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Abstract 
Schooling can produce both cognitive and non-cognitive skills, both of which are important determinants of 
adult outcomes. Using very rich data from a UK birth cohort study, I estimate teacher value added (VA) models 
for both pupils' test scores and non-cognitive skills. I show that teachers are equally important in the 
determination of pupils' test scores and non-cognitive skills. This finding extends the economics literature on 
teacher effects, which has primarily focused on pupils' test scores and may fail to capture teachers' overall 
effects. In addition, the large estimates reveal an interesting trade-off: teacher VA on pupils' test scores are weak 
predictors of teacher VA on non-cognitive skills, which suggests that teachers recourse to different techniques to 
improve pupils' cognitive and non-cognitive skills. Finally, I find that teachers' effects on pupils' non-cognitive 
skills have long-run impacts on adult outcomes such as higher education attendance, employment and earnings, 
conditional on their effects on test scores. This result indicates that long-run outcomes are improved by a 
combination of teachers increasing pupils' test scores and non-cognitive skills and has large policy implications. 
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I. Introduction

Recent studies have shown that cognitive and non-cognitive skills accumulated during

childhood have important impacts on adult outcomes (e.g. Heckman and Rubinstein,

2001; Heckman et al., 2006; Borghans et al., 2008).1 Also, schooling can produce both

cognitive skills and non-cognitive skills. However, most of the literature in economics

has focused on test scores as measures of students’ skills. Much less is known about the

effect of schooling on non-cognitive skills (e.g. social skills, persistence, creativity and

self-control). Accordingly, evaluating schooling effects based on test scores may fail to

capture schooling overall effects and addresses only one dimension of what matters for

child development and adult success.

This paper speaks to this issue by estimating the importance of teachers on both

pupils’ cognitive and non-cognitive outcomes. Policy makers and researchers agree that

teachers are one of the most important school-related factors. Previous work has shown

that during one year with a teacher in the 85th percentile according to value added scores

(VA), pupils gain 40% more in their learning than they would with a teacher in the 15th

percentile (e.g. Rockoff, 2004; Rivkin et al., 2005; Aaronson et al., 2007; Kane and

Staiger, 2008; Chetty et al., 2014a). US school districts have begun to produce estimates

of teachers’ VA on pupils’ test scores to evaluate teachers. However, it is surprising

that most of the discussions on teachers’ VA almost exclusively focuses on measures of

cognitive ability. Accordingly, it is critical for policy that these measures reflect teachers’

overall effects.

Much of the neglect of non-cognitive skills in analysis of schooling effects is certainly

due to the lack of any reliable measure of them. However, in recent research, economists

and psychologists have constructed measures of non-cognitive skills and have provided

evidence that they predict meaningful outcomes (e.g. Borghans et al., 2008; Almlund et

al., 2011; Heckman et al., 2015). In a very short period of time, non-cognitive skill mea-

sures have started to be included in large scale surveys. These measures include, among

others, teacher assessments of socio-emotional skills, parental reports of behaviours, self-

reported beliefs about personal control, and administrative records of school suspensions.

In this paper, I rely on a very rich UK birth cohort study, the Avon Longitudinal Study

of Parents and Children (ALSPAC), which provides a behavioural screening test, known

as the Strength and Difficulties Questionnaire, as indicator of non-cognitive abilities. It is

a well-accepted questionnaire in developmental, genetic, social, clinical and educational

1An increasing body of empirical literature sheds light on the importance of non-cognitive skills and
finds that non-cognitive skills are good predictors of adult outcomes, such as labour market success, crime
behaviours and health (see Heckman et al. (2015) for a review of the literature). In particular, the more
recent economics literature on non-cognitive skills comes into prominence with two studies by James
Heckman and co-authors. Heckman and Rubinstein (2001) find that GED recipients are more likely to
engage in drug use and to commit minor crimes than either conventional high school graduates or high
school dropouts, and infer that the absence of a positive economic return to GED recipiency is due to a
shortfall in non-cognitive skills among those who receive this credential. Heckman et al. (2006), using
adolescent measures of self-efficacy and self-esteem in the National Longitudinal Survey of Youth 1979
as indicators of non-cognitive abilities, find that non-cognitive and cognitive skills are equally important
in the determination of a variety of economic and social outcomes.
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studies. It includes 25 items on non-cognitive attributes, which are divided between

5 scales: emotional symptoms, conduct problems, hyperactivity/inattention, peer rela-

tionship problems, and pro-social behaviour. The ALSPAC data also provide teacher

assignments in years 3 and 6 of primary school when the pupils were aged 8 and 11,

respectively. The data are merged with the National Pupil Database which contains

detailed information on pupils’ test scores and exam results spanning 1991-2009.

The strength of these data allows me to make four important contributions to the

literature on teacher effectiveness. First, I construct VA estimates for the teachers in

my dataset, based on pupils’ math test scores and non-cognitive abilities. My approach

to estimate VA parallels closely that used by previous work estimating teacher VA on

pupils’ test scores (e.g. Kane and Staiger, 2008; Chetty et al., 2014a), except that I

also provide teachers’ VA estimates on non-cognitive skills.2 Second, I use the results to

test whether teachers who raise test scores also improve non-cognitive skills. If there is a

weak correlation between a teacher’s ability to increase cognitive and non-cognitive skills,

this has important implications for how teachers are evaluated: a teacher who is good at

developing pupils’ non-cognitive skills, but not efficient at raising their test scores, might

be rated as ineffective, thus undervaluing her contribution to pupils’ learning.

Third, I leverage my research design to provide the first estimates of teachers’ non-

cognitive effects on long-run outcomes such as higher education attendance, earnings,

unemployment, and full-time job.3 Previous work has shown that teachers’ impacts

on test scores fade out very rapidly (e.g. Rothstein, 2010; Jacob et al., 2010; Chetty

et al., 2014b). Despite this fade-out, there is evidence that teachers’ impacts on test

scores do create persistent improvements in successful lifetime outcomes (Chetty et al.,

2014b). This would suggest that teachers may have important effects on long-run out-

comes that are not reflected in their test score VA and that might be related to their

non-cognitive skills VA.4 This paper addresses this apparent paradox by investigating (i)

whether teachers have influence on pupils’ non-cognitive skills and (ii) whether teachers’

2In existing work, Jackson (2012) finds that teachers have causal effects on test scores and proxies
for non-cognitive skills (e.g. absences, suspensions, grades and on-time grade progression). Araujo et al.
(2016) find that teachers have substantial effects on students’ executive function. Mihaly et al. (2013)
estimate teachers’ effects on non-test score outcomes to better predict teachers’ effects on test scores.
Ruzek et al. (2014) find that teachers influence their students’ motivation, as measured by mastery and
performance achievement goals. Finally, Blazar and Kraft (2015) find that upper-elementary teachers
have large effects on self-reported measures of students’ self-efficacy in math, and happiness and behaviour
in class. Gershenson (2016) finds that teachers have important effects on students’ absences. Yet, all
these studies rely on proxies for non-cognitive skills. This paper provides the first teacher VA estimates
based on a unified and comprehensive evaluation of non-cognitive measures.

3Only one study, Jackson (2012), has attempted to investigate this issue. He finds that teacher effects
on absences, suspensions, course grades and on-time grade progression predict high school completion.
However, his work does not look at long-run effects on other adult outcomes such as employment, earnings
and quality of work.

4Similarly, Chamberlain (2013) finds that predictions based on test score effects have small predictive
power for college attendance. More broadly, there is a growing literature on the long-term impacts of
school interventions (e.g. Project STAR, the Perry and Abedecarian preschool demonstrations and the
Head Start program) which also finds lasting impacts on adult outcomes depiste fade-out on test scores
(see Almond and Currie, 2010 for a review).
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effects on non-cognitive skills have long-run impacts that are not measured by teachers’

effects on test scores.

Fourth, I turn my attention to the mechanisms through which teachers affect pupils’

cognitive and non-cognitive skills. Prior studies (e.g Rivkin et al., 2005) find that teach-

ers have powerful effects on reading and math achievement, but less than 10% of the

variation in teacher quality is explained by observable teacher characteristics such as

education or experience. The disjuncture between estimates of teacher quality and the

explanatory power of observed teacher characteristics creates a clear dilemma for pol-

icy makers. This paper complements previous studies on the determinants of teacher

effectiveness by (i) analysing to what extent teachers’ VA on both pupils’ cognitive and

non-cognitive skills are associated with a high number of teacher characteristics (including

teacher non-cognitive skills) and teaching practices, and (ii) by testing whether different

teacher characteristics and teaching practices are associated with teachers’ ability to im-

prove pupils’ cognitive and non-cognitive skills.

The results are as follows. I find that teachers have large influences on pupils’ non-

cognitive skills. The VA estimates indicate that a one standard deviation (SD) improve-

ment in teacher VA raises normalised internalising behaviour by 0.23 SD and externalising

behaviour by 0.12 SD. For comparison, a one SD improvement in teacher math VA raises

normalised math test scores by 0.14 SD, consistently with estimates in prior studies.5 One

concern in interpreting these results, however, is that the assignment of pupils to teachers

is not random. Such sorting can lead to biased estimates of teachers’ VA for both pupils’

test scores and non-cognitive skills. To address this issue, I implement several tests and

estimate the degree of bias in my VA estimates due to selection on parent socio-economic

characteristics and lagged measures of cognitive and non-cognitive skills. I find that the

selection of pupils to teachers is moderate in my database: the selection bias from parent

socio-economic characteristics such as parents’ education, financial difficulties, marital

status, mother’s age at birth, and employment history is at most 15%. Similarly, the se-

lection bias from additional lagged measures of pupils’ cognitive and non-cognitive ability

is at most 21%. Using within-school variations, I find no selection of pupils to teachers

based on observable characteristics: the selection bias from parent socio-economic charac-

teristics is at most 0.8% and the selection bias from lagged measures of pupils’ cognitive

and non-cognitive ability is at most 2%.6

The validity of my empirical results as evidence regarding the effects of teachers on

pupils’ non-cognitive skills might also depend on how pupils’ non-cognitive skills are mea-

sured. Non-cognitive skills in the ALSPAC data are reported by parents and teachers.

Results based on teacher-assessed non-cognitive skills could be driven by how teachers

answered the questionnaire rather than “true” effects on pupils’ non-cognitive skills. To

5For instance, Chetty et al. (2014a) find that a one SD improvement in teacher VA raises normalised
test scores by approximately 0.116 SD in math in elementary school. See Section 3.2 for a full description
of the results.

6The correlation between VA estimates and parent characteristics vanishes once I control for primary-
school fixed effects. Since most sorting occurs through the choice of schools, it is important to note that
parents may have little scope to steer their children towards higher-VA teachers within schools.

4



obtain robust estimates of teachers’ VA which account for teachers’ reporting bias, I repli-

cate the main analysis using parent-assessed non-cognitive skills. I also develop additional

approaches including a principal component analysis and instrumental regressions. The

results indicate that the VA estimates are robust to the use of these different methods.

There are similarly large variations in teachers’ VA estimates on non-cognitive skills.

I also find that teachers’ effects on test scores and non-cognitive skills are not strongly

correlated, so that many teachers who increase non-cognitive skills do not raise test scores,

and vice versa. The correlations range from 0.08 between teachers’ VA on math and inter-

nalising behaviour and 0.14 between teachers’ VA on math and externalising behaviour.

In contrast, the correlation is positive and statistically significant (0.54) between teachers’

VA estimates on non-cognitive skills.

Teachers’ effects on both test scores and non-cognitive skills predict substantial effects

on the probability of higher education attendance, future earnings and employment. I find

that a one SD improvement in teachers’ VA on non-cognitive skills raises the probability

of higher education attendance at age 20 by approximately 0.7 percentage points, relative

to a sample mean of 50%. Improvements in teachers’ VA on non-cognitive skills also raise

pupils’ earnings. At age 20, the oldest age at which I currently have information on pupils’

earnings, a 1 SD increase in teachers’ VA on pupils’ non-cognitive skills raises annual

earnings by roughly 3%.7 I also find that improvements in teachers’ VA significantly

reduce the probability of ever having been unemployed and of being in full time job at

age 20. Overall, these results indicate substantial long-run teacher non-cognitive effects

on pupil outcomes - conditional on their effects on test scores.

These findings on long-term outcomes may be surprising because teachers’ impacts on

test scores fade out very rapidly (e.g. Rothstein, 2010; Jacob et al., 2010; Chetty et al.,

2014b). Turning the focus to non-cognitive skills, I provide evidence that improvements

in teachers’ VA on non-cognitive skills not only raise long-run outcomes but also subse-

quent math test scores and non-cognitive skills. A one SD increase in non-cognitive skill

teachers’ VA significantly raises math test scores 3 to 5 years after. Same for subsequent

non-cognitive skills. These findings (i) suggest that teachers’ VA on non-cognitive skills

have more persistent effects over time and (ii) constitute a first piece of evidence that

teachers’ VA on non-cognitive skills reinforce teachers’ VA on cognitive skills in subse-

quent years. In other words, having a teacher who increases pupils’ non-cognitive skills

in primary school is likely to increase academic achievement throughout the schooling

process and create returns in the labour market.

The ALSPAC data provide very rich information on teaching practices, including

homework, assessments, incentives used, classroom organisation, and the teachers’ sense

of responsibility. I combine these variables into five categories of teaching practices, fol-

lowing a common and accepted terminology in the education literature: (i) instilment of

knowledge and enhancement of comprehension; (ii) instilment of analytical and critical

skills; (iii) instilment of capacity for individual study; (iv) instilment of social and moral

7A one SD increase in teacher VA on math test scores raise annual earnings by 4%.
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behaviours and (v) individual treatments of pupils.8 The results suggest that including

teaching practices explains 15-30% of the variation in teachers’ ability to enhance both

pupils’ cognitive and non-cognitive skills. In addition, I show that teaching that em-

phasises the instilment of knowledge and comprehension, often termed “traditional”-style

teaching, is negatively correlated with teachers’ ability to increase pupils’ non-cognitive

skills. By way of contrast, the use of classroom techniques that endow pupils with analyt-

ical and critical skills and a capacity for individual study, (“modern” teaching), has some

positive payoffs. In addition, the individual treatment of pupils such as class activities

by attainment groups has some negative effects on teachers’ ability to increase pupils’

cognitive skills but positive effects on pupils’ non-cognitive skills.

This paper contributes to several strands of the literature. First, the importance

of teachers’ effects on non-cognitive skills helps to explain the previous findings (e.g.

Chamberlin, 2013; Chetty et al., 2014b) that the effects of test scores VA on long-run

outcomes do not reflect the total effect of teachers. The importance of non-cognitive

skills also offers a potential explanation for school interventions (e.g. the Project STAR,

the Perry and Abecedarian preschool demonstrations and the Head Start program) with

test score effects that “fade-out” over time but reemerge in adulthood (e.g. Cascio and

Staiger, 2012; Heckman et al., 2013; Chetty et al., 2011; Almond and Currie, 2010).

Second, the importance of teaching practices in explaining variations in teachers’ ability

to improve pupils’ cognitive and non-cognitive skills complements the previous findings

that traditional teacher characteristics (such as education and experience) are only little

correlated with teacher VA estimates (Rivkin et al., 2005; Aaronson et al, 2007). More

generally, this paper is one of the first to demonstrate that non-cognitive skills can identify

teachers who have large influence on pupils’ short-run and long-run outcomes - but are

no more effective than average in improving math test scores. In doing so, my research

complements the extensive literature that assesses teachers’ effects on students’ test scores

(e.g. Hanushek, 1971; Rockoff, 2004; Rivkin et al., 2005; Aaronson et al., 2007; Kane and

Staiger, 2008; Chetty et al, 2014a; Rothstein, 2017) as it provides evidence for teachers’

effects that are not reflected in their test score VA.

The rest of this paper is organised as follows. Section II presents the data. Section

III describes a simple conceptual framework to illustrate how teachers’ effects can be

decomposed into teachers’ effects on test scores and non-cognitive skills and presents

the empirical strategy. Section IV analyses the short-run teacher effects. Section V

investigates teacher VA long-run impacts. Section VI tests the potential mechanisms

through which teachers can influence pupils’ cognitive skills and non-cognitive skills.

Section VII discusses further implications of this study and concludes.

8See for instance Bloom (1956) and Lavy (2011).
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II. Data

The unique detail and scope of the ALSPAC data are major strengths of this study.

This section describes the ALSPAC data and then provides descriptive statistics.

2.1. ALSPAC

The ALSPAC survey is a UK birth cohort study that recruited over 14,000 pregnant

women who were due to give birth between April 1991 and December 1992 in Bristol and

its surrounding areas, including some of Somerset and Gloucestershire. These women and

their families have been followed almost every years ever since.910 The bulk of my anal-

ysis focuses on when the participants entered primary school. Because they were born

between April 1991 and December 1992, they were assigned to three different school-year

cohorts. School questionnaires in years 3 and 6 of primary school have been completed

by parents, teachers and the children themselves. In addition, the ALSPAC children

have been linked with the UK National Pupil Database which contains information on

math and English national test scores.11 These ALSPAC data thus include a large set of

information on pupil characteristics, family background, life events, classroom, teacher

characteristics and school characteristics for about 10,000 pupils in primary school.

Pupil characteristics - A number of pupil characteristics are included: test scores,

non-cognitive skills as well as family and pupil background measures. In most of previous

studies using administrative data, these types of information are somewhat limited. I

here have detailed information on the respondent’s entire history and family background

that allows me to control for past (and present) pupil heterogeneity that could affect

pupils’ school achievement: parental education, number of siblings, parental marital sta-

tus, parental employment history, parental financial problems, and mother’s age at birth.

In particular, these data include a history of previous test scores that can be used as

controls for past performance. In order to measure pupils’ achievement, I rely on pupils’

test scores from two math tests,12 administered by ALSPAC at the end of year 3 and

the end of year 6 of primary school, when the pupils were aged 8 and 11, and from two

914,541 is the initial number of pregnancies for which the mother enrolled in the ALSPAC study and
had either returned at least one questionnaire or attended a “Children in Focus” clinic by 19/07/99. Of
these initial pregnancies, there was a total of 14,676 fetuses, resulting in 14,062 live births and 13,988
children who were alive at 1 year of age.

10Please note that the study website contains details of all the data that is available through a fully
searchable data dictionary. http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/

11The National Pupil Database is provided by the Department for Education (DfE). The DfE does
not accept responsibility for any inferences or conclusions derived from NPD Data.

12The ALSPAC math test scores are two tests of mathematical reasoning. The items in these tests
require very simple arithmetic computations. The mathematical reasoning tasks include three types
of items, additive reasoning about quantities, additive reasoning about relations, and multiplicative
reasoning items. All items are presented orally with the support of pictures. The children’s booklets,
where they are asked to write their answers, contain no text, only drawings; the story is read by the
teacher to the class. The assessments contain a total of 17 items in year 3 and 35 items in year 6. It is
not timed; administration usually takes approximately 25-30 minutes.
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national tests: Key Stage 1 (KS1) and Key Stage 2 (KS2),13 administered in year 2 and

year 6, when the pupils were aged 7 and 11. I limit my main analysis to math test

scores. Although I have information on English test scores for KS1 and KS2, I choose to

focus on math achievement to be able to control for previous test scores in years 3 and

6, respectively. As robustness check, however, I compute results with English test scores

instead of math test scores. Very similar findings are obtained.14 Another argument is

that math test scores seem to have more, or are often perceived to have more, predictive

power than English scores for future productivity (e.g. Murnane et al, 1991; Grogger and

Eide, 1995; Hanushek and Kimko, 2000).

Multiple math test scores are vital to control for the previous cognitive ability of

pupils. I rely on a general form of the VA model of education production in which I

regress math test scores in year 6 and end of year 3 on the variables of interest while

controlling for initial achievement (hence at the end of year 3 and in year 2, respectively).

I observe the two ALSPAC math tests and both KS1 and KS2 test scores for the majority

of pupils, which provides me with a sample size of roughly 10,000 pupils. Although I have

information on two math test scores in year 6, I choose to focus on KS2 math test scores

in year 6 as this is a standardised test in the British education system. Results that

substitute ALSPAC math test scores in year 6 for KS2 math test scores are similar, with

a significant correlation of 0.8 between the two teacher quality estimates.

The key advantage of the ALSPAC data is that it also gives contemporaneous infor-

mation on pupils’ non-cognitive skills (in addition to academic achievement) in years 3

and 6 of primary school (when the pupils were aged 8 and 11). In particular, I rely on the

Strength and Difficulties Questionnaire (SDQ) which is commonly used in developmental,

genetic, social, clinical and educational studies and gives a complete behavioural screening

in the following five areas: conduct problems, hyperactivity and inattention, emotional

symptoms, peer relationship problems and pro-social behaviour (Goodman, 1997). The

questionnaire includes 25 items in total. This includes information about “whether the

pupil is restless”, “overactive”, “cannot stay still for long”, “considerate of other people’s

feelings”, “would rather be alone than with other youth”, “is helpful if someone is hurt”,

“upset or feeling ill”, “hast at least one good friend”, “often lies or cheats”, “has good

attention span” and “saws tasks through to the end”. Appendix C provides a detailed

description of the SDQ questionnaire.

Following Goodman et al. (2010), I use two broader sub-scales as in low-risk sam-

ples such as the ALSPAC respondents the five finer sub-scales may not be able to detect

13The Key State Assessments are two standardised tests of mathematical achievement, designed by
the UK government and administered and scored by the teachers. One assessment, Key Stage 1 (KS1)
is given to the pupils when they are in year 2 (aged 7). The second assessment, Key Stage 2 (KS2) is
given to the pupils when they are in year 6 (aged 11). Both KS tests measure a variety of aspects of
mathematics and are seen as valid measures of mathematical achievement because of the role that they
play in the British education system.

14A one SD improvement in teacher VA raises normalised English test scores by approx. 0.198 SD. This
is a bit higher than previous estimates in the literature (see Chetty et al., 2014a). This is probability due
to the fact that English test scores are measured only twice in my dataset, which makes the identification
less robust.
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distinct aspect of pupils’ non-cognitive skills. The SDQ’s emotional and peer subscales

are combined into an “internalising” subscale (Internalising behaviour see below) and the

SDQ’s behavioural and hyperactivity subscales into an “externalising” subscale (Exter-

nalising behaviour see below). This provides me with two composite measures on whether

the pupil has emotional issues or behavioural problems on 0-20 scales. I reverse these two

scales so that higher values indicate better outcomes. For robustness checks, it is also

possible to run the main analyses using the five SDQ subscales separately (see Appendix

Figure B1). A key advantage of the ALSPAC data is that the SDQ questionnaires were

completed by parents and teachers. Hence, instead of using one source of information,

it is possible to estimate the relationship between teacher effectiveness and pupils’ out-

comes by measuring pupil outcomes from the perspective of both teachers and parents.

This is of particular interest with subjective data. The information reported by teachers

and parents has different advantages and disadvantages. Teachers’ reports about pupils’

internalising and externalising behaviours are useful because they provide information on

pupil in-class outcomes that might differ from what parents perceive at home. On the

other hand, teacher responses are also subject to bias. Teachers may answer about pupils’

behaviours based on their own mental state or as a function of the class context.

School, classroom and teacher characteristics - Another important feature of the

ALSPAC data is the detailed information on school, classroom and teacher character-

istics that rarely appear together in other studies. This allows me to disentangle the

importance of school, classroom and teacher on pupil outcomes. The ALSPAC data in-

clude the type of school, school size, school admission policy, frequency of staff meetings,

head-teacher’s gender as well as the class size, the number of exclusions in class, the

percentage of free school meal pupils in the class, the percentage of SEN statemented15

pupils in the class, the percentage of pupils with home concerning problems in class, the

percentage of pupils for whom English is not the first language, and class age composition.

In addition, this is the first study, to the best of my knowledge, that uses very detailed

information on primary school teachers, including teacher’s gender, experience at school,

experience everywhere, year of certification, but also the teacher’s Crown-Crisp Experi-

ential Index (CCEI), Bachman self-esteem, job satisfaction, confidence in teaching and

teaching style.16 In particular, information on teaching practices is very detailed in year

15Special education needs (SEN) that affect a child’s ability to learn can include their behaviour or abil-
ity to socialise, reading and writing (e.g. they have dyslexia), ability to understand things, concentration
levels (e.g. they have Attention Deficit Hyperactivity Disorder), physical needs or impairments.

16Teacher CCEI is a sum of 23 items from the ALSPAC questionnaire which captures whether the
“teacher feels upset for no obvious reason”, “teacher feels like life is too much effort”, “teacher feels
uneasy and restless”, “teacher has long periods of sadness”, “teacher loses ability to feel sympathy”,
“teacher worries a lot”, etc. The Bachman score of self-esteem consists in a sum of 11 items and measures
whether “teacher feels to be a person of worth”, “teacher feels to have a number of good qualities”,
“teacher is a useful person to have around”, “teacher does job well”, “teacher feels unlucky”, “teacher feels
their life is not usual”, etc. Appendix C provides a full description of teacher CCEI and teacher Bachman
self-esteem. Teacher job satisfaction and teacher confidence in teaching are drawn from the following
questions: “Teacher really enjoys teaching (from 1 to 5)” and “teacher’s confidence in teaching numeracy
(from 1 to 3)”.
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3 and 6 of primary school and includes information on: homework (type, frequency, dura-

tion), assessments (written, individual discussions, etc.), incentives used (naming pupils,

competition, etc.) and classroom organisation (class ability groups, class activity groups,

etc.): these are listed in Appendix C. To see the wood for the trees, I group the items

under five categories that describe the teacher’s pedagogical practices in the classroom:

(i) instilment of knowledge and enhancement of comprehension; (ii) instilment of analyt-

ical and critical skills; (iii) instilment of capacity for individual study; (iv) instilment of

social and moral behaviours; and (v) individual treatment of pupils. These categories of

teacher pedagogical practices correspond to a common and accepted terminology in the

educational-psychology literature (see for instance Bloom, 1956; Lavy, 2011). By relying

on this categorisation, I avoid any arbitrariness in grouping the items in different cate-

gories, even though some may disagree with the appropriate placement of certain items.

Based on these teaching categories, the data allow me to decompose teachers’ VA esti-

mates into different teaching practices and better understand the mechanisms through

which teachers influence pupils’ cognitive and non-cognitive outcomes.

Pupils are assigned to a class and a teacher at the beginning of the academic year

and continue with the same classmates and teacher until the end of the academic year.

Note, in addition, that pupils have the same teacher and classmates for the entire school

day. In order to estimate teachers’ VA estimates, I construct a teacher identifier based

on teacher’s gender, experience, year of qualification and school attendance - knowing

that a teacher has only one class a year. Appendix A includes descriptive statistics for

the teacher variables available. The teacher file contains 1153 teachers in 209 primary

schools in year 3 and year 6. There are on average 4 to 5 teachers per school in the

database, which limits the possibility of teacher misidentification. In addition, I assume

that if teachers move between schools, they are assigned to different identifiers. 80% of

teachers are women, with approximately 15 years of experience. Because this is a multi-

cohort dataset, 32% of teachers are observed twice and 22% are observed three times.

The average number of pupils observed per teacher per year is 14.

Long-term outcomes - Because the ALSPAC data is a birth cohort study, pupils are

observed almost every years from birth to age 20. Hence this information can be used to

analyse the long-term impacts of teachers.17 I define pupils’ outcomes in adulthood as

follows.

Higher Education Attendance. Higher education attendance is an indicator for being

full-time or part-time in higher education at age 20. All colleges and universities as

well as vocational schools and other post-secondary institutions are taken into account.

Comparisons to administrative data records suggest that I capture the higher education

17As with any large cohort survey, the usual attrition bias due to dropout applies. The participated
parents did not always answer every single question in every questionnaire, which means that the sample
size vary across years. In section 4, I perform analyses controlling for potential bias due to attrition.
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enrollment rate accurately.18

Earnings. Information on earnings is available in the ALSPAC data at age 20. I mea-

sure earnings as the annual total take home pay (after tax and any national insurance).

63% of individuals in the sample report having earnings at age 20 and 50% of individuals

in the sample report earnings above £10,572 per year.

Ever been unemployed. Information on labour force status is available in the ALSPAC

data at age 20. Ever been unemployed is an indicator for ever having been unemployed

at age 20. 67% of individuals in the sample report never having been unemployed at age

20.

Full-time job. Similarly 49% of individuals in the sample report being in a full-time

job at age 20. This does not include people in full-time education.

Subsequent cognitive and non-cognitive skills. The ALSPAC data also provide infor-

mation on subsequent math test scores and non-cognitive skills, following the primary

school. In order to measure pupil achievement in later years, I rely on pupils’ test scores

from three national exams: Key Stage 3 (KS3), Key Stage 4 (KS4), and Key Stage 5

(KS5) administered at ages 14, 16 and 18. I also rely on parent-assessed internalising and

externalising behaviours based on the SDQ questionnaire, measured at ages 14 and 16.

2.2. Summary Statistics

Appendix Table A1 shows the summary statistics for the main sample used to estimate

teacher VA models in primary school. The mean age at which pupils are observed in

primary school is 9.8 years. 12% of pupils are eligible for free school meal and 3%

are pupils in special education. Regarding parent characteristics, 14% have had major

financial difficulties since child birth and 74% of the mothers are currently working.

While my study focuses on only one Area - Avon - in the 2000s, the population of

parents and children in ALSPAC is broadly similar to those of the rest of Great Britain.

14% of pupils were eligible for free school meals in the 2000s in Britain, and 3% were

pupils in special education. 65% of the mothers were in the labour force.

If we examine the sample characteristics at child birth, 79% of mothers in ALSPAC

lived in owner occupied accommodation in 1991, 79% were married and 2% were non-

white. In Britain, 63% of mothers lived in owner occupied accommodation in 1991,

72% were married, and 8% were non-white (1991 census). In addition, a comparison of

the growth standards (weights and birth lengths) for ALSPAC children and published

national figures shows that they are very similar measures. Overall the sample is broadly

representative of the national population of mothers with children born in the 1990’s,

although higher socio-economic status groups as well as people of white ethnicity are

over-represented compared to the national population.19

18The UK department of education reports that the highest educational initial participation rate is
about 48% in 2014/2015 in the UK. In the data, the average higher-education attendance rate is about
50%.

19http://www.bristol.ac.uk/alspac/researchers/resources-available/cohort/represent/
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Table 1 presents the means and standard deviations of pupil test scores, and teachers’

and parents’ answers for internalising and externalising behaviours. The mean math test

score in the sample is 62.1 with a standard deviation of 23.2 on a 0-100 scale. Average

internalising and externalising behaviours reported by parents and teachers are similar

for the full sample: 17 out of 20 for internalising behaviour and 16 out of 20 for exter-

nalising behaviour. However, Table 1 reveals that parents’ and teachers’ answers are not

strongly correlated: the coefficient of correlation is 0.33 for internalising behaviour and

0.46 for externalising behaviour. This suggests that using both parents’ and teachers’

responses with different potential reporting bias can paint a broader picture and improve

our understanding of the role of teachers on pupil outcomes.

Appendix Table A2 further investigates the differences in teachers’ and parents’ re-

ports. For over half of pupils, the correlation between teachers’ reports and parents’

reports is above 0.4. Overall, it seems that there are teachers who are better at assess-

ing pupils’ non-cognitive skills (i.e. whose reports closely match with parents’ reports)

while others are not. In Appendix Table A2, I estimate the correlations for each pupil

between teachers’ and parents’ reports and then regress these on teachers’ characteristics

and teaching practices. I find that teachers who have taught the pupil for longer, teach-

ers who use class activity groups and teachers who report having the responsibility to

help pupils develop in their own way, are those who report non-cognitive skills that more

closely match the parents’ reports.

Table 1 also reports unconditional correlations of test scores and internalising and

externalising behaviours and reveals some interesting patterns. The first is that test scores

in math and English are relatively strongly correlated with each other (correlation = 0.7)

but are weakly correlated with internalising and externalising behaviours. Specifically,

the correlations between internalising behaviour is 0.2 with math test scores and a bit

under 0.2 with English test scores.20 The analogous figures for externalising behaviour

are slightly higher at 0.3 and 0.4. This suggests that while pupils who tend to have

better math and English test scores also tend to have better non-cognitive skills, the

ability to predict non-cognitive skills based on math test scores is relatively limited. In

other words, pupils who score well on standardised tests are not necessarily those who

have better emotional health, and many pupils who are not well-behaved have good

standardised tests.

The second notable pattern is that internalising and externalising behaviours are

slightly more correlated with each other. For example, the correlations between teacher-

assessed internalising and externalising behaviours is 0.4 (slightly higher than the cor-

relations between internalising on the one hand, and externalising behaviours with test

scores on the other). Similarly, the correlations between parent-assessed internalising and

externalising behaviours is 0.4. This suggests that pupils who have good emotional health

tend to be better behaved.

Finally, Appendix Table A3 looks at the correlations between short-run outcomes

20Within-teacher correlations reveal similar patterns (Results available upon request).
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(math test scores, internalising and externalising behaviours in primary school) and long-

run outcomes (higher education attendance, earnings, ever been unemployed and being

in a full-time job). Most of the previous literature on schooling effects is based on higher

test scores predicting better adult outcomes. To demonstrate that non-cognitive outcomes

also matter, I show that both test scores and non-cognitive measures are correlated with

long-run outcomes. Note that Appendix Table A3 only reports correlations and may not

represent causal relationships. In particular, these correlations do not account for socio-

economic status, demographics and school characteristics. Appendix Table A3 shows

that the correlation of higher education attendance with math test scores is about 0.3

and that with internalising and externalising behaviours between 0.1 and 0.2. Similarly,

the correlations of earnings and labour market outcomes with math test scores is about

0.1 and 0.1 with internalising and externalising behaviours. Overall, this suggests that

interventions improving both types of skills - cognitive and non-cognitive skills - can have

positive effects on long-run outcomes.

III. Teacher Impacts on Pupil Non-Cognitive Skills

This section outlines the strategy used to estimate and predict teacher effects on pupil

cognitive and non-cognitive skills in primary school. I then show the empirical results

and suggest that these effects are robust to a number of tests.

3.1. A Model of Pupil Ability and Teacher Ability

I first define a simple model following Heckman et al. (2006) and Jackson (2012)

that formalises the use of both cognitive and non-cognitive outcomes to measure overall

teacher effects. The main insight of this model comes from moving from a single to a

multidimensional model of pupils’ ability. I assume that pupil ability is two-dimensional:

ai = (ac,i, an,i) (1)

Here ai is a pupil i’s ability vector, where ac,i, denotes cognitive ability and an,i denotes

non-cognitive ability.

Pupil i’s cognitive and non-cognitive ability are potentially affected by teacher j. Each

teacher j has a two-dimensional ability vector tj = (tc,j, tn,j), where tc,j denotes how much

teacher j affects her pupils’ cognitive ability and tn,j denotes how much teacher j affects

her pupils’ non-cognitive ability.

The total ability of pupil i with teacher j can then be modeled as a function of both

pupil i’s ability and teacher j’s ability vectors:

bij = ai + tj (2)

The objective of this paper is to identify the difference in pupils’ outcomes between

teacher j with tj = (tc,j, tn,j) and an average teacher with tj = (0, 0). Note that the
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teachers’ estimates are normalised to be mean zero. Hence, I try to answer the following

question: If a given classroom of pupils were to have teacher j with tj = (tc,j, tn,j) rather

than an average teacher with tj = (0, 0), how different would their average ability bij be?

3.2. Estimating Teacher VA

To estimate teacher effects on pupil cognitive skills and non-cognitive skills, I estimate

teacher VA models following previous work such as Kane and Staiger (2008) and Chetty

et al. (2014a). The main idea is that teachers’ VA are estimated using the average test

scores and average non-cognitive skills of pupils that she taught in other years. I assume

that school principals assign each pupil i in school year t to a classroom c. Principals

then assign a teacher j to each classroom c. For simplicity, I assume that each teacher j

teaches one class per year, as in primary schools.

Pupils’ residuals. Within each grade-level (year 3 and year 6), I construct the test score

and internalising/externalising behaviour residuals Y ∗
it , by regressing the raw standardised

pupils’ outcomes Yit, on a vector of covariates and teacher fixed effects. I control for

the lagged dependent variable. I also control for pupil age, ethnicity, gender, health,

indicators for special education needs, eligibility for free school meals, low birth weight,

and number of siblings. I also include the following family controls: mother’s education,

father’s education, family major financial difficulties, mother’s age at child birth, parental

marital status and mother’s employment history. Finally, I also include the following

class- and school-level controls: (i) class size, class-year means of the percentage of pupils

eligible to free school meal, of pupils SEN statemented and of class exclusions; (ii) school

size, school admission policy, frequency of staff meeting, gender of head-teacher; and (iii)

grade and school-cohort dummies.

The residual of pupil outcomes after removing the effect of observable characteristics

is:

Y ∗
it = Yit −Xitβ (3)

where β is estimated using within-teacher variation from an OLS regression of the form:

Yit = Xitβ + µj (4)

Yit refers to the math test scores, internalising or externalising behaviours of pupil i who

is enrolled in year t (t=3 or t=6) in class c with teacher j, and µj is a teacher j fixed

effect. As ALSPAC is a birth-cohort study and pupils are observed on numerous occa-

sions after birth, it is possible to control for time-varying pupil characteristics, including

lagged dependent variables, as well as family background. In addition, classroom charac-

teristics, school characteristics, school-cohort and grade fixed effects allow me to control

for classroom, school, cohort and grade characteristics that could drive pupil outcomes.

Selection issues. A key issue that VA estimates have to address is the potential non-
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random assignment of teachers to classrooms, i.e. how to identify “similar” classrooms

for the counterfactual of what pupils’ outcomes would have been with the assignment of

a different teacher. The specification (in equation (4)) attempts to address this issue in a

number of ways: first, the VA model controls for the fact that teachers may be assigned

to pupils with different initial ability. Second, including a substantial list of observable

pupil and family characteristics that may be correlated with cognitive and non-cognitive

outcomes allows me to control for “non-school” factors that may account for differences

in teacher VA. Third, including school, classroom characteristics, and grade dummies in

the VA model allows me to compare outcomes within groups of pupils in the same type of

school, and classroom, and in the same grade. This removes some of the influence of the

selection to school and classroom on the estimated teacher effects. Note that, because I

cannot observe teachers who switch schools in this dataset, I do not include school fixed

effects in equation (4). Therefore, I cannot reject the possibility that some of teachers’

VA might be attributed to the school.

Predicted VA estimates. I would like to compare the residual outcomes Y ∗
it of pupils

who are exposed to teachers with different ability. The simplest way to do this is to

compare the class-level means of pupil residual outcomes in year t between teachers. Let

Y ∗
j,t denote the mean residual outcome in the class that teacher j teaches in year t:

Y ∗
j,t =

n∑
i=1

Y ∗
i,t (5)

Under random assignment of teachers to classrooms (conditional on the characteristics

controlled for in the model), these average residuals would provide consistent estimates

of teacher j’s effects on pupil outcomes in year t.

However, because there might be common shocks (for instance, sampling variation or

classroom shocks) that affect Y ∗
it that are unrelated to the teacher quality in year t, it is

important that the estimated teacher effects in year t are not based on the pupils who

are observed in year t. Doing so would produce endogeneity mechanically. To address

this issue, I then form a prediction of how much each teacher will improve her pupils’ test

scores or non-cognitive outcomes in a given year t, based on her performance in all other

years (i.e., based on the test scores and non-cognitive skills of a different set of pupils).

This method produces an estimate of the variability in a teacher’s predicted effect that

is persistent over time.21

I obtain the predicted effect of teacher j for the current year t based on the estimate

of her effect in all other years in two steps:

Step 1: I regress the mean class-level outcome residuals in year t on class-level out-

come residuals in other years:

21Table 1 provides VA estimates without implementing this adjustment. The results are broadly
similar, except that the SD of the teachers’ VA estimates are higher: 0.22 in math; and approx. 0.2-0.3
in non-cognitive skills.
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Y ∗
j,t = ψ1Y ∗

j,1 + ....+ ψt−1Y ∗
j,t−1 (6)

Step 2: I use the estimated coefficients ψ1, ..., ψt−1, to predict the VA in year t based

on the mean pupil outcome residuals in other years for each teacher j.

µ̂j,t =
t−1∑
s=1

ψ̂sY ∗
j,s (7)

Note that if performances in the past were perfect predictors of current performance,

then ψ̂ would be equal to 1. However, because the mean residual outcomes are estimated

with error, ψ̂ is less than 1, so that the prediction “shrinks” the VA estimates toward zero.

In other words, ψ parallels the shrinkage factor typical in empirical Bayesian analysis.

The underlying idea of the empirical Bayesian approach is to multiply a noisy estimate

of teachers’ VA (e.g. Y ∗jt, the mean residuals of a teacher’s pupils from a VA regression)

by an estimate of its reliability. Less reliable estimates are shrunk back toward the mean

(zero, since the teachers’ estimates are normalised to be mean zero) to reduce the mean-

squared error. Nearly all recent studies on teachers’ effects have used a similar approach to

estimate VA (e.g. Kane and Staiger, 2008; Jackson, 2012; Chetty et al, 2014a; Rothstein,

2017).

It is important to note that µ̂j,t simply represents the best linear predictor of the

future outcomes of pupils assigned to teacher j in my data. This prediction does not

necessarily capture the causal effect of teacher j on pupils’ outcomes in year t, because

the prediction could be driven by the sorting of pupils to teachers based on unobservable

factors.

3.3. Results: Teacher Effects on Pupil Non-Cognitive Skills

3.3.1. The Role of Teachers

Before presenting my empirical estimates of teachers’ VA, I begin with an overview

of the explanatory power of school, classroom and teacher effects in explaining pupils’

cognitive and non-cognitive skills. More specifically, Table 2 shows the R-squared and

adjusted R-squared values from a series of regressions of the different dependent vari-

ables (math test scores, internalising behaviour and externalising behaviour) on school,

classroom characteristics and teacher dummies (as in equation (4)). The first column for

each dependent variable is based on a specification with only pupil characteristics, family

background, lagged dependent variable, school-cohort and grade dummies. The second

column adds school and classroom characteristics. The third column adds teacher fixed

effects and the final column employs school rather than teacher fixed effects.

The results reveal a number of interesting features. First, teacher fixed effects are

significant predictors of pupils’ math test scores, and internalising and externalising be-

haviours in years 3 and 6 of primary school, when the pupils were aged 8 and 11. The p

values for F tests of the joint significance of the teacher fixed effects all fall below 0.01.
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Comparing columns (2) and (3), the inclusion of teacher fixed effects increases the ex-

planatory power by 18 percentage points for math test scores, 19 percentage points for

internalising behaviour and 13 percentage points for externalising behaviour. Second, the

inclusion of school rather than teacher fixed effects reduces the explanatory power by 7

percentage points for math test scores, 9 percentage points for internalising behaviour and

6 percentage points for externalising behaviour. This indicates that significant variations

in teacher quality exist within schools. Last, pupil characteristics, family background,

school-cohort, grade dummies and lagged dependent variables explain 28% of the varia-

tion in math test scores, 10% of the variation in internalising behaviour and 24% of the

variation in externalising behaviour, indicating a considerable influence of these factors

on pupil outcomes.

3.3.2. VA Estimates on Pupils’ Non-Cognitive Skills

Table 3 presents details on the distribution of the teachers’ VA estimates, specifically

the SD and the 10th, 25th, 50th, 75th and 90th percentiles. As is standard in the

literature, these are expressed in standard deviation on the sample distribution of math

test scores, internalising and externalising behaviours in year 3 and year 6. The empirical

distributions of the teachers’ VA estimates are also plotted in Appendix Figures B1.

For all the dependent variables, the SD of the teachers’ VA estimates is quite high, so

that variations in teacher quality can potential have a large impact on pupil outcomes.

The SD of the teachers’ VA estimates is 0.14 of a SD in pupil performance in math, 0.23 in

internalising behaviour and 0.12 in externalising behaviour in primary school. The results

suggest that moving one SD up the distribution of teachers’ VA estimates is expected to

raise math test scores by about 3 points on a 0-100 scale, internalising behaviour by 1

point on a 0-20 scale and externalising behaviour by 0.5 point on a 0-20 scale.

Furthermore, the gap between the 75th percentile and 25th percentile teacher is be-

tween 0.14 SD and 0.27 SD. This means that having a teacher at the 75th percentile of

the quality distribution versus the 25th percentile is again associated with 3 points higher

score in math on a 0-100 scale, 1 point higher in internalising behaviour scores and 0.5

point higher in externalising behaviour scores on a 0-20 scale.

These estimates of teacher effectiveness for math test scores are in line with those

reported in Rockoff (2004), Rivkin et al. (2005), Aaronson et al. (2007), Kane and

Staiger (2008) and Chetty et al. (2014a). Rockoff (2004) reports a 0.10 SD gain from a

one SD increase in teacher quality from two New Jersey suburban school districts. Rivkin

et al. (2005) lower bound estimates suggest that a one SD increase in teacher quality

increases student achievement by at least 0.11 SD. In Aaronson et al. (2007), a one SD

increase in teacher quality over a full year implies about a 0.15 SD increase in math test

score gains. In Chetty et al. (2014), the SD of teachers’ VA estimates is 0.12 in math in

elementary school.

These results also provide the first estimates of teachers’ VA on pupils’ non-cognitive

skills. Although there have been previous studies attempting to evaluate teachers’ effects
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on non-test score outcomes, they all rely on proxies for non-cognitive skills. For instance,

Jackson (2012) reports that a one SD increase in teacher quality decreases suspensions by

0.15 SD. Similarly, Araujo et al. (2016) find that a one SD increase in teacher effectiveness

within one classroom is associated with a 0.07 SD growth in students’ executive function

scores, which measure a child’s ability to regulate her thoughts, actions and emotions.

My results offer the first estimates of teachers’ VA, which rely on comprehensive measures

of pupils’ non-cognitive skills. If there is a strong correlation between teacher quality and

pupils’ non-cognitive skills, this is important to evaluate in details which non-cognitive

skills matter.

3.3.3. Comparing VA Estimates Across Models

In this subsection, I conduct several robustness checks in order to address potential

reservations about the above estimates. Each row of Appendix Table A4 considers a

different VA specification.

The first row of the table replicates the baseline VA model as a reference. In row 2,

I replicate the main specification controlling in each model by prior test scores and prior

internalising/externalising behaviour scores simultaneously. This specification controls

more extensively for prior achievement and thus can address the suspicion that pupils are

purposely placed into certain schools/classrooms or with certain teachers based not only

on their previous math test scores but also their previous non-cognitive skills. In practice,

I obtain very similar results: a one SD improvement in teacher VA raises math test scores

by 0.15 SD; a one SD improvement in teacher VA raises internalising behaviour by 0.23

SD and a one SD improvement in teacher VA raises externalising behaviour by 0.12 SD.

Row 3 tests whether the previous estimates were sensitive to the use of teachers’ re-

ports for pupils’ non-cognitive skills. I replicate the main specification using parents’

reports instead. I find that a one SD improvement in teacher VA raises internalising

and externalising behaviours by 0.22 SD and 0.09 SD, respectively. One might argue that

both teachers’ and parents’ reports of pupils’ non-cognitive skills suffer from measurement

errors. An alternative strategy would then be to perform a principal component analysis,

using the latent component of these two variables to measure pupils’ internalising and

externalising behaviours. Row 4 reports the results. I find that a one SD improvement

in teacher VA raises internalising and externalising behaviours by 0.24 SD and 0.13 SD,

respectively. Another strategy is to instrument parents’ reports using teacher reports

assuming that teachers’ reporting biases and parents’ reporting biases are not correlated.

Row 5 reports the results. I find that a one SD improvement in teacher VA raises in-

ternalising and externalising behaviours by 0.21 SD and 0.12 SD, respectively.22 Row

6 replicates the results using the average of both teachers’ and parents’ reports. Simi-

lar results are obtained. Finally, rows 7 and 8 test whether previous estimates vary by

grade-levels. I find that a one SD improvement in teacher VA raises internalising and

22First stage regressions indicates coefficients of 0.07 and 0.14, significant at the 1% level between
teachers’ reports and parents’ reports. First stage regressions include pupil fixed effects.
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externalising behaviours by 0.24 SD and 0.12 SD in year 3, compared to 0.17 SD and 0.10

SD in year 6.

Another concern is that these teachers’ VA estimates might be biased when they are

based on small populations and hence might again suffer from measurement errors (see

Kane and Staiger, 2002; Aaronson et al., 2007). For instance, Aaronson et al. (2007)

find that roughly 30% of the SD in estimated teacher quality is due to sampling error. In

order to test this, I raise the minimum number of pupils to identify an individual teacher

to 5. Row 9 reports the results. Similar findings are obtained. Overall, Appendix Table

A4 suggests that the results are robust to these statistical reliability tests.

3.3.4. Estimating Pupil Sorting using Parent Characteristics and Lagged

Scores

Another concern is that these teachers’ VA estimates will be biased due to the

selection of teachers to pupils, that is pupils may be purposely placed into certain

schools/classrooms or with certain instructors based on their learning potential or be-

havioural characteristics. This problem has been dealt with to a certain extent as I

control for an extended set of pupil, family, classroom, and school characteristics. In this

subsection, however, I assess the extent to which pupils may be sorted in the estimation

sample, according to observable characteristics such as parent characteristics and addi-

tional lagged outcomes. Table 4 reports the results.

Out-of-sample forecasts. Column 1 presents coefficients from a regression of actual

math test scores, internalising and externalising behaviours on the teacher VA with grade

and school-cohort fixed effects. I cluster standard errors at the school-cohort level. By

construction, the coefficients on the teacher VA should be equal to 1. Indeed, my esti-

mates are 1.080, 1.013 and 1.295, respectively. Similarly, Appendix Figure B2 plots the

relationship between math test scores, internalising and externalisaling behaviours, divid-

ing the VA estimates into fifty equal-sized groups and plotting the means of the outcome

residuals within each bin. The best linear fit estimated in these figures is almost perfectly

linear. Teacher VA have a 1-1 relationship with test score, internalising and externalising

residuals throughout the distribution, showing that the linear prediction model fits the

data well.

Parent characteristics - To assess the extent to which the relationship between teacher

VA and test score, internalising and externalising behaviour residuals could be driven by

the selection of teachers to pupils, I generate predicted test scores and non-cognitive

scores for each pupil based on parent characteristics (e.g. father’s education, mother’s

education, family major financial difficulties, mother’s age at child birth, parental marital

status and mother’s employment history) and regress the predicted scores on teachers’

VA for all three pupil outcomes.23 If there is no selection of pupils to teachers, there

23In these specifications, parent characteristics have been excluded from the teacher VA estimates.
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would be no systematic relationship between predicted outcomes and predicted teachers’

effects.

Column 2 of Table 4 reports the results. There is moderate evidence of positive

selection for test-score VA and non-cognitive factors VA. The coefficients are respectively

0.153, 0.015 and 0.052. This implies that the degree of bias due to selection on these parent

characteristics is 15%, 1.5% and 5.2%, respectively.24 Appendix Figure B3 presents an

analog of these linear regressions. It plots the predicted math test scores, internalising

and externalising behaviours against the teacher VA estimates using a binned scatter as

in Appendix Figure B2. The relationship between predicted outcomes and teacher VA is

nearly flat throughout the distribution, with a somewhat positive relationship for math

test scores.

Column 3 of Table 4 presents a specification where school-fixed effects are included.

Intuitively, the degree of bias can be estimated between schools - i.e. the extent to

which pupils are sorted to teachers across schools - and within schools - based on pupils’

sorting across teachers within schools. Column 3 of Table 3 indicates that there is no

significant relationship between teacher VA and predicted math test scores, internalising

and externalising behaviours once shool fixed effects are included.

There are several reasons why the degree of bias due to selection on parent charac-

teristics is moderate in my database. First, variations in test scores, internalising and

externalising behaviours, that correlate with parent characteristics are captured by lagged

ability and other controls such as school and classroom characteristics. In other words,

pupils from “better observable characteristics” families have higher test scores and better

non-cognitive skills not just in the current year but also in the previous school year. Thus

previous scores and previous non-cognitive skills capture a large portion of the variation

in family characteristics. Second, the fact that parents sort primarly by choosing schools

rather than teachers within schools limits the scope for sorting once school fixed-effects

are included.25

To further assess the degree of bias due to selection on parent characteristics, Ap-

pendix Table A4 presents regressions of several parent characteristics on the estimated

teacher VA. Column 1 pools within- and between-school variation; in column 2, school

fixed effects are included so only within-school variation identifies the relationship; and

in column 3, the regressions are estimated on the school means to capture between-school

variation. Schools with higher average math teacher VA have somewhat lower share of

pupils with free school meal eligibility and higher share of pupils with highly educated

parents. Note, however, that the relationships are not statistically significant for internal-

ising and exernalising behaviour teacher VA. In addition, within schools, there is again no

sorting based on observables and teachers with higher estimated VA are not statistically

significantly more likely to be assigned pupils with free school meal elibility or pupils with

highly educated parents.

24 Excluding pupils in private school provides similar results.
25See Chetty et al. (2014a), Rothstein (2017) and Bacher-Hicks et al. (2014) for further discussion on

forecasting bias.
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Prior Ability - Another potential source of bias relates to prior test scores and prior

non-cognitive skills (e.g. Rothstein, 2010 and Chetty et al. 2014a). One might wonder

whether controlling for additional lags substantially affects VA estimates once I control

for Yi,t−1. I assess the bias due to sorting on lagged outcomes using the same approach

as with parent characteristics. Columns 4 and 5 replicate columns 2 and 3 of Table 4

using predicted score residuals based on pupils’ outcomes at the entry of primary school.

The coefficients on teachers’ VA are 0.213, 0.003 and 0.020, respectively. I conclude

that the bias due to omitting additional lagged pupils’ cognitive and non-cognitive skills

is similarly moderate across schools and not significant within schools. The same two

explanations as above apply.

Overall, this suggests that selection on two important predictors of test scores and

non-cognitive skills that are usually excluded from the baseline VA models - parent char-

acteristics and additional lagged outcomes - assure moderate bias in the baseline VA es-

timates on both pupils’ cognitive and non-cognitive skills. There might be other sources

of selection based on unobservable characteristics. However, using a quasi-experiment,

Chetty et al. (2014a) have found that bias due to sorting on unobservables is minimal in

models which control for lagged test scores. One can expect similar conclusions in models

which control for lagged non-cognitive skills.26

3.3.5. The Relationship between Teacher Effects on Cognitive Skills and

Teacher Effects on Non-Cognitive Skills

Having established that teachers have significant effects on test scores and non-

cognitive skills, this section documents the relationships between these estimated effects.

Do teachers who improve math test scores also improve pupils’ internalising and exter-

nalising behaviours? This question has considerable implications for how teachers are

evaluated. A teacher who is good at developing pupils’ non-cognitive skills, but not effi-

cient at increasing their test scores, might be rated as ineffective, thus undervaluing her

contribution to pupils’ learning.

To get a sense of whether teachers who improve test scores also improve other out-

comes, I calculate the correlations between the predicted teacher effects for math test

scores, and internalising and externalising behaviours. The results are reported in Table

5. The bootstrapped standard errors appear in parentheses.

I find that teachers with higher math test score effects are associated with better

internalising and externalising behaviours, but that the correlation is only small. The

correlation between teachers’ VA’s on math test scores and internalising behaviour is 0.08.

Similarly, the correlation between teachers’ VA’s on math test scores and externalising

behaviour is 0.14. This indicates that while teachers who raise test scores may also

be associated with better non-cognitive outcomes, most of the effects on non-cognitive

26Note that I cannot replicate Chetty et al. (2014a) quasi-experiment here as I do not observe all
teachers in each school at time t in my sample.
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outcomes are unrelated to the effects on test scores.27

By contrast, the effects on internalising behaviour are more highly correlated with the

effects on externalising behaviour, with a correlation of 0.54, consistent with rather high

correlations between internalising and externalising behaviours (see Table 1). The results

from parent-assessed behaviours are similar. Teacher effects on math test scores are not

strongly correlated with teacher effects on internalising and externalising behaviours and

the relationship between teachers’ effects is robust to the measure used to capture pupils’

non-cognitive skills.

Overall, teacher effects on test scores are weak predictors of teacher effects on non-

cognitive skills. This might suggest that teachers who raise test scores are not the “same”

as teachers who increase non-cognitive skills. In other words, teacher test score effects

might measure certain skills, and teacher effects on non-cognitive skills might measure a

largely different but potentially important set of skills.

The validity of my interpretation of these results, however, depends on whether con-

fouding mechanisms can produce the same findings. I consider two alternative explana-

tions: (i) small correlations between teacher effects simply mirror the small correlations

between pupils’ cognitive skills and non-cognitive skills and (ii) weak correlations between

teachers’ effects are due to systematic bias in how teachers/parents report pupils’ cogni-

tive and non-cognitive skills. The former builds on the hypothesis that teachers who are

good at improving math test scores may have little effects on pupils’ non-cognitive skills,

as a result of an increase in math test scores being little correlated with an increase in

non-cognitive skills. The reverse holds for teachers who are good at improving pupils’

non-cognitive skills. While this explanation is consistent with the small correlation be-

tween teachers’ VA estimates, it is also possible that teachers have independent effects on

both pupils’ outcomes. The latter posits that low correlations between teachers’ VA re-

flect low correlations between pupils’ cognitive and non-cognitive skill reports. However,

this explanation cannot account for the finding that small correlations between teachers’

VA are robust to the measure of pupils’ non-cognitive skills used (e.g. teachers’ and

parents’ reports).

IV. The Long-Run Impacts of Teachers’ Ability to

Improve Non-Cognitive Skills

This section examines the long-term impacts of teachers’ VA and compares the out-

comes of pupils who were assigned to high math teacher VA versus high non-cognitive

skills teacher VA. If there is a small correlation between a teacher’s ability to increase

cognitive skills and to increase non-cognitive skills, we would like to know which type of

teacher is best at improving pupils’ lifetime outcomes, and so in which type of teachers

27Taking into account measurement errors and multiplying the correlation estimates by the inverse
of the signal-to-noise ratio provide similar results. I obtain correlations of 0.16 and 0.31 respectively. I
thank Raj Chetty for suggesting this test.
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school systems could invest.

I estimate the long-term impacts of teachers’ VA based on cross-section comparisons

across pupils. I thus compare the outcomes of pupils who were assigned to teachers with

different VA, controlling for a rich set of observable characteristics. I implement this

approach by regressing long-term outcomes on the test score VA estimates and the non-

cognitive VA estimates described in the sections above. The identification assumption

underlying this approach is selection on observables: the unobserved determinants of

outcomes in adulthood have to be unrelated to teachers’ VA conditional on observable

characteristics. Although this is a very strong assumption, Chetty et al. (2014b) have

shown that this approach closely matches the quasi-experimental estimates, supporting

its validity.28

4.1. Predicting Long-Run Effects

I present a simple empirical model of pupils’ long-term outcomes as a function of their

teachers’ VA. The model is described with the higher-education attendance rate as the

main dependent variable. Throughout the paper, I also replicate the analysis for other

adult outcomes such as earnings, the probability of never having been unemployed and

being in full-time job at age 20.

Let HE denote pupil i’s higher education attendance in the future. Throughout the

analysis, I focus on the probability of higher-education attendance residuals after remov-

ing the effect of observable characteristics. I estimate the higher education attendance

residuals, HE∗
it, using the following equation:

HEit = Xitβ + µj + εit (8)

where µj is a teacher fixed effect and Xit is a vector of baseline controls including pupil,

family, school and classroom characteristics.

I then model the relationship between the higher-education attendance residuals and

teachers’ VA in year t using the following specification:

HE∗
it = a+ κ

µjt
σ(µjt)

+ uit (9)

Here mjt = µjt/σµ denotes teacher j’s “normalised VA” (i.e. teacher quality scaled

in SD units of the teachers’ VA distribution). The parameter κ represents the impact of

one SD increase in teacher’s VA on higher education attendance.29

There are several important aspects when interpreting this parameter κ. For example,

teachers’ VA on both cognitive and non-cognitive skills can affect other educational inputs,

28In their paper, Chetty et al. (2014b) exploit teacher turnover as a quasi-experimental source of
variation in teacher quality. Building on this idea, they estimate teachers’ impacts by regressing changes
in mean adult outcomes across consecutive cohorts of children within a school on changes in the mean
VA of the teaching staff. Seel also Rothstein (2017) and Hacher-Hicks et al. (2014).

29I cluster standard errors at the school-cohort level which adjusts for correlated errors across class-
rooms and repeated pupils observations within a school.
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that will in turn affect higher-education attendance. For example, parents might behave

differently depending on changes in teacher quality, or higher VA teachers might be

assigned to higher-achieving pupils. Such selection bias would lead us to overestimate the

impacts of higher teacher VA in year t holding fixed the quality of teachers in subsequent

grades.30 To limit this bias, I present regressions with and without school-fixed effects,

which allow me to estimate the long-term impacts of teachers’ VA controlling for primary

school characteristics and then compare the outcomes of pupils within schools.

There is also the concern that higher teacher quality would increase both pupils’ math

test scores and pupils’ non-cognitive skills, and would have beneficial effects on pupils’

long-term payoffs through these two channels (Chetty et al., 2014b). Without controlling

for teachers’ VA on non-cognitive skills, this would lead us to attribute the impacts of

improving teacher quality in math on higher education attendance, while the positive

effect might instead be driven by combined effects on pupils non-cognitive skills. It is

hence important to identify the impact of having a higher VA teacher in math holding

fixed teacher quality in internalising and externalising behaviours and vice versa. This will

tell us whether higher-education attendance is more likely to be correlated with having a

higher VA teacher in math or a higher VA teacher in non-cognitive skills.

Note that it is also important to check that attrition does not affect the long-term

estimates of teachers’ VA. Only 37.5% of the pupils in the primary school sample are

observed at age 20. Attrition can be problematic if pupils who remain in my sample are

those who had a high (or low) teacher VA in test scores and non-cognitive skills. To control

for this, I estimate logit regressions for the probability of dropping out of the sample by

age 20. The independent variables in this attrition equation are a vector of pupil and

family characteristics in primary school, including pupil’s gender, ethnicity, free school

meal eligibility, special education needs, low birth weight, number of siblings, father’s

education, mother’s education, family financial difficulties, mother’s age at child birth

and mother’s employment history. I use the outcomes from the logit attrition regression

to calculate inverse-probability weights and include them in my main specifications: these

give more weight to observed individuals who have similar characteristics to those who

are likely to attrit from the study.

4.2. Results: Long-run Impact of Teachers’ Ability to Increase

Non-Cognitive Skills

I find that both teachers’ influence on pupils’ math test scores and teachers’ influence

on pupils’ non-cognitive skills have substantial impacts on adult outcomes. In addition,

these effects are to some extent independent. Column 1 of Table 6 indicates that a one

SD improvement in teachers’ VA for internalising and externalising behaviours raises the

probability of higher education attendance at age 20 by approximately 0.70 percentage

points, relative to a sample mean of 50%. Similarly, a one SD improvement in math

30For instance, the within-pupil correlation between having a high math teacher VA in year 3 and in
year 6 is 0.08. Similarly this is 0.05 for internalising and externalising behaviour.
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teacher VA in primary school raises the probability of higher education attendance at

age 20 by 0.98 percentage points. In addition, pupils who were assigned higher VA

teachers in internalising and externalising behaviours have higher earnings. The same

holds for pupils who were assigned higher VA teachers for math test scores. I also find

that improvements in teacher quality on both pupils’ test scores and pupils’ non-cognitive

skills reduce the probability of ever been unemployed and of being in a full-time job at

age 20 (i.e. dropping out from the school system).

4.2.1. Higher Education Attendance

I begin by analysing the impact of teachers’ test-score VA and teachers’ non-cognitive

skills VA on higher-education attendance at age 20, the oldest age at which I have infor-

mation on educational achievement in my sample.

Column 1 of Table 6 provides evidence that being assigned to a higher VA teacher in

math in primary school raises a pupil’s probability of attending higher-education signifi-

cantly. The null hypothesis that teachers’ VA has no effect on higher education attendance

is rejected at the 5% level. A one SD increase in a teacher’s test score VA in primary

school increases the probability of higher-education attendance at age 20 by 0.98 percent-

age points, relative to a mean higher education attendance rate of 50%. These results

are in line with Chetty et al. (2014b)’s findings. In their paper, they find that a one SD

increase in teacher’s test score VA in a single grade, increases the probability of college

attendance at age 20 by 0.82 percentage points, relative to a mean college attendance

rate of 37%. Similarly, Rothstein (2017) finds that a one SD increase in math teacher

VA is associated with a 0.60 percentage point increase in college enrollment plans (and a

1.35 percentage point increase in four-year college enrollment plans) in North Carolina.

Column 1 of Table 6 also shows that being assigned a higher VA teacher in non-

cognitive skills in primary school raises a pupil’s probability of attending higher-education

significantly. A one SD increase in a teacher’s internalising VA increases the probability

of higher-education attendance at age 20 by 0.55 percentage points and a one SD increase

in a teacher’s externalising VA increases the probability of higher-education attendance

at age 20 by 0.86 percentage points.

I test the validity of the estimates to the inclusion of school-cohort fixed effects in

column 2; and school fixed effects in column 3. The estimates in column 2 are very similar

in magnitude to those in column 1. They indicate that a one SD improvement in math,

internalising and externalising teachers’ VA raises the probability of higher education

attendance at age 20 by 1.03, 0.55 and 0.87 percentage points, respectively. Column 3

of Table 6 adds school-fixed effects to the school-cohort fixed effects in column 2. Again,

the coefficients do not change qualitatively, although the coefficients are not significant

for math and externalising teacher VA due to increases in standard errors. The fact that

between-school and within-school estimates provide evidence that being assigned to a

higher VA teacher in math and non-cognitive skills raise a pupils’ probability of attending
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higher education support the assumption of moderate bias due to pupils’ selection.31

If both teachers’ VA in math test scores and in non-cognitive skills affect pupil long-

run outcomes, is it better to be assigned a high teacher VA in math or non-cognitive

skills? Column 4 replicates Column 2, adding teacher VA in math test scores and teacher

VA in non-cognitive skills in the same regression. The estimates in Column 4 indicate

that teachers’ influence in both math test scores and non-cognitive skills significantly

predict pupils’ higher-education attendance and that their effects are not substituable:

the coefficients on κ barely change when teacher VA in non-cognitive skills is added: the

effect of teacher math VA is now 0.93 percentage points. In addition, the coefficients -

on teacher VA in math and non-cognitive skills - are all significant. These results suggest

that the two competences are complements and policy makers should aim to improve

teachers’ ability to increase both test scores and non-cognitive skills in order to increase

higher-education attendance rates.

4.2.2. Earnings

I now turn to earnings at age 20, the only age at which I have information on pupils’

future earnings. Although pupils with earnings in full-time paid jobs are a rather selected

sample, this can provide a first piece of information on teachers’ VA impacts on pupils’

future earnings. In addition, early earnings are found to be good predictors of earnings

at later ages (Haider and Solon, 2006).

Table 6 reports the results. Higher VA teachers in both math and non-cognitive skills

have significant impacts on earnings, with the null hypothesis of κ = 0 rejected with a

p-value below 0.05 in each case. A one SD increase in teachers’ VA increases earnings at

age 20 by £480 for math, £132 for internalising and £487 for externalsing behaviours,

with mean earnings in the regression sample of approx. £10,454. This is in line with

Chetty et al. (2014b)’s findings who show that a one SD increase in teacher VA in a single

grade increases earnings at age 28 by $350, i.e. 1.7% of mean earnings in the regression

sample.

Columns 2 and 3 of Table 6 evaluate the robustness of these estimates to the inclusion

of school-cohort and school-fixed effects. These specifications mirror previous regressions

of higher education attendance but use earnings at age 20 as the dependent variable. As

with higher education attendance, controlling for school cohort and school fixed effects

has relatively small qualitative effects on the point estimates, supporting the idea that

long-term estimates are not biased by how pupils are assigned to teachers across schools.

The largest of the three estimates implies that a one SD increase in teachers’ VA in math

raises earnings by £544 and a one SD increase in teachers’ externalising behaviour raises

earnings by £700. To interpret the magnitude of these coefficients, consider the increase

in earnings from an additional year of schooling, which is around 9% (see Gunderson

and Oreopoulosm, 2010; Oreopoulos and Petronijevic, 2013). Having a teacher in the

31I also evaluate the robustness of these estimates to alternative measures of non-cognitive skills. Using
parents’ reports provide similar results. (Results available upon request)
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first decile of the externalising VA distribution (1.20 SD gap compared to the mean) is

therefore equivalent to missing (1.20*(3%))/9% = 1/3 of the school year when taught by

a teacher of mean quality. These are large effects.

Column 4 adds teachers’ VA in math test scores and teachers’ VA in non-cognitive

skills in the same regressions. Teachers’ influence on non-cognitive skills remains statisti-

cally significant when holding constant teachers’ influence on math test scores to predict

pupils’ future earnings. This suggests again, that higher VA teachers in both math and

non-cognitive skills have independent effects on pupils’ future earnings.

Extensive Margin - When analysing earning effects, one might want to distinguish

between the extensive and intensive margins. In Table 6, I regress an indicator for having

never been unemployed at age 20 on teachers’ VA in math test scores, teachers’ VA

in internalising behaviour and teachers’ VA in externalising behaviour, successively. A

one SD increase in teachers’ VA in math raises the probability of having never been

unemployed at age 20 by 0.54 percentage points. A one SD increase in teachers’ VA

internalising behaviour raises the probability of having never been unemployed at age 20

by 0.64 percentage points. And a one SD increase in teachers’ VA externalising behaviour

raises the probability of having never been unemployed at age 20 by 0.46 percentage

points.

Column 4 of Table 6 replicates the baseline specification in column 2, adding simulta-

neously teachers’ VA in math test scores and teachers’ VA in non-cognitive skills. Again,

the effects do not change qualitatively from specifications where they are entered one by

one. This indicates that high teachers’ VA in math and non-cognitive skills have large

effects on the intensive margins, but also on the extensive margins.

Finally, Table 6 replicates the analysis using the probability of being in a full-time

job at age 20 as the dependent variable. Similar results are obtained. Having a higher

VA teacher in primary school who improves pupils’ cognitive and non-cognitive skills,

reduces the probability of being in full-time jobs at age 20 by 1.5, 0.77 and 1.00 percentage

points respectively, consistently with previous results showing significant impacts on the

probability of higher education attendance.

Hence, teacher’s influences on both math test scores and non-cognitive skills are im-

portant for pupils’ long-term outcomes. They have significant effects on education and

labour market outcomes at age 20. In addition, their effects appear to be complementary

and significant both between and within schools. These results complement the previ-

ous literature finding that cognitive skills and non-cognitive skills predict a variety of

adult outcomes, including academic achievement, employment and financial stability (see

Heckman et al. (2015) for a review). Researchers have also found that non-cognitive

skills predict long-term outcomes as well as test scores (Chetty et al., 2011; Heckman and

Rubinstein, 2001; Lindquist and Vestman, 2011; Mueller and Plug, 2006).
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4.2.3. Fade-out or Persistent Effects?

The final set of outcomes I consider are teachers’ impacts on test scores and non-

cognitive skills in subsequent years. Appendix Figure B4 plots the impacts of teachers’

VA (in math test scores and non-cognitive skills) on subsequent math test scores at t+ 3,

t + 5 and t + 7. See Table 7 for the underlying coefficients. To construct this figure, I

residualise raw test scores Yi,t+s with respect to the baseline controls using within-teacher

variation and then regress the residuals Y ∗
i,t+s on µ̂jt. I scale teachers’ VA in units of

pupils’ outcome SDs in these estimates - by using µjt as the independent variable instead

of mjt - to facilitate the interpretation of the regression coefficients, which are plotted in

Appendix Figure B4. The coefficient for math teacher VA at s = 0 is not statistically

different from 1. The results then suggest that teachers’ impacts on math test score

fade out rapidly in subsequent years. Again these results align with existing evidence

that improvements in education raises contemporaneous scores, then fade out in later

years, only to reemerge in adulthood (Deming, 2009; Heckman et al,. 2010; Chetty et al.,

2014b).

What about teachers’ non-cognitive VA and subsequent math test scores? The story

is different here. There is evidence that teachers’ impacts on non-cognitive skills persist

in subsequent years. The coefficients are positive and statistically significant at s = 3

and s = 5, with no evidence of fade-out. This finding directly addresses the question of a

reemergence effect in adulthood and adds to the idea that teachers’ non-cognitive skills

effects are good predictors of long-term outcomes because (i) they are more persistent

and (ii) they reinforce the influence of teachers on math test scores.

In addition, Table 7 examines the impact of math teacher VA on non-cognitive skills

in subsequent years. Again, there is evidence that teachers’ impacts on math test scores

have significant influence on pupils’ non-cognitive skills at s = 3, supporting the idea

that teachers have long-term effects on pupils’ outcomes that are not reflected in their

test scores’ impacts and might explain reemergence in adulthood.

V. Explaining Teacher VA Estimates

The estimates in the previous sections show that (i) teachers influence both pupils’

academic skills and pupils’ non-cognitive skills; (ii) teachers vary in their ability to en-

hance pupils’ cognitive and non-cognitive skills and there seems to be a weak correlation

between a teacher’s ability to increase cognitive and non-cognitive skills; and (iii) long-run

outcomes are improved by a combination of teacher’s ability to increase cognitive skills

and non-cognitive skills.

One can then ask which teacher traits are associated with improvements in pupils’

cognitive and non-cognitive skills. In this section, I decompose the teachers’ VA estimates

based on cognitive skills and non-cognitive skills into a range of teacher characteristics and

teaching practices to better understand the relationship between teachers’ total estimated

impacts on pupils’ outcomes and teaching capacities. If teachers’ VA on test scores are
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weak predictors of teachers’ VA on non-cognitive skills, this may suggest that teachers

hence recourse to different techniques to improve pupils’ test scores and non-cognitive

skills (Jackson, 2012; Blazar and Kraft, 2015; Gershenson, 2016).

5.1. Decomposition of Teacher VA Estimates

I model the relationship between teachers’ VA, teacher characteristics and teaching

practices using the following linear specification:

µjt = a+ Tjtλ+ TPjtγ + ujt (10)

where µjt refers to the estimated teacher j effect in year t. Tjt is a vector of teacher

characteristics which includes gender, experience, self-esteem, confidence in teaching, job

satisfaction and TPjt is a vector of teaching practices. There are several advantages in

using a two-step procedure (i.e. first estimating teachers’ VA and then decomposing

the teachers’ VA into different teacher components). First, estimating teachers’ VA in

a first step allows for a more general specification than the one that could be made by

considering teacher characteristics. Second, the first step estimates in equation (4) of

the coefficients for school and classroom characteristics and for pupil characteristics are

independent from the specification chosen for the teacher characteristics effects in the

second step (equation (10)). Changing the specification in the second step does not affect

the estimates from the first step. Third, the two-step procedure allows me to consider

both individual and aggregate error terms, which deals with the heteroscedasticity issues

raised by Moulton (1990).

There are still some endogeneity issues. One legitimate concern is that teacher char-

acteristics or teaching practices are endogenous to teacher quality. High-quality teachers

are more likely to be satisfied with their job or to choose certain teaching methods than

others. One way to deal with this would be a quasi-natural experiment, with exogenous

changes in school policy or teaching methods.32 Another would be to instrument teacher

satisfaction using exogenous life events. There is probably no way to reject such concerns

definitively, but one test is to examine whether individual teacher characteristics (for

instance, self-esteem, confidence in teaching, job satisfaction) and teaching practices are

relatively stable over time and do not vary with the characteristics of pupils in the class.

Appendix A reports the results. There is no evidence of significant changes in teacher

practices over time. Note in addition, that because the teachers’ VA estimates are based

on the pupil that the teacher taught in other years, this bias is rather limited here.

5.2. Results: The Decomposition of Teacher VA Estimates

Table 8 reports the R-squared of different teacher characteristics in explaining teach-

ers’ VA to improve math test scores, internalising and externalising behaviours. All the

32The ALSPAC data provides information on head teacher and school policy that can be exploited in
future research.
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teachers’ VA estimates are based on the full specification described in previous sections.

5.2.1. Teacher’s Gender and Experience

First and foremost, traditional observable characteristics - such as gender and ex-

perience - explain at most 7% of the total variation in teacher VA (based on all three

pupil outcomes). This is consistent with previous work (Hanushek, 1971; Rivkin et al.,

2005; Aaronson et al., 2007) finding a small relationship between teacher characteristics

such as gender, experience, educational background and teacher ability to raise student

achievement.33

In addition, Appendix Table A6 provides detailed information on the effects of teacher

gender. It is notable that female teachers are associated with better teachers’ VA for non-

cognitive skills. Female teachers’ VA in internalising behaviour is 0.03 SD higher than

male teachers’ VA in internalising behaviour and 0.01 SD higher than male teachers’ VA

in externalising behaviour.34 The coefficients on teacher experience are not statistically

significant for all three outcomes, consistently with previous work.

5.2.2. Teacher’s Non-Cognitive Skills

Given (i) the sizeable effects of teachers on both pupil cognitive and non-cognitive

skills and (ii) the limited amount of variation in teacher effectiveness explained by simple

characteristics such as gender and experience, a key question is whether other teacher

characteristics predict teacher effectiveness and whether these characteristics relate dif-

ferently to teachers’ VA’s on math test scores and non-test score outcomes.

One potential question is the influence of teacher’s non-cognitive skills on pupils’ test

scores, internalising and externalising behaviours. While individuals’ non-cognitive skills

and traits significantly influence academic and labour-market outcomes, teacher’s non-

cognitive skills may exert a significance influence on teacher quality. There is not much

rigorous quantitative evidence regarding the effect of teacher’s non-cognitive characteris-

tics.

I test this hypothesis in Table 8, by estimating the effects of a number of teacher non-

cognitive skills - including CCEI, Bachman self-esteem, job satisfaction and confidence

in teaching - on teacher ability to improve pupils’ outcomes. The results indicate that

teacher emotional characteristics are significantly related to estimated teacher quality

in pupils’ cognitive and non-cognitive skills. Strikingly, they explain roughly 3% of the

total variation in teachers’ VA in maths, 4% of the total variation in teachers’ VA in

33Hanushek (1971) finds no relationship between teacher quality and experience or master’s degree
attainment. Rivkin et al. (2005) also find no link between educational level and teacher quality, although
they find a small positive relationship between the first two years of teacher experience and teacher
quality. Aaronson et al. (2007) find that the vast majority of the total variation in teacher quality is
unexplained by observable teacher characteristics, such as gender, ethnicity, experience, advanced degrees
and teaching certifications.

34See Dee (2005) and Ehrenberg et al. (1995) for a discussion on the influence of teachers’ race, gender
and ethnicity. However, they mostly focus on how pairings by race, ethnicity and gender influence
teachers’ perceptions and expectations of students. The evidence is mixed.
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internalising behaviours and 7% of the total variation in teachers’ VA in externalising

behaviour. Even if these percentages look modest, they are in the same range as the

explanatory powers of teacher gender and teacher experience.

In Appendix Table A6, I then detail the effect of teacher’s CCEI, Bachman self-esteem,

job satisfaction and confidence in teaching on teacher quality.35 A one SD increase in

teacher emotional health (as measured by CCEI) translates into an increase in teacher

quality of 0.02 SD for math, 0.04 SD for internalising behaviour and 0.02 SD for external-

ising behaviour. These relationships are all statistically significant. In addition, teacher

self-esteem and teacher confidence increase teacher non-cognitive quality by approx. 0.1

SD. Finally, teacher job satisfaction has positive effects on teacher quality in internalising

behaviour. Note that these results are robust to the use of alternative teachers’ VA based

on parents’ reports. There is still a positive and significant effect of teacher’s self-esteem,

teacher job satisfaction and teacher confidence in teaching on teacher non-cognitive skill

quality when using parents’ reports of non-cognitive skills.36

These results are a first piece of evidence that teacher’s non-cognitive skills matter

and go beyond what has been shown in past estimations that have tried to explain the

variation in teacher quality. Given the lack of explanatory power of traditional observable

characteristics, it is of particular interest that teacher’s non-cognitive skills contribute to

explaining the variation in estimated teacher quality on pupils’ non-cognitive skills in

addition to teacher gender or experience.

5.2.3. Teaching Practices

Another line of research to explain teacher effectiveness is to shift the focus to teaching

practices, that is, what teachers actually do in the classroom. Previous evidence on

teaching practices is not conclusive and especially so far on pupil non-cognitive skills.

To analyse to what extent certain teaching practices in class are related to teacher

quality and pupil performance in math and non-test score outcomes, I group the described

teaching practices under five categories: (i) instilment of knowledge and enhancement of

comprehension; (ii) instilment of analytical and critical skills; (iii) instilment of capacity

for individual study; (iv) instilment of social and moral behaviours and (v) individual

treatments of pupils. A complete set of information is available in year 3, less information

is available in year 6 (see Appendix C for a full description).

Table 8 reports the R-squared values from estimating the effect of teacher practices

on teacher’s ability to improve pupils’ outcomes. The results indicate that including both

teacher characteristics and teaching practices explains up to 27% of the total variation

in teachers’ effects on math test scores, 17% of that on internalising behaviour and 15%

of that on externalising behaviour. Again this is larger than the explanatory power

35Note that the coefficients are partial correlation coefficients (or β-statistics). They reflect the“power”
of each variable to explain the prevalence of cognitive and non-cognitive skills of pupils, holding all other
variables in the equation constant. They therefore reflect the impact of the variable times its standard
deviation.

36Results available upon request.
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attributed to traditional observable teacher characteristics, such as gender or experience.

Appendix Tables A7 and A8 present detailed results on the effect of teaching prac-

tices. They clearly show that certain teaching practices are correlated with higher teacher

VA, but can have different effects on pupils’ math test scores and non-cognitive skills.

Appendix Table A7 reports the estimates for each category of teaching practice, control-

ling for teacher characteristics such as teacher’s gender, emotional health and experience.

In columns (1), (3) and (5), the estimates are from separate regressions in which each

teaching practice enters as a single treatment variable. In columns (2), (4) and (6), the

estimates come from one regression that includes all the teaching practice measures as

multiple treatments.

Some interesting patterns emerge. First, the estimates of measures that capture ele-

ments of “traditional teaching practices”, e.g. instilment of knowledge and enhancement

of comprehension, have negative and significant effects on teachers’ ability to enhance

pupils’ internalising behaviours. The estimated effect is not significant on teachers’ abil-

ity to increase pupils’ math test scores. Another noteworthy feature of the estimates is

the positive effects of more “modern teaching practices”, e.g. instilment of analytical and

critical skills and instilment of capacity for individual study on teachers’ ability to increase

pupils’ math test scores and non-cognitive skills. The coefficients remain significant when

all the teaching practices are introduced at the same time.

Row 5 presents estimates based on the individual treatment of pupils. This category

includes whether teachers group children by attainment/ability groups for classroom ac-

tivities, whether teachers use individual reviews or discussions, name pupils in the class

and display work as an incentive. The effects are positive for teachers’ non-cognitive

VA.37 This seems to suggest that pupils might gain in confidence when they are taught in

groups with similar ability learners, have individual reviews and have good relationship

with their teachers.

Appendix Table A8 provides detailed information on the effect of selected teaching

practices. Again, I find that teaching practices, such as giving homework and written as-

sessment are positively associated with teacher math quality, while they are negatively or

not signiticantly associated with teacher non-cognitive skills quality. By way of contrast,

teachers who feel the responsibility to help children to develop in their own way and help

children to organise their work have positive effects on pupils’ non-cognitive skills. Fi-

nally, teachers who group children by ability groups have negative and significant effects

on teachers’ ability to improve math test scores, while teachers who recourse to individual

reviews have positive effects on pupils’ non-cognitive skills.

Overall the evidence in Appendix Tables A7 and A8 suggest that three of the five

teaching styles and methods tested have positive effects on pupils’ non-cognitive skills,

37The accumulating research evidence on grouping appears to be contradictory. Streaming students
into separate ability groups could disadvantage low-achieving students while benefiting high-achieving
students, thereby exacerbating inequality (Epple et al, 2002). On the other hand, streaming could
potentially allow teachers to more closely match instruction to students’ needs, benefiting all students
(Duflo et al., 2011). In a recent paper, Algan et al. (2013), have shown horizontal teaching practices (i.e.
students work in groups) are positively correlated with student self-confidence and positive attitude.
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while traditional teaching practices have somewhat detrimental effects. The other most

important of these effects (in terms of effect size) is the indicator of the extent to which

teachers make sure that their pupils have the capacity to study individually. When this

measure increases by one SD, teachers’ ability to increase pupils’ internalising behaviour

raises by 0.08 SD, which results in an increase of 0.02 SD in internalising behaviour.

Alternatively, a one SD increase in traditional teaching methods, would decrease teachers’

ability to increase pupils’ internalising behaviour by 0.10 SD, which results in a decrease

of 0.02 SD in internalising behaviour.

VI. Discussion and Concluding Remarks

Analysing teachers’ effects on pupils’ cognitive and non-cognitive skills, I have shown

that teachers have a large influence on pupils’ non-cognitive skills - above and beyond

their effects on test scores. I also shed light on long-term impacts of teachers who increase

pupils’ non-cognitive skills and found that long-run outcomes are improved by a combi-

nation of teachers increasing pupils’ cognitive and non-cognitive skills. I argued that my

findings can provide potential explanation for school interventions with test score effects

that “fade-out” over time but have lasting effects on adult outcomes. My research design

also allowed me to decompose the teachers’ effects on pupils’ cognitive and non-cognitive

skills into different teaching practices. The analysis revealed that teachers who increase

pupils’ cognitive skills and teachers who increase pupils’ non-cognitive skills use different

teaching practices, thus supporting the idea that higher teacher effects in maths are weak

predictors of teacher effects in non-cognitive skills. A fruitful avenue for future research

would be to see how different types of school interventions amplify or weaken the effects

of teachers on pupils’ cognitive and non-cognitive skills.

More generally, my findings contribute to the extensive literature that assesses teacher

effects on student test scores (e.g. Hanushek, 1971; Rockoff, 2004; Rivkin et al., 2005;

Aaronson et al., 2007; Kane and Staiger, 2008; Chetty et al., 2014a,b; Rothstein, 2014;

Hacher-Hicks et al., 2014) as it provides evidence for teachers’ effects that are not reflected

in their test score VA. In doing so, my research could be ultimately used to estimate the

optimal weighting of teachers’ effects on pupils’ cognitive and non-cognitive skills to

evaluate teacher quality in school districts.

These results have considerable policy implications: For instance, my findings imply

that replacing a teacher in the bottom 10% of the non-cognitive VA distribution with a

teacher of mean quality would generate a present value lifetime earnings gain per child of

approx. £25,000. This simple calculation shows that there are large potential gains from

improving the quality of teaching - whether using selection based on VA, teacher training

or other policies.

Although these findings are encouraging, several questions might need to be resolved

before we can use these types of measures for policy. For example, in this paper I use

different types of measures for pupils’ non-cognitive skills. One might ask which of these

measures best captures teacher effects on non-cognitive skills. How much do the results
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depend on the measure used? Moreover, using VA measures on pupils’ non-cognitive

skills to evaluate teachers could induce teachers to answer the questionnaires differently.

If behavioural responses substantially alter the quality of teachers’ VA measures, policy

makers may need to develop metrics that are more robust to such responses.

In addition, there are many aspects of teachers’ long-run impacts that remain to be

explored. For example, in this paper, I identify the impact of primary school teachers

on long-run outcomes at age 20. Are teacher impacts different over time? Does having a

good teacher who improves cognitive skills matter more in primary school while having

a good teacher who improves non-cognitive skills is more effective later? Are teacher

impacts additive over time? Similarly, it would be interesting to develop analyses which

go beyond the mean treatment effects that I have estimated here. We could ask whether

different types of teacher quality are more effective in helping different types of students.

For instance, are higher non-cognitive VA teachers better with boys or girls or lower

achievers rather than high achievers?

Whether or not teachers’ effects on non-cognitive skills can be used in teachers’ evalu-

ations, my results underline the value of teachers who increase pupils’ non-cognitive skills

for future outcomes. Hence, this study highlights that considering non-cognitive skills

in addition to intellectual development in school objectives is likely to have substantial

economic and social benefits. At the time of writing, in many countries this objective

remains only marginal.
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Tables

Table 1: Correlations between Pupils’ Cognitive and Non-Cognitive Skills

Math English Intern. Extern. Intern. Extern.
test test behaviour behaviour behaviour behaviour

scores scores (parents (parents (teacher (teacher
report) report) report) report)

Correlation matrix
Math test scores 1

English test scores 0.71 1

Internalising behaviour 0.17 0.15 1
index (parents report)
Externalising behaviour 0.27 0.34 0.40 1
index (parents report)
Internalising behaviour 0.25 0.24 0.33 0.20 1
index (teacher report)
Externalising behaviour 0.36 0.45 0.16 0.46 0.37 1
index (teacher report)

Pupil average 62.05 57.03 17.19 15.52 17.40 16.57
Individual level SD 23.20 16.29 2.79 3.35 3.25 3.97

Within-year variance:
(on standardised outcomes)
Individual level SD 0.67 0.61 0.86 0.81 0.87 0.83
Class + Teacher SD 0.22 0.32 0.27 0.27 0.24 0.29

Notes: Table 1 reports the correlation, the mean and the standard deviations of math test

scores, English test scores, internalising behaviour and externalising behaviour in years 3 and

6 of primary school for the sample used in estimating the baseline VA model. Internalising

behaviour and externalising behaviour are reported by the parents and by the teacher in both

school years for each pupil. Math test scores are measured by KS2 math test scores in year 6

and ALSPAC math test scores at the end of year 3. English test scores are measured by KS2

and KS1 English test scores in year 6 and year 2 of primary school. Internalising behaviours

and externalising behaviours are two composite indicators computed from the Strength and

Difficulties Questionnaire (see Goldman et al., 1997). “Pupil average” reports the mean of un-

standardised math test scores, English test scores, internalising behaviour and externalising

behaviour at the pupil level. Individual level SD reports the standard deviation of unstandard-

ised math test scores, English test scores, internalising behaviour and externalising behaviour

at the pupil level. The last two rows are based on standardised math test scores, English test

scores, internalising behaviour, and externalising behaviour residuals, used in the teacher VA es-

timates computation. Individual level SD reports the within-year standard deviation of pupils’

outcomes residuals based on pupils’ variation. Class-teacher level SD reports the within-year

standard deviation of pupils’ outcomes residuals based on classroom and teacher-level variation.
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Table 2: Pupils’ Cognitive and Non-Cognitive Skills - Explanatory Powers

(1) (2) (3) (4)

Included explanatory variables
Pupil and family covariates Yes Yes Yes Yes
School & classroom characteristics No Yes Yes Yes
Teacher fixed effects No No Yes No
F tests, HO: (<0.01)
School fixed effects No No No Yes
F tests, HO: (<0.01)

Math Test Scores

R-squared 0.281 0.298 0.482 0.409
Adjusted R-squared 0.279 0.295 0.426 0.381
Observations 11964 11964 11964 11964

Internalising behaviour

R-squared 0.103 0.119 0.306 0.219
Adjusted R-squared 0.100 0.115 0.231 0.182
Observations 12266 12266 12266 12266

Externalising behaviour

R-squared 0.243 0.252 0.380 0.318
Adjusted R-squared 0.241 0.248 0.313 0.286
Observations 12212 12212 12212 12212

Notes: All regressions include pupil characteristics (including lagged dependent variable),

family background, grade fixed effects and school-cohort fixed effects. Column (2) adds school

and classroom characteristics. Column (3) adds teacher fixed effects and column (4) substitutes

school to teacher fixed effects. Only R-squareds, adjusted R-squareds and number of observa-

tions are reported in each column. Numbers in parentheses are p values from F tests of the

joint significance of teacher fixed effects and school fixed effects separately. All three outcomes

(math test scores, internalising and externalising behaviours) are measured in years 3 and 6 of

primary school. Internalising and externalising behaviours are reported by the teacher.
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Table 3: Teacher VA Model Estimates

Math Test Scores Internalising Externalising
behaviour behaviour

Teacher VA (SD) 0.142 0.229 0.120

10th percentile -0.159 -0.298 -0.145
25th percentile -0.067 -0.103 -0.041
50th percentile 0.007 0.038 0.011
75th percentile 0.075 0.174 0.089
90th percentile 0.163 0.266 0.148

90-10 gap 0.322 0.564 0.293
75-25 gap 0.142 0.277 0.130

Number of teachers 312 312 312
Number of school-years per teacher 2.38 2.38 2.38
Avg number of pupils per teacher per year 13.80 13.80 13.80

Notes: Teacher VA are estimated in regressions that include controls for school and classroom

characteristics, pupil characteristics, family background, school-cohort effects, grade dummies

and lagged pupil dependent variables. All three outcomes are measured in years 3 and 6 of

primary school. Internalising and externalising behaviour scores are reported by the teacher.
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Table 4: Estimating Pupil Sorting Using Parent Characteristics and Lagged DV

Math Predicted Predicted Predicted Predicted
test scores test scores test scores test scores test scores

Math teacher VA 1.080 0.153 0.001 0.213 0.018
(0.084) (0.009) (0.022) (0.040) (0.016)

Grade fixed effects Yes Yes Yes Yes Yes
School fixed effects No No Yes No Yes

using parent. using parent. using lags using lags

Intern. Predicted Predicted Predicted Predicted
behaviour internalising internalising internalising internalising

Intern. teacher VA 1.013 0.015 0.008 0.003 -0.004
(0.016) (0.001) (0.005) (0.002) (0.002)

Grade fixed effects Yes Yes Yes Yes Yes
School fixed effects No No Yes No Yes

using parent. using parent. using lags using lags

Extern. Predicted Predicted Predicted Predicted
behaviour externalising externalising externalising externalising

Extern. teacher VA 1.295 0.052 0.002 0.020 -0.001
(0.091) (0.008) (0.007) (0.003) (0.003)

Grade fixed effects Yes Yes Yes Yes Yes
School fixed effects No No Yes No Yes

using parent. using parent. using lags using lags

Notes: Each column reports coefficients from an OLS regression, with standard errors clus-

tered by school-cohort in parentheses. The regressions are run on the sample used to estimate

the baseline VA models. There is one observation for each pupil school year in all regressions.

Teacher VA are scaled in units of pupils’ test scores, and pupils’ internalising and externalising

behaviours and are estimated using data from classes taught by the same teacher in other years,

following the procedure described in section 3. Teacher VA is estimated using the baseline

control vector which includes: prior math test scores and prior internalising and externalising

behaviours; pupil’s gender, ethnicity, free school meal eligibility, age, SEN statement, health;

school and classroom characteristics; grade and school-cohort dummies. In column (1) it also

includes family characteristics. In column (1), the dependent variable is the pupil’s residual

math test scores (internalising or externalising behaviour) in a given year. In columns (2) and

(4), the dependent variable is the predicted value generates from a regression of test scores

(internalising or externalising behaviour) on in (2): parents’ education, parental marital sta-

tus, mother employment history, mother age at birth, financial difficulties and in (4): lagged

test scores (at the entry of primary school) and lagged internalising or externalising behaviours

measured at age 6. Columns (3) and (5) include school fixed effects.
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Table 5: Correlation Between the Teacher VA Model Estimates

Math test scores

Correlation matrix
Math test scores 1

Internalising behaviour (parents report) 0.26 (0.01)

Externalising behaviour (parents report) 0.12 (0.01)

Internalising behaviour (teacher report) 0.08 (0.01)

Externalising behaviour (teacher report) 0.14 (0.01)

Notes: Bootstrapped standard errors are in parentheses. Teacher VA estimates are based

on specifications that include school and classroom characteristics, pupil characteristics, family

background, school-cohort effects, grade dummies and lagged dependent variables, separately.

All outcomes are measured in years 3 and 6 of primary school. Internalising and externalising

behaviour scores are reported by teachers and parents.
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Table 6: Impacts of Teacher VA on Long-Run Outcomes

# of classes Separate regressions All

Higher education at age 20 (%)

Math Teacher VA 505 0.980 1.033 0.523 0.933
(0.362) (0.349) (1.095) (0.341)

Internalising Teacher VA 505 0.549 0.545 0.949 0.143
(0.146) (0.143) (0.306) (0.107)

Externalising Teacher VA 505 0.859 0.868 0.511 0.606
(0.132) (0.121) (0.343) (0.071)

Total take home pay at age 20 (£)

Math Teacher VA 420 480.4 485.3 544.2 393.3
(213) (215) (370) (189)

Internalising Teacher VA 420 132.1 126.7 265.2 193.3
(86) (76) (539) (95)

Externalising Teacher VA 420 487.7 478.7 699.9 519.1
(111) (121) (52) (115)

Never been unemployed at age 20 (%)

Math Teacher VA 578 0.544 0.540 0.767 0.498
(0.348) (0.355) (0.792) (0.374)

Internalising Teacher VA 578 0.643 0.632 0.074 0.546
(0.131) (0.146) (0.156) (0.200)

Externalising Teacher VA 578 0.459 0.473 0.617 0.100
(0.149) (0.146) (0.410) (0.276)

Being in full-time job at age 20 (%)

Math Teacher VA 508 -1.565 -1.639 -1.140 -1.508
(0.544) (0.555) (0.848) (0.573)

Internalising Teacher VA 508 -0.773 -0.786 -1.797 -0.286
(0.328) (0.324) (0.497) (0.155)

Externalising Teacher VA 508 -1.065 -1.121 -1.685 -0.771
(0.388) (0.317) (1.310) (0.309)

Grade fixed effects Yes Yes Yes Yes
School-cohort fixed effects No Yes Yes Yes
School fixed effects No No Yes No

Notes: Each column reports coefficients from OLS regressions with standard errors clustered

by school-cohort in parentheses. The dependent variables are residualised higher education

attendance, earnings, probability of never been unemployed and probability of being in full

time job at age 20. See Section 4 for a detailed description of the variables. Columns (2), (3),

(4) present results from separate regressions. Column (5) includes all the teacher VA estimates

at once. Column (1) shows the number of class observations used in the regressions.
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Table 7: Impacts of Teacher VA on Current and Future Outcomes

t t+3 t+5 t+7

Math test scores

Math Teacher VA 1.018 0.470 0.190 0.127
(0.119) (0.146) (0.047) (0.106)

Internalising Teacher VA 0.078 0.152 0.048 0.067
(0.057) (0.057) (0.059) (0.086)

Externalising Teacher VA 0.154 0.321 0.348 0.276
(0.028) (0.122) (0.107) (0.038)

Observations 3646 2670 3331 1971

Internalising behaviour (parents report)

Math Teacher VA 0.015 0.399 0.093
(0.068) (0.101) (0.192)

Observations 3698 1863 1458

Externalising behaviour (parents report)

Math Teacher VA 0.085 0.297 0.054
(0.188) (0.099) (0.081)

Observations 3688 1866 1460

Notes: The table shows the effect of current teacher VA (in year 6) on test scores and non-

cognitive skills at the end of the current and subsequent school years. I regress end of grade test

scores and non-cognitive skills in year t+s on teacher VA in year t, varying s from 3 to 7. I scale

teacher VA in units of pupils test score SD’s and pupils non-cognitive skills SD’s. I control for

the baseline control vector (pupil, family, classroom and school characteristics, defined in the

text) using within-teacher variation to identify the coefficients on controls. The table reports

the coefficients and standard errors clustered at the school-cohort level in parentheses.
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Table 8: Share of the Variance in Teacher VA Explained by Teacher Characteristics and
Teaching Practices (R-squared)

Math Teacher Internalising Externalising
VA Teacher VA Teacher VA

(1) = Teacher gender + experience 0.031 0.048 0.071
(2) = Teacher non cog. skills 0.029 0.037 0.071
(3) = Teaching practices 0.228 0.129 0.107
(4) = (1) + (2) 0.053 0.064 0.098
(5) = (1) + (3) 0.257 0.146 0.126
(6) = (2) + (3) 0.244 0.147 0.131

(7) = (1) + (2) + (3) 0.270 0.167 0.152

Notes: Teacher non-cog skills includes teacher CCEI, teacher Bachman self-esteem, job

satisfaction, and teaching confidence. Teaching practices includes all the teaching practices

listed in Appendix C. The teacher VA are estimated in regressions that include the baseline

control vector described in Section 3. Only R-squared from second step regressions in which

teacher VA are decomposed into different teacher characteristics and teaching practices are

reported. The second step regressions include teacher gender and experience in row (1). Row

(2) includes only teacher non-cognitive skills. Row (3) includes only teaching practices. Row (4)

includes teacher gender, experience and non-cognitive skills. Row (5) includes teacher gender,

experience and teaching practices. Row (6) includes teacher non-cognitive skills and teaching

practices. Row (7) includes rows (1), (2) and (3) variables.
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Appendix A: Tables

.

Table A.1: Summary Statistics for Sample Used To Estimate VA Model

Mean Standard Deviation
(1) (2)

Student characteristics
Male 51.50%
Age (years) 9.83 1.41
Free school meal eligible 12.00%
Special education needs 2.80%
White 94.90%
Low birth weight 5.40%
Good health 86.90%
Class size 28.5 4.96
Class exclusion 2.60%

Parent characteristics
Age at child birth 27.8 4.99
Mother’s education (1-5) 2.92 1.27
Father’s education (1-5) 2.94 1.45
Major financial difficulties 14.20%
Mother in labour force 69.50%
Married 74.10%

Notes: All statistics are from the ALSPAC data and are measured during primary school.
Free school meal eligible is an indicator for receiving free school meals. Mother’s and father’s
education are measured on a 1-5 scale. Marital status is measured by whether the natural
parents are married at child birth. Age at child birth is the age of the mother at child birth.
Major financial difficulties is an indicator for whether the household has been in major financial
difficulties since child birth. Mother in labour force is an indicator about whether mother is
currently working at child birth.
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Table A.2: Correlations between Teachers’, Parents’ Reports and Teaching Practices

Correlation Correlation
Teacher / Parents Teacher / Parents

Internalising Externalising

Teacher female 0.046 -0.030
(0.014) (0.013)

Teacher CCEI 0.002 0.002
(0.001) (0.001)

Length of time taught pupil 0.047 0.025
(0.013) (0.012)

Teacher experience 0.011 -0.001
(0.005) (0.005)

Standardised tests -0.036 0.004
(0.011) (0.010)

Individual discussions and review 0.029 -0.035
(0.015) (0.013)

Naming pupils in the classroom 0.276 0.069
(0.117) (0.101)

Class groups: by attainment 0.090 0.072
(0.048) (0.044)

Teacher responsibility: develop individual 0.034 0.050
(0.013) (0.012)

Teacher responsibility: capacity to think 0.058 -0.054
(0.026) (0.023)

Teacher responsibility: considerate to others 0.023 0.057
(0.022) (0.020)

Observations 6128 6166

Notes: This table reports OLS estimates of different teacher characteristics and teaching
practices on a variable describing the correlation between teacher reports and parents’ reports.
The correlation between teacher reports and parents’ reports is calculated at the pupil-year
level.

47



Table A.3: Correlations between Cognitive, Non-Cognitive Skills and LR Outcomes

Higher Total Take Never been Full time job
Education Home Pay unemployed at age 20
Attendance at age 20 at age 20
at age 20

Correlation matrix
Math test scores 0.32 0.07 0.09 -0.15

English test scores 0.35 0.04 0.08 -0.21

Internalising behaviour 0.07 0.06 0.08 -0.01
index (parents report)
Externalising behaviour 0.18 0.01 0.10 -0.11
index (parents report)
Internalising behaviour 0.09 0.07 0.08 -0.00
index (teacher report)
Externalising behaviour 0.20 -0.02 0.11 -0.10
index (teacher report)

Pupil Average 50.60% £10,454 67.30% 49.10%
Individual level SD 5727

Notes: Tables A3 reports the correlation of higher education attendance, total take home
pay, the probability of never been unemployed and the probability of being in a full time job at
age 20 with primary school outcomes such as math test scores, English test scores, internalising
behaviour and externalising behaviour in years 3 and 6. Internalising behaviour and externalis-
ing behaviour are reported by the parents and by the teacher in both school years for each pupil.
Math test scores are measured by KS2 math test scores in year 6 and ALSPAC math test scores
at the end of year 3. English test scores are measured by KS2 and KS1 English test scores in
year 6 and year 2 of primary school. Internalising behaviours and externalising behaviours are
two composite indicators computed from the Strength and Difficulties Questionnaire (see Gold-
man et al., 1997). Higher education attendance is an indicator for being in higher education at
age 20 (all types of higher education institutions). Total take home pay is measured in pounds
and is the annual total take home pay (after NI and tax) at age 20. Never been unemployed is
an indicator for never having been unemployed at age 20. Full time job at age 20 is an indicator
for being in a full time job at age 20 (it excludes being in full time education and being in a
part time job). Pupil average reports the mean of higher education attendance, total take home
pay, never been unemployed and full time job at age 20, at the pupil level. Individual level SD
reports the standard deviations of these long-run outcomes.
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Table A.4: Sensitivity Analysis

Math Test Scores Internalising Externalising
behaviour behaviour

Teacher VA (SD):
Baseline estimates 0.142 0.229 0.120
Controlling for prior cog. and non cog. skills 0.152 0.226 0.120
Using parents reports – 0.221 0.090
Using principal component analysis – 0.243 0.127
Using instrumental variables – 0.213 0.123
Using averaged parents and teacher reports – 0.258 0.107
Only year 3 0.144 0.241 0.122
Only year 6 0.179 0.166 0.096

Minimum number of obs per teacher per year
More than 5 0.108 0.214 0.155

Notes: Table A4 reports teacher VA estimates using alternative specifications. Row 1 reports
the baseline estimates where teacher VA controls for school and classroom characteristics, pupil
characteristics, family background, school-cohort effects, grade dummies and lagged dependent
variables, separately. Row 2 presents results from a specification which includes lagged depen-
dent variables simultaneously. Row 3 presents results where parents’ reports for internalising
and externalising behaviours are used instead of teacher reports. Row 4 presents teacher VA
estimates where internalising and externalising behaviours are obtained from a principal com-
ponent analysis on teacher and parents’ reports. Row 5 presents teacher VA estimates where
internaliting and externalising behaviours are obtained from a regression of parents’ reports on
teacher reports controlling for pupil-fixed effects. Row 6 presents teacher VA estimates where
internalising and externalising behaviours are obtained from an average of teacher and parents’
reports. Row 7 presents teacher VA estimates for year 3 only, using teacher reports. Row 8
presents teacher VA estimates for year 6 only, using teacher reports. Row 9 presents teacher
VA estimates, where I restrict the sample to teachers who have at least 5 observations (pupils)
per year.
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Table A.5: Association between Teacher VA and Selected Pupil Characteristics

Class-level regressions School-level regressions

Math teacher VA

Mother’s education 0.077 0.002 0.085
(0.014) (0.015) (0.023)

Fathers’ education 0.025 -0.007 0.036
(0.010) (0.013) (0.014)

Free school meal eligible -0.171 -0.029 -0.284
(0.055) (0.066) (0.106)

Prior test score 0.047 -0.012 0.037
(0.011) (0.010) (0.013)

Internalising teacher VA

Mother’s education 0.021 0.022 -0.004
(0.019) (0.026) (0.033)

Fathers’ education -0.012 0.039 -0.051
(0.019) (0.022) (0.025)

Free school meal eligible 0.006 0.088 -0.127
(0.091) (0.092) (0.167)

Prior intern. behaviour -0.014 -0.004 0.015
(0.011) (0.014) (0.024)

Externalising teacher VA

Mother’s education 0.037 0.003 0.019
(0.013) (0.018) (0.024)

Fathers’ education 0.011 0.011 0.007
(0.011) (0.016) (0.018)

Free school meal eligible -0.195 0.033 -0.308
(0.054) (0.070) (0.095)

Prior extern. behaviour -0.017 -0.009 -0.013
(0.006) (0.007) (0.010)

School fixed effects No Yes No
Observations 707 707 209

Notes: Each entry presents the coefficient from a separate regression of the indicated variable
on the teacher VA estimates. Column 2 includes school fixed effects. Regressions are weighted
by the class or school size and standard errors are clustered at the school level.
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Table A.6: Estimates of the Effect of Teacher Characteristics on Teacher VA

Math Internalising Externalising
Teacher VA Teacher VA Teacher VA

Teacher female -0.015 0.028 0.014
(0.009) (0.014) (0.007)

Teacher CCEI 0.017 0.037 0.017
(0.008) (0.012) (0.006)

Teacher self-esteem 0.013 0.005 0.012
(0.012) (0.018) (0.009)

Teacher job satisfaction 0.002 0.028 0.006
(0.011) (0.017) (0.008)

Teacher confidence in teaching 0.016 0.007 0.001
(0.008) (0.013) (0.006)

Teacher experience 0.015 -0.010 -0.012
(0.011) (0.015) (0.008)

Observations 717 722 722

Notes: This tables reports teacher-year level regressions of teacher characteristics on teacher
VA. The dependent variables are the teacher VA, estimated in regressions that include the
baseline control vector described in Section 3. Teacher characteristics include teacher gender,
teacher emotional health (CCEI), teacher Bachman self-esteem, teacher job satisfaction, teacher
confidence in teaching math and teacher experience. See Appendix C for a full description of
teacher CCEI and teacher Bachman self-esteem.
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Table A.7: Estimates of the Effect of Teaching Practices on Teacher VA

Math Teacher VA Internalising Teacher VA Externalising Teacher VA

Each All Each All Each All
measure measures measure measures measure measures
included included included included included included

separately jointly separately jointly separately jointly

Knowledge 0.005 0.001 -0.084 -0.098 0.022 0.017
(0.026) (0.031) (0.029) (0.046) (0.020) (0.024)

Analytical and critical 0.049 0.052 0.009 -0.041 0.016 -0.001
(0.020) (0.027) (0.030) (0.043) (0.015) (0.022)

Autonomy 0.015 -0.004 0.052 0.074 0.013 0.007
(0.017) (0.021) (0.024) (0.033) (0.012) (0.017)

Social and moral behav. 0.011 -0.010 0.019 -0.003 0.017 0.013
(0.017) (0.022) (0.024) (0.035) (0.013) (0.018)

Individual treatment 0.011 -0.004 0.082 0.078 0.028 0.022
(0.028) (0.030) (0.040) (0.048) (0.020) (0.024)

Observations 717 717 722 722 722 722

Notes: This table reports OLS estimates of the effect of five teaching practices measures
on teacher value-added estimates measured on pupils’ math test scores, pupils’ internalising
behaviours and pupils’ externalising behaviours. The unit of analysis is one observation per
teacher per year. Robust standard errors are reported in parentheses. The regressions include
teacher gender, teacher CCEI and teacher experience. The estimates presented in the odd
columns are from regressions where each of teaching practices is used as the only treatment
variable in the regression. The estimates presented in the even columns are from regressions
where all five teaching practices measures are used simultaneously as treatment variables in the
regressions.
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Table A.8: Estimates of the Effect of Selected Teaching Practices on Teacher VA

Math Internalising Externalising
Teacher VA Teacher VA Teacher VA

Homework: Yes/No 0.055 -0.049 0.015
(0.025) (0.040) (0.021)

Written assessment: Yes/No 0.028 0.001 0.002
(0.016) (0.026) (0.013)

Help child to develop in his/her own way: Yes/No -0.008 0.103 0.026
(0.023) (0.038) (0.019)

Help child to organise his/her work: : Yes/No -0.010 0.072 -0.007
(0.023) (0.037) (0.019)

Ability groups in the class: : Yes/No -0.080 0.010 0.005
(0.020) (0.033) (0.017)

Individual reviews and discussions: : Yes/No 0.041 0.164 0.041
(0.041) (0.066) (0.034)

Teacher characteristics Yes Yes Yes
Observations 717 722 722

Notes: This tables reports teacher-year level regressions of teaching practices on teacher
VA. The dependent variables are the teacher VA, estimated in regressions that include the
baseline control vector described in Section 3. Teacher characteristics include teacher gender,
teacher emotional health (CCEI), teacher Bachman self-esteem, teacher job satisfaction, teacher
confidence in teaching math and teacher experience. See Appendix C for a full description of
teacher CCEI and teacher Bachman self-esteem. Only a selected sample of teaching practices
include in the regressions is shown. See Appendix C for a full description of the teaching
practices.
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Table A.9: Summary Statistics for the Sample Used to Estimate VA Model

Mean SD Between Within Min Max
SD SD

Female 79.5 %
Teacher CCEI 13.61 7.97 7.86 2.25 1 40
Teacher Bachman self-esteem 30.98 5.55 5.50 1.64 13 40
Teacher job satisfaction 4.39 0.86 0.82 0.27 1 5
Length of time teaching pupil 1.17 0.38 0.38 0.18 1 2
Teacher confidence in teaching 1.54 0.51 0.49 0.18 0 2
Teacher experience 14.85 11.12 11.14 0.51 0 42
Homework frequency 3.470 0.878 0.86 0.25 1 5
Type of homework 1.908 0.507 0.48 0.20 1 3
Written tests 2.835 0.391 0.36 0.12 1 3
Self-assessed tests 1.960 0.545 0.53 0.23 1 3
Listen to pupils 2.669 0.491 0.45 0.20 1 3
Individual discussions and review 2.186 0.533 0.51 0.24 1 3
Written incentives 0.994 0.075 0.06 0.04 0 1
Naming pupils in the classroom 0.989 0.106 0.08 0.05 0 1
Free time as incentive 0.560 0.497 0.47 0.18 0 1
Competition as incentive 0.562 0.497 0.48 0.16 0 1
Displaying work 0.319 0.467 0.46 0.17 0 1
Class ability groups 0.921 0.270 0.24 0.10 0 1
Teacher responsibility: develop skills 1.043 0.213 0.22 0.10 1 3
Teacher responsibility: moral and behaviours 1.177 0.446 0.45 0.15 1 3
Teacher responsibility: equip skills for society 1.126 0.365 0.38 0.16 1 3
Teacher responsibility: develop individual 1.408 0.628 0.63 0.23 1 4
Teacher responsibility: being obedient 1.406 0.621 0.63 0.23 1 4
Teacher responsibility: capacity to think 1.138 0.401 0.41 0.14 1 3
Teacher responsibility: prepare for occupation 2.298 1.032 1.02 0.35 1 5
Teacher responsibility: respect 1.244 0.518 0.53 0.21 1 4
Teacher responsibility: work cooperatively 1.287 0.540 0.54 0.19 1 4
Teacher responsibility: interest in learning 1.128 0.382 0.39 0.13 1 3
Teacher responsibility: able to organise 1.562 0.675 0.66 0.27 1 4
Teacher responsibility: self confidence 1.102 0.327 0.33 0.17 1 3
Teacher responsibility: considerate to others 1.140 0.398 0.41 0.14 1 3
Teacher responsibility: show respect 1.439 0.519 0.50 0.20 1 4
Homework: to the most able or least able 2.998 0.209 0.21 0.04 1 4

Notes: All the statistics are from the ALSPAC data and are measured in year 3 or 6 of
primary school.
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Appendix B: Figures

Figure B.1: Empirical Distributions of Teacher VA Estimates

a) Teacher reports

b) Parents reports

c) By subscales (Teacher reports)

Notes: Figures 1-6 report kernel distribution of teacher VA estimates. Teacher VA are
estimated in regressions that include controls for class characteristics, school characteristics,
pupil characteristics, family background, school cohort effects, grade dummies and lagged pupil
dependent variables.
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Figure B.2: Effects of Teacher Value-Added on Actual Cognitive and Non-Cognitive Skills

Notes: These figures plot all cognitive and non-cognitive measures and are constructed
using the sample used to estimate the VA models, which has one observation per pupil-school-
year. The three figures are binned scatter plots of actual math test scores, internalising and
externalising behaviours vs teacher math VA, teacher internalising VA and teacher externalising
VA. These plots correspond to the regressions in Column (1) of Table 4. To construct these
binned scatter plots, I first residualise the y-axis variable with respect to the baseline control
vector using within-teacher variation. I then divide the VA estimates into fifty equal-sized
groups and plot the means of the y-variable residuals within each bin agains the mean value of
the VA estimates within each bin. The solid line shows the best linear fit estimated.
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Figure B.3: Effects of Teacher Value-Added on Predicted Cognitive and Non-Cognitive
Skills using Parent Characteristics

Notes: These figures plot all cognitive and non-cognitive measures and are constructed
using the sample used to estimate the VA models, which has one observation per pupil-school-
year. The three figures are binned scatter plots of predicted math test scores, internalising and
externalising behaviours using parent characteristics vs teacher math VA, teacher internalising
VA and teacher externalising VA. These plots correspond to the regressions in Column (2) of
Table 4. To construct these binned scatter plots, I first predicted the y-axis variable with respect
to the parent characteristics vector. I then divide the VA estimates into fifty equal-sized groups
and plot the means of the y-variable residuals within each bin agains the mean value of the VA
estimates within each bin. The solid line shows the best linear fit estimated.
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Figure B.4: Effects of Teacher Value-Added on Current and Future Test Scores

Notes: These figures show the effect of current teacher VA on test scores at the end of
current and subsequent school years. To construct these figures, I regress test scores in year
t=s on teacher VA, in year t varying s from 3 to 7. I control for the baseline control vector
(defined in section 3), using within teacher variation to identify the coefficients on controls. The
dashed lines depict 90% confidence intervals on each regression coefficient, with standard errors
clustered by school-cohort. The coefficients and standard errors from the underling regressions
are reported in Table 7.
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Appendix C: Description of the Variables

Internalising SDQ - Strength and Difficulties Questionnaire

• Emotional problems scale

– Often complains of headaches, stomach-aches or sickness (0-2)

– Many worries, often seems worried (0-2)

– Often unhappy, down-hearted or tearful (0-2)

– Nervous or clingy in new situations, easily loses confidence (0-2)

– Many fears, easily scared (0-2)

• Peer problems scale

– Rather solitary, tends to play alone (0-2)

– Has at least one good friend (0-2)

– Generally liked by other children (0-2)

– Picked on or bullied by other children (0-2)

– Gets on better with adults than with other children (0-2)

Externalising SDQ - Strength and Difficulties Questionnaire

• Behavioural problems scale

– Often has temper tantrums or hot tempers (0-2)

– Generally obedient, usually does what adults request (0-2)

– Often fights with other children or bullies them (0-2)

– Often lies or cheats (0-2)

– Steals from home, school or elsewhere (0-2)

• Hyperactivity scale

– Restless, overactive, cannot stay still for long (0-2)

– Constantly fidgeting or squirming (0-2)

– Easily distracted, concentration wanders (0-2)

– Thinks things out before acting (0-2)

– Sees tasks through to the end, good attention span (0-2)

– I did everything wrong (0-2)
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Teaching Practices: Five Categories Based on the ALSPAC Questionnaire

• Instilment of knowledge and enhancement of comprehension

– The teachers give homework in term time (0-1)

– The homework includes assignments due for teachers’ checking (0-1)

• Instilment of analytical and critical skills

– The teachers feel the responsibility to develop the child’s capacity to think (0-1)

– The teachers feel the responsibility that an interest in learning is aroused (0-1)

– The teachers feel the responsibility to equip child with skills and attitudes which
will enable her/him to take a place effectively in society (0-1)

• Instilment of capacity for individual study

– The teachers use pupils’ self-assessment (0-1)

– The teachers feel the responsibility that the child should be an individual/developing
in his/her own way (0-1)

– The teachers feel the responsibility that children should be able to organise their
work (0-1)

– The teachers feel the responsibility to develop child’s self-confidence (0-1)

• Instilment of social and moral behaviours

– The teachers feel the responsibility that the child should be obedient to parents and
teachers (0-1)

– The teachers feel the responsibility that the child acquired respects for her own
property and others (0-1)

– The teachers feel the responsibility that children learn how to work cooperatively
(0-1)

– The teachers feel the responsibility that children should be kind and considerate to
others (0-1)

• Individual treatmnents of pupils

– Teachers group chilldren by attainment groups for classroom activities (0-1)

– In this class, there are ability groups (0-1)

– The teachers use individual reviews or discussions (0-1)

– The teachers use the following incentives in relation to academic work: naming of
children (0-1)

– The teachers use the following incentives in relation to academic work: displaying
work (0-1)
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Teacher Non-Cognitive Skills Measures from the ALSPAC Questionnaire

• Teacher Crown-Crisp Experiential Index (CCEI). It is composed of 21 items:

– Feels upset for no obvious reason (1-4)

– Troubled by dizziness/shortness of breath (1-4)

– Felt like fainting (1-4)

– Feels sick (1-4)

– Feels life is too much effort (1-4)

– Feels uneasy and restless (1-4)

– Feels tingling in arms/legs/body (1-4)

– Regrets much pas behaviour (1-4)

– Sometimes feels panincking (1-4)

– Has little or no appetite (1-4)

– Wakes unusually early in morning (1-4)

– Worries a lot (1-4)

– Feels tired/exhausted (1-4)

– Has long periods of sadness (1-4)

– Feels strung up inside (1-4)

– Goes to sleep all right (1-4)

– Feels to be going to pieces (1-4)

– Often sweats excessively (1-4)

– Needs to cry (1-4)

– Has had upsetting dreams (1-4)

– Loses ability to feel sympathy (1-4)

• Teacher Bachman Self-Esteem. The Bachman Self-Esteem score is composed of 11 items:

– Feels to be a person of worth (1-5)

– Feels to have number of good qualities (1-5)

– Is able to do things as well as others (1-5)

– Feels not to have much to be proud of (1-5)

– Takes a positive attitude towards self (1-5)

– Sometimes thinks to be not good at all (1-5)

– Is a useful person to have round (1-5)

– Feels cannot do anything right (1-5)

– Does job well (1-5)

– Feels their life is not useful (1-5)

– Feels unlucky (1-5)
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