
Mathematical!Processes:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

339!

STUDENTS’ STRATEGIES FOR ASSESSING MATHEMATICAL DISJUNCTIONS 

Paul Christian Dawkins 
Northern Illinois University 

dawkins@math.niu.edu 

This paper presents results from three teaching experiments intended to guide students to reinvent 
truth-functional interpretations for mathematical disjunctions. The initial teaching experiments 
revealed that students’ emergent strategies for assessing disjunctions did not entail or facilitate the 
development of a relevant partitioning of example space (comparable to Venn diagrams). Students 
were unable to form generalizable strategies for finding relevant exemplars to evaluate quantified 
disjunctions. The latter teaching experiment, in contrast, successfully prompted students’ to attend to 
reference and partitioning of the referent space through an alternative instructional sequence. I set 
forth the methodology and findings of this study to demonstrate how conventions of mathematical 
logic can emerge within students’ mathematical activity toward the end of their apprenticeship into 
proof-oriented mathematics.  
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In proof-oriented mathematics, mathematicians embed mathematical meaning in mathematical 
language (definitions, theorems, proofs, etc.). This requires a high level of clarity and precision in 
mathematical language, which is why mathematicians were the first to invent formal languages 
(Azzouni, 2009). Formalizing language requires attending to the relationship between linguistic form 
and meaning. For mathematicians, this involved 1) creating equivalences – but and and are 
mathematically equivalent connectives, 2) disambiguation – distinguishing or and either…or as 
capturing the inclusive and exclusive everyday meanings of or, and 3) creating truth-functions 
relating truth-values of component and compound predicates. These aspects of formal language and 
its acquisition stand in contrast to natural language, which is learned through many more implicit or 
preconscious processes and which entails looser relations between form and meaning (see Stenning, 
2002).  

How then can mathematics students in proof-oriented mathematics courses learn formal, 
mathematical language, specifically as it pertains to the relation between form and meaning? Using 
the guided reinvention heuristic of Realistic Mathematics Education (Gravemeijer, 1994), I sought to 
engage students in conscious and effortful systematization of their use of mathematical language. I 
guided students to reinvent truth-functional definitions for mathematical disjunctions and 
conditionals in a series of short teaching experiments (Steffe & Thompson, 2000). In this paper I 
report on the major patterns of student interpretation of mathematical disjunctions, how failure to 
partition example spaces inhibited their ability to reinvent normative interpretations of quantified 
disjunctions, and an alternative instructional sequence that supported the emergence of normative 
interpretations of quantification.  

Studies of students’ interpretations of linguistic form 
Because there is ample evidence that students’ untrained interpretations of mathematical 

language differ significantly from that of mathematicians (e.g. Durand-Guerrier, 2003; Epp, 2003), 
many Introduction to Proof courses include a unit on logic. However, my method departs from many 
of the common approaches to teaching these topics in mathematical logic because 1) I want students 
to impose logical form on meaningful mathematical statements rather than abstract or nonsensical 
ones and 2) I problematize students’ reasoning toward an interpretation (Stenning, 2002; Stenning & 
van Lambalgen, 2004) of language. The majority of psychological and mathematics education 
studies of student’s interpretations of linguistic form tend to elicit students’ preconscious interpretive 
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processes (Evans, 2005; Inglis & Simpson, 2008), but assess those interpretations against a single, 
formalized linguistic meaning. This assumes some logical structure is embedded in language or 
semantic content and that people are irrational for reasoning alternatively (e.g., Stanovich, 1999). As 
Stenning (2002) eloquently argues, everyday linguistic interpretation is far too complex and varied 
for this approach. One may distinguish three views of logic’s relation to language use that clarify my 
stance. Logic can be thought of as a description of language use (common in later 20th century logic, 
Stenning, 2002), a prescription for proper language use (as many psychologists deem it), or the 
constructed product of a learning process of systematizing language (my proposal). I call this third 
view students reasoning about logic to denote its conscious and reflective nature. I adopt this lens 
because many studies suggest formal logic is a poor model of most students’ reasoning, but proof-
oriented mathematics requires that students conform their reasoning to mathematical norms. 
Stenning’s (ibid.) findings support this study’s use of meaningful mathematical statements, as he 
states, “formal teaching can be effective as long as it concentrates on the relation between 
formalisms and what it formalizes” (p. 187) and “logic teaching has to be aimed at teaching how to 
find form in content” (p. 190). So, I operationalize logic not in terms of students learning formalisms 
(e.g. truth-tables, Venn diagrams), but as their progressive systematization of their interpretations of 
mathematical statements till they impose a consistent, generalizable, and normative form.  

Methods 
I recruited three pairs of Calculus 3 students from a medium-sized Midwestern university to take 

part in short teaching experiments. I chose this course to find students who were mathematically 
proficient, could benefit from learning formal mathematical language, and who had not taken proof-
oriented mathematics courses. I identified their background in learning logic via an online survey. 
Students met in pairs with the author for six one-hour sessions, and were compensated monetarily for 
their participation. The first three sessions focused on mathematical disjunctions and the latter three 
sessions on mathematical conditionals.  

The guided reinvention approach helped to identify the interpretations students imposed upon the 
statements, how those interpretations shifted upon reflection, and which tasks elicited reasoning that 
approximated normative interpretations. I asked students to determine whether provided 
mathematical statements were true or false, then to systematize and describe their method, before 
asking them to negate the statements. It was initially anticipated that disjunctions would be easier for 
students to formalize and provide a foundation for interpreting conditionals (known to be a 
problematic linguistic form, Evans, 2005). Instead, disjunctions were quite challenging for 
mathematically important reasons. Thus, I only report on data from the first three days of each 
teaching experiment. The first two pairs met simultaneously and employed the same instructional 
activities. The third met several months later using modified activities. As such, data is presented as 
two experiments distinguished by their anticipated learning trajectories and instructional tasks. Table 
1 presents a selection of the statements used in the study, with “D1:3” denoting the third statement on 
Day 1. An apostrophe denotes an item from Experiment 2. 

Consistent with the teaching experiment methodology (Steffe & Thompson, 2000), during 
Experiment 1 the author served as teacher/researcher and another researcher served as outside 
observer. The observer kept field notes during each session and the researchers debriefed after each 
teaching session. Video recordings were also reviewed each day to form and test hypotheses about 
student learning to inform the teaching activities for the following session. Full retrospective analysis 
commenced after the experiment ended. The author coded data in the open and axial method of 
grounded theory (Strauss & Corbin, 1998). Codes related to 1) truth-value assessment strategies (e.g., 
one condition false makes the disjunction false), 2) paraphrases of provided statements (e.g., 
introducing “either…or” language), 3) modes of reasoning about logic (e.g., attending to the meaning 
of the or connective), 4) clarification of semantic information (e.g., identifying relevant warrants 
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such as “all squares are rectangles”), and 5) negating actions (e.g. negating [A or B] with [not A or 
not B]). I report on common trends in students’ interpretive behavior and emergent links among their 
strategies, interpretations, and particular disjunctions.   

Table 1: Sample disjunctions provided to study participants 
D1:1 “Given an integer number x, x is even or x is 

odd” 
D1:2:“The integer 15 is even or 15 is odd. 
D1:7 “The real number 0 has a reciprocal  such that 

 or 0=0.” 
D1:9 “Given any even number z, z is divisible by 2 

or z is divisible by 3” 
D2:6 “Given any triangle, it is equilateral or it is not 

acute.” 
D2:7 “Given any triangle, it is acute, or it is not 

equilateral.” 

D3:3 “10 is an even number or 20 is 
an even number” 

D3:4 “13 is an even number or 6 is 
an even number.” 

D2’:6 “For which integer numbers z 
is it true that ‘z is divisible by 4 or z is 
divisible by 3’” 

D2’:10 “For which real numbers y is 
it true that “y<3 or y>5” 

D2’:12 “For which triangles is it true 
that ‘it is equilateral or it is not acute.’” 

Experiment 1 
Of the four participants in this experiment, one pair had no training in logic and the other pair had 

completed a philosophy course in logic. Their patterns of reasoning were nearly identical. When 
initially assessing the truth-values of non-quantified disjunctions, both groups declared a disjunction 
with a false component false (e.g. D1:2 and D1:7). Only on D1:9 did either group begin explicitly 
attending to the connective or and its role in the statements’ meaning. Both groups at this point also 
began distinguishing the truth-values of the two components from that of the disjunction. For 
instance, Ron said, “This just got interesting cause when you say “or” only one of ‘em has to work, 
not both of ‘em.” When asked to revisit their initial decisions, both groups reinterpreted D1:2 as true 
because of the or connective. Students were more reluctant to affirm D1:7 as it seemed more 
mathematically absurd, but later decided that the 0=0 condition also made it true. By the end of the 
first session, both groups were consistently interpreting non-quantified disjunctions in a manner 
consistent with the normative truth-functional definition. As Ovid said, “Cause “or” for me means 
either it could be one or the other or both.”  

Students generally had more trouble with quantified disjunctions where the truth-function was 
not sufficient to assess the truth-value of the statement. Some statements afforded semantic 
affirmation without testing particular cases as with D1:1 where the categories are exhaustive. In other 
cases, though, students used a sentential testing strategy in which they picked examples and reread 
the statement to evaluate whether it “covered” the given case (often reading left to right). This 
strategy reduced quantified disjunctions to a sequence of non-quantified disjunctions, but it also 
necessitated a strategy for picking cases and organizing the example space.  

Partitioning the example space 
Experiment 1 participants did not spontaneously develop an intentional way to partition the 

spaces of examples because each space was pre-organized according to familiar mathematical 
categories (e.g. even, acute, rectangle). The normative logical partitioning of examples (as portrayed 
in Venn diagrams) distinguishes cases that satisfy each component condition of the disjunction such 
that the examples fall into four categories (TT, TF, FT, and FF). Because students’ reasoning stayed 
focused on the statements themselves, they failed to attend to how the statement provided a novel 
partitioning of example spaces. This was not problematic for cases that could be easily and 
exhaustively seriated such as the integers or even integers. Students tested cases sequentially (2, 4, 6, 
8…), usually assigning a truth-value after 3-5 examples. However, both pairs of students struggled to 
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assess geometric statements such as D2:6 and D2:7. This is because they reasoned about triangles in 
terms of familiar semantic categories – equilateral, acute, right, obtuse – rather than treating right and 
obtuse as equivalent relative to the given statements – non-equilateral, non-acute. Without a simple 
way of exhausting the example space, they were never sure if a statement was true of all triangles.  

Students developed some other normative and non-normative strategies that helped them resolve 
quantification issues. First, recognizing that all equilateral triangles are acute, some students 
incorrectly concluded that not equilateral meant not acute, implying that statements like D2:6 were 
true. Students struggled in other ways with how to interpret negative predicates, often substituting a 
positive predicate that was non-complementary, such as replacing “<” with “>” or “not acute” with 
“is obtuse.” In general, students did not seem aware that a negative predicate (“not acute”) could be 
thought of as denoting the complement of the set of cases satisfying the positive predicate (“is 
acute”). As a result, students were disinclined to reason about negative predicates without 
paraphrasing (“can’t be acute”) or substituting positive conditions.  

However, students’ sentential testing strategy led to some other strategies that more closely 
approximated normative interpretations and led students to make appropriate determinations of truth-
values. Two participants began anticipating that anything satisfying the first condition made the 
statement true. So, they began ignoring such cases, as when Ron interpreted D2:6 as, “if it's not 
equilateral, it must be obtuse.” I call this strategy an “if not…then” paraphrase. While not identical 
to the Venn diagram partitioning of examples, this strategy allowed students to reduce the set of 
cases they had to attend to by excluding cases satisfying the first predicate. Their reasoning also 
implicitly approximated the negation of the disjunction – negating both predicates – because it led 
students to question whether anything failing the first condition must necessarily satisfy the second. 
For instance, Ron rejected that any non-equilateral triangle must be obtuse, which led him to find the 
non-equilateral, acute counterexample1. Though they used it repeatedly, students in Experiment 1 did 
not consciously identify or abstract their “if not…then…” strategy. Furthermore, without specific 
guidance students did not reinvent the Venn diagram partitioning of examples and consistently used 
sentential testing of a few cases.  

Negating disjunctions 
One of the challenges in reinventing logic is to find experientially real activities (Gravemeijer, 

1994) that foster language systematization as entailed in reasoning about logic. Assessing truth-
values successfully prompted students’ reinvention of truth functions. Negating statements appeared 
a natural next activity, but it was unclear how to describe logical negation to participants unfamiliar 
with the notion. In Experiment 1, I asked students to find a systematic way to produce an opposite 
statement that always had the opposite truth-value. This description of the negation of a statement 
proved to be underspecified for reinvention.  

Experiment 1 participants commonly engaged in syntactic manipulations of the statements to 
produce a negation such as 1) negating both conditions with the same connective (

) or 2) negating with a non-complementary property ( ). 
Even when provided with various statements intended to dissuade such strategies, students were 
unperturbed to negate different statements in different ways. Ron and Drew negated “10 is even” 
with “10 is odd,” but more appropriately negated “  is even” with “  is not even.” Anticipating that 
the and connective in the negation would not be obvious, I asked participants to negate D3:3 and 
D3:4. Students in both pairs negated D3:3 as “10 is an odd number or 20 is an odd number,” which 
yielded the opposite truth-value as desired. They then recognized a problem when the same 
transformation of D3:4 yielded another true statement. Drew responded by negating D3:4 with “13 is 
an even number or 6 is an odd number.” This statement is false, as required, but Drew did not show 
evidence of anticipating whether this method would work for any other statements. Ron and Drew 
proposed and tested various transformations of the statement before introducing an and connective, 
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seemingly by trial and error. Upon testing, they recognized that this method properly negated the 
given statements, but could not semantically justify why. Contrary to the researcher’s intentions, 
study participants did not perceive any connection between why a counterexample falsified a 
disjunction (it satisfied neither condition) and a systematic method of negating a disjunction (not A 
and not B). There was also no evidence that they understood why the negation of a universally 
quantified disjunction should be an existentially quantified conjunction, though the counterexample 
heuristic might suggest it. It appears from these two teaching experiments that the negation criterion 
of merely having the opposite truth-value was too underspecified to foster students’ recognition of a 
generalizable method. They relied on trial and error syntactic transformations of the statement in lieu 
of any intentional, semantic strategy.  

An alternative criterion for mathematical negation 
One episode from the third interview with Ovid (his partner Eric was absent) suggested an 

alternative approach to reinventing negation. Ovid was already comfortable with abstracting from 
each non-quantified disjunction the two component truth-values and applying their truth function. 
Ovid recognized that negating a disjunction with a disjunction would not work because each of the 
two components would reverse truth-values. He said, “If this is false-true, then the opposite would be 
a true-false statement.” Like Drew, Ovid initially wanted to change the way he negated the 
components rather than changing the connective. I invited him to explore all such component 
patterns and the desired outcomes for the negation, which produced the table in Figure 1. Analyzing 
this representation, Ovid said, “So we would have to do, probably would be an and statement. 
Because then it would have to fit both criteria rather than either, or, or both.” He went on to check 
that “13 is not an even number and 6 is not an even number” properly negated D3:4 (i.e. produced 
the opposite truth-value as desired). 

Figure 1: Reproduction of Ovid’s truth table for negating disjunctions. 

Ovid’s discovery that the negation of a disjunction must be a conjunction was significant for two 
reasons. First, this was one of the clearest cases where the formalization and abstraction of the truth-
value structure of the mathematical statements led a student to reinvent a normative logical theorem. 
As Stenning (2002) discussed, Ovid learned from the relation between the formalization and what it 
formalized. Ovid translated the semantic statements into a logical representation system (a truth 
table), deduced the appropriate pattern from that representation, and then translated it back to the 
semantic system of mathematical statements.  

The second reason I highlight Ovid’s discovery is that it suggested an alternative way of 
characterizing negations. Each of the statements Ovid reasoned about in this episode could be viewed 
as a case of the condition “x is even or y is even.” As in Ovid’s truth table, the negation of the 
condition must yield the opposite truth-value for each pair of numbers. Thus the negation of a 
quantified disjunction must be a case-wise negation (yielding opposite truth values for each example) 
in addition to a global negation (having the opposite truth-value overall). This insight, combined with 
the need to guide students to attend to partitioning the example space suggested the revised teaching 
activities employed in Experiment 2.  

Parts St Parts Neg 
TT T FF F 
FT T TF F 
TF T FT F 
FF F TT T 
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Experiment 2 
The teaching activities on the first day of this teaching experiment were nearly identical to those 

in the former, except that some uninformative items were removed and the geometry items from the 
second day were added. The participants in Experiment 2, Cid and Macy, attended to the or 
connective much earlier (on D1:2), but still rejected D1:7 as false due to its apparent absurdity. 
Unlike the participants in Experiment 1, Macy had been taught logic in a mathematical context. 
Despite this, she consistently imposed a non-normative “exclusive or” interpretation, though it took 
her some time to recognize when it applied to quantified disjunctions. Like the first group, Macy and 
Cid distinguished and coordinated the three truth-values in a non-quantified disjunction according to 
truth-functions, though they disagreed about the output when both predicates were true. Like the 
previous pairs, neither Cid nor Macy developed a generalizable strategy for finding example cases, 
especially for the geometric items. Cid himself explained that he was merely “stabbing at examples 
in [his] head.” He implicitly used a sentential testing strategy and “if not…then” paraphrases, but did 
not recognize or abstract these approaches. Macy attempted semantic substitution, inappropriately 
paraphrasing D2:6 as “is acute or is not acute” because “equilateral triangles are acute.”  

Alternative activities intended to emphasize quantification of predicates 
On day 2, many of the same conditions were presented to the students, but the activity was 

reframed from assigning truth-values to quantified disjunctions to finding the set of cases that 
satisfied a disjunctive predicate (see the D2’ items in Table 1). This sequence of tasks was intended 
to guide students to associate classes of examples with each condition rather than single examples, 
leading to the normative interpretation that mathematical predicates entail sets (rather than simply 
describing cases). The close association between “divisibility by 2” and  (the set of even 
integers) is commonplace in proof-oriented mathematics, but analysis of Experiment 1 suggested that 
it was not a natural association for study participants.  

I anticipated that visually representing some of the sets described by these disjunctive predicates 
might lead students to an interpretation approximating the Venn diagram for or, the principle of 
which is that a disjunctive predicate entails the union of the sets of cases entailed by the two 
component predicates. For this reason, I included items such as D2’:10 that would easily lend 
themselves to visual representation.  

The third reason to shift from declaring quantified disjunctions true or false to identifying the set 
of cases that satisfied a disjunctive predicate was to provide a natural segue to case-wise negation. 
Rather than negating statements by other statements that have opposite truth-values, the negation of a 
disjunctive predicate “X or Y” is the predicate that entails the complement of the cases. Thus I 
anticipated modifying the task to, “For which integers is the condition false?”  

Results of the alternative instructional activities 
Cid and Macy approached the second day’s activities initially using verbal strategies as they had 

done the day before. In some cases, they could describe the set easily as “all real numbers” or “all 
even integers.” They ran into difficulty when they tried to use “and” to denote the union of two sets, 
which confused the intended meaning of the connectives. Beginning with the geometric items, they 
began instead describing the cases that do not satisfy the condition. Regarding the correlate task to 
D2:6, Cid said, “An acute triangle doesn’t satisfy it. I think.” Macy clarified, “An acute triangle 
that’s not equilateral.” The interviewer invited them to extend this strategy and specify the set of 
cases making each condition false. By the next item, Macy generalized the strategy, saying “I am 
trying to think if there’s any counterexamples where you can make both of those statements false. 
Cause then you can exclude some of the triangles.” In this way, Macy recognized that the statement 
was false for cases that failed both component predicates. Both Cid and Macy later noted that it was 
much easier to describe the set of counterexamples to disjunctive conditions than describing the cases 
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that satisfied them. They could not articulate why this was easier, though. In addition, they implicitly 
recognized the complement relation between the satisfying and falsifying cases.  

I intended for a visual representation to suggest the relationship that the cases satisfying a 
disjunctive condition consist of the union of the cases satisfying each condition (as the Venn diagram 
suggests). Cid and Macy drew number lines for D2’:10, but they described the resulting set in spatial 
terms (“It’s false when y is between 3 and 5.”) rather than in inequality language. This dissociated 
the set from the negations of the two component predicates and led to no generalizable strategy. The 
interviewer then revisited D2’:6 and invited the students to create two number lines that 
demonstrated which numbers satisfied and falsified the given condition. The students did so (Figure 
2) including the truth-values of the two components for each number. This led them to rediscover 
Ovid’s observation that the component truth pattern of the negation will invert that of the original 
and that the connective and will ensure the proper pattern of truth-values for the disjunction and 
negations overall. While this alternative visual representation did not emphasize the union property, 
it clearly fostered truth functional analysis leading Cid and Macy to reinvent the case-wise negation 
of a disjunction.  

 
Figure 2: Representing the sets entailed by a disjunctive predicate and its negation. 

Summary and discussion 
From the diversity of strategies employed, and the frequency with which study participants 

paraphrased the given statements in various ways, it was clear that study participants had not 
systematized the meaning of or in mathematical sentences prior to the teaching experiments. Rather, 
students reasoned toward an interpretation (Stenning & van Lambalgen, 2004) of each sentence 
trying to find some way to have the language or content suggest a means of assessing each statement. 
Several key strategies emerged repeatedly and independently such as sentential testing and “if 
not…then,” but students did not apply such strategies consistently. Due to the methodological choice 
to work in meaningful mathematical contexts, participants had to impose logical form in their 
mathematical interpretations. Participants only slowly developed meta-language for describing and 
abstracting patterns and strategies across various contexts.  

In each study, students reinvented the standard truth-function for inclusive or exclusive or in one 
session. The activity of assessing truth-values did not lead study participants to develop strategies for 
quantified disjunctions that approximated the normative Venn diagram partition of examples. 
Students selected examples according to the semantic structure of the content of each sentence 
(numbers, triangles, etc.) rather than according to the predicates in the disjunction. This suggests that 
instruction in proof-oriented classes must help students begin associating any property or predicate 
with the set of examples satisfying that predicate and its complement. Properties describe single 
cases, but they also organize or partition sets of examples. None of the study participants approached 
the given tasks in this quantified way without being guided to do so. Motivated by the need to attend 
to quantification of predicates and to develop a case-wise meaning of negation, I developed the 
instructional sequence used in Experiment 2. This approach successfully led Cid and Macy to 
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formulate the normative negation of a disjunctive condition and to identify that a condition and its 
negation entailed complementary sets.  

A theoretical goal of this project is to recast mathematical logic within students’ activity. These 
results provide several instances of students reasoning about logic such as problematizing linguistic 
interpretation, reinventing the standard definition of or, comparing interpretations across statements, 
developing meta-language to abstract patterns, and truth-table analysis leading to new discoveries. 
These data support the hypothesis that students can reinvent the structures of logic when engaged in 
the activity of logic: systematizing language. However, further studies are needed to better 
understand reinventing logic’s instructional affordances and implications.  

Endnote 
1While Ron’s paraphrase also falsely suggests right triangles are counterexamples, his line of 

reasoning led him to the correct counterexample. 
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