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A variety of computerized interactive learning platforms exist. Most include instructional 
supports in the form of problem sets. Feedback to users ranges from a single word like 
“Correct!” to offers of hints and partially- to fully-worked examples. Behind-the-scenes design 
of systems varies as well – from static dictionaries of problems to “intelligent” and responsive 
programming that adapts assignments to users’ demonstrated skills within the computerized 
environment. This report presents background on digital learning contexts and early results of a 
cluster-randomized controlled trial study in community college elementary algebra classes 
where the intervention was a particular type of web-based activity and testing system.  
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Many students arrive in college underprepared for college level algebra, despite its 
importance for future success in mathematics (Long, Iatarola, & Conger, 2009; Porter & 
Polikoff, 2012). Web-based Activity and Testing Systems (WATS) are one approach to 
supporting equity and excellence in mathematics learning in colleges. When it comes to 
technology and algebra learning in college, what works? For whom? Under what conditions? 
These ubiquitous questions plague educational researchers who are assessing the whats, whys, 
and hows of a technology intervention or addition to a course. Did the instructors have enough 
support to adequately implement the technology tool? Were the materials adequate to provide 
enough practice hours for students? Was instruction sufficient to prepare students to pass the 
final exam?  

This preliminary report offers early results from a large project investigating relationships 
among student achievement and varying conditions of implementation for a web-based activity 
and testing system (WATS) used in community college algebra. Implementing a particular 
WATS constitutes the “treatment” condition in this cluster randomized controlled trial study. As 
described below, there are several ways to distinguish WATS tools. Some systems, like the one 
at the heart of our study, include adaptive problem sets, instructional videos, and data-driven 
tools for instructors to use to monitor and scaffold student learning.  

 
Research Questions 

Funded by the U.S. Department of Education, we are conducting a large-scale mixed 
methods study in over 30 community colleges. The study is driven by two research questions: 
Research Question 1: What is the impact of a particular digital learning platform on students’ 

algebraic knowledge after instructors have implemented the platform for 
two semesters? 

Research Question 2: What challenges to use-as-intended (by developers) are faculty 
encountering and how are they responding to the challenges as they 
implement the learning tool? 
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Background and Conceptual Framing 
 

First, there are distinctions among cognitive, dynamic, and static learning environments (see 
Table 1). Web-based Activity and Testing System (WATS) learning environments can vary 
along at least two dimensions: (1) the extent to which they adaptively respond to student 
behavior and (2) the extent to which they are based on a careful cognitive model.  
  
Table 1. Conceptual Framework of the Types of Instruction Based on Adaptability and Basis in  

a Theory of Learning 
 Static Dynamic 
Is a particular 
model of learning 
explicit in design 
and implementation 
(structure and 
processes)? 

No 
 

Text and tasks with 
instructional adaptation external 
to the materials  

Adaptive tutoring systems 
(Khan Academy, ALEKS, 
ActiveMath) 

Yes Textbook design and use driven 
by fidelity to an explicit theory 
of learning 

“Intelligent” tutoring systems 
(Cognitive Tutor) 

Static learning environments are those that are non-adaptive without reliance on an 
underlying cognitive model – they deliver content in a fixed order and contain scaffolds or 
feedback that are identical for all users. The design may be based on intuition, convenience, or 
aesthetic appeal. An example of this type of environment might be online problem sets from a 
textbook that give immediate feedback on accuracy to students (e.g., “Correct” or “Incorrect”).  

Dynamic learning environments keep track of student behavior (e.g., errors, error rates, or 
time-on-problem) and use this information in a programmed decision tree that selects problem 
sets and/or feedback based on students’ estimated mastery of specific skills. An example of a 
dynamic environment might be a system such as ALEKS or the “mastery challenge” approach 
now used at the online Khan Academy. For example, at khanacadmy.org a behind-the-scenes 
data analyzer captures student performance on a “mastery challenge” set of items. Once a student 
gets six items in a row correct, the next level set of items in a programmed target learning 
trajectory is offered. Depending on the number and type of items the particular user answers 
incorrectly (e.g., on the path to six items in a row done correctly), the analyzer program identifies 
target content and assembles the next “mastery challenge” set of items.  

Above and beyond such responsive assignment generation, programming in a “cognitively-
based” dynamic environment is informed by a theoretical model that asserts the cognitive 
processing necessary for acquiring skills (Anderson et al. 1995; Koedinger & Corbett, 2006). For 
example, instead of specifying only that graphing is important and should be practiced, a 
cognitively-based environment also will specify the student thinking and skills needed to 
comprehend graphing (e.g., connecting spatial and verbal information), and provide feedback 
and scaffolds that support these cognitive processes (e.g., visuo-spatial feedback and graphics 
that are integrated with text). In cognitively-based environments, scaffolds themselves can also 
be adaptive (e.g., more scaffolding through examples can be provided early in learning and 
scaffolding can be faded as a student acquires expertise; Ritter et al., 2007). Like other dynamic 
systems, cognitively-based systems can also provide summaries of student progress, which better 
enable teachers to support struggling students.  

No fully tested cognitively-based system currently exists for college students learning 
algebra. As mentioned, several dynamic systems do exist (e.g., ALEKS, Khan Academy 
“Missions”). The particular WATS investigated in our study is accessed on the internet and is 
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designed primarily for use as replacement for some in-class individual seatwork and some 
homework. Note: We report here on data collected from the first of two years. The second year 
of the study – which repeats the design of the first – is currently underway. Hence, we 
purposefully under-report some details. 

 

Method 
 

The study we report here is a multi-site cluster randomized trial. Half of instructors at each 
community college site are assigned to use a particular WATS in their instruction (treatment 
condition), the other half teach as they usually would, barring the use of the Treatment WATS 
tool (control condition). In addition, faculty participate for two semesters in order to allow 
instructors to familiarize themselves with implementing the WATS with their local algebra 
curriculum. Specifically, the Fall semester is a “field” semester to field-test the intervention and 
the Spring semester of the same academic year is the full “efficacy” study. 

Using a stratified sampling approach to recruitment, we first conducted a cluster analysis on 
all 113 community college sites eligible to participate in the study (e.g., those offering semester-
long courses in elementary algebra that met at least some of the time in a physical classroom or 
learning/computer lab). The cluster analysis was based on college-level characteristics that may 
be related to student learning (e.g., average age of students at the college, the proportion of 
adjunct faculty, etc.). This analysis led to five clusters of colleges. Our recruitment efforts then 
aimed to include a proportionate number of colleges within each cluster. The primary value of 
this approach is that it allows more appropriate generalization of study findings to the target 
population (Tipton, 2014). The first cohort of participants was a sample of 38 colleges similar to 
the overall distribution across clusters that was the target for the sample (see Figure 1).  

 

 
Figure 1. Recruited sample proportions and target sample proportions across clusters. 

 
Sample for this Report 

Initial enrollment in the study included 89 teachers across the 38 college sites. For this report 
on early results, we have used the data from 510 students of 29 instructors across 18 colleges. 
Student and teacher numbers related to the data reported on here are shown in Table 2. 
 

Table 2. Counts of Teachers, Students, and Colleges in the Study 
Condition Teachers Students Colleges 
Control 17 328 13 

Treatment 12 182 11 
Total 29 510 18 
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Results 
 

The primary outcome measure for students’ performance is an assessment from the 
Mathematics Diagnostic Testing Program (MDTP), which is a valid and reliable assessment of 
students’ algebraic knowledge (Gerachis & Manaster, 1995). The primary aim of the quantitative 
analysis was to address Research Question 1, what is the impact of WATS use on students’ 
outcomes? To this end, we employed Hierarchical Linear Modeling (HLM) (Raudenbush & 
Bryk, 1998) to predict students’ end of semester MDTP scores. The HLM model includes a 
random effect of teacher to account for the nesting of students within instructors, and covariates 
that account for students’ pretest MDTP scores at both student and teacher levels (i.e., student 
scores are aggregated at the teacher level; covariates were grand mean centered to achieve the 
intended covariate-adjustment). Importantly, in the model below, WATSj represents a 
dichotomous variable (dummy coded) indicating treatment assignment, and the main effect of 
the intervention is captured by !"#.  
 
Model 

 
 

The random and fixed effects for the model presented above are displayed in Tables 3 and 4, 
respectively. 
 
Table 3. Random Effects of the Model 
 

 Variance Standard Deviation 
Teacher $"% 6.95 2.64 

Level-1 Error &'" 37.69 6.14 
 
Table 4. Fixed Effect Results of the Model 
 

Variable B Standard Error p-value 
Intercept !"" 21.98 0.74 < .001 
WATS !"# 2.59 1.17 .04 
StuPre !#" 0.54 0.04 < .001 
TeaPre !"( 0.35 0.17 .05 

 
Controlling for students’ pretest scores, we found that using WATS corresponded to a 2.59 

point increase in students’ post-test scores, a statistically significant positive effect (p < .05). 
Since the post-test is out of a 50 point total, the estimate corresponds to about 5 percentage 
points greater post-test score, on average, for treatment group students (2.59/50). The 
Hedges g value for this effect is 0.32, which is considered a small but noteworthy effect in 
educational research for studies of this size (Cheung & Slavin, 2015; Hill et al. 2008). The 95% 
confidence interval of the Hedges g value is .14 - .50. 

We note this study suffered from high instructor attrition, which may bias the outcome of 
results. To investigate the robustness of the findings above, we are in the process of repeating 
this study with a second cohort of participants during the current (2016-17) academic year. 
Pooling the results of these two studies will help to determine the extent to which study results 
replicate with different populations. In this same vein, we plan to reanalyze the results using 
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post-test scores that are estimated using item response theory (IRT).  IRT is a measurement 
approach that takes into consideration potential differences in item characteristics when scoring 
individuals and places scores on a continuous metric. The use of IRT will allow us to take into 
consideration the difficulty and discriminability of items and represent these in the calculation of 
post-test scores, which can then be analyzed using the model presented above.  

 To address Research Question 2, a great deal of textual, observational, and interview data 
were gathered last year (and will be gathered again for the second iteration of the study). These 
data allow careful analysis of the intended and actual use of the learning environment and the 
classroom contexts in which it is enacted – an examination of implementation structures and 
processes. Indices of specific and generic fidelity derived from this work also will play a role in 
HLM generation and interpretation in the coming year. 

As in many curricular projects, developers of the WATS in our study paid attention to 
learning theory in determining the content in the web-based system, but the same was not true 
for determining implementation processes and structures. The pragmatic details of large-scale 
classroom use were under-specified. Developers articulated their assumptions about what 
students learned as they completed activities, but the roles of specific components, including the 
instructor role in the mediation of learning, were not clearly defined. Thus, there was an under-
determined “it” to which developers expected implementers (instructors and students) to be 
faithful. 

Fidelity of implementation is the degree to which an intervention or program is delivered as 
intended (Dusenbury, Brannigan, Falco, & Hansen, 2003). Do implementers understand the 
trade-offs in the daily decisions they must make “in the wild” and the short and long-term 
consequences on student learning as a result of compromises in fidelity? As Munter and 
colleagues (2014) have pointed out, there is no agreement on how to assess fidelity of 
implementation. However, there is a growing consensus on a component-based approach to 
measuring its structure and processes (Century & Cassata, 2014).  Century and Cassata’s 
summary of research offers five components to consider in fidelity of implementation: 
Diagnostic, Procedural, Educative, Pedagogical, and Student Engagement (see Table 5).   

Table 5. Components and Focus in a Fidelity of Implementation Study 
Components Focus 
Diagnostic These factors say what the “it” is that is being implemented (e.g., what 

makes this particular WATS distinct from other activities). 
Structural-Procedural 
 

These components tell the user (in this case, the instructor) what to do 
(e.g., assign intervention x times/week, y minutes/use). These are aspects 
of the expected curriculum. 

Structural-Educative These state the developers’ expectations for what the user needs to know 
relative to the intervention (e.g., types of technological, content, and 
pedagogical knowledge needed by an instructor). 

Interaction-Pedagogical 
 

These capture the actions, behaviors, and interactions users are expected 
to engage in when using the intervention (e.g., intervention is at least x 
% of assignments, counts for at least y % of student grade). These are 
aspects of the intended curriculum. 

Interaction-Engagement  These components delineate the actions, behaviors, and interactions that 
students are expected to engage in for successful implementation. These 
are aspects of the achieved curriculum. 
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The components in Table 5 are operationalized through a rubric, the guide for collecting and 
reporting data in our implementation study. A rubric articulates the expectations for a category 
by listing the criteria, or what counts, and describes the levels of quality from low to high. Each 
component has several factors that define the component. The research team has developed a 
rubric for fidelity of implementation that identify measurable attributes for each component (for 
example, see Table 6 for some detail on the “educative” component). 

Table 6. Example Rubric Descriptors for Levels of Fidelity, Structural-Educative Component. 

Educative: These components state the developers’ expectations for what the user (instructor) 
needs to know relative to the intervention. 

 High Level of Fidelity Moderate Fidelity Low Level of Fidelity 
Users’ 
proficiency in 
math content  

Instructor is proficient to 
highly proficient in the 
subject matter.  

Instructor has some gaps 
in proficiency in the 
subject matter.  

Instructor does not have 
basic knowledge and/or 
skills in the subject area.  

Users’ 
proficiency in 
TPCK  

Instructor regularly 
integrates content, 
pedagogical, and 
technological knowledge 
in classroom instruction. 
Communicates with 
students through WATS. 

Instructor struggles to 
integrate CK, PK, and TK 
in instruction. 
Occasionally sends digital 
messages to students using 
WATS tools.  

Instructor CK, PK, and/or 
TK sparse or applied in a 
haphazard manner in 
classroom instruction. 
Rarely uses WATS tools 
to communicate with 
students.  

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands 
philosophy of WATS 
resources (practice items, 
"mastery mechanics," 
analytics, and coaching 
tools),  

Instructor understanding of 
the philosophy of WATS 
tool has some gaps. 
NOTE: Disagreeing is 
okay, this is about 
instructor knowledge of it. 

Instructor does not 
understand philosophy of 
WATS resources. NOTE: 
Disagreeing is okay, this is 
about instructor 
knowledge of it. 

Users’ 
knowledge of 
requirements 
of the 
intervention 

Instructor understands  the 
purpose, procedures, 
and/or the desired 
outcomes of the project 
(i.e., "mastery") 

Instructor understanding of 
project has some gaps 
(e.g., may know purpose, 
but not all procedures, or 
desired outcomes).  

Instructor does not 
understand the purpose, 
procedures, and/or desired 
outcomes. Problems are 
typical.  

 
Defining and Refining Measures for the Fidelity of Implementation Rubric 

The ultimate purpose of a fidelity of implementation rubric is to articulate how to determine 
what works, for whom, under what conditions. In addition to allowing identification of alignment 
between developer expectations and classroom enactment, it provides the opportunity to discover 
where productive adaptations may be made by instructors, adaptations that boost student 
achievement beyond that associated with an implementation faithful to the developers’ view.  

In using the rubric, we assign a number to each level of fidelity. This can be as simple as a 3 
for a high level of fidelity, 2 for a moderate level of fidelity, or a 1 for a low level; or the items 
can be weighted. The general score for the intervention will be the total number of points 
assigned in completing the rubric as a ratio of the total possible, across all instructors. It will also 
be possible to create a fidelity of implementation score on each row for each instructor – these 
data will be used in statistical modeling of the impact of the intervention as part of a “specific 
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fidelity index” (Hulleman & Cordray, 2009). We first total points for the item, then the 
component, and finally all components for a single score as an index of implementation.  

 
Next Steps 

 
In upcoming work, we will analyze a host of data on students, teachers, and colleges that 

may influence learning with WATS, including issues of feasibility of use in differing contexts, 
and measures associated with the nature of alignment or “fidelity” of implementation to WATS 
developers’ expectations. Such analysis will help to inform important questions such as how and 
for whom WATS are most effective. 

As indicated above, we will continue this study with a second cohort of new participants 
who will repeat the year-long study in the 2016-2017 academic year. Also, between now and 
the conference we will do more complex modeling of the data, with the introduction of IRT-
informed scores and specific fidelity indices. Our specific objectives in the coming six months 
are to (1) continue analyses from the Spring 2016 efficacy study, and (2) conduct the field-test 
semester of the study with second cohort of participants. 
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