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This paper explores how textbooks address two central concepts in differential calculus, derivative at a 
point and derivative function, make the transition from one concept to the other, and establish connections 
between them. We analyzed how the three most widely used calculus textbooks present these two aspects of 
the derivative, focusing on visual means and word use in the books. In contrast to their thorough 
discussion on the limit process for the derivative at a point, the books make a quick transition to the 
derivative function by “letting a point a vary” and changing “f '(a) to f '(x).” Then, they graph f '(x) using 
several values of the derivative at a point. In addition, the books often use the term “derivative” without 
specifying which of the two concepts is meant, and are inconsistent in the use of letters, so that it is unclear 
whether a letter (a or x1) denotes an arbitrary but fixed number or a variable.  

.eyZords� Advanced Mathematical 7hinNing� Post�Secondary (dXcation 

Introduction 

With a gradXal groZth in research in teaching and learning calcXlXs, there have been several stXdies 
aboXt stXdents
 thinNing aboXt the derivative. Most stXdies have reported stXdents¶ conceptXali]ations 
aboXt the derivative �e.g., 7all, 1987� 7hompson, 1994�, and their notations  �e.g., +ahNioniemi, 2005� 
=andieh, 2000� by addressing several mathematical aspects. 7his stXdy focXses on tZo aspects� the 
derivative at a point as a specific valXe, and the derivative fXnction as a fXnction. 2ther researchers have 
emphasi]ed these aspects �e.g., 2ehrtman, Carlson 	 7hompson, 2008�, bXt feZ stXdies have been done 
especially aboXt the derivative as a fXnction, nor aboXt the transition and connection betZeen derivative at 
a point, and the derivative fXnction. 

Motivation of this stXdy came from ParN
s �2011� stXdy aboXt calcXlXs instrXctors¶ and stXdents¶ 
discoXrses on the derivative. 7he resXlts shoZed that instrXctors addressed some aspects of the derivative 
implicitly in class Xsing the Zord ³derivative´ ZithoXt stating Zhether it Zas ³derivative at a point´ or 
³derivative fXnction,´ and hoZ these tZo concepts are related. DXring the intervieZs, stXdents also Xsed 
the Zord ³derivative´ ZithoXt specifying and often to sXpport incorrect notions sXch as ³derivative as 
tangent line.´ From these resXlts, Ze started Zondering hoZ to help stXdents reali]e the relation and 
difference betZeen derivative at a point and derivative fXnction, maNe a transition from one to the other 
and bXild connections betZeen them. As a first step, Ze decided to e[plore hoZ Zidely�Xsed calcXlXs 
te[tbooNs address the derivative as a point�specific concept and as a fXnction. Specifically, Ze address the 
folloZing TXestions� 

1. How textbooks for Calculus I address the derivative at a point? 
2. How textbooks for Calculus I address the derivative of a function? 
3. Whether and how textbooks for Calculus I make a transition/connection between the 

derivative at a point and the derivative of a function? 

7his stXdy is important for several reasons. First, it focXses on a central, bXt not yet sXfficiently 
analy]ed, relation betZeen tZo main concepts of differential calcXlXs, derivative at a point and derivative 
as a fXnction. %y stXdying stXdents¶ opportXnities to establish sXch relation throXgh the material presented 
in the te[tbooNs, if the analysis shoZs gaps or inadeTXacies in the presentations, Ze Zill be able to sXggest 
Zays instrXctors may complement hoZ the booNs presented the idea. 7he te[tbooNs analy]ed in this stXdy, 
Zhich are Xsed by over 70� college calcXlXs instrXctors, share many similarities in their approaches to 
derivative. Second, e[ploring the relation betZeen derivative at a point and derivative fXnction is important 
becaXse it offers calcXlXs stXdents an opportXnity to revisit central aspects of fXnction, namely a relation 
betZeen thinNing aboXt fXnction pointZise and across an interval. 7hoXgh the concept of fXnction is 
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fXndamental to Xnderstand calcXlXs concepts, many stXdents Zho received A¶s still have incomplete 
conceptions of fXnction after their second calcXlXs coXrse �2ehrtman et al., 2008�. 

Theoretical Background 

Function at a Point and Function on an Interval 

7here is a rich body of research on hoZ stXdents Xnderstand fXnction, Zhich also has provided several 
conceptXali]ations of fXnctions. 7he stXdies, Zhich address developmental stages of Xnderstanding 
fXnctions, have made a clear distinction aboXt fXnction at a point and fXnction on an interval �e.g., 
%reidenbach, DXbinsNy, +aZNs, 	 1ichols, 1992�. Most stXdies describe the first stage of Xnderstanding 
fXnction as being able to generate an oXtpXt valXe of a fXnction Zhen an inpXt valXe is given. A person at 
this stage ZoXld thinN of fXnction as a valXe for a given inpXt. MonN �1994� called this vieZ of fXnction 
³pointwise understanding,” and DXbinsNy and McDonald �2002� called it ³Action.´ 7he ne[t stage is 
described as being able to see dynamics of a fXnction. MonN �1994� called this stage ³across-time 
understanding,´ and described it as an ability to see the patterns in change of a fXnction resXlting from 
patterns in inpXt variables. DXbinsNy and McDonald �2002� called it ³Process.´ %reidenbach et al. �1992� 
foXnd that a transition from the first to the second stages is not natXral, and some calcXlXs stXdents are at 
the first stage, and thXs they have troXble seeing calcXlXs concepts dynamically. 

Derivative at a Point and Derivative as a Function  

([isting stXdies on stXdents¶ thinNing aboXt the derivative can be divided regarding the tZo vieZs of 
fXnctions. StXdies aboXt the derivative as a point�specific valXe shoZed that stXdents¶ thinNing aboXt the 
limit is related to their thinNing of local linearity �+ahNioniemi, 2005� and tangent line �7all, 1987�. 
StXdies aboXt the derivative as a fXnction that mainly address co�variation shoZed the importance of Zhat 
is varying in a fXnction. 2ehrtman et al. �2008� compared the rate of change of the volXme of a sphere Zith 
respect to its radiXs �its sXrface area� and the rate of change of the volXme of a cXbe Zith respect to its side 
�not its sXrface area�. 7hompson �1994� related the rate of change to stXdents¶ thinNing of the derivative.  

+oZever, feZ stXdies have been done aboXt the relation betZeen these tZo types of Xnderstanding of 
the derivative. MonN �1994� addressed these tZo types based on stXdents
 Zritten ansZers on foXr sXrvey 
problems, bXt did not give mXch detail aboXt Zhether and hoZ stXdents related these tZo concepts. ParN 
�2011� intervieZed 12 calcXlXs stXdents and foXnd that Xsing one Zord ³derivative´ for both ³the 
derivative fXnction´ and ³the derivative at a point´ Zas related to their conception of the derivative as a 
tangent line. 7he stXdents Zere changing Zhat the Zord ³derivative´ refers to in varioXs conte[ts and Xsed 
it as a mi[ed notion of a point�specific concept bXt a fXnction, Zhich the tangent line represents. 7hey also 
Xsed this idea to MXstify an incorrect statement, ³a fXnction increases if the derivative increases.´ Analysis 
of their class lessons aboXt the derivative shoZed that the instrXctors Zere not e[plicitly addressing the 
derivative at a point as a nXmber, and the derivative fXnction as a fXnction. ,n this cXrrent stXdy, Zhether 
and hoZ the calcXlXs te[tbooNs relate these tZo mathematical aspects Zill be e[plored.   

Words and Visual Mediators  

7his stXdy is based on the commXnicational approach to cognition �Sfard, 2008�, Zhich vieZs 
mathematics as a discoXrse characteri]ed by foXr featXres� Zord Xse, visXal mediators, roXtines, and 
endorsed narratives. 7his stXdy focXses on the first tZo featXres. A word in mathematical discoXrse can be 
Xsed differently in a different conte[t. For e[ample, the Zord ³derivative´ is Xsed as the derivative at a 
point and the derivative fXnction �e.g., ³is the derivative positive here"´�. 4Xantifiers �e.g., one 	 any� 
play an important role to determine if ³derivative´ is a point�specific valXe or a fXnction. Visual mediators 
refer to visXal means of commXnication. 7his paper focXses on varioXs notations of the derivative and 
letters for a point and variable. For e[ample, if the derivative at a point is denoted as f '(a), and the 
derivative fXnction as y = f '(x), ³a´ is Xsed as a nXmber, and ³x´ is Xsed as a variable. 7he derivative at a 
point can be visXally mediated by the slope of the tangent line and the derivative fXnction by its graph.  
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Method 

%ased on %ressoXd¶s �2011� stXdy, Ze chose three te[tbooNs that are Zidely Xsed by CalcXlXs , coXrse 
instrXctors in the United States� one edition by SteZart �43��, +Xghes�+allett et al. �19��, 7homas et al. 
�9��. ,n each booN, Ze e[plored the sections aboXt the rate of change, and the derivative. We developed 
an analytical tool Xsing an e[isting frameZorN �ParN, 2011�. 7hoXgh there Zere slight differences in each 
booN, Ze identified five phases� �a� rate of change, �b� the derivative at a point, �c� transition, �d� the 
derivative fXnction, and �e� connection. 7he first phase addresses the rate of change ZithoXt Xsing the Zord 
³derivative.´ 7he derivative at a point is defined in the second phase. ,n the third phase, the booNs maNe a 
transition to the derivative fXnction, and define it in the foXrth phase. /ast, they connect bacN to the 
derivative at a point graphically. We e[amined booN descriptions throXgh their visXal mediators and Zord 
Xse �7able 1�. We focXsed on Zhether Ney terms²slope, rate of change, and derivative²Zere Xsed as 
static or dynamic based on Zhether it is defined at a point, mXltiple points, or on intervals Zith a variable. 
%ecaXse booNs have limitations shoZing dynamics, Ze carefXlly looNed at the descriptions for the figXres 
inclXding TXantifiers and letters.  

Table 1: Analysis Table 

Stage 9isXal Mediator Word Use 
 7able Graph Symbolic 1otations  .ey 7erm Static Dynamic 

A point MXltiple points 

Results 

,n this section, Ze focXs on the most�Zidely Xsed booN �SteZart, 2010� Zith the details of hoZ Ze 
Xsed the Ney Zords and visXal mediators to reach oXr conclXsions. 7he analysis of other booNs is addressed 
in the DiscXssion.  

Velocity and Slope of Tangent 

SteZart¶s �2010� Calculus addresses the slope and velocity in the chapter of /imit ZithoXt Xsing the 
Zord derivative. First, it shoZs hoZ to obtain the slope of tangent line to a cXrve y=x2 at P�1, 1� Xsing the 
point Q�x, x2� approaching P �FigXre 1�.   

 

   

mPQ =
x2
�1

x �1
«for the point Q�1.5, 2.25�«mPQ =

2.25�1
1.5�1

= 2.5.  

7he table«shoZs the valXes of mPQ for several valXes of x 
close to 1. 7he closer Q is to P, the closer x is to 1 and, it 
appears from the tables, the closer mPQ is to 2.   

Figure 1: Graph of y = x2 and values of slope of secant lines (p. 45) 

Using the same method, the booN calcXlates the velocity of a ball after 5 seconds as 49 m/s �the 
distance� s(t) = 4.9t2�, and relates its velocity at t = a to the slope of tangent to the cXrve, s(t). +ere, the 
booN addresses the slope of the tangent line to a cXrve and the velocity as point�specific concepts, at x   1, 
t   5, and x   a. 7he booN Xsed a as if a Zere a nXmber rather than an arbitrary valXe or mXltiple valXes 
ZithoXt stating that a coXld be any point. 7he dynamic aspect of the concepts Zas only addressed in the 
limit process finding the slope of tangent from secant lines. 7hXs, this section addressed the velocity and 
slope of a tangent line at a specific �single� point. 

Derivative at a Point 

7he booN calls the ³special type of limit´ in the slope and velocity ³a derivative,´ and Xses the Zord 
Zith phrases, ³of a fXnction,´ ³at a,´ or an eTXation in this section. ,t reZrites the slope of the tangent line 
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of y = f(x) at x = a as m = lim
h�0

f �a+ h�� f �a�
h

, and defines ³the derivative of a fXnction f at a point a´ as the 

same limit �p. 107�. 7he letter a is Xsed only for a point Xntil the booN calcXlates ³the derivative of a 
fXnction f(x)   x2-8x+9 at the nXmber a” as ³f '(a) = 2a-8” and finds the slope at �3, �6� as ³f '(3) = 2(3)-
8=-2.´ 7hoXgh this calcXlation implies that 3 is one valXe of a, the booN does not e[plicitly state it or Zrite 
a = 3 �p. 107�.  

Rate of Change 

 7he booN defines the instantaneoXs rate of change of y   f(x) Zith respect to x at x = x1 as 

lim
x2�x1

f �x2 �� f �x1�
x 2�x1

, interprets it as ³the derivative f '(x1)” and changes it to ³the derivative f '(a).´ ,t then gives 

tZo interpretations, ³the slope of tangent line to a cXrve Zhen x =a´ and ³the instantaneoXs rate of 
change«at x = a,” and maNes a connection betZeen them �FigXre 2, p. 108�. 
 

 

>2n@ the cXrve, y   f�x�«the instantaneoXs rate of change is the slope of the tangent 
to this cXrve at the point, Zhere x = a. 7his means that Zhen the derivative is large 
�and therefore the cXrve is steep, as at the point P�, the y�valXes change rapidly. 
When the derivative is small, the cXrve is relatively flat �as at point Q�. and the  
y�valXes change sloZly.  

Figure 2: Graphs of two tangent lines (p. 108) 

For the cost of prodXcing x yards of fabric, C = f(x), the booN e[plains ³the derivative, f '(x)´ as ³the rate of 
change of the prodXction cost Zith respect to the nXmber of yards prodXced´ in dollars�yard and asNs to find 
or compare the meaning of f '(1000) =9, f '(50), and f '(500) �p. 109�. 

,n this section, the booN Xses the Zord ³derivative´ three times. ³7he derivative, f '(x1)´ indicates that 
it is defined at a ³fi[ed point x1´ �p. 109�. ,n FigXre 3, ³derivative´ is Xsed to describe the fXnction 
behavior as in ³Zhen the derivative is large, the y valXe change rapidly´ �p. 108�. %ecaXse the booN 
specified the point P, it is clear that the sentence is aboXt the local fXnction behavior near P, bXt it can be 
trXe anyZhere on the interval if ³the derivative´ is Xsed as a fXnction. At the end, the booN calls all rates of 
change of varioXs fXnctions at several points ³derivatives.´ ,t Xses the notation, f '(x) for the first time. ,n 
the fabric problem, it interprets f '(x) as if it Zere a point�specific valXe, bXt gives its Xnits in general terms 
Xsing the Xnits of different TXotients ZithoXt maNing a connection to its interpretation. ,n the second 
problem, it interprets ³f ' (1000)   9,´ as ³Zhen x = 1000, C is increasing 9 times as fast as x.´ 7hoXgh f ' 
(1000) Zas Xsed as a valXe of f '(x) at x = 1000, the relation betZeen notations, f ' (1000) and  
f '(x), Zas not stated.  

Transition from the Derivative at a Point to the Derivative of a Function 

7he booN sXmmari]es that all previoXs discXssions Zere aboXt ³a fi[ed point,´ Zhich confirms the 
Zord, ³derivative,´ ³x´ in the fabric e[ample and ³a,´ in graphs as point�specific valXes. 7hen, in

f 
�a� = lim
h�0

f �a+ h�� f �a�
h

, the booN changes the ³point of vieZ and let>s@ the nXmber a vary, « replace>s@ 

a by a variable x, and«obtain>s@ f 
�x� = lim
h�0

f �x + h�� f �x�
h

³ �p. 114�. +ere, the natXre of ³a´ Zas specified 

as ³vary>ing@´ and connected to the ³variable, x.´  

The Derivative Function 

7he booN defines ³f '(x) as a neZ fXnction´ that assigns to ³any nXmber x…the nXmber f '(x),´ and 
connects it to ³the slope of the tangent line to the graph of f at the point �x, f(x))´ �p. 114�. ,t also 
emphasi]es that the variable x in f(x) and f '(x) are the same by comparing the domain of f ', ^x_ f '(x) 
e[ists` that may be smaller than the domain of f  �p. 114�.   

P

Q

x

y
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Connection from the Derivative Function to the Derivative at a Point 

7he booN then graphs f '(x) Xsing slopes of tangent lines to the cXrve, f(x) �FigXre 3�.  
 

 

 

We can estimate the valXe of the derivative at any valXe of 
x by draZing the tangent at the point �x, f(x)) and 
estimating its slope. For instance, for x   5 Ze draZ the 
tangent at P in >the@ FigXre and estimate its slope to be 
aboXt 3�2 , so f 
�5� �1.5. 7his alloZs Xs to plot the point P' 
(5, 1.5� on the graph of f 
 directly beneath P. 5epeating 
this procedXre at several points, Ze get the graph shoZn in 
FigXre 2�b�. 1otice that the tangents at A, B, and C are 
hori]ontal, so the derivative is 0 there and the graph of f 
 
crosses the x�a[is at the points A
, B
, and C
, directly 
beneath A, B, and C. %etZeen A and B the tangents have 
positive slope, so f 
�x) is positive there.  

Figure 3: Graphs of a function and its derivative function (p. 115) 

,n FigXre 3, the booN maNes a connection from the derivative fXnction to the derivative at a point by stating 
the valXe of the derivative at ³any´ point of x Xsing the slope at the point, finding the slope 1.5 at x = 5, 
and plotting �5, 1.5� for f '(x). ,t again Xses the point�Zise approach to find the ]eros for ³the derivative.´ 
7hen, it Xses the interval�Zise approach to determine Zhether f '(x) Zas positive or negative betZeen these 
]eros. +ere, the Zord, ³derivative´ first is Xsed as the derivative function becaXse it Zas defined ³at any 
valXe.´ 7he second one in ³the derivative is ]ero there and the graph of f ' crosses the  
x-a[is´ is Xsed as a point�specific valXe. 7o refer to the fXnction that the second graph represents, the booN 
consistently Xsed the notation f '(x). When it describes the sign of the ³slope´ of ³tangents´ on intervals, it 
Xsed the singXlar ³slope´ instead of ³slopes.´ 7hoXgh ³the slope´ can be inferred as ³the slope´ as a 
fXnction becaXse the booN Zas Xsing  ³the slope´ for several valXes, it ZoXld have been ³the slopes of the 
tangents.´  

Summary 

7o address the concept of the derivative, SteZart �2010� �a� Xses the velocity and slope at a point, 
�b� defines the derivative of a fXnction at a point, �c� interprets it as the instantaneoXs rate of change, 
�d� maNes a transition by letting point a vary and replacing it Zith variable x, �e� defines the derivative of a 
fXnction, and �f� constrXcts the graph of f '(x) Xsing the slope of tangents to y = f(x). 7able 2 shoZs Ney 
Zords and visXal mediators Xsed in each of these phases.  
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As shoZn in 7able 2, SteZart �2010� develops the concept of the derivative from a nXmber to a 
fXnction by shoZing graphical representations of the slope of a single tangent line, the slopes of mXltiple 
tangent lines, and the derivative of a fXnction. ,t also Xses the slope, the rate of change, the derivative at a 
specific point, mXltiple points, and any points by Xsing nXmbers and letters Zith or ZithoXt sXbscripts and 
changing Zhat those Ney Zords represent. Graphical notations Zere consistent Zith sXch development� 
first a single tangent line, then mXltiple tangent lines, and graph of f '(x) in tXrn �see FigXres 1, 2, 	 3�. 
+oZever, other visXal mediators, letters for a point and variable Zere not consistent. 7hoXgh the booN 
mainly Xsed a for a single point or mXltiple �discrete� points, and x for the variable, in the second and third 
e[amples in phase �b�, ³a” Zas Xsed as if it Zere a variable, becaXse 3 is sXbstitXted in a in the ne[t step. 
7he booN does not mention that a can be any valXe. ,n a later section, it calls ³a´ ³the fi[ed point.´ 7hen, 
in phase �c�, it again Xses ³a” for mXltiple points, Zhich seems to transfer Zhat ³a” represents from a 
single valXe to any valXes. +oZever, in the ne[t step, it Xses ³f '(x)´ as if it Zere one valXe of the rate of 
change of a cost fXnction and interprets f '(1000), f '(50), and f '(500) ZithoXt maNing a connection bacN to 
f '(x) or mentioning they are the specific valXes of f '(x).  

7he Zord ³derivative´ is also Xsed inconsistently. First, it is Xsed as “the derivative f '(x1)” as the rate 
of change at a point, and again in ³the derivative f '(x) Zith respect to x” as if it Zere a point�specific 
concept �before the booN defines the derivative fXnction, f '(x)�. 7hen, in FigXre 3, the booN Xses the Zord 
³derivative´ tZice� one for the derivative of a fXnction �at any points�, and the other one for the derivative 
at points Zhere f ' crosses the x a[is. 7he Zord is Xsed ZithoXt its referent±the derivative fXnction or the 
derivative at a point±or notation±f '(x) or  f '(a). 7he booN relates these tZo concepts tZice. First, it maNes a 
transition from the derivative at a point to the derivative fXnction by letting ³a´ vary and changing ³a´ to 
³x.´ Second, after defining the derivative of a fXnction, it maNes a connection bacN to the derivative at a 
point based on the slopes of several tangent lines to the original fXnction at discrete points.  

Discussions and Conclusions 

As mentioned earlier, the te[tbooNs address the concept of the derivative first as the velocity and slope 
ZithoXt Xsing the Zord ³derivative,´ define the derivative of a fXnction at a point, and then the derivative 
fXnction. With slight differences in representations, the booNs Ze analy]ed have some common 
characteristics in connecting the derivative at a point and the derivative of a fXnction. First, the Xse of 
nXmbers and letters Zith or ZithoXt sXbscripts is not consistent. For e[ample, 7homas et al. �2010� Xses 
t = 1 and t = 3 in a problem statement and t0   1 and t0   3 in its solXtion. ,t also Xses a letter Zith a 
sXbscript x2 for a valXe approaching a fi[ed valXe x1. Second, the Zord ³derivative´ is not Xsed e[plicitly� 
most times, it is Xsed ZithoXt its referent, the derivative at a point or the derivative fXnction. (specially, 
Zhen the Zord is Xsed after defining both concepts, it is not clear Zhether ³derivative´ is Xsed as a point�
specific valXe or as a fXnction. With this implicit Xse of the letters and Ney Zords, the derivative at a point 
as a valXe of the derivative fXnction is also not consistently addressed. For e[ample, all three booNs Xse 
notations f '(x) and f '(a), and sXbstitXte a nXmber in x or a before mentioning that the concept of the slope 
or the rate of change can be considered at more than one �or any� point on an interval or defining the 
derivative fXnction. 7o define the derivative fXnction, they all change the vieZ to let ³a” or “x0”, Zhich 
Xsed to be a fi[ed valXe, ³vary´ and change it to ³x.´ After the definition, they shoZ the graphing process 
of the derivative fXnction based on the slopes to the cXrve y   f(x). ,n this process, the Zord ³derivative´ is 
also Xsed implicitly, Zhich is problematic becaXse they are graphing ³the derivative fXnction´ based on 
³the derivative´ at discrete points. +Xghes�+allet et al. �2010� even draZs the graphs of a fXnction and its 
derivative fXnction on one x-y plane, Zhich does not shoZ that they represent different valXes, sXch as 
distance and velocity.  

CalcXlXs , is a first college coXrse, in Zhich stXdents practice abstract mathematical thinNing and 
prepare for Xpper level mathematics coXrses. Mathematicians, inclXding te[tbooN aXthors, may thinN that 
stXdents have mastered the concept of fXnction before they start the coXrse. +oZever, many stXdies shoZ 
that this is not necessarily trXe� calcXlXs stXdents do not alZays have complete Xnderstanding of fXnction in 
secondary level, and thXs have troXble seeing the derivative as a fXnction �ParN, 2011�. CalcXlXs booNs 
cannot and need not inclXde all the e[planations of a fXnction, Zhich shoXld be addressed in the previoXs 
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mathematics classes. +oZever, inconsistent Xse of Ney Zords and visXal notations sXpporting the concept 
of the derivative as a point�specific valXe and as a fXnction may confXse calcXlXs stXdents Zho do not have 
a solid Xnderstanding of a fXnction. 7he Zay the concepts of the derivative are bXilt²�a� heavy discXssion 
on the limit process in the derivative, obtaining the slope of the tangent from a seTXence of secant lines� �b� 
a simple transition from the derivative at a, f '(a), to the derivative fXnction f '(x)� and �c� graphing f '(x) 
based on several valXes of f '(a)± is not consistent Zith the Zay the concept of fXnction Zas bXilt before. 
Changing a vieZ of seeing ³a´ as a fi[ed valXe to any valXes may not be simple to stXdents and graphing f 
'(x) after giving its definition may not be ideal. ConstrXcting the derivative fXnction based on the derivative 
at discrete points before defining the derivative fXnction may remind stXdents aboXt hoZ a fXnction Zas 
constrXcted and thXs help them gXess Zhat those valXes represent and hoZ they change as x valXes change, 
and finally thinN aboXt the derivative as a fXnction before they see the formal definition.  
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