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 An interview with a sixth-grade student illustrates how her number sense and understanding of 
variability relate to her ability and proclivity to apply a frequentist (statistical) approach to 
probability tasks. A general suggestion for teaching about mathematics of uncertainty through 
the gradual strengthening of estimation, as per the historical development, is also discussed.  

Theoretical Background 
The Three Views of Probability 

There are three main views of probability: classical, frequentist, and subjective 
(Shaughnessy, 1992). Using the classical view, one first partitions a sample space into equally 
likely outcomes. The probability of an event is simply the ratio of the number of outcomes in 
which that event occurs to the total number of outcomes. In contrast, the frequentist approach to 
probability involves repeated trials. A person using a frequentist approach might conduct a 
simulation with a large number of trials, examine the data, and assert probabilities based on the 
observations. If the number of trials is large enough, and if the results are repeated in other 
contexts, then the probability is judged reliable. A classical approach examines a priori how 
different arrangements of events could happen in order to develop a uniform distribution model. 
The frequentist approach is mathematically more related to statistics, since it involves the search 
for a distribution and subsequent application of the distribution's properties. Thus the 
mathematics behind the frequentist approach tend more to the notions of limits and convergence, 
as relating to the law of large numbers (Shaughnessy, 1992). The third view of probability, the 
subjective view, also takes into account an individual's own knowledge, opinions, or feelings. 
Reliance upon subjective reasoning may signal misconception, lack of confidence, or uncertainty 
of the relevant mathematics, but its use is not necessarily irrational. A child might always 
express a favorite color to be most probable on a spinner, while some situations, such as the 
probability of a Mars landing in the next century, can only be estimated by a subjective approach 
(Jones, Langrall, & Mooney, 2007).  

Development of the Mathematization of Statistics and Probability 
The oldest examples of statistical thought each related to the concept of estimation (Bakker, 

2003).  Examples from Indian, Egyptian, and Greek stories contained phenomena similar to the 
mode, mean, and a measure called the midrange. For data that has a symmetric distribution, the 
mean, median, mode, and midrange all coincide, so there is no need for their distinction. Bakker 
(2003) found, using classroom teaching experiments, that modern-day students also benefited 
from beginning with estimation while learning measures of center. It was not until students were 
faced with the task of computing an average with non-symmetric data that they felt the need to 
develop and formalize other methods of average. 

The parallel between the historical development of average and the historical development of 
probability is the original expectation of symmetry (or uniformity), the subsequent adjustment to 
increase the accuracy (or number of successes), and the reliance upon estimation. The oldest 
manuscript describing observed frequencies and non-uniform distribution was written in the 13th 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

233



 

century, while the first known and solved probability problem (by Galileo) took place about 
1620 (Batanero, Henry & Parzyz, 2005). The conflict between theoretical calculation and 
observed frequencies is what led to the development of more rigorous combinatorics methods 
(Batanero et.al., 2005). A teaching experiment using non-uniform dice by Nilsson (2009) showed 
that students went through a similar process when their previous conception of uniformity was 
challenged by observation. When the amount of variation was too great, the students reexamined 
their assumptions based on empirical data and modified their theoretical model.  

Probability and Statistics Frameworks 
Jones, Langrall, Thornton, and Mogill (1999) developed a framework for the development of 

probabilistic thinking through the middle grades by observing students’ responses to tasks that 
could be solved using classical probability. The framework consists of four levels: subjective, 
transitional, informal quantitative, and numerical. At level one, a student might only be able to 
recognize certain or impossible events; at level two, most or least likely events. By level three, 
students’ quantitative reasoning and measures are used to describe likelihood. By level four, 
students are able to assign numerical probabilities (Jones et al., 1999). As a student's level 
increases, the tendency to use subjective judgments decreases. Polaki (2002) validated this 
framework in a study in South Africa, and found that the highest levels of probability thinking 
require part-whole reasoning, while students without even part-part reasoning generally operate 
in the subjective level. 

 Watson, Collis, and Moritz (1997) describe a complementary framework of probabilistic 
thought. There is a hierarchy of four levels: prestructural, unistructural, multistructural, and 
relational, and students must pass through two cycles within the levels to achieve the highest 
realm of probabilistic thinking. The first cycle involves the development of probability as a 
measure, while the second cycle involves the development of that measure. Considering that the 
second cycle requires part-part reasoning for the multistructural level and part-whole for the 
relational level (Watson et al., 1997), this view is compatible with that of Jones et al. (1999). The 
additional levels of the framework more clearly describe the phenomena of students' 
demonstrating a relational level of reasoning for a single task, while a subjective level for a 
multiple-part task.  

Both of these frameworks support the view that probabilistic instruction should begin with 
part-part comparisons instead of part-whole relationships. However, the classical view of 
probability necessitates part-whole comparisons in order to declare a uniform distribution (at 
least implicitly). Since comparing frequencies of outcomes is essentially performing a statistical 
task, perhaps further insight into the requisite knowledge for learning probability can be obtained 
by studying existing frameworks for the learning of statistics. According to Shaughnessy, “there 
are important connections between probability and statistics, particularly when repeated trials of 
probability experiments generate a distribution of possible outcomes'' (2007, p. 981).  

A relevant connection is the interaction between students' understanding of expectation and 
variability. Watson, Callingham, and Kelly (2007) developed a framework for the understanding 
of expectation and variation with six levels ranging from idiosyncratic, with little or no 
appreciation of either variation or expectation, to comparative distributional, in which links 
between variation and expectation are established in comparative settings with proportional 
reasoning. To compute simple probabilities with the frequentist approach, only the fifth level of 
statistical reasoning is needed: understanding of the relationship between variation and 
expectation within a single context. It is at this level that students can articulate an expectation; 
at levels four and below, they are able to articulate only comparative aspects such as more or less 
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likely. Thus the higher levels of this framework are distinguished by the use of part-whole 
reasoning, as was the case with the probability frameworks. In order to use the frequentist 
approach to develop a theoretical distribution, one must determine a permissible amount of 
variance between observed frequencies and a theoretical distribution, i.e., a search for a signal of 
variability (Shaughnessy 2007). This requires the highest level of statistical reasoning, for it 
necessitates the comparison of distributions across two groups: the observed frequency and the 
expected frequency (Watson et al., 2007).  

Purpose 
The purpose of this study was to examine the relationships between students' understanding 

of probability and statistics. The frequentist approach to computing probabilities relies on an 
understanding of what constitutes an acceptable level of variance. On the other hand, students' 
expectations for variance may be influenced by an assumption of uniform probability. Thus we 
sought to ascertain whether the students' level of statistical understanding could help explain 
their level of probabilistic understanding, and consequently further understand the role of the 
teaching of statistics and variability in teaching probability. 

Methods 
An extended clinical interview was conducted with one sixth-grade female from Virginia. 

The interview was divided into two sessions, each lasting approximately thirty minutes, 
involving a total of nine tasks. The first session, consisting of the first seven tasks, was designed 
to gauge the student's level of probabilistic thinking as per the frameworks of Jones et al. (1999) 
and Watson et al. (1997); questions and activities similar to their released items were used to 
assess the student’s probability thinking. In order to ascertain the student’s level of statistical 
thinking, tasks similar to those described by Watson et al. (2007) and Bakker (2003) were used. 
Each task was presented orally by the first author who served as the teacher researcher 
throughout the study. Manipulatives available to the student included physical dice, pencil and 
paper, and virtual spinners. Following are the tasks presented to the student in the first session. 

1. If you were to roll this die (student is presented with a six-sided die), do you think it's 
easier to roll a one or a six? 

2. In mathematics class, there are 13 boys and 16 girls. If a teacher were to write the names 
of the students on slips of paper and draw one out of a hat, would it be more likely that 
the name would be that of a boy, that of a girl, or is it equally likely? 

3. There are two boxes, Box A and Box B. Box A has six red marbles in it. Box B has 60 
red marbles. Box A has four blue marbles, while Box B has 40 blue marbles. If you want 
to pick a blue marble, from which box should you choose? 

4. Create a possible graph depicting the monthly high temperatures in your hometown, 
given that the average yearly high temperature was 69 degrees. 

5. A game is played where two spinners, each 50% black and 50% white, are spun. If they 
are both black, then person A wins; if they are different colors, person B wins. Which 
person would be more likely to win? 

6. Estimate the number of penguins in a photograph in which the penguins are not of 
uniform size. 

7. Ten Twizzlers of different colors are placed in a bag, and the student is asked to guess 
which color is most likely to be drawn out. 

Each session was videotaped, and the authors planned additional tasks after discussing their 
individual interpretations of the video. The second session consisted of an extension of Task 4 
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and a new task that merged two dice throwing tasks, the first by Watson and Kelly (2007) and 
the second by Nilsson (2009). These were designed to explore the role of variance in the 
student's perception of the likelihood of outcomes.  

The focus of the first session was that of a clinical interview: both the questions and the 
sequence of tasks were chosen in advance, and no attempt to teach the student was made. The 
second session was more of a teaching experiment (Steffe, 1991), as the student was encouraged 
to examine her notions of variance and expectation in the following tasks. 

8. Create and critique possible graphs depicting the average yearly temperature. 
9. Predict the results of rolling a six-sided die 60 times. The dice in question were (a) fair, 

(b) had two ones and no sixes, (c) were “loaded” in favor of ones. 

Results 

Probability Tasks Results 
The student response to the first task was that it was equally likely to roll a one or a six: 

"because there are the same number of sides, so I don't think it really matters the number."  
The second task response was "a girl, because there's more girls than boys." This correct 

response using part-part reasoning indicates achievement of the multi-structural level of 
Watson's framework (Watson et al., 1997) and the transitional level of Jones' framework (Jones 
et al., 1999). 

According to Watson et al. (1997), a correct response to the third task is associated with the 
relational level of reasoning. The conversation associated with this task proceeded as follows: 

Student: I would think they would be the same, but, ... maybe Box B just because it has a 
bigger number? 

Interviewer: What makes you think they might be the same?  
Student: Because that has 10 and that has 100, so out of, like, 100 percent would be 60 

percent for both of them, to 40 percent.  
Interviewer: What made you think that maybe Box B would be the one to pick? 
Student: Ummm...maybe because it has the bigger number. I don't know.  
 The student's initial correct response to the task was based on proportional reasoning, which 

is requisite for the higher levels of probabilistic thinking in both Jones' and Watson's 
frameworks. The fact that she thought that Box B having a bigger number might make it the one 
to pick suggested that there might be some confusion over the law of large numbers. It was 
suspected that the student might believe that having “large numbers” is desirable when 
computing probabilities, but that she had not yet conceptualized a justification.  

 The teacher researcher then presented her with the option of simulating the task using 
Probability Explorer (Lee, 2005) because he wanted her to become familiar with the program for 
a future task and also wanted to see her reaction to the result of an experiment. Specifically, he 
wanted to see if the result of the experiment would help her make a decision. The conversation 
continued: 

Interviewer: Which do you think is more likely to come up, red or blue? 
Student: Red. 
Interviewer: Why? 
Student: Because there are more reds than blues. 
Interviewer: [Clicking the button to simulate a grab, which was blue.] Why do you think it 

came up blue instead of red? 
Student: I don't know, I'm not sure. 
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Interviewer: What if I click it again, do you think it will come up blue again, or do you think 
it will come up red? 

Student: I'm gonna guess red. I guess it's a fifty-fifty chance because there's two colors. I 
don't know. 

The inconsistency in the responses here is indicative of the transitional level in Jones' 
framework. The simulation didn't help her decide an answer - in fact, it encouraged her to even 
question the part-whole reasoning with which she earlier seemed comfortable. Here the term 
“fifty-fifty” seemed to mean that it could be either of two outcomes rather than a rejection of the 
part-part reasoning earlier displayed. This language pattern has often been noted by researchers 
(e.g., Jones et al, 1999; Shaugnessy & Ciancetta, 2002). The uncertainty of her response seems to 
indicate a lack of knowledge or confidence in the relationship between her theoretical model and 
empirical trials.  

The student again said that there was a “fifty-fifty” chance that each person would win when 
faced with the fifth task on spinners. This was not surprising, since it involves a compound event 
and hence would require the higher levels of probabilistic thinking (Jones et al., 1999). When 
presented with a simulation in which the spinners came up differently seven times out of ten, the 
student decided that choosing different colors probably had an advantage. This aligns with 
Shaughnessy and Ciancetta’s (2002) results which indicated that playing this game and seeing 
variation could help students reject their equiprobable hypothesis.  

The seventh task was also aimed at understanding the student’s level of probabilistic 
thinking. She estimated that blue would be most likely to be drawn out since there were more 
blues than any other color. A blue was drawn and not replaced, leaving 2 green, 2 blue, and 2 
yellow. She was asked again what color was most likely to be drawn, and she said "blue, green, 
or yellow" because they had the highest number. When the blues were replaced, she said that the 
chance of a blue would increase because the number of blues increased. This is evident of a 
relational understanding (comparing the possibility across two sample spaces).  

Overall, the student's level of probabilistic reasoning appeared to be “informal quantitative” 
in the framework of Jones et al. (1999). She displayed use of part-part reasoning throughout and 
at times exhibited part-whole reasoning such as percentages. She was able to compare sample 
spaces and make relational judgments such as “more or less likely,” while at the same time used 
subjective judgments for compound events. This indicated that she was in the first-cycle 
relational stage or second-cycle idiosyncratic stage in the framework of Watson et. al. (1997).  

Statistics Tasks Results 
When creating a scale for her graph in Task 4, the student made the lowest value 30 degrees 

and the highest 80 degrees “because I think the coldest it would get is around thirty” and “eighty 
is probably about the highest it gets around here.” Bakker (2003) observed similar behavior 
when asking students to explain their understanding of “average,” in which several students gave 
a response indicative of a mid-range concept.  

The student seemed to display an expectation for variation in temperatures, as the 
temperature trends cooler in the winter months and warmer in the summer, but the overall mean 
of the temperatures she displayed was much lower than 69 degrees. It appeared that she was 
focused on the variation and the range but not the mean. Based on these initial findings, it was 
decided to follow up in the next session with other graphs to compare to hers in order to 
determine her level of understanding of variability and expectation via the framework of Watson 
et al (2007). 
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When judging the number of penguins in the sixth task, she originally did not want to guess, 
but said “two million” upon encouragement. I believe that the hesitation toward calculation was 
due to the fact that the penguins were not uniform in size and were in rows of non-uniform 
width. She was offered a ruler, and encouraged to create a way to estimate using proportional 
reasoning. She counted the number of penguins in the bottom row, estimated visually the number 
of rows, and multiplied to get an estimate of 1,200 penguins. This was similar to the method that 
Bakker (2003) found children using to estimate the number of elephants in a picture, although 
the students in his study first found an “average” block. She made no mention of the fact that the 
penguins in the row she chose were larger than the penguins in the other rows, even after that 
error led her to a much smaller estimate than she had originally guessed. Her behavior in this 
task was opposite of her behavior in the temperature-graphing in which she initially focused on 
the mean and subsequently on the variation. In the penguin counting she was initially focused on 
the variation (causing the difficulty in counting) and subsequently ignored the variation when 
performing the calculation. 

In preparation for Task 8, the student was introduced to four graphs of supposed student 
work and asked to critique them as possible graphs for the average high temperature. The first 
graph depicted a uniform temperature of 69 degrees, which she decreed unlikely since “February 
was too warm…and August is too cold.”  The second graph was also unlikely, for although the 
temperatures varied, they did so linearly, which was “too perfect.” However, she did express that 
the first two graphs were possibilities. The third and fourth graphs both had varying 
temperatures, and neither graph increased or decreased linearly. However, by putting a pencil 
across the graph at 69 degrees, the researcher showed her that graph 3 had substantially more 
data below the line than above the line (this would technically be comparing to the median, but 
the data is nearly symmetric and hence the mean and median are close). It was thought that this 
would have led her to believe that it was not a possible graph of the data with mean 69 degrees, 
and she did make the observation that “it was too low.” She drew a similar line using the fourth 
graph, and found about the same number of temperatures above and below the line. But when 
asked whether the third or fourth graphs were more likely, she chose the third because in the 
fourth graph the change in temperatures was closer to linear. She seemed to value the observed 
variance and high probability of “randomness” from month to month more than the presence or 
absence of the desired overall mean.  

When faced with the die rolling tasks, the student was first asked to write down her 
prediction of how many of each number would come up. She said that she expected an equal 
number, 10, of each of the six values on the dice, which is indicative of level 2 on the scale of 
variation used by Watson and Kelly (2007), a “strict probabilistic prediction”(p. 3). When she 
rolled a standard die, six came up 17 times, which she attributed to chance. When asked if she 
would like to revise her prediction, she declined and indicated that she still thought each number 
would come up ten times if she rolled again. 

The results of sixty throws of the second die (biased in favor of one) included a total of 21 
ones and zero sixes. It was expected that the student would think that having no sixes was very 
unusual, and that she might wonder about the fairness of the die. She said that she thought it was 
“weird,” but once again attributed the outcome to “chance” and declined to revise her prediction. 

The roll of the third die (weighted) resulted in 29 ones, this time with two sixes. Once again, 
the student was not surprised by the result, attributing it to chance. It was expected that she 
would immediately question the die, for Nilsson (2009) found that students noticed unexpected 
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frequencies with non-uniform dice and resolved the conflict between theoretical and empirical 
probability by developing an empirical model.  

 The teacher researcher felt that it might not occur to the student that some of the dice might 
be unfair, so she was encouraged to examine the second die more closely. After she noticed that 
there were two ones and zero sixes, she explained that she was no longer surprised about the 
presence of 21 ones. “The ten from the sixes went to the ones and 21 is near 20.” She was then 
asked what might explain the 29 ones in the third trial. She ruled out the possibility that there 
were any numbers missing with the third die, because she had rolled at least one of each number. 
The teacher researcher encouraged her to watch the die as it spun, and she noticed that it was 
“loaded” by the way it landed. When asked to predict the way it was loaded and determine how 
many ones would be expected, she first suggested that we should expect to get 20 ones, just as in 
the second problem, but was unable to articulate a reason for this prediction. She was then asked, 
“If I were to roll this die a million times, how could you predict how many ones would come 
up?” She suggested that we had rolled “almost 50 percent ones,” in the first 60 rolls, so we could 
“roll it another 100 times, and see if it came up about half ones.” When asked why she chose 100 
times instead of more or less than 100, she said “maybe do more, like 300.” She had suggested 
the use of a frequentist approach to compute probability. 

Discussion 
The student's performance on the probability tasks showed initial understanding and 

preference for part-part comparisons and the occasional use of part-whole reasoning when faced 
with classical probability tasks. However, when engaged with actual events, she showed a lack 
of confidence in the application of such comparisons to make predictions by rejecting the results 
of her comparisons and relying instead on subjective judgments. While her performance fell into 
the “informal quantitative” stage (Jones et al. 1999), the reliance on subjective probability in 
simulation showed the value of also considering the student's statistical understanding. Her initial 
demonstration of a “purely probabilistic” approach to variance shows her view of the calculation 
of probability as a deterministic exercise. Without further statistical understanding of variance, 
average, and the law of large numbers, she was inconsistent with both the application of 
probabilities to make predictions beyond a single event and the reconciliation of her prediction 
with a contrary outcome.    

The interactions with this student led us to believe that after the second session, she became 
more likely to consider a frequentist approach to calculating probabilities of events that can be 
simulated. This mirrors the historical development of probability, in which theoretical notions of 
expectation are strengthened or rejected based on the observation of the frequency of outcomes. 
Because the student had been exposed to classical probability, she originally focused on the 
mathematical task of comparing outcomes in a uniform sample space. The performance on the 
tasks showed consistently that her probabilistic reasoning was in transition between focusing on 
part-part relationships and focusing on part-whole relationships. The statistical tasks also showed 
that she had difficulty gauging what was a reasonable level of variation, resulting in her 
subjectivity in and hesitation toward the rejection of a theoretical model based on trial outcomes. 
When tasks involved calculations, she ignored variation, and when tasks did not involve 
calculations, she focused on the variation.  

Conclusions 
Statistics and probability understanding are connected, for the evaluation of probabilistic 

claims with the frequentist approach requires one to both understand and expect variance in 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

239



 

situations of uncertainty.  Students who are taught to calculate probabilities using the classical 
approach may have difficulty reconciling empirical evidence that differs from their calculations.  
By exposing children to probabilistic situations in which their intuitions and theories are 
challenged, teachers can encourage them to evaluate their own and then others' claims. Future 
research may explore in more detail the relationship between the transitions that students make 
between levels of probabilistic understanding and understanding of variation and expectation.   
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The main objective of this article is to contribute to the limited research on teachers’ knowledge 
of probability. In order to meet this objective, we presented prospective mathematics teachers 
with a variation of a well known task and asked them to determine which of five possible coin flip 
sequences was least likely to occur. To analyze particular normatively incorrect responses we 
utilized a brand new lens – the composition fallacy – instead of the traditional lenses and models 
associated with heuristic and informal reasoning about probability. In our application of the new 
lens we were able to determine that fallacious reasoning, not just heuristic reasoning, can 
account for normatively incorrect responses to the task. Given the success of the new lens, we 
contend that logical fallacies are a potential avenue for future investigations in comparisons of 
relative likelihood and research in probability in general.  

The general purpose of this article is to contribute to the paucity of research on (prospective) 
teachers’ knowledge of probability (Jones, Langrall & Mooney, 2007; Stohl, 2005). More 
specifically, the purpose of this article is to merge the established thread of investigations into 
comparisons of relative likelihood (e.g., Borovcnik & Bentz, 1991; Cox & Mouw, 1992; Hirsch 
& O’Donnell, 2001; Kahneman & Tversky, 1972; Konold, Pollatsek, Well, & Lohmeier, & 
Lipson, 1993; Rubel, 2006; Shaughnessy, 1977; Tversky & Kahneman, 1974; Watson, Collis, & 
Moritz, 1997) with a developing thread of investigations into prospective teachers’ comparisons 
of relative likelihood (e.g., Chernoff, 2009, 2009a, 2009b). 

In order to achieve the general and specific goals detailed above, prospective teachers, as has 
been the case in past research, were presented with five different sequence of heads and tails – 
derived from flipping a fair coin five times – and were asked to declare which sequence was least 
likely to occur. However, unlike previous research, we utilize a brand new lens to account for 
certain responses; we demonstrate that certain responses fall prey to the fallacy of composition 
(i.e., because parts of a whole have a certain property, it is argued that the whole has that 
property). Further, we contend that informal fallacies, in general, create a new research 
opportunity for those investigating comparisons of relative likelihood. 

A Review of the Literature 
In mathematics education (and psychology) research, comparative likelihood responses are 

categorized, in a broad sense, into two particular categories: correct responses and incorrect 
responses. While correct responses are, for the most part, associated with normative reasoning, 
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