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Perceptual characteristics of mathematical equations may influence solvers’ problem solving. 
For example, in a study of equations involving addition and multiplication, Landy and Goldstone 
(2010) showed that participants tended to perform narrowly spaced operations first, suggesting 
that spacing affects how symbols are grouped for problem solving. Building on this past work, 
we examined whether perceptual factors affect participants’ interpretations of the minus sign. In 
an experiment with undergraduates, we manipulated the spacing of the operands and the 
position of the minus sign relative to its neighboring operands. Both the operands' spacing and 
the position of the minus sign affected performance. These results hold implications for the 
processing of symbolic representations and for mathematics education.  
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In the abstract symbol system of mathematics, individual numerical and operational symbols 
are combined into more complex mathematical expressions. These combinations take place in a 
two-dimensional representational system, in which spatial features may be relevant or irrelevant 
to formal mathematics. For example, a relevant spatial feature would be the ordering of the digits 
and operators in a given mathematical equation—because mathematically correct solutions to 
multi-operation arithmetic problems are reached by following mathematical rules, such as the 
order of operations. Similarly, the size and spatial location of a superscripted digit to indicate an 
exponent differentiates its mathematical meaning from the digit used as the base. In contrast to 
these examples, there is no difference in the formal mathematics of an expression when the 
horizontal spacing of the symbols is varied; correct application of the order of operations rule 
should yield the correct answer, regardless of how the equation is horizontally spaced.  

However, some recent evidence suggests that, despite its formal irrelevance to mathematical 
meaning, horizontal spacing affects problem solvers’ solutions. Landy and Goldstone (2007a) 
found that the amount of space surrounding operands influenced participants’ judgments of the 
equality of two mathematical expressions. For example, undergraduate participants were more 
likely to agree with the statement “Is a + b * c + d = b + a * c + d necessarily true?” when the 
multiplication operations were more widely spaced than the addition operations  
(i.e., a + b   *   c + d = b + a   *   d + c), compared to when they were equally spaced. Participants 
made more errors when spacing was inconsistent with the mathematically correct order of 
operations (as discussed in Landy & Goldstone, 2007b).  

Effects of spacing also are present when people construct mathematical expressions. 
Evidence from problem transcriptions show that participants implicitly follow spatial patterns 
when converting equations from word form (e.g., three plus five times two) to number form 
(e.g., 3 + 5 x 2). Participants spaced multiplication signs more narrowly than plus signs, 
signifying the precedence of multiplication (Landy & Goldstone, 2007b). 

Effects of spacing on performance are also apparent in the time it takes for participants to 
solve problems (Landy & Goldstone, 2010). Participants solved equation structures of the form 
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“a + b x c” or “a x b + c” faster and more accurately when the multiplication operation was 
spaced more narrowly than the addition operation (e.g., a + bxc or axb + c, as compared to  
a+b  x� c or a  x  b+c). Participants displayed higher accuracy on problems with spacing that was 
consistent with the order of operations rules, and they also processed those equations more 
quickly.  

These findings indicate that, irrespective of its formal irrelevance, the horizontal spacing and 
proximity of operands and operations can influence people’s interpretation and understanding of 
mathematical expressions. Moreover, it appears that the relationship between horizontal spacing 
and arithmetic performance is bidirectional. People’s knowledge about the order of operations 
can influence the spacing they use when writing expressions, and spacing can affect the order in 
which they perform operations when evaluating or solving problems. Furthermore, these findings 
may have important implications for educational practice. Instructors may be able to use these 
perceptual features to their advantage in classroom instruction. 

In light of these previous findings, the minus sign (i.e., “–”) is a particularly interesting case, 
because it is used not only to represent subtraction, but also to invert the sign of a number.	  
Consequently, the minus sign is sometimes treated differently from other operation symbols; for 
example, it is “carried” with the associated operands in algebraic manipulations. This can present 
challenges for students learning algebra (Cangelosi, Madrid, Cooper, Olson, & Hartter, 2013; 
Demby, 1997; Vlassis, 2004). In addition, as a mathematical operation, subtraction is more 
difficult than addition (e.g., Das, LeFevre, & Penner-Wilger, 2010). In this study, we investigate 
whether formally irrelevant perceptual features can influence how the minus sign is interpreted. 
If perceptual features influence subtraction, as they do addition and multiplication, our research 
findings may be important for understanding students’ difficulties at the transition between 
arithmetic and algebra. 

In the present research, we investigated the effects of perceptual grouping of operands on 
participants’ interpretations of the minus sign. Participants were presented with multi-operation 
expressions that involved subtraction. The equations were in the format of “a – b + c x d”. We 
tested whether undergraduates’ arithmetic accuracy would be enhanced by supportive yet 
formally irrelevant perceptual cues consistent with order of operations rules or hindered by 
misleading, formally irrelevant perceptual cues inconsistent with orders of operations rules.  

Building on Landy and Goldstone’s previous work (2007a, 2007b, 2010), we varied two 
aspects of spacing: the closeness of operand spacing and the lateral minus sign position. Before 
presenting our experimental method, we describe each of these variations and how they might 
affect performance. In both cases, the variations we employed were subtle, consisting of only 
one or two spaces in a normal-sized font. 

First, we varied the operand spacing, specifically for the operators that followed the minus 
sign. To do so, we removed the spaces between operands and operations for the last three terms, 
similar to Landy and Goldstone’s (2007a) manipulation. The closer proximity of the symbols 
may lead solvers to perceptually group these terms, as suggested by the Gestalt principles of 
visual perception (e.g., Werthmeimer, 1923/1938). Evidence from past research (e.g., Landy & 
Goldstone, 2010) suggests that visually grouping these symbols should give them precedence in 
problem solving steps. That is, the narrower spacing of these symbols (e.g., 25  –  3+2x5) could 
create a perceptual group which might lead participants to construe “3+2x5” as the subtrahend, 
and mistakenly apply the subtraction operation to this entire quantity. This would lead to the 
error described in Table 1, which we term a “target error”. In erring this way, participants 
incorrectly evaluate the scope of the minus sign, due to the perceptual grouping. 
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Second, we varied the minus sign position, again based on the Gestalt principle of proximity 
(Wertheimer, 1923/1938). We horizontally shifted the minus sign (see Table 2 for a visual 
display) to create different perceptual groups. For instance, in the equation  
“25  –  3  +  2  x� 5 = ____”, if the minus sign were shifted slightly to the left,  
(25 –   3  +  2  x  5 = ____ ), solvers should be more likely to group the remaining symbols  
“3  +  2  x  5”. This, too, may lead participants to produce the target error, because the minus sign 
may be applied to the entire quantity of “3  +  2  x  5” because of the perceived group. In 
contrast, if the minus sign were shifted to the right, solvers should be more likely to group the 
operator with the subsequent subtrahend of 3. Thus, manipulating the lateral position of the 
minus sign has the potential to affect the quantity participants treat as the subtrahend.  

 
Table 1: Incorrect Solution Strategy Based on Incorrect Perceptual Grouping 

Problem 25  –  3  +  2 �x  5 = ____ correct answer = 32  

Step 1 multiply: 25  –  3  +  10 = ____ correctly following order of operations 

Step 2 add: 25 – 13 = ____ Demonstration of a “target error” with 
incorrect order of operations, potentially 
based on perceptual grouping of all symbols 
to the right of the minus sign 

Step 3 subtract: = 12  

 
Although we could have tested many other perceptual features, we chose these two 

manipulations because of their implications for how the subtrahend is determined. The minus 
sign position manipulation directly alters the proximity of the minus sign to other elements in the 
equation; this manipulation relies on the proximity of the operator to its operands to generate 
supportive or misleading perceptual groups. The operand spacing manipulation more subtly 
affects the how the minus sign is drawn into the subtraction operation; the closeness of the latter 
terms may again prompt a perceptual grouping that influences a solver’s interpretation of the 
scope of the minus sign by affecting the perceptual group that is treated as a subtrahend.  

In sum, we hypothesized that perceptual cues inconsistent with the order of operations rules 
would encourage solvers to incorrectly group operations together and lead to errors in problem 
solving. Both the mathematically irrelevant spatial features of minus sign position and spacing of 
the remaining operands could potentially affect how the scope of the minus sign is interpreted. 
Despite their formal irrelevance, we expected these manipulations to affect participants’ 
solutions to arithmetic problems involving the minus sign.  

 
Methods 

Participants 
Undergraduate students (N = 92) in introductory psychology at a large Midwestern university 

participated in exchange for extra credit. Sixteen additional participants were excluded due to a 
photocopying malfunction leading to faulty stimuli. 
Design and Materials 

Participants solved arithmetic problems with manipulated perceptual features. In the target 
problems, subtraction was the first operation presented the equation, followed by addition, and 
finally multiplication (e.g., 25 – 3 + 2 x 5).  
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A 2 (operand spacing: evenly spaced or closely spaced) x 3 (minus sign position: left shift, 
no shift, or right shift) between-subjects design was used, yielding a total of 6 conditions. Table 
2 displays the outcomes of these manipulations. In the evenly spaced problems with no shift, 
there were two spaces between each operand and the adjacent operator and two spaces around 
the equal sign. The left-shift condition was created by reducing the space between the first 
operand and the minus sign by one space and adding a space between the minus sign and the 
subsequent operand. The opposite was done for a right shift. For the closely-spaced condition , 
all the spaces after the second operand were removed, which resulted in no spaces between the 
last two operators and their three surrounding operands, as seen in the first row of Table 2. 
 

Table 2: Example Target Problem with Shift and Grouping Manipulations 
 Minus Sign Position 

Operand 
Spacing Left Shift No Shift Right Shift 

Evenly 
Spaced ����������������x�����	������� ����������������x�����	������� ����������������x�����	�������
Closely 
Spaced ����������x���	������� ����������x���	������� ����������x���	�������

 
Participants received ten target problems and eight control problems of the form  

“a  +  b  –  c  x d”. The control problems did not afford the target error that the target problems 
did. The operands in the equations were randomly generated, with the constraint that both the 
operands and solutions were non-zero positive integers. The problems in each condition were 
presented in a fixed order and the same operands were used for any given problem across 
conditions. 

On each of the 8.5" x 5.5" (wide) pages of the packet, there were two math problems, 
separated by a fill-in-the-blank vocabulary question (as seen in standardized tests such as the 
SAT) as a filler. Size-12 Calibri font was used for all the questions, and the questions were 
numbered at the left margin. The packets were constructed such that the pages with the target 
math problems alternated with pages with the control math questions.  
Procedure 

Participants were tested in groups of up to five students at a time; each completed his or her 
packet of problems individually. Each participant was given a question packet with the math 
problems and vocabulary filler questions. Participants had up to thirty minutes to complete the 
question packet. Once participants finished the problem set, they were asked to provide 
information regarding their math and reading backgrounds and other relevant demographic 
information such as year in school and major. 

 
Results 

We scored whether each solution on each target problem reflected the target error or not, that 
is, whether the participant used a mathematically incorrect but perceptually-based group to solve 
the problem. Thus, careless arithmetic errors (e.g., 3 + 3 = 9) and errors that involved solving 
from left to right without consideration of order of operations  
(e.g., 25  –  10  + 3 x 2 = 36), while mathematically incorrect, were coded as No Target Error.  

We analyzed the existence of target errors with a mixed effects logistic regression model 
using the glmmadmb package (Skaug, Fournier, & Nielsen, 2012) in R. Our two factors, minus 

Math Processes: Research Reports



257

Martinez, M. & Castro Superfine, A (Eds.). (2013). Proceedings of the 35th annual meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education. Chicago, IL: University of Illinois at Chicago.

sign position and operand spacing, were treated as fixed effects that were allowed to interact, and 
participant was a random effect.  

Figure 2 presents the mean proportion of trials with target errors in each condition. When the 
operations that followed the minus sign were closely spaced, participants in the left shift 
condition produced significantly more target errors than participants in the right shift condition,  
p = .028. The left-shift condition did not yield significantly more target errors than the no-shift 
condition, although the results trend in this direction. Additionally, within the closely-spaced 
condition, participants in the no-shift condition produced marginally more target errors than 
participants in the right-shift condition, p = .059. However, in the evenly-spaced condition, there 
was no difference in the proportion of target errors among the left-shift, no-shift, or right-shift 
conditions. 

Focusing on the effects of the position manipulation, when the minus sign was shifted to the 
left, participants in the closely-spaced condition produced more target errors than participants in 
the evenly-spaced condition, p = .026. Close spacing also led to significantly more target errors 
than equal spacing when there was no shift, p = .038. However, when the equal sign was shifted 
right, there was no difference between the closely- and evenly-spaced conditions, p > .05. 
 

 

Figure 1: Proportion of Trials with Target Errors by Condition 
 
In summary, target errors were most frequent when the minus sign was shifted left and the 

operations that followed the minus sign were closely spaced. Closely-spaced symbols were 
associated with more target errors than evenly-spaced symbols, for both the left shift and no shift 
conditions. Overall, the proportion of target errors within the closely-spaced condition was 
affected by the position of the minus sign. On the other hand, target errors were very low when 
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the operands were evenly spaced, and the proportion of target errors within the evenly-spaced 
conditions was not affected by the position of the minus sign.  

 
Discussion 

This study investigated whether spatial properties of equations would encourage participants 
to misevaluate the scope of the minus sign. We found that shifting the minus sign to the left and 
closely spacing the operations that followed the subtraction operation increased the frequency of 
the target error. This means that participants used the perceptually-based groupings instead of the 
mathematically-correct grouping, as defined by order of operations rules. Thus, when the 
manipulations afforded perceptual groups, participants were more likely to perform the 
perceptually grouped operations first, despite the inconsistency with formal mathematics. The 
variations we implemented in the position of the minus sign and spacing of the operations did not 
alter the inherent meaning of the equations. However, the participants had more difficulty 
accurately processing equations with perceptual features that were inconsistent with the order of 
operation rules. These findings extend past research by Landy and Goldstone (2010), and they 
indicate that multiple ways of manipulating perceptual grouping can influence participants’ 
interpretations of mathematical equations and guide their problem solving. 

Equations with the final three operands spaced closely elicited more target errors, except 
when the minus sign was shifted right (e.g., 25   – 3+2x5 = ____). In the right-shift condition, 
participants seem to have incorporated the minus sign as part of the subtrahend, and this may 
have protected them from making the target error. This suggests that participants in the right-
shift condition were either more likely to perform the multiplication and then go back to the 
beginning of the equation or to realize that the minus sign could be applied to the subsequent 
operand, making it negative. In contrast, participants in the left-shift and closely-spaced 
condition, in which the target error was most prevalent, tended to ignore the minus sign (perhaps 
because it was spatially more distant) and to incorrectly perform the subsequent operation 
without the minus sign “riding along” (i.e., to calculate “3 + 10”  instead of “–3 + 10” in the 
intermediate step).  

The increased frequency of target errors in the left shift condition compared to the right shift 
condition suggests that perceptual factors may influence whether solvers activate the notion of 
negative numbers. The proximity of the minus sign to the subsequent operands in the right shift 
condition may have allowed participants to “attach” the minus sign to the subsequent perceptual 
group (e.g., in Table 1,  “–3+2x5”), so that they viewed the subsequent operand (i.e., 3) as a 
negative integer. The more distant minus sign in the left shift condition may not have afforded 
this connection. This possibility is compatible with evidence from Vlassis (2004) suggesting that 
at the transition from arithmetic to algebra, students expand their understanding from natural 
numbers to integers, which may incorporate the minus sign to indicate that an integer is negative. 
However, our findings suggest that, when there is conflicting perceptual information, 
undergraduates may not automatically activate the notion of subtraction as adding a negative 
number. 

There are many potential directions for future research in this area. One valuable next step 
would be to conduct a detailed analysis of participants’ problem-solving steps, in order to better 
understand the processes through which perceptual spacing affected performance on these 
equations. It is possible that participants in the closely-spaced condition were more likely to start 
their solution process at the end of the expression (i.e., focusing on the grouped operands first). 

Math Processes: Research Reports



259

Martinez, M. & Castro Superfine, A (Eds.). (2013). Proceedings of the 35th annual meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education. Chicago, IL: University of Illinois at Chicago.

This would further bolster the claim that perceptually grouped operations are likely to be 
performed first.  

A second important future direction would be to directly investigate the relative prevalence 
of spatial and semantic information in problem solving. Our results suggest that spatial 
information may be processed before evaluating the semantic values of symbols. We suggest this 
given the evidence that participants used the perceptual groups to determine the subtrahend, 
rather than using the scope of the minus sign as defined by the order of operation rules. 
However, further research that directly investigates the integration of spatial and semantic 
information is needed.  

This work could also be extended by investigating different types of problems, working with 
younger students who have less expertise at these operations, and considering the effects of math 
ability and attitudes on susceptibility to the making the target error. More generally, a deeper 
understanding of the role of the spatial factors is needed for a complete account of students’ 
acquisition of computational and algebraic skills.  

Finally, we believe that these data have important implications for educational practices. 
Perceptual features of mathematical expressions are a relatively little-studied area in 
mathematics education. However, perceptual features do affect performance, as we have shown 
here (see also Landy & Goldstone, 2007a, 2010). It could be beneficial to leverage the effects of 
spatial features on mathematical processing in instructional contexts. For example, spatial 
manipulations could be used to support students’ learning of the order of operations rules, and 
spatial support could later be faded as students gain proficiency. Similarly, spatial cues based on 
proximity or other perceptual features (see Wertheimer, 1923/1938) could be implemented to 
reduce students’ misinterpretations of the scope of the minus sign. Although the research here 
focused on proximity cues that afforded perceptual groups in arithmetic equations, mathematics 
in general uses a symbol system that incorporates spatial features in its representation.  Overall, 
our findings suggest the need for a deeper consideration of the spatial characteristics of symbolic 
expressions used in mathematics instruction. 
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