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A challenge in mathematics education research is to coordinate different analyses to develop a more 
comprehensive account of teaching and learning. I contribute to these efforts by expanding the 
constructs in Cobb and Yackel’s (1996) interpretive framework that allow for coordinating social 
and individual perspectives. This expansion involves four different constructs: disciplinary practices, 
classroom mathematical practices, individual participation in mathematical activity, and 
mathematical conceptions that individuals bring to bear in their mathematical work. I illustrate these 
four constructs for making sense of students’ mathematical progress using data from an 
undergraduate mathematics course in differential equations. 

Un reto en la investigación en educación matemática es la coordinación de diferentes análisis  para 
desarrollar una descripción más amplia de la enseñanza y el aprendizaje. Contribuyo a estos 
esfuerzos mediante la ampliación de los constructos del marco interpretativo de Cobb y Yackel 
(1996), los cuales permiten la coordinación de las perspectivas social e individual. Esta ampliación 
involucra cuatro constructos diferentes: las prácticas disciplinares, las prácticas matemáticas del 
aula, la participación individual en la actividad matemática y las concepciones matemáticas que las 
personas utilizan en su trabajo matemático. Ejemplifico estos cuatro constructos para dar sentido al 
progreso matemático de los estudiantes con datos de un curso universitario de ecuaciones 
diferenciales. 

Keywords: Research Methods, Classroom Discourse, Cognition 

Recent work in mathematics education research has sought to integrate different theoretical 
perspectives to develop a more comprehensive account of teaching and learning (Bikner-Ahsbahs & 
Prediger, 2014; Cobb, 2007; Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014; Prediger, Bikner-
Ahsbahs, & Arzarello, 2008; Rasmussen, Wawro, & Zandieh, 2015; Saxe et al., 2009). An early 
effort at integrating different theoretical perspectives is Cobb and Yackel’s (1996) emergent 
perspective and accompanying interpretive framework. In this paper I expand the interpretive 
framework for coordinating social and individual perspectives by offering a set of constructs to 
examine the mathematical progress of both the collective and the individual. I illustrate these 
constructs by conducting four parallel analyses and make initial steps toward coordinating across the 
analyses.  

The emergent perspective is a version of social constructivism that coordinates the individual 
cognitive perspective of constructivism (von Glasersfeld, 1995) and the sociocultural perspective 
based on symbolic interactionism (Blumer, 1969). A primary assumption from this point of view is 
that mathematical development is a process of active individual construction and a process of 
mathematical enculturation (Cobb & Yackel, 1996). The interpretive framework, shown in Figure 1, 
lays out the constructs in the emergent perspective. The significance of accounting for both 
individual and collective activity is highlighted by Saxe (2002), who points out that, “individual and 
collective activities are reciprocally related. Individual activities are constitutive of collective 
practices. At the same time, the joint activity of the collective gives shape and purpose to individuals’ 
goal-directed activities” (p. 276-277).  

My and my colleagues’ prior work with the interpretative framework (e.g., Rasmussen, Zandieh, 
& Wawro, 2009; Stephan & Rasmussen, 2002; Yackel, Rasmussen, & King, 2000) has raised our 
awareness of the opportunity (and occasional need) to extend the constructs in the interpretative 
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framework. In particular, in Rasmussen, Wawro, and Zandieh (2015), we expand the ways to analyze 
individual and collective mathematical progress. We use the phrase “mathematical progress” instead 
of “learning” as an umbrella term that admits analyses of collective mathematical development and 
individual meanings and activity. That is, while it might make sense to speak of individual student 
learning, it makes less sense to speak of collective learning because this incorrectly implies a 
deterministic, one size fits all approach. The phrase mathematical progress, on the other hand, offers 
a way to address both the collective and the individual without suggesting a deterministic stance 
toward the collective. 
 

Social Perspective Individual Perspective 
Classroom social norms Beliefs about own role, others’ roles, and the 

general nature of mathematical activity 
Sociomathematical norms Mathematical beliefs and values 

Classroom mathematical practices Mathematical conceptions and activity 
Figure 1. The interpretive framework. 

On the bottom left hand side of the interpretive framework (Figure 1), the construct of classroom 
mathematical practices is a way to conceptualize the collective mathematical progress of the local 
classroom community. In particular, such an analysis answers the question: What are the normative 
ways of reasoning that emerge in a particular classroom? Such normative ways of reasoning are said 
to be reflexively related to individual students’ mathematical conceptions and activity. In prior work 
that has used the interpretive framework, individual conceptions and activity has been treated as a 
single construct that frames the ways that individual students participate in classroom mathematical 
practices (e.g., Bowers, Cobb, & McClain, 1999; Cobb, 1999; Stephan, Cobb, & Gravemeijer, 2003). 
Such a framing of the individual is, in our view, compatible with what Sfard (1998) refers to as the 
“participation metaphor” for learning.  

In an effort to be more inclusive of a cognitive framing that would posit particular ways that 
students think about an idea, Rasmussen, Wawro, & Zandieh (2015) split the bottom right hand cell 
into two constructs, one for individual participation in mathematical activity and one for 
mathematical conceptions that individual students bring to bear in their mathematical work. With 
these two constructs for individual progress one now can ask the following two questions: How do 
individual students contribute to mathematical progress that occurs across small group and whole 
class settings? And what mathematical meanings do individual students develop and bring to bear in 
their mathematical work?  

Work at the undergraduate level has also highlighted the fact that, in comparison to K-12 
students, university mathematics and science majors are more intensely and explicitly participating in 
the discipline of mathematics. However, the notion of a classroom mathematical practice was never 
intended to capture the ways in which the emergent, normative ways of reasoning relate to various 
disciplinary practices (Stephan & Cobb, 2003). In order to more fully account for what often occurs 
at the undergraduate level, we expand the interpretive framework to explicate how the classroom 
collective activity reflects and constitutes more general disciplinary practices. Thus there is an 
additional cell to the bottom left row of the interpretive framework, disciplinary practices. One can 
now answer the following two questions about collective mathematical progress: What is the 
mathematical progress of the classroom community in terms of the disciplinary practices of 
mathematics? And what are the normative ways of reasoning that emerge in a particular classroom?    

To summarize, Figure 2 shows the expansion of the bottom row of the interpretive framework, 
which now entails four different constructs: disciplinary practices, classroom mathematical practices, 
individual participation in mathematical activity, and mathematical meanings.  
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Social Perspective Individual Perspective 
Classroom social norms Beliefs about own role, others’ roles, and the 

general nature of mathematical activity 
Sociomathematical norms Mathematical beliefs and values 

Disciplinary practices Classroom 
mathematical 

practices 

Participation in 
mathematical activity 

Mathematical 
meanings 

Figure 2. Expanded interpretive framework. 

The left hand side of the bottom row comprises two different constructs for examining the 
mathematical progress of the classroom community, while the right hand side comprises two 
different constructs for examining the mathematical progress of individuals. The contribution that 
this expansion makes is in providing researchers with a more comprehensive means of bringing 
together analyses from social and individual perspectives. In particular, the expanded interpretive 
framework enables a researcher to answer the questions listed in Figure 3. 

 

Disciplinary 
practices 

Classroom 
mathematical 

practices 

Participation in 
mathematical activity 

Mathematical 
meanings 

What is the collective 
mathematical progress 

in terms of the 
disciplinary practices? 

What are the 
normative ways of 

reasoning that 
emerge in a 

particular classroom? 

How do individual 
students contribute to 

the collective 
mathematical progress? 

What meanings do 
individual students 

develop and bring to 
bear in their work? 

Figure 3. Four constructs for analyzing mathematical progress and respective research questions. 

Theoretical and Methodological Background 

Classroom mathematical practices  
Classroom mathematical practices refer to the normative ways of reasoning that emerge as 

learners solve problems, explain their thinking, represent their ideas, etc. By normative I mean that 
there is empirical evidence that an idea or way of reasoning functions as if it is a mathematical truth 
in the classroom. This means that particular ideas or ways of reasoning are functioning in classroom 
discourse as if everyone has similar understandings, even though individual differences in 
understanding may exist. The empirical evidence needed to document normative ways of reasoning 
is garnered using the approach developed by Rasmussen and Stephan (2008) and furthered by Cole et 
al. (2012). This approach, which we refer to as the documenting collective activity method, applies 
Toulmin’s (1958) argumentation scheme to document the mathematical progress using three well-
developed criteria, all of which involve tracing over time how ideas are used by students. In brief, 
central to Toulmin’s scheme is the core of an argument, which consists of a Claim, Data to support 
that Claim, and a Warrant that explains the relevance of the Data to the Claim. 
 
Disciplinary practices  

Disciplinary practices refer to the ways in which mathematicians typically go about their 
professional practice. The following disciplinary practices are among those core to the activity of 
professional mathematicians: defining, algorithmatizing, symbolizing, and theoremizing (Rasmussen, 
Zandieh, King, & Teppo, 2005). Not all classroom mathematical practices are easily or sensibly 
characterized in terms of a disciplinary practice. This is because classroom mathematical practices 
capture the emergent and potentially idiosyncratic collective mathematical progress, whereas a 
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disciplinary practice analysis seeks to analyze collective progress as reflecting and embodying core 
disciplinary practices. In this report I focus on algorithmatizing, the practice of creating and using 
algorithms. Our method for documenting disciplinary practices builds on prior work that has 
examined theoremizing, symbolizing, and defining (Rasmussen, Zandieh, King, & Teppo, 2005; 
Rasmussen, Wawro, & Zandieh, 2015; Zandieh & Rasmussen, 2010).   

Mathematical meanings 
As students solve problems, explain their thinking, represent their ideas, and make sense of 

others’ ideas, they necessarily bring forth various meanings of the ideas being discussed and 
potentially modify these meanings (Thompson, 2013). Our analysis of individual student meanings 
makes use of analyses from prior work that have characterized different ways that students think 
about the relevant mathematical ideas (e.g., Carlson, Jacobs, Coe, Larsen, & Hu, 2002;  Habre, 2000; 
Harel & Dubinsky, 1992; Thompson, 1994; Trigueros, 2001; Rasmussen, 2001; Zandieh, 2000).  

Participation in mathematical activity 
This analysis draws on recent work by Krummheuer (2007, 2011), who characterizes individual 

learning as participation within a mathematics classroom using the constructs of production roles and 
recipient roles. In the production framing, individual speakers take on various roles, which are 
dependent on the originality of the content and form of the utterance. The title of author is given 
when a speaker is responsible for both the content and formulation of an utterance. The title of 
relayer is assigned when a speaker is not responsible for the originality of either the content nor the 
formulation of an utterance. A ghostee takes part of the content of a previous utterance and attempts 
to express a new idea, and a spokesman is one who attempts to express the content of a previous 
utterance in his/her own words. Within the recipient framing of learning-as-participation, 
Krummheuer (2011) defines four roles: conversation partner, co-hearer, over-hearer, and 
eavesdropper. A conversation partner is the listener to whom the speaker seems to allocate the 
subsequent talking turn. Listeners who are also directly addressed but do not seem to be treated as the 
next speaker are called co-hearers. Those who seem tolerated by the speaker but do not participate in 
the conversation are over-hearers, and listeners deliberately excluded by the speaker from 
conversation are eavesdroppers.  

Setting and Participants 
I illustrate the four constructs and address the respective research questions from Figure 3 using 

data from a semester-long classroom teaching experiment (Cobb, 2000) in differential equations 
conducted at a medium sized public university in the Midwestern United States. I selected a 10-
minute small group episode from the second day of class based on its potential to illustrate all four 
constructs. There were four students in this group, Liz, Deb, Jeff, and Joe (all names are 
pseudonyms).  

There were 29 students in the class. Class met four days per week for 50-minute class sessions 
for a total of 15 weeks. The classroom had movable small desks that allowed for both lecture and 
small group work. The classroom teaching experiment was part of a larger design based research 
project that explored ways of building on students’ current ways of reasoning to develop more formal 
and conventional ways of reasoning (Rasmussen & Kwon, 2007). A goal of the project was to 
explore the adaptation of the instructional design theory of Realistic Mathematics Education (RME) 
to the undergraduate level. Central to RME is the design of instructional sequences that challenge 
learners to organize key subject matter at one level to produce new understanding at a higher level 
(Freudenthal, 1991). In this process, graphs, algorithms, and definitions become useful tools when 
students build them from the bottom up through a process of suitably guided reinvention (e.g., 
Rasmussen & Blumenfeld, 2007; Rasmussen & Marrongelle, 2006; Rasmussen, Zandieh, King, & 
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Teppo, 2005). 

Results and Discussion 
As previously stated, the analysis comes from video recorded work of a small group of four 

students, Liz, Deb, Jeff, and Joe, on the second day of class. Just prior to the small group work 
students completed the following task: The previous problem dealt with a complex situation with two 
interacting species. To develop the ideas and tools that we will need to further analyze complex 
situations like these, we will simplify the situation by making the following assumptions: 

• There is only one species 
• The species have been in the lake for some time before what we are calling time t = 0 
• The resources (food, land, water, etc.) are unlimited  
• The species reproduces continuously 

Given these assumptions for a certain lake with fish, sketch three different population versus time 
graphs (one starting at P = 10, one starting at P = 20, and the third starting at P = 30). 

This task was relatively straightforward for students and brought forth an imagery of exponential 
growth and the graphs they sketched were consistent with this imagery. The instructor then used their 
graphs as an opportunity to introduce the rate of change equation dP/dt = 3P as a differential equation 
that was consistent with their graphs. In particular, as P values increase, so does the slope of the 
graph of P vs. t.  

The follow up task, which students worked on for approximately 10 minutes, however, was much 
more cognitively demanding for students.  

 
Recall that this is only the second day of class and students have not been introduced to any 

analytical, numerical, or graphical techniques for analyzing differential equations. In a related 
analysis, Tabach, Rasmussen, Hershkowitz, and Dreyfus (2015) provide the following a priori 
analysis of the knowledge elements that we expect students to construct when solving this task: 

• Csy – establishing connection between P and dP/dt (if you know P you can find dP/dt)  
• Cpit – population iteration (given P and dP/dt at a moment in time allows one to find P at 

a later time)  
• Crit – rate of change iteration (applying Csy at that later time one can find the 

corresponding dP/dt) 
• Cit – Cpit and Crit can be combined into a repeating loop.  

Consider the following rate of change equation, where P(t) is the number of rabbits at time t 
(in years): dP/dt = 3P(t) or in shorthand notation dP/dt = 3P. Suppose that at time t = 0 we 
have 10 rabbits (think of this as scaled, so we might actually have 1000 or 10,000 rabbits). 
Figure out a way to use this rate of change equation to approximate the future number of 
rabbits.  

At t = 0.5 and t = 1.  
At t = 0.25, t = 0.5, t = 0.75, and t = 1 
Be prepared to share the reasoning behind your approach with the rest of the class. Organize 
your results in tabular and graphical form. 
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To illustrate how these knowledge elements play out in student discourse, consider the following 
except from Liz which occurred near the end of the 10-minute small group work: 

Liz: What I understand is that we found our rate of change initially at time zero and that we are 
using that to find out what our population is after half a year. If we are expected to grow by 
30 rabbits in a year then, in a half a year we grow by 15 rabbits. So we’ll have 15, I mean 25 
because 15 plus 10 is 25. Then you start over again, so it’s kind of like our new initial 
population. We could label it time equals zero if we wanted to. 

An example of Csy occurs when Liz says, “grow by 30 rabbits in a year” because in order to get 
the value of 30, Liz had to use the initial population value of 10, plug this into the rate of change 
equation to get 30. Cpit is illustrated by Liz when she says, “in a half year we grow by 15 rabbits. So 
we’ll have 15, I mean 25 because 15 plus 10 is 25.” That is, she uses what she knows about the 
population at the initial time and her knowledge of dP/dt at the initial time to compute how many 
rabbits there will be half a year later. Finally, when Liz says, “The you start all over again,” she 
demonstrates an understanding that Cpit and Crit can be combined into a repeating loop to compute 
the population after another half year. 

As a reminder, the primary research goal here is to demonstrate an approach for coordinating 
collective and individual analyses to gain greater explanatory and descriptive power, with the 
intention to better understand the individual and collective meaning making processes. I will 
therefore begin with analyzing the collective small group mathematical progress using the previously 
mentioned documenting collective activity method.  

Small group collective mathematical progress 
Using the documenting collective activity method I identified the following three ideas that 

functioned as if shared in this particular small group: dP/dt can be determined from P values (Csy), a 
value for dP/dt refers to the amount of change over 1 year, Cpit and Crit can be combined into a 
repeating loop. All three of these findings made use of the second criteria, namely that what was 
originally a Claim in one argument later functions as Data in a subsequent argument (Rasmussen & 
Stephan, 2008). In other words, an idea that initially required some form of justification is later used 
a means to justify new claims. Figure 4 shows the Toulmin analysis for first argument and Figure 5 
shows the Toulmin analysis for the fifth argument made in this particular small group. 

  
 
 
 
 
 
 
 
 
 

 
Figure 4. Toulmin analysis for Argument 1. 

  

Data: This is where 
10 rabbits at zero 
(Jeff) 

Claim: The initial 
instantaneous rate of change 
is 30 (Liz) 

Warrant: I would plug in the population of 
rabbits for P to determine the rate of change 
(Liz) 
Backing: If we had a graph, its kind of 
like what we were just talking about, we 
are trying to determine the rate of change 
when this time is equal to zero (Liz) 
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Figure 5. Toulmin analysis for Arguments 5. 

We see here in the first argument that Liz makes the Claim that the initial instantaneous rate of 
change is 30 (note that this is Csy) and then in the fifth argument Deb uses as a fact that the initial 
rate of change is 30 as Data to support a new claim. Thus per the second criteria it is concluded that 
one can determine dP/dt from P values functions as if shared in this small group. Full consideration 
of the data indicate that Liz, Deb, and Jeff (but not Joe) made individual progress compatible with the 
collective mathematical progress. That is, when a researcher determines that an idea functions as if 
shared, it does not mean that everyone shares exactly the same way of thinking.  

I next step back from the specifics of the Toulmin analysis across the 10-minute episode to 
highlight overall trends in the discourse. In terms of talk turns, Liz spoke 26 times, Deb spoke 18 
times, Jeff 13 times, and Joe 8 times. Thus Liz and Deb were the primary contributors, with Jeff 
often highlighting a final answer. Overall there were 14 different arguments (à la Toulmin) that 
consisted of at least Data and Claim. The following table shows the distribution of contributions 
(some contributions co-constructed).  

Table 1: Toulmin argument contributions by student 
 Liz Deb Jeff Joe 

Data 6 5 1 4 
Claim 5 5 5 2 
Warrant 2 5 1 0 
Backing 2 1 0 0 

 
In light of the collective small group mathematical progress, I next begin to address the following 

coordination questions: What meanings for dP/dt emerged and who expressed these meanings? What 
part did these meanings play in the collective mathematical progress? What roles did Liz, Deb, Joe, 
and Jeff play in all of this? In what ways did students’ mathematical work reflect disciplinary 
practices? 

Engaging different meanings for dP/dt  
Across the 10-minute episode I identified seven different meanings for dP/dt used by one or more 

of the fours students. These seven meanings and who within the 10-minute episode engaged these 
meanings are: as steepness (Liz), ratio (Liz and Jeff), population length (Liz and Deb), tool (Liz), 
function (Deb), proportion (Deb), and fraction (Jeff). Thus, not only did Liz and Deb have more talk 
turns, they also engaged more and different meanings for dP/dt compared to Jeff and Joe. I next 
illustrate how students engaged these meanings, but due to space constraints a complete detailing is 
not possible. 

Data: We have the 30. Three 
times ten would give us our 
rate of change. Say 0.5 years 
passes (Deb) 

Claim: which will give us 
what, the new amount of 
rabbits plus the old amount 
of rabbits (Deb) 

Warrant: Warrant: This is our rate of 
change. Then we’ll take that 0.5 times 
the rate of change (Deb) 
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17 Liz:  So if we have that [initial rate of change is 30], the question is how can we use that to 
help us figure out the population after a half unit elapsed?   

22 Deb:  You said the population is 10 right [Liz: Um hmm]. So three times ten would give us 
our rate of change. Say 0.5 years passes, this is our rate of change. Then we’ll take that 0.5 
times the rate of change which will give us what [slight pause looks up to Jeff and Joe], the 
new amount of rabbits plus the old amount of rabbits.  

In line 17 we see Liz wonder out loud how knowing that 30 is the initial rate of change can be 
used to achieve their goal of determining the population a half year later. That is, Liz would like to 
somehow engage rate of change as a tool to do work for them. Shortly thereafter Deb takes Liz up on 
how they might use rate of change as a tool and suggests that they could take the 30 and multiply it 
by 0.5. It is not entirely clear the meaning that Deb is making use of here, but one possibility is that 
she is engaging in a form of proportional reasoning. Continuing their discussion, we see an important 
conceptual advance. 

25 Liz:  So the old amount of rabbits is 10. 
26 Deb:  Am I making sense? 
27 Jeff:  I think so, so that would be 25, is that what you’re saying? 
28: Liz:  Okay I think I get what you’re saying. Ok, so like we’re at time zero and we have 10 

rabbits, and supposedly the rate of change, well not supposedly, we’re saying that the rate of 
change is 30 [Jeff: yeah for the] at time zero. So its going to grow at a rate of, I don’t know if 
I’m going to say this right, at 30 rabbits per year? [looks up at Deb]   

In line 27 we see Jeff contributing to the discussion by highlighting final computations. Thus, 
while Jeff is not necessarily leading the intellectual work, he is following along and adding to the 
discussion. Then in line 28 we see Liz make an interpretation for 30, the initial rate of change, that 
later serves her and her group well. In particular, she interprets 30 as the amount of rabbits that will 
accrue over a one year time increment. I refer to such a meaning as a “population length.” This is 
similar to how Thompson documented early meanings of rate as a “speed length” where a student 
thinks of say, 60 mph, as going 60 miles in one hour. Deb next picks up on what Liz says and then in 
line 32 Liz returns to how one might use rate of change as a tool for figuring out the number of 
rabbits a half year later. 

29 Deb:  Right. [Liz: Ok] So we’ll have 30 more rabbits. 
32 Liz:  And so we’re really not figuring out the rate of change we figuring…Well this is the rate 

of change and we’re using the rate of change to figure out the number of rabbits we are going 
to increase by in half a year. 

As the students continue, we see Deb leading the intellectual work of figuring out how to use the 
30 to achieve their goal. 

38 Deb:  This is what I did. First I looked at the fact that this is a rate of change equation. So this 
is telling me how many rabbits are being produced every year. So If I know 3 times the 
original population is produced every year, then I have 3 times 10 is produced every year.  
But I want to know how many is produced in 0.5 years. So I know how many rabbits are 
produced per year, so if I multiply that by 0.5 then I’ll know how many more rabbits have 
been produced. So I take that new number that I get and add it to the old population. 

43 Jeff:  I think you can go dp/dt=30, actually your dt will be 0.5, and then you add that to the old 
and then you do it again for the next one. 

In line 38 Deb expresses three different meanings for rate of change. She starts off by saying that 
the rate of change equation tells one how many rabbits are produced every year. This is similar to a 
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function meaning for rate of change and relates closely to Csy. Given an input you get an output. 
And the meaning of the output in this case is a population length (“so I know how many rabbits are 
produced per year”). Deb then engages in some proportional reasoning to determine how many more 
rabbits there will be in a half year. In line 43 Jeff shows that he is following the discussion and seems 
to treat dP/dt as a fraction. Soon thereafter Liz recapitulates their line of reasoning as follows, 
engaging both meaning of rate of change as population length and rate of change as proportion. 

48 Liz:  Okay, so basically, I get you up into the point where you say you want to put in, what I 
understand is that we found our rate of change initially at time zero and I understand using 
that to find out what our population is after half a year. If we are expected to grow by 30 
rabbits in a year then, in a half a year we grow by 15 rabbits. So we’ll have 15  

I now turn to reflecting on the roles these various meanings played in the collective mathematical 
progress. As we saw, there is a shift in the meaning of dP/dt - from steepness to a “population length” 
(clearly for Liz and likely for Deb). This shift coincided with “a value for dP/dt refers to the amount 
of change over 1 year” functioning as if shared AND the initial articulation of how to find the 
estimate for the population at t = 0.5. In relation to other work, the principle of a form-function-shift 
(Saxe, 2002) of notations in use is particularly suitable for analyzing the interplay between tool use 
(in this case dP/dt = 3P) and conceptual development. In particular, the form-function-shift describes 
the interplay between cultural forms (external representations) and the meanings that develop for 
structuring and accomplishing specific goals, not unlike what we saw happening with the individual 
meaning and collective production of meaning. 

What roles did Liz, Deb, Jeff, and Joe play in the collective mathematical progress? 
Drawing on Krummheuer (2007, 2011), I characterize student participation in the collective 

mathematical progress in terms of production roles (author, relayer, ghostee, spokesman) and 
recipient roles (conversation partner, co-hearer, overhearer, eavesdropper). Previously I specified the 
number of talk turns for each student: Liz 26; Deb 18; Jeff 13; Joe 8. The raw count of co-author 
shows that there was fairly even distribution (Liz 6/14; Deb 5/14; Jeff 6/14; Joe 4/14). However, a 
more nuanced look however reveals important differences: Joe offered 2 incorrect arguments, Jeff 
often revoiced (with and without reformulation), Liz and Deb did the main intellectual lifting (as was 
evident in the excerpts). For example, Liz was primary author (core of argument) for Csy and as 
Spokesman for meaning of dP/dt as population length. Deb, on the other hand, was the primary 
author for Cit The following excerpt provides a snapshot illustration of how the entire 10-minute 
episode was coded.  

26 Deb:  [articulates the main iteration idea but without a numerical result – omitted here for 
space considerations] Am I making sense? 

27 Jeff:  I think so, so that would be 25, is that what you’re saying? 
28: Liz:  Okay I think I get what you’re saying. Ok, so like we’re at time zero and we have 10 

rabbits, and supposedly the rate of change, well not supposedly, we’re saying that the rate of 
change is 30 [Jeff: yeah for the] at time zero. So its going to grow at a rate of, I don’t know if 
I’m going to say this right, at 30 rabbits per year? [looks up at Deb]   

In line 25 Jeff functions as a relayer as he was not responsible for either the content or the 
formulation of the idea. In line 28 we see Liz function as spokesman for this is the first time anyone 
has engaged the meaning of rate of change as population length. As such Liz is responsible for both 
the content and the formulation. 

Regarding recipient design roles, Liz, Deb, and Jeff were for the most part conversation partners 
and co-hearers.  Joe was mostly a co-hearer and at times an over-hearer. While the constructs of 
production and recipient roles were useful in distinguishing individual differences, I found them to be 
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insufficient to account for the different ways these four students participated in mathematical 
discourse. In particular, my analysis suggested a third role – that of facilitator roles. More 
specifically, I identified four different ways in which these students facilitated the flow of ideas in 
their small group. These four roles are:  

• Focuser is assigned when a speaker directs attention to a particular mathematical issue 
• Elicitor is given when a speaker attempts to bring out another’s idea 
• Checker is one who seeks agreement or sensibility of an utterance 
• Summarizer pulls ideas together 

For example, consider the following excerpts: 

17 Liz:  So if we have that [initial rate of change is 30], the question is how can we use that to 
help us figure out the population after a half unit elapsed? [32 sec pause, everyone looking 
down at their papers and making marks]  

18 Jeff:  So I was just going to say how would we work time into the equation to get the next, uh, 
population or change in population?  

40 Liz:  Yeah I get it, do you guys get what Deb is saying?  
41 Jeff:  Yeah you get 25 and then you get 55.  
46 Liz:  And the reason for putting in the new population would be what?  
48 Liz:  Okay, so basically, I get you up into the point where you say you want to put in, what I 

understand is that  ….. 
53 Deb:  Everybody agree? 

In line 17 Liz functions as a focuser when she directs her group’s attention to how they can use 
the initial rate of change as a tool for figuring out the population after a half year. In line 18 Jeff also 
serves the role of focuser when he directs the group’s attention to how time gets integrated into their 
work. In line 40 Liz acts a checker when she queries the group to see if everyone gets what Deb is 
saying. Similarly Deb acts as a checker in line 53. In line 46 Liz functions as elicitor when she 
requests the rationale for carrying out a particular mathematical computation. Finally, in line 48 Liz 
pulls the ideas together and thus functions as a summarizer.  

To conclude this section, I reflect on the ways in which students’ mathematical work reflects the 
disciplinary practice of creating and using algorithms, or algorithmatizing.  

The disciplinary practice of algorithmatizing 
In the analysis previously presented we see the group of four students engaging in the first stage 

of creating an algorithm. These first steps lay the relational foundation for how to use P values and 
dP/dt values to approximate a future population value. An expert will recognize students’ work as 
Euler’s method, although the students do not as of yet know that what they have produced is in fact 
related to Euler’s method. In the subsequent whole class discussion the different groups in the class 
discussed their work and together the class created the following algorithm: P"#$% = P"'( +
*+
*% "'(

×∆t. The instructor then explained to the class that this algorithm is conventionally know as 

Euler’s method and is an example of a numerical approximation. In subsequent classes students used 
this algorithm both with and without contexts and investigated the relationship between approximate 
solutions and exact solutions that are concave up, concave down, and that have a constant rate of 
change. Students also investigated how approximation graphs with different step sizes compared to 
each other and even different ways to improve Euler’s method. Such mathematical progress reflects 
the disciplinary practice of creating and using algorithms, or what we refer to algorithmatizing.  

More specifically, students’ creation of the Euler method algorithm involved the following: 
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engaging in goal directed activity, isolating attributes, forming quantities, creating relationships 
between quantities, and expressing these relationships symbolically. For example, Liz helped her 
group focus on a specific goal directed activity when she asked her group mates, “So if we have that 
[initial rate of change is 30], the question is how can we use that to help us figure out the population 
after a half unit elapsed?” This led to their group to think about 30, the initial rate of change, as the 
amount of rabbits that would be added in one year. Previously I referred to this meaning as a 
population length, which is an example of isolating an attribute and forming a quantity for this 
attribute. The population length was further refined when the group related this quantity to a time 
interval of a half year. The relationship between change and in time and population length was then 
further quantified. As pointed to previously, these relationships then formed the basis for Cpit and 
Crit functioning as if shared in this small group. Expressing these relationships symbolically 
occurred after the 10-minute small group work analyzed here. 

Conclusion 
In this section I first consider implications for practice and then implications for research. 

Regarding instructional design considerations, the analysis presented here raises the possibility of 
including in the student materials questions that focus student attention on the attributes that Deb and 
her group found particularly useful. Questions such as the following might be woven into the student 
materials: What is the initial rate of change? What does this value mean to you? How can you use the 
30 to figure out the population after half unit of time? Of course this would have to be done in a way 
that does not take away from the challenge and cognitive demand of the task. Alternatively, such 
questions could be folded into instructor resource materials that support mathematics faculty in 
implementing inquiry-oriented curriculum. Indeed, efforts are underway by Estrella Johnson, Karen 
Keene, and Christine Larson to create such materials for differential equations, linear algebra, and 
abstract algebra (see http://times.math.vt.edu/).  

Another instructional implication that this analysis raises is the how to help promote productive 
interactions between small group members. In this particular class the small group analysed worked 
extremely well together, even on the second day of class. This was largely good fortune. So then 
what might an instructor do to facilitate more productive interactions in small groups that do not 
function as well as Liz, Deb, Joe, and Jeff? 

I now turn to discussing some implications for research. In addition to using various 
combinations of the four constructs to more fully account for students’ mathematical progress, there 
exist multiple ways in which coordination across the four constructs is possible. For instance, one 
could choose an individual student within the classroom community and trace his/her utterances for 
the ways in which they contributed to the emergence of various normative ways of reasoning and/or 
disciplinary practices. Alternatively, when considering a normative way of reasoning, a researcher 
could investigate who the various individual students are that are offering the claims, data, warrants, 
and backing in the Toulmin analysis used to document normative ways of reasoning. How do those 
contributions coordinate with those students’ production roles within the individual participation 
construct? For instance, does a student ever utilize an utterance that a different student authored as 
data for a new claim that he is authoring, and in what ways may that capture or be distinct from other 
students’ individual mathematical meanings? One might also imagine ways to coordinate across the 
two individual constructs as well as across the two collective constructs. For example, how do 
patterns over time in how student participation in class sessions relate to growth in their 
mathematical meanings? Are different participation patterns correlated with different mathematical 
progress trajectories? In what ways are particular classroom mathematical practices consistent (or 
even inconsistent) with various disciplinary practices? Finally, future research could take up more 
directly the role of the teacher in relation to the four constructs.  
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I anticipate that future work will more carefully delineate methodological steps needed to carry 
out the various ways in which analyses using the different combinations of the four constructs can be 
coordinated. Indeed, this report is a first step in developing a more robust theoretical-methodological 
approach to analyzing individual and collective mathematical progress. 
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