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Although students’ difficulties in developing and understanding proofs in mathematics is well documented, 
less is known about how students’ example use may support their proof practices, particularly at the 
middle school level. Research on example use suggests that strategic thinking with examples could play an 
important role in exploring conjectures and developing appropriate justifications. This paper introduces a 
framework of middle-school students’ example exploration, distinguishing between the types of examples 
students use and the uses examples play in making sense of and proving conjectures. Drawing from 
clinical interviews with 20 students, we present thirteen categories of example types and seven categories 
of uses, followed by a discussion of each set of categories and their connections to one another. 

.eyZords� Middle School (dXcation� Problem Solving� 5easoning and Proof 

Objectives: The Importance of Supporting Proof in School Mathematics 

Proof in school mathematics has received increased attention over the past decade, Zith researchers 
argXing that it mXst be a central part of the edXcation of all stXdents at all grade levels �%all, +oyles, 
-ahnNe, 	 Movshovit]�+adar, 2002�. %oth the Common Core State Standards for Mathematics �Common 
Core State Standards ,nitiative, 2010� and the Principles and Standards for School Mathematics �1aitonal 
CoXncil of 7eachers of Mathematics, 2000� argXe that a central hallmarN of mathematical Xnderstanding is 
the ability to prove, and that the mathematics edXcation of stXdents from pre�Nindergarten throXgh grade 
12 shoXld enable all stXdents to develop and evalXate mathematical conMectXres, argXments, and proofs. 
Middle school in particXlar is a critical time for stXdents to develop the ability to reason dedXctively, 
resXlting in recommendations for cXrricXlar and pedagogical changes emphasi]ing proof in beginning 
algebra classes �(pp, 1998� Marrades 	 GXtierre], 2000�. 

7hese recommendations pose serioXs challenges, hoZever, given that many stXdents strXggle to 
recogni]e, Xnderstand, and prodXce dedXctive argXments �e.g., Cha]an, 1993� +arel 	 SoZder, 1998�. 
5esearchers have posited that a critical soXrce Xnderlying stXdents¶ strXggles to Xnderstand proof is their 
treatment of e[amples. 2n the one hand, stXdents tend to engage in e[ample�based proofs, pointing to a 
feZ sXccessfXl e[amples as MXstification that a mathematical statement is trXe �e.g., +ealy 	 +oyles, 2000� 
PorteoXs, 1990�. 2n the other hand, deliberate e[ploration of e[amples is not e[plicitly sXpported as a 
strategy to foster dedXctive reasoning� stXdents have feZ opportXnities to strategically analy]e e[amples in 
order to maNe sense of a mathematical statement or to gain insight into the development of its proof.  

We sXggest that providing stXdents Zith opportXnities to carefXlly analy]e e[amples may contribXte to 
their abilities to develop and maNe sense of conMectXres and their proofs. StXdies of mathematicians 
sXggest that the process of e[perimenting Zith e[amples is a critical aspect of proof development �(pstein 
	 /evy, 1995�. AlthoXgh scholars have noted a nXmber of potential roles of e[ample Xse, little research 
has focXsed on characteri]ing these roles Zith regard to facilitating stXdents¶ learning to prove. ,n fact, 
very little is NnoZn aboXt hoZ middle school stXdents thinN Zith e[amples, Zhether their e[ample Xse can 
facilitate deeper mathematical Xnderstanding, or Zhether and hoZ e[amples can sXpport stXdents¶ attempts 
to develop proofs.  

7his paper presents the resXlts of a stXdy aimed at identifying the roles of middle school stXdents¶ 
e[ample Xse. We introdXce a frameZorN that distingXishes betZeen the types of e[amples stXdents Xse and 



����������������������"�	��������	������� *,-�

�

��������!��#�	#!���!��#$�#!�'�������!��#��#�%���#&#�%+)*+&#�	��������������������
���
�������������������������
����
�������

��������
����
���������������	��������������
���
���������
������������ ��!���"������������������
���������.�

the uses e[amples play in maNing sense of and proving conMectXres.  2Xr findings indicate that stXdents 
made Xse of a variety of e[ample types and Xsed e[amples in different Zays in order to checN a 
conMectXre¶s correctness, convince themselves and others that it held trXe, better Xnderstand a conMectXre, 
and develop MXstifications to sXpport their statements. 

Theoretical Background 

2ne common model of stXdents¶ mathematical reasoning is that their Xnderstanding of mathematical 
MXstification is ³liNely to proceed from indXctive toZard dedXctive and toZard greater generality´ �Simon 
	 %lXme, 1996, p. 9�. >For this discXssion, indXctive refers to generali]ing from e[amples, and is not to be 
confXsed Zith mathematical indXction, a valid method of proof.@ 7his e[pected progression is reflected in 
varioXs mathematical reasoning hierarchies �%alacheff, 1988� van Dormolen, 1977� Waring, 2000� as Zell 
as in many cXrricXlar programs �e.g., /appan et al., 2002�. +oZever, not only do stXdents find this 
transition difficXlt to navigate, stXdies also sXggest that their development may not be as straightforZard as 
the indXction�to�dedXction model� in fact, stXdents may folloZ a ³]ig�]ag path´ �Polya, 1954� betZeen 
e[ample e[ploration, conMectXre, proof, and bacN again �e.g., (llis, 2007�.  

2ne approach to helping stXdents navigate the transition to dedXctive reasoning involves emphasi]ing 
the limitations of e[amples as proof, thXs helping stXdents recogni]e the need for dedXctive argXments. ,t 
has, hoZever, proven difficXlt to help teachers leverage this techniTXe in order to sXccessfXlly foster their 
stXdents¶ proof abilities �%ieda, 2011�. ,n addition, this approach positions e[ample�based reasoning 
strategies as stXmbling blocNs to overcome. We sXggest an alternative stance by positioning strategic 
thinNing Zith e[amples as an important obMect of stXdy in its oZn right. From this perspective, reasoning 
Zith e[amples is vieZed as a potential foXndation for the development and Xnderstanding of conMectXres 
and proofs. 

The Roles of Examples 

([amples play a critical role in mathematical practice, and the time spent analy]ing particXlar 
e[amples can provide not only a deeper Xnderstanding of a conMectXre, bXt also insight into the 
development of its proof �(pstein 	 /evy, 1995�. 7he role e[amples play in the ZorN of middle and high 
school stXdents, hoZever, is less Zell Xnderstood. AlthoXgh research has demonstrated stXdents¶ 
overZhelming reliance on e[amples as a means of verification and MXstification, less is NnoZn aboXt hoZ 
stXdents thinN strategically Zith e[amples.  

5esearch on stXdents¶ thinNing does sXggest that e[amples can have different potential roles and Xses. 
For instance, %Xchbinder and =aslavsNy �2009, 2011� introdXced foXr different types of e[amples 
�confirming, non�confirming, contradicting, and irrelevant� and e[amined their statXs in determining the 
validity of mathematical statements. 2ther stXdies have identified different e[ample types as Zell, 
inclXding start�Xp e[amples, boXndary e[amples, crXcial e[periments, reference e[amples, model 
e[amples, coXntere[amples, and generic e[amples �AlcocN 	 ,nglis, 2008� %alacheff, 1988� Michener, 
1978� Watson 	 Mason, 2001�. StXdies e[amining the role of e[amples in Xnderstanding conMectXres have 
foXnd that analy]ing strXctXral similarities across e[amples can sXpport proof development �Pedemonte 	 
%Xchbinder, 2011�. 

This body of research suggests that example use plays an important role in understanding conjectures 
and potentially supporting the development of valid proofs. However, there remains much to be learned 
about what types of examples students exploit, particularly at the middle school levels, and how they use 
them when developing and exploring conjectures. In this study we accordingly characterize the roles and 
strategic uses of examples in terms of a more comprehensive framework for developing, exploring, and 
proving conjectures.  
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Methods 

Participants and Instrument 

Participants Zere 20 middle�school stXdents �12 si[th�graders, 6 seventh�graders, and 2 eighth�
graders�, each Zho participated in a semi�strXctXred 1�hoXr intervieZ. (leven stXdents Zere female and 9 
stXdents Zere male. Seventeen stXdents Zere in general 6th, 7th, or 8th�grade mathematics coXrses Xsing 
the Connected Mathematics cXrricXlXm, Zhile 2 stXdents Zere in algebra and 1 stXdent Zas in geometry.  

7he intervieZ instrXment presented stXdents Zith seven conMectXres �see 7able 1 for sample 
conMectXres�. 7he intervieZer asNed the participants to e[amine the conMectXres, develop e[amples to test 
them, and then, Zhen they coXld, provide a MXstification. 7he conMectXres addressed ideas in nXmber theory 
and geometry that Zere accessible to a middle�school popXlation, and every conMectXre e[cept ConMectXre 
6 Zas trXe. Fifteen oXt of the 20 participants vieZed only the first foXr conMectXres� the remaining 5 
participants had e[tra time to vieZ all seven conMectXres, resXlting in 95 total responses to code. After the 
stXdents ZorNed Zith e[amples for each of the conMectXres, they Zere asNed Zhy they chose the e[amples 
they did.  

Table 1: Sample Interview Conjectures 

Conjecture 1 Eric thinks this property is true for every whole number. First, pick any whole number. Second, 
add this number to the number before it and the number after it. Your answer will always equal 3 
times the number you started with. 

Conjecture 4 Bob thinks this property is true for every parallelogram. The angles inside any parallelogram add 
up to 360 degrees. 

Conjecture 6 Kathryn thinks this property is true for every whole number. First, pick any whole number. 
Second, multiply this number by 2. Your answer will always be divisible by 4. 

Data Analysis 

Coding began by identifying each of the e[amples stXdents prodXced for each conMectXre. We then 
developed emergent codes to identify e[ample types and Xses. Types refer to the different characteristics of 
e[amples stXdents Xsed, and uses refer to the roles that the e[amples played in stXdents¶ investigations. 
7he research groXp discXssed the codes and clarified Xncertainties as emergent codes solidified. Codes to 
determine e[ample types depended on the participant¶s discXssion of the e[ample, rather than on a 
determination based only on the e[ample itself. For instance, the same nXmber, 1, coXld be considered 
³common´ from one stXdent¶s point of vieZ or a ³boXndary case´ from another stXdent¶s point of vieZ. 
FXrthermore, the same e[ample coXld be coded in mXltiple Zays based on the participant¶s e[planation. 
7hree different researchers on the proMect team coded portions of the conMectXre responses so that each 
conMectXre response Zas Xltimately coded independently by at least tZo different team members.  

Results and Discussion 

We foXnd 13 categories of e[ample types �7able 2� and seven categories of e[ample Xses �7able 3�. 
(ach table introdXces the category name Zith the nXmber of instances in Zhich the e[ample type or Xse 
occXrred in the data set, its definition, and a representative e[ample to illXstrate each e[ample type and 
Xse. We discXss the e[ample types first, and then present e[ample Xses. 
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Table 2: Types of Examples 

Example 
Type 

Definition Data Example 

Dissimilar 
Set (41) 

An inclusion of examples that are 
all different from one another. 

“I tried to pick both prime numbers…composite numbers  
and then odd numbers and even numbers. So just have a 
variety of different kinds of numbers.” 

Generic 
(28) 

An example with unimportant 
specific characteristics. These 
examples demonstrate a general 
idea about the conjecture. 

[Uses 50 to explain why Conjecture 1 works]: “So this one 
[51] is 1 more, and this one [49] is 1 less. So if you take this 
one [the 1 from 51] over to that one [49] it turns into 50. 
And then that one goes into 50, and 50.” 

Common 
(24) 

An example described as typical or 
one that many would think of. 

[After choosing 10 and 15 as example cases]: “I picked a 
more uncommon number [15] and a more common number 
[10], and they both worked out.” 

First 
Thought Of 
(22) 

Example is the first that came to 
mind; no evidence of thoughtful 
decision about example selection. 

“I just…kinda what popped into my head.” 

Unusual 
(21) 

An example that does not occur 
often and may have odd or strange 
characteristics. 

[To explain using 1,028 as an example]: “Well, the 1028’s 
kind of like a little stand-out number because it’s – it’s 
large.” 

Random 
(12) 

Example is arbitrarily chosen, with 
the “randomness” intentional to 
highlight the likelihood of the 
conjecture being true. 

This code refers to what students consider random, rather 
than true mathematical randomness: “For a problem like 
this you want to pick random numbers. Not selected 
numbers.” 

Conjecture 
Breaking 
(11) 

Example chosen to disprove the 
conjecture; counterexample. 

“I wanted to do numbers that were hard for it…it was less 
likely for them to be divisible by 3, I think.” 

Easy (11) Examples that are easy to operate on 
or compute with. 

[Prompt: So why did you try it out with 15?] “Because it’s 
an easy number to use.” 

Known 
Case (9) 

Student picks an example in which 
properties or features pertaining to 
the conjecture are already known. 

“A rectangle is a parallelogram, so that is four 90 degree 
angles, which is 360.” 

Boundary 
Case (5) 

An extreme example or a special 
case example, such as the identity. 

[Explaining the use of 0]: “You kind of have to try it with 
every not possibility like, not like 3, you know, to, you 
know, 100, but kind of like get down to the origin of the 
number. Like 1 and then, you know, 0.” 

Similar Set 
(3) 

Deliberate inclusion of examples 
similar to one another. 

[Prompt: Are these two (triangles) different or similar from 
each other?] “Similar, because they have same numbers in 
two of the sides and different numbers in this side.” 

Progression 
(2) 

First one type of example is chosen, 
then student deliberately switches to 
a different type, and may continue 
switching to new types. 

“You would first test a typical number to just see, like, okay 
in general was this going to be true. And then if that – if he 
was true on that, then you say, okay, then I would test a 
more unusual number to just, like, to test his property.” 

Favorite (2) Example represents a favorite 
number or shape.  

“The only reason I picked 6 is because that’s my lucky 
number.” 

 
UnsXrprisingly, Ze foXnd evidence that stXdents chose e[ample types that Zere not alZays deliberate 

or thoXghtfXl� For instance, the categories first thought of, favorite number, and easy represented e[ample 
types that Zere not necessarily connected to the content of the conMectXre at hand. 7hese e[ample types 
also did not typically sXpport the development of dedXctive argXments. +oZever, these categories only 
represented 18� of all of the e[ample types. When e[amining the participants¶ discXssion of their 
e[amples, Ze also foXnd many cases of deliberate and thoXghtfXl e[ample choices, Zhich Ze discXss 
beloZ. 
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%y far the most prevalent type of e[amples Zas the dissimilar set type� many participants indicated a 
belief that choosing a variety of e[amples Zas a more reliable method of testing a conMectXre. For instance, 
one stXdent e[plained the importance of choosing a dissimilar set�  

<oX shoXld find nXmbers that maybe aren¶t as aliNe to test MXst so yoX have all Ninds of differences 
covered. /iNe Zhen yoX¶re maybe testing stXdents for a sXrvey, yoX Zant to have as many different 
stXdents and maybe different race, different families, and everything. -Xst a bigger bacNgroXnd so 
maybe yoX¶ll get more accXrate information. 

7he tZo stXdents Zho Xsed a progression of e[ample types demonstrated similar reasoning by first 
picNing common nXmbers, then deliberately shifting to less common nXmbers. 

7he inclXsion of a dissimilar set often resXlted in a discXssion aboXt the importance of picNing both 
common and unusual e[amples. Some stXdents indicated that XnXsXal e[amples are more convincing than 
other types of e[amples. For instance, one stXdent, (va, tested a conMectXre that every even nXmber added 
to half of itself ZoXld be divisible by 3. She e[plained that she deliberately tested nXmbers that coXld only 
be divided by 2, sXch as 10. (va tested those XnXsXal nXmbers becaXse ³it Zas less liNely for them to be 
divisible by 3, , thinN.´ ,t is Zorth noting that in this case, a nXmber sXch as 10 Zas XnXsXal in (va¶s eyes 
in relationship to the conMectXre, even thoXgh 10 might not be an XnXsXal nXmber for her in general. 
UnXsXal e[amples and boXndary case e[amples both played an important role� they coXld lead to 
conjecture breaking e[ample types, and they Zere particXlarly convincing becaXse if a conMectXre held for 
an XnXsXal or e[treme e[ample, it may be more liNely to be trXe overall. 

7here Zere some e[ample types that Zere more strongly connected to proof development, sXch as 
known cases and generic e[amples. AlthoXgh dedXctive argXments Zere not solely developed throXgh 
these e[ample types, NnoZn case e[amples and generic e[amples helped stXdents reason throXgh the 
strXctXre of the conMectXres. For instance, 5odrigo e[amined ConMectXre 4 �7able 1�, and in order to better 
Xnderstand the conMectXre, he began Zith a NnoZn case e[ample, the rectangle. 5odrigo NneZ that the 
conMectXre held trXe for a rectangle� ³A rectangle is a parallelogram, so that is foXr 90�degree angles, 
Zhich is 360.´ +e then tooN the rectangle and adMXsted it to thinN aboXt hoZ a neZ e[ample ZoXld ZorN 
Zith the conMectXre �FigXre 2��  

           

Figure 2: Rodrigo’s adjustment of the “known case” rectangle into a new parallelogram 

 
After examining the new example, he said, “Oh yes it would work for every one – this doesn’t really 

matter any more.” Developing a generic example, Rodrigo explained further: “That’s just a random 
drawing (Figure 3). It is a rectangle in disguise because you cut this off and you put this, over here, ta da! 
And it becomes a rectangle. And rectangles, well, see, equals 360.”  

        

Figure 3: Rodrigo’s generic example  

 
%y ³random,´ 5odrigo indicated that the particXlar natXre of his e[ample Zas not important becaXse it 

illXstrated a more general point� hence, this e[ample type Zas coded as generic rather than random. Across 
the participant groXp, it is notable that 15� of the e[ample types Zere generic in natXre� it Zas the most 
prevalent code, second only to dissimilar set. ,n general, the types of e[amples stXdents chose in order to 
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foster their Xnderstanding of the conMectXres sXggest that middle school stXdents can and do engage in 
deliberate and strategic e[ample choices.   

Example Uses 

StXdents also demonstrated a variety of e[ample Xses. (ach of the seven categories in 7able 3 inclXdes 
a freTXency, a definition, and a representative data e[ample. 

Table 3: Example Uses 

Example 
Use 

Definition Data Example 

Check (69) Student selects examples to test whether 
the conjecture holds. 

“Just, you know, test, just to see if it actually does 
work or not.” 

Support a 
General 
Argument 
(28) 

Student uses a generic example to 
describe a more general phenomenon in 
support of a deductive proof. 

“When you’re taking half of it, then that number is, 
because it ends up being thirds. So it’s always going 
to be true because if you do…514. That’s always 
going to be 1208, which means that it’s broken up 
into thirds, so no matter what it’s going to be 
divisible by 3.” 

Convince 
(25) 

After checking the conjecture, student 
tries additional examples in order to 
convince oneself or others that the 
conjecture must be true.  

“You can’t be sure if you only test one number 
because one number, because in almost every case 
there is exceptions to the stuff if it’s not true.” 

Understand 
(21) 

Student uses an example to make sense of 
the conjecture; may lead to insights that 
support deductive proof. 

“Let’s try 5…okay. Those are the two that I needed. 
Now I kind of know the logic behind it.” 

Asked (19) Student was asked to choose and 
example; the only evidence that a student 
produces an example is because s/he was 
explicitly asked to do so. 

S: “I’m totally convinced it’s true.” I: “You don’t 
even need to – do you need to test out any 
examples?” (Student shakes head.) I: “Okay. Let’s 
say that you didn’t know it was true. Are there any 
kinds of rectangles you would want to test it out on?” 

Support 
Empirical 
Proof (9) 

Student offers examples as a justification 
of the truth of a conjecture. 

I: “Say that you wanted to show that this was always 
true.” S: “I would use these examples, and probably 
a few more.” 

Disprove 
(6) 

Student tests an example in an attempt to 
disprove the conjecture. 

S: “Any whole number? Oh, I thought you just 
meant even numbers. I wouldn’t think that’s true 
then.” (Tries 9 to disprove). “Nine times 2 equals 18. 
18 divided by 4 equals question mark.” 

 
7he most prevalent Xse of e[amples Zas in checking the correctness of a conMectXre� 39� of the 

e[ample Xse instances occXrred Zhen stXdents Xsed e[amples to test conMectXres. Part of this prevalence 
may be dXe to the fact that stXdents Zere encoXraged to test e[amples dXring the intervieZ. ChecNing 
correctness occXrred Zith many different e[ample types, ranging from the first nXmber thoXght of to 
XnXsXal e[amples to dissimilar sets. Among the other e[ample Xses, there Zere some connections betZeen 
hoZ stXdents Xsed e[amples and the types of e[amples they employed. 7he strongest connection Zas 
betZeen generic e[amples and the support a general argument Xse. 7his linN is XnsXrprising becaXse the 
pXrpose of a generic e[ample is to illXstrate a broader point. Similarly, Xsing e[amples to disprove a 
conMectXre typically relied on conMectXre breaNing e[ample types, bXt also occasionally made Xse of 
boXndary cases or XnXsXal e[amples. 

Another set of linNs emerged Zhen stXdents Xsed e[amples to convince and Xnderstand. 7he e[ample 
types that stXdents vieZed as more convincing, sXch as dissimilar sets, XnXsXal e[amples, and boXndary 
cases, Zere often the ones they employed Zhen continXing to fXrther checN e[amples after an initial test. 
For instance, Alyssa tested ConMectXre 1 Zith the nXmber 4, and foXnd that it ZorNed. She then e[plained 
that she Zas not convinced� ³, thinN , need to try it a feZ more times to maNe sXre.´ She indicated that she 
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shoXld try different nXmbers, sXch as both even and odd nXmbers, in order to really be sXre the conMectXre 
ZoXld ZorN. While testing a dissimilar set of e[amples in order to fXrther convince herself that the 
conMectXre held trXe, Alyssa began to Xse the e[amples to Xnderstand the strXctXre of the conMectXre. 
7hroXgh this process, she Zas then able to prodXce a general argXment, Xsing the initial e[ample, 4, as a 
generic e[ample� ³When yoX add the nXmber before and the nXmber after, those tZo nXmbers Zill eTXal 
tZice the first nXmber , gXess. %ecaXse, liNe, for 4 � 3 � 5, if yoX drop one off the 5«then 3 ZoXld Nind of 
be 4. So it¶d be 4 � 4 � 4. Which ZoXld be, liNe, 12, or 4 times 3.´ Alyssa¶s general argXment Zas not 
XnXsXal amongst the 20 participants� Ze coded stXdents¶ MXstifications as part of a larger stXdy and foXnd 
that after e[ploring e[amples, stXdents Zho attempted MXstifications Zere able to prodXce dedXctive 
argXments or valid coXntere[amples a little over half the time. 

It is worth noting that in 19 responses, students did not see a need to produce an example at all; this 
typically occurred because the student already believed the conjecture to be true, and therefore not in need 
of testing. For example, Andre was asked to consider the conjecture that for any triangle, the sum of the 
length of any two sides are greater than the length of the third side. Andre did not see a need to test this 
property because “That’s a property already proven by the, you know, the community.” This finding is in 
contrast to previous results suggesting that students want to test conjectures even when presented with 
their proofs (e.g., Chazan, 1993). 

Conclusion 

7his stXdy presented a frameZorN of the e[ample types and e[ample Xses middle school stXdents 
employed Zhen maNing sense of, e[ploring, and attempting to prove conMectXres. 2Xr findings sXpport 
earlier stXdies sXggesting that stXdents¶ Xses of e[amples can play an important role in e[ploring and 
Xnderstanding conMectXres, as Zell as in potentially sXpporting the development of valid proofs �AlcocN 	 
,nglis, 2008� %Xchbinder 	 =aslavsNy, 2011� Pedemonte 	 %Xchbinder, 2011�. Moreover, oXr stXdy 
sXggests that distingXishing betZeen e[ample types and e[ample Xses may be an important component in 
better Xnderstanding stXdents¶ thinNing Zith e[amples� this distinction can also provide a potential 
strXctXre for more in�depth analysis of hoZ e[ample type may be linNed to e[ample Xse in fXtXre stXdies. 

2ne compelling finding Zas that many of the stXdents Zho e[plored conMectXres Zith mXltiple 
e[amples Zere able to prodXce dedXctive argXments, valid coXntere[amples, or general argXments that 
relied on generic e[amples. 7hese resXlts rXn coXnter to the many stXdies demonstrating .±16 stXdents¶ 
difficXlties in prodXcing valid mathematical proofs �e.g., Cha]an, 1993� +ealy 	 +oyles, 2000�. 7he fact 
that the stXdents Zere able to prodXce valid argXments after in�depth e[ample e[ploration provides initial 
evidence that strategic and thoXghtfXl Xse of e[amples can indeed sXpport the development of 
mathematically appropriate proofs, even at the middle school level. 7his sXggests the importance of 
continXing to stXdy the roles e[amples can play in sXpporting middle�school stXdents¶ learning to prove.  
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