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Starting with Woodworth and Thorndike’s classical experiment published in 1901, major periods in 
mathematics education throughout 20th century and on into the current century are reviewed in 
terms of competing epistemological and psychological paradigms that were operating within as well 
as across the major periods.  The periods were marked by attempts to make changes in school 
mathematics by adherents of the dominant paradigm.  Regardless of what paradigm was dominant, 
the attempts essentially led to major disappointments or failures.  What has been common across 
these attempts is the practice of basing mathematics curricula for children on the first-order 
mathematical knowledge of adults.  I argue that rather than repeat such attempts to make wholesale 
changes, what is needed is to construct mathematics curricula for children that is based on the 
mathematics of children.  Toward that end, I present several crucial radical constructivist research 
programs.   
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The accent must be on auto-regulation, on active assimilation – the accent must be on the activity 
of the subject. Failing this there is no possible didactic or pedagogy which significantly 
transforms the subject (Piaget, J., 1964). 

Mathematics Education—1900-1950 

Behaviorism and Faculty Psychology 
The classical experiment. The classical experiment by Woodworth & Thorndike (1901) at the 

beginning of the 20th Century introduced the “scientific movement” in education and it was 
considered as the death knell of faculty psychology, the doctrine of “mental discipline” (e.g., 
Whipple, 1930; Thorndike, 1922).  In faculty psychology, the mind was viewed as a collection of 
separate modules or faculties assigned to various mental tasks, such as reason, will, concentration, 
memory, or language and it was thought that training in one faculty would transfer to another.  As a 
result of their experiment, Woodworth & Thorndike (1901) concluded that, “The improvement in any 
single mental function rarely brings about equal improvement in any other function, no matter how 
similar, for the working of every mental function-group is conditioned by the nature of the data in 
each particular case” (p. 250).  The lack of transfer led Thorndike (1903) to develop his theory of 
identical elements: “The answer which I shall try to defend is that a change in one function alters any 
other only in so far as the two functions have as factors identical elements” (pp. 80-81).  Once this 
idea was accepted, “arithmetic was on its way to being analyzed into elements so that the stimulus-
response theories of Thorndike could be more readily applied” (Van Engen & Gibb, 1956, p. 1).  

Cartesian epistemology. There was also a separation or duality between the mind and the body 
in faculty psychology in that it was thought that mental discipline of the intellect would lead to 
control of the will and emotions, a duality that has become known as “Descartes error” (Damasio, 
1994, pp. 248)—“I think, therefore I am.”  It is interesting to me that this philosophical rationalism of 
faculty psychology was regarded as falsified by means of a “crucial experiment” that was conducted 
in the context of a competing paradigm, empiricism.i  Although I don’t wish to defend faculty 
psychology, in retrospect I believe that a basic reason why faculty psychology was abandoned 
transcended Woodworth and Thorndike’s classic experiment.  In empiricism, the doctrine that the 
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world imprints itself on the mind, there is a duality that is similar to the mind-body duality between 
an endogenic (mind centered) view versus an exogenic (world centered) view (Konold & Johnson, 
1991).  This mind-reality duality in the main explains why faculty psychology was rejected and why 
empiricism was so widely embraced.  In behaviorism, no explanation of mind was needed nor was it 
sought so there was already a major conflict in the two views of mind in faculty psychology and in 
the behaviorism of Woodworth and Thorndikeii.  That is, there was already a paradigmatic rejection 
of faculty psychology by the empiricists and the classical experiment corroborated the philosophical 
rejection.  Furthermore, in empiricism, something is true, “only if it corresponds to an independent, 
‘objective’ reality” (von Glasersfeld, 1984. p. 20).  So, the idea that the functioning of one faculty 
would be transferred to the functioning in another faculty would have to be validated by such 
functioning in objective reality, which is the crux of the classical experiment. 

Behaviorism and Progressive Education 
Progressive education. Although faculty psychology was abandoned as a psychological 

rationale in education, there was a competing paradigm to the scientific movement during the period 
of time that was known as Progressive Education.  Under the leadership of John Dewey, the 
Progressive Educational Association was formed in 1919 and it served as a counterpoint to the 
scientific movement.  Progressive Education promoted the idea of a child-centered education as well 
as other aspects of education.iii   As early as 1902 John Dewey wrote; 

Abandon the notion of subject matter as something fixed and ready-made in itself, outside of the 
child’s experience; cease thinking of the child’s experience as also something as hard and fast; 
see it as something fluent, embryonic, vital; and we realize that the child and the curriculum are 
simply two limits which define a single process.  Just as two points define a straight line, so the 
present standpoint of the child and the facts and truths of studies define instruction. (Dewey, 
1902, p. 11)   

This quotation might be interpreted as Dewey introducing a duality between the child and the subject 
matter. Dewey’s (1902) distinction here is the subject matter as known by the scientist and the 
subject matter as known by the teacher.  

Every subject thus has two aspects: one for the scientist as a scientist; the other for the teacher as 
a teacher.  These two aspects are in no sense opposed or conflicting.  But neither are they 
immediately identical.  (p. 22) 

For Dewey (1902), subject matter for scientists represented a given body of truths, whereas for the 
teacher,  

He is concerned not with the subject matter as such, but with the subject matter as a related factor 
in a total and growing experience.  Thus to see it is to psychologize it. (p. 23) 

Two concepts of number. Dewey’s emphasis on psychologizing subject matter was quite 
different than that of the behaviorists.  The difference is well illustrated in how Dewey and 
Thorndike regarded number. For McLellan & Dewey (1895), 

Number is not a property of the objects which can be realized through the mere use of the senses, 
or impressed upon the mind by so-called external energies or attributes…In the simple 
recognition, for example, of three things as three the following intellectual operations are 
involved: The recognition of the three objects as forming one connected whole or group—that is, 
there must be a recognition of the three things as individuals, and of the one, the unity, the whole, 
made up of the three things. (p. 24)  
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So, Dewey was not an empiricist.  Recognition is an indication of assimilation, which, for Piaget 
(1964), is the essential relation involved in learning.  Recognizing the three things as individuals is 
the result of using an operation of the mind, the unitizing operation (von Glasersfeld, 1981), and 
recognizing the three things as the one, the unity, is the result of using the operation of uniting the 
three things into a composite unity.  Unitizing sensory material from two or more sensory channels 
into experiential wholes stands in contrast to the assumption that the world imprints itself on the 
mind, an assumption on which Thorndike’s psychology of number was based. 

Thorndike (1922) identified three meanings of numbers—the series, collection, and ratio 
meanings—and he credited McLellan and Dewey for the ratio meaning.  However, he made no 
attempt to engage in an analysis of the operations of the mind that produce these meanings. Of the 
collection meaning, he wrote: 

Or we may mean by knowledge of the meaning of numbers, knowledge that two fits a collection 
of two units, that three fits a collection of three units, and so on, each number being a name for a 
certain sized collection of discrete things, such as apples, pennies, boys, balls, fingers, and the 
other customary objects of enumeration in the primary school. (pp. 2-3) 

As an empiricist, number was taken as a given in reality and imprinted itself on the mind through the 
senses. Rather than being concerned with the mathematical experience of the child, for Thorndike 
(1922), “The psychology of the elementary school subjects is concerned with the connections 
whereby a child is able to respond to the sight of printed words by thoughts of their meanings…” (p. 
xi).   

Thorndike’s influence. The influence that Thorndike had in mathematics education is illustrated 
in the twenty-ninth yearbook of the National Society for the Study of Education. 

Mainly, the main psychological basis is a behavioristic one, viewing skills and habits as fabrics 
of connections. This is in contrast, on the one hand, to the older structural psychology [faculty 
psychology]iv which has still to make direct contributions to classroom procedure, and on the 
other hand, to the more recent Gestalt psychology, which, though promising, is not yet ready to 
function as a basis of elementary education. (Knight, 1930, p. 5) 

Knight’s attempt to separate the behaviorist approach to elementary education and that of the faculty 
psychologists was spurious because it is difficult to distinguish faculty psychology’s educational 
model (mental discipline) and Knight’s development of a behavioristic educational model.  In faculty 
psychology, it was thought that the best way to strengthen the minds of younger students was through 
drill and repetition of what we might now call the basic skills in order to cultivate the memoryv, 
which is quite similar to Knight’s interpretation of Thorndike’s (1922) Psychology of Arithmetic.  
Thorndike thought that arithmetical knowledge should be treated as an organized interrelated system, 
whereas his students, of which Knight was one, focused on the mechanics of arithmetic (Van Engen 
& Gibb, p. 10).  Knight also wrote of avoiding progressive education in the same introduction to the 
yearbook. 

Some readers may feel that the spirit of this Yearbook is too conservative, that it lacks a bold and 
daring spirit of progressiveness.  There has been a conscious attempt to avoid the urging of any 
point of view not supported by considerable scientific fact. (Knight, 1930, p. 2) 

A contentious relationship.  The contentious relationship between progressive educators and 
educators who held the opinion that the function of the school was to train the working class, be they 
empiricist or faculty psychologists, appeared prior to the publication of the twenty-ninth yearbook.  
In 1918 Harold Rugg and John Clarke critically analyzed attempts to reconstruct ninth-grade 
mathematics and presented their own program in the last chapter of their study. “[T]he construction 
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of a continuous mathematical course, worked out around two basic principles, one mathematical and 
the other psychological” (p. 176) was a major component of their program.  They did cite a classic 
textbook series (Wentworth, Smith, & Brown, 1918) as an attempt to reconstruct ninth grade 
mathematics, but such texts were regarded as coming up short.  In a perusal of the cited text I found 
that basic algebra was as formal, rule bound, and manipulative as one would expect in a text designed 
to train students in algebra.  

The contentious relationship continued on after Rugg and Clarke’s 1918 study, this time directed 
toward Harold Rugg’s social study textbooks.  Rugg eventually became one of a small group of 
progressive educators at Teachers College, Columbia University where he published a social study 
textbook in 1929 from a social-justice perspective titled, “Man and his changing society,” that 
became widely used.  Being a social studies textbook, it was appropriate that there was a focus on 
social problems in the Unites States and the author encouraged students to explore potential 
solutions.  Rugg was eventually accused of socialism and conservative patriotic business groups who 
did not want school children raising questions about the capitalistic economic system censured his 
books.   

By the end of the decade Rugg's books and several others were condemned by the American 
Legion, the Advertising Federation of America, and the New York State Economic Council. In 
1940, in a speech to the leaders of the oil industry, H.W. Prentis, the President of the National 
Association of Manufacturers (NAM), complained that public schools had been invaded by 
"creeping collectivism" through social science textbooks that undermined youths' beliefs in 
private enterprise.vi  

Progressive education was repudiated and, during the decade of the 1950’s, it disintegrated as an 
identifiable movement in education.vii  Although the movement may have disintegrated, that doesn’t 
mean that the involved principles died with it.      

Mathematics Education 1950-1970: The Era of Modern Mathematics  
After World War II, wide spread concern for the state of the education of scientists and engineers 

emerged when compared with that of the Russians.  As a result, the mathematics community became 
integrally involved in the reeducation of college teachers of mathematics (Price, 1988).  The concern 
soon shifted to the education of precollege mathematics (and science) teachers, especially after the 
Soviet Union launched Sputnik I in October of 1957.  Buttressed by the National Science 
Foundation, a concerted effort was made by several mathematicians to upgrade the precollege 
mathematics curriculum in order to educate college capable students (CEEB, 1959; Price, 1988).  
Classical idealism (the doctrine that reality, or reality as we can know it, is fundamentally mental) 
replaced empiricism as the dominant philosophical position among the reformers and mathematics 
textbooks were written from the point of view of a mathematician’s mathematics (e.g., Allendoerfer 
& Oakley, 1959; School Mathematics Study Group, 1965).   

However, among the curriculum reformers the belief was, and it still is by most contemporary 
mathematicians, that mathematics is discovered rather than invented by human beings (Stolzenberg, 
1984).  So, despite a major shift from empiricism to idealism, Cartesian epistemology was still the 
prevailing epistemology of the curriculum developers and others primarily involved in the modern 
mathematics movement, including researchers in mathematics education.  Behaviorism was rejected 
and problem solving along with learning by discovery became the major psychological emphases 
(Pólya, 1945, 1981) for which Wertheimer’sviii (1945) work on productive thinking served as a basic 
psychological rationale.  Wertheimer considered productive thinking, or the solving of problems, as 
based on insight and criticized reproductive thinking such as repetition, conditioning, and habits, all 
of which are emphasized in behaviorism.   
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Teaching Modern Mathematics 
Interestingly enough, during the modern mathematics movement of the 1960’s, mathematics 

teachers in the main did not change their traditional, behavioristic ways of teaching mathematics. 
There were at least three reasons for this state of affairs.  First, mathematics teachers were not 
knowledgeable about what was purported to be the psychological emphases of the modern 
mathematics programs.  Institutes for mathematics teachers were held, but the institutes did not offer 
courses on problem solving or learning by discovery.  The primary emphasis in the institutes was on 
upgrading the mathematical preparation of mathematics teachers.ix,x  Second, the modern curricula 
emphasized mathematical structure and the logical, deductive presentation of ideas rather than 
problem solving and learning by discovery.xi There were minimal attempts to psychologize the 
subject matter in these ways, which was a major oversight because of the influence textbooks have 
on the classroom teaching of mathematics.  Finally, behaviorism is a common sense psychology.  
Although I would say that few mathematics teachers, including myself, had a working knowledge of 
Thorndike’s psychology of arithmetic or algebra, or of behaviorism more generally, being held 
accountable for four or five classes of 25-35 students per class can easily lead a teacher to using 
common sense psychology in teaching without being reflectively aware of doing so.  What I mean by 
a common sense psychology is amply demonstrated in the following citation from an introduction to 
Thorndike’s psychology of algebra. 

Suffice it to say here that it emphasizes the dynamic aspect of the mind as a system of 
connections between situations and responses; treats learning as the formation of such 
connections or bonds or elementary habits; and finds that thought and reasoning—the so-called 
higher powers—are not forces opposing those habits but are those habits organized to work 
together and selectively. (Thorndike, Cobb, Orleans, Symonds, Wald, & Woodyard, 1926, p. v) 

Piaget’s Genetic Structures as a Psychological Rationale 
It is very interesting that Piaget’s genetic structures and stage theory of cognitive development 

served as a psychological rationale for the modern mathematics programs at the elementary school 
level (Bruner, 1960).  This was primarily due to the logical-mathematical structural emphasis in the 
modern mathematics programs that left the programs without a psychological rationale.  Piaget’s 
constructivism did not serve as an epistemological basis for the modern mathematics programs nor 
was it even emphasized in a conference devoted to Piaget’s work and the modern programs that was 
held at Cornell University in 1964 (cf. Ripple & Rockcastle, 1964).  Instead, the interest was in 
Piaget’s stage theory and his formalizations of the thinking of children within the stages as can be 
seen by Bruner’s (1960) citation of Bärbel Inhelder, Piaget’s close collaborator, in The Process of 
Education: 

Basic notions in these fields are perfectly accessible to children of seven to ten years of age, 
provided that they are divorced from their mathematical expressions and studied through material 
the child can handle himself. (p. 43) 

Inhelder’s idea was that children in the concrete operational stagexii were ready to learn, and indeed 
could learn, “basic notions in these fields”.  This idea served as the basis of Bruner’s (1960) famous 
concept of the readiness to learn the basic structures of mathematics:   

Any subject can be taught effectively in some intellectually honest form to any child at any stage 
of development. (p. 33)    

Bruner (1960), however, conflated basic structures of mathematics and Piaget’s genetic structures 
when he referred to “less able students”:   
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Good teaching that emphasizes the structure of the subject is probably even more valuable for the 
less able students than for the gifted ones. (p. 9)   

By “less able students,” I take Bruner as referencing children in Piaget’s preoperational stage, 
children who’s thinking was not explained by Piaget’s Grouping structures.  In this quotation, he 
seemed caught in Cartesian anxiety.   

[Cartesian anxiety] is an anxiety that permeates all metaphysical and epistemological questions 
concerning the existence of a stable and reliable rock upon which we secure our thoughts and 
actions.  As Bernstein explains: “Either there is some support for our being, a fixed foundation 
for our knowledge, or we cannot escape the forces of darkness that envelope us with madness, 
with intellectual and moral chaos (p. 18).” (Konold & Johnson, 1991, p. 2)   

In spite of using Piaget’s psychology as a rationale for the emphasis on mathematical structure, 
Piaget was considered to be an observer rather than a teacher, and the elasticity of the limits of 
children’s minds was not considered as having been established:  

These reformers (and I speak now not only of SMSG) have been so successful in teaching 
relatively complex ideas to young children, and thus doing considerable violence to some old 
notions of readiness, that they have become highly optimistic about what mathematics can and 
should be taught in the early grades. (Kilpatrick, 1964, p. 129) 

I had no problem with Kilpatrick’s assertion for children who were in Piaget and Inhelder’s more 
advanced concrete operational stage.xiii   But I did not accept Bruner’s famous hypothesis about the 
readiness to learn for the “less able” children nor did I accept Kilpatrick’s assertion for children in 
Piaget’s preoperational stage.  Consequently, the way in which Piaget’s grouping structures might be 
relevant in the mathematics education of children became a major problem for me soon after I earned 
my Ph.D. from the University of Wisconsin in 1966.  At that point, research in mathematics 
education was still based in empiricism and to work scientifically meant to use experimental and 
statistical methods (Stanley & Campbell, 1963) in the test of hypotheses in a way that was quite 
similar to Thorndike and Woodworth’s classical experiment.   

Applying Piaget’s Psychology 
After joining the Department of Mathematics Education in 1967, I turned to working for a period 

of approximately eight years in an attempt to reject Bruner’s famous hypothesis concerning the 
readiness to learn mathematics for children who were in Piaget’s pre-operational stage.  In this effort, 
I functioned as an experimental researcher with little awareness that Piaget (1980) rejected 
empiricism.  

Fifty years of experience has taught us that knowledge does not result from a mere recording of 
observations without a structuring activity on the part of the subject. (Piaget, 1980, p. 23) 

My efforts were directed toward applying Piaget’s psychology in the mathematics education of 
preoperational children in a “scientific” manner. Although I experimentally rejected Bruner’s 
readiness hypothesis for these children (e.g., Steffe, 1966, 73), the children rather forcefully taught 
me that I had no insights into the psychology of their mathematical thinking (Steffe, 2012).  I 
considered myself as doing pseudo-science and making only accretional progress if I was making 
any progress at all.  The relationships with the mathematics students that I taught as a mathematics 
teacher was missing.  That is, my contributions to the mathematical thinking and reasoning of the 
children who were my “subjects” in the experiments was not being realized.      

So, rather than rely on Piaget’s Grouping structures as a psychology of the child, I returned to my 
identity as a mathematics teacher and taught two classes of first-grade children over the course of a 
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school year so the children could teach me how they think when engaging in mathematical activity 
(Steffe, Hirstein, & Spikes, 1976).xiv  The involved children taught me that counting was their 
primary and spontaneous way of operating in discrete quantitative situations and that counting could 
have quite different meanings for different children.  Piaget had not explained children’s counting, so 
this finding corroborated abandoning attempts to apply Piaget’s psychology in children’s 
mathematical education.  It also led to throwing off the straight jacket that controlled experimentation 
and statistical methodology had on my conception of doing science in mathematics education.  In 
fact, it led to developing the teaching experiment as a method of doing research and using teaching as 
a method of scientific investigation (Cobb & Steffe, 1983; Steffe, 1983; Steffe & Thompson, 2000b; 
Steffe & Ulrich, 2013).   

The shift to using teaching as a method of scientific investigation was a major shift in doing 
research and, to my knowledge, at the time it was unprecedented in the United States.  I learned later 
that researchers in the Academy of Pedagogical Sciences in the USSR had already used versions of 
teaching experiment in their work (Kilpatrick & Wirszup, 1975–1978).  Not only did their work 
provide academic respectability for what then was a major departure in the practice of research in 
mathematics education in the United States, it was also a departure in the goals of the research. In 
El’konin’s (1967) assessment of Vygotsky’s (1978) research, the essential function of a teaching 
experiment is the production of models of student thinking and changes in it. 

Unfortunately, it is still rare to meet with the interpretation of Vygotsky’s research as modeling, 
rather than empirically studying, developmental processes. (El’konin 1967, p. 36)  

So, the new problem that faced me was to construct explanations of the mental processes that are 
involved in children’s counting and, further, to construct explanations of how children might 
construct those mental processes.  I had constructed a typology of the units children create in 
counting that they taught me.  However, I could not explain the processes that are involved in 
children’s construction of these unit types other than Piaget’s account of children’s construction of 
what he called arithmetical units (Piaget & Szeminska, 1952).  That is, I realized that it was I who 
had to construct a psychology of the mathematical children that I taught rather than attempt to apply 
a psychology that had been constructed for a different purpose.  That was a major breakthrough in 
my conception of what it meant to do research in mathematics education.    

Mathematics Education 1970-2000: The New Progressive Educators 

Interdisciplinary Research on Number 
The modern mathematics era ended circa 1970 and behaviorism came roaring back into 

mathematics education.  When von Glasersfeld and I started to work on the project, Interdisciplinary 
Research on Number (IRON), he had just published his manifesto on radical constructivism (von 
Glasersfeld, 1974) and it was his intention to start an epistemological revolution that would eliminate 
the duality between mind and reality in Cartesian epistemology.  It was also his intention [and mine] 
to countermand the stranglehold that behaviorism once again had on mathematics education 
throughout 1970’s and 1980’s.  Radical constructivism emerged as an epistemology in mathematics 
as well as in science education (e.g., Driver, 1995) throughout the 1980’s and played a role similar to 
that of progressive education during the first one half of the century.  But the role was essentially 
based on von Glasersfeld’s (1989) first principle that, “knowledge is not passively received but 
actively built up by the cognizing subject” (p. 182) rather than on the research that we were doing in 
IRON.  In fact, I frequently was told that joining radical constructivism was like joining a political 
party.  Few progressive educators appreciated the implications von Glasersfeld’s (1989) second 
principle that, “the function of cognition is adaptive, and serves in the organization of the experiential 
world, not the discovery of ontological reality” (p. 182), which was the “radical” part of radical 
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constructivism that eliminated the Cartesian dualism between mind and reality (von Glasersfeld, 
1974, 1984).   

The Standards Movement and the “Math Wars” 
Mathematics education was a conceptual wasteland during the 1970’s, so it was no surprise that 

another crisis in education emerged that was marked by the publication of A Nation at Risk (National 
Commission on Excellence in Education, 1983).  Influenced by this newly perceived crisis, the 
constructivist revolution, and the recommendation that problem solving be the focus of school 
mathematics in the 1980’s (National Council of Teachers of Mathematics, 1980), the standards 
movement in mathematics education officially began in 1989 with the publication of the Curriculum 
and Evaluation Standards for School Mathematics (CESSM; National Council of Teachers of 
Mathematics, 1989).  The influence of Cartesian epistemology was still strong among the progressive 
educators, so CESSM was a strange mixture of realism and constructivism in spite of the commission 
claiming a constructivist view of learning, where learning was thought to, “occur through active as 
well as passive involvement with mathematics” (CESSM, p. 9).   

The National Science Foundation funded ten curriculum projects based on the CESSM that were 
published circa 2000, curricula that unfortunately became known as “constructivist curricula.”  The 
publication of these curricula extended the famous “math wars” between conservative 
mathematicians and progressive mathematics educators that erupted in California (cf. Klien, 
http://www.csun.edu/~vcmth00m/).  The “math wars” had their origin in the 1985 California 
Mathematics Framework (California State Department of Education, 1985).  This framework, 

[W]as considered a progressive document—an antecedent of the 1989 NCTM Standards. 
California’s professional teacher organization, the California Mathematics Council, was one of 
the most progressive teacher organizations in the country, and one of the most enthusiastic 
adopters of the spirit of the 1989 Standards. When the next adoption cycle came, the 1992 
California Mathematics Framework (California State Department of Education, 1992) “pushed 
the envelope” a good deal further: it emphasized reform, focusing on “mathematical power” and 
collaborative and independent student work while de-emphasizing traditional skills and 
algorithms. (Schoenfeld, 2007) 

The attempts of the constructivist curricula writers to focus on student work were realized in part 
through their social agenda, “Mathematics for All,” and concomitantly, how they regarded 
mathematics learning and teaching.  In this agenda, it was assumed that all students could learn the 
mathematics specified in the content standards of CESSM. 

If all students do not have an opportunity to learn this mathematics, we face the danger of 
creating an intellectual elite and a polarized society. The image of a society in which a few have 
the mathematical knowledge needed for the control of economic and scientific developments is 
not consistent either with the values of a just democratic system or with its economic needs. 
(CESSM, 1989, p. 9) 

The social agenda of the writers of the so-called constructivist curricula was based on social 
constructivism (Bauersfeld, 1995, 1996; Cobb & Yackel, 1996, Voight, 1989). The orientation that 
shaped the social agenda and the recommendations for teaching is cogently caught in a comment 
made by Bauersfeld (1995) that, “We can understand the development of mathematizing in the 
classroom ‘as the interactive constitution of a social practice’” (p. 150).  This sociological emphasis 
is compatible with von Glasersfeld’s (1989) first principle of radical constructivism if “interactively” 
is included in “actively.”  It doesn’t, however, take into account von Glasersfeld’s (1989) second 
principle. The reason is that, although interaction is a fundamental assumption in radical 
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constructivism, there are two types of interaction: within subject and between subject interaction 
(Steffe & Thompson, 2000a).  The social constructivists emphasize between subject interaction and 
make few attempts to model what might go on inside of the heads of children, which is where 
learning and development take place.     

The social agenda served to exacerbate the dissatisfaction the mathematical critics had with the 
“constructivist” curricula. 

[T]here is a unifying ideology behind “whole math.” It is advertised as math for all students, as 
opposed to only white males. But the word all is a code for minority students and women (though 
presumably not Asians). In 1996, while he was president of NCTM, Jack Price articulated this 
view in direct terms on a radio show in San Diego: “What we have now is nostalgia math. It is 
the mathematics that we have always had, that is good for the most part for the relatively-high 
socioeconomic anglo male, and that we have a great deal of research that has been done showing 
that women, for example, and minority groups do not learn the same way. They have the 
capability, certainly, of learning, but they don’t. The teaching strategies that you use with them 
are different from those that we have been able to use in the past when ... we weren’t expected to 
graduate a lot of people, and most of those who did graduate and go on to college were the anglo 
males.” (Klein, 2000) 

Klein went on to say that; “I reject the notion that skin color or gender determines whether students 
learn inductively as opposed to deductively and whether they should be taught the standard 
operations of arithmetic and essential components of algebra” (Klein, 2000).  So, not only did Klein 
critique the standards in CESSM and the mathematics that was involved in the “constructivist” 
curricula, he was also a critic of how teaching was conceptualized and practiced.  Essentially, the 
“math wars” were reminiscent of the contentious relationship between conservative patriotic business 
groups and progressive educators concerning Rugg’s social science textbooks.   

Mathematics Education 2000 and Forward: Outcome-Based Education 
Klein’s rejection of the standards and the social agenda of the constructivist curricula writers 

foreshadowed the mission of the Common Core State Standards for Mathematics (CCSSM) 
(National Governors Association for Best Practices and Council of Chief State School Officers, 
2010).  The release of the CCSSM helped thaw the “math wars” (Lobato, 2014; Norton, 2014) 
primarily, in my view, because of the presence of more rigorous curriculum standards.  We find the 
following statement in the introduction to CCSSM.  

The standards are designed to be robust and relevant to the real world, reflecting the knowledge 
and skills that our young people need for success in college and careers. With American students 
fully prepared for the future, our communities will be best positioned to compete successfully in 
the global economy. The Common Core State Standards provide a consistent, clear 
understanding of what students are expected to learn, so teachers and parents know what they 
need to do to help them (CCSSM, 2010, Introduction).  

The CCSSM, similar to the CEEB in 1969, was designed primarily for college bound students.xv  
It has carried the emphasis on outcome-based education forward to the present time, whose 
beginning was marked in mathematics education by the publication of the CESSM in 1989.  It might 
seem surprising that I would say that CESSM ushered in outcome-based education given that it also 
was an impetus of the constructivist curricula that was so severely criticized in the “math wars”.  
However, one of the main criticisms of the “constructivist” curricula and CESSM by the 
mathematicians was that the involved standards were weak, not that there were not any standards.   
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Outcome-based education is based on Cartesian epistemology with its requirement that 
something is true only if it corresponds to an independent, objective reality, where the standards 
constitute that objective reality.  The neo-behaviorism of outcome-based education along with the 
national emphasis on standards-based education by the No Child Left Behind Act of 2001 has had 
the effect of standardizing precollege mathematics education. For example, students are required to 
take standardized test throughout their years in schoolxvi and these tests are used in evaluating 
teachers, a practice that has become known as Value Added Measures [VAM’s] of teacher 
performance.  This surge of neo-behaviorism in mathematics education during the first years of the 
21st century is exemplified in the report of the National Mathematics Advisory Panel (2008) with its 
emphasis on rigorous scientific research.  The research conducted in IRON concerning children’s 
number sequences and fraction schemes and how they are used in the construction of adding, 
subtracting, multiplying, and dividing schemes that has been published in books and various articles 
(e.g., Steffe, von Glasersfeld, Richards, & Cobb, 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe & 
Olive, 2010) was not even mentioned in that report.  So, obviously, the authors of the report did not 
consider that research as scientific research if they considered it at all.    

Given the ubiquity of the influence of outcome-based education, one might think that there 
should be another major effort by progressive educators to countermand that influence similar to the 
era of the modern mathematics programs or to the era of the constructivist curricula.  While that may 
be of critical importance given the current state of mathematics education in precollege education, 
essentially the attempted wholesale changes in mathematics education that were made following 
national reports were abandoned after the changes led to major disappointments and failures.  If this 
history can be used to predict what might happen if another round of national reform in mathematics 
education is attempted, a strong argument can be made that what is needed is to construct 
mathematics curricula for children that is based on the mathematics of children rather than continue 
on with the historical practice of basing mathematics curricula for children on the first-order 
mathematical knowledge of adults.  Simply put, if lasting progress in mathematics education is to be 
made, researchers must establish the construction of mathematics curricula for children as an 
academic field.  I think of constructing mathematics curricula for children that is based on the 
mathematics of children as a result of intensive and longish periods of teacher/researcher interactions 
with children. Toward that end, I present several radical constructivist research programs that are 
tailored toward constructing mathematics curricula for children that emerge from the work in IRON.  
Before presenting the programs, I present several basic concepts that I feel will help understand the 
research programs. 

Radical Constructivist Research Programs 

Basis Concepts 
First- and second-order models.  I understand children’s mathematics as a result of maturation 

coupled with what children have constructed as a result of interacting in their social-cultural milieu in 
all of its aspects.  The assumption that children construct mathematical knowledge is an assumption 
of an observer.xvii  Children’s mathematics is thought of as first-order knowledge, which are, “the 
hypothetical models that the observed subject constructs to order, comprehend, and control his or her 
own experience (Steffe, et al., 1983, p. xvi).  An observer psychologizes children’s mathematics by 
constructing second-order models, which are, “the hypothetical models observers may construct of 
the subject’s knowledge in order to explain their observations (i.e., their experience) of the subject’s 
states and activities” (Steffe et. al. 1983, p. xvi).  The second-order models are referred to as the 
mathematics of children and the children’s first-order models are referred to as children’s 
mathematics.xviii  The concept of children’s mathematics is based on the belief that mathematics is a 
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product of the functioning of human intelligence (Piaget, 1980).  The mathematics of children, which 
is an explanation of children’s mathematics, is a legitimate mathematics to the extent that 
teachers/researchers can find rational grounds to explain what children say and do.  

Epistemological analysis and conceptual analysis.  Conceptual analysis is the method by 
which the second-order models that constitute the mathematics of children are produced.  Conceptual 
analysis is an analysis of mental operations.  In explaining conceptual analysis, von Glasersfeld 
(1995) drew from his experience with Silvio Ceccato’s Italian Operational School, whose goal was 
to, “reduce all linguistic meaning, not to other words, but to ‘mental operations’” (p. 6).  The main 
goal of conceptual analysis is defined by a question from Ceccato’s group: “What mental operations 
must be carried out to see the presented situation in the particular way one is seeing it?” (p. 78).  
Thompson & Saldanha (2000) reformulated the goal in a way that is more relevant to constructing 
second-order models of children’s language and actions.  Their goal is to describe, “conceptual 
operations that, were people to have them, might result in them thinking the way they evidently do” 
(p. 315).  Although I have extensively engaged in conceptual analysis in the construction of the 
mathematics of children, I know of no papers that have been written that address the problem of how 
one might creatively use the analytical tools that are available in radical constructivism in conceptual 
analysis of children’s mathematical concepts and operations. 

When conceptual analysis is used in the construction of second-order models, I refer to it as a 
second-order conceptual analysis.  Thompson & Saldanha (2000) included what I refer to as first-
order conceptual analysis in their discussion of epistemological analysis, that is, an analysis of one’s 
own mathematical concepts and operations (cf. Thompson, 2008).  According to Thompson & 
Saldanha (2000), epistemological analysis, “is used to model what might be called systems of ideas, 
like systems of ideas composing concepts of numeration systems, functions and rate of change, or 
even larger systems like those expressed in quantitative reasoning” (p. 316).  First-order conceptual 
analysis is inextricably involved in second-order conceptual analysis of children’s mathematical 
language and actions.  Thompson & Saldanha (2000) also included a teacher/researcher analyzing 
their own concepts and operations relative to children’s concepts and operations in interactive 
mathematical communication. This kind of analysis involves the teacher/researcher operating as 
Maturana’s (1978) second-order observer; that is, an “observer’s ability through second-order 
consensuality to operate as external to the situation in which he or she is, and thus be observer of his 
or hers circumstance as an observer (p. 61).   

In the following quotation, if “intentionally isomorphic” is interpreted as imputing operations to a 
mathematically operating child, what I said about making explanations is similar to Maturana’s 
second part of the scientific method.   

As scientists, we want to provide explanations for the phenomena we observe. That is, we want 
to propose conceptual or concrete systems that can be deemed to be intentionally isomorphic to 
(models of) the systems that generate the observed phenomena. In fact, an explanation is always 
an intended reproduction or reformulation of a system or phenomenon.  (Maturana, 1978.  p. 30). 

Maturana’s second part of the scientific method emphasized second-order conceptual analysis 
and his first part emphasized first-order conceptual analysis, which was, “observation of a 
phenomenon that, henceforth, is taken as a problem to be explained” (Maturana, 1978, p. 29).  Of the 
observer, he commented,  

Yet we are seldom aware that an observation is the realization of a series of operations that entail 
an observer as a system with properties that allow him or her to perform these operations, and, 
hence, that the properties of the observer, by specifying the operations that he or she can perform 
determine the observer’s domain of possible observations. (Maturana, 1978, p. 30) 
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Like Maturana, I take the subject dependent nature of science in mathematics education as a starting 
point.  But I expand on it in two ways.  First, the primary reason for engaging children as a 
teacher/researcher is to allow children to teach one how and in what ways they operate 
mathematically and, as commented by Thompson & Saldanha, to create operations that if a child had 
those operations, the child would operate as observed.  Second, as a teacher/researcher kind of 
scientist, my contributions to children’s ways and means of operating mathematically by teaching 
them is a constitutive part of a conceptual analysis of children’s mathematical language and actions.  
In the words of Steier (1995);  

Approaches to inquiry … have centered on the idea of worlds being constructed … by inquirers 
who are simultaneously participants in those same worlds. (p. 70) 

This understanding of the subject dependent nature of science in mathematics education provides 
researchers with the power to create images of unrealized possibilities in the mathematics education 
of children.  But these possibilities are subject to the constraints of children as self-organizing 
systems—the mind organizes the world by organizing itself (Piaget, 1935/71).   

Learning and development.  A central goal that runs throughout each research program is to 
learn how to operationalize children’s mathematics learning and development as spontaneous 
processes in mathematics teaching.  A virtue of teaching that is focused on constructive itineraries of 
children’s mathematics in which the teacher/researcher is a participant is that it allows the 
teacher/researcher to become aware of children’s constructive processes, which are understood as the 
construction of schemes and the accommodations that children make in them (cf. von Glasersfeld, 
1980).  Because of continual interaction with children, a teacher/researcher is likely to observe at 
least the results of those critical moments when restructuring is indicated by changes in children’s 
operations and anticipation (Tzur, 2014).  Major restructuring of mathematical schemes is compatible 
with a vital part of Vygotsky’s (1978) emphasis on studying the influence of learning on 
development.   

Unlike Vygotsky, however, I regard both learning and development in the context of 
accommodations that children make in their schemes (Steffe, 1991b).  But there is a difference in the 
two kinds of accommodations.  Learning is captured by the functional accommodations that occur in 
a scheme in the context of the scheme being used, whereas development is captured by metamorphic 
accommodations that occur independently in no particular application of a scheme.  A 
metamorphosis of a scheme is thought to be the result of autoregulation of the process of 
interiorizing the scheme (cf. Simon, Saldanha, McClintock, Akar, Watanabe, & Zembat, 2010, for a 
related view).   

Learning and development are not spontaneous in the sense that the provocations that occasion 
them might be intentional on the part of the teacher/researcher.  In children’s frames of reference, 
though, the processes involved are essentially outside of their awareness.  This is indicated by the 
observation that what children learn or develop often is not what was intended by the 
teacher/researcher.  It also is indicated when a child learns or develops when a teacher/researcher has 
no such intention.  Even in those cases where children learn what a teacher/researcher might intend, 
the event that constitutes learning arises not because of the teacher’s actions.  Rather, teaching 
actions only occasion children’s learning (Kieren, 1994).  Learning as well as development arises as 
an independent contribution of the interacting children.  So, although I do not use “spontaneous” in 
the context of learning and development to indicate the absence of elements with which children 
interact, I do use the term to refer to the non-causality of teaching actions, to the self-regulation of 
the children when interacting, to a lack of awareness of the learning process, and to its 
unpredictability.  Because of these factors, I regard learning and development as spontaneous 
processes in children’s frame of reference.  



Plenary Papers 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

39 

Trajectories of the constructive activity of children.  The construction of trajectories of 
children’s learning and development is one of the most daunting but urgent problems facing 
mathematics education today. It is also one of the most exciting problems because it is here that we 
can construct an understanding of how teacher/researchers can profitably affect children’s 
mathematics (Steffe, 2004). By building an understanding of children’s mathematical concepts and 
operations and how a teacher/researcher can engage children to bring forth changes in those concepts 
and operations, a vision of children’s mathematics education can emerge in which children engage in 
productive mathematical learning and development and teacher/researchers engage in productive 
mathematical teaching. The principle of self-reflexivityxix compels teacher/researchers to consider 
their own knowledge of children’s mathematics, including accommodations in it, as constantly being 
constructed as they interact with children as the children construct mathematical knowledge. Through 
the construction of trajectories of children’s learning and development that are coproduced by 
children and teacher/researchers, it is possible to construct trajectories that include an account of 
teacher/researchers’ ways and means of acting and operating relative to children’s ways and means 
of acting and operating (Ellis, 2014).  Such an account entails the teacher/researcher operating as a 
second-order observer. 

A trajectory of children’s learning and development includes a model of the children’s initial 
concepts and operations, an account of children’s constraints and necessary errors, an account of the 
observable changes in children’s concepts and operations as a result of their interactive mathematical 
activity in situations that are used by a teacher/researcher when interacting with children, an account 
of the situations relative to a teacher/researcher’s models of the involved children’s mathematics and 
the teacher/researcher’s goals and intentions, and an account of the involved mathematical 
interactions.  A similar historical account of what transpires in between observed changes is critical 
not only to understand the changes, but also to provide estimates of the length and the nature of the 
plateaus in children’s mathematical learning and/or development.   

Trajectories of the constructive activity of children are third-order models that include the 
second-order models that constitute the mathematics of children, the first-order models of the 
teacher/researcher, and relationships between them.  In the following research programs that I 
present, I assume that the models that constitute the mathematics of children produced by IRON will 
be used at least as starting places in the construction of the trajectories.  Because of the nature of the 
trajectories, I will refer to them as mathematics curricula for children throughout the rest of the paper 
(Steffe, 2007).  Concentrating on constructing mathematics curricula for children does not exclude 
research programs that center on teacher/researchers working with classroom teachers of 
children.xx,xxi  In fact, each stated research program can be reformulated so that it is a research 
program that involves teacher/researchers working with classroom teachers of children.  

The First Research Program 

The first research program is to construct mathematics curricula for children who enter their 
first grade as counters of perceptual unit items over the course of their first eight years in 
school.xxii  

The second-order models that were constructed in IRON concerning children’s number 
sequences and how the number sequences are used in the construction of adding, subtracting, 
multiplying, and dividing schemes have been published in books and various articles (e.g., Steffe, et. 
al., 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe & Olive, 2010).  Ulrich (2015-16) has published 
two very readable papers that provide an introduction to the units, schemes, and operations that were 
constructed in IRON as well as to some of the work that has extended the basic work (e.g., 
Hackenberg, 2013; Hackenberg & Lee, 2015; Hackenberg & Tillema, 2009; Hunt, Tzur, & 
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Westenskow, 2016; Norton & Wilkins, 2013; Tillema, 2013; Ulrich, 2012).  To start, I provide a 
brief summary of the first two stages in the construction of children’s number sequences.   

The first stage is a sensory-motor or pre-numerical stage that comprises pre-counters, counters of 
perceptual unit items (CPUI), and counters of figurative unit items (CFUI). Counters of perceptual 
unit items are restricted to counting items that are in their perceptual field, such as the toys in their 
toy box, their steps, their heartbeats, or the chimes of a Grandfather clock.  For example, an 
interviewer covered six of nine marbles with his hand and asked Brenda, a six-year-old child, to 
count all the marbles. Brenda first counted the interviewer's five fingers and then counted the three 
visible marbles. The interviewer pointed out that he had six marbles beneath his hand and Brenda 
replied, “I don't see no six!” (Steffe, & Cobb, 1988, p. 23) 

Counters of figurative unit items might attempt to count the items in a closed container when told 
that there are, say, seven items in the container, by touching the container where they believe items 
might be hidden in synchrony with uttering number words.  Because they concentrate on generating 
images of the items they are counting, they can easily become lost in counting and stop fortuitously.  
Counting figurative unit items is a step in interiorizing the countable items, which produces abstract 
unit items (Steffe et.al, 1983).  If the child also interiorizes the acts of counting, I mark this 
monumental event by referring to it as the stage of the initial number sequence (INS).  Spontaneously 
counting-on is the indication of the INS (Steffe, & Cobb 1988).  

To illustrate some of the constraints that I experienced when teaching CPUI, I recount my 
experience teaching three such children at the start of their first grade in school.  I taught them 
approximately 60 times in teaching episodes over their first two school years to explore their 
progress in the construction of counting-on (Steffe, & Cobb, 1988).  Although these children also 
participated in their regular mathematics classrooms, they did not spontaneously count-on in spite of 
my best efforts to provoke it and, presumably, the best efforts of their teachers.  It wasn’t until their 
3rd Grade that at least one of them had constructed counting-on.  Based on my experience in working 
in teaching experiments and teacher education at UGA and data that were supplied to me by 
Professor Bob Wright of Southern Cross University, Australia, who started the Mathematical 
Recovery Program (Wright, Martland, & Stafford, 2000; Wright, Stewart, Stafford, & Cain, 1998), I 
estimate that 40% of entering first graders in the United States are CPUI. Of this estimate, Professor 
Wright commented that, “I think that is a good estimate for the number in the perceptual stage or 
lower, that is the children who can't yet count perceptual items.  I think the percentage would be 
lower in Australia and New Zealand, say about 30%” (Personal Communication).  

Of the 40% who enter the 1st Grade as CPUI, I expect that a majority of them to construct 
counting-on during their 3rd Grade [Wright estimated that from 5 to 8% might not be counting-on by 
the 3rd Grade].  From that point on the relative percentages are not certain, but because of the length 
of time and the great difficulties we had in teaching experiments in engendering progress beyond 
counting on (Biddlecomb, 2002, Hackenberg, 2005; Tillema, 2007), my best estimate is that 
approximately 30% of the children entering the 6th Grade will be only able to count-on.  And those 
who are at that stage will remain there until their 8th Grade.  Wright’s estimate was, “that about 30% 
of kids entering the 6th Grade in the US will only be able to count-on” (Personal Communication).    

I consider this program as the most important research program in mathematics education today.  
My appeal to those who choose to work in such an intractable but crucial research program is to learn 
how to teach these children in such a way that they do not lose confidence.  My practitioner’s maxim 
is that children are never wrong; even children who are CPUI.  An adult can easily induce “mistakes” 
in these children, but my basic and pervasive assumption is that children are rational beings and our 
responsibility is to find ways of acting and interacting that are not only harmonious with their ways 
and means of operating, but will also affect them in productive ways.  It is crucial to re-establish the 
NCTM’s vision of mathematics for all.   
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The Second Research Program 

The second research program is to construct quantitative mathematics curricula for children 
who enter their first grade as CFUI or children who can only count-on (1) in the construction of 
operative measuring schemes, and (2) in the construction of adding and subtracting schemes as 
reorganizations of their operative measuring schemes during their first two grades in school. 

Children who enter their first grade as CFUI have a quite different constructive trajectory than 
those who enter as CPUI.  It is possible for CFUI to construct the INS by means of a metamorphic 
accommodation by the end of their first grade in school (Steffe & Cobb, 1988, pp. 308ff).  By the end 
of the second grade, it is possible for their INS to undergo another metamorphic accommodation in 
the construction of the explicitly nested number sequence (ENS), which is indicated when children 
spontaneously count-up-to (Steffe, 1992, 94: Steffe & Cobb, 1988).   

There are three principal operations of the ENS that were not available to children who have 
constructed only the INS. The first is that units of one have been constructed as iterable units; for 
example, at noon a grandfather clock strikes one twelve times in contrast to simply making 12 
chimes.  The second is that any initial segment of a (finite) number sequence can be disembedded—
“lifted”— from the complete sequence without destroying the sequence.xxiii  The remainder of the 
initial segment in the sequence can be also disembedded from the sequence and the numerosity of the 
remainder can be found by counting its elements starting with “one.”  This way of counting is 
referred to as the recursive property of the ENS in that children can take the number sequence as its 
own input (Steffe & Cobb, 1988).  That is, children who have constructed the ENS can willfully 
create their own countable items using elements of their number sequence and count these elements 
using the same number sequence that was used to create the countable items.  It is as if the child has 
two number sequences “side by side,” one to use to create countable items and the other to count the 
countable items.  ENS children have more “mathematical power” than do INS children, to borrow a 
phrase from the California Mathematics Framework.  So, there are three distinct stages in children’s 
construction of their number sequences entering their first grade in school; CPUI, CFUI and the INS, 
and the ENS.  There is a more advanced number sequence that only rarely can be observed that is 
referred to as the generalized number sequence (GNS; Ulrich, 2014, 2016) 

My best estimate is that children who enter their first grade as CFUI or who can only count-on 
comprise 45% of the first-grade population. Table 1 contains my best estimates of the percent of 
children who enter their first grade in each of the three number sequence types. The question of 
whether stage shifts can be engendered by means of specialized interactions has been 

Table 1: Number Sequence Type Across Grades for Children Who Enter their First Grade 
Counting-on (INS) or as CFUI. 

Grade/N Seq. CFUI or INS ENS GNS 

First ≈ 45 Percent ≈ 10 to 15 Percent ≈ 0 to 5 Percent 

Second ≈ 30 Percent ≈ 25 to 30 Percent ≈ 0 to 5 Percent 

Third ≈ 5 Percent ≈ 45 to 50 Percent ≈ 0 to 10 Percent 
 

worked on by Norton and Boyce with an eleven-year old child (2015).  These authors did 
demonstrate that by working intensively with the child individually in 14 teaching sessions, he did 
make progress in reasoning from one level of units (INS) to two levels of units (ENS).  The authors 
note, however, that, 
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Cody did not seem able to coordinate units in continuous contexts in the same way he could in 
discrete contexts…We conjecture that that limitation is due to the lack of physical referents for 
the embedded units within composite units that are continuous. For example, a tablespoon 
contains three teaspoons, but these three units are not as evident within the tablespoon as they 
would be with three chips within a cup. Rather, students have to produce the units within a 
continuous composite unit through some kind of segmenting or partitioning activity (Steffe, 
1991a), which involves breaking down the composite unit. (Norton & Boyce, 2015, p. 229) 

Children who have constructed the ENS and, hence, two levels of units, do use their number 
concepts spontaneously in partitioning continuous units.  So, there is always an issue of the 
generality of the learning process when the situations used in the teaching experiment are with only 
one type of quantity.  According to some authors, a fundamental question that pervades mathematics 
education today is whether mathematical thinking begins with counting or with comparisons of 
quantity (Sophian, 2007).  Based on the work of Davydov (1975) and influenced by Doughtery 
(2004), Sophian (2007) commented that, “The most fundamental idea I have derived from those 
papers is the idea that mathematical thinking begins, not with counting, but with comparisons 
between quantities, in particular the identification of equality and inequality relationships” (p. xiv).  
This notion of quantity is based on Davydov’s (1975) formal definition that a quantity is any set for 
the elements of which criteria of comparison have been established.  However, establishing the 
quantitative property of a composite unit called its numerosity and the quantitative property of a 
continuous item called its length precedes a need for comparing the numerosity of two collections or 
the length of two continuous items (Steffe, 1991a).  So, it’s not a matter that mathematics begins with 
comparisons between quantities be they discrete or continuous.  Rather, one might say that 
mathematics begins with establishing the quantitative properties of objects (Steffe, 1991a).  This fits 
with Thompson’s (1994) notion of a quantity as, “composed of an object, a quality of that object, an 
appropriate unit or dimension, and a process by which to assign a numerical value to the quality” (p. 
184).  This idea of quantity, both discrete and continuous, leads to the following reorganization 
hypothesis.   

Reorganization Hypothesis: Operative measuring schemes and their use in constructing adding 
and subtracting schemes can emerge as reorganizations of children’s INS.xxiv  

In this hypothesis, the main goal is for children to use their INS in measuring activity in order to 
transform the measuring activity, such as described in CCSSM standard 1.MD.2 stated below, into 
operative measuring schemes and to what Thompson, Carlson, Byerley, & Hatfield, (2014) referred 
to as additive measurement.   

Express the length of an object as a whole number of length units, by laying multiple copies of a 
shorter object (the length unit) end to end; understand that the length measurement of an object is 
the number of same-size length units that span it with no gaps or overlaps. Limit to contexts 
where the object being measured is spanned by a whole number of length units with no gaps or 
overlaps. 

It is important to note that this CCSSM standard is written in such a way that emphasizes the activity 
of measuring.  After actually measuring linear objects to establish how to measure and the units used 
in measuring, INS children can engage in operational measuring activity such as finding the length 
of a 64-inch string after it is increased by seven inches.  If operational measuring is generalized 
across other quantities such as time, money, temperature, weight, etc., children can construct 
operational measuring schemes that they could use as if they were using the INS in discrete 
quantitative situations.  They could also be asked to find, say, how many tablespoons of powder 
could be made from nine teaspoons of powder to engender the construction of composite units—or 
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units of units—which, at this point, I consider as essential in engendering a metamorphosis of the 
“INS measuring schemes.”  Furthermore, in the case of discrete quantity, children construct adding 
and subtracting schemes as reorganizations of their number sequences (Steffe, 2003).  So, by the 
children using their INS in the construction of operative measuring schemes, they can in turn use 
their measuring schemes in the construction of operative adding and subtracting schemes across 
different quantitative contexts.  My hypothesis is that if a stage shift is observed from an INS to an 
ENS measuring scheme in the case of one type of quantity, a corresponding stage shift will be 
observed in all of the measuring schemes that the INS was used in establishing.  Such a constructive 
generalization would lead to considerable mathematical power of the children, to borrow a phrase 
from the California standards.   

For children who are CFUI, engaging in measuring activity that includes counting activity 
extends the goals, situations, activities, and results of their figurative counting schemes.  Similar to 
the INS children who use their counting schemes in measuring activity, the effects of the CFUI using 
their figurative counting schemes in measuring activity is yet to be determined.  Still, it is possible 
that their measuring activity could serve in engendering metamorphic accommodations like that 
which produces the INS (cf. Steffe, & Cobb, 1988, pp. 306 ff) if for no other reason than a 
teacher/researcher could capitalize on children’s need to measure things in such a way that provokes 
monitoring re-presentations of measuring activity.    

The Third Research Program 

The third research program is to construct quantitative mathematics curricula for ENSxxv 
children in the construction of extensive quantitative measuring schemes and their use in 
constructing adding, subtracting, multiplying, dividing, and numeration schemes in which 
strategic reasoning and relationships between quantities are of primary importance. 

I agree with Smith & Thompson (2007) that an emphasis on quantitative reasoning needs to 
begin early on in children’s mathematics education and that building quantitative reasoning skills for 
the majority of students is not a one or two-year program.  Their paper concerned how a shift in 
current school curricula could emphasize quantitative reasoning, whereas my emphasis is on 
constructing a quantitative mathematics for children based on abstractions from actually teaching 
children to establish learning trajectories in the sense that Ellis (2014) explained.  In this context, it is 
critical to understand what schemes can be considered as extensive quantitative schemes, which I 
refer to as genuine measuring schemes. Rather than think of extensive quantities as substances as 
would be the case when considering 5/4 as referring to a point on the number line, von Glasersfeld & 
Richards (1983) pointed out that Gauss focused on extensive quantities as relations.  

To forestall the idea that the extensive quantities he is referring to are a matter of inches or 
degrees, Gauss hastens to add that mathematics does not deal with quantities as such, but rather 
with relations between quantities. These relations he calls “arithmetical” and in arithmetic, he 
explains, quantities are always defined by how many times a known quantity (the unit), or an 
aliquot part of it, must be repeated in order to obtain a quantity equal to the one that is to be 
defined, and that is to say, one expresses it by means of a number” (pp. 58-59).  

The ENS is the first numerical counting scheme that qualifies as an extensive quantitative 
scheme in that any number such as 50 can be conceived of as one fifty times as well as 50 ones.  The 
other operations of the ENS are also critical in constituting this scheme as an extensive discrete 
quantitative measuring scheme.  So, by viewing the construction of measuring schemes more 
generally as reorganizations of the operations that produce the ENS, the hypothesis is that the 
measuring schemes will emerge as extensive quantitative schemes.   
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The Fourth Research Program 

The fourth research program is to construct quantitative mathematics curricula for children in 
(1) the construction of quantitative measuring schemes as reorganizations of their fraction 
schemes,xxvi and (2) the construction of multiplicative and additive measuring schemes as 
reorganizations of their fraction schemes. 

A reorganization hypothesis that was fundamental in the work of IRON that centered on 
children’s construction of fraction schemes was that children’s fraction schemes can emerge as 
accommodations in their numerical counting schemes.  The fraction schemes that emerged were of a 
different genre than the number sequences that were used in their construction primarily because 
children used their number sequences (or concepts) in partitioning in their construction of fraction 
schemes.xxvii  Two basic fraction schemes that emerged were the partitive and the iterative fraction 
schemes.   

The partitive fraction scheme. When ENS children use their number concepts in partitioning, 
they establish an equi-partitioning scheme (Steffe & Olive, 2010, p. 75ff). For example, when the 
number concept five is used in partitioning a candy bar, say, an estimate can be made of where to 
mark off one of five equal parts. Once a mark is made, the child can disembed the marked part 
(mentally or physically), use it in iterating to make five equal parts, and mentally compare the five 
parts to the original bar to test if the five parts together are equivalent to the original bar.  If a child 
considers that the disembedded part is one out of five equal parts, or a fifth of the candy bar, this 
produces the first genuine fraction scheme that is referred to as the partitive fraction scheme (PFS; 
Tzur, 1999).   

The iterative fraction scheme and fractional numbers.  For children who have constructed the 
ENS and the PFS, it would seem that the CCSSM Standard 4.a under Number and Operations—
Fractions would be appropriate for these children. 

Understand a fraction a/b as a multiple of 1/b.  For example, use a visual fraction model to 
represent 5/4 as the product 5×(1/4), recording the conclusion by the equation 5/4 = 5×(1/4).  

This standard was meant to illustrate how multiplying a fraction by a whole number might be 
modeled by a mathematics teacher in a straightforward way.  But it doesn’t explain the operations 
that are involved in children constructing fractions as fractional numbers.  There is a scheme in the 
fractional knowledge of children, the iterative fraction scheme (IFS), where the fraction 5/4 is 
constituted as a fractional number; as five times one fourth of the candy bar (Steffe, & Olive, 2010, 
p. 333ff).  The structure of the “candy bar” produced consists of a unit of units of units.  That is, as a 
composite unit containing a composite unit comprised by 4/4 of the candy bar and one more partitive 
unit fraction.  Once constructed, children can use the scheme to produce fractional connected number 
sequences {1/4, 2/4, 3/4, 4/4, 5/4, 6/4, …} that are constructive generalizations of their explicitly 
nested number sequence (Steffe, & Olive, 2010, p. 333ff) .  This is the first fraction scheme that can 
be judged as an extensive quantitative scheme.  The PFS constructed using the ENS is still 
constrained to the fractional whole.  The construction of fractional numbers is not in the zone of 
potential construction of the children who have constructed the PFS in any short-term sense because 
it involves a stage shift from two to three levels of units coordination.   

The splitting scheme.  The splitting scheme, which is a reorganization of the equi-
partitioning scheme, is used in the construction of fractional numbers.  The splitting scheme is 
indicated when children can mentally produce a hypothetical stick that can be iterated seven times 
when given a stick and told that the given stick is seven times longer than their stick and are asked to 
make their stick.  After the splitting scheme is constructed, if a child mentally splits a stick into, say, 
48 parts, the child knows that one of the parts would be one forty-eighth of the whole stick because 
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the whole stick is 48 times as long as the part.  The result of the scheme is an inverse multiplicative 
relation between the part and the partitioned whole in the sense that Gauss specified extensive 
quantitative relations (cf. also Thompson, & Saldana, 2003).   

Assessments of fifth through eighth grade children.  With this brief introduction to the PFS 
and the IFS, I now turn to assessments of fifth, sixth, seventh, and eighth grade children concerning 
these schemes.  Norton & Wilkins (2009) found that only 34% of the fifth graders and 35% of the 
sixth graders in their sample could engage in splitting, which is an indication of the presence of the 
operations that produce three levels of unitsxxviii.  Of those same children, only 14% and 20%, 
respectively, provided some indication of having constructed the iterative fraction scheme.xxix  In 
other assessments, Norton & Wilkins (2010) found that only 13% of their seventh grade sample and 
19% of their eighth grade sample could produce the fractional whole when given, say, a stick 
partitioned into three parts and told that it was three sevenths of a candy bar and asked to draw the 
whole candy bar, which I consider as an assessment of fractional numbers.xxx  In their earlier study 
Norton & Wilkins (2009) reported similar percentages for their fifth and sixth grade samples (14% 
and 18%).  These data are consistent with an analysis of the percentages of children at one, two, and 
three levels of units that I present in Table 2 in which Norton’s and Wilkins’ data are included.   

Table 2: Estimated Percent of Children at Each Level of Units by Grade 
Grade/Level One Level Two Levels Three Levels IFS 

 Third 45 45 10  

 Fifth 35 40 25   (34%)NW (14%) NW 

 Sixth 30 30 40   (35%) NW (18%) NW 

Seventh    (13%) NW 

Eighth    (18%) NW 

 
It is especially disconcerting that only approximately 15.5% of Norton & Wilkins’ seventh and 

eighth grade sample indicated that they had constructed a fraction as a multiplicative concept.  It’s 
disconcerting because, based on my own estimates, at least 40% of this sample should be able to 
construct a fraction as a multiplicative concept; that is, they should have been able to construct the 
IFS.  But this expectation is tempered by the realization that the children in the fractions project 
constructed the iterative fraction scheme by working with us in teaching experiments.  The fraction 
standards of the CCSSM are stated by grade level and as such underestimate what children who have 
constructed three levels of units can accomplish.  On the other hand, children who have constructed 
two levels of units are constrained to constructing the PFS, a scheme that children use to construct 
proper fractions.  What this means is that approximately 45% of the third-grade population, 40% of 
the fourth grade population, and 30% of the sixth grade population are able to construct partitive 
fractions, but not fractional numbers.  When combined with the children who have constructed only 
one level of units throughout these three grade levels, we see that approximately only 15% of the 
third graders, 25% of the fourth graders, and 40 percent of the sixth graders will be able to construct 
the IFS and engage in producing fractional numbers.   

Recommendations of the NMAP.  Children’s construction of fractions as well as the teaching 
of fractions must be changed.  In the report of the National Mathematics Advisory Panel (2008), the 
following comment was made. 
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Difficulty with learning fractions is pervasive, and is an obstacle to further progress in 
mathematics and other domains dependent on mathematics including algebra. … Conceptual and 
procedural knowledge about fractions with magnitudes less than 1 do not necessarily transfer to 
fractions with magnitudes greater than 1.  Therefore, understanding of fractions with magnitudes 
in each range needs to be taught directly and the relation between them discussed. (p. 28) 

Apparently, the authors of this report believed that fractions (proper and improper) can be taught 
directly to children regardless of the levels of units the children have constructed.  The report of the 
panel, as I interpret it, exemplifies an empiricist as well as a neo-behavioristic agenda in the teaching 
of mathematics in precollege education that harks back to Thorndike’s influence on the teaching of 
mathematics during the first one-half of the last century.  Still, I do agree with the writers of the 
report concerning the pervasive difficulty that the learning of fractions presents to schoolboys and 
schoolgirls and also to the pervasive difficulty that the teaching of fractions presents to their 
mathematics teachers. Resorting to direct teaching in an attempt, for example, to raise children who 
have constructed only the PFS to the IFS could be interpreted as a more or less empirical enterprise 
and as generating a whole industry of empirical research on mathematical learning, to paraphrase 
Michael Cole’s (2004) comments concerning the training studies of the 1960’s that were conducted 
to prove Piaget wrong. In contrast, for the children who have constructed at least the partitive 
fraction scheme, my hypothesis is that quantitative measuring schemes can emerge as reorganizations 
of children’s fraction schemes.  

This hypothesis is similar to the hypotheses in the second and third research programs that 
additive measuring schemes can be constructed as reorganizations of children’s number sequences.  
It is quite different, however, in that partitioning is a fundamental operation in the construction of the 
measuring schemes, which opens the way for children to construct measuring schemes involving two 
levels of units; for example, meters and centimeters, minutes and seconds, pounds and ounces, weeks 
and days, etc.  Measuring systems in multiple levels of units might still be problematic.  It is 
especially crucial to investigate possible changes that indicate fundamental transitions between 
reasoning with two levels of units and three levels of units induced in the construction of quantitative 
measuring schemes and their use in the construction of multiplicative and additive measuring 
schemes.   

The Fifth Research Program 

The fifth research program is to construct quantitative mathematics curricula for children in 
their construction of the rational numbers of arithmetic and the rational numbers, and the 
schemes and operations entailed in and by these constructions.  

Fractional numbers are a major achievement of children who can use three levels of units as 
assimilating operations, but fractional numbers are not equivalent to the Rational Numbers of 
Arithmetic nor to the Rational Numbers.  Constructing the rational numbers of arithmetic involves 
the operations that generate the generalized number sequence (cf. Ulrich, 2014, p. 256).  To 
exemplify those operations, an eight-year old child, Nathan, was presented with copies of a string of 
three toys and a string of four toys and asked to make 24 toys.  Nathan reasoned out loud as follows,   

Three and four is seven; three sevens is 21, so three more to make 24.  That’s four threes and 
three fours! (Steffe & Olive, 2010, p. 278) 

In solving the task, Nathan integrated a unit of three and a unit of four into a unit of seven, iterated 
the unit of seven three times to produce 21, increased 21 by three to produce 24, disunited 21 into 
three threes and three fours, integrated the additional three with the three threes, and produced four 
threes and three fours.  These operations are operations of a GNS.  In a GNS, any composite unit can 
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be taken as the basic unit of the sequence in such a way that the composite unit implies the sequence 
just as the unit of one implies the ENS.  Similar to the ENS, in the GNS a child can establish two 
number sequences “side by side”, a sequence of units of three and a sequence of units of four and 
combine the basic units of each sequence together to produce another sequence of units of seven.  
What this amounts to is the coordination of two three-levels of unit structures.   

The rational numbers of arithmetic can be regarded as those operations that can be used to 
transform a given fraction into another given fraction; that is, the operations that are involved in 
quotitive fraction division.  Quotitive fraction division involves the coordination of two three-levels 
of units structures; units within units within units.  For example, consider a case where a child is 
given a segment that is said to be 1/5 of a unit segment and another segment that is said to be 1/3 of 
the same unit segment, and asked to use the 1/3-segment to produce the 1/5-segment.  If the child 
partitions the 1/3-segment into five parts, takes one of these parts as a 1/15-segment and iterates this 
segment three times to produce the 1/5-segment, and if the child abstracts the operations as 3/5 of 
1/3, then 3/5 is referred to as a rational number of arithmetic.  After operating, I would also want to 
know if the child knows that 3/5 of the 1/3-segment is the 1/5 segment without actually taking 3/5 of 
the 1/3-segment.  I would also want to know if the child can engage in reciprocal reasoning and 
understand that 5/3 of the 1/5-segment is the 1/3-segment (Hackenberg, 2010, 2014; Thompson & 
Saldanha, 2003; Thomson, et. al., 2014).xxxi  The child is aware of the operations needed, not only to 
reconstruct the unit whole from any one of its parts, as in the case of fractional numbers, but also to 
produce any fraction of the unit whole starting with any other fraction, which are the operations 
involved in quotitive fraction division. (cf. Olive, 1999, for an interpretation of the schemes and 
operations involved in the production of the rational numbers of arithmetic).  My hypothesis is that 
construction of the rational numbers of arithmetic entails a metamorphic accommodation relative to 
fractional numbers, and learning how to engender this accommodation and the constructive 
possibilities it entails is included in the first part of the fifth research program.   

One might think that the distinction between the rational numbers of arithmetic and the rational 
numbers is “simply” that the latter involve negative as well as positive rational numbers of 
arithmetic.  But that is not the case at all.  My hypothesis is that a scheme of recursive distributive 
partitioning operations is involved in constructing rational numbers.  In general, distributive 
partitioning operations are those operations that allow a student to share n units among m people and 
interpret one share as n/m of one unit and as 1/m of all n units (Liss, 2015; Steffe, Liss, & Lee, 2014; 
Lamon, 1996).  Distributive partition operations are involved in what Thompson et al. (2014) 
referred to as “Wildi Magnitudes”.  The power of Wildi’s definition of magnitude is that it makes 
explicit the fact that, “the magnitude of a quantity is invariant with respect to a change of unit” 
(Thompson, et. al., 2014, p. 4).  So, if a quantity measures 22 inches, and if there are 12 inches/foot, 
then the quantity also measures 22inches/(12 inches/foot), whose transformation into 22*(1/12 foot) 
or 22/12 feet involves rational number of arithmetic operations.  It also involves use of a scheme of 
recursive distributive partitioning operations because, according to Thompson (2014), “When a 
person anticipates that any measurement of Qxxxii with respect to an appropriate unit can be expressed 
in any other (emphases added) appropriate unit by some conversion without changing Q’s 
magnitude, she possesses Wilde’s meaning of magnitude” (p. 4) 

When the scheme of recursive distributive partitioning operations can be used to produce what I 
would consider an equivalence class of fractional numbers, I would judge that the child has 
constructed a rational number.xxxiii   I hypothesize that the construction of the rational numbers 
constitutes a stage shift relative to the rational numbers of arithmetic, and learning how to engender 
this stage shift and the constructive possibilities it entails is included in the second part of the fifth 
research program. The scheme of recursive distributive partitioning operations that is involved in the 
construction of rational numbers is also involved in the construction of intensive quantity (Liss, 
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2015; Steffe, et al., 2014).  The main difference is that intensive quantity involves relative 
magnitude, which means that a quantity is measured using a quantity of a different nature 
(Thompson, et al., 2014).  In the case of rational numbers, a quantity is measured using a unit 
quantity of the same nature as the quantity to be measured.   

The Sixth Research Program 

The sixth research program is to construct quantitative mathematics curricula for children in 
their construction of integers and rational numbers as measures of change in an unsigned 
quantity, where “unsigned” refers to the magnitude of the quantity, and operations with them.   

Based on work by Thompson & Dreyfus (1988), Ulrich (2014) defined an integer as a measure of 
change in an unsigned quantity, where “unsigned” refers to the magnitude of the quantity.  
Concerning integer addition, Ulrich (2014) commented that, 

Unlike in unsigned addition, in which the second addend can have a different quality than the 
first addend, the addends in this case need to be of the same type in the mind of the student.  
Depending on the relative magnitudes, the sum could be a subsequence of either addend. … I 
hypothesize that a student will need to have constructed the GNS in order to conceptualize 
addition in this way, precisely because both addends need to be reified composite units (which 
seems to correspond to iterability and the ability to disembed while maintaining a nested 
relationship) so that the sum can be disembedded from either addend (p. 256). 

Ulrich’s hypothesis concerning the operations that are needed to construct integer addition leaves 
open the question of the operations that are needed to construct the concept of an integer other than 
her comment concerning “reified composite units.”  I interpret the meaning of a “reified composite 
unit” in terms of Thompson’s (1994) hypothesis that, “an integer is a reflectively abstracted constant 
numerical difference” (p. 192).  So, Ulrich’s hypothesis concerning the operations needed to 
construct integer addition also pertains to the construction of the concept of integers.  Although it 
might seem unusual that the operations needed to construct integers are two steps beyond the 
operations that are needed to construct the natural numbers of the ENS as extensive quantities, all of 
the operations of the ENS have to be reorganized and extended to produce an integer as a difference 
of two such natural numbers.  That is, as a reflectively abstracted concept, an integer is the difference 
of any two signed quantities a and b, denoted by a – b, such that a – b is a constant number of units 
between a and b in the direction from b to a.  This concept of an integer is crucial in algebraic 
reasoning and should not be finessed by using the sum of a and the additive inverse of b as the 
definition of a difference a – b like it is done in CCSSM.   

I extend this way of regarding integers to the construction of signed rational numbers, where 
rational numbers are regarded as magnitudes in the way that I regard them in the above text. Based 
on my experience teaching middle school children in teaching experiments as well as teaching 
prospective middle school mathematics teachers, finding sums and differences of signed quantities 
whose magnitudes are rational numbers will require at least a constructive generalization of integer 
operations.  Furthermore, although the product and quotients of signed quantities are rarely 
considered in studies of children’s mathematics, they are fundamental as preparation for more 
general algebraic reasoning and involve constructive generalizations of rational number of arithmetic 
operations.  Constructive trajectories also need to be established in which students establish the laws 
of signs for products as a logical necessity as well as patterns of reasoning that might be recognized 
as distributive, associative, and commutative reasoning.   

Finally, because of the preponderance of children who are yet to construct the rational numbers 
of arithmetic or even fractional numbers in the middle school and beyond, it is essential to explore 
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what a quantitative mathematics curricula involving signed quantities might look like for children 
who have constructed only three levels of units.  This problem is especially acute for children who 
have constructed only two levels of units.   

The Seventh Research Program 

The seventh research program is to construct quantitative algebraic curricula for children in the 
construction of basic algebraic knowing.  

The first aspect of the program is to learn the operations that are involved in children’s 
construction of combinatorial reasoning.  My hypothesis is that the concept of natural number 
variable is essential.  Even children who can reason with three levels of units make extensive lists 
when finding the possible outcomes of two or more events that occur together rather than reason with 
compositions of natural number variables (Panapoi, 2013).  Further, my hypothesis is that the 
multiplicative principal of combinatoiral reasoning and the dimensionality involved in spatial 
coordinate systems (Lee, 2017) both involve recursively coordinating two three levels of units 
structures.  Lockwood ( 2015), in her work with college students, and Panapoi (2013) and Tillema 
(2007, 2013, 2014), in their work with middle grade students of differing levels of units, have made 
substantial progress in this program. But extensions of their work are needed to establish 
mathematics curricula for children involving combinatorial reasoning across differing levels of units.   

The second part of this research program is to extend the fifth and sixth research programs to 
working with operations on quantities of unknown measurements, which could be considered as 
“generalized arithmetic.”  An extensive quantitative unknown refers to the potential result of 
measuring a fixed but unknown extensive quantity before actually measuring it (Liss, 2015, p.30).  
An intensive quantitative unknown refers to the potential result of enacting the operations that 
produce a fixed but unknown equivalent ratio. The production of such a ratio implies the availability 
of the operations needed to produce an equivalent ratio and, thus, a proportional relationship (Liss, 
2015, pp. 31-32). Hackenberg (2005, 2010, 2013, 2014), Hackenberg & Tillema (2009), Hackenberg 
& Lee (2015), and Liss (2015) have made substantial progress in this program by working with 
students of differening levels of units.  An extension of this work is needed so that quantitative 
algebraic curricula for children are established across differing levels of units.   

The third part of this research program is highly related to the second part.  It is to construct 
quantitative algebraic curricula for children concerning the construction of the basic rate scheme and 
its use in the construction of linear functions.  Given two co-varying quantities, I consider a rate as 
the result of enacting the operations that produce a ratio equivalent to a unit ratio at any but no 
particular time (Steffe, et al., 2014, p. 52).  The basic rate scheme can be considered as a 
metamorphosis of intensive quantitative unknowns and proportional reasoning.  One might consider 
the result of enacting a rate formally as an equivalence class of ratios, but that doesn’t say anything 
about the involved metamorphic accommodation that produces rate.  Toward that end, Thompson’s 
(1994) commented that, “A rate is a reflectively abstracted constant ratio, in the same sense that an 
integer is a reflectively abstracted constant numerical difference” (p. 192).  Although I agree with 
this way of thinking about a rate, it too doesn’t specify the operations that children use to produce the 
reflective abstraction. There are various studies that contribute to understanding such mental 
operations (Ellis, Özgüra, Kulowa, Williams, & Amidonba, 2015; Hackenberg, 2010; Hackenberg & 
Lee, 2014; Johnson, 2012, 2014; Liss, 2015; Moore, 2014, Thompson, 1994; Tillema, 2013).  But 
how teacher/researchers might provoke such a reflective abstraction is a fundamental problem in 
establishing quantitative algebraic curricula for children across differing levels of units. 
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Endnotes 
i I surmise that, in part, it was because of what was considered as sufficient to falsify a theory 

during that period of time.  According to Lakatos (1970) all justificationists, “whether the 
intellectualists and empiricists, agreed that a ‘hard fact’ may disprove a universal theory” (p. 94).   

ii Thorndike considered himself a connectionist, which I regard as a form of behaviorism, but not 
radical behaviorism. 

iii There was also an emphasis on social interaction, active citizen participation in all spheres of 
life, and democratization of public education. 

iv Comment in brackets is added to the quotation. 
v (http://www.eds-resources.com/facultytheory.htm) 
vi (http://schugurensky.faculty.asu.edu/moments/1938rugg.html) 
vii (http://www.uvm.edu/~dewey/articles/proged.htm) 
viii Wertheimer was one of the three founders of Gestalt psychology along with Kurt Koffka and 

Wolfgang Köhler. 
ix I attended a sequential summer institute for secondary school mathematics teachers during the 

summers of 1961, 62, and 63 at Kansas State Teachers College, Emporia, Kansas. There were no 
courses on teaching via problem solving that emphasized discovery learning by students although we 
did solve a lot of mathematical problems! 

x James W. Wilson offered a course on problem solving for MEd and Ph.D. students at the 
University of Georgia for many years. 

xi There were modern programs that did emphasize experiential learning of mathematics (Davis, 
1990).  

xii Piaget’s grouping structures served as an abstracted model of the reasoning of children in what 
Piaget called the concrete operational stage.   

xiii Piaget thought that the construction of the length unit was more advanced than the 
construction of the arithmetical unit.   

xiv I am indebted to Dr. Larry Hatfield for his colleagueship and insight that led us to teach 1st and 
2nd grade children in order to learn children’s thinking.   

xv A mathematician writer of the content standards told me that the standards are designed so that 
students can take college mathematics courses. 

xvi In some cases, students can opt out of taking these tests.  
xvii In constructivist research, Maturana’s concept of the observer is essential.  According to 

Maturana (1978), “Everything said is said by an observer to another observer who can be himself or 
herself” (p. 31).   

xviii “Students” can be substituted for “children”.  I use “children” throughout the paper to be 
consistent.   

xix Self-reflexivity involves applying one’s epistemological tenets first and foremost to oneself. 
xx Cf. Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and 

Fractional Reasoning to Improve Students’ Preparedness for Middle School Mathematics, Dr. Ron 
Tzur, Principal Investigator.   

xxi Cf. AIMS Center for Math and Science Education 
xxii Cf. the work of Dr. Robert Wright’s US Math Recovery Council.   
xxiii Twenty-nine, say, can be disembedded from fifty while leaving it “in” fifty.   
xxiv In stating this hypothesis, I assume that in the case of continuous quantity, children will 

primarily use units like inches, pounds, etc., in segmenting.   
xxv This research program is not restricted to six-year-old children.    
xxvi Cf. Hackenberg, Norton, & Wright (2016) for an excellent start on this problem.  
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xxvii A number concept such as five is a composite unit containing five arithmetical unit items 
containing records of counting “1, 2, 3, 4, 5.” 

xxviii Hackenberg (2007) found that some children who constructed only two levels of units could 
engage in splitting.   

xxix These authors referred to this scheme as the generalized measurement scheme for fractions 
(GMSF). 

xxx These authors referred to this scheme as the measurement scheme for proper fractions 
(MSPF).  

xxxi Reciprocal reasoning of the kind Thompson, et al. (2014) identified involves coordinating two 
three-levels of units structures. 

xxxii Q is taken as 22 inches in length.   
xxxiii I did not observe a child construct what might be called an equivalence class of fractions 

even in the case of the GNS children (Steffe, & Olive, p. 337ff) 
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