to test that 
knowledge.  Both lecturers decided to abbreviate P1, cutting out a third part that asked the 
students to interpret their solutions in terms of the physical situation.  Thus, this problem is 
contextually situated, but is not an application of DEs to an engineering context.  Since these 
tasks were not identical for the two groups, I do not compare the students' scores on this item 
beyond including it in the total score for the tasks.  However, some information, such as students' 
handling of the ICs, is intact and relevant to the analyses presented here. 
Problem 2 (P2): A second-order linear, constant coefficient, nonhomogeneous DE:

2/4''4 teuu !=+ . Given the DE, part (a) asked students to find the general solution.  In part 
(b), students were asked to suppose that 0)0( uu = and that 1=(0)u'  and then to find a value 
of 0u so that the amplitude of the steady state solution was 5.   

The model in P2 represents a system that oscillates with no dampening, subject to forcing that is 
like an exponentially decreasing pulse.  The focus is on the connection between ICs and long-
term behavior of the system. 
Problem 3 (P3): Separation of variables.  Students were asked to use the separation of variables 

method to replace 0)()( =! xxt uxnutm  with a pair of ordinary DEs. 
In both lectures, PDEs were most commonly treated with constant coefficients.  P3 was designed 
to indicate whether students were able to use the method of separation of variables in a novel 
setting or if their knowledge was limited to a sequence of steps specific to the case

1)()( == xntm .  
Data Collection and Analysis   

Since this study followed a mixed methods explanatory design (Creswell & Plano Clark, 
2011), quantitative analysis of the exam tasks was followed with qualitative analysis of the 
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students’ responses.  Quantitative data were generated through the grading of exams for 
accuracy. Tasks were graded independently from the lecturers so that data transformation 
decisions would not affect students' grades. The quantitative design was a prospective causal-
comparative study and an ANCOVA was selected to analyze the total scores on the constructed 
tasks while controlling for the students' prior mathematics achievement, as measured by their 
math GPAs.  Other numerical transformations involve frequencies and percentages.  Qualitative 
data were generated through the observation of 24 (out of 29) sessions of each lecture and the 
detailed inspection of the students' responses to the tasks. 

Student responses were examined first to establish what kinds of solutions they attempted.  
For each problem, a rubric was created to account for the level of difficulty of each stage of the 
solution process, and each stage was subdivided into steps.  For example, one step of solving the 
DE by the method of integrating factor would require evaluating an integral. This step would not 
be broken down to diagnose the student's performance on integration by parts in order to avoid 
assessing prerequisite knowledge. 

Each step of a student's response was assigned a value of “correct” (1) or “incorrect” (0), but 
responses were graded so that step n+1 was graded for consistency with step n.  This decision 
prevented minor mistakes from compounding and so errors in student thinking could be 
diagnosed instead of tabulating wrong answers.  There were a total of 14 steps in P1, 13 steps in 
P2, and 7 steps in P3.  The value of each task, and so its parts, were scaled to 14 points to assign 
equal weight to each in the total score. 

24 class sessions of each section was observed over one academic term.  Lectures were 48-
minutes long and met three days a week.  Two 48-minute recitation sections were held on the 
other two days.  Field notes included the instructors' and the students' comments, the instructors' 
board work, and my overall impressions of how lessons progressed.  In analyzing observational 
records, I focused on lesson content, context, and pedagogy (Saroyan & Snell, 1997), noting 
lesson structure, the number and quality of examples used in each session, the number of 
connections made among topics made within and outside of mathematics, interactivity among 
the instructor and the students, and the mathematical behaviors that were modeled by the 
instructor. 

Curriculum and Instruction 
Both instructors used a traditional lecture format and both classes treated the same set of 

topics.  L1 used Boyce and DiPrima's text (T1), which intended to provide exposure to the theory 
of differential equations with “considerable material on methods of solution, analysis, and 
approximation” (Boyce & DiPrima, 2009, p. vii). T1 follows an exposition-example-exercise 
format, where new topics are introduced formally through definitions and formulae, organized 
around analytic techniques with topics grouped into modules to allow for flexibility in usage.  
Theorems are stated precisely in symbols and are sometimes proved rigorously and sometimes 
through example.  T1 does not assume familiarity with linear algebra, but many theorems rely on 
linear operators.  Exercises tend to drill for procedural fluency and theoretically oriented 
problems have step-by-step directions or ask only for verification.  In either case, the solution 
path is evident from the problem statement.  Separate sections are devoted to applications, such 
as mechanical vibrations, and these are placed after the sections that develop techniques for 
solving the relevant DEs. 

L2 used Baker's (n.d.) text (T2) which uses a modeling approach and the author's goal is to 
draw on common problems in the practice of science and engineering to motivate the creation 
and solution of DEs.  It follows an example-exposition-exercise format where physical 
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considerations precede mathematical formalism in each section.  T2 does not contain 
“theorems,” but instead offers “principles” which are written in English.  Some principles are 
proven rigorously and some are justified through examples.  Among the rigorously proved 
theorems, T2 uses English explanations while T1 relies on symbolic proof.  There are few truly 
concrete examples or exercises, as most have at least one parameter.  In comparison to T1, there 
are fewer exercises and these tend to be less technically difficult and less computationally 
oriented.  Only one solution technique is presented throughout T2: guess-and-substitute (G&S), 
which is similar to the method of undetermined coefficients. 

L1 followed the development of topics from abstract to concrete.  The lectures were content-
driven and L1 made every effort to convey the material on the syllabus.  He drew examples from 
the text's exposition or from exercises that were similar to the assigned homework problems, 
with a focus on computation.  Between one and seven examples were presented each lecture, 
with an average of between three and four per lecture.  The examples followed presentation of 
theory.  L1 held a goal orientation toward problem solving in that examples were considered 
complete when an answer was reached.  He selected examples to maximize variety in technical 
complexity and sequenced them logically so that the adjustments in parameters from one 
example to the next were evident.  The steps taken in each example were clearly labeled in order 
to provide guidelines to help structure student thinking about the problems.  Taken together, 
these pedagogical choices yielded high intra-lesson coherence.  Mathematics was communicated 
through symbolic representations and summary formulas.  Students were encouraged to ask 
questions, and they did so regularly but infrequently. 

L2 followed the development of topics through the text, but he did not regularly devote class 
time to explicit discussions of theory.  Lectures were context-driven, in that all abstractions were 
derived through applications.  Class time was spent on the structure of the physical problem, 
recognizing and articulating assumptions, deriving a model from first principles, and justifying 
its appropriateness, so the sessions had high inter-lesson continuity.  Each example modeled a 
simplified real-life physical problem and each took between one-half and three sessions.  L2 
focused on building students' awareness of symbols and formulae as tools to represent quantities 
and relationships.  The pace of the session was driven by L2's questioning, but the students were 
highly interactive, both posing and answering questions, while pursuing systematic exploration 
of the relationships between physical properties and their reflections in the model.  Examples 
rarely ended in formulae; instead L2 would ask metacognitive questions.  Thus, L2 held a 
process-orientation toward modeling.  He wrote very little on the board, instead communicating 
mathematics verbally. 

Findings 
Numerical Results  

P1 was missing from one student's exam in L1 and so his data are not included in the 
numerical analyses.  Students in L1 scored a mean of 27.55 (SD=1.76) out of the 42 points 
available (Range: 3.08, 42).  The mean score in L2 was 31.89 (SD = 1.90, Range: 6.38,42).  A 
fixed effects ANCOVA model was selected with Lecture as the independent variable and Math 
GPA as the covariate.  All statistical tests were performed at the 05.=! level and the data 
satisfied all assumptions for the model.  A homogeneity of slopes test revealed no significant 
interaction between Lecture and Math GPA.  The ANCOVA summary is shown in Table 1.  The 
main effect for Math GPA is statistically significant )001.,47,1,191.27( <== pdfFGPA and the 
adjusted main effect for Lecture is also significant )018.,47,1,972.5( === pdfFLec with a 
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moderate effect size and showing only moderate power (partial !2 = .113, observed power = 
.668).  Thus, when taking prior mathematics achievement into account, the L2 student performed 
better on constructed tasks. 

 
Table 1. ANCOVA summary table 

Solution Strategies  
Three techniques can be used to solve the DE in P1: the methods of integrating factor, 

separation of variables, and G&S.  The G&S method is the only method appropriate to solving 
the DE in P2.  In L1, the method of undetermined coefficients was presented in the context of 
second-order linear DEs of the formError! Not a valid embedded object.. After two lessons, 
f(t) was allowed to be nonzero and L1 explained the method symbolically and procedurally.  The 
students, in the text and in class, were given the form of the particular solution as
t s e!t!" Ak tk cos "t+" Bk tk sin "t # , in which they had to set the parameters s, ", and # to 
match the form of each of the summands of f,  and then apply the DE to determine the weights Ak 
and Bk.  In L2, the method was explained physically as follows: when written in standard form, 
the right hand side of the DE represents the external force applied to the physical system (the 
“forcing term”) and that the system responds to the forcing (the “response”) in kind.  Thus, the 
form of the response (ie, the solution) must match the form of the forcing.  Table 2 illustrates the 
frequencies of solution strategies used by the students, from left to right, they are: method of 
integrating factor, separation of variables, guess-and-substitute, and did not attempt (DNA). 

 
Table 2. Chosen solution strategies 

Almost all of the L2 students used the G&S strategy.  This is not surprising since it was the only 
strategy they were shown, but they did use it more successfully than L1 students used the other 
methods.  Again, this is not surprising since the L2 students had more practice with the method 
in various settings.  What is surprising is that the L2 students were able to successfully adapt the 
G&S strategy to the procedural problem, more often than did the L1 students.  Many L1 students 
either set 1)()( == xntm or else incorrectly applied the equation to the guess )()(),( tTxXtxu =
indicating that the “substitute” part of the strategy was not as prominent for the L1 students.  The 
G&S method highlights the relationship between the solution and the DE by framing the DE as a 
condition on the solution in much the same way as an algebraic equation is a condition upon its 
solution.  This perspective may be lost with techniques that reduce the relationship between the 
DE and the solution to a sequence of steps. 
Initial Conditions 

In P1 part (b), the IC does not correspond to the level of contaminant at time zero, but rather 
to when the flow of contaminant is halted.  Thus, the solution function is piecewise 
differentiable.  Nine students (31%) in L1 handled the ICs correctly in this case as compared 
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with 13 (62%) of the students in L2. The most common mistake committed was to neglect the 
constant of integration and was made solely by L1 students. The second most common mistake 
was not ensuring that the pieces of the solution were matched at $, caused by using 0=t .  In P2, 
the ICs determine specific properties of the long-term behavior of the solution so that amplitude 
is formulated in terms of the unknown ICs.  Sixteen students (53%) of the students in L1 handled 
the ICs correctly as opposed to 19 students (90%) in L2. Many students who arrived at one 
correct IC did not find the other since they did not extract both roots of the condition squared. 
However, the most common mistake, among both groups, was to apply the ICs only to the 
homogeneous solution. The second most common mistake was to apply the ICs to the steady 
state solution. This points to an interesting conception, since it amounts to setting 0=t  after 
letting !"t , but it is not pursued further here. 

Both lectures introduced ICs as “another condition on the solution to the DE.” ICs are an 
important part of the DE model, since they contain parameters that determine how the transient 
solution adjusts to the steady state solution.  One key difference between how the two lectures 
treated ICs was that in L2, ICs were driven by context and each time were derived from the 
physical situation during the derivation or the discussion of the model.  In contrast, the ICs in L1 
were either stated outright at the beginning of the initial value problem or were selected by 
considering the neatness of the solution. 

Discussion and Conclusions 
The students in L2 were more successful with the G&S strategy, which can be attributed to a 

number of reasons.  First, there were fewer strategies from which they could choose when 
solving problems.  In L2, guessing was an allowed heuristic.  Lastly, the G&S was developed on 
physical grounds, which allowed for alternative ways of understanding the solution strategy 
(Harel & Koichu, 2010).  One could also argue that since G&S does not require memorization 
then the strategy is easier to access and implement.  In a test-taking situation, the take-the-best 
heuristic (see Gigerenzer, 2008) might be the only accessible approach to the test taker.  In this 
light, L1 students needed a greater amount of time to search through all possible integration 
techniques in order to recognize a discriminating cue.  The fast-and-frugal nature of the G&S 
heuristic favors the L2 students whose allowable solution-space includes the G&S method, 
which mimics the familiar educated-guess-and-check strategies. 

In P1 and P2, students needed to attend to the ICs in novel ways.  In P1, the ICs join 
solutions from distinct, non-overlapping time periods.  The difficulty exhibited here by L1 
students may be less an indicator of correctly applied ICs and may instead be symptomatic of 
their discomfort with piecewise functions.  In comparison, L2 students' success in handling  ICs 
suggests that contextual treatment of ICs both places them appropriately within the solution 
procedure and strengthens conceptual connections among the components of the mathematical 
model in a sensible way.  Alternatively, L2 would close each example, not with a formula, but by 
modeling how to justify the solution process by matching properties of the solution with 
assumptions made at the outset of the example.  The looking-back heuristic thus reinforces ICs 
as relevant to the model. The application orientation of L2 and its text provides a foundation for 
relational understanding (Skemp, 1987) and legitimizes physical intuition as a way of 
understanding (Harel & Koichu, 2010) when working with ICs.   

Overall, the students in L2 performed better on the constructed tasks than did the students in 
L1. While there may be a number of extraneous factors contributing to this finding, evidence 
from a closer analysis of the students' responses reveals two main reasons for the difference in 
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performance.  The students in L2 were more adept at treating ICs and they were more successful 
in selecting and applying solution techniques.  While results merit further investigation, such as a 
larger sample size and more varied instrumentation, they do point to the potential of 
conceptually- and contextually-oriented curriculum and instruction for enhancing student 
learning of DEs. 
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