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The role of the body, particularly gesture, in supporting mathematical reasoning is an emerging 
area of research in mathematics education. In the present study, we examine undergraduate 
students providing a justification for a task about a system of alternating gears, which involves 
concepts of number relating to even/odd patterns. Some participants were directed to perform 
gestures relevant to alternation and parity before attempting their justification, while others 
were not. Although these directed actions did not seem to influence the gestures participants 
used to solve the problem, we found an important relationship between gesture and 
mathematical reasoning. In particular, certain types of gestures during problem solving were 
associated with valid justifications. This research provides insight into the link between action 
and mathematical reasoning, and has implications for supporting students’ proof activities. 
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Learners display their mathematical thinking—and even engage in mathematical reasoning—
with their bodies as well as their minds. Recent theoretical work in education and psychology has 
sought to broaden researchers’ and educators’ perspectives to address the role of the body in 
mathematical thinking and learning. In this research, we adopt this perspective to explore the role of 
learners’ actions during proof and justification activities. Specifically, we investigate the connections 
between learners’ gestures and their justifications as they talk aloud while attempting to solve a 
problem about an underlying numerical pattern presented in a gear-system task. By investigating how 
body movements relate to different forms of mathematical reasoning, we can better understand 
students’ thinking and consider novel ways to support the construction of valid mathematical 
justifications.  We contribute to broadening perspectives on mathematics thinking and learning by 
detailing a connection between specific gestures and types of proof that challenges the concept of 
mathematics as a disembodied system. 

Theoretical Framework 
Action and Gesture 

An embodied cognition perspective highlights reciprocal connections between actions and 
cognition (e.g., Glenberg, 1997; Goldin-Meadow & Beilock, 2010). Specifically, these theories 
suggest that actions do not simply externalize the output of cognitive processes, but may also directly 
influence and cause changes in cognition and learning (e.g., Shapiro, 2011). Because this view 
postulates that actions and cognition are intrinsically linked, it stands to reason that there may be an 
association between an individual’s actions and his or her performance on tasks requiring insight and 
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problem solving (e.g., Thomas & Lleras, 2009). Research has shown that actions play an important, 
and potentially vital, role in the learning and using of mathematics concepts and procedures -- from 
the spatial bodily orientations that represent early concepts of number (Dehaene, Bossini, & Giraux, 
1993) and the use of fingers in early counting (Alibali & DiRusso, 1999; Saxe & Kaplan, 1981), to 
the concrete and perceptual dimensions of mathematical symbols (Landy & Goldstone, 2007). Action 
can also be an important way to “ground” (Goldstone & Son, 2005) abstract mathematical ideas in 
students’ experiences. Physically-grounded actions and manipulations of real and virtual objects can 
help students understand concepts like proportionality (Abrahamson & Howsin, 2010), fractions 
(Martin, 2009), and algebra (Nathan, Kintsch, & Young, 1992). It is clear that actions contribute to 
mathematical thinking. 

One specific type of action that is of special interest to educators is gesture –the spontaneous 
hand movements that speakers produce as they talk. Recent theoretical work suggests that gestures 
manifest mental simulations of actions and perceptual states (Hostetter & Alibali, 2008). Even 
though gestures do not physically manipulate the environment, growing evidence suggests that the 
experience of producing gestures can directly influence cognition (Alibali & Kita, 2010; Beilock & 
Goldin-Meadow, 2010; Goldin-Meadow & Beilock, 2010). Gestures that represent mathematical 
objects may serve an important function of grounding mathematical ideas in bodily form (Alibali & 
Nathan, 2007; Nathan, 2008), and they may also communicate spatial and relational concepts 
(Alibali, Nathan, & Fujimori, 2011). Moreover, speakers’ gestures may reveal unique aspects of 
thought that are based in perception and action, and that may be crucial to their reasoning about the 
ideas they communicate (e.g., Alibali & Nathan, 2012; Chu & Kita, 2011). Thus in mathematics, 
gestures not only can provide a window into students’ thought processes; they can help students to 
represent and understand key ideas and relationships. This may be especially true in mathematical 
tasks that involve spatial reasoning. 
Mathematical Proof and Justification 

In the study presented here, we investigated how gesture is related to the type and quality of 
mathematical reasoning in the task of creating a justification for a mathematical task involving an 
underlying even/odd pattern. Our theoretical framework for conceptualizing mathematical proof and 
justification is based on Harel and Sowder’s (1998) work, which states that producing a proof 
involves removing doubt about the truth of a conjecture, both from oneself and from others. Harel 
and Sowder further distinguish between three major subsets of proof: external conviction, empirical, 
and analytical. The first orients around the production of self-satisfying proofs that rely upon external 
resources, such as textbooks or teachers, which we do not focus on in this study. The second subset, 
empirical, involves validating conjectures using physical facts or perceptual experiences. Finally, the 
third subset, analytical, “is one that validates conjectures by means of logical deductions” (p. 258).  

We rely upon a specific type of proof in this third subset, transformational, which Harel and 
Sowder define as proof activities that are characterized by generality and abstraction, deliberate 
mental operations, and image transformations. We also utilized a specific type of proof in the 
empirical subset, referred to as perceptual proofs. These proofs involve mental images similar to 
transformational proofs, but which Harel and Sowder contrast by noting that perceptual proofs 
“consist of perceptions and a coordination of perceptions, but lack the ability to transform or to 
anticipate the results of a transformation” (p. 255). Given that transformational and perceptual proofs 
both involve images, and given the close ties between gestures and mental images (e.g., McNeill, 
1992), Harel and Sowder’s proof scheme is particularly well suited to our approach.   
Gear-Parity Problems 

We examined the justifications participants provided as they attempted to generate and justify a 
conjecture about a system that follows the underlying numerical pattern of parity, which we here 
instantiate with a system of interlocking gears. Parity in this context refers to the idea that in systems 
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with an odd number of gears, the final gear turns in the same direction as the initial gear, while in 
systems with even numbers of gears, the first and last gear turn in opposite directions.  

When provided with a static display of a row of gears or asked to imagine such a system, 
participants typically begin solving the problem by simulating the turning of the gears with their 
hands (Schwartz & Black, 1996). After producing such rotating gestures, many participants shift to a 
new approach during which they note that the gears move in an alternating sequence. Past work with 
both undergraduates and young children has shown that concentrated, accurate simulation of the gear 
movements predicts the transition to recognizing such alternation (Boncoddo, Dixon & Kelley, 
2010; Trudeau & Dixon, 2007). Thus, participants’ ability to abstract the underlying mathematical 
relationship in the gear system seems to be related to their actions, and in particular, to the action of 
repeatedly tracing multiple circles as they think about and solve the problems. When a participant 
discovers parity, they display an understanding that the direction of movement of the final gear is 
related to the number of gears in the system.  

Thus, reasoning about conjectures involving gear systems are of interest to mathematics 
education because they manifest the abstract parity rule that is a key component of understanding 
number systems. Moreover, gear systems are often utilized as a grounding context in mathematics 
lessons focusing on ratio, proportions, and linear functions (e.g., Lobato & Ellis, 2010; Ellis, 2007). 
For example, Ellis (2007) utilized gear systems in a teaching experiment on linear functions in order 
to give students a real-world situation within which to learn about linear relationships. Thus, gear 
systems embody important mathematical ideas, and examining how students solve such problems 
provides insight into how teachers can support their thinking about these ideas in the mathematics 
classroom.  
Research Questions 

In this study, we focus on the gestures that speakers produce when reasoning about a gear-parity 
conjecture. We first examine whether the types of gestures participants produced while thinking 
aloud about the conjecture varied depending on the specific actions they were directed to perform 
prior to being given the conjecture. Second, we examine whether the types of gestures participants 
produced during justification of the conjecture were related to the type and quality of the 
justifications they provided. Thus, our first research question was: Is the nature of students’ directed 
actions prior to engaging in proof reasoning related to the nature of the justifications they provide? 
Our second yet primary research question was: Is the nature of students’ gestures during proof 
reasoning related to the nature of the justifications they provide? This research provides insight into 
the link between action and mathematical reasoning, and has implications for supporting students’ 
proof activities. 

Methods 
Participants  

Participants were 120 undergraduate students enrolled in a psychology course at a large 
Midwestern university. Their average age was 19.6 years (SD = 1.08) and 51% of the participants 
were female.  
Procedure  

As part of a larger study, each participant was asked to solve a number of problems, including 
gear-parity, geometry, and transfer tasks; in this paper we focus only on the gear-parity problems. 
Participants were asked to think aloud (Ericsson & Simon, 1998) as they solved the problems. 
Instructions and interviewer prompts were standardized, and tasks were presented on an interactive 
white board. Participant data was coded separately for justifications and for gestures, as detailed later 
in this section. 

Before solving the gear-parity task, participants were randomly assigned to perform actions that 
were either relevant or irrelevant to providing a correct justification for the conjecture (see Table 1). 
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The relevant actions were based on previous studies that have shown that before participants 
discovered knowledge of the underlying numerical relationship of parity in the gear system, they 
typically use a strategy called “alternation,” in which they abstract the relation that adjacent gears 
move in alternating directions (Trudeau & Dixon, 2007). In particular, relevant actions involved 
students tapping back and forth on a screen, to model alternation. For participants who performed 
relevant actions, we also varied whether participants were told that the relevant actions they 
performed were related to the gear problem, which we call projection. Participants who received 
projection were explicitly informed that the tapping actions related to the solution to the problem, 
while other participants were not informed that their actions had any relevance. Finally, half of the 
participants performed small actions that were entirely within the periphery of their gesture space, 
while the other half performed larger actions that extended outside the periphery of their gesture 
space (McNeill, 1992). This factor did not affect participants’ success at abstracting the underlying 
mathematical relationship, so we do not discuss it further in this report. 
Justification Coding  

A coder blind to experimental condition used the proof categories from Harel and Sowder (1998) 
to code participants’ justifications on the gear task. For our purposes, participants’ justifications were 
coded as analytical>transformational if they acknowledged that connected gears form an alternating 
pattern of motion, and that the turning direction of the final gear is based on whether the total number 
of gears in the system is even or odd. We also extended the category of empirical>perceptual proof 
to account for a problem-specific nuance, distinguishing between perceptual with alternation and 
perceptual without alternation. Perceptual with alternation justifications included an understanding 
that the gears move in an alternating pattern, but the participant failed to acknowledge parity. 
Perceptual without alternation justifications included participants making comments that 
demonstrated a belief that the gears all turned in the same direction or that the last gear would turn in 
the same direction as the first gear, regardless of the number of gears present. Finally, the 
justifications of the participants who were unable to come up with a justification for how the gear 
system would turn were coded as don't know.  

Table 1: Gear Conjecture and Directed Actions 
Conjecture An unknown number of gears are connected in a chain. You know what direction the first gear turns, 

how could you figure out what direction the last gear turns? Provide a justification as to why your 
answer is true.  

Relevant 
actions 

Large Actions: 
Participant alternates 
between tapping a blue 
and yellow diamond 
placed an arm span apart 
on the Interactive White 
Board with their palm.  

 Small Actions: 
Participant alternates 
between tapping a blue 
and yellow diamond 
placed a hands-length 
apart on the Interactive 
White Board with their 
index finger.  

 
 
 

Irrelevant 
actions 

Large Actions: Participant taps only the blue 
diamond with their palm. 
 

Small Actions: Participant taps only the blue 
diamond with their index finger. 
 

 
 
Gesture Coding  

A coder who was blind to experimental condition watched and coded each participant’s session 
without sound in order to classify gestures based on their form while uninfluenced by the 
verbalizations that accompanied those actions. Participants’ gestures were classified into three 
categories: rotating gestures, ticking gestures and other gestures. These categories were identified as 
important based on previous studies of undergraduates solving gear-system problems (e.g., Alibali, 
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Spencer, Knox & Kita, 2011; Schwartz & Black, 1996; Trudeau & Dixon, 2007). Rotating gestures 
depicted one or more gears turning, typically using either one finger or the whole hand. Rotating 
gestures were further classified as depicting a single gear, multiple gears turning in the same 
direction, or multiple gears turning in alternate directions. Ticking gestures were defined as gestures 
that displayed a series of ticks, taps, or other discrete movements, typically produced using one 
finger or the whole hand and moving across space. Gestures that did not fall into either of these 
categorizes were labeled as “other” and descriptions of these gestures were recorded for further 
future analyses. Other gestures that we noted included beats, single points, and gestures that depicted 
movements other than rotating or ticking.  

Results 
Did participants’ gestures vary by condition? 

We first examined whether participants in the three conditions (relevant action with projection, 
relevant action without projection, and irrelevant action) varied in the types of gestures that they 
produced. First, participants were classified by whether they ever produced rotating gestures. Second, 
participants were then grouped according to whether they ever produced multiple rotating gestures 
with alternation, or only produced rotating gestures without alternation. As noted above, alternation 
is of particular importance to the gear-parity conjecture. We expected that more participants in the 
relevant-action conditions (regardless of whether they also received projection) than in the irrelevant-
action condition would produce gestures that manifested alternation. Specifically, we hypothesized 
that tapping back and forth embodied the alternation relationship found in the gear system, which we 
expected to be subsequently manifested in the gestures that participants produced during justification. 
As seen in Table 2 (leftmost column), this was numerically the case. However, the difference across 
conditions was not significant.  

 
Table 2: Percentage of Types of Gestures Produced by Participants in Each Condition 

 Rotating Gestures  
Condition Any multiple with 

alternation 
Other (no multiple 
with alternation) 

Ticking Gestures 

Irrelevant 53 18 20 
Relevant + Projection 55 30 8 
Relevant 68 23 25 

 
A third coding dimension classified participants in terms of whether they ever produced ticking 

gestures. We had anticipated that more participants in the relevant-action conditions than in the 
irrelevant-action condition would produce ticking gestures, since the relevant actions they had 
performed involved ticking back and forth. Instead, more participants in both the relevant and 
irrelevant conditions produced ticking gestures than did participants in the relevant-action-plus-
projection condition. The difference across conditions in the proportion of participants who produced 
ticking gestures approached significance, χ2(2, N = 120) = 4.50, p = .105.  

Thus, we did not find statistically significant relationships between action condition and patterns 
of gesture production. However, trends in the data suggest that the relevant actions may have 
encouraged participants to acknowledge alternation, and that projection may have inhibited ticking 
gestures during the justification.  
Were variations in gesture associated with variations in justifications? 

Given that variations in gesture production amongst conditions were not significant, we collapsed 
across conditions in order to examine whether participants’ gestures during problem solving were 
associated with the quality of the justifications they provided. Figure 1 displays the percent of 
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participants who provided each type of justification, as a function of the type of gestures participants 
produced during their explanation. Very few participants produced ticking gestures only (N = 1), or 
ticking gestures with non-alternating rotating gestures (N = 2), so these categories are not displayed 
in the figure. The number of participants in the other categories ranged from 18 to 52. 

As seen in Figure 1, participants who produced rotating gestures with alternation (the right two 
bars) were much more likely to provide valid, transformational justifications than were participants 
who did not produce such gestures (the left two bars), χ2(1, N = 117) = 18.71, p < .001 (83% vs. 
43%). Importantly, producing rotating gestures with alternation was more strongly associated with 
transformational justifications than was producing rotating gestures without alternation (i.e., single 
circles, or multiple circles that did not alternate direction), χ2(1, N = 78) = 7.13, p = .007 (comparing 
the middle two bars to one another, 46% vs. 15%). In addition, participants who produced ticking 
gestures along with rotating gestures with alternation (the rightmost bar) were slightly more likely to 
provide transformational justifications than were participants who produced rotating gestures with 
alternation without ticking gestures (the center right bar) (67% vs. 54%). However, this difference 
was not significant. 

Finally, among participants who produced perceptually-based justifications (the two light gray 
categories), participants who produced rotating gestures with alternation were more likely to 
incorporate alternation into their justifications than were participants who did not produce such 
gestures (the left two bars), χ2(1, N = 68) = 18.50, p < .001.  

In sum, producing rotation gestures with alternation was associated with expressing more 
sophisticated justifications. Participants who produced rotation gestures with alternation were more 
likely to express transformational justifications, and, if they expressed perceptual justifications, they 
were more likely to incorporate alternation. 

 

Figure 1: Percent of Participants who Provided Each Type of Justification as a Function of the 
Types of Gestures Produced 

Conclusion and Implications 
This study investigated the gestures participants produced when generating and justifying a 

conjecture about a gear system. Specifically, we found that participants who produced multiple, 
alternating rotating gestures were the most likely to solve the problem utilizing transformational 
justifications. This finding aligns with past research indicating that simulation of the gear movements 
was associated with participants’ generating an alternation approach (Boncoddo et al., 2010). 
Additionally, this finding adds to the body of work that shows that gesture is closely related to, and 
can perhaps affect, learners’ approaches to mathematical justification. The fact that certain, 
identifiable gestures were closely aligned with valid justifications highlights the importance of 
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considering both speech and gesture when examining mathematical reasoning. Producing these 
gestures may be a key aspect of students’ understanding and adopting the mathematical insights 
behind the gear problem. 

Participants who produced ticking gestures along with rotating gestures with alternation were 
most likely to produce transformational justifications, raising the possibility that ticking motions are 
a potentially useful form of abstraction for the concept of parity. Rotating gestures and ticking 
gestures may each play different roles in supporting mathematical reasoning, and when used in 
combination they may be especially powerful. In this light, it is interesting that participants in the 
relevant-action-with-projection condition were especially unlikely to use ticking gestures. The high 
rate of multiple, alternating gestures, but low rate of ticking gestures in this condition suggests that 
projection may have encouraged participants to focus too strongly on the concrete movement of the 
gears, making it more difficult for them to make the mathematical abstraction. In other words, being 
directed to perform alternating ticking gestures and being explicitly told of their relevance to the gear 
problem may have made abstraction to the even/odd pattern more difficult, as it focused participants 
on concrete, perceptual aspects of the situation (e.g., Kaminski, Sloutsky, & Heckler, 2005). 

This work has important implications for broadening perspectives on mathematical thinking and 
learning. While students in mathematics classrooms may or may not be involved in gear tasks 
specifically, we have shown that certain kinds of gestures can be strongly associated with producing 
transformational proofs. Thus, it may be beneficial for teachers to encourage students to gesture 
while reasoning, and to pay close attention to students’ gestures to look for key aspects of their 
reasoning processes and current levels of understanding.  
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