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This study presents a model of three conceptual advances in understanding quadratic functions 
based on a teaching experiment with 6 8th-grade students. Using a covariation approach, 
students investigated quadratic growth as a coordinated change of x- and y-values. Qualitative 
analysis yielded three major shifts in students’ understanding: a) developing an understanding of 
the first and second differences for y as rates of growth with !x implicit; b) explicitly 
coordinating !x with the constant second differences; and c) coordinating covariation and 
correspondence views through meanings for the parameter “a” in y = ax2.   

Objectives 
Calls for “algebra for all” have grown in frequency in recent years, influencing district 

policies nationwide. For instance, the National Mathematics Advisory Panel (2008) recommends 
that districts prepare to enroll increasing numbers of students in algebra by Grade 8. Similarly, 
the NCTM (2000) Principles and Standards calls for including algebraic ideas throughout the K-
12 curriculum and recommends that middle school students in particular focus on learning 
concepts in algebra. Successful implementation of “algebra for all”, however, depends on finding 
ways to help students understand fundamental algebraic concepts such as equality, the use of 
variables, and functions. Research suggests that traditional courses focused on strategies for 
manipulating symbols, simplifying expressions, and solving equations yield poor results in 
overcoming students’ well-documented difficulties in understanding algebraic relations (e.g., 
Knuth et al., 2006). These limitations have led to efforts to expand notions of what constitutes 
school algebra, and one major set of recommendations emphasizes a functional perspective as a 
central concept for organizing algebra instruction (Schliemann, Carraher, & Brizuela, 2007), 
with the early introduction of functional relationships in the elementary and middle grades. 
Placing functions at the center of algebraic reasoning can support students’ abilities to make 
sense of quantitative situations relationally and provide an important foundation for future 
success in mathematics. 

Given the importance of functional understanding for developing algebraic reasoning, one of 
the critical challenges remains better understanding how students’ early function conceptions 
develop. As Asquith et al. (2007) noted, the challenges in learning more about students’ 
reasoning “are particularly relevant at the middle school level, at which time the transition from 
arithmetic to algebraic thinking is arguably most salient” (p. 250). This paper presents an 
investigation of middle school students’ emerging understanding of quadratic growth, presenting 
a model of three conceptual advances students experienced when studying quadratic function. It 
closes with a discussion of the implications for algebra understanding. 
Students’ Understanding of Quadratic Functions 

Quadratic functions represent the basis of the more advanced mathematics to come at the 
secondary level and as such can act as a transitional topic for supporting students’ developing 
algebraic reasoning. However, attempts to effectively introduce quadratic relationships have 
proved difficult. Students struggle to understand the role that the parameters “a”, “b”, and “c” 
play in y = ax2 + bx + c, and have difficulty describing the effects that changing the parameters 
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can have on a function’s graph (Zazkis, Liljedahl, & Gadowsky, 2003). Studies have also 
documented students’ tendencies to inappropriately generalize from linearity in order to make 
sense of quadratic relationships (Chazan, 2006), including using linear interpolation and attempts 
to find a slope and a point (Ellis & Grinstead, 2008; Eraslan, 2007). The phenomenon of 
generalizing from linearity suggests a need to consider introducing non-linear functions earlier in 
students’ algebraic reasoning. One aim of this study was to identify the concepts that middle 
school students developed when investigating quadratic relationships from the perspective of 
reasoning about quantities.  

Conceptual Analysis and the Development of Models of Students’ Thinking 
Conceptual analysis as a tool in mathematics education can be employed to satisfy a number 

of different goals. One can develop a conceptual analysis in order to specify the mental 
operations required to obtain a particular set of concepts or to analyze ways of understanding a 
body of ideas based on describing the coherence between their meanings (Glasersfeld, 1995; 
Moore, 2010). Thompson (2008) identified four uses of conceptual analysis: a) to build models 
of what students actually know at a specific time and in specific situations, b) to describe 
propitious ways of knowing for students’ mathematical learning, c) to describe ways of knowing 
that might be problematic to students’ understanding of important ideas, and d) to analyze the 
coherence of various ways of understanding a body of ideas. The purpose of this study is 
compatible with (a); its aim is to build a model of what students understand about a particular 
type of quadratic growth. In so doing, the model introduces advances in understanding quadratic 
growth that may be favorable for fostering a deeper understanding of functional relationships.  

Following Glasersfeld’s theory of radical constructivism (1995), the analysis presented here 
is based on the understanding that a student’s knowledge is fundamentally unknowable, and thus 
any conceptual model is simply a researcher’s tool for making sense of the student’s 
mathematics. From this perspective it becomes important to refine tentative models over time. 
The use of the teaching-experiment methodology (Steffe & Thompson, 2000) supported the 
creation, testing, and revision of models of students’ mathematics over multiple iterations. One 
aim of the teaching experiment was to investigate the viability of an introduction to quadratic 
function that emphasized the covariation approach (Confrey & Smith, 1995) within a 
quantitatively-rich setting. Within this approach, students examine quadratic growth as a 
coordinated change of x- and y-values. An open question was whether students could make 
quantitative sense of the phenomenon of constant second increases for y coordinated with 
uniform increases for x, and whether this understanding could support a more robust view of 
quadratic function that could be meaningfully connected to the correspondence rule y = ax2.  

Methods 
Participants and the Teaching Experiment 

The study occurred at a public middle school with 6 8th-grade students, whose teachers 
identified them as high performers (2 students), medium performers (2 students), or low 
performers (2 students). Students across a range of performance were included in order to create 
a heterogeneous group in terms of mathematical backgrounds, knowledge, and skills. The 
students participated in a 15-day teaching experiment, which met for 1 hour a day. The students 
worked with a computer simulation of growing rectangles in Geometer’s Sketchpad, in which 
they could manipulate the size of the rectangle. By adjusting the rectangle’s height, the length 
would adjust automatically, preserving the height/length ratio (Figure 1): 
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Figure 1: Image Capture of a GSP growing rectangle script 

The students explored relationships between the heights, lengths, and areas of various rectangles 
by using scripts in Geometer’s Sketchpad and by creating their own drawings, tables, graphs, and 
equations. The author taught the sessions, which were observed by two project team members 
who offered reactions and commentary after each session.  
Data Sources and Analysis 

All sessions were videotaped and transcribed, and additional data sources included students’ 
written work and the author’s written reflections on each session. Data were analyzed via the 
constant comparison method with an open and axial coding technique. Retrospective analysis 
(Steffe & Thompson, 2000) of the videotapes supported the creation of an initial model of each 
student’s evolving understanding of quadratic growth. The development of the initial models of 
conceptual change led to the identification of 4 major categories of interest across all students: 
(a) students’ meaning for the first differences; (b) students’ meaning for the constant second 
differences; (c) the coordination of the increases in height with the increases in area; and (d) the 
relationships between the constant second differences, the rectangle’s dimensions, and the 
parameter “a” in y = ax2. Identifying the students’ operations for each category led to the 
development of the model presented below. 

Results: A Three-Stage Model of Students’ Conceptual Development 
Three major conceptual advances occurred during the teaching experiment that shifted the 

students’ evolving understanding of quadratic growth. Figure 2 provides an overview of each of 
the conceptual advances and the sub-categories of shifts that occurred within each stage. 
 
Stage 1: Understanding 
differences as rates of 
growth with !x implicit 

1a: 1st Differences as the rate of growth of the area 

1b: 2nd Differences as the rate of rate of growth of the area 

Stage 2: Understanding 
differences as rates of 
growth with !x explicit 

2a: There is a relationship between !x and the 2nd differences 

2b: Connecting the 2nd differences to the rectangle  
2c: Identifying how !x is related to the 2nd differences 

Stage 3: Coordinating the 
covariation and 
correspondence views 

3a: Viewing “a” as change in length per 1-unit change in height 
3b: Viewing “a” as the ratio of the change in length to the change 
in height 
3c: Understanding “a” as " the 2nd differences (!x implicit) 
3d: Understanding “a” as " the 2nd differences (!x explicit) 

Figure 2: Three stages and sub-categories of conceptual advances 
The following table is one student’s record of a 2 cm by 3 cm rectangle: 
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Figure 3: Table of length/width/area values of a growing rectangle 

All of the students’ discussions about quadratic growth relied on the growing rectangles context. 
The students created tables of data to record the height, length, and area values they observed in 
Geometer’s Sketchpad such as the one seen in Figure 3. The students’ propensity to represent 
data in well-ordered tables in which the height or the length values increased by uniform 1-cm 
increments encouraged a focus on what is often referred to in textbooks as the “first differences” 
and the “second differences” for y. The first transition the students experienced was one in which 
they shifted from understanding these values as differences to understanding them as rates of 
growth.  
Stage 1: Understanding Differences as Rates of Growth With !x Implicit 

1st differences. The students initially focused only on the differences between successive area 
values without coordinating with the way the height or the length grew. For instance, when 
describing the first differences for height/area table of a square that grew by 1-cm increments, 
Jim explained, “it goes 1 and then 3 and then 5 and then…and then you go to 3, 5, 7,…just keeps 
going.” Attention to coordinating the growth in area with how the height grew was absent from 
Jim’s description. The teacher-researcher asked the students to draw diagrams of growing 
rectangles that depicted the increases in area. Figure 4 shows Ally’s 2 x 3 rectangle that grew to 
become a 3 x 4.5 rectangle and then a 4 x 6 rectangle:  

      
Figure 4: Ally’s depiction of the additional area produced as the rectangle grows 

Ally explained, “So we added 7.5 to this part [pointing to the 2 x 3 rectangle], we added 10.5 to 
this part [the 3 x 4.5 rectangle], and then, because it’s the difference, it’s [the second differences] 
how many more squares you had to add to this one [the 3 x 4.5 rectangle], instead of compared 
to this one [the 2 x 3 rectangle].” In this depiction Ally began to coordinate the number of 
squares making up the additional area to each time the rectangle “grew”. The increments were 
not explicit for Ally, but she and the other students began to attend to the fact that the first 
differences represented the growth of the area for each increase in the rectangle’s size. The next 
day, Jim more generally stated that the first differences represented “How many new squares it’s 
gaining every time it grows.” Jim’s use of the term “every time” suggests that he was 
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coordinating the growth in area with some growth in height and length, but did not explicitly 
attend to the unit of growth.  

2nd differences. The students initially described the second differences as “the second level 
sort of thing”, or “the new outside area.” Ally’s picture in Figure 4 helped her explain that “every 
time it grows it adds 3”, but it was unclear whether she saw this as the rate at which the rate of 
growth of the area grew.  

A continued emphasis on creating drawings helped the students clarify the meaning of the 
second differences. For instance, Bianca explained that they represented “the area of the next 
shape minus the area of the previous shape”, or the “amount added to the amount added to the 
area.” Jim noted that the students should name this value, stating, “I think we should give it 
names, like, the amount added to the amount added is so confusing!” Ally suggested “Difference 
in the Rate of Growth” and the students settled on this term, eventually shortening it to the 
“DiRoG”. Jim characterized the DiRoG as, “So the rate of rate of growth is how many square 
units it’s gaining from the rate of growth.” 

When the students created a table for the height, length, and area of a 1 x 2 growing 
rectangle, Jim found the DiRoG to be 4 square units, and then exclaimed, “it’s going up by the 
rate of the rate…the rate that the rate of growth is growing!” Elaborating, he said, “When I add 
that new shelf thing [referring to increasing the size of the rectangle], there’s 4 left over instead 
of 3.” At this point Jim began to connect the DiRoG to an increase in the rectangle’s size, but the 
unit of increase remained implicit. The connection to the manner in which the rectangle grew 
was limited to conceiving of how the area grew “each time”, rather than for a specific value for 
which the height or length increased.  
Stage 2: Understanding Differences as Rates of Growth With !x Explicit 

!x and the 2nd differences. If the students were not coordinating the DiRoG with the value of 
!x, they would likely not anticipate that the DiRoG would change for a table in which !x was 
something other than 1. In order to test this prediction, the teacher-researcher asked the students 
to create tables for a 2 cm x 5 cm growing rectangle, anticipating that some students would 
increase the height value increased by 1 cm, and others would increase the height value by 2 cm. 
This did occur, for instance, Daeshim created a table in which !x was 2 cm, and Jim created a 
table with !x as 1 cm.  

The students argued about whether the DiRoG should be 5 cm2 or 20 cm2 until Jim realized 
that it depended on !x: “He’s [Daeshim] going by 2’s, but I’m going by 1’s.” After a class 
discussion in which the students agreed that the DiRoG could legitimately be 5 or 20, Jim asked, 
“So your rate of growth can change no matter what?” At this stage the students understood that 
the DiRoG depended on how the rectangle grew, but had not yet determined how the DiRoG was 
dependent on !x.  

Connecting the 2nd differences to the rectangle. Because the students struggled to determine 
how !x would predict the DiRoG, they decided to consider the DiRoG in relationship to the 
rectangle’s dimensions. Daeshim drew a picture to show that the DiRoG would be twice the area 
of the original rectangle for a 4 cm by 14 cm rectangle (Figure 5): 
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Figure 5: Daeshim’s drawing of a growing 4 cm x 14 cm rectangle  
 
Daeshim iterated the height so that the next rectangle became an 8 cm by 28 cm rectangle. He 
explained that this effectively created an additional area equivalent to 3 of the original 
rectangles, and repeating this process again would produce an additional area equivalent to 5 of 
the original rectangles, so the DiRoG, representing the difference in the rate of growth of the 
area, would be equivalent to the area of two of the original rectangles. Daeshim produced a 
corresponding table in which the !x value was 4, and the DiRoG was 112 cm2.  

In contrast, Jim decided that the DiRoG would be equivalent to twice the length of the 
rectangle when the height was 1 cm: in this case, that would be 7 cm2. He explained, “You 
reduce the height until 1, and then you can just multiply the area, or length, by 2. Because at 1, 
length and area are the same.” He was aware that this depended on the rectangle growing in 1 cm 
increments for the height. Bianca agreed with Jim’s method, but characterized it differently, 
stating “It’s the length when the height is 2.” Jim and Bianca imagined a rectangle that was a 1 
cm x L cm rectangle. In this case reducing a general H x L rectangle to 1 cm for the height would 
produce a length of L/H. The area of that rectangle would be L/H, and thus the DiRoG would be 
2 ! L/H, which is equivalent to twice the length (or area) of a rectangle when its height is 1 cm.  

!x and the 2nd differences. The different table configurations for the 4 cm x 14 cm rectangle 
led to the two DiRoG values, 7 cm2 and 112 cm2. Tai explained that both values were correct, 
“Because one the height is growing by 4, and for the other one, height’s growing by 1.” Daeshim 
then explained that when the DiRoG, 7, is multiplied by the square of the !x value in the other 
table, 4, the result is 112: 7 ! 42 = 112. In general terms, if the !x value increases by h units 
instead of 1 unit, the DiRoG must be multiplied by h2. After working with many different table 
configurations, the students decided that this relationship was true, but were not able to explain 
why. It was at this point that shifting to a correspondence view became necessary to move the 
students’ thinking forward. 
Stage 3: Coordinating the covariation and correspondence views 

Viewing “a” as the change in length per 1-unit change in height. The students examined a 
table of height and area values and had to predict the area when h = 82 (Figure 6).  

           
Figure 6: Student’s work on a far prediction problem 

The students introduced a third length column and found length values by dividing the area 
by the height. Tai explained, “The area divided by the height is the length. And if you can find 
out the length, then for this then you can find out the area.” The constant increase of 4.5 cm in 
the length helped the students create a general strategy. Jim explained, “It would go over 4.5 for 
every time you go up the height 1.” Jim determined that he could find the area by multiplying the 
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length by the height, i.e., “n ! 4.5 ! n”, which the students then shortened to 4.5n2. Jim and the 
other students’ ongoing attention to coordinated changes even as they identified a general 
correspondence rule marked the beginning of their coordination of the covariation view and the 
correspondence view. 

Viewing “a” as the ratio of the change in length to the change in height. Once the students 
created equations in the form y = ax2, they began to examine connections between “a” and the 
quantities height and length. The parameter “a” can be thought of as the ratio of the rectangle’s 
length to its height. However, this view did not gain purchase with the students, who were 
entrenched in a dynamic view, preferring to think about how the heights, lengths, and areas 
changed as the rectangle grew. Tai explained, “The number in the front is always the difference 
in the length divided by the difference in the height.” Daeshim formalized this as “dL/dH”, 
where “dL” and “dH” referred to the constant differences in successive length and height values. 
The students’ ability to relate “a” to a coordinated change in height and length values served to 
further connect the covariation and correspondence views. 

Understanding “a” as " the 2nd differences (!x implicit). The students noticed that the “a” in 
y = ax2 was half the DiRoG. This is true only for tables in which !x is 1, but the students did not 
initially attend to this limitation. After creating the correspondence rule A = 0.75h2, Jim 
explained, “The difference of the rate of growth, half of that is here [points to .75].” After 
working with multiple tables, the students agreed with Jim’s conclusion and Bianca formalized it 
as “DiRoG/2 = a”. At this point, the students understood the parameter “a” in two ways: as half 
the DiRoG (although this depends on the height growing in 1-cm increments), and as the ratio of 
the change in length to the change in height. This led Bianca to realize that they could determine 
the DiRoG by finding !L/!H and multiplying it by 2. However, the students could not easily 
explain why their generalizations were true, and they were not aware of the fact that their 
generalizations were limited to the case in which height increased by 1 cm. 

Understanding “a” as " the 2nd differences (!x explicit). In order to help the students re-
focus their attention on the change in height values, the teacher-researcher introduced tables with 
varying !x values. The students examined a new table with a !x value of 4 in which the 
correspondence rule was y = 4.5x2. The students were instructed to consider, “What does the 4.5 
have to do with the DiRoG?”  

It was through a re-consideration of the quantities height, length, and area that the students 
eventually began to connect the DiRoG, the “a” value, and the !x value. The students initially 
predicted that “a” would be equal to DiRoG/2. They quickly determined that this was incorrect 
and at that point recalled Daeshim’s conjecture that if the !x value increases by h units instead of 
1 unit, the DiRoG must be multiplied by h2. Bianca realized, “Length over height! It’s length 
over height, times DiH (!x) squared, times 2 equals the DiRoG of the area.” Bianca realized that 
“a” was the ratio of the length to the height of the rectangle. She knew that typically, twice this 
value is the DiRoG, but she also realized she needed to compensate for the !x value being 4 
instead of 1. Multiplying by !x2, which she called “DiH”, provided the correct compensation. 
Eventually, the students formalized this connection as “a = (DiRoG/2) ! DiH2”.  

Discussion 
The students experienced little difficulty transitioning to tables that did not increase by 

uniform height values. The images of the changing height and length values in the growing 
rectangle supported their ability to make sense of these tables and create correspondence rules. 
Moreover, the students were able to make meaningful connections between correspondence rules 
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and graphical representations by relying on images of coordinated changes between height, 
length, and area. For instance, all of the students correctly predicted that the parabola for y = 5x2 
would be narrower than the parabola for y = 0.5x2, because the former represented a larger 
rectangle at each specific height value that would add more area with each increase in height.  

The students’ conceptions about quadratic growth were not without limitations. It was 
challenging for them to coordinate the growth in area with corresponding growth in height and 
length, and the students did not appear to reach a point at which they viewed the quantities as 
varying continuously rather than in repeated discrete increments. Nevertheless, the students 
developed a number of important threshold concepts (Meyer & Land, 2003) during the course of 
their investigations. They conceived of the first and second differences as rates of growth, and 
coordinated the growth of area with growth in height and length values. Their coordination of the 
covariation view with the correspondence view also fundamentally changed their understanding 
of the role of the parameter “a”, and aided their abilities to create meaningful correspondence 
rules to represent data.   

Lobato et al. (2009) remarked that a common view of conceptual analysis is that it should be 
based on analyzing the understanding of mathematically sophisticated adults, if participants are 
included at all. When student thinking is mentioned, its value is relegated to providing a window 
into the psychology of mathematics rather than as a source for articulating the substance of 
mathematics. But analyzing student reasoning, particularly at the middle-school level when 
students confront complex functional relationships for the first time, can inform the construction 
and refinement of a set of conceptual learning goals. The results of this study suggest that a 
covariational approach to quadratic relationships can provide a foundation for understanding the 
nature of quadratic growth and can support a meaningful transition to correspondence 
relationships.  
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