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The study reported in this paper is part of a larger study on the roles of examples in learning to 
prove. We focus here on manifestations of students’ productive use of examples for proving in the 
course of exploring conjectures and proving or disproving them. In this context, we define productive 
use of examples for proving as students’ utterances that indicate that working with examples led 
them to realize and gain insights into some aspects of the key ideas for proving (or disproving) the 
conjecture. There were a total of 39 participants (12 middle school, 17 high school, and 10 
undergraduate students). Each took part in an individual one-hour task-based interview. We 
identified 77 cases of productive use of examples, 41 based on an interviewer’s provision of 
example(s) and 36 based on students’ spontaneous generation of examples. These cases serve to 
characterize students’ strengths that are not directly fostered in school.  

Keywords: Reasoning and Proof    

Proof and Proving in Mathematics Education 
It is commonly agreed among mathematicians and mathematics educators that mathematical 

proof and proving are at the heart of mathematics, and that the activity of mathematically proving is 
dauntingly difficult even for most good undergraduate students. A continuing concern in 
mathematics education is that students do not sufficiently understand the nature of evidence and 
proof in mathematics and that they struggle with providing logically sound justifications and 
arguments to support the validity of mathematical conjectures or claims (e.g., Healy & Hoyles, 2000; 
Kloosterman & Lester, 2004; Knuth, Choppin, & Bieda, 2009). This concern has been guiding 
numerous studies, as it reflects a deficiency in one of the key elements of mathematics and 
mathematical practice (e.g., Harel & Sowder, 2007; Knuth, 2002; Sowder & Harel, 1998). 
Consequently, there have been calls for proof to play a more central role in mathematics education, 
by researchers (e.g., Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002), as well as reform initiatives 
(the Common Core State Standards for Mathematics and the NCTM Principles and Standards for 
School Mathematics). However, despite these calls, research continues to indicate that students’ 
understanding of proof is far from being satisfactory (Harel & Sowder, 2007; Healy & Hoyles, 
2000).  

A major source underlying students’ difficulties in understanding proof and proving is related to 
their treatment of examples (e.g., Healy & Hoyles, 2000; Zaslavsky, Nickerson, Stylianides, Kidron, 
& Winicki-Landman, 2012). There is evidence that an inhibiting factor in students’ proving (at all 
levels) is an over reliance on examples. They often infer that a general claim is true for all cases on 
the basis of checking just a number of examples that satisfy this claim. This tendency has been 
recognized as a stumbling block in the transition from inductive to deductive arguments, and the 
progression from empirical justifications to proof (e.g., Fischbein, 1987). This tension between 
empirical and formal aspects of proving suggests that understanding the logical relations between 
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examples and statements is a non-trivial task that is critical for proving. However, this kind of 
understanding is not usually explicitly addressed in the course of learning mathematics, in general, 
and learning to prove, in particular. 

There have been attempts to help students learn the limitations of examples for proving in order 
to reduce their tendency to infer from examples more than is logically valid (e.g., Sowder & Harel, 
1998; Stylianides & Stylianides, 2009; Zaslavsky et al, 2012). While these attempts address the 
limitations of examples for proving, they overlook the potential of example-based reasoning 
strategies in enhancing conjecturing and proving. In fact, less attention has been given to facilitating 
students’ ability and inclination to build on the potential strengths of using examples for proving. 
More specifically, there is scarce research on using examples generically, i.e., in a way that allows to 
see the general through the particular, make sense of a mathematical statement, and gain insight into 
all or some of the main ideas of its proof (e.g., Knuth, Kalish, Ellis, Williams, & Felton, 2011; Leron 
& Zaslavsky, 2013; Mason & Pimm, 1984; Rowland, 2001). Mason and Pimm’s (1984) terms of 
generic example and generic proof capture the essence of what we mean by using examples 
generically. Accordingly, “A generic example is an actual example, but one presented in such a way 
as to bring out its intended role as the carrier of the general.” (ibid p. 287); and a “generic proof, 
although given in terms of a particular number, nowhere relies on any specific properties of that 
number.” (ibid p. 284). Example-based reasoning strategies encompass this way of thinking with and 
through examples. 

We believe that students’ failure to engage productively in example-based reasoning strategies, to 
think about examples generically, and to analyze examples when engaging in activities related to 
proving, accounts for many of the difficulties they encounter in learning to prove. Our study stems 
from the stand that students should learn to use and analyze examples analytically and generically, 
not only in order to gain a better understanding of the conjectures (or statements) that they explore 
but also in order to learn to develop proofs (or dis-proofs) of these conjectures.  

Very little research has focused on the nature of middle school, high school, or undergraduate 
mathematics students’ thinking about and use of examples in generating, making sense of, and 
proving mathematical conjectures. Alcock and Inglis (2008) argue that such studies are needed in 
order to effectively develop instructional practices that foster the development of students’ learning 
to prove. We aim at better understanding the nature of example use across grade levels, and in 
particular, how example use may support students’ reasoning and proof development.  

Zaslavsky (2014) distinguished between three settings of example use: spontaneous example use, 
evoked example production, and provisioning of examples. The spontaneous setting highlights what 
may come naturally to learners and experts, and how productive their choices and what they make of 
them are. The evoked example production allows us to study what choices learners make when 
pushed to use examples and also how productive they are. This setting has a strong diagnostic power, 
as it may evoke students’ strengths as well as their weaknesses with respect to exemplification and 
proving. The provisioning of examples by a researcher allows us to examine what learners see in 
these examples, and in what ways they are able to build on the given examples to gain insights about 
how to justify or prove a claim. This setting also may shed light on possible mis-matches between 
intentions (of a teacher/researcher and a learner). In our study, we distinguish between example uses 
that involve student generated examples and those that involve researcher provided examples. 

The Study 
The study reported in this paper is part of a larger study of the roles of examples in learning to 

prove. Its purpose is to better understand the roles examples play in the development, exploration, 
and justification of mathematical conjectures, with the overarching goal being to help students 
appreciate the need to prove and to learn to prove. In this portion we focus on ways in which students 
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use their own examples or examples provided by the researchers to support their claims about the 
validity of mathematical statements and conjectures. More specifically, we examine cases in which 
the use of examples can be considered productive for proving. For productive use of examples for 
proving we consider indications of gaining insights from an example or set of examples about the 
main idea(s) of a proof. It can be manifested, for instance, by a shift from no clue why a conjecture 
works (or doesn’t work) to an articulation of an idea why. Some of the manifestations of this type of 
example-use may be seen as generic proving (Leron & Zaslavsky, 2013). 

Data Collection 
This study was based on individual task-based interviews with 12 middle school (MS) students, 

17 high school students (HS), and 10 undergraduate (UG) mathematics majors. The interviews lasted 
approximately 1 hour and were comprised of a series of tasks in which participants were given the 
opportunity to conjecture and prove.  

 
Task 2: The Sum of Consecutive Integers 

Part 1: 
This question involves consecutive numbers. For example, 2, 3, and 4 are consecutive numbers, but 2, 3, 
and 8 are not consecutive numbers. 
Tyson came up with a conjecture about consecutive whole numbers that states: If you add any number of 
consecutive whole numbers together, the sum will be a multiple of however many numbers you added 
up.  At this point the interviewer suggests that the participant give an example of how the conjecture 
works for 5 consecutive whole numbers. 
 
Tyson thinks that this conjecture will always be true no matter how many consecutive numbers you use 
or which consecutive numbers you choose. So he thinks that if you add any 3 consecutive numbers, the 
answer will be a multiple of 3, or if you add any 6 consecutive numbers, the answer will be a multiple of 
6, and so on. 
Do you think the conjecture is true for any set of consecutive numbers, not just when you pick five 
consecutive numbers? 
 
Part 2: 
Let’s come back to the Question 2 [i.e., Part 1 above] conjecture that the sum of five consecutive 
numbers is a multiple of 5. 
At this point the interviewer says while writing the example: Another student had an idea of how to 
explain it. For the five consecutive numbers 5, 6, 7, 8, and 9, she decided to write the sum as (7-2)+(7-
1)+7+(7+1)+(7+2), and writing it that way helped her to explain why the sum must be a multiple of 5. 
How do you think that helped her see why the conjecture is true for any five consecutive numbers? 

 
The interview protocol for middle and high school participants included 8 tasks total each, and 

the one for undergraduate participants included 7 tasks total. Three tasks were shared across all 
participant populations. In this paper we focus mainly on one of these three shared tasks (Task 2 
above): The Sum of Consecutive Integers Task. Similar versions of this task served researchers in 
other studies (e.g., Tabach et al., 2011). For several reasons (mainly due to time constraints, and 
protocols’ modifications done after a number of interviews had been conducted), not all students got 
to engage in all the tasks that were included in the final interview protocols. 

Data Analysis 
While we started out looking for example-uses and focusing on whether each example-use was 

productive for proving, other categories emerged as we were analyzing the data, thus, in part, we 
used a grounded theory approach to analyze participant responses. The units of analysis were the 
tasks (except for Task 2, for which we coded each part separately). For each participant, we coded 
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his or her performance on each task according to several categories (productivity, example-source, 
proof-exhibition). We began by identifying cases in which we observed productive and non-
productive example-use for proving. For example, in task 2 part 1, if a participant was able to use 
many numerical examples to determine that Tyson’s conjecture was true only for odd numbers of 
integers but was not able to produce a legitimate argument as for why this was the case, we 
considered this “non-productive” for proving (although this activity was clearly productive for 
conjecturing). In order to be categorized as “productive” for proving, a participant had to use 
examples to make an argument that showed not only that Tyson’s conjecture was true only for odd 
numbers of integers, but why this conjecture holds or does not hold, based on the parity of the 
number of integers involved. Instances of productive example use included participants’ use of 
examples to generate an argument, and were related to a shift in their ability to provide a valid 
justification that would hold for any other such case.  

Additionally, we looked at the source of the example, and distinguished between cases in which 
an example was provided by the student (spontaneously) or by the interviewer (non-spontaneously). 
This distinction is important as cases in which productive example-use was based on provided 
examples, may have pedagogical implications in the classroom. 

For each participant we coded his or her performance on each task as productive (P), non-
productive (NP), or indecisive. There were two main reasons for considering a case indecisive: (i) if 
a student came up with a proof but it was unclear whether the examples were helpful in reaching the 
proof; or (ii) if it was not clear whether an argument qualified as proof. Altogether, 222 cases were 
analyzed, of which 24 were indecisive. 

 We also coded cases according to whether or not a proof was exhibited (even a partial or 
informal one), and whether or not examples were used. When examples were used, we distinguished 
between cases that included just examples generated by the students (Exp. by St.) and cases where 
examples were provided also or solely by the interviewer (Exp. by Int.). Note that for those who 
completed Task 2 Part 1 with a full proof that the conjecture holds for all odd numbers and does not 
hold for even numbers, and used the same reasoning as in the prompt for Part 2, did not receive the 
second part (to eliminate redundancy).  

Findings 

Scope of Productive Example-Use for Proving 
The findings in Table 1 include all cases that were coded either as productive or as non-

productive (excluding the 24 indecisive cases). There were a total of 198 cases, 62 MS, 89 HS, and 
47 UG. Of the 198 cases, 77 (39%) included productive use of examples for proving. Of these, more 
than half (41) the cases were based on examples provided by the interviewer. 

Table 1: Distribution of Cases by Example-Use and Productivity for Proving in all Tasks 

Grade 
Level 

Came up with a Proof 
(or partial proof) No Proof 

Total 
Productive (P) 

Use of Examples 
for Proving 

No 
Exp. 
(NE) 

Non-Productive 
(NP) Use of 

Examples for 
Proving 

No 
Exp. 
(NE) 

Exp. 
by St. 

Exp. 
by Int. 

Exp. 
by St. 

Exp. 
by Int. 

MS 10 13 2 27 10 0 62 
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HS 11 18 2 37 17 4 89 

UG 15 10 3 12 4 3 47 

Total 36 41 7 76 31 7 198 
In terms of productivity, middle school and high school students performed similarly, as 37% of 

MS cases and 33% of the HS cases exhibited productive use of examples for proving, while the 
undergraduate students exhibited considerably more productive use of examples (53%). 

Table 2: Productive and Non-Productive Example-Use in Task 2 
(the Sum of Consecutive Integers) 

Grade 
Level 

 

Task 
 

Productive (P) Use of 
Examples for Proving 

Non-Productive (NP) 
Use of Examples for 

Proving Total 
 

Exp. 
by St. 

Exp. 
by Int. 

Exp. 
by St. 

Exp. 
by Int. 

MS 
Part 1 4 0 6 0 10 

Part 2 0 4 0 2 6 

HS 
Part 1 4 0 13 0 17 

Part 2 0 7 0 5 12 

UG 
Part 1 5 0 3 0 8 

Part 2 0 5 0 1 6 

Total  13 16 22 8 59 
In table 2 we present the findings related to Part 1 and Part 2 of Task 2. Looking at the task as a 

whole, for this task there are larger differences between the extent of productive use of examples for 
proving between the three groups: MS – 50% (8 of the 16 cases), HS – 38% (11 of the 29 cases) and 
UG – 71% (10 of the 14 cases). 

Figure 1 examines the trajectory of students who completed both parts of Task 2, and for which 
none of their performances was indecisive (this reduced the total number of cases in Table 2 by 15). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Productive 
(P) 

Not-Productive 
(NP) 

NP P 

N=6 
(27%) 

MS 
2 

HS 
2 

UG 
2 

 

P 

N=6 
(27%) 

MS 
2 

HS 
2 

UG 
2 

 

N=16 
(73%) 

MS 
3 

HS 
10 

UG 
3 

 

N=22 
(100%) 

MS 
5 

HS 
12 

UG 
5 

 

N=8 
(36.5%) 

MS 
2 

HS 
5 

UG 
1 

 

N=8 
(36.5%) 

MS 
1 

HS 
5 

UG 
2 

 

 
PART 2 

Exp.by Int. 

 PART 1 
Exp. by St. 

Figure 1:  Paths of productive and non-productive uses of examples in Task 2 
(Excluding cases that were indecisive or incomplete; N – no. of students) 
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All of the cases that dealt with Task 2 were cases in which examples were explicitly used. In Part 
1, the examples were generated by the students, while in Part 2 – a generic example was provided by 
the interviewer. Not surprisingly, students who used examples productively in Part 1, on their own, 
were also able to use the generic example productively.  However, interestingly, half of the students 
who were not able to use examples productively in Part 1, were able to reason productively with the 
generic example provided by the interviewer in Part 2. 

Characteristics of Productive Use of Examples for Proving 
We turn to two cases that convey what productive use of examples for proving may look like. 
Case #1: A HS student’s use of his own examples productively. In Part 1 of Task 2, Sam tries 

three sets of examples: 1 + 2 + 3 + 4 +5 ; 2 + 3 + 4 + 5 +6 ; 3 + 4 + 5 + 6 + 7.  He calculates the last 
two sums, and immediately is able to make an argument in support of the truth of the conjecture for 
any five numbers with the following observation: 

“I tried a few examples, and then I realized that, well, if you add 1 to every number, then you're 
ultimately adding 5, because there's 5 numbers. And if the first- and the first- and if the first example 
1, 2, 3, 4, 5 is- equals a multiple of 5, then by adding 5 to- to every case, it'll stay a multiple of 5.” 
[10:43 - Time Stamp] 

In other words, Sam is able to present a pseudo-inductive argument that emerges from the 
observation that the conjecture is true for a base case (1+2 +3+4+5), and the mechanism by which 
this sum changes from this case to the “next” case (where “next” is defined as increasing each term 
in the sum by 1) does not change the divisibility property of the sum with respect to 5. By looking at 
the sequence of his three examples Sam is able to both see and utilize modular reasoning when 
considering the divisibility properties of this sum, as increasing a number by multiples of 5 does not 
change its remainder (in this case, zero) upon division by 5. As Sam puts it: “if you subtract 5 from a 
multiple of 5, it'll still stay a multiple of 5.”[13:00] 

Sam is able to take advantage of the generality of this observation by answering a question that 
he himself had posed earlier in the interview, namely, whether negative integers were allowed in 
Tyson’s conjecture.  He is able to leverage his reasoning about the modular distribution of integers 
that are divisible by 5 into a correct claim that Tyson’s conjecture works just as well for negative 
integers as it does for positive. In other words, Sam was able to extend the domain of the conjecture 
by creating an argument that relied solely on three numerical examples. In this case we do not 
consider each one of his three examples in isolation as “generic,” as that clearly does not reflect his 
thinking. However, we consider all three seen in conjunction with each other as one generic example, 
as the insight that Sam gained from these examples was located in the relationship between them.  

Sam is able to use this insight to create a legitimate argument for why Tyson’s overall conjecture 
is incorrect for four consecutive integers. He reasons:  “I thought of a number like 4, which is 1, 2, 3, 
4, which adds up to 10. And then it's not a multiple of 4, so, and… even if you add or subtract from 
that, it'll always be uh, it won't be a multiple of 4.”[16:40] In effect, he argues that his base case is a 
counter-example, and this counter-example does not just hold for the particular example of 1 + 2 + 
3+4, but in fact holds for any four consecutive integers. Although he does not explicitly discuss 
remainders, we can interpret his argument as noticing that the remainder upon division by 4 is 
invariant under increasing a number by multiples of 4. 

Case #2: A HS student’s use of an interviewer’s example productively. In Part 1 Isaac is 
clearly operating empirically, as he chooses a wide range of examples and uses them for verifying 
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that the conjecture is true (e.g., for 5 numbers), without being able to offer a logically valid 
explanation of why it is. He explains that it is because “I did a bunch of trials that go really far into 
the depths of numbers, including negatives which kind of sealed the deal for me, because negatives 
are really different from positives.”[24:26] 

During the second part of this task, the interviewer presented Isaac with a generic example, 
rewriting 5 + 6 + 7 + 8 + 9 as (7-2) + (7-1) + 7 + (7+1) + (7+2). Immediately, Isaac is able to see the 
generality within this particular example and apply it to a generic argument. Isaac uses this argument 
to explain why it must work for any odd number of consecutive integers, and also why it must not 
work for an even number of consecutive integers. He also produces a parallel algebraic 
representation, which is the first time that he has done so within this task.  Perhaps this is due to the 
visual salience of the invariance of the 7’s in the representation provided by the interviewer. Isaac’s 
immediate response to the interviewer’s prompt is reproduced below: 

 “Okay, so I can see now- this is pretty good proof for why it's, uh, for why it has to be a multiple 
of 5 or just a multiple of an odd number in general. Or, uh, so um, um the thing with this is, what 
happens-- ... Um, these numbers cancel each other out. The 2 cancels the 2, the 1 cancels the 1. And 
you just end up getting 7+7+7+7+7 and, um, and the reason this wouldn't work with an odd- with an 
odd pair, like if you added- if you added a, uh, 10 [The interviewee wrote +10 at the end of 
5+6+7+8+9] to this and then you- and then you added plus 7 plus 3 [The interviewee wrote +(7+3) at 
the end of the (7-2)+(7-1)+7+(7+1)+(7+2)], then these would cancel out. Then you would be left 
with (7×5) + (7+3) plus... Yeah, plus (7+3), which would just give you, um, 3- 3 numbers off of what 
you want. So, yeah. And I guess you could do it with an equation, using x... (x-2) + (x-1) + (x) + 
(x+1) + (x+2) + (x+3). These cancel each other out, these do it as well, and this is just left there as a 
kind of like, almost like it ruins the party or something. So, yeah.” 

He later uses the word “symmetry” to explain this argument. In other words, Isaac was initially 
“stuck” and the generic example provided by the interviewer helped Isaac create a deductive 
argument as for why Tyson’s conjecture was only true for odd numbers of integers. 

Concluding Remarks 
While the vast majority of studies on students learning to prove focus on their difficulties and 

suggest ways to address these difficulties, our study identifies numerous cases of students treating 
examples generically on their own. Moreover, these cases capture shifts from not being able to 
explain why a mathematical statement is true (or false) to being able to see clearly why it must work 
in general. Thus, the findings add to our understanding of processes by which students may learn to 
prove, and at the same time suggest that for some students under certain conditions this may come 
(almost) naturally with minimal interference. In other words, these cases could be inspiring for 
teachers who want to build on students’ strengths. 
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