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Although students’ invented strategies typically prove to be effective in the improvement of 
students’ mathematical understanding, little is known about how preservice teachers interpret 
and respond to student-invented strategies on whole number multiplication. This study 
investigated the nature of 25 preservice teachers’ interpretations of and responses to students’ 
correct and incorrect strategies for whole number multiplication. Results suggest that the 
mathematical depth of their responses and their consideration of student thinking differed based 
on the correctness of the student work. Implications for teacher educators and future researchers 
are discussed in accordance with the findings of the study. 
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Whole number multiplication is one of the most challenging operations in both calculation 
and justification in elementary mathematics education (Flowers, Kline, & Rubenstein, 2003). 
Researchers have documented that not only children experience difficulty in understanding the 
reasons for the standard algorithm, but also teachers. They also reported that students learn better 
when they are asked to create their own strategies different from the traditional method 
(Campbell, Rowan, & Suarez, 1998; Carroll & Porter, 1997; Huinker et al., 2003). NCTM 
(2000) suggests that teachers should spend a significant amount of time with student-invented 
methods that arise in a typical mathematics classroom and should think about how to help 
students build on them before introducing the standard algorithms, because students who invent 
strategies are involved intimately in the process of making sense of mathematics (e.g., Ball, 
1988/1989). Ball (1989) also stresses that teachers need to address the aforementioned student-
invented strategies as a window into student understanding and to endeavor to help students 
understand the conceptual thinking behind the mathematics. However, in a classroom situation 
where student-invented strategies are encouraged in learning mathematics, it is plausible that 
students make errors, and little is known about how to prepare preservice teachers (PSTs) for 
responding to these errors. The purpose of this study is to investigate PSTs’ interpretations of 
and responses to students’ correct and incorrect student-invented strategies involving whole 
number multiplication. Our purpose to uncover PSTs’ ideas about teaching multi-digit 
multiplication and ideas about student-invented strategies is practically significant for teacher 
preparation programs. The research questions for the study were: (1) How do PSTs interpret 
correct and incorrect student-invented strategies with whole number multiplication?;  (2) How do 
PSTs respond to correct and incorrect student-invented strategies with whole number 
multiplication?; (3)  Do PSTs’ interpretation and responses differ depending on the correctness 
of the student-invented strategies? 

Theoretical Background

Research on Students’ Strategies in Whole Number Multiplication
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Numerous research studies on students’ strategies involving whole number operations have 
been conducted not only in the US, (e.g., Carpenter et al., 1992; Carroll, 2000) but also in many 
other countries (e.g., Anghileri et al, 2002; Torbeyns et al., 2006). Table 1 shows some examples 
of student-invented strategies for multiplication reported from the literature with the example 
problem (28 x 7 = ?) (Bass, 2003; Carpenter et al., 1992; Carroll, 2000; Carroll & Porter, 1997; 
Huinker et al., 2003; Selter, 2002).

Table 1: Student-invented Strategies for Whole Number Multiplication 

Strategies Characteristics Examples (e.g., 28 x 7) 

1. Direct modeling Use manipulatives or drawings to 

simulate the problem 

2. Repeated addition Think multiplication as repeated 
addition

28 x 7 = 28 groups of 7 
=7+7+7+....+7 =196 

3. Chunking method Chunk the addends or successive 

doubling

28 x 7 = 28 groups of 7 

7 10s (70) + 7 10s (70) + 8 7s (56)  
= 70 + 70 + 56 = 196 

3. Compensating (or 

varying method) 

Round one of the factors to a 

multiple of 10 to make the 

multiplication easier and 
compensate by subtracting the 

extra.

28 x 7 � 30 x 10 = 300  

� 300 – 14 = 196 

4. Partial Products (or 

decomposition, or 
partitioning method) 

Use the base-ten structure to break 

down the factors into partial 
products and use the distributive 

property

28 x 7 = (20 + 8) x 7  

= (20 x 7) + (8 x 7) =  
140 + 56 = 196 

Among the student-invented strategies, partial product and compensation strategies were chosen 
in this study for three reasons—(1) they are frequently used by students, (2) they are 
mathematically efficient, and (3) they can be difficult to use with large numbers and are thus 
related to student error. First, these strategies are common strategies students invent on their own 
when they are asked to solve problems involving multiplication (Carpenter, Fennema, & Franke, 
1992). Moreover, Bass (2003) asserts that these can be considered algorithms for whole number 
multiplication because they involve “a precisely specified sequence of steps” that can be 
programmed to always produce the correct solution (p. 324). However, these methods would be 
become cumbersome and difficult to use when applied to a problem involving larger numbers. In 
particular, without sound understanding of compensation, some students tend to apply these 
methods incorrectly (Schifter, Bastable, & Russell, 1999). For example, for the problem 28 x 7, a 
student called Tommy changed 28 x 7 into 30 x 10 and then took away 2 and 3 since he added 2 
to the 28 and 3 to the 7. In the use of the compensation strategy, the ability to make an 
adjustment or compensation is important. In Tommy’s case, he increased the 2 groups of 10 and 
3 groups of 28. When students make errors, teachers should be able to provide an appropriate 
intervention. However, there is little research on how PSTs would respond to student-invented 
strategies, particularly, the compensation strategy on whole number multiplication. Therefore, 
this incorrect student-invented strategy was chosen for the study.  
Research on Teacher Knowledge and Approaches

Researchers have studied the ways teachers understand content knowledge (CK) and/or 
pedagogical content knowledge (PCK) in several mathematics content areas including whole 
number operations (e.g., Ball & Bass, 2000; McClain, 2003; Thanheiser, 2009), fraction 
operations (Author, year 1), and other content areas and the relationship between teachers’ CK, 
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PCK, and their teaching practices (e.g., Ball, 1990, Krass et al., 2008; Prediger, 2010; Author, 
year 1; Author, year 2). These studies commonly reported that many US teachers hold narrow, 
procedural understandings of algorithms. In addition, they reported that PCK was highly 
correlated with CK mastery, thus suggesting that deep knowledge of the subject matter is a 
critical precondition for PCK (Baumert et al., 2010). Furthermore, they reported that teachers 
with more PCK display a broader repertoire of teaching strategies for creating cognitively 
stimulating learning situations (Ma, 1999). Much of this research, however, has focused on 
teachers’ knowledge on CK, PCK, and teaching practices on common mathematical concepts 
focusing on traditional methods (or standard algorithms). As a result, little is known about the 
implications in teacher education programs for developing PSTs’ responses to student-generated 
strategies. This article is intended to address this gap.
Methods

Twenty-five preservice teachers participated in the study from an elementary mathematics 
methods class at a large southeast university in the United States which utilizes the Holmes’ 
model of teacher preparation. All participants had completed a required mathematics course 
equivalent to a 3 credit pre-algebra course either in their freshman or sophomore years. The 
mathematics methods class, which lasted approximately 14 weeks, was taught by the first author. 
The course was designed to support PSTs’ understanding of approaches that are relevant to the 
teaching and learning of mathematics, particularly in the elementary grades. During each lesson, 
PSTs were involved in analyzing children's work through discussion of several samples in small 
groups and then as a whole class.

The main task used in this study presents student-invented strategies through a classroom 
scenario in which two hypothetical students come up with different solution methods to a two-
digit whole number multiplication problem. The task consisted of three questions (see Figure 1) 
that took about 30 minutes to complete. The task was developed based on actual elementary 
students who appeared on a video from the Developing Mathematical Ideas curriculum (Schifter, 
Bastable, & Russell, 1999). The first student, Tommy, used a student-invented strategy, 
compensation, but failed to execute the procedure correctly. Dan, the second student, used a 
different student-invented strategy, decomposition (partial products), and produced the correct 
answer.

You are teaching whole number multiplication problem 28 x7 to fourth graders. You asked students 

to solve it. After a few minutes, two students came to the board and explained their methods in a 
following way
Tommy’s strategy Dan’s strategy

1. Explain the logic behind each student’s procedure and describe why you think each strategy 

will or will not work for all whole numbers. 

2. How would you respond to Tommy? Describe your intervention using pictorial models / 
drawings/ numerical expressions. Explain it as much detail as you can. 

3. How would you help Dan to develop the multiplication traditional algorithm from his 

method? Show the connection between drawings and numerical expressions to explain your 

teaching strategy.

Figure 1: Pedagogical Task: “How Would you Respond to Tommy and Dan?” 
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The task described above was administered as a survey to the entire class in two methods 
course sections towards the end of the fall semester of the 2009-2010 academic year. Table 2 
shows an overview of the analytical framework associated with each task for the study. Data 
analysis involved five processes: (1) an initial reading of each PST’s response, (2) identifying 
correctness of the responses, (3) exploring the subcategories under each analytical aspect 
according to the framework, (4) coding the categories and subcategories, and (5) interpreting the 
data quantitatively and qualitatively (Creswell, 1988). For example, responses to the first 
question, after having been identified based on correctness, were analyzed by looking at whether 
PSTs pointed to the underlying concepts or important properties related to each student’s 
method. Using the conceptual versus procedural distinction guided by the work of Rittle-Johnson 
and Alibali (1999), a four-point rubric provided a framework for the different depth levels of the 
preservice teachers’ justifications to each student’s method. 

Task Item Analysis aspects Method 

CK Q1: Student method ¥Validity/ Generalizability Correctness

Q1: Justification  ¥ Conceptual vs. procedural  Develop a scoring rubric  

PCK Q2-3: Intervention ¥ Conceptual vs. procedural  Identify teaching 
category

¥ Forms of address—Teacher vs. 

student-oriented

Develop categories 

¥ Type of cognitive process—Cognitive 

status vs. cognitive action 

Frequency/Quantiative

analysis

¥ Type of model and contextual 

problems(Set, area, concrete, pictorial, 

etc.)

Frequency/Quantiative

analysis

Figure 2: Methods Used for Analyses 

The same procedure was used for the analysis of PSTs’ responses to the second and third 
questions. Each code was then documented in Excel according to the task sub-domains, and a 
data table containing all the categorized responses for each participant was developed. In 
particular, in order to determine whether and how PSTs respond differently depending on the 
correctness of the student-generated strategies (research question 3), the Fisher exact value test, 
which is a non-parametric statistical significance test to determine dependent relationships in 
contingency tables, specifically for small sample sizes (Ott & Longnecker, 2001), was used for 
comparisons among 3 variables: (1) the definition of multiplication used in interpreting student 
logic, (2) depth of reasoning when interpreting student logic, and (3) the use of model-type when 
responding to students. In addition, we used a Z-test for independent proportions for the analysis 
of how PSTs’ consideration of student thinking might differ based on students’ correctness. 
Furthermore, for the analysis of PSTs’ choices to respond with teacher-centered or student-
centered responses, a chi-square test was used to determine if there is a dependent relationship 
between correctness of student work and student-centeredness of the PST’s response.
Summary of Results 

We found that most of the PSTs correctly recognized the validity and generalizability of 
Tommy’s strategy and Dan’s strategy. However, when it came to justifying the reasons behind 
the procedure and providing good intervention, around half related concept to procedure using 
meaningful understanding of multiplication. The PSTs mostly relied on the ‘show and tell’ 
approaches. In addition, this study provided evidence, with a significance level of 0.05, to 
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support that the following three variables depended on whether the student work is correct or 
incorrect: (1) the definition of multiplication used by PSTs, (2) the depth of explanation PSTs 
gave, (3) how much PSTs talk about student thinking. In this paper, due to the space limit, we 
answer only the first and third research questions in detail.
Preservice Teachers’ Interpretations of Student-invented Strategies Interpretations of 
Tommy’s logic. All 25 participants correctly identified Tommy’s strategy as not generalizable to 
all whole numbers. The PSTs’ justifications were analyzed with respect to the following: (1) how 
to explain the process associated with Tommy’s strategy, (2) what is the definition of 
multiplication used, and (3) what is the depth of justification. With respect to the definition of 
multiplication, we observed most made use of the equal groups definition of multiplication, 
while some responses focused on procedure more than on concepts and did not refer to either 
meaning of multiplication. A majority, 60%, of the PSTs used the equal groups definition of 
multiplication in their interpretations of Tommy’s strategy, while only 2 participants, 8%, used 
the area definition of multiplication. 32% of the PSTs chose to address neither the area nor the 
equal groups definition, but chose to explain Tommy’s logic referring mostly to the procedures 
Tommy used.

Table 2: Depth of Interpretations of Tommy’s Logic 
Rating Description of response 

type
Example Freq.   

(N = 25) 

4

Clear and convincing 

explanation that includes 
discussion on the concept 

of multiplication. Errors are 

nonexistent.

Tommy tried to make the numbers easier to work 

with. He added 2 to 28 to make 30. Then added 3 to 7 
to make 10. He subtracted the 2 and 3 he added, but 

when he added 2 to 28, he turned it into 30 groups of 

7 and when he added 3 to 7 he added 3 more to each 

group. Tommy's error is not realizing the value of the 
numbers he is adding. To make this strategy work he 

could try Adding 2 means 2 more groups of 7. 

32% (8) 

3

Understandable, but less-

detailed, explanation that 

demonstrates some 

conceptual knowledge of 
multiplication. Errors are 

minimal. 

This strategy will not work. Tom is thinking that since 

he added two more to 28, he can just take 2 away and 

3 away because he added it to the 10. He does not 

understand that those 2 and 3 created little pieces 
contributed towards the area. I would use the area 

model to explain this problem. 

24% (6) 

2

Clear explanation, but one 
that does not give 

appropriate reasoning why 

the method is not 

generalizable.

Tommy has come up with a good strategy but in his 
rounding up to do this problem when going back to 

subtract the amount he rounded up he then applies the 

addition strategy. He obviously has not gained the 

understanding of groups in multiplication. His strategy 
works with addition and subtraction of whole numbers 

but will not work with multiplication of whole 

numbers. 

16% (4) 

1

Unclear, incorrect 

explanation or one that does 

not address the question. 

This strategy will not work unless either the 

multiplicand or the multiplier is a whole number. 

What works to make the multiplicand or the multiplier 

a whole number, then subtract away the average. 

28% (7) 
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To analyze depth of responses, we used a four-point rubric which distinguishes responses of 
differing depths, ranging from clear and convincing explanations that include discussion of the 
meaning of multiplication to those that are less-detailed, unclear, or incomplete (see Table 2 
above). The ratings for these interpretations have a mean of 2.6 and a standard deviation of 1.2, 
indicating a moderate measure of spread in the distribution. 32% of the participants’ 
interpretations were ranked at the 4 level, and all of these 4-point interpretations utilized the 
equal groups definition of multiplication. Also, 24% of the interpretations of Tommy’s logic 
ranked at the 3 level. Among these 6 participants who scored 3 points, 3 used the equal groups 
definition, 1 used the area definition, and 2 chose to focus on procedure rather than either 
definition of multiplication. Ranking at the 2 level were 16% of the interpretations, which were 
clear but did not give appropriate reasoning why Tommy’s method was not generalizable. Lastly, 
28% participants gave unclear or incorrect interpretations, scoring a 1 on our four-point rubric. 

Interpretations of Dan’s logic. All participants correctly identified Dan’s correct strategy as 
generalizable to all whole numbers. To analyze definitions of multiplication used to interpret 
Dan’s thinking, we used the same categories observed in the analysis of their interpretations of 
Tommy’s logic--equal groups definition, area definition, and a focus on procedure. We found a 
different tendency in the use of the definitions. With the interpretations of Tommy’s logic, most 
of the PSTs addressed one of the definitions of multiplication; however, when interpreting Dan’s 
logic, an overwhelming majority chose to only focus on procedure and failed to relate Dan’s 
logic to any definition of multiplication. More specifically, 92% of the PSTs (23 out of 25) failed 
to connect Dan’s logic with any definition of multiplication. Only 8% made a reference to the 
equal groups definition, such as “Dan’s logic is that 28 groups of 7 is equal to 20 groups of 7 
plus 8 groups of 7.” Also, none mentioned the area definition. The 4-point rubric was used to 
analyze the depth of the interpretations of Dan’s logic (see Table 3). Most of the interpretations 
were rated as either a 2 or a 3. This indicates that most responses could have been more detailed 
or could have better explained the generalizability of Dan’s method.

Table 3: Depth of Interpretations of Dan’s Logic 
Rating Description of Response Type Example Frequency  

(N = 25) 

4 Clear and convincing explanation 

that includes discussion on the 

concept of multiplication, instead 

of solely on multiplication 
procedures. Errors are 

nonexistent.

Dan’s strategy was to multiply the seven by the 

tens place of the other number and to multiply 

by the ones place. Then he added those 2 

numbers together. This strategy works because 
he has not changed the problem, but simply 

isolated the two place values to simplify it.  

4% (1) 

3 Understandable, but less-detailed, 
explanation that demonstrates 

some conceptual knowledge of 

multiplication of whole numbers. 

Errors are minimal. 

Dan breaks apart 28 into 20 and 8 but still 
multiplies 20 and 8 by 7, which will work for all 

whole number as long as all place values are 

represented.

40% (10) 

2 Clear explanation, but one that 

does not give appropriate 

reasoning why the method is not 
generalizable.

Dan is breaking his numbers down so that they 

are easier to work with. Once he completes his 

simplified problem he adds those numbers 
together. His strategy will work for all whole 

numbers. 

52% (13) 

1 Unclear, incorrect explanation or 

one that does not address the 

Dan broke 28 into twenty and eight because 

they are easier numbers to multiply. Then he 

4% (1) 
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question. added them together. This strategy does not 

work for all whole numbers.  

Whether responses differ depending on the correctness of student strategies. In the interest 
of uncovering how PSTs make their decisions, our third research question asks if there were 
observable differences in PSTs’ interpretations and responses based on the correctness of the 
student-invented strategies. We performed statistical tests to compare responses to Tommy’s 
incorrect method to responses to Dan’s correct method, in particular, with respect to the 
following five aspects—(1) differences in definition of multiplication used, (2) differences in 
depth of interpretation, (3) differences in discussion of student thinking, (3) differences in 
student-centeredness of responses, and (4) differences in type of model used.

First, results from the Fisher Exact Value test suggest a statistically significant difference in 
PSTs’ use of the definition of multiplication with Tommy and Dan (p = 0.00028). In particular, 
we found that the equal groups definition of multiplication was used more often when 
interpreting incorrect logic. Interestingly, when interpreting correct logic, the PSTs tended to 
give purely procedural interpretations that were void of any definition of multiplication. 

Second, results from the Fisher Exact Value test showed that the depth of explanation given 
by a PST is dependent on whether interpreting correct or incorrect student strategies (p = 
0.00093). To discover the nature of this dependence, we compared the frequency on the 4-point 
rubric shown in Tables 2 and 3. When interpreting an incorrect student-invented strategy, there is 
more variance in the depth of responses, with more ratings at the highest or lowest end than 
between. On the other hand, when responding to a correct student-invented strategy, there is less 
variance, with most of the responses rating in the middle of the rubric and with very few 
responses at the highest or lowest end. This means that there were more high-quality, in-depth 
interpretations given of incorrect student strategies than correct student strategies. 

Third, results from the z-test reveal that discussion of student thinking is dependent on 
students’ correctness (a p-value of 0.0099, Z = 2.579). Although the task only asked how the 
PSTs would respond to Tommy and Dan, we noticed that many of them chose to use some 
language about students’ thinking within their responses. After noticing that many of the PSTs 
chose to use this kind of cognitive language, we analyzed their choice of words and phrases. The 
categories that emerged from this analysis were similar to those of Sfard (1998). We sought 
vocabulary cues that frame learning either as a cognitive process or as cognitive status. For 
example, if there is think-action taking place, with words like, recognize, see, forget, or 
remember, PSTs’ responses were categorized as describing math learning using a cognitive 
process. On the other hand, a response was categorized as describing math learning using a 
cognitive status if there is acquisitional language, such as “gain understanding,” “gaps in 
knowledge,” or “imparting ideas,” portray math knowledge as a cognitive status, rather than 
cognitive action. We found that sixty eight percent (17 out of 25) were categorized as cognitive 
action while the rest of the participants showed views of cognitive status when talking about 
Tommy’s learning. However, interestingly, the PSTs gave more neutral responses, not using 
many words that referred to Dan’s thinking. Only two participants used cognitive action 
wording, which portrayed learning as engagement, and the same number of participants used 
wording that portrayed knowledge as a substance to be acquired. Results from the z-test suggest 
that a difference exists in the proportion of PSTs discussing student thinking based on whether 
the student’s solution is correct or incorrect.

699

Martinez, M. & Castro Superfine, A (Eds.). (2013). Proceedings of the 35th annual meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education. Chicago, IL: University of Illinois at Chicago.

Teacher Education and Knowledge: Research Reports



700

Martinez, M. & Castro Superfine, A (Eds.). (2013). Proceedings of the 35th annual meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education. Chicago, IL: University of Illinois at Chicago.

675

0DUWLQH]��0��	�6XSHU¿QH��$��(GV������������Proceedings of the 35th annual meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education.�&KLFDJR��,/��8QLYHUVLW\�RI�,OOLQRLV�DW�&KLFDJR�

	
  

Forth, results from a chi-square test suggests that there is no statistical difference in PSTs’ 
responses to Tommy and Dan with respect to student-centeredness (p = 0.765, χ2(1) = 0.089). 
This suggests that student-centeredness is independent of students’ correctness. 

 Fifth and lastly, we also found that the types of models PSTs used are not dependent on the 
correctness of the students’ work. The Fisher Exact Value test showed no such significant 
relationship (p = 0.876), suggesting that PSTs choose certain types of models to use in their 
responses, regardless of whether the student to whom they are responding is correct or incorrect 
in their reasoning. 

Discussion and Implications
The findings of this study have implications regarding both CK and PCK for preservice 

teachers. For example, regarding CK, consistent with the findings from previous studies (e.g., 
Hill & Ball, 2004; Son & Crespo, 2009), this study stresses the importance of gaining a deeper 
understanding of the meaning of multiplication requires justifying of how and why an answer 
works and requires connecting models to computations in responding to students. Teacher 
education programs should pay more attention to strengthen PSTs’ mathematical base and their 
abilities to provide justification in terms of not only traditional methods for whole number 
operations but also student-invented strategies. However, different from previous studies, this 
study investigated CK focusing on correct and incorrect student-invented strategies, and results 
provides further information about preservice teachers’ tendency such as what type of scenario 
elicits such in-depth justifications and connections. For example, we found that incorrect student 
work samples elicit more in-depth justifications, whereas choice of model is not influenced by 
the correctness of the work. These findings suggest teacher educators might use incorrect 
student-invented strategies to promote the justifications and connections that promote CK.
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