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In this article, we report how a geometric task based on the ACODESA methodology (collaborative 
learning, scientific debate and self-reflection) promotes the reformulation of the students’ validations 
and allows revealing the students’ aims in each of the stages of the methodology. To do so, we 
present the case of a team and, particularly, one of its members who expresses the intention of 
reformulating validations for a mathematical conjecture besides showing evolution in the form of 
justifying. 
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Background and research problem 
For some decades, the teaching and learning of proof have been studied by a number of 

mathematics education researchers to promote their learning (De Villiers, 2010; Hanna, 2000, among 
others) and identify and classify the procedures provided by the students when developing tasks in 
which they have to prove (Balacheff, 1987; Bell, 1976). The works by these authors consider that 
students in general show difficulties when they are asked to prove a mathematical statement or 
mathematically justify their statements. Proof is probably the only accepted way of validation among 
mathematics scholars. However, in a context of teaching and learning, students are not necessarily 
expert in the matter and will not become professional mathematicians (Legrand, 1993). This means 
that, when asking students to prove, we will probably find that what they consider will be far from 
what is accepted as proof by a professional or a scholar. Considering that, our research uses the term 
validation to refer to what a student may provide to justify a mathematical statement. We understand 
this validation as a dynamic process we expect to evolve according to the context in which the 
student works.  

The aim  of this work was to determine how the validation created individually by a student is 
reformulated and improved when working with tasks based on the ACODESA methodology 
proposed by Hitt (2007). To do so, we raise the following research question: How does a validation 
change from its written formulation by a student, its subsequent study by a team and debate by the 
class, to its final reconstruction in a process of self-reflection? 

Theoretical References 
In this study, we consider the term validation as a process through which a proposition or 

mathematical statement is validated, as Balacheff (1987) explains. He considers that proving is the 
intellectual activity, not entirely explicit, that deals with the manipulation of the given or acquired 
information to produce new one, aiming to ensure the truth of a proposition. The validation can be 
expressed in different ways: explanation, argumentation, proof or demonstration. All of them can 
vary or evolve, according to the context in which the student works. Therefore, as Brousseau (2002, 
p. 17) states:  

The didactical situation must lead them to evolve, to revise their opinions, to replace their false 
theory with a true one. This evolution has a dialectic character as well; a hypothesis must be 
sufficiently accepted—at least provisionally—even to show that it is false. 
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Accepting a form of validation will depend on the mastery of knowledge each student possesses 
as well as the social environment and how close he or she is to the validation criteria of the 
community where the validation occurs. This last element is of great importance since the validity of 
a proposition must be accepted by the student and his or her social environment. Above all, the 
validity must be guided by the validation criteria of the discipline—mathematics, in this case. The 
description of the different forms of validation, according to Balacheff (1987), are the following: 

Explanation. Discourse with which the truth of a position or result previously acquired by the 
speaker is clarified.   

Argumentation. Discourse aimed to obtain the listener’s consent.  
Proof. Explanation accepted by a community that can be rejected by another. It may 

simultaneously evolve with the advance of the knowledge on which it is based.   
Demonstration. It is a series of statements organized according to a well-defined set of rules.  
To identify and then categorize the validations produced by the students, we used the typology of 

levels and types of proof by Balacheff (1987): 
Naive empiricism. It occurs when the student asserts the validity of a statement after verifying it 

in particular cases. The student's resistance to generalization is evident in this type of proof.   
Crucial experiment. The student verifies with the least particular example he or she can 

manage. In this type of proof, the student explicitly generalizes from the example with which the 
statement is verified.  

Generic example. The student provides an example representing the generality; that is, an 
example that is not considered a particular case but a representative of a type of cases for which the 
statement is true. In this type of proof, operations and transformations of the mathematical object 
explain why the statement is valid.   

Thought experiment. The student explains the reasons through the analysis of the properties 
involved in the statement, decontextualizing it and taking it out from a particular representation. 

Calculation on statements. Intellectual constructions based on more or less formalized or 
explicit theories, created in a definition or property. They are based on the transformation of 
symbolic expressions. This type of proof ranges from the thought experiment to the proof. 

Balacheff (1987) groups the types of proofs, described above, in pragmatic and intellectual. On 
one hand, the naïve empiricism, the crucial experiment and the generic example are pragmatic 
proofs: they resort to action and concrete examples. On the other hand, the thought experiment and 
the calculation on statements correspond to intellectual proofs, given that they are supported by the 
formulation of mathematical properties set in play and the relationship between them. 

Methodology  
Students of a Master of Educational Mathematics participated in the study for two sessions of 

two hours each. In each session, two video cameras were used to record an overall view of the 
classroom and specific moments. Additionally, dialogs between the students were recorded using a 
voice recorder.   

The task implemented was designed and organized according to the principles of the ACODESA 
methodology (Hitt, 2007), which allows promoting collaborative learning through social interaction 
and the use of technology. As a result, processes of conjecture, argumentation and validation are 
created in the classroom (Hitt, 2011; Hitt, Saboya, & Cortés, 2016). The ACODESA methodology 
has five stages: 

1. Individual work. The student develops the task individually using paper and pencil. 
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2. Teamwork. The students work in teams of three or four members. Each member presents a 
solution and justifies the response to the problem in front of his or her peers to create a 
solution as a team.  

3. Debate. Each team presents its proposal in front of all the class. The guidelines to the debate 
used in the ACODESA methodology must be in accordance with what Legrand (1993) stated. 

4. Self-reflection. The students carry out a process of reconstruction of the task. This stage is 
important because, as Hitt y González-Martín (2014) and Hitt et al. (2016) state, the 
consensus obtained in the previous stage might be provisional for some students. Therefore, 
every student has to reconstruct the solution individually using paper and pencil, considering 
what has been done in previous stages.  

5. Institutionalization. The teacher presents the institutional solution to the task in front of the 
students. To do so, the teacher summarizes what was done in previous stages and highlights 
the solutions proposed by each team. 

The general aim of the task was to create a work environment in which the students could 
conjecture and then validate such conjectures both individually and in teams. With the activity, we 
sought to identify the types of validations provided by the students when working on the different 
stages of the ACODESA methodology. Then, we determined how their validations evolved from the 
individual formulation to the moment they were shared and discussed during teamwork in a plenary 
session and up to the moment when they were reconstructed by the student in the self-reflection 
stage. Due to space limitations, in this article we only report part of the results of the task. The 
statement in the task and the questions were as follows: 

A parallelogram is known to be a quadrilateral whose opposite sides are parallel. If you choose 
any given parallelogram and draw the respective diagonals, four triangles will be formed; then, 

• What can you say regarding the areas of the four triangles? Justify your response in detail 
and do not forget to mention which parallelogram you chose. 

• Are your responses above independent from the type of parallelogram you choose? Why? 
Justify your response in detail. 

The first question aimed for the students to conjecture and validate for the particular case of a 
parallelogram. The objective of the second question was to make the students generalize their 
conjecture and then, validate it. To differentiate between their responses in the different stages, the 
students were asked to use a black ballpoint pen for the individual work, a red one for the teamwork 
and a blue one for the debate stage. 

Analysis and Result Discussion  
In this section, we present the case of Alex, a student whom we considered the most 

representative of the group in which the task was implemented. The analysis was carried out 
according to the stages of the ACODESA methodology. 

Individual Work  
Alex chose a square to formulate the response. To do so, he drew a general representative and 

assigned a measure L to each side (Figure 1). The student then conjectured that the areas of the four 
triangles formed randomly when drawing the diagonals were equal. 
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The areas of the triangles of this parallelogram are equal since they have a side L in 
common, which might be said to be the base of the triangle, and its height is determined by 
the center of the square. 

Figure 1. Particular solution provided by Alex. 

The student’s strategy was to justify that the areas are equal because the four triangles have the 
same base and height. In his response, we identify two statements to achieve his objective: (1) the 
four triangles have equal base because L is a side of the square, and (2) the height of each triangle is 
determined by the center of the square.  

The student justified the first statement through one of the properties of the square (equal sides). 
For the second statement, related to the congruency of the heights of the four triangles, Alex did not 
mention nor justified the property that allowed him to say the intersection point of the diagonals was 
the center of the square. Although his statements are valid, Alex omitted middle justifications 
(second statement). Regardless, we consider this validation to be a proof corresponding to the 
incomplete thought experiment, given that the student based the arguments on a general 
representation of the squares and presented (incomplete) justifications when he applied properties 
involved in the chosen parallelogram. In the response provided by the student for the second answer, 
in which he was induced to generalize, Alex claimed that his conjecture (regarding the square case) 
was independent from the type of parallelogram chosen; that is, the equality of the areas of the four 
triangles is met for any parallelogram (Figure 2). 
  
 

 
Yes to the one of the area because the properties mentioned in my response are maintained 
in any parallelogram, except that the base of the triangles is not always the same. 

Figure 2. Generalization provided by Alex. 

Alex correctly generalized the conjecture since the four triangles will always have the same area. 
However, when justifying the new conjecture—general conjecture, hereafter—we observe that the 
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student supported his argument on the validation created for the case of the square. In consequence, 
we infer that the student believed that validation was also true for any parallelogram. Then, we have 
a generic example-type of proof because the validation of the general conjecture, which refers to all 
parallelograms, would be supported by the validation Alex created for the square case, which is only 
a representative of a type of the parallelogram family. 

Teamwork 
The other two members of the team, S1 and S2, created their own responses from a rectangle and 

a general parallelogram, respectively. Both students conjectured that only opposite triangles have 
equal areas and were adamant that the square is a particular case. Unlike Alex, they created thought 
experiment proofs based on the consistency of triangles. Although Alex conjectured that the four 
triangles would have equal areas in all parallelograms, he did not say so to his teammates and 
corrected his conjecture on the answer sheet (Figure 3), but did not create another validation. 

 

 
Correction 
In the case of the areas of the triangles, they are not equal for the four triangles, it is met 
only for the particular case of the square. 

Figure 3. Correction written by Alex during the teamwork stage. 

Debate 
During the debate, the students first discussed whether the four triangles or only opposite ones 

had equal areas. Once the teams presented their responses, the consensus of the debate was that, in 
any given parallelogram, the four triangles formed would always have the same area. The validation 
agreed on by all the students was based on congruency of triangles to justify the equality of the 
opposite triangles and the property of diagonals (the diagonals intersected each other) to justify the 
equality of the areas of adjacent triangles. After this, Alex corrected his response once more (Figure 
4) and went back to his general conjecture—the one he had discarded during teamwork. He then 
expressed that the argumentation for such conjecture had to be changed. From his response, we infer 
that, after listening to different responses in this stage, Alex obtained more arguments to create a new 
validation for his general conjecture, although he only did so in the following stage: self-reflection. 
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Re-correction 
The notion that the areas were equal in the four triangles was correct (the argumentation 
changes). 
We can prove that they are equal based on the diagonal part of each triangle. 

Figure 4. Correction created by Alex in the debate stage. 

Self-Reflection 
In this stage, we observed a more solid validation (Figure 5) than the one created by the student 

during the individual work stage.  
 

 
After what we checked in class, a general parallelogram can be considered as follows: 
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• By the intersection of parallels, we have that: ! = !! and ! = !!. 
• By the ASA (angle, side, angle) congruency criterion, we conclude that the triangles 

∆! and ∆! are congruent, that is, !∆! = !∆!. 
• Likewise, triangles ∆! and ∆!are analyzed, concluding that !∆! = !∆!. 
That said, the center of the parallelogram is known to divide the diagonals in two equal 
segments, so, if we observe triangles ∆! y ∆!, they have the same base and the same 
height, then !∆! = !∆!. 
Therefore, !∆! = !∆! = !∆! = !∆! for any parallelogram. 

Figure 5. Validation created by Alex during the self-reflection stage. 

Alex used triangle congruency as his first argument to justify the equality of the areas of opposite 
triangles (!! = !! and !! = !! in the parallelogram in Figure 5); such argument arose during the 
teamwork stage. The student then used the property of diagonals to justify the equality of the areas of 
adjacent triangles (!! = !! in the parallelogram in Figure 5); he built this argument during the 
debate stage. Alex returned to his general conjecture while his validation did not depend on a 
particular representation anymore. Then, it was a proof of the type calculation on statements since 
Alex based his statements on the definition and properties of the parallelogram. 

Conclusions 
In the individual work stage, we observed that the student created a thought experiment proof to 

validate his conjecture regarding the square case. However, when he generalized, his validation 
became a generic example proof. In the teamwork stage, Alex did not expressly wrote any 
reformulation to his validations, but did alter his general conjecture (Figure 3). During the debate 
stage, he went back to his general conjecture and gave indications that the validation had to change. 

If we consider that the general conjecture created by the student (the four triangles have equal 
areas), the validation he created in the individual work stage corresponds to a generic example, a 
pragmatic proof. In contrast, during the self-reflection stage, the student built an intellectual proof for 
the same conjecture; it was a calculation on statements and included arguments that arose during the 
teamwork and debate stages. This revealed a noticeable change between his individual work and self-
reflection to validate the same conjecture, given that his validation went from a pragmatic level to an 
intellectual one. We can credit this to the ACODESA methodology, as indicated by Hitt et al. (2016). 
An adequate environment was created for the students to conjecture and validate in a context of 
social interaction. 

On the other hand, during the teamwork stage, Alex provisionally rejected his conjecture after 
listening to his classmates’ arguments. This situation probably took place because Alex did not have 
the necessary arguments in that moment to persuade his team of the veracity of his conjecture. 
Regardless, this situation was overcome in the debate stage, during which all the students agreed that 
the four triangles would always have the same area despite the type of parallelogram used. In the 
previous chapter, we observed how the didactic situation led the students to evolve, as defined by 
Brousseau (2002), both in the initial conjecture and the arguments used for its validation.  

Most of the students rationally justified their assertions, both in the individual and the group 
stages. Additionally, we observed an environment of discussion around the arguments used to defend 
the different statements that arose during the development of the task, especially in the debate stage. 
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