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ABSTRACT
A number of studies have demonstrated links between linguistic 
knowledge and performance in math. Studies examining these 
links in first language speakers of English have traditionally relied 
on correlational analyses between linguistic knowledge tests and 
standardized math tests. For second language (L2) speakers, the 
majority of studies have compared math performance between 
proficient and non-proficient speakers of English. In this study, 
we take a novel approach and examine the linguistic features of 
student language while they are engaged in collaborative problem 
solving within an on-line math tutoring system. We transcribe the 
students’ speech and use natural language processing tools to 
extract linguistic information related to text cohesion, lexical 
sophistication, and sentiment. Our criterion variables are 
individuals’ pretest and posttest math performance scores. In 
addition to examining relations between linguistic features of 
student language production and math scores, we also control for 
a number of non-linguistic factors including gender, age, grade, 
school, and content focus (procedural versus conceptual). Linear 
mixed effect modeling indicates that non-linguistic factors are not 
predictive of math scores. However, linguistic features related to 
cohesion affect and lexical proficiency explained approximately 
30% of the variance (R2 = .303) in the math scores.  

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted 
Instruction (CAI); J.5 [Computer Applications: Arts and 
Humanities]: Linguistics 

General Terms
Algorithms, Measurement, Performance 

Keywords
On-line tutoring systems, educational data mining, natural 
language processing, sentiment analysis, predictive analytics 

1. INTRODUCTION
It has long been argued that there are strong links between 
language skills and the ability to engage with math concepts and 
problems. For instance, success in math is argued to be partially 
based on the development of language that affords children the 
ability to participate in math instruction in the classroom as well 
as “engage quantitatively with the world outside the classroom.” 
[1]. Similarly, strong math skills are presumed to interact with 
language ability because math literacy is not just about knowing 
numbers and symbols, but also understanding the words 
surrounding those numbers and symbols. Thus, strong overlap is 
thought to exist between math and print literacy [2]. 

Notably, it may not only be language skills that are related to 
math ability, but also a number of other cognitive predictors that 
are developed before formal education. Along with linguistic 
skills, cognitive skills such as a spatial attention and quantitative 
ability may be related to early math skills in young children [3]. 
Nonetheless, linguistic skills may be one of the more important 
factors. For instance, Cummins [4] identified language difficulties 
in second language (L2) speakers as a key obstacle in solving 
math problems and linked difficulty in transferring cognitive 
operations across math and language domains as a barrier to 
success in math.  

One problem with previous studies linking math success and 
linguistic factors is that the studies have generally relied on 
correlational analyses among standardized tests of math and 
linguistic knowledge. For instance, several studies have examined 
links between tests of language proficiency (e.g., syntax, 
knowledge of language ambiguity, verbal ability, and 
phonological skills) and success on tests of math knowledge 
including algebraic notation, procedural arithmetic, and arithmetic 
word problems [1, 5]. Other studies have compared success on 
standardized math tests between first language (L1) speakers of 
English and second language speakers of English, who have lower 
linguistic ability [6, 7, 8]. To our knowledge, no studies have 
examined the relationship between language complexity and 
language affect in student discourse to their success on math 
assessments. 

The purpose of this study is to fill that gap by examining the 
language used by students engaged in collaborative math problem 
solving in an on-line tutoring system. To do so, we transcribed 
recordings of student discourse during math problem solving and 
analyzed the language produced for a number of linguistic 
features related to text cohesion, lexical sophistication, and 
sentiment that were derived from natural language processing 
(NLP) tools. In this study, we examined the extent to which the 
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derived linguistic features are predictive of students’ pretest and 
posttest math scores. We also examine a number of non-linguistic 
factors that are potentially predictive of math success including 
age, gender, school, and content focus (procedural versus 
conceptual). Our goal is to directly investigate links between 
linguistic production and math success.  

1.1 Math and Language Connections 
A number of studies have examined links between math skills and 
language abilities in first language (L1) speakers of English. 
These studies generally indicate that there are strong links 
between language proficiency and math ability. For instance, 
Macgregor and Price [5] examined the relations between three 
cognitive indicators of language proficiency (metalinguistic 
awareness of symbols, syntax, and language ambiguity) and 
algebraic notation. Their data came from pencil-and-paper tests 
taken by 1500 students aged between 11 and 15 whose length of 
algebra instruction varied between 1 and 4 years. The majority of 
students who scored high on language tests also scored high on 
the algebra test. A follow-up study included a more difficult 
algebra test that led to greater variance in high and low scores 
math scores and indicated a stronger relationship between 
language ability and algebraic notation. The authors concluded 
that limited metalinguistic awareness seemed to negatively affect 
success in algebra learning. 

In a similar study, Vukovic and Lesaux [1] investigated links 
between linguistic skills (i.e., general verbal ability and 
phonological skills), symbolic number skills and arithmetic 
knowledge (procedural arithmetic and arithmetic word problems). 
They also included working memory and visual–spatial ability as 
control variables. Their data came from 287 third graders enrolled 
at five different schools using the same curriculum for math 
education. A path model analysis indicated that the linguist skills 
differed in their degree of relation with arithmetic knowledge. 
While phonological skills were found to be directly related to 
arithmetic knowledge, general verbal ability was indirectly related 
through symbolic number skills. They concluded that “general 
verbal ability is involved in how children reason numerically 
whereas phonological skills are involved in executing arithmetic 
problems.” (p.90). 
Hernandez [9] investigated links between math and language 
skills indirectly, by examining relationships between reading 
ability and math achievement levels. He hypothesized that there 
was a positive correlation between reading skills and math scores. 
To test this hypothesis, he analyzed 652 ninth-grade students’ 
scores from the reading and math sections of the Texas 
Assessment of Knowledge and Skills. Correlations between the 
reading scores and the math scores were computed for texts taken 
in sixth, seventh, and eighth grades. The results revealed 
significant positive correlations (with small and medium effect 
sizes) between reading ability and math achievement. Hernandez 
suggested that students’ reading skills should be taken into 
account in order to provide more effective math instruction, 
especially for poor readers. Such instruction could include reading 
strategy training and collaboration between reading and math 
teachers. 

However, not all studies have found significant links between 
language skills and math knowledge. LeFevre et al. [3] conducted 
a longitudinal study that followed children’s math progress. The 
study focused on a year-long data collection from 182 children 
ages 4 to 8 (37 in preschool and 145 in kindergarten), including 
linguistics skills (receptive vocabulary and phonological 
awareness) and non-linguistic skills such as quantitative 

knowledge, spatial attention, early numeracy skills (number 
naming and nonlinguistic arithmetic). The outcome measures in 
the study included standardized and research-based tests of math 
knowledge. Path modeling resulted in three paths which showed 
that linguistic skills were significantly related to number naming, 
that quantitative abilities were related to processing numerical 
magnitudes, and that spatial attention was related to a variety of 
numerical and math tests. The last two paths, related to 
quantitative predictors of arithmetic knowledge, found that non-
linguistic features were stronger predictors of math success.  

An additional source of evidence for connections between 
linguistic and math abilities have come from studies comparing 
L1 and L2 English language speakers. The basic notion behind 
these studies is that students with lower language skills in English 
(i.e., second language speakers of English who are less proficient) 
will have lower math skills in English based classroom. And, it is 
further assumed that once L2 students reach a threshold of 
language proficiency, they will have the resources to perform on 
par with L1 speakers [4].  

The assumption that L2 students do not perform as well as L1 
students is supported by the US Department of Education [10], 
which reports that over a five-year period (from 1st to 5th grade), 
L1 speakers of English report higher math scores than proficient 
L2 speakers who, in turn, report higher math scores low proficient 
L2 students.  

For the most part, results from research investigating the 
differences in math skills between L1 and L2 speakers of English 
concur with US Department of Education report. For instance, Alt 
et al. [6] investigated relations between math and language 
achievement among school-age children (ages 7-10) who were 
grouped into native students (N=21), L2 learners whose first 
language was Spanish (N=20), and students with specific 
language impairment (SLI) (N=20). The researchers hypothesized 
that there would be differences in math skills between the groups 
due to language proficiency differences. Data were collected 
using two standardized math tests (one in English and one in 
Spanish) and three experimental tasks (number comparison, 
quantity comparison and concept mapping games). The tests and 
tasks were categorized as either heavy or light processing in terms 
of language, symbol, and visual working memory. For instance, 
the math test in English was classified as heavy language 
processing, heavy symbol processing, and light on visual working 
memory. The math test in Spanish was classified as light language 
processing, heavy symbol processing, and light on visual working 
memory. The concept mapping game was classified as light 
language processing, light symbol processing, and heavy on visual 
working memory. The results showed that students with SLI 
achieved performed significantly worse than native speakers in all 
tests and tasks. When L1 and L2 speakers were compared, Alt et 
al. found that L1 students significantly outperformed the L2 
students only in language-heavy tests and games. These results led 
Alt et al. to conclude that language proficiency is a crucial factor 
in math success for students who have language-related 
challenges.  

Martinello [8] investigated item difficulty differences across math 
tests between L1 and L2 students in terms of different levels of 
linguistic complexity and contextual support provided by pictures 
and schemas. Standardized math test scores for 68,839 fourth-
grade students, 3179 of which were non-native speakers of 
English, were used in the study. The test scores consisted of 39 
items that assessed knowledge of number sense and operations, 
patterns and relations, algebra, geometry, measurement, and 



probabilities. For each item in the test, two researchers rated the 
grammatical and lexical complexity of the item. The results 
showed that linguistic complexity and the non-linguistic 
representations that accompanied the items accounted for around 
66% of the variation in scores between native and non-native 
students such that linguistically complex items were found to be 
more difficult for nonnative speakers. These items included 
complex grammatical structures and low frequency non-math 
words that were central to the items and hard to guess from the 
context. Non-linguistic representations (especially schemas) were 
found to decrease the difficulty of more linguistically complex 
items. 

 Similar findings that support the notion that L2 speakers of 
English are at a disadvantage in math performance when 
compared to L1 speakers have been reported in a number of 
studies [11, 12, 13]. Of course, while language is a predictor of 
success, it is not the only consideration. Language skills can 
interact with background differences such as parent education, 
levels of poverty, and ethnicity [10], courses taken [12], and 
immigrant status [13]. Nonetheless, correlational studies generally 
support the threshold hypothesis [4] that proficiency in the 
language of instruction is necessary for academic achievement in 
disciplines such as math. 

1.2 Current Study 
In summary, a number of studies have demonstrated strong links 
between linguistic knowledge and success in math. Studies 
examining these links in L1 speakers have traditionally relied on 
correlational analyses between linguistic knowledge tests and 
standardized math tests [1, 3, 5]. For L2 speakers, the majority of 
studies have compared math success between proficient and non-
proficient speakers of English [6, 10, 11, 12, 13]. In this study, we 
take a novel approach and examine the linguistic features of 
students’ language production during math problem solving in an 
on-line tutoring system. To derive our linguistic features of 
interest, we transcribe student speech and use a number of natural 
language processing tools to extract linguistic information related 
to text cohesion, lexical sophistication, and sentiment. Thus, in 
contrast to previous studies, our interest is not on linguistic 
performance as measured by standardized tests, but on linguistic 
performance as a function of language production during 
collaborative math learning activities. Our criterion variables are 
pretest and posttest math performance scores. In addition to 
examining relations between linguistic features of student 
language production and math scores, we also control for a 
number of non-linguistic factors including gender, age, grade, 
school, and content focus (procedural versus conceptual). Thus, in 
this study, we address three research questions:  

1. Are non-linguistic factors significant predictors of math 
performance in a collaborative on-line tutoring environment? 

2. Are linguistic factors related to lexical sophistication, 
cohesion, and affect significant predictors of math 
performance in a collaborative on-line tutoring environment? 

3. Are linguistic features stronger predictors of math 
performance than non-linguistic factors? 

 

METHOD 
2.1 Procedure 
The data used in this study come from an experiment that 
compared the effectiveness of collaborative versus individual 
learning of fraction concepts and procedures from an intelligent 
tutoring system. Students in the study were randomly assigned to 

one of two conditions: Collaborative, in which two students 
worked with a partner through the full tutor curriculum (i.e., 
collaborative dyad), and Individual, in which students worked by 
themselves on the entire tutor. Since audio recordings of student 
dialogue were only collected for the Collaborative condition, the 
present investigation only applies to students in that condition. 
The fractions tutoring system that students used is online 
software, built using an extension of Cognitive Tutor Authoring 
Tools [14] designed to support collaborative learning [15]. The 
fractions tutoring system helps students become better at 
understanding and using fractions. It covers six sub-topics, 
including naming, picturing, equivalent, ordering, adding, and 
subtracting fractions. Its effectiveness has previously been 
demonstrated in prior classroom deployment studies [16, 17]. 
These studies showed that students’ mistakes decrease as they 
progress through the tutor; students score higher on a fractions test 
after using the tutoring system compared to before; and scores 
remain higher than pre-tutoring a week after they have finished 
using the tutoring system. 

Figure 1. Example problems from the “adding fractions” section of 
the collaborative fractions tutor.  
In this study, the tutoring system was designed to support 
collaboration between students. Although each student worked on 
the tutoring system on his or her own computer screen, each 
student in a pair could control only part of the screen. The 
students needed to work together to finish the problem (i.e., one 
student could not do everything). Students worked together at the 
same time and, ideally, talked about what they were doing, asked 
for help from their partner, defended a position or explained why 



they thought something was the correct answer, and built off of 
each other’s contributions. 

All collaborative dyads randomly received a problem set focused 
on either procedural or conceptual knowledge building. The 
procedural versus conceptual comparison had been included to 
investigate whether there were any interactions between 
collaborative learning and type of knowledge acquired. Figure 1 
shows one example of each type of problem, conceptual and 
procedural. The top and bottom panels show example problems 
from the conceptual and procedural knowledge conditions, 
respectively. The figure depicts correctly completed screens; 
student-input fields are marked with either green text or borders. 
The study took place over five consecutive days. On the first day, 
students individually took a pretest to establish their baseline 
fractions knowledge.  In the following three days, students in the 
Collaborative condition worked through the tutoring system with 
a partner. On the last day, students individually took a posttest 
that also tested fractions knowledge, with content similar to the 
pretest. 

1.3 Participants 
A total of 104 fourth and fifth graders participated in the 
Collaborative condition of the study.  There were 19 fifth graders 
from one classroom of one school and 50 fourth graders and 35 
fifth graders from a second school. Of these, only a subset of 
students completed the full study (pretest, posttest, and three days 
of tutoring system use), had the same partner during the entire 
study (no absences for either individual), and consented to audio 
recording of their dialogue. For consistency purposes, we only 
analyzed data from students who fit all of these criteria. Thus, our 
analyses were done on this subset of 36 students (14 fifth graders 
from the first school, and 16 fourth graders and 6 fifth graders 
from the other school). There were 15 males and 21 females in the 
analysis subset. Student pairs were determined by the teachers. 
Teachers were asked to pair each student with a partner that they 
would get along with, and who was at a similar knowledge level. 

1.4 Transcriptions 
A professional transcriber transcribed each of the speech samples 
collected from the participants. The transcriptions contained the 
speaker’s words, some metalinguistic data (singing, laughing, 
sighing) and filler words (e.g., ummm, ahhhh). Disfluencies that 
were linguistic in nature (e.g., false starts, word repetition, repairs) 
were also retained. If any portion of the audio was not 
transcribable, the words were annotated either with an underscore 
or the flag “INAUDIBLE” depending on the transcriptionist. The 
files were cleaned so that metalinguistic data, filler words, 
untranscribale portions were removed prior to analysis. 

1.5 Linguistic Variables 
The transcripts were separated by learner and then cleaned to 
remove all non-linguistic information including metadata and 
non-linguistic vocalizations such as coughs and laughs. Each 
transcript was run through a number of natural language 
processing tools including the Tool for the Automatic Analysis of 
Lexical Sophistication (TAALES) [18], the Tool for the 
Automatic Analysis of Cohesion (TAACO) [19] and the 
SEntiment ANalysis and Cognition Engine (SEANCE) [20]. The 
selected tools reported on language features related to lexical 
sophistication, text cohesion, and sentiment analysis respectively. 
The tools are discussed in greater detail below. 

1.5.1 TAALES 
TAALES is a computational tool that is freely available and easy 
to use, works on most operating systems (Windows, Mac, Linux), 
allows for batch processing of text files, and incorporates over 
150 classic and recently developed indices of lexical 
sophistication. These indices measure word frequency, lexical 
range, n-gram frequency and proportion, academic words and 
phrases, word information, lexical and phrasal sophistication, and 
age of exposure. Each of these are discussed briefly below. For 
more detailed accounts of TAALES please see Kyle and Crossley 
[18]. 
Word frequency indices. TAALES calculates a number of word 
frequency indices with frequency counts retrieved from Thondike-
Lorge [21], Kucera-Francis [22], Brown [23], and SUBTLexus 
databases [24]. In addition, TAALES derives frequency counts 
from the British National Corpus (BNC) [25]. TAALES calculates 
scores for all words (AW), content words (CW), and function 
words (FW).  

Range indices. In addition to frequency information, TAALES 
includes a number of range indices which calculate how many 
texts within a corpus a word appears (i.e., specificity). Range 
indices are calculated for the spoken (574 texts) and written 
(3,083 texts) subsets of the BNC, SUBTLEXus (8,388 texts) and 
Kucera-Francis (500 texts).  
N-gram frequency and proportion indices. TAALES calculates 
bigram and trigram frequencies and proportion scores (i.e., the 
proportion of n-grams in a text that are common in a reference 
corpus) from both the written (80 million words) and spoken 
subcorpora (10 million words) of the BNC. 

Academic list indices. TAALES includes word and n-gram level 
academic lists. These indices are calculated from the Academic 
Word List (AWL) [26] and the Academic Formula List (AFL) 
[27]. 

Word information indices. Word information scores are derived 
from the MRC Psycholinguistic Database [28, 29, 30]. Word 
information scores are calculated for word familiarity, 
concreteness, imageability, meaningfulness, and age of 
acquisition. 

1.5.2 TAACO 
TAACO (Crossley et al., in press-b) incorporates over 150 classic 
and recently developed indices related to text cohesion. For a 
number of indices, the tool incorporates a part of speech (POS) 
tagger from the Natural Language Tool Kit [31] and synonym sets 
from the WordNet lexical database [32]. The POS tagger affords 
the opportunity to look at content words (i.e., nouns, verbs, 
adjectives, adverbs) as well as function words (i.e., determiners, 
propositions). TAACO provides linguistic counts for both 
sentence and paragraph markers of cohesion and incorporates 
WordNet synonym sets. Specifically, TAACO calculates type 
token ratio (TTR) indices (for all words, content words, function 
words, and n-grams), sentence overlap indices that assess local 
cohesion for all words, content words, function words, POS tags, 
and synonyms, paragraph overlap indices that assess global 
cohesion for all words, content words, function words, POS tags, 
and synonyms, and a variety of connective indices such as logical 
connectives (e.g., moreover, nevertheless), causal connectives 
(because, consequently, only if), sentence linking connectives 
(e.g., nonetheless, therefore, however), and order connectives 
(e.g., first, before, after). 



1.5.4 SEANCE 
SEANCE is a sentiment analysis tools that relies on a number of 
pre-existing sentiment, social positioning, and cognition 
dictionaries. SEANCE contains a number of pre-developed word 
vectors developed to measure sentiment, cognition, and social 
order. These vectors are taken from freely available source 
databases such as SenticNet [33, 34] and EmoLex [35, 36]. In 
some cases, the vectors are populated by a small number of words 
and should be used only on larger texts that provide greater 
linguistic coverage in order to avoid non-normal distributions of 
data as found in the Lasswell dictionary lists [37] and the Geneva 
Affect Label Coder (GALC) [38] lists. For many of these vectors, 
SEANCE also provides a negation feature (i.e., a contextual 
valence shifter [39]) that ignores positive terms that are negated 
(e.g., not happy). The negation feature, which is based on Hutto 
and Gilbert [40], checks for negation words in the 3 words 
preceding a target word. SEANCE also includes the Stanford part 
of speech (POS) tagger [41] as implemented in Stanford CoreNLP 
[42]. The POS tagger allows for POS tagged specific indices for 
nouns, verbs, and adjectives. 

1.6 Statistical Analysis 
We first conducted a paired samples t-test to examine if there 
were differences between pretest and posttest scores for the data. 
We then conducted linear mixed effect (LME) models to answer 
our three research questions. The purpose of the LME was to 
determine if linguistic features in the students’ language output 
along with other fixed effects could be used to predict the 
students’ pretest and posttest math scores. Thus, the LME model 
modeled the pretest and posttest results in terms of random factors 
(i.e., repeated variance explained by the students as they moved 
through the intervention longitudinally) and fixed or between 
factors (e.g., the linguistic features in their transcripts, gender, 
age, school). Such an approach allows us to examine math growth 
over time for individual learners using random factors as well as 
investigate if individual differences related to the learner such as 
demographic information, age, and linguistic ability predict math 
development. Lastly, the approach allows us to also examine if 
different classroom interventions influence math scores (i.e., 
procedural versus conceptual approaches to teaching math in the 
classroom). 
 Prior to the LME analysis, we first checked that the linguistic 
variables were normally distributed as well as controlled for 
multicollinearity between all the linguistic variables (r > .700). 
We used R [43] for our statistical analysis and the package lme4 
[44] to construct linear mixed effects models (LME). We also 
used the package lmerTest [45] to analyze the LME output and 
derive p-values for individual fixed effects. Final model selection 
and interpretation was based on t and p values for fixed effects 
and visual inspection of residuals distribution. To obtain a 
measure of effect sizes, we computed correlations between fitted 
and predicted residual values, resulting in an R2 value for both the 

fixed factors and the fixed factors combined with the random 
factor (i.e., the repeated participant data from the pretest and the 
posttest). We first developed a baseline model that included 
gender, grade, condition, and school as fixed effects and 
participants as random effect. We next developed a full model that 
included gender, grade, condition, and school as fixed effects 
along with linguistic features and participants as random effect. 

2. RESULTS 
2.1 Math Gains 
A paired t-test examining differences between the pretest and the 
posttests scores indicated significant differences between the 
pretest (M= .469, SD=.170) and the posttest (M= .603, SD= .185); 
t(35)= 5.988, p < .001. 

2.2 Baseline Model 
A baseline model considering all fixed effects aside from 
linguistic revealed no significant effects on math scores. Table 1 
displays the coefficients, standard error, t values, and p values for 
each of the non-linguistic fixed effects. Inspection of residuals 
suggested the model was not influenced by homoscedasticity. The 
non-linguistic variables explained around 2% of the variance (R2 
= .016) while the fixed and random variables together explained 
around 55% of the variance (R2 = .553). Thus, the majority of 
change found in the pretest and posttest was due to time. 

2.3 Full Model 
A full model was developed that including the nested baseline 
model and linguistic fixed effects. The model included five 
linguistic features related to cohesion (sentence linking 
connectives and adjacent overlap of adjectives), affect (respect 
terms), and lexical proficiency (number of function word types 
and verb hypernymy). None of the variables showed suppression 
effects. The model indicated that a greater number of sentence 
linking connectives (e.g., nonetheless, therefore, however), 
function word types (e.g., prepositions, connectives, and articles), 
and overlap of adjectives predicted higher math scores. 
Conversely, more respect terms and greater use of more specific 
words (i.e., greater hypernymy scores) related to lower math 
scores. Table 2 displays the coefficients, standard error, t values, 
and p values for each of the fixed effects ordered by strength of t 
value. A log likelihood comparisons found a significant difference 
between the baseline and full models, (χ2(2) = 42.486, p < .001), 
indicating that the inclusion of linguistic features contributed to a 
better model fit. Together, the fixed factors including the 
linguistic and non-linguistic variables explained around 30% of 
the variance (R2 = .303) while the fixed and random variables 
combined to explain around 82% of the variance (R2 = .823). 
 
 

Table 1. Baseline model for predicting math scores 

 Fixed Effect Coefficient Std. Error t p 

(Intercept) 0.564 0.059 9.543 < .001 

Gender (male) -0.039 0.061 -0.650 0.521 

Grade (5) -0.029 0.082 -0.350 0.729 

Condition (procedural) -0.024 0.060 -0.397 0.694 

School 0.038 0.086 0.436 0.666 



3. DISCUSSION 
Previous studies that have investigated links between language 
use and math performance have reported strong links between the 
two indicating that language skills are an important prequisite for 
effectively engaging with math concepts and problems. These 
previous studies have traditionally relied on analyzing links 
between language proficiency tests and/or surveys and 
standardized math scores. Similar studies have also examined 
differences in math performance between L1 and L2 speakers of 
English to test threshold hypotheses predicated on the notion that 
less proficient speakers of English will have more difficulty in 
math classes taught in English. 

Our study takes a novel approach to understanding links between 
math performance and language use by examining the actual 
language produced during math problem solving and examining if 
features of this language are predictive of math performance in 
standardized tests. Beyond language features, this study also 
examined a number of non-linguistic student factors including 
gender, age, grade, school, and content focus (procedural versus 
conceptual). The findings indicate that the non-linguistic factors 
were not significant predictors of math performance. However, 
time between the pretest and posttest was a strong predictor of 
performance. In addition, linguistic features were significant 
predictors of math performance. We address each of these below. 

That non-linguistic features were not significant predictors of 
math performance has important implications for understanding 
math performance. Specifically, male students performed no 
better than female students and 4th grade students performed no 
better than 5th grade students. In addition, no differences were 
reported for students from two different schools. These findings 
provide evidence that learning within a math tutoring system may 
not favor one gender over another nor grade or school. Lastly, the 
two types of knowledge conditions (conceptual or procedural) 
showed no difference in performance indicating equivalence 
between the two. However, performance did increase between the 
pretest and the posttest according to the paired samples t-test 
indicating that significant learning occurred as a result of 
interacting with the online math tutor. Much of this increase can 
be attributed to the effects of repeated measures across time (i.e., 
the random effects). These random effects explained above 50% 
of the variances in the math performance scores.  

 

 

The full model LME model demonstrated that a number of 
linguistic features were significant predictors of math 
performance. Specifically, a greater number of sentence linking 
connectives and function words were predictive of math 
performance. These findings indicate that math performance is 
likely linked with the production of more complex syntactic 
structures such as those found in coordinated sentences and 
sentences with more structural components (i.e., function words). 
Lexically, math performance is associated with the production of 
more abstract words (i.e., words with greater hypernymy scores). 
Intuitively this makes sense because math solutions are based on 
abstract thinking and language use. In addition, a greater overlap 
of adjectives between sentences is a strong predictor of math 
performance likely indicating that the repetition of math 
adjectives such as greater than and less than may be related to 
math performance. Lastly, our analysis demonstrated that math 
performance was related to the use of fewer words related to 
respect. This finding may seem counter-intuitive, but performance 
within a math tutoring system that requires collaboration and 
timed completion of problems may favor curt and direct discourse 
between participants that may be interpreted as less respectful. In 
total, the linguistic factors explained about 28% of the variance in 
the math performance data over and above the 2% explained by 
the non-linguistic factors. When both fixed and random factors 
were included in the model, over 80% of the variance in the math 
performance was predicted.  

To provide examples of the linguistic features above, we extracted 
excerpts from a student dyad on the last day of the study. The first 
student (Student 137) in the dyad had the highest posttest score 
(97%) and showed a 15% gain from the pretest. The second 
student (Student 128) scored low on the posttest (44%) and had 
the third lowest score on the pretest (22%). The student’s posttest 
score was almost double that of his pretest score though, showing 
strong gains in learning. 

 
 
 
 
 

Table 2. Full model for predicting math scores 

 Fixed Effect Coefficient Std. Error t p 

(Intercept) 0.557 0.055 10.106 < .001 

Gender (male is contrast) 0.007 0.057 0.121 0.905 

Grade (5th grade is contrast) -0.021 0.077 -0.284 0.778 

Condition (procedural content is contrast) -0.036 0.057 -0.639 0.527 

School 0.032 0.080 0.401 0.691 

Sentence linking connective 0.059 0.018 3.246 < .001 

Number of function word types 0.044 0.0193 2.273 < .050 

Respect words -0.032 0.013 -2.518 < .050 

Adjacent overlap of adjectives 0.039 0.015 2.549 < .050 

Verb hypernymy -0.038 0.017 -2.265 < .050 



Table 3: Text excerpts from students that completed and did 
not complete the EDM MOOC 

Sentence linking examples 

 

STUD_137: Yeah it is, but it could be 80/80. It could – why 
didn't they just have a card with a one? 
… 
STUD_137: It's equal. You're rushing. And just look at the 
numbers and then you put one in. 
 

Function words and Respect example 

 
STUD_128: How did you get them all wrong? 
STUD_137: You got two of them wrong.  
STUD_128: You got them all wrong. 
STUD_137: Wait. If the cement is green. 
STUD_128: Why did you get them all wrong? 
STUD_137: You did. 
STUD_128: Why did you get them all wrong? 

Adjective overlap example 

 
STUD_137: No, two-ninths is greater than one-ninth. 
STUD_128: Two-ninths is greater. 
… 
STUD_137: It's greater than. It was either greater than or equal 
to. 
STUD_128: It was greater than. 
 

Hypernymy example 

 

STUD_137: And that one you have too. You should be able to 
figure that one out. 
STUD_128: Three, four, five. Three-fifths. 
STUD_137: Dude, when are you going to – what are you 
doing? Oh. Wait, hold on. 
STUD_128: You have it. 
STUD_137: Oh, they're equal.  
STUD_128: You had it the whole time. 
 

 

Linguistically, the excerpts provide illustrations for the trends 
reported in the statistical analysis. For instance, Student 137 links 
many sentences together with connectors such as but and and. In 
addition, both students tend to use a greater number of function 
words such as how, did, you, all, of, if, and the. The use of a 
greater number of function words indicates the use of stronger 
sentence-based structural elements, which may be important in 
discussing more abstract ideas. In terms of abstract words, the 
excerpts show that these two students use a number of abstract 
words that are less specific such as that, one, have, able, go, are, 

do, you, it, they, and time. The two students also demonstrate a 
directness with one another that could be viewed as disrespectful 
from an outsider’s perspective. For instance, the two students 
seem comfortable accusing one another of getting the answers 
wrong. Lastly, in terms of argument overlap, the excerpts provide 
instances of students repeating adjectives related to math solving 
problems (i.e., greater). In total, the excerpts provide illustrations 
of what the natural language processing tools are likely capturing 
in their estimations of math performance. These excerpts help 
provide contextualized details for the math discourse in the data. 

4. CONCLUSION 
The findings from this study have practical implications for 
understanding math performance and math instruction. 
Specifically, the findings provide support for the notion that 
language proficiency is strongly linked to math performance such 
that more complex language and a greater overlap of adjectives 
equates to higher performance. Similarly, discourse that contains 
fewer terms related to respect equates to higher performance. 
From an instructional perspective, the findings also indicate that 
collaborative, on-line tutoring instruction can lead to improved 
math performance. These findings could inform math pedagogy 
practices by providing support for language instruction within the 
math classroom. For instance, it may be the case that providing 
students with a solid math vocabulary foundation would improve 
students’ math success by providing them with the means to 
discuss complex math problems in a collaborative environment. It 
is likely that focusing both on abstract math principles and on the 
language needed to communicate these principles would push 
students over the language threshold needed for success in the 
math classroom.  Additionally, in terms of respect, it is likely that 
students that show less deference and are more likely to challenge 
ideas are more successful in the math classroom. 

Future studies can build on the results presented here by sampling 
larger populations of students that come from more diverse 
backgrounds and more varied grade levels. Such a study would 
build on the relatively low sample size found in this paper and 
provide greater evidence for the importance of linguistic 
proficiency and math success. Of interest in future replications of 
this research would be to examine if the results reported here 
persist with older students, in educational settings outside of an 
intelligent tutoring environment, and with different math topics. 
Such research would help extend the current study past the single 
context on which it focused and provide evidence that linguistic 
proficiency is an important indicator or math success in a variety 
of learning contexts.  
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