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This research investigates the question of what growth, if any, is shown by teachers in identifying the
components of children’s reasoning using an upper and lower bounds argument for a fraction task.
Specifically, it reports on assessment outcomes from design-based research in teacher education that
measures teachers’ identification of children’s reasoning from studying videos. We describe the nature of
the instructional intervention as well as the video-based assessment used as a pre and post measures for
identifying children’s mathematical reasoning, and report on the nature of teacher growth in recognizing
components of children’s arguments.
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Introduction

The research presented here comes from an ongoing, interdisciplinary research and development
project' at a large public university. Work includes the development of a digital repository that provides
open access to a seminal video collection of children’s mathematical reasoning that accumulated through a
quarter century of research on the development of mathematical thinking and reasoning in students.’
Videos from the repository have been used to conduct design research in teacher education, specifically for
the purpose of examining how the opportunity to study videos may help teachers augment their abilities to
recognize mathematical reasoning as it emerges from children’s explanations and justifications of their
problem solving. Instructional interventions for teachers were created for implementation in courses or
workshops, typically based on one of two models (Palius & Maher, 2011). We report here on a different
kind of intervention model that was created specifically for implementation in the context of online
learning with digital resources.

Theoretical Perspective

Learning occurs in complex contexts and it is important that it be studied in the way it naturally occurs
(Brown, 1992; Greeno & MAP, 1998; Spiro, Feltovich, Jacobson, & Coulston, 1992). However, teachers
and those preparing to be teachers do not ordinarily have the opportunity to study in detail the learning of
individual students in classrooms. Collections of video offer a rich source of data for careful analysis and
reflection on children’s learning. Choosing subsets of videos from large collections can provide a rich
resource for addressing particular research questions. Our work and the work of others have demonstrated
that there is much to gain from studying episodes of children’s learning from videos (Cobb, Wood, &
Yackel, 1990; Maher & Davis, 1995; Fenemma, Carpenter, Franke, Levi, Jacobs, & Empsom, 1996;
Tirosh, 2000). Further, video offers an excellent medium for teachers’ development of what Bransford et
al. (20006) refer to as “adaptive expertise,” that is, an ability to spontaneously and flexibly identify,
critically evaluate, and respond in appropriate ways to instances of children’s learning. It is from this
perspective that our study was designed.

Yackel and Hanna (2003) discuss the importance of reasoning and proof in mathematics learning and
their functions of verification, explanation, and communication. They point to the need for mathematics
educators to be able to support students’ development along the continuum from reasoning, explaining,
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and justifying towards articulation of formal proof, as well as to the need for teachers to create a classroom
atmosphere that support such development (Yackel & Hanna, 2003). Mathematics teacher education,
therefore, is faced with the challenge of helping teachers to attend to emerging forms of reasoning as
children express justifications using their own language. Making use of episodes and transcripts of video
data of children’s reasoning from a major collection, we sought to investigate whether teachers could build
the mathematical knowledge for recognizing components of children’s reasoning. Specifically, the
question that guided our research was whether and to what extent teachers successfully identified
components of children’s reasoning using an upper and lower bounds argument for a fraction task.

Methodology

As part of the design research in teacher education, three of the authors developed a new, online course
in mathematics education, entitled Critical Thinking and Reasoning, to be taken as an elective by graduate
students. Its purpose was to focus teachers’ attention to how children reason about fraction ideas through
study of videos children’s reasoning, while engaged in problem solving with fraction tasks (Yankelewitz,
Mueller, & Maher, 2010). Research literature connected to the video content was assigned as readings to
comprise course units around which online discussions were focused. As a component of the design
research, we examined teachers’ attention to children’s reasoning before and after the intervention. For
this report, we investigate the nature of teacher growth in identifying upper and lower bounds reasoning in
children from videos.

The first implementation of the course was during a semester with 12 students participating in the
research. The second iteration was done as a four-week summer session course with 10 students
participating in the research. Both courses contained a unit that focused specifically on children’s
mathematical reasoning about the fractions task in the video assessment. Specifically, students were
assigned to study two videos, Fractions, Grade 4, Clip 1 of 4: David’s upper and lower bound argument
(http://hdl.rutgers.edu/1782.1/rucore00000001201.Video.000054465) and Fractions, Grade 4, Clip 4 of 4:
Designing a new rod set (http://hdl.rutgers.edu/1782.1/rucore00000001201.Video.000054751). The
reading assignment from the unit was a book chapter that discussed children’s mathematical exploration
that leads toward proof-like reasoning, which included the example of David’s upper and lower bounds
argument (Maher & Davis, 1995). The prompt for group online discussions was open-ended and suggested
that attention be paid to forms of children’s arguments and the evidence they provide, as well as
consideration of what may be evidence of understanding or evidence of obstacles to the children’s
understanding of the mathematics. Students were assigned to small groups for engaging in online
discussions about the videos they were viewing and the related literature.

Consistent with methodology of the larger research project, participants were administered pre and
post-tests to measure change from before to after the intervention. We focus here on a video-based
assessment for identifying children’s mathematical reasoning on a particular task in the fractions strand.
The assessment video includes footage from research conducted in an after-school enrichment program for
6" graders in an urban community, where children engaged in many of the same tasks that were explored
by children in the 4™ grade classroom study (Maher, Mueller, & Yankelewitz, 2009). It contained short
clips of children working in groups on a task to find a Cuisenaire rod in the set that could be given the
number name one-half when the blue rod has been given the number name one. It also contained short
clips of children explaining their solution ideas with rod models as justification to the whole class (Maher,
Mueller, & Palius, 2010).

The children in the assessment video offered various explanations for why they found that there is no
rod in the set that can be called one half when the blue rod is called one. Some of the explanations took the
form of reasoning by cases; however, one of the arguments took the form of reasoning by upper and lower
bounds (Yankelewitz, Mueller, & Maher, 2010). More than one child’s discourse contributed to the
articulation of this argument form, which, along with the mathematical sophistication of the argument,
made it particularly interesting as focal point of analysis after coding the assessment data. That is, we were
curious about the extent to which teachers would recognize that children were expressing in their own
language that the solution for half of Blue is bounded by the Yellow and Purple rods, with Yellow being
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the least upper bound and Purple being the greatest lower bound (i.e., that there is no rod in between
them).

A highly detailed rubric was developed by our research team in order to code the data by the
components of the arguments that were articulated by the children in the assessment video. The assessment
prompted study participants to describe as completely as they can the reasoning that the children put forth,
whether each argument offered by children is convincing, and why or why not are they convinced.
Participants were provided with a transcript for the video and were not restricted in the amount of time
spent working on the assessment. The assessment prompt also informed participants that their responses
would be evaluated by the following criteria: recognition of children’s arguments, their assessment of the
validity or not of children’s reasoning, evidence to support their claims, and whether the warrants they give
are partial or complete.

Two researchers scored assessment data with 90.4% inter-rater reliability. For the upper and lower
bounds argument, there were four components of the children’s reasoning that could combine in three
different ways to be a complete argument (a, b, and c; a, b, and d; or a, b, ¢, and d):

The Yellow rod is (1/2 of one White rod) longer than half of Blue; (AND)

Purple is (1/2 of one White rod) shorter than half of Blue; (AND)

There is no rod with a length that is between Yellow and Purple; (OR)

The White rod is the shortest rod and the difference between the Yellow rod and the Purple rod is
one White rod.

/oo

Participant responses that did not mention any of the above components or that mentioned only one or two
of them were deemed to be incomplete. The coded data were analyzed quantitatively.

Results

Analysis of the video assessment data yielded the following results with regard to the upper and lower
bounds argument. Tables 1a, 1b, and 1c describe the distributions of pre-assessment argument
components, showing results for the two classes combined and then disaggregated by the two
implementations of the course. In Table 1a, we note that 13 of the 22 students in the combined courses
provided an incomplete argument description in the pre-assessment, while 8 of these 13 students provided
none of the 3 essential argument components (a, b, and ¢ or d) of a complete upper and lower bounds
argument. A total of 11 out of 13 excluded argument component a; 12 out of 13 excluded argument
component b; and 10 out of 13 excluded either argument component ¢ or d. Table 1b shows that 8 of 12
students in the intervention provided an incomplete argument description in the pre-assessment; 5 of these
8 students provided none of the 3 essential components (a, b, ¢ or d) of a complete argument description. A
total of 3 out of 8 excluded argument component a; 7 out of 8 excluded argument component b; and 6 out
of 8 excluded either argument component ¢ or d. Table 1¢ shows that 5 of 10 students in the summer
course intervention provided an incomplete argument description in the pre-assessment; 3 of these 5
students provided none of the three essential components (a, b, ¢ or d) of a complete argument description.
A total of 4 out of 8 excluded argument component a; 5 out of 5 excluded component b; and 4 out of 5
excluded either component ¢ or d.

In summary, the pre-assessment results indicate that 59% of the students in the two courses did not
provide a complete upper and lower bounds argument description on the pre-assessment. Of the students
with an incomplete argument description, over 75% from the two combined courses failed to describe each
of the three essential upper/lower bound argument components.
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Table 1a: Distribution of Pre-Assessment Argument Components: Two Courses Combined
Students with Incomplete Argument Students with Complete Argument
Components Count Frequency Components Count Frequency
None 8 0.6154 a,b,c 4 0.4444
a 1 0.0769 a,b,d 2 0.2222
c 1 0.0769 a,b,c,d 3 0.3333
d 2 0.1538
a,b 1 0.0769
Total 13 1.0000 Total 9 1.0000
Table 1b: Distribution of Pre-Assessment Argument Components: Semester Course
Students with Incomplete Argument Students with Complete Argument
Components Count Frequency Components Count Frequency
None 5 0.625 a,b,c 2 0.25
c 1 0.125 a,b,d 1 0.50
d 1 0.125 a,b,c,d 1 0.25
a,b 1 0.125
Total 8 1.000 Total 4 1.00
Table 1c: Distribution of Pre-Assessment Argument Components: Summer Course
Students with Incomplete Argument Students with Complete Argument
Components Count Frequency Components Count Frequency
None 3 0.6 a,b,c 2 04
a 1 0.2 a, b, d 1 0.2
d 1 0.2 a,b,c,d 2 0.4
Total 5 1.0 Total 5 1.0

Tables 2a, 2b, and 2c¢ describe the distributions of post-assessment argument components, showing
results for the two classes combined and then disaggregated by the two implementations of the course. In
Table 2a, we note that of the 10 of the 22 students in the combined courses provided an incomplete
argument description in the post-assessment, while only 1 of these 10 students provided none of the three
essential argument components (a, b, and ¢ or d) of a complete upper and lower bounds argument. A total
of 4 out of 10 excluded argument component a; 4 out of 10 excluded component b; and 7 out of 10
excluded either component ¢ or d. Table 2b shows that 6 of 12 students in the intervention provided an
incomplete argument description in the post-assessment. Of these 6 students, at least one the three essential
components (a, b, ¢ or d) were provided. Three of the 6 students excluded argument component a; none
excluded component b; and 5 out of 6 excluded either argument component ¢ or d. Table 2¢ indicates that
4 of 10 students in the summer course provided an incomplete argument description in the post-
assessment, 1 of these 4 students provided none of the three essential components a, b, ¢ or d of a complete
argument description. A total of 2 out of 4 excluded argument component a, 3 out of 4 excluded argument
component b, and 2 out of 4 excluded either argument component ¢ or d.
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Table 2a: Distribution of Post-Assessment Argument Components: Two Courses Combined

Students with Incomplete Argument Students with Complete Argument
Components Count Frequency Components Count Frequency
None 1 0.1 a,b,c 4 0.3333
b 2 0.2 a,b,d 3 0.2500
d 1 0.1 a,b,cd 5 0.4166
a,b 4 0.4
a,d 1 0.1
a,d 1 0.1
Total 10 1.0 Total 12 1.0000

Table 2b: Distribution of Post-Assessment Argument Components: Semester Course

Students with Incomplete Argument Students with Complete Argument
Components Count Frequency Components Count Frequency
b 2 0.3333 a, b, c 2 0.3333
a,b 3 0.5000 a,b,d 2 0.3333
b,d 1 0.1667 a,b,c,d 2 0.3333
Total 6 1.0000 Total 6 1.0000

Table 2¢: Distribution of Post-Assessment Argument Components: Summer Course

Students with Incomplete Argument Students with Complete Argument
Components Count Frequency Components Count Frequency
None 1 0.25 a, b, c 2 0.3333
d 1 0.25 a,b,d 1 0.1667
a,b 1 0.25 a,b,c,d 3 0.5000
a,d 1 0.25
Total 4 1.00 Total 6 1.0000

In summary, the post-assessment results indicate that 45.5% of the students in the two courses
combined were not able to provide a complete upper and lower bounds argument description, compared to
59% on the pre-assessment. Of the students with an incomplete argument description on the post-
assessment, 40% failed to describe each of the components a and b, and 70% failed to describe component
c or d. This is in contrast to over 75% who failed to describe each of the three argument components on the
pre-assessment.

Table 3 classifies the pre-assessment argument descriptions into three categories: (1) a Complete
Argument description containing components a, b, and ¢ or d; (2) a No Components description which
lacks all three essential argument components; and (3) a Partial Argument description which contains at
least one essential argument component but lacks all three. The respective frequencies for the two
combined courses are: 40.9% Complete Argument, 36.4% No Argument Components, and 22.7% Partial
Argument.

Table 3: Upper-Lower Bound Pre-Assessment Argument Frequencies

Pre-Assessment Combined Courses Semester Course Summer Course
Argument Components No. Freq. No. Freq. No. Freq.
Complete Argument 9/22 40.9% 4/12 33.3% 5/10 50.0%
No Components 8/22 36.4% 5/12 41.7% 3/10 30.0%
Partial Argument 5/22 22.7% 3/12 25.0% 2/10 20.0%
Total Number Students 22 100% 12 100% 10 100%
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Table 4: Post-Assessment Transition Frequencies
Combined Courses Semester Course Summer Course
Pre- Post- No. Transition No. Transition No. Transition
Assessment | Assessment Frequency Frequency Frequency
NONE N=8 N=5 N=3
No Growth 1/8 12.5% 0/5 0% 1/3 33.3%
Partial 6/8 75% 5/5 100% 1/3 33.3%
Growth
None to b 2 2
None to ab 4 3 1
Complete 1/8 12.5% 0/5 0% 1/3 33.3%
None to 1 0 1
abcd
PARTIAL N=5 N=3 N=2
No Growth 1/5 20% 0/3 0% 1/2 50%
dtod 1 0 1
Partial 2/5 40% 1/3 33.3% 1/2 50%
Growth
ato ad 1 0 1
dto ad 1 1
Complete 2/5 40% 2/3 66.7% 0/2 0%
ab to abd 1 1 0
c to abc 1 1 0

Table 4 provides the post-assessment transition descriptions and frequencies. For example, the 4th data
row of Table 4 indicates 2 students in the combined courses exhibited a pre-to-post argument description
transition of “No Components” on the pre-assessment to a post-assessment description with only the
argument component “b” (transition labeled as “none to b”). In examining the transition frequencies for the
combined courses in Table 4 we note the following: (1) 75% of students with no upper and lower bounds
argument components on the pre-assessment provided a partial upper and lower bounds argument
description on the post-assessment and 12.5% provided a complete argument description, and (2) 40.0% of
students with a partial argument on the pre-assessment provided a complete upper and lower bounds
argument description on the post-assessment. In the semester course, it is important to note that 2/3 of the
students with a partial argument description on the pre-assessment transitioned to a complete argument
description on the post-assessment. This is in contrast to the summer course, where one half of the students
with a partial pre-assessment description exhibited no growth on the post-assessment and the other half
exhibited only partial growth.

Conclusions and Discussion

The effectiveness of using video examples in online courses to stimulate the growth of teachers’ ability
to recognize and describe upper and lower bounds arguments of students is evidenced by the fact that 2/3
of the semester course students transitioned from a partial to a full upper and lower bound argument
description on the post assessment, and 2/3 of the summer course students transitioned from a recognizing
no components of the upper and lower bounds argument description to a partial or complete argument
description. Some teachers recognized the yellow rod as an upper bound and the purple rod as a lower
bound, but did not attend to the detail of the child’s argument that there was no rod in between, so that the
yellow rod was the smallest upper bound and the purple rod was the largest lower bound. Although there
was some growth in teachers’ recognition of components of children’s arguments after studying the
videos, there is still a need for improvement. The research suggests that a video-based approach for teacher
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education has the potential to be effective, but that a single-unit intervention may not be adequate for
developing satisfactory adaptive expertise with regard to this particular form of reasoning. Future studies
might include interventions that give greater attention to the variety of arguments, partial and complete,
that children naturally develop in the process of problem solving so that there may be increased
opportunities for teacher evaluations of the validity of the arguments posed. With regard to online courses,
research also is needed to investigate the role of threaded discussion as a tool to develop adaptive expertise
in recognition of children’s emergent mathematical reasoning and what kinds of scaffolds may serve to
stimulate group discussions that address important aspects of the process as can be observed through
studying video data.

Endnote

" Research supported by the National Science Foundation grant DRL-0822204, directed by C. A.
Maher with G. Agnew, C. E. Hmelo-Silver, and M. F. Palius. The views expressed in this paper are those
of the authors and not necessarily those of the National Science Foundation.

*The repository for the project, Video Mosaic Collaborative, is accessible at the website:
http://videomosaic.org/
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