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This research study was specifically concerned with the development, testing, and revision to an 
instructional theory for studying the mathematical concepts of equivalence and equation solving 
with multiple representations and multiple tools. Following a design research approach, a 
collaborative teaching experiment was conducted with a ninth-grade algebra teacher in which 
instruction was guided by a specifically designed sequence of tasks, techniques using paper-and-
pencil and computer algebra systems (CAS), and theory on a hypothesized progression of 
learning. Retrospective analyses of data informed revisions to a resulting progression of 
learning and activity sequence that are being tested with pre-service secondary mathematics 
teachers.
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Background and Purpose 
Mathematical equivalence is a central topic in mathematics, and the domain of school algebra 

specifically (Chazan & Yerushalmy, 2003). Current expectations for school mathematics include 
justifying the equation solving process by reasoning about equivalence of equations (Common 
Core State Standards Initiative [CCSSI], 2010). Empirical studies on students’ understanding of 
the equal sign have shown that students hold a diversity of understandings from operational to 
relational (Matthews, Rittle-Johnson, McEldoon, & Taylor, 2012), and that these understandings 
matter for students’ abilities to solve equations (Knuth, Stephens, McNeil, & Alibali, 2006). 

A specific motivation for this study was to link research and practice on the use of computer 
algebra systems (CAS) to support students’ development of representational fluency in solving 
equations. CAS are a representational toolkit that facilitate the creation of, manipulation of, and 
movement between symbolic, graphic, numeric, and verbal representation types. For this study, 
representational fluency was defined as the ability to create, interpret, transpose within, translate 
between, and connect multiple representations in doing and communicating about mathematics. 
This construct helps to characterize students’ conceptual understanding of mathematics because 
it deals with cognitive connections across representations of mathematical objects. 

Some of the specific gaps in the literature that this study sought to address include the 
articulation of aspects of CAS-equipped classroom learning environments. For instance, more 
research is needed to specify the roles of representations and a balance between CAS and paper-
and-pencil tools (e.g., Kieran & Saldanha, 2008). Additionally, a focus on the role of the equal 
sign may shed light on student thinking and understanding with respect to equivalence and 
equation solving (Knuth et al., 2006). This is also tied to the use of language in learning the 
nuances and relationships among expressions, equations, equivalence, and solutions (Kieran & 
Drijvers, 2006). True to the goal of linking research and practice, designing instruction based on 
students’ learning processes pushes the field forward in defining a theory of teaching (e.g., 
Sztajn, Confrey, Wilson, & Edgington, 2012). On the topic of understanding of equivalence and 
equation solving, research studies on student learning processes that undergird a meaningful 
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instructional sequence are emerging (Kieran & Drijvers, 2006; Kieran & Sfard, 1999; Rittle-
Johnson, Matthews, Taylor, & McEldoon, 2010). 

This report focuses on a research question that guided a component of research conducted by 
Fonger (2012): What means of support seem to facilitate students’ development of 
representational fluency in a combined CAS and paper-and-pencil environment? To address this 
question, following Cobb (2003), the means of support were organized around four main aspects: 
(1) the instructional tasks and activity sequence, (2) the tools students would use, (3) the activity 
structure of the classroom, and (4) classroom expectations. Inspired by Kieran and Drijvers 
(2006), the focus of this report is on the tested and revised sequence of tasks, techniques, and 
theory. The tasks specify the mathematics that students do and the techniques are the ways in 
which CAS and/or paper-and-pencil are used to accomplish some mathematical goal. The theory 
is an empirically based conceptual progression of expected tendencies that students will 
encounter as they formalize their understandings through engagement with tasks, tools, 
techniques, and other interactions (cf. Kieran & Drijvers, 2006; Sztajn et al., 2012). 

Research Design and Theoretical Frameworks 
A design research approach (Gravemeijer & Cobb, 2006) was followed in order to effectively 

design for, test, and revise an empirically based instructional theory. The three phases of this 
research were: preparation for the experiment, conduct of a teaching experiment and ongoing 
analyses, and retrospective analyses. During the first phase of the research a conjectured 
instructional theory was posited based on a review of relevant literature, briefly summarized 
above and elaborated by Fonger (2012). Conjectured and revised elements of the instructional 
theory are elaborated in the next section. 

The second phase of the research involved a teaching experiment conducted in collaboration 
with a classroom teacher (Cobb, 2000). The teacher had four years of experience teaching 
courses in algebra and geometry and had used non-CAS graphing calculators in her instruction. 
The setting of the research was an algebra classroom at a large urban public high school. During 
the five-week teaching experiment, the teacher taught all lessons and the researcher served as a 
participant observer in the classroom. Consistent with the research design and the researcher’s 
epistemological foundations, an interpretive lens on classroom interactions guided the ongoing 
analyses of classroom activity; the classroom practices and students’ mathematical activity and 
cognition were seen to co-evolve over time (Cobb & Yackel, 1996). 

The process of carrying out and testing the instructional sequence involved three aspects that 
occurred on a daily basis. First, daily cycles of classroom implementation were guided by 
hypothetical learning trajectories (Simon, 1995) in which learning goals, learning activities, and 
hypotheses of students’ learning process were tested. The second component was reflective in 
nature with the directive to link research and practice. The teacher and researcher engaged in 
thought experiments or directed reflections every day after class for 45-90 minutes with student 
work, lesson notes, and task-technique-theory frameworks to explore the questions “is 
instruction meeting the set-out goals?” and “how should we improve the next lesson to account 
for student understandings demonstrated in the most recent lesson?” On Fridays we met for an 
hour or more to address the questions “how did the weekly teaching sequence support or differ 
from the conjectured instructional theory?” and “what revisions should be made for next week’s 
plan?” After each thought experiment, the researcher identified critical moments that occurred 
during the classroom episodes and summarized those in daily and weekly summary files. Critical 
moments were identified as segments of a teaching episode that seemed to well-support or 
contradict the proposed learning goals and means of support being tested. 
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The third phase of the instructional experiment included creating new hypothetical learning 
trajectories for the next class session that took into account the daily instruction. Figure 1 
illustrates the overarching instructional theory and the reflexive relation between theory and 
practice, which guided ongoing analysis and experimentation. 

Figure 1: Daily cycles of experimentation were guided by an overarching instructional 

theory (Gravemeijer & Cobb, 2006). 

The final phase of the research involved retrospective analyses of all data. This included: pre- 
and post-test data from select students of the classroom, initial and final interviews with select 
students (discussed by Fonger, 2012), teacher and student classwork, classroom and individual 
student video, observational field notes, daily and weekly class summaries and debriefing notes 
from collaborative and individual thought experiments about daily instructional episodes, and 
weekly debriefing session notes. Both Studiocode and HyperRESEARCH tools supported 
management and analysis of all data. 

The data analysis method during the retrospective analysis stage resembled what 
Gravemeijer and Cobb (2006) described as a constant comparative method (Glaser & Strauss, 
1967). In this process, conjectures about the instructional theory that had been identified during 
ongoing analyses were later confirmed or refuted based on evidence from a given classroom 
episode; these conjectures were then tested again against the subsequent episode. This process of 
confirming and refuting conjectures was repeated until all teaching episodes and critical 
moments were analyzed in chronological order. Critical moments were coded according to the 
main aspects of the instructional theory: Activity Sequence, Activity Structure, Learning 
Progression, and Classroom Expectations. As code names within each category were refined 
(e.g., clarified description, new code name, etc.), all data in that category were re-coded 
according to the updated code categories. By design, all instructional theory components and 
descriptions were revised throughout the ongoing and retrospective analyses. 

Results: An Emerging Instructional Theory 

An instructional theory involves two main aspects: learning processes guided by learning 
goals, and means of support for tasks, tools, classroom culture, and the role of the teacher 
(Gravemeijer & Cobb, 2006). The learning goals that defined the direction of the instructional 
design were to: (a) develop representational fluency with linear expressions and equations, (b) 
understand the equal sign as an equivalence relation, and (c) solve linear equations as a process 
of reasoning about equivalent equations. These three goals guided the sequence of learning 
activities or tasks. CAS and paper-and-pencil techniques were specified in the activity design as 
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a way to accomplish these goals. These techniques were summarized as an activity structure that 
was grounded in literature on the coordination of tool use (e.g., Kieran & Saldanha, 2008) and a 
multi-representational lens on doing and communicating mathematics (e.g., Kieran & Sfard, 
1999). The theoretical component was intertwined with the tasks and techniques in support of the 
learning goals. 
Tasks

To describe the overall sequence of activities, both the enacted and revised versions of the 
sequence of tasks are given in Table 1. Note that the changes that are made here are reflective of 
the retrospective analysis. One main area that was added to this sequence of tasks was the 
Cartesian Connection. 

Table 1: Enacted and Revised Sequence of Tasks 
U

nit
Enacted Revised 

1 Multiple Representations of 

Equivalent Expressions 

The “Cartesian Connection” in Graphs, 

Symbols, Tables, and Words 
Equivalent and Non-Equivalent Expressions 

in Graphs, Tables, Symbols, and Words 

2 Equations are Equivalence Relations 

that are Sometimes, Always, or Never 
True 

Equations are Equivalence Relations that 

are Sometimes, Always, or Never True 

3 Solving Linear Equations with 

Multiple Representations 

Identifying Solutions Sets of Linear 

Equations in Graphs, Tables, Symbols, and 

Words 

4 n/a Equivalent Equations have the Same 

Solution Sets 

Ongoing analysis during the teaching experiment alluded to possible weaknesses in students’ 
understanding of the Cartesian Connection (Fonger, 2012). As described by Moschovich et al 
(1993), this understanding is seen as an important pre-requisite skill for coming to understand the 
relationships between graphical, numeric, symbolic, and verbal representations of equations and 
solutions. The second area of the task structure that this affected is described in row 3 of Table 1; 
more attention needs to be given to the role of identifying solutions in multiple representations. 
Finally, the five-week teaching experiment was not long enough to fully test the mathematical 
topic of equivalent equations, thus is considered to be an additional unit to this sequence of 
activities (row 4 of Table 1). 
Technique

Many of the techniques that were tested and revised in the experiment were process oriented 
with respect to the role of multiple representations (and supporting the development of 
representational fluency), and the role of using multiple tools. Table 2 gives a summary of these 
techniques; those with a double-asterisk (**) were added during the retrospective analysis of 
data.

Table 2: Techniques that Structured Classroom Activity with Revised Descriptions 
Techniques that Support Representational Fluency 

Translate

**

Create and interpret the meaning of a target representation with respect to a 

source representation of a different type. 

Transpos Create and interpret multiple representations within one representation type. 
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e**

Interpret Convey the meaning of the act/result of creating a tool-based representation; 
a basic, quick remark, thoughtful but not deep. 

Connect Give a correct interpretation of an invariant feature across multiple 

representations or types. 

Generaliz
e**

Make a generalization across several representations or representation types 
(e.g., abstract notation a(x + b) = ax + ab).

Justify** Representations are used to confirm or ascertain a particular result or 

conclusion; “use representations as justifications for other claims” (Sandoval, 
Bell, Coleman, Enyedy, & Suthers, 2000; reasoning must be present); 

formal/rigorous explanation, objective, based on set practices. 

Techniques that Support the Coordination of Multiple Tools 

Anticipat
e

Predict the result of creating tool-based representations. 

Act  Create a representation and possibly explain the process of how one works 

within or moves between tool-based representations or types. 

Reflect React to or think deeply about representations/representation types with 

respect to equivalence and/or equations; heavy thought, detailed in response, 

subjective and developmentally oriented. 

Reconcile Negotiate differences between CAS and paper-and-pencil representations. 

CAS

Check**

Use the CAS to check or verify paper-and-pencil representations (often 

times within Symbolic representation type). 

The notion of an action-consequence principle (see the techniques at the bottom of Table 2) 
is proposed an appropriate way to coordinate the use of mathematics technology in which tool-
based results are first predicted with paper-and-pencil, then executed with technology, then 
reflected upon (cf. Dick & Hollebrands, 2011). The notion of reconciling differences between 
CAS and paper-and-pencil representations is elaborated by Kieran & Saldanha (2008). The role 
of CAS to check paper-and-pencil results was added to the activity structure during the ongoing 
analysis when it became evident as a common classroom practice in which results were 
consistent between multiple tools (no reconciling was needed). 
Theory

The sequence of instructional tasks was guided by a synthesis of several conceptual 
progressions into a single learning progression (see Table 3). Two studies were central: (a) 
research with secondary students who studied a unit on equivalence and equation solving with 
CAS and paper-and-pencil (Kieran & Drijvers, 2006) [elements A1, B-symbolic only, C, D1, in 
Table 3], and (b) research with middle grades students who studied a unit with a multi-
representational lens on equivalence solving with graphing calculators and paper-and-pencil 
(Kieran & Sfard, 1999) [elements A2, B, D2 in Table 3]. The elements that were added to the 
learning progression during the teaching experiment to support student understanding of the 
learning goals are denoted with a single asterisk * in Table 3; all other components were 
determined a priori to the study. 

Table 3: Hypothesized Modifications to a Learning Progression 
Ele

ment Description 
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A1 Connecting and generalizing the quantitative, visual, and verbal with symbols.

Symbolic expressions generalize numeric, graphic, and verbal patterns by allowing for 
compact, abstract notation.

A2 Different representations/representation types can signify the same object. Different 

representations/representation types of the same linear expressions and/or equations 

signify the same relationship, pattern, or function from different yet complementary 
perspectives.

B Equivalence of expressions from multiple representations. Expressions are equivalent 

if they define the same relationship, pattern, or function.

C Domain and range restrictions may arise in contextual situations and should be 
considered when determining equivalence. 

C1* Role of Equal Sign: “=” assigns variables rules/names for patterns. 

C2* Role of Equal Sign: “=” expresses identity between equivalent expressions. 

CC

1*

If a point P is on the line L, P makes the equation of L true.

CC
2*

If a point P makes the equation of L true, P is on the graph of L.

D1 Solutions to equations can be determined by equality of expressions. Linear 

equations are relations between linear expressions that are sometimes, always, or never 

equal in value. Thus linear equations have one, infinitely many, or zero solutions, 
respectively.

D2 Solving equations in one variable is conceptualized as a comparison of two 
functions. Linear equations in one variable such as ax + b = cx + d for real valued 
parameters a, b, c, and d, can be solved for the variable x by comparing the functions 

f(x) = ax + b and g(x) = cx + d for the value of x that makes the equation ax + b = cx + d
true. Graphical, tabular, or symbolic methods can be used. 

E Equivalence of equations. Equations are equivalent if they have the same solution set. 
Represented graphically, solution sets of equivalent equations are x-coordinates of the 
intersection points in the coordinate plane. Represented in tables, solution sets of 
equivalent equations are the inputs for which the outputs are the same. 

The aspects of the learning progression for which there is more to explore include the 
relationship in language between expressions, equations, and functions. During the teaching 
episodes the students became accustomed to using the language of an equation as being 
sometimes, always, or never true. Another aspect of the learning progression that was not tested 
with this particular group of students was that of equivalent equations [element E in Table 3]. 
This element is still included in the learning progression because of the importance of this topic 
as specified in CCSSI (2010). 

Implications and Ongoing Research 

Consistent with the goal of linking research and practice, the task-technique-theory 
framework was used as a tool to help support research-practice links in the design of instruction. 
The articulation of a research-based sequence of tasks can be used to guide instructional 
decisions about the implementation of mathematical content as espoused in CCSSI (2010). 
Moreover, for classroom environments that support the coordinated use of multiple tools, a focus 
on techniques can be used as a lesson design principle to guide instructional moves. This aspect 
of the emerging instructional theory is also consistent with the mathematical practice of using 
appropriate tools strategically. Techniques focused on the role of representations are also well 
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suited for promoting a more conceptual understanding of mathematics as long as there is a strong 
emphasis on interpretation and connections. 

The proposed instructional theory is characterized as emergent because based on the design 
research paradigm (Gravemeijer & Cobb, 2006), the testing of a learning progression should 
occur in several iterations in which the implementation of the first iteration elicits revisions and 
informs the next iteration of testing. The rationale for an iterative design is to build theory over 
time, not to just empirically tune “what works” but to elicit general design principles that can be 
used to inform other instructional design along a meaningful learning progression. Consistent 
with this research design, current research is underway that is focused on testing and refining the 
instructional theory. The task, technique, and theory elements are being integrated into a 
curriculum for pre-service secondary mathematics teachers. One way in which the ongoing 
research will extend the study discussed here is by the use of polynomial and rational 
expressions and equations for examining equivalence and equation solving, with more specific 
attention to the role of the equal sign with the newly emerging frameworks for understanding 
that knowledge (e.g., Matthews et al., 2012). Another way in which future research can extend 
and strengthen the current study is by investigating a broader range of mathematical standards so 
as to link topics from elementary grades on algebraic thinking to topics across the middle and 
high school that require justification and reasoning about equivalence and equation solving. 
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