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The focus of the current proposal is to examine the effect of two dynamic simulations on the 
participants’ conceptions of rate of change. Conceptions of rate of change were measured according 
to Carlson et al.’s (2002) Mental Actions framework and how the participants related the physical 
simulations to the graphical representations (Heid, et al., 2006). Results indicate that the simulations 
increased participants’ covariational understanding, but did not help the students create a more 
accurate understanding of rate of change. 
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Students who do not understand the concept of rate of change are unlikely to develop a 
conceptual understanding of algebra (Roschelle, Kaput, & Stroup, 2000) or calculus (Thompson, 
2008). It has been suggested that dynamic simulations could help students, particularly in the middle 
grades, develop a better understanding of rate of change (Rochelle, et al., 2007). However, new 
simulations are created continuously, and it is unclear how these simulations affect the cognition of 
the individuals who interact with them. Thus, the focus of the current paper is the following question: 
How did two dynamic simulations affect middle school, high school, and undergraduate students’ 
understandings of rate of change? 

Significance 
Past research has shown that visualizations are important in: developing an understanding of rate 

of change (Roschelle et al, 2007), and the historical mathematical development of rate of change 
(Struik, 1969). Roschelle, Kaput, and Stroup (2000) propose the inclusion of technology as a 
necessary aspect of introducing rate of change to students before algebra or calculus. 

However, visualizations and simulations change the way that students interact with and develop 
an understanding of various concepts (Hegadus, 2005). Even when educational experts have 
designed visualizations, novices notice different features or interpret the features differently than the 
experts intended (Roschelle, 1991). Further, the introduction of dynamic simulations may result in 
the development of different or undocumented cognitive obstacles. For instance, in a study of 
preservice teachers’ understanding of the definition of limit in interactive geometry environments, 
Cory and Garofalo (2011) found that their participants became unsure of which variable is dependent 
on which (amongst N, epsilon, and delta). Because of the structure of the technology, some of the 
well documented cognitive obstacles disappeared (i.e. what N, epsilon, and delta represent 
physically), but the misunderstanding of dependence appeared as a new cognitive obstacle. 

Other work provides evidence of what tasks or teaching practices would be important in using 
dynamic simulations as part of rate of change instruction (i.e. Roschelle et al, 2007). However, it 
does not address how, separate from instruction, simulations may impact an individual’s cognition. It 
is essential to examine how simulations affect the students’ conceptions of rate of change. This 
information will allow for informed implementation of dynamic simulations centered on rate of 
change into a learning environment and into future research on rate of change. 

Background 
Development of an understanding of covariation has been linked to an improved understanding 

of rate of change (Thompson & Thompson, 1996; Confrey & Smith, 1994). An understanding of 
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covariation refers to the understanding that as one variable changes continuously, the other 
dependent variable changes simultaneously. Thompson and Thompson (1996), in documenting a 
teaching experiment with one 6th grade student, indicated that students tend to initially conceptualize 
speed as a compound unit called speed-lengths: the time it takes to travel a given distance. That is, 
the participant was only able to understand discrete parts of the variation, rather than describe how 
continuous variation in time affects the continuous variation in distance. The authors reasoned that 
school learners first understand “speed as a distance and time as a ratio (total length/speed-length)” 
(Thompson & Thompson, 1996, p. 3). 

In a study of secondary teachers’ creation of a graph of a bottle that is similar to the boiling flask 
shown in Figure 4, the researchers used two lenses to examine the participants’ work: “use and 
coordination of macro-perspective and micro-perspective; and coordination of mathematical entities 
and their features” (Heid, et al., 2006, p. 4). The study postulated that a central theme in students’ 
reasoning about the bottle problem was the “macro-perspective” (examining the overall view) and 
the “micro-perspective” (examining a smaller part such as small changes in the height to consider 
what change in the volume that would cause) (p. 5). A key factor in how successful their participants 
were was whether or not the participants were conscious of both perspectives and whether or not they 
could shift between them to overcome obstacles. The second key factor in the participants’ success 
was how the individuals related the mathematical entities (the graph) and the physical entities (the 
bottle). For example, sometimes participants would be unable to coordinate the mathematical and the 
physical entities or other times the participants would fixate on a particular connection and use only 
that connection to generalize. 

Thus, the current literature indicates that students will likely have difficulty thinking about how 
the variables in rate of change tasks are related. In addition to this, participants will struggle to 
understand when gestalt views of the objects/graphs or piece-wise views of the objects/graphs will be 
helpful to their reasoning. 

Research Design 
The current qualitative study included two tasks that were part of a larger effort to document 

students’ conceptions of rate of change (Tague, 2015). Each participant took part in a task-based 
based interview (Goldin, 2010) lasting, on average, 70 minutes. The goal of the interviews was not to 
design instruction nor to teach the participants, but instead, to document the participants’ conceptions 
of rate of change before and after use of a dynamic visualization. As such, the interviewer did not 
push the participants toward a correct solution; however, follow-up questions were asked to clarify 
the participants’ conceptions. 

Each interview was video recorded, and transcribed verbatim. The video recordings captured the 
participants written work, their hand movements, and their interactions with the visualizations. The 
transcripts included gestures where the participants did not possess the vocabulary to articulate their 
full understanding of rate of change (Roorda, Vos, & Goedhart, 2009). For example, one of the 
participants showed, using her hands, that when the bottle narrowed, the graph would increase in 
slope, by tilting her hands in and then out because she could not articulate the vocabulary for 
narrow/widen.  

The transcripts were then analyzed according to the Mental Action Framework (Carlson, et al., 
2002) shown in Figure 1 to determine the level of the participants’ understanding of covariation. The 
framework was developed through studying second year calculus students’ understanding of average 
rate. The authors argued that determining level of understanding of covariation involved examining 
many mental actions that might be elicited by a task, and that an individual should not attain higher 
levels of mental actions without mastering the lower levels. We also examined what other features or 
conceptions were important in completing the task (Heid et al., 2006), in interacting with the 
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simulations, and in completing the task a second time. For example, if a participant matched bottles 
to graphs in the Water Filling task by iconic translation (how closely the shape of the graph matched 
the physical shape of the bottle) (Monk, 1992), that individual was not actually using any kind of 
covariation to complete the task. 

 

 
Figure 1. Mental actions and indicators of the covariation framework (Carlson, et al., 2002, p. 357). 

Participants 
The participants (Table 1) were chosen purposefully to represent students at specific educational 

levels - before algebra (middle school students), after algebra (high school students and students 
taking calculus courses), and after calculus (students enrolled in differential equations courses). 
Algebra (Saldanha & Thompson, 1998) and calculus (Thompson, 2008) have been shown to be key 
places where a robust understanding of rate of change is necessary. 

Middle school and high school participants were recruited through letters sent to parents from 
teachers in a large professional development program. In the case of the undergraduate students, 
participants were recruited through Calculus and Differential Equations courses at a large 
Midwestern University. Participants were chosen from the volunteers to maximize variation amongst 
the participants. When possible, the participants were chosen from different parts of two Midwestern 
states, or different courses.  
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Table 1: Participants and Pseudonyms 
Participant Grade Level Pseudon

ym 
Middle School – 6th grade Forrest 
Middle School – 8th grade Amy 
High School – Precalculus Sarah 
High School – Precalculus Kristi 
Undergraduate - Calculus Kyle 
Undergraduate - Calculus Angela 
Undergraduate - Calculus Brian 
Undergraduate - Calculus Amanda 

 

Task Design and Choice of Simulation 
Two simulations were used, and in both cases, the participants were asked to complete a task 

before the simulation, to interact with the simulation, and then to complete the same task again. 
During the second time through the task, the participants’ original work was put away, and they had 
the option of continuing to use and test options in the simulations while working. 

The first dynamic simulation was a Java applet called “The Moving Man” shown in Figure 1 
(PhET). The applet has the image of a man that begins in the middle of a horizontal axis. The man 
can be dragged using the mouse or he can be programed to move in a particular way by choosing an 
initial position, velocity, and acceleration. If the user moves the man manually, the position, velocity, 
and acceleration change simultaneously. 

 

 
Figure 2. Screenshot of The Moving Man (applet by PhET). 

The task associated with this dynamic simulation is the following: Draw a picture of what you think 
the position, velocity, and acceleration graphs will look like if the man starts at the tree, realizes he 

is hungry, and then goes home to eat. The task was deliberately left vague in order to allow 
participants to connect with their intuitive knowledge of how people move and how that motion 
affects their velocity and acceleration. Participants were also asked if they understood the terms 

position, velocity, and acceleration, and were given explanations if necessary. 
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The second dynamic simulation was a screenshot video of an individual playing with Wolfram 
Alpha’s Bottle Filling simulation shown in Figure 3. In the online environment, the user can drag the 
outside points of the bottle, and then drag the fluid height level up. As the bottle is filled on the left 
side, a simultaneous graph of volume versus height is created on the right side. The participants 
could pause the video at any time, drag the action backwards or forwards, and watch as many times 
as they wanted to while they completed the task for the second time. 

 
Figure 3. Screenshot of water filling simulation applet (Wolfram Alpha). 

The task associated with the water filling simulation stated, “Imagine filling each of the six 
bottles below (Figure 4), pouring water in at a constant rate. For each bottle, choose the correct 
graph, relating the height of the water to the volume of water that’s been poured in” (Annenberg 
Learner). Note that the graphs of C, G, and H do not match with any of the bottles, but their bottles 
would look like those shown in Figure 5. After the participants matched the bottles to graphs, we 
asked them to choose any graph they had leftover and sketch what the associated bottle would be. 

 

 
 
 
 
 
 
 

 

Figure 4. Task associated with the bottle filling simulation 
with the intended matches marked. (Annenberg Learner). 

Figure 5. Bottles matching graphs 
C, G, and H from Figure 4 

(Annenberg Learner). 

The two dynamic simulations were chosen purposefully to be accessible, yet challenging to all 
participants from middle school through differential equations students. Both simulations were also 
chosen because they represent physical activities that the participants were likely to have 
experienced. The Moving Man represents a graphing of position, velocity, and acceleration, which is 
a paradigmatic type of rate of change problem that many individuals come to equate with their 
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definition of rate of change (Zandieh, 1997). The bottle filling task is one that has been used by many 
researchers examining rate of change, and so would allow for comparisons with previous literature 
(Carlson, et al., 2002; Heid, et al., 2006). 

Results and Discussion 
Table 2 illustrates the mental actions of the participants associated with covariation before and 

after interacting with the simulations. As the tables illustrate, the participants generally moved 
toward a more covariational view of rate of change or maintained their current level. However, more 
covariational mental actions did not always coordinate with a more accurate physical understanding, 
as explained further. 

 

Table 2: Mental Actions Before and After the Dynamic Simulations 
 Water Filling Moving Man 

 Before After Before After 
Forrest None None MA1 None 
Amy None None None None 
Sarah MA5 MA5 MA5 MA5 
Kristi MA3 MA5 MA1 MA3 
Kyle MA2 MA3 MA3 MA4 
Angela MA4 MA5 MA4 MA5 
Amanda MA5 MA5 MA4 MA5 
Brian MA5 MA5 MA5 MA5 

 
The middle school participants, Forrest and Amy, matched bottles both before and after the 

simulation, using Monk’s (1992) description of iconic translation. Monk (1992) described how 
students sometimes create graphs that replicated the physical features of a problem. For example, 
when asked to create a rate graph of someone biking across a flat surface and then biking up a hill, 
students are likely to create a horizontal line attached to a positive sloping line. Forrest and Amy 
matched the bottles with the graphs based on the physical features of the bottle that matched the 
physical features of the graphs. For example, they both matched graph D with the vase, and Amy 
explained, “because I think I was just trying to match the shape of it and not the actual amount of 
liquid it can be filled with.” Further, Amy’s explanation indicated that she was not even considering 
either of the variables involved in the task, and rather looked at the overall shapes to match. Neither 
one attempted to draw a bottle from one of their leftover graphs. 

The rest of the participants were either at the highest covariational understanding of rate of 
change (for the water filling problem), or moved towards a better understanding (Table 2). Still, as 
before, improvement in understanding of covariation did not necessarily indicate a more accurate 
response. For example, Kyle’s matches were based on a generalization of one physical feature of the 
bottles – corners. His reasoning was similar to that of the participants in Heid and colleagues’ (2006) 
study, in that, although he was considering different uniform changes in volume and how that would 
correlate to height, he based those changes around relating the physical features of corners to 
physical corners in the graphs. However, he was ranked at MA3 afterwards because he could 
describe that wider parts of the bottle would results in more volume, but less height whereas before 
the simulation he could only describe as more water was added, the height would increase. 

The Moving Man interaction seemed to have none or a negative effect on the rate of change 
conceptions of the middle school participants. Forrest actually moved from creating graphs where he 
considered the change with respect to time to creating graphs with iconic translation (Monk, 1992), 
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or using the physical motion of the man to create the shape of the graph. Note, from Figure 6 that all 
of his graphs were horizontal and the man’s movement can only be horizontal. Forrest had no 
cognitive dissonance about the fact that his graphs differed from those on the simulation. He was 
insistent that the graphs must look “just like the man moved.” In Amy’s case, she persisted in 
creating three discrete points for the graphs: one at (18,8) on the position, one at (18,8) on the 
velocity, and one at (8,6) for the acceleration. Like Forrest, she was undisturbed by the difference 
between her graph and the simulation. For the rest of the participants, the simulation moved them 
towards a more covariational understanding of rate of change. However, all of the other participants 
also copied what the simulation created, whether or not they understood it. For example, Kristi 
originally created a linear position function, and after interacting with the simulation, she changed it 
to curved. When she was asked why, she was unable to provide reasoning until the interviewer asked 
her what would happen if the acceleration were set to 0. 

 

 
Figure 6. Forrest's graphs before and after the Moving Man simulation. 

Conclusion 
In summary, the dynamic simulations moved the participants’ conceptions of rate of change 

towards a move covariational understanding. However, a better covariational understanding did not 
directly mean that they produced a more accurate graph/bottle/etc. It’s possible that in addition to 
developing an understanding of how the variables co-vary, individuals also have prior experiences 
that cause them to focus only on one aspect of the physical situation or to use iconic translation. A 
better understanding of the relationship between the prior experiences and how they relate to 
covariational understanding is necessary to be able to describe fully individuals’ understandings of 
rate of change. 

It is clear from the current study, that questioning is essential because exposure to the 
simulations, in some cases, caused new misconceptions, led to less use of covariational reasoning, or 
did not address underlying misconceptions. Furthermore, technology is essential in studying 
understanding of rate of change, but it also transforms understandings, and as such, requires attention 
to changes caused by the technology, and further study on what kinds of questions and tasks would 
help students maximize their understandings. 
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