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Extension of Caution Indices to Mixed-format Tests

Abstract

Tatsuoka (1984) suggested several extended caution indices and their standardized versions

that have been used as person-fit statistics by researchers such as Drasgow, Levine, and

McLaughlin (1987), Glas and Meijer (2003), and Molenaar and Hoijtink (1990). However,

these indices are only defined for tests with dichotomous items. This paper extends two of

the popular standardized extended caution indices (Tatsuoka, 1984) for use with polytomous

items and mixed-format tests. Two additional new person-fit statistics are obtained by

applying the asymptotic standardization of person-fit statistics for mixed-format tests

(Sinharay, 2016c). Detailed simulations are then performed to compute the Type I error

rate and power of the four new person-fit statistics. Two real data illustrations follow.

The new person-fit statistics appear to be satisfactory tools for assessing person fit for

polytomous items and mixed-format tests.
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Person-fit assessment (PFA) is concerned with uncovering atypical test performance

as reflected in the pattern of scores on individual items in a test (Meijer & Sijtsma,

2001). In a report for the Council of Chief State School Officers, Olson and Fremer (2013)

recommended the use of person-fit statistics (PFSs), in addition to other methods, to detect

irregularities in answering behavior.

Several PFSs have been proposed in the context of tests with dichotomous items—see

comprehensive reviews of them by, for example, Karabatsos (2003) and Meijer and Sijtsma

(2001). There exist fewer PFSs (e.g., Drasgow, Levine, & Williams, 1985; Emons, 2008;

Glas & Dagohoy, 2007; van Krimpen-Stoop & Meijer, 2002; von Davier & Molenaar, 2003;

Wright & Masters, 1982) for tests with polytomous items.

There is a severe lack of research on PFA for mixed-format tests (MFTs), which are

tests that include both dichotomous and polytomous items, Finkelman and Kim (2007),

Sinharay (2016c), Sinharay (2015), and Tendeiro (2017) being some exceptions. Polytomous

items and MFTs promise to become more common because of an increasing emphasis

on constructed-response items in the common-core assessments (e.g., Darling-Hammond

& Adamson, 2010, p. 1). Constructed-response items constitute an integral part of the

assessment design of both of the federally-funded assessment consortia—the Smarter

Balanced Assessment Consortium and the Partnership for the Assessment of Readiness

for College and Career (e.g., Lissitz, Hou, & Slater, 2012). Therefore, research on PFA

for polytomous items and MFTs promise to be useful to educational and psychological

measurement.

Tatsuoka (1984) suggested several extended caution indices (ECI) and their

standardized versions (ECIz) that can be used as PFSs. The standardized versions of the

second ECI (denoted as ECI2z or ζ1) and the fourth ECI (ECI4z or ζ2) are arguably the

most popular among the caution indices and their extensions, which is evident from the

fact that several researchers (e.g., Drasgow et al., 1987; Glas & Meijer, 2003; Karabatsos,

2003; Molenaar & Hoijtink, 1990) found ζ1 and ζ2 to be useful in detecting person misfit.

However, ζ1 and ζ2 can be applied only to tests with dichotomous items. Sinharay (2015)

suggested an extension of ζ2 to MFTs, but the extended PFS had low power.
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This paper suggests four new PFSs including two extensions each of ζ1 and ζ2 for use

with polytomous items and MFTs. Two of the new PFSs are based on the asymptotic

standardization/correction of PFSs for MFTs recently suggested by Sinharay (2016c).

The Literature Review section includes reviews of the ζ1 and ζ2 statistics for

dichotomous items (Tatsuoka, 1984), the extension of the ζ2 statistic suggested by Sinharay

(2015), and the asymptotic standardization/correction of PFSs for MFTs (Sinharay, 2016c).

The Methods section includes the descriptions of the new PFSs. The Type I error rate and

power of the new PFSs are examined for several simulated data sets in the Simulations

section. In the Application section, the suggested PFSs are computed for two real data

sets. Conclusions and recommendations are provided in the last section.

The new PFSs are based on item response theory (IRT). Non-parametric PFSs (for

example, Emons, 2008; Sijtsma, 1998; Tendeiro & Meijer, 2014) are not considered in this

paper.

Literature Review

Review of the ζ1 and ζ2 Statistics for Dichotomous Items

Consider a test comprising J dichotomous items that was administered to n examinees.

Let us denote the true ability of examinee i as θi. Let yij be the score (that is 0 or 1) and

Pj(θi) be the probability that yij is equal to 1 for examinee i on item j. For example, for

the three-parameter logistic model (3PLM),

Pj(θi) = P (yij = 1) = cj + (1− cj)
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]
, (1)

where aj, bj, and cj respectively are the (known) slope, difficulty, and guessing parameters

of item j.

Let us define

Gj =
1

n

n∑
i=1

Pj(θi), j = 1, 2, · · · , J, and G =
1

J

J∑
j=1

Gj· (2)

Let us further define

σ2
j (θi) = Var(yij) = Pj(θi)[1− Pj(θi)] and P̄ (θi) =

1

J

J∑
j=1

Pj(θi)·
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For the i-th examinee, Tatsuoka (1984) defined the second standardized ECI, denoted

as ECI2z or ζ1, as

ζ1 =

∑J
j=1(Pj(θi)− yij)(Gj −G)√∑J

j=1 σ
2
j (θi)(Gj −G)2

, (3)

and the fourth standardized ECI, denoted as ECI4z or ζ2, as

ζ2 =

∑J
j=1(Pj(θi)− yij)

[
Pj(θi)− P̄ (θi)

]√∑J
j=1 σ

2
j (θi)

[
Pj(θi)− P̄ (θi)

]2 · (4)

Note that the denominator in each of Equations 3 and 4 is the standard deviation (SD)

of the numerator. Note also that the ECI6z statistic of Tatsuoka (1984) is identical to

ECI4z—so, ζ2 denotes both ECI4z and ECI6z. To compute ζ1 and ζ2 for a data set, θi

has to be replaced by an estimate θ̂i.

Tatsuoka (1984) assumed the asymptotic null distribution of ζ1 or ζ2, with θi replaced

by θ̂i, to be standard normal. In addition, either of ζ1 and ζ2 becomes larger as an examinee

answers more difficult items correctly 1 or answers more easy items incorrectly, which

usually happens when person misfit occurs. Therefore, a large value such as a value larger

than 1.645 at 5% level of either of ζ1 or ζ2 indicates person misfit.

Both ζ1 and ζ2 have been used as PFSs by several researchers such as Drasgow et al.

(1987), Glas and Meijer (2003), Karabatsos (2003), Li and Olenik (1997), and Molenaar

and Hoijtink (1990). The ζ2 statistic along with the (Bayesian) posterior predictive model

checking method performed the best overall among eight PFSs in Glas and Meijer (2003).

Drasgow et al. (1987) found ζ1 and ζ2 to have satisfactory power in a comparison of several

PFSs. Sinharay (2016b) used the results of Snijders (2001) to suggest asymptotically

standardized versions of the ζ1 and ζ2 for dichotomous items and found those standardized

versions to have satisfactory Type I error rate and power. However, ζ1 and ζ2 are defined

only for dichotomous items. Therefore, keeping in mind the increasing importance of

polytomous items and MFTs, extensions of ζ1 and ζ2 to polytomous items and to MFTs

may be helpful to researchers interested in PFA.

1For a difficult item, Gj−G < 0 and Pj(θi)−P̄ (θi) < 0. A correct answer on the item means Pj(θi)−yij <

0 so that both (Pj(θi)− yij)(Gj −G) and (Pj(θi)− yij)
[
Pj(θi)− P̄ (θi)

]
are positive.
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Notation for Mixed-format Tests

Consider a test with J items each of which can be dichotomous or polytomous.

Consider the i-th examinee whose true ability is θi. The examinee’s score on item j, yij,

can be an integer between 0 and mj. Let us denote, for k = 0, 1, . . . ,mj,

dk(yij) =

 1 if yij = k

0 otherwise·
(5)

Let Pjk(θi) = P (yij = k) = P (dk(yij) = 1) = E(dk(yij)) (6)

denote the probability that the score of examinee i on item j is equal to k. Equations 5 and

6 subsume items modeled by any common IRT model for appropriate choices of Pjk(θi).

For example, if item j is polytomous and if the generalized partial credit model (GPCM;

Muraki, 1992) is used for the item, then Equations 5 and 6 subsume the item (and the

GPCM) for

Pjk(θi) =
exp[

∑k
h=0 aj(θi − bjh)]∑mj

c=0 exp[
∑c

h=0 aj(θ − bjh)]
,

where aj’s are the slope parameters and bjh’s are the location parameters. If item j is

dichotomous, then mj becomes equal to 1, and, as a result, yij can be 0 or 1; then, for

example, if the 3PLM is used for the item, then Equations 5 and 6 subsume the item (and

the 3PLM) for

d0(yij) = 1− yij, d1(yij) = yij, Pj0(θi) = 1− Pj(θi), and Pj1(θ) = Pj(θi), (7)

where Pj(θi) was defined in Equation 1.

Note that MFTs include as special cases tests with only dichotomous items, tests with

only polytomous items with the same number of response categories, and tests with only

polytomous items with varying number of response categories (because mj is allowed to

vary over j).
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Review of the Extension of ζ2 to MFTs (Sinharay, 2015)

Sinharay (2015) suggested the following extended version of ζ2 for use with MFTs:

ζ̃2 =

∑J
j=1

[
E(yij |θi)
mj

− yij
mj

] [
E(yij |θi)
mj

− U(θi)
]

√∑J
j=1

V (yij |θi)
m2

j

[
E(yij |θi)
mj

− U(θi)
]2 , (8)

where U(θi) = 1
J

∑J
j=1

E(yij |θi)
mj

. The statistic ζ̃2 was found to have considerably smaller

power (often by a margin of 0.10 under some conditions) in the simulations in this paper

compared to the extensions suggested later—so ζ̃2 is not considered in the remaining of this

paper.

Review of the Asymptotic Standardization of PFSs for MFTs

Sinharay (2016c) considered, for MFTs, only those PFSs that are of the form

T (θi)√
Var(T (θi))

(9)

for T (θi) =
J∑
j=1

mj∑
k=0

[dk(yij)− Pjk(θi)]wjk(θi), (10)

where wjk(θi) is a real-valued weight function. For example, the lz statistic for polytomous

items (Drasgow et al., 1985) is of the form given in Equation 9 for wjk(θi) = logPjk(θi).

The variance Var(T (θi)) is equal to
∑J

j=1w
′
j(θi)Dj(θi)wj(θi), where

wj(θi) = (wj0(θi), wj1(θi), . . . , wjmj
(θi))

′

and Dj(θi) = the covariance matrix of (d0(yij), d1(yij), . . . , dmj
(yij))

′·

The covariance matrix Dj(θi) is given by

Dj(θi) =


Pj0(θi)(1− Pj0(θi)) −Pj0(θi)Pj1(θi) . . . −Pj0(θi)Pjmj

(θi)

−Pj1(θi)Pj0(θi) Pj1(θi)(1− Pj1(θi)) . . . . . .

. . . . . . . . . . . .

−Pjmj
(θi)Pj0(θi) −Pjmj

(θi)Pj1(θi) . . . Pjmj
(θi)(1− Pjmj

(θi))

 ·
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Sinharay (2016c) showed that the asymptotic null distribution of the PFS in Equation 9,

with θi replaced by an estimate θ̂i, is not N (0, 1), but that of

T (θ̂i) + c′n(θ̂i)s0(θ̂i)√
Ṽar(T (θ̂i))

(11)

is N (0, 1) under three regularity conditions, where

Ṽar(T (θ̂i)) =
J∑
j=1

v′j(θ̂i)Dj(θ̂i)vj(θ̂i), (12)

for vj(θi) = (w̃j0(θi), w̃j1(θi), . . . , w̃jmj
(θi))

′,

that is, Ṽar(T (θ̂i)) is obtained by replacing wjk(θ̂i) in the expression of Var(T (θ̂i)) by

w̃jk(θ̂i), where

w̃jk(θ̂i) = wjk(θ̂i)− c′n(θ̂i)sjk(θ̂i), (13)

c′n(θ̂i) =

∑J
j=1

∑mj

k=0 P
′
jk(θ̂i)wjk(θ̂)∑J

j=1

∑mj

k=0 P
′
jk(θ̂)sjk(θ̂i)

, (14)

and θ̂i satisfies

s0(θ̂i) +
J∑
j=1

mj∑
k=0

[dk(yij)− Pjk(θ̂i)]sjk(θ̂i) = 0 (15)

for some functions s0(θ̂i) and sjk(θ̂i), where

P ′jk(θ̂i) = the first derivative of Pjk(θ̂i) with respect to θ̂i· (16)

Sinharay (2016c) suggested the l∗z statistic for MFTs that is an extension of the l∗z

statistic for dichotomous items (Snijders, 2001) and is of the form given by Equation 11 for

wjk(θi) = logPjk(θi). Expressions of P ′jk(θ̂i) for the common IRT models such as the 3PLM

and GPCM can be found in, for example, Tao, Shi, and Chang (2012). The condition

provided in Equation 15 is satisfied by the maximum likelihood estimate (MLE), weighted

maximum likelihood estimate (WLE; Warm, 1989), and modal a posteriori (MAP) estimate

of ability, and, for all these estimates,

sjk(θ̂i) =
P ′jk(θ̂i)

Pjk(θ̂i)
. (17)
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The quantity s0(θ̂i) can be computed as

s0(θ̂i) =


0 if θ̂i = MLE,

d log f(θ̂i)

dθ̂i
if θ̂i = MAP,

J (θ̂i)

2I(θ̂i)
if θ̂i = WLE,

(18)

where f(θi) is the prior distribution on θi, I(θi) is the information on θi, and

J (θi) =
∑

j

∑
k

P ′
jk(θi)P

′′
jk(θi)

P ′
jk(θi)

, where P ′′jk(θi) is the second derivative of Pjk(θi). The results

of Sinharay (2016c) are extensions of similar results suggested for dichotomous items

by Snijders (2001), who applied his results to derive the standardized l∗z statistic from

the unstandardized lz statistic (Drasgow et al., 1985) for dichotomous items. The three

regularity conditions of Sinharay (2016c) are satisfied by all common IRT models for

MFTs including combinations of the 1-, 2-, and 3-parameter logistic and probit models,

the GPCM, the partial credit model (Masters, 1982), and the graded response model

(Samejima, 1969). Tendeiro (2017) applied the extension of Sinharay (2016c) to suggest a

PFS l∗z(p) that can be applied to unfolding models.

Methods

Extensions of ζ1 and ζ2 to Mixed-format Tests

Let us define, for k = 0, 1, . . . ,mj,

Gjk =
1

n

n∑
i=1

Pjk(θi) and Gk =
1

Jk

∑
j∈Sk

Gjk,

where Sk is the set of items that have a score category of k and Jk is the size of Sk. Let us

define

P̄k(θi) =
1

Jk

∑
j∈Sk

Pjk(θi)·

Usually, Jk would be smaller than J . If all the items have the same number of score

categories, then Jk = J and Sk is the set of all items.

Then, for examinee i, an extended version of ζ1 for use with MFTs can be obtained as

ζ1 =

∑J
j=1

∑mj

k=0[Pjk(θi)− dk(yij)][Gjk −Gk]√∑J
j=1 f

′
j(θi)Dj(θi)fj(θi)

, (19)
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where fj(θi) = (Gj0 −G0, Gj1 −G1, · · · , Gjmj
−Gmj

)′,

and an extended version of ζ2 for use with MFTs can be obtained as

ζ2 =

∑J
j=1

∑mj

k=0[Pjk(θi)− dk(yij)][Pjk(θi)− P̄k(θi)]√∑J
i=1 g

′
j(θi)Dj(θi)gj(θi)

, (20)

where gj(θi) = (Pj0(θi)− P̄0(θi), Pj1(θi)− P̄1(θi), · · · , Pjmj
(θi)− P̄mj

(θi))
′·

A comparison of Equations 3 and 19 (or of Equations 4 and 20) shows that

• the probability of a correct answer in Equation 3 (or 4), Pj(θi), is replaced in Equa-

tion 19 (or 20) by Pjk(θi), the probability of a score equal to a specific score category.

• the binary item score yij in Equation 3 (or 4) is replaced in Equation 19 (or 20) by the

binary category score indicator dk(yij).

• G in Equation 3 is replaced by Gk in Equation 19 and P̄ (θi) in Equation 4 is replaced

by P̄k(θi) in Equation 20.

• As in Equation 3 (or 4), the denominator of Equation 19 (or 20) is the SD of the

numerator.

Thus, the extended versions of ζ1 and ζ2 for use with MFTs capture person misfit in

the same manner in which ζ1 and ζ2 capture misfit for dichotomous items, but involve

appropriate adjustments for polytomous items. The value of either of the extended version

of ζ1 and ζ2 is expected to be large and positive in the presence of person misfit.

A comparison of Equations 8 and 20 makes it clear that the former does not involve a

summation over each possible score category of the items whereas the latter does. Thus,

the statistic provided in Equation 8 involves the loss of some information, which may be

the reason of its smaller power compared to that provided in Equation 20.

To compute the above extended versions of ζ1 and ζ2 for a data set, θi has to be replaced

by an estimate θ̂i. If all the items on the test are dichotomous, then the right-hand side of

Equation 19 becomes equal to that of Equation 3 and the right-hand side of Equation 20
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becomes equal to that of Equation 4; a proof, which involves some algebra, is omitted, but

the proof is similar to the proof of Theorem 1 in Sinharay (2016c) and can be obtained

upon request from the author.

Asymptotic Standardization of the Suggested Extensions

The extended versions of ζ1 (Equation 19) and ζ2 (Equation 20) are both special cases

of the PFS that was considered in Sinharay (2016c) and can be expressed using Equation 9

for

wjk(θi) = −(Gjk −Gk) and wjk(θi) = −(Pjk(θi)− P̄k(θi)), (21)

respectively. Thus, when θi is replaced by its MLE, WLE, or MAP, denoted as θ̂i, the

asymptotic standardization/correction suggested by Sinharay (2016c) can be applied to

either of ζ1 and ζ2 to obtain the corresponding asymptotic standardized/corrected versions.

Let us denote these standardized/corrected versions as ζ∗1 and ζ∗2 , respectively, that is,

ζ∗1 =
T (θ̂i) + c′n(θ̂i)s0(θ̂i)√

Ṽar(T (θ̂i))

where wjk(θ̂i) = −(Gjk −Gk), (22)

and ζ∗2 =
T (θ̂i) + c′n(θ̂i)s0(θ̂i)√

Ṽar(T (θ̂i))

where wjk(θ̂i) = −(Pjk(θi)− P̄k(θi)), (23)

and T (θi), Ṽar(T (θ̂i)), c
′
n(θ̂i), and s0(θ̂i) are defined in Equations 10, 12, 14, and 18,

respectively.

Asymptotic Null Distributions of ζ∗1 and ζ∗2

Sinharay (2016c) proved in the context of MFTs that if a PFS is of the form given

by Equation 9 for some wjk(θi), then the asymptotic null distribution of its standardized

version provided in Equation 11 is N (0, 1) under three regularity conditions. Because both

ζ1 and ζ2 for MFTs are of the form given by Equation 9 for wjk(θi)’s given by Equation 21,

the proof of Sinharay (2016c) implies that ζ1 and ζ2 do not have a standard normal

asymptotic null distribution, but that their standardized versions ζ∗1 and ζ∗2 provided in

9



Equations 22 and 23 have a standard normal asymptotic null distribution under three

regularity conditions. The regularity conditions are mild and satisfied by the IRT models

commonly used for MFTs.

A test with only polytomous items with the same number of response categories for all

items or a test with only polytomous items with a varying number of response categories

is a special case of a MFT; thus, the suggested PFSs ζ∗1 and ζ∗2 have a standard normal

asymptotic null distribution for such tests as well. If a test includes only dichotomous items,

then the suggested ζ∗1 and ζ∗2 statistics becomes identical to the correponding asymptotically

standardized versions (for dichotomous items) suggested in Sinharay (2016b) and has a

standard normal asymptotic null distribution. Sinharay (2016c) showed that the PFSs

obtained by removing the term c′n(θ̂i)s0(θ̂i) from the numerator of Equation 11 also have a

standard normal asymptotic null distribution; however, the term c′n(θ̂i)s0(θ̂i) is included in

the remaining of this paper.

Computations

Given the data, an IRT model, and the estimated item parameters, the computation of

ζ∗1 and ζ∗2 for an examinee involves the computation of the quantities/expressions provided

in the left column Table 1, in the same order as that of the rows of the table, using the

formulas provided in the right column of the table.

A Simulation Study

The Type I error rate and power of ζ1, ζ2, ζ
∗
1 and ζ∗2 were examined for a variety of

simulated MFTs. The simulation study also included the l∗z statistic (Sinharay, 2016c) that

is another asymptotically corrected PFS (like ζ∗1 and ζ∗2 ) for use with MFTs.

Design of the Simulation

The simulation study involved three levels of test length (12 items, 30 items, and 60

items) that represented short, moderate, and long tests. Each generated data set involved

two sets of items, a set of dichotomous items and a set of polytomous items, which resulted

10



Table 1. The quantities that need to be computed in order to compute ζ∗1 and ζ∗2 .

Compute Using

θ̂i (MLE, WLE, or MAP) The scores, the item parameters and a maximization
algorithm such as the Newton-Raphson algorithm

dk(yij) Equation 5

Pjk(θ̂i) Equation 6

sjk(θ̂i) Equation 17

s0(θ̂i) Equation 18

wjk(θ̂i) Equation 21

P ′jk(θ̂i) Equation 16

c′n(θ̂i) Equation 14

w̃jk(θ̂i) Equation 13

T (θ̂i) Equation 10

Ṽar(T (θ̂i)) Equation 12
ζ∗1 and ζ∗2 Equations 22 and 23

in the data set being like one arising from a MFT. The number of polytomous items was

4, 10, and 20, respectively (that is, one-third), for the three test lengths. The number of

response categories for each polytomous item was fixed at three with possible scores being 0,

1, and 2. Scores on dichotomous and polytomous items were generated using the 3PLM and

GPCM, respectively. The true slope parameters of all items were generated, as in Glas and

Dagohoy (2007), from a log-normal distribution with respectively 0 and 0.25 as the mean

and SD of the logarithm of the variable. The true difficulty and true guessing parameters for

the dichotomous items were generated from a N (0, 1) and a Uniform(0.05,0.3) distribution,

respectively. The true location parameters of the polytomous items were generated from

N (−1, 0.5) and N (1, 0.5) distributions, respectively, as in Chon, Lee, and Dunbar (2010).

To compute the Type I error of the PFSs, score patterns that fit the IRT

(3PLM+GPCM) model were generated. To compute the power of the PFSs, score patterns

that are “corrupted” and do not fit the IRT model were generated in several ways. The item

parameters are assumed known; because of this assumption, the power does not depend on

the number of examinees in a data set whose score patterns were corrupted—so the score

patterns of all examinees were corrupted in each data set used to compute power.

11



As in other simulation studies on PFA (e.g., Glas & Meijer, 2003; Sinharay, 2016c; van

Krimpen-Stoop & Meijer, 2002), corrupted score patterns reflected “lack of motivation”

or “item disclosure/preknowledge”. When “lack of motivation” was simulated, the score

patterns of all examinees involved lack of motivation on 1
3

or 1
6

of all items. It was assumed,

as in, for example, Glas and Meijer (2003), that the dichotomous items on which an

examinee lacks motivation are the easiest among all the dichotomous items. The probability

of a correct response to a dichotomous item on which an examinee lacks motivation was set

to 0.2 as in Glas and Meijer (2003). For a polytomous item under “lack of motivation”, 2.5

was subtracted from the examinee ability before generating a score on the item—it was

found from a preliminary simulation that this reduction of 2.5 was somewhat equivalent

on an average to setting the probability of a correct answer on a dichotomous item to 0.2.

2 When “item disclosure” was simulated, the score patterns of all examinees involved the

assumption that 1
3

or 1
6

of all items were disclosed to the examinee. It was assumed, as in

Glas and Meijer (2003), that the dichotomous items on which item disclosure occurs are the

most difficult among all the dichotomous items. The score on a disclosed item (dichotomous

or polytomous) was set equal to mj, the highest possible score on the item.

For each simulation condition (where an example of a simulation condition is “12

items and lack of motivation on 1
6

items”), 1,000 data sets with 1,000 examinees each

were simulated; the true item parameters were simulated once for each of the 1,000 data

sets. The true θi’s of the examinees were uniformly drawn from one of the following 9

values: –2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, and 2.0. This design, which was also used by

researchers such as Snijders (2001) and van Krimpen-Stoop and Meijer (1999), allows the

computation of the Type I error rate and power at these θ-values accurately. The Type I

error rates at levels of 1% and 5% for a PFS at a specific θ-value for a test length was

computed as the proportion of score patterns fitting the IRT model under that test length

2Consider a dichotomous item with 1, 0, and 0.15 as the estimated slope, difficulty, and guessing

parameters—these values are all close to the average of the generating item parameters—so the item can be

considered as an average item. The probability of a correct answer on the item is 0.58 for ability 0 (average

ability). To make the probability of a correct answer equal to 0.2, the ability has to be smaller than -2.6.
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with that θ-value for which the PFS was statistically significant (under a standard normal

null distribution assumption). Thus, the Type I error rate at any of the nine values of θi is

computed from about 111,111 (≈ 1000×1000/9) examinees for any given test length. The

standard error is approximately 0.0003 when the Type I error is close to 0.01 and 0.0007

when the Type I error is close to 0.05; that is because, for example, when the Type I error is

close to 0.01, the corresponding standard error is equal to
√

(0.01× 0.99)/111111 ≈0.0003.

The power at 5% level for a PFS at a θ-value for a simulation condition was computed

as the proportion of the corrupted score patterns under that simulation condition with

that θ-value for which the PFS was statistically significant (under a standard normal null

distribution assumption) at that level. Thus, the power at each ability was computed from

about 111,111 (≈1,000×1,000/9) examinees in any simulation condition. The standard

error for any value of power is always smaller than 0.0015 (the maximum occurring near

power values of 0.5).

Computations

Fortran 90 programs written by the author were used for the computation of the

estimates of ability and the PFSs.

For any simulation condition, the following steps were repeated 1,000 times:

1. Simulate a set of true item parameters; simulate 1,000 true ability values (representing

1,000 examinees) uniformly from the nine above-mentioned values.

2. Use the above true item and ability parameters and the IRT model (3PLM+GPCM) to

simulate the item scores on a data set; simulate score patterns from the IRT model for

simulation conditions to compute the Type I error rate and simulate corrupted score

patterns for simulation conditions to compute the power.

3. Compute θ̂i of all the examinees from the data set using the true item parameters.

4. Compute ζ1, ζ2, ζ
∗
1 , ζ∗2 , and l∗z for each examinee in the data set using θ̂i and the true

item parameters. Compute the p-values corresponding to these PFSs under a standard

normal null distribution assumption.

13



Results: Null Distributions of the PFSs
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Figure 1. Null Distributions of the PFSs for three values of ability for the 60-item test.

The top three panels of Figure 1 show the distributions of the observed values of

ζ∗1 (a line with dots of regular font) and ζ1 (line with bold dots) computed from all the

response patterns that fit the IRT model and were simulated using true abilities 0, 1, and 2

(mentioned in the titles of the panels) for 60-item tests. The distributions for true ability

values of -1 and -2 are very similar to those for true ability values of 1 and 2, respectively,

and are not shown here. The density of the standard normal distribution is also shown

using a solid line. The top panels of the figure show that the distributions of ζ1 and ζ∗1

are virtually indistinguishable for ability=0, but differ for non-zero values of the ability.

The top panels of the figure also show that the right tail of the distribution of ζ1 is lighter
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than that of the standard normal distribution for values of the PFS between 1.0 and 2.0

(roughly)—this phenomenon is expected to manifest itself as ζ1 being conservative for true

ability of 1.0 or more at 5% level (note that 1.645, the 95th percentile of the standard

normal distribution, lies between 1.0 and 2.0). In contrast, the right tail of the distribution

of ζ∗1 follows that of the standard normal distribution more closely for values between 1.0

and 2.0—so the Type I error rates of ζ∗1 are expected to be close to the nominal level at 5%

level. However, for values of the PFSs larger than 2 (that is close to the 2nd percentile of

the standard normal distribution), the distribution of ζ∗1 has a heavier tail compared to the

standard normal distribution—so the PFS is expected to have a Type I error rate slightly

larger than the nominal level at levels around 1%.

The bottom three panels of Figure 1 show the distributions of the observed values of

ζ∗1 , ζ∗2 , and −l∗z (the negative of −l∗z is plotted so that a large value of each PFS plotted in

these panels indicates a person misfit) for true abilities of 0, 1, and 2. The standard normal

distribution is also shown as a solid line. The three distributions are quite close in the

bottom left panel, but slightly differ, especially for PFS-values larger than 2, in the bottom

middle and bottom right panels.

Results: Type I Error Rates

The Type I error rates (and power) of the PFSs did not depend on whether the

MLE (truncated between -4.0 and 4.0), WLE, or MAP was used as the ability estimate in

the computations in this paper. Therefore, only the results for the MLEs will be reported

from the simulation study. Figure 2 shows the Type I error rates of the five PFSs for all

test lengths for significance levels of 1% and 5%. The title of each panel denotes the test

length and the level of significance. In each panel, the true examinee ability is shown along

the X-axis, and the Type I error rate is shown along the Y-axis. Note that the range of

the Y-axis is the same in the three panels on the left (all corresponding to 1% significance

level) and the same in the three panels on the right (all corresponding to 5% significance

level). For each PFS, the 9 values of the Type I error rate (at true ability of -2.0, -1.5,

-1.0,...,1.5, and 2.0), shown using a solid circle, solid square, hollow circle, hollow square, or
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Figure 2. Type I Error Rates for all test lengths at 1% and 5% levels.
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solid triangle (for ζ∗1 , ζ∗2 , ζ1, ζ2, and l∗z , respectively), are joined using a dashed line in each

panel. A horizontal solid line denotes the significance level in each panel.

Figure 2 shows that the Type I error rates of the PFSs are close to those of each other

around true ability of 0. However, the Type I error rates of the PFSs become divergent as

the true ability becomes extreme. Figure 2 further shows that:

• The relative performance of the PFSs at 1% level is very similar to that at 5% level

• The Type I error rates of ζ1 are smaller than those of ζ∗1 and those of ζ2 are smaller

than those of ζ∗2 .

• The Type I error rates of ζ∗2 are smaller than those of ζ∗1 .

• For negative true abilities, the Type I error rates of l∗z are closest to the nominal level

among the three asymptotically corrected PFSs.

• For positive true abilities, the Type I error rates of ζ∗2 are closest to the nominal level

among the three asymptotically corrected PFSs.

• The Type I error rates of l∗z often exceed the significance level substantially, especially

at 1% level and for large positive abilities. The inflation of the Type I error rates of

l∗z at small significance levels has been observed by several researchers such as Snijders

(2001), van Krimpen-Stoop and Meijer (1999), and Sinharay (2016c).

• The Type I error rates of ζ∗1 and ζ∗2 are also inflated. Compared to l∗z , the extent of

Type I error inflation is slightly larger for ζ∗1 (thus, ζ∗1 has the largest Type I error rates

on average among the PFSs considered here) and slightly smaller for ζ∗2 . The greatest

extent of inflation is observed at extreme true abilities.

• The extent of inflation of Type I error rates is smaller at 5% level compared to 1%

level.

• The Type I error rates of ζ1 and ζ2 are slightly larger than the nominal level around

true ability of 0, but become smaller as true ability becomes more extreme, and are

sometimes smaller than the nominal level for extreme true ability.
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• For 60-item tests and 5% level, the Type I error rates of all the PFSs are smaller than

0.06 for all true abilities.

Results: Distribution for Short Tests

The Type I error rates of ζ∗1 and l∗z , respectively, were found to rise sharply, especially

at 1% level, for 12-item tests in Figure 2 for true ability of -2 and 2, respectively. Figure 3

shows the distributions of the observed values of ζ∗1 , ζ∗2 , and −l∗z for all the response patterns

that fit the IRT model and were simulated using true abilities of -2, -1, 0, or 2 (shown in

the title of each panel) for 12-item tests. The density of the standard normal distribution is

also shown using a solid line. The figure shows that for 12-item tests, the null distributions

of ζ∗1 , ζ∗2 , and l∗z deviate from the standard normal distribution for all the true abilities

and the deviation becomes larger as the true ability becomes more extreme. It seems that

overall, the distribution of ζ∗2 is closer to the standard normal distribution compared to ζ∗1

and l∗z—this is most clear in the bottom right panel where the distributions of ζ∗1 and l∗z

are much taller than that of the standard normal distribution. The small peaks for ability

larger than 2 for ζ∗1 in the top left panel and −l∗z in the bottom right panel show that there

are considerably more number of values of ζ∗1 and −l∗z larger than 2.0 in these cases than

can be expected from a standard normal variable. This phenomenon results in their large

Type I error rates in those cases (for true ability of -2 for ζ∗1 and 2 for l∗z , both for 12-item

tests). Also note that the empirical distribution of l∗z for a test with six dichotomous

items, shown in Figure 2B of Meijer and Tendeiro (2012), was considerably different from a

standard normal distribution and looks very much like the bottom right panel of Figure 3 of

this paper. However, Figure 2B of Meijer and Tendeiro (2012) or Figure 3 of this paper do

not provide any evidence against the asymptotic normality of l∗z , ζ
∗
1 , or ζ∗2 ; the asymptotic

normality of these PFSs holds for long tests, as noted by Meijer and Tendeiro (2012)—so it

is natural that the normality did not hold for a 6-item test in Meijer and Tendeiro (2012)

and for the 12-item test in this paper.

Even though the distribution of each of ζ∗1 , ζ∗2 , and l∗z depart from a standard normal

distribution for short tests, Figure 3 (and Figure 2 to a certain extent) shows that among
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Figure 3. Null Distributions of ζ∗1 , ζ∗2 , and −l∗z for 12-item Tests.

these three PFS, the null distribution of ζ∗2 is closest to a standard normal distribution for

short tests. Therefore, these figures show some evidence that ζ∗2 may be preferred as a PFS

over l∗z and ζ∗1 for short tests.

19



●
●

●
●

●

●

●
●

●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item Disclosure 1/6th

Ability

P
ow

er

●

●

●

●

●

●

●
● ●

●

●

ζ*1

ζ*2

ζ1

ζ2

l*z

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item Disclosure 1/3rd

Ability

P
ow

er

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lack of Motivation 1/6th

P
ow

er

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lack of Motivation 1/3rd
P

ow
er

●

●

●

●

●

●

●

●

●

Figure 4. Power at 5% level for 12-item Tests.

Results: Power

Figures 4 to 6 show the values of power at 5% level for the different test lengths and

different types of misfit. Each figure (representing a test length) shows the power under

four types of misfit. The vertical axis in each panel of these figures ranges from 0 to 1. The

figures show that ζ∗1 is always more powerful than ζ1 and ζ∗2 is always more powerful than
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Figure 5. Power at 5% level for 30-item Tests.

ζ2. In addition, these figures show that

• Either one among ζ∗1 and ζ1 is more powerful than both of ζ∗2 and ζ2 on some occasions,

such as for θ < 0 in the top left panel of Figure 4 and for θ > 0 in the bottom left

panel of Figure 4
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Figure 6. Power at 5% level for 60-item Tests.

• Either one among ζ∗2 and ζ2 is more powerful than both of ζ∗1 and ζ1 on some other

occasions, such as for −1 < θ < 1 in the top right panels of Figures 4 and 5

• The power of all of ζ∗1 , ζ∗2 , and ζ2 are very close in the two rightmost panels of Figures 5

and 6, that is, when the test is at least moderately long and when the percentage of
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aberrant responses is high

• The power of l∗z is larger than all of ζ∗1 , ζ1, ζ
∗
2 , and ζ2 on a few occasions (e.g., for

ability smaller than -1 in the top right panel of Figure 4), but is smaller than that of

one of the others on most other occasions and is the smallest in several cases (such as

around θ = 0 in each panel in Figure 5).

Discussion of the Comparative Performance of the PFSs

The above results show that there is no single PFS that outperforms the others for

all simulation conditions. For example, the Type I error rates of ζ∗1 are often inflated, but

the power of ζ∗1 is often the largest; and the Type I error rates of l∗z are often very close

to the nominal level, but the power of l∗z is often smaller than that of ζ∗1 and ζ∗2 on most

occasions. This finding supports the statement of Tendeiro and Meijer (2014, p. 257) that

different PFSs may have different sensibility to detect aberrant behavior under various

testing conditions and probably imply that one should use all of ζ∗1 , ζ∗2 , and l∗z to assess

person fit for any given MFT and combine information from them (and potentially from

other information sources) to make an overall decision on person fit for any given examinee.

However, the performance of ζ∗2 seems to be the best overall by a small margin. The

Type I error rates of ζ∗2 , although slightly inflated occasionally (especially at 1% level), are

the least inflated among those of ζ∗1 , ζ∗2 , and l∗z ; also, the Type I error rates of ζ∗2 at both

1% and 5% levels, though inflated, are almost always satisfactory according to Cochran’s

criterion for robustness (Cochran, 1952) that specifies that Type I error rates below 0.06

and 0.015 are satisfactory at 5% and 1% levels, respectively. Further, Figure 3 shows that

for short tests, the distribution of ζ∗2 is closest to the theorized standard normal distribution

among the three asymptotically standardized PFSs considered in this paper. Further, the

power of ζ∗2 is often the largest, especially for the long tests, among all the PFSs considered

in this paper.
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Additional Simulations Where Item Parameters are Estimated

The above simulations were performed under the assumption that the true item

parameters are known. This assumption is reasonable in several cases such as those with

large samples for which accurate and precise estimates of item parameters are available

and is common in existing simulation studies involving PFSs (e.g., Snijders, 2001; van

Krimpen-Stoop & Meijer, 1999). However, in practice, true item parameters are never

known and item parameters have to be estimated from the data. Therefore, an additional

simulation was performed where item parameters were estimated. The simulation involved

1,000 repetitions of the following steps:

1. Simulate a set of true item parameters.

2. Simulate 1,000 true ability values (representing 1,000 examinees) for a data set uni-

formly from the nine above-mentioned values.

3. Use the above true item and ability parameters and the IRT model (3PLM+GPCM)

to simulate a data set.

4. Estimate the item parameters using the marginal maximum likelihood algorithm from

the data set.

5. Compute θ̂i of all the examinees from the data set using the estimated item parameters.

6. Compute ζ1, ζ2, ζ
∗
1 , ζ∗2 , and l∗z for each examinee in the data set using θ̂i and the

estimated item parameters. Compute the p-values corresponding to these PFSs under

a standard normal null distribution assumption.

As in, for example, Glas and Meijer (2003), power was computed from data sets

that included 90% examinees whose item-scores were simulated from the IRT model

(3PLM+GPCM) and 10% examinees whose item-scores involved one type of misfit (lack of

motivation or item disclosure).

The Type I error rates of the PFSs from this set of simulations were very similar to

those in Figure 2 and are not reported here. The values of power of the PFSs from this set
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of simulations are slightly smaller in general than those shown in Figures 4 to 6. Figure 7

shows the power at 5% level of the PFSs for 60-item tests when item parameters were

estimated. The values of power in Figure 7 are mostly smaller than those in Figure 6,
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Figure 7. Power at 5% level for 60-item tests when item parameters were estimated.

especially in the top left and bottom right panels. For example, while the power of l∗z for

true ability of 0 is about 0.98 in the bottom right panel of Figure 6, the corresponding value
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of power is about 0.74 in the bottom right panel of Figure 7. However, the comparative

performance of the PFSs is similar in Figure 6 and Figure 7 in that ζ1 and ζ2 are less

powerful than ζ∗1 and ζ∗2 , respectively, and it is difficult to pick an overall winner among

the PFSs—no PFS has the largest power in all cases and each of the asymptotically

standardized PFS has the largest power in some cases. The difference in power between ζ1

and ζ∗1 (and also between ζ2 and ζ∗2 ) is smaller in Figure 7 than in Figure 6. Overall, the

estimation of item parameters does not affect the comparative performance of the PFSs,

especially of l∗z , ζ
∗
1 and ζ∗2 .

Application to Real Data

Application 1: A Test with Only Polytomous Items

Let us consider the data set from NEO Personality Inventory that was analyzed by

Glas and Dagohoy (2007) and Sinharay (2016c). 3 The NEO Personality Inventory is a

personality test designed to provide a general description of normal personality that is

relevant to clinical, counseling, and educational situations. The inventory consists of five

broad domains. Each domain is measured by 48 items each of which is rated on a five-point

scale. Data from 1,168 individuals on the neuroticism domain was analyzed in Glas and

Dagohoy (2007) who split the 48 items on the domain into three sub-tests. The GPCM was

fitted to each subtest separately and ζ1, ζ
∗
1 , ζ2, ζ

∗
2 , and l∗z were computed for the examinees.

The percent of individuals for which the PFSs were significant (under the assumption of

a standard normal null distribution) at 5% significance level for the three subtests are

provided in Table 2.

Table 2. The proportion of PFSs significant at 5% level for the first application.

Subtest ζ1 ζ∗1 ζ2 ζ∗2 l∗z
1 7.6 8.2 7.4 7.5 11.4
2 7.5 7.6 7.6 7.7 11.6
3 6.6 7.2 7.8 8.0 11.5

3The author is grateful to Cees A. W. Glas for generously sharing the data set.
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The percent is largest for l∗z for each subtest. However, the true person-misfit status is

unknown for the data set—so it is impossible to state if the larger percent for l∗z indicates

its larger power or larger Type I error rate. The percent significant for each of ζ1 and ζ2 is

slightly smaller than that of the corresponding asymptotically standardized PFS for each

subtest.

Application 2: A Mixed-format Test

The PFSs were computed using data from one form of a licensure examination. The

data set was analyzed in several chapters of Cizek and Wollack (2017). The test form

includes 170 operational items that are dichotomously scored. Item scores on the form

were available for 1,644 examinees. The licensure organization (that administers the

examination) flagged, using a variety of statistical analysis and an investigative process

that brought in other information, 48 individuals on the form as possible cheaters. The

examinees flagged by the licensure organization can be considered truly aberrant for all

practical purposes because of the rigorous nature of the flagging process of the organization.

Because the test included only dichotomous items, an (artificial) MFT was created

by pooling 20 pairs of randomly chosen items into 20 3-category polytomous items and

combining them with the 130 remaining items in the data set. Let’s consider the polytomous

item arising from a given item pair; an examinee is assigned a score of 0 if he/she answered

both items in the pair incorrectly, is assigned a score of 1 if he/she answered exactly one

item in the pair correctly, and is assigned a score of 2 if he/she answered both items in the

pair correctly. The Rasch model is operationally used in the assessment; the model fitted

to the resulting data set (with 130 dichotomous items and 20 three-category polytomous

items) was a combination of the Rasch model for the dichotomous items and the partial

credit model (Masters, 1982) for the polytomous items. The difficulty-parameters were

estimated from the resulting data set and were used in the PFA. The MLE (truncated

between -4.0 to 4.0) was used as the estimate of the examinee ability.

The proportions of examinees for which ζ1, ζ
∗
1 , ζ2, ζ

∗
2 , and l∗z were significant at 5%

significance level are provided in Table 3. The first row of numbers provides the proportions
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Table 3. The proportion of PFSs significant at 5% level for the second application.

Examinees ζ1 ζ∗1 ζ2 ζ∗2 l∗z
All 0.08 0.09 0.08 0.08 0.11

Flagged 0.15 0.17 0.15 0.17 0.21

among all examinees. The second row of numbers provides the proportions among the 48

examinees who were flagged by the licensure organization; thus, for example, the proportion

of 0.17 for ζ∗1 in the second row indicates that among the 48 examinees flagged by the

licensure organization, ζ∗1 was significant for nine examinees (note that 8/48≈0.17).

Table 3 shows that the results for ζ1, ζ2, ζ
∗
1 , and ζ∗2 are very similar although the

proportion significant among the flagged examinees for each of ζ1, and ζ2 is slightly smaller

than of equal to that of the corresponding asymptotically standardized PFS. Table 3 also

shows that the proportion significant for each PFS is about twice among the examinees

flagged by the licensure organization compared to among all examinees—this result provides

some evidence that the PFSs provide useful information.

Conclusions

This paper suggested four new PFSs—the extensions to MFTs of ζ1 and ζ2 (Tatsuoka,

1984) and their asymptotically corrected versions. The PFSs also apply to a test including

only polytomous items. The asymptotically corrected versions were theoretically proved

to follow the standard normal distribution asymptotically under no person misfit. In a

simulation study, the Type I error rates of the corrected versions were found close to the

nominal level at 5% level of significance, but slightly inflated at 1% level of significance.

The corrected versions have slightly larger power than the corresponding un-corrected

versions. In a real-data example where some score patterns were known to be aberrant,

the PFSs provided useful information by flagging aberrant examinees at a larger rate than

others. All these properties are in consonance with those for the existing asymptotically

corrected PFSs (Magis, Beland, & Raiche, 2014; Snijders, 2001; Sinharay, 2016c, 2016b).

Given the increasing importance of polytomous items (e.g., Darling-Hammond & Adamson,
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2010) and PFA, the suggested PFSs promise to help practitioners.

The suggested PFSs are appropriate as PFSs when an investigator wants to test

against an unspecified general alternative and may not be the most appropriate PFS for all

applications of PFSs. For example, if one needs a PFS for a computerized-adaptive test, a

PFS such as that of van Krimpen-Stoop and Meijer (2002) will be the most appropriate. If

the anticipated model violation is more specific, a PFS such as the Lagrangian-multiplier

statistic (Glas & Dagohoy, 2007) may be more powerful.

The suggested PFSs were used for PFA in this paper. However, they can be used for

other purposes as well. For example, Tatsuoka (1984) used ζ1 and ζ2 for dichotomous items

for diagnosing student misconceptions and all the suggested PFSs can be used for those

purposes as well; ζ∗1 and ζ∗2 for MFTs, which were proved to follow an asymptotic standard

normal null distribution, would help detect student misconceptions accurately.

There are several limitations of this paper and, consequently, several additional topics

that can be investigated further. First, the Type I error rates of ζ∗1 and ζ∗2 were found to be

larger than the nominal level for significance levels around 1%. Improvement on this

Type I error inflation is a possible future research topic. It is possible to perform Monte

Carlo simulations, as was performed by Sinharay (2016a) and van Krimpen-Stoop and

Meijer (1999) for dichotomous items, to obtain an empirical null distribution of the PFSs.

Second, Figure 2 shows that for short tests, the Type I error rates of ζ∗1 rapidly increases as

the true ability becomes smaller than -1.5 and the Type I error rates of l∗z rapidly increases

as the true ability becomes larger than 1.5. It would be helpful to be able to explain this

phenomenon. Third, it would be interesting to explore ability estimates other than the

MLE, WLE, and MAP that are considered in this paper; robust ability estimates would be

prime candidates because they would be less influenced by unusual responses, which may

lead to larger power of the resulting PFSs. Sinharay (2016d) used robust ability estimates

with asymptotically corrected PFSs for dichotomous items. Fourth, it may be of interest to

examine the Type I error rate and power of the PFSs for more simulated and real data

sets. For example, factors such as spread of item difficulties and average item

discrimination often influence the power of PFSs in simulations (e.g., van Krimpen-Stoop
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& Meijer, 1999); however, these factors were not manipulated in the simulations here and

can be manipulated in future research. Finally, further research such as Conijn, Emons,

and Sijtsma (2014), Meijer, Niessen, and Tendeiro (2015), and Meijer and Tendeiro (2014)

should explore how PFA can be used in practice, for example, in high-stakes educational

tests.
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