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The multiplication principle is a fundamental principle in enumerative combinatorics. It underpins 
many of the counting formulas students learn, and it provides much-needed justification for why 
counting works as it does. However, given its importance, the way in which it is presented in 
textbooks is surprisingly varied. In this paper, we document this variation by presenting a 
categorization of statement types we found in a textbook analysis. We also highlight mathematical 
and pedagogical implications of the categorization.  
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Introduction and Motivation 
Consider the following three statements of the multiplication principle1(MP), seen in Figures 1, 

2, and 3. Given that these statements are all meant to describe the same fundamental issue in 
counting, a number of questions naturally arise. Does Mazur’s statement include anything that 
Roberts and Tesman’s does not? Is Bona’s set-theoretic statement equivalent to the others? If so, 
what are pedagogical consequences of such variation? These questions serve as motivation for better 
understanding how the MP is presented in the current generation of textbooks and what implications 
such varying formulations might respectively entail. In this paper, we report on a textbook analysis in 
which we examined statements of the MP, providing a categorization of statement types intended to 
illuminate mathematical and pedagogical issues related to the MP. 

 
Product Rule: If something can happen in n1 ways, and no matter how the first thing happens, a 

second thing can happen in n2 ways, and no matter how the first two things happen, a third thing can 
happen in n1 ways, and …, then all the things together can happen in n1 ×n2 ×n3 ×... ways. 

Figure 1: Roberts & Tesman’s (2003) statement of the MP 

The Product Principle: In counting k-lists of the form (l1, l2, …,lk), if  
1. there are c1 ways to specify element l1 of the list, and each such specification ultimately leads 

to a different k-list; and 
2. for every other list element li, there are ci ways to specify that element no matter the 

specification of the previous elements l1,…,li-1, and that each such specification of li ultimately 
leads to a different k-list, 

then there are c1c2…ck such lists. 
Figure 2: Mazur’s (2009) statement of the MP 

Generalized Product Principle: Let X1,X2,...,Xk  be finite sets. Then the number of k-tuples (x1, 

x2,…,xk) satisfying xi ∈ Xi  is X1 × X2 ×...× Xk . 

Figure 3:Bona’s (2007) statement of the MP 

TheMP is a fundamental aspect of combinatorial enumeration. It is generally considered to be 
foundational to many of the major counting formulas students learn and is called by some “The 
Fundamental Principle of Counting” (e.g., Richmond & Richmond, 2009). Mazur (2009) notes that 
the MP is “quite flexible and perhaps the most widely used basic rule in combinatorics” (p. 5). Even 
more, the MP can provide a much-needed source of justification for why many common counting 
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formulas work as they do. For key concepts in other domains (such as limit, derivative, the 
fundamental theorem of arithmetic, etc.), there tend to be clear, agreed upon, consistent definitions 
provided in textbooks. However, we have found in our experiencethat textbooks vary widely in how 
they present the MP. Given the importance and the prevalence of the principle, and given the 
apparent lack of consistency with which it is presented, we decided to study how the MP is treated in 
a sample of postsecondary Combinatorics, Discrete Mathematics, and Finite Mathematics textbooks. 
We answer the following research questions: 

1. How is thestatement of the multiplication principle presented in postsecondary 
Combinatorics, Discrete Mathematics, and Finite Mathematics textbooks? 

2. What mathematical issues arise in comparing and contrasting different statements of the 
multiplication principle? 

Literature Review 

Counting Problems are Important but are Difficult to Solve 
Counting problems foster rich mathematical thinking, and they have a number of important 

applications. However, correctly solving counting problems is challenging, and there are many 
studies that report on students’ difficulties with counting (e.g., Batanero, Navarro-Pelayo, & Godino, 
1997; Eizenberg & Zaslavsky, 2004; Hadar & Hadass, 1981). Brualdi (2004) says, “The solutions of 
combinatorial problems often require ad hoc arguments sometimes coupled with use of general 
theory. One cannot always fall back onto application of formulas or known results” (p. 3). Within the 
last couple of decades, a number of researchers have investigated reasons for students’ difficulties 
and have made progress toward better understanding students’ combinatorial reasoning and activity 
(e.g., Eizenberg & Zaslavsky, 2004; English, 1991; 1993; Maher, Powell, & Uptegrove, 2011; 
Tillema, 2013). In spite of such work, however, student difficulties with counting persist.  

There is a growing body of research suggesting that students may benefit from explicitly thinking 
about the outcomes they are trying to count. Lockwood (2014) has proposed a set-oriented 
perspective toward counting, which entails viewing the activity of solving counting problems as 
inherently involving structuring and enumerating a set of outcomes. The work herein contributes to 
current literature that frames sets of outcomes as an indispensable aspect of students’ counting. In 
addition, previous work (Lockwood, Swinyard, & Caughman, 2015) has demonstrated the 
importance of the MP in counting, and the lack of a well-developed understanding of the MP 
appeared to be a significant problem and hurdle for the students. It is important to note that the MP as 
a principle of counting is different than the operation of multiplication. We have found in our 
experience that students can easily assume that they completely understand the MP in counting 
because multiplication is a familiar operation for them. As a result, they use the operation frequently 
but without careful analysis, and they tend not to realize when simple applications of multiplication 
are problematic. We are concerned by the lack of attention students give to the MP, and we argue 
that the MP is worthy of further investigation. While some researchers have discussed multiplication 
within combinatorial contexts (Tillema, 2013), there have not yet been studies that explicitly target 
the MP, and more attention must be paid to the role of multiplication in counting.  

Textbook Analyses as Insight into How Concepts are Presented 
According to Thompson, Senk, and Johnson (2012), “Begle (1973) found that the textbook is 

‘the only variable that on the one hand we can manipulate and on the other hand does affect student 
learning’ (p. 209)” (p. 254). Thompson et al., go on to point out that textbooks “help teachers identify 
content to be taught, instructional strategies appropriate for a particular age level, and possible 
assignments to be made for reinforcing classroom activities” (p. 254). In light of this, a number of 
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researchers have examined textbooks in order to get a better sense of how ideas are presented to 
students (e.g., Mesa, 2004). At the post-secondary level, this has been seen in the domain of linear 
algebra (Cook & Stewart, 2014; Harel, 1987), trigonometry (Mesa & Goldstein, 2014), and abstract 
algebra (Capaldi, 2013). We follow such researchers in using textbooks to gain insight into how 
mathematical ideas are presented. A potential limitation of this study is that we are simply looking at 
textbooks, and we cannot make claims about how ideas in textbooks are actually taught to students 
by an instructor or are understood by students. Nonetheless, a textbook analysis provides an efficient 
snapshot of how experts in the field of combinatorics define and frame a foundational concept like 
the MP. 

Theoretical Perspective 

Structural vs. Operational Conceptions 
In Sfard’s (1991) presentation of the dual nature of mathematical conceptions, she highlights a 

relationship between structural and operational conceptions. This dual nature is reflected in the idea 
that mathematical conceptions can, on the one hand, be considered as objects (a structural 
conception), but that those same conceptions might also be able to be thought of as processes (an 
operational conception). It is interesting that, in her original descriptions of these ideas, Sfard 
mentions an analysis of textbook definitions:  

The careful analysis of textbook definitions will show that treating mathematical notions as if 
they referred to some abstract objects is often not the only possibility. Although this kind of 
conception, which from now on will be called structural, seems to prevail in the modern 
mathematics, there are accepted mathematical definitions which reveal quite a different approach. 
(p. 4, emphasis in original) 

Sfard goes on to say that “The latter type of description speaks about processes, algorithms, and 
actions rather than being about objects. We shall say therefore, that it reflects an operational 
conception of a notion” (p. 4, emphasis in original). Sfard (1991) also emphasizes the complementary 
relationship between the structural and operational conceptions, noting that, “the ability of seeing a 
function or a number both as a process and as an object is indispensable for a deep understanding of 
mathematics, whatever the definition of ‘understanding’ is” (p. 5). This suggests that there could be 
benefits to having both structural and operational notions of a concept like the MP, something we 
address in our results and discussion. 

Methods 
In order to create a broad list of textbooks that were used in postsecondary Finite Mathematics, 

Discrete Mathematics, and Combinatorics courses, we compiled a list of universities in the union the 
top 25 ranked universities, the top 25 ranked graduate mathematics programs, the top 10 ranked 
liberal arts colleges, and the universities with the 10 largest undergraduate populations (National 
Universities Rankings, n.d., Math, n.d., and National Liberal Arts Colleges Rankings, n.d., 
respectively). This represented 52 schools in 26 states. We then identified and added to the list the 
largest university in the remaining 24 states. In total, we surveyed 76 universities representing all 50 
states and including some of the top universities in the country.2 

For each of these 76 universities, we identified courses from the university catalogs and found 
titles of the required texts from the department’s website, the university bookstore, or online course 
pages. We found textbooks from 70 of these universities. In total, we found three textbooks from one 
university, two textbooks from 22 universities, and one textbook from 47 universities. We thus 
identified textbooks for a total of 94 courses at these 70 universities. Multiple universities used many 
of the textbooks, and so this search yielded a total of 32 textbooks. We also examined relevant 
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textbooks within our own personal and university libraries, and this added 32 textbooks not yet on 
the list. Therefore, in total we had a set of 64 textbooks, which both provides a sense of how students 
are being exposed to the MP and also gives a relatively comprehensive picture of ways in which the 
MP is presented in textbooks. Our analysis and results are based on all 64 of these textbooks. Six 
textbooks did not include a statement of the MP, and some textbooks included multiple statements, 
and thus we analyzed a total of 73 statements of the MP in these 64 texts.  

Analyzing the Textbooks. Once the list of textbooks was compiled, we digitally scanned the 
sections of each text that introduced the multiplication principle, including any worked examples and 
narratives (the text surrounding the principle, see Thompson, et al., 2012) that accompanied the 
statement itself. The authors each independently examined the narrative portion of the texts, 
including the statements of the MP and any worked examples, recording phenomena and developing 
categories for what we observed. This is in line with Strauss and Corbin’s (1998) constant 
comparative method of qualitative analysis, where our data consist of the textbook sections. 
Following the creation of codes, for the sake of reliability, each author analyzed the entire set of texts 
separately, and we then met and discussed all of the codes until consensus was reached. We also 
addressed our second research question by more deeply examining mathematical properties of the 
statements via carefully reviewing and discussing the statements. 

Results 
Due to space, we share only two aspects of our findings. In this section, we first provide a 

categorization of statements of the MP (which resulted from investigating the extent to which 
statements themselves reflect structural versus operational conceptions) and report on the frequencies 
of statement types. Then, we demonstrate the value of this categorization by highlighting a 
mathematical implication that emerged from an articulation of the statement types.  

Structural versus Operational Conceptions Reflected in the Overall Statements of the MP 
Drawing heavily on Sfard (1991), we found that the statements of the MP could be 

categorizedinto three types: structural statements, operational statements, and bridge statements. 
Broadly, these three statement types differ in terms of what they state the MP is counting. Structural 
statements characterize the MP as counting objects (without specifying a process to construct those 
objects), while operational statements characterize the MP as counting ways to complete a process 
(without specifying the outcomes of that process). Bridge statements provide a link between the two 
– they frame the MP as counting objects, but they also specify the counting process that would 
generate the objects. Thus, in order to code the statements, we looked to see how the statement 
frames what the MP is counting. Table 2 provides the codes, what we took to be criteria for a 
statement to receive that code, and an example of a textbook whose statement reflects that code.  

Table 2: Criteria for Statement Types 
Code Criteria 

Structural 
 

The statement characterizes the MP as involving counting objects (such as lists or k-
tuples) 

Operational The statement characterized the MP as determining the number of ways of completing a 
counting process  

Bridge The statement simultaneously characterizes the MP as counting objects and specifies a 
process by which those objects are counted 

 
Structural Statements.To be coded as a structural statement, a statement had to describe 

counting a set of objects, without any mention of a process that would generate that set. For example, 
notice that Bona’s structural statement (Figure 3) has characterized the MP as a statement about k-



Curriculum!and!Related!Factors:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

84!

tuples (ordered sequences of length k), which are objects with an inherent structure. The MP 
describes the total number of k-tuples from k sets, and it is simply expressed by product of 
cardinalities of k sets. There is no connection made between those k-tuples and a process that would 
generate them; the statement is simply presented set-theoretically.  

Operational Statements. In contrast to Bona’s structural statements, the operational statements 
frame the MP not as counting structural outcomes, but rather as counting ways of completing a 
process (and a process is clearly articulated in the statement). Roberts and Tesman (2003) provide a 
statement (Figure 1) that we coded as operational, describing the MP in terms performing a task with 
t successive operations, and the MP provides the number of ways of completing a task. Notice that 
the nature of what is being counted – the result of the MP is not the number of objects, but rather it is 
the number of ways of completing a process. Note these two types of statements naturally reflect the 
duality between structural and operational conceptions that Sfard (1991) proposes. We also note that 
some textbooks provided both structural and operational in their narratives.  

Bridge Statements. A statement like Mazur (Figure 2) on the one hand reflects a structural 
framing of the MP (the objects being counted are k-lists), but the statement also explicitly describes 
an operation for how to construct those objects. Such statements, which we call bridge statements, 
simultaneously both count objects and describe a process by which to count or construct those 
objects. In Mazur’s case, the k-listshe describes are the same object as Bona’s (2007) k-tuples. 
However, unlike Bona, notice that Mazur (Figure 2) describes an operational process that explains 
how to generate the objects (k-lists) that are being counted – specifically, he describes, “there are c1 
ways to specify element l1 of the list.” The presence of this explicit connection between the structural 
and operational framings of the statement led us to code this statement by Mazur as a bridge 
statement. 

 
Table 3: Frequencies of structural, operational, and bridge statements (n = 73) 

Frequencies. For coding statements at this level, the unit of analysis was a statement of the MP. 
For any given formulation of a statement, the codes of structural, operational, and bridge are 
mutually exclusive, so a statement was coded with exactly one of these codes. Because some 
textbooks had multiple statements (while some did not include statements), we coded a total of 73 
statements across the 64 textbooks. Table 3 shows the respective frequencies of structural, 
operational, and bridge statements, using the total number of statements as the total frequency.  

From Table 3, we observe that operational statements were the most frequent, comprising 45% of 
the total statements, but each type of statement was represented. These findings convey the variation 
among statements, supporting the notion that this fundamental counting idea is not presented 
consistently across textbooks. Through our analysis we also found wide variation in the language 
used among statements and the representations that accompanied statements, although we do not 
share those findings here due to space. 

Mathematical Implications of Different Statement Types 
In this section we address one mathematical implication of different statement types, making a 

case for what we might gain from a categorization of statement types. As we have noted, the majority 
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of the statements in textbooks are operational, framing the MP in terms of counting the number of 
ways of completing counting processes that have some number of successive stages. A significant 
issue with these statements is that they make no claim about whether that total number of ways to 
complete the process are in a one-to-one correspondence with the desirable set of outcomes, and in 
fact they make no explicit connection to the overall outcomes of the procedure at all. Given our prior 
focus on sets of outcomes and their importance (e.g., Lockwood, 2013; 2014), the lack of explicit 
attention to outcomes is concerning.  

For example, Roberts and Tesman’s (2003) statement (Figure 1) is strictly operational, and we 
see that the MP yields the number of ways for “all the things together” to happen, but the statement 
says nothing about the total number of outcomes. We contrast this with Tucker’s bridge statement 
(Figure 4), which describes a process by which to generate outcomes, not the number of ways to 
complete the process. In fact, Tucker goes so far as to state that, as a condition of implementing the 
MP, the “distinct composite outcomes must all be distinct.” 

 
The Multiplication Principle: Suppose a procedure can be broken down into m successive 

(ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the second stage, 
…, and rm different outcomes in the mth stage. If the number of outcomes at each stage is independent 
of the choices in the previous  stages, and if the composite outcomes are all distinct, then the total 
procedure has r1 × r2 ×...× rm different composite outcomes. 

Figure 4 – Tucker’s (2002) statement of the MP 

In many simple problems, using a strictly operational statement type is not problematic, and any 
differences between the operational and bridge statements may seem immaterial. For instance, 
consider the question “Suppose we flip a coin 10 times in a row. How many possible ways are there 
to do this?” Here, we can solve the problem by thinking of ten successive, ordered stages, and each 
stage has two different possibilities (heads or tails). For both statements, the product that yields the 
total number of ways for “all the things to happen together” (Roberts and Tesman) is the same as the 
number of the total “different composite outcomes of the procedure” (Tucker). This “Coin Flips” 
problem is one in which both types of statements can be applied and yield the correct answer to the 
counting problem. The number of ways to complete the procedure is in a one-to-one correspondence 
with the number of desirable outcomes. 

However, not all counting problems can be solved in such a straightforward manner. To detail 
our discussion of this issue, we turn to a “Words” problem presented by Tucker (2002, p. 172): How 
many ways are there to form a 3-letter word using the letters a, b, c, d, e, and f, if the word must 
contain e and repetition of letters is allowed? In applying an operational statement, we note that the 
first “thing” that will happen is to decide where to put the e that must be in the password, and there 
are 3 choices for this (the first, second, or third position of our word). The second “thing” is to 
choose a letter for the leftmost available position, and there are 6 choices, because repetition of 
letters is allowed. Then, the third thing to do is to choose a letter for the last remaining position, and 
again there are 6 choices. By an operational statement of the MP, then there are 3*6*6 = 108 ways of 
completing the process. This is, in fact, true, and there is no claim being made about what this means 
in terms of distinguishable desirable outcomes.  

However, a key aspect of counting is that there is a relationship between a counting process and 
outcomes associated with that process (Lockwood, 2013). In this “Words” problem, it is true that 
there are 108 possible ways to complete the three-stage counting process. However, the outcomes of 
that process are not all distinct: notice that many of the outcomes – those involving 2 or 3 es – would 
appear more than once in the list of 108 ways to complete the process. Our counting process 
generated some of the same outcomes more than once. If we simply wanted to count possible ways to 
complete a procedure, this would not be an issue. However, counting involves specifying the 
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cardinality of the set of outcomes – determining exactly how many of something satisfies certain 
constraints. Therefore, the fact that in using an operational statement, we are counting ways to 
complete the procedure, and not actually determining the number of distinct outcomes, is 
problematic. By only counting ways of completing a counting process, without tying that to 
outcomes, there is a danger of overcounting when the ways of completing that process are not in one-
to-one correspondence with the desirable set of outcomes. 

Discussion and Conclusion 
By drawing on Sfard’s (1991) work in identifying and describing structural, operational, and 

bridge statements of the MP, we have demonstrated the different ways that the MP may be presented. 
Operational statements frame the MP as counting the number of ways to complete some process, 
procedure, or sequence of tasks. To us, this reflects viewing the act of counting as involving 
completing counting processes, but not necessarily about determining the total size of a set of 
outcomes. Lockwood (2014) has previously demonstrated the value of what is called a set-oriented 
perspective, which frames counting as being about determining the cardinality of a set of outcomes. 
This stands in contrast to how many of the operational statements of the MP situate the activity of 
counting. We feel that our findings suggest that, in fact, counting is not always framed as inherently 
involving counting sets of things, and structural and bridge statements might more naturally align 
with a set-oriented perspective.  

Finally, a major pedagogical implication of our study is that the MP is much more nuanced than 
instructors and students give it credit for. Given its foundational place in counting, we need to help 
students focus more on understanding the details of the MP. Because there are clearly a variety of 
ways to present and talk about the MP, we feel that teachers of counting need to be very explicit with 
students about what exactly the MP is saying. Instructors could offer multiple statements of the 
principle and have a clear discussion of what a given statement in terms of ways of completing a 
counting process versus determining number of distinct outcomes of that process, as we discussed. In 
addition, instructors should very clearly explain how overcounting can occur in counting situations 
that involve multiplication. Regardless of which type of statement a student (or an instructor) prefers 
or which statement their particular book uses, students must be faced with the potential to overcount, 
and it may be up to the instructor to share this, especially if the book does not address it explicitly.  

Endnotes 
1We follow a number of authors by referring to the principle as the “multiplication principle” 

throughout the paper, even though the textbooks we surveyed had many different names for it. 
2There are two ways in which we limited our search. We did not include universities outside of 

the United States to limit the scope and because we did not feel equipped to linguistically analyze 
textbooks in other languages. We also did not examine probability textbooks, again to limit the scope 
of the study, primarily because we suspect that reasoning about multiplication in probability contexts 
may fundamentally differ from strictly combinatorial contexts. 

 

References 
Batanero, C., Navarro-Pelayo, V., & Godino, J. (1997).Effect of the implicit combinatorial model on combinatorial 

reasoning in secondary school pupils. Educational Studies in Mathematics, 32, 181-199. 
Begle, E. G. (1973). Some lessons learned by SMSG. Mathematics Teacher, 66, 207-214. 
Bona, M. (2007). Introduction to Enumerative Combinatorics. New York: McGraw Hill. 
Brualdi, R. A. (2004). Introductory Combinatorics (4th ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall. 
Capaldi, M. (2013). A study of abstract algebra textbooks.In (Eds.). S. Brown, S. Larsen, K. Marrongelle, and M. 

Oehrtman, Proceedings of the 15th Annual Conference in Undergraduate Mathematics Education. (pp. 364-
368). Portland, OR: Portland State University. 



Curriculum!and!Related!Factors:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

87!

Cook, J. P. & Stewart, S. (2014). Presentation of matrix multiplication in introductory linear algebra textbooks. In 
(Eds.) T. Fukuwa-Connelly, G. Karakok, K. Keene, and M. Zandieh, Proceedings of the 17th Annual 
Conference on Research in Undergraduate Mathematics Education. (pp. 70-77). Denver, CO: University of 
Northern Colorado. 

Eizenberg, M. M., & Zaslavsky, O. (2004).Students’ verification strategies for combinatorial problems. 
Mathematical Thinking and Learning, 6(1), 15-36. 

English, L. D. (1991). Young children's combinatorics strategies. Educational Studies in Mathematics, 22, 451-47. 
Godino, J., Batanero, C., & Roa, R. (2005). An onto-semiotic analysis of combinatorial problems and the solving 

processes by university students. Educational Studies in Mathematics, 60, 3-36. 
Hadar, N., & Hadass, R. (1981). The road to solve combinatorial problems is strewn with pitfalls. Educational 

Studies in Mathematics, 12, 435-443. 
Harel, G. (1987). Variation in linear algebra content presentations. For the Learning of Mathematics, 7(3), 29-32. 
Maher, C. A., Powell, A. B., & Uptegrove, E. B. (Eds.). (2011). Combinatorics and Reasoning: Representing, 

Justifying, and Building Isomorphisms. New York: Springer. 
Math. (n.d.). Retrieved December 9, 2014, from http://grad-schools.usnews.rankingsandreviews.com/best-graduate-

schools/top-science-schools/mathematics-rankings. 
Lockwood, E. (2013).A model of students’ combinatorial thinking. Journal of Mathematical Behavior, 32, 251-

265.Doi: 10.1016/j.jmathb.2013.02.008. 
Lockwood, E. (2014).A set-oriented perspective on solving counting problems. For the Learning of Mathematics, 

34(2), 31-37. 
Lockwood, E., Swinyard, C. A., & Caughman, J. S. (2015). Patterns, sets of outcomes, and combinatorial 

justification: Two students’ reinvention of counting formulas. International Journal of Research in 
Undergraduate Mathematics Education, 1(1), 1-36.Doi: 10.1007/s40753-015-0001-2. 

Mazur, D. R. (2009). Combinatorics: A Guided Tour. Washington, DC: MAA. 
Mesa, V. (2004). Characterizing practices associated with functions in middle school textbooks: an empirical 

approach. Educational Studies in Mathematics, 56(2/3), 255-286. 
Mesa, V. & Goldstein, B. (2014). Conceptions of inverse trigonometric functions in community college lectures, 

textbooks, and student interviews. In (Eds.) T. Fukuwa-Connelly, G. Karakok, K. Keene, and M. Zandieh, 
Proceedings of the 17th Annual Conference on Research in Undergraduate Mathematics Education. (pp. 885-
893). Denver, CO: University of Northern Colorado. 

National Liberal Arts Colleges Rankings. (n.d.). Retrieved December 9, 2014, from 
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-liberal-arts-colleges. 

National Universities Rankings. (n.d.). Retrieved December 9, 2014, from 
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-universities. 

Richmond, B. & Richmond, T. (2009). A Discrete Transition to Advanced Mathematics. Providence, RI: American 
Mathematical Society. 

Roberts, F. S. & Tesman, B. (2005). Applied Combinatorics (2nd ed.). Upper Saddle River, New Jersey: Pearson 
Prentice Hall. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different  
Strauss, A. & Corbin, J. (1998). Basics of Qualitative Research: Techniques and Procedures for Developing 

Grounded Theory (2nd ed.). Thousand Oaks, California: Sage Publications, Inc.   
Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school 

mathematics textbooks. Journal for Research in Mathematics Education, 43(3), 253-295. 
Tillema, E. S. (2013). A power meaning of multiplication: Three eighth graders’ solutions of Cartesian product 

problems. Journal of Mathematical Behavior, 32(3), 331-352.Doi: 10.1016/j.jmathb.2013.03.006. 
Tucker, A. (2002). Applied Combinatorics (4th ed.). New York: John Wiley & Sons. 


