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Research in mathematics education has established that gestures – spontaneous movements of the 
hand that accompany speech – are important for learning. In the present study, we examine how 
students use gestures to communicate with each other while proving geometric conjectures, arguing 
that this communication represents an example of extended cognition. We identify three kinds of 
“collaborative gestures” – gestures that are physically distributed over multiple learners. Learners 
make echoing gestures by copying another learner’s hand gestures, mirroring gestures by gesturing 
identically and simultaneously with another learner, and joint gestures where multiple learners 
collectively make a single gesture of a mathematical object using more than one set of hands. The 
identification and description of these kinds of collaborative gestures offers insight into how learners 
build distributed mathematical understanding. 
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Introduction 
Theories of embodied cognition posit that learners understand ideas, even abstract mathematical 

ideas, through their bodies and senses (e.g., Lakoff & Núñez, 2000). One important form of 
embodiment is gesture – physical hand movements that people spontaneously formulate to 
accompany speech. Hostetter and Alibali (2008) argue that gestures are an outgrowth of mental 
simulations of actions enacted by learners as they think and reason. Considerable research has 
suggested that gesture production predicts students’ learning and performance across a variety of 
content areas, including mathematics (Goldin-Meadow, 2005; Valenzeno, Alibali, & Klatzky, 2003; 
Cook, Mitchell, & Goldin-Meadow, 2008). 

While the importance of gestures to student learning has been established in a variety of studies, 
less work has been done detailing how gestures allow for cognition to be physically distributed over 
multiple learners. Here we focus on how multiple learners use gestures in their interactions with each 
other, during mathematics classroom learning activities. We argue that these gestures exemplify 
extended cognition (Clark & Chalmers, 1998), the idea that cognitive processes themselves include 
physical resources beyond the skull. We show evidence of extended mathematical cognition by 
documenting collaborative gestures – gestures made collectively by multiple students as they work 
together to make sense of mathematical ideas. We discuss the emergence of collaborative gestures in 
the context of proving geometry conjectures. 

Literature Review 

Justification and Proof 
Justification and proof are central activities in mathematics education (National Council of 

Teachers of Mathematics, 2000; Yackel & Hanna, 2003). In fact, “proof and proving are fundamental 
to doing and knowing mathematics; they are the basis of mathematical understanding and essential in 
developing, establishing, and communicating mathematical knowledge” (Stylianides, 2007, p. 289). 
Research on mathematicians’ proving practices has suggested that proof “is a richly embodied 
practice that involves inscribing and manipulating notations, interacting with those notations through 
speech and gesture, and using the body to enact the meanings of mathematical ideas” (Marghetis, 
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Edwards, & Núñez, 2014, p. 243). The multimodal nature of proof is also evident for novice students 
in classroom settings, as students’ proofs often take on spontaneous, verbal forms, as opposed to 
formal, written ones (Healy & Hoyles, 2000), and both teachers and students use gestures as a way to 
track the development of key ideas when exploring mathematical conjectures (Nathan et al., 2017). 
Thus, gestures serve as crucial embodied grounding mechanisms for proof-related reasoning in 
geometry classrooms. 

Dynamic Gestures and Dynamic Geometry Systems 
One type of gesture identified in prior research as being particularly important is dynamic 

gestures (Göksun, Goldin-Meadow, Newcombe, & Shipley, 2013; Uttal et al., 2012). These are 
gestures where learners use their bodies, usually their hands and fingers, to physically formulate and 
then manipulate mathematical entities (see Walkington et al., 2014). For example, when proving that 
the sum of any two sides of a triangle must be greater than the remaining side, a learner might 
physically formulate two sides of the triangle with straight hands, and then “collapse” these two sides 
to show that if the two sides were not larger, the triangle would not be able to close. The presence of 
dynamic gestures has been associated with more accurate proofs of geometric conjectures, with a 
medium effect size (Walkington et al., 2014; Nathan & Walkington, in press). 

Dynamic gestures allow students to formulate shapes and lines with their bodies in a manner that 
can be similar to using dynamic geometry software (DGS). DGS allows users to construct, measure, 
and manipulate objects by dragging and connecting defined objects on a computer screen (Christou, 
Mousoulides, Pittalis, & Pitta-Pantazi, 2004). The direct manipulation of DGS allows users to 
experiment freely and to have instantaneous interactions with geometric objects and their spatial 
relations (Marrades & Gutierrez, 2000). Dynamic gestures are limited compared to DGSs in that 
there is no feedback on whether manipulations are mathematically possible, nor is there exact 
measurement of geometric objects. However, gestures are highly portable and meaningful to the 
learner, and are part of the natural way in which human beings communicate, making them a 
powerful tool for mathematical reasoning. Research has shown that when gesture is facilitated or 
directed, reasoning is improved (Goldin-Meadow, Cook, & Mitchell, 2009), and when it is inhibited, 
reasoning is impaired (Hostetter, Alibali, & Kita, 2007). Walkington et al. (2014) found that for 
geometry conjectures specifically, even the inhibition of sitting in a chair and having a pencil in-hand 
and paper available reduced the incidence of dynamic gestures, and caused students to formulate 
correct proofs less often. 

Distributed and Extended Cognition 
Work in professions involves the coordination of many different inscriptions and representational 

technologies by differently-positioned actors whose actions occur across a range of social and 
physical spaces (Goodwin, 1995; Hutchins, 1995). Through joint, coordinated activity, cognition 
becomes distributed over a patchwork of discontinuous spaces and representational media. In this 
conceptualization of distributed cognition, the environment is used to offload cognitive demands. 
Theories of extended cognition go even further to argue that the social and physical environment of 
learners is actually constituent of their cognitive system (Clark & Chalmers, 1998). The implication 
is that cognition, rather than existing in the head of an individual, is distributed over the bodies of 
multiple learners and the environment around them as they interact. One way in which cognition can 
be extended across learners is through the use of gestures that extend over multiple persons. 

Prior research on students learning origami from instructors has identified collaborative gestures 
as gestures through which a learner interacts with the gestures of a communicative partner 
(Funiyama, 2000). In the context of this past research, these gestures often involved a learner 
pointing to or manipulating a teacher’s gestures about origami folds. Here we reimagine the idea of 
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collaborative gestures to be relevant to learner-learner interactions around mathematical sense-
making, and take such gestures to be a case of extended cognition. 

Research Purpose 
In the present study, we address the following research question: What are the ways that team 

members use collaborative gestures when proving geometric conjectures? We focus specifically on 
cases where the physical, gestural activity is distributed over multiple learners, rather than cases of a 
single student gesturing and another student interpreting that gesture.  

Method 

Setting and Sample 
Eleven undergraduate students enrolled in a teacher education program (ten female and one male) 

aged 20-22 years voluntarily participated in this 75-minute study. The undergraduates were enrolled 
in the elementary mathematics method course from a private university situated within a large city in 
the southwestern United States. Informed consent was obtained from all participants. Sixty-four 
percent of the participants identified as Caucasian, 18% identified as Asian, and the remaining 18% 
identified as Latino/a. The undergraduates had already declared a non-education major, but were 
simultaneously enrolled in a 33-credit hour undergraduate major in education preparing them to 
pursue teaching careers, work in the social sciences, or informal education paths in non-profit 
organizations. Students were divided into two groups around two separate gaming systems with each 
group being video recorded while playing the video game. We focus our analyses on one of the two 
groups of students, with four females and one male. 

Procedure and Measures 
The focus of the study was the playing of an educational video game about learning geometry 

(see Nathan & Walkington, 2017 for more information about the game). Specifically, through the 
Kinect video game platform, students were prompted to perform specific arm motions and then prove 
geometry conjectures that were related to those arm motions.  While only one participant (the gamer) 
of each group controlled the Kinect with their body movements, the remaining participants in each 
group worked collaboratively with the gamer to mathematically prove or disprove the conjectures. 
The role of the gamer rotated throughout the group so that each participant had the opportunity to 
perform the directed arm motions and also to take the lead in communicating the proof. In this study, 
rather than focusing on the directed arm motions that the game directed learners to perform before 
proving the conjecture, we focus on the hand gestures they spontaneously made while formulating 
their proofs. 

Before playing the video game, students were given a pre-test measuring their knowledge of 
geometry (basic properties of triangles, circles, and quadrilaterals) and their attitudes towards 
geometry (items drawn from Linnenbrink-Garcia et al., 2010). Although a detailed analysis of these 
pre-measures is beyond the scope of this paper, results suggest that the students had neutral or 
slightly negative attitudes about geometry, rating items like “I enjoy doing geometry and “Geometry 
is exciting to me” on average between 2 and 3 on a 5-point scale (SDs ≈ 1.0). In addition, results 
suggest that students had somewhat strong knowledge of basic geometric properties (pre-test items 
included statements like “the angles of a triangle add up to 180 degrees”), scoring an average of 80% 
(SD = 13%) on the pre-assessment. 

Analysis Techniques 
The video captured while the participants played the game was transcribed using Transana 

(Woods & Fassnacht, 2012) in order to integrate text and video data into the analysis. These 
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transcripts and videos were then analyzed to find where the students performed collaborative gestures 
– gestures that were distributed in some way over multiple individuals. Transcripts from the group 
formulating proofs for their six conjectures were analyzed using multi-modal analysis (McNeil, 
1992) of gestures. Multimodal analysis involves analyzing, interpreting, and reporting the use of 
gestures in conjunction with speech transcripts, in order to provide the fullest possible picture of 
learner reasoning. Here we employ a multiple case studies approach (Yin, 1994), since our research 
goal is to describe phenomena of potential theoretical importance, rather than the manipulation of a 
relevant behavior. Case study research recognizes that the rich context in which the interactions 
occur contain many variables interacting simultaneously.  

Results 
Through a multi-modal analysis of the focal group proving six conjectures, we discovered three 

types of collaborative gestures. Although we present a single group’s activities, these gesture types 
were also present and important in subsequent work that examined 4 additional classes of students. 
We give a case for each gesture type. All student names are pseudonyms. 

Echoing Gestures 
Our first case is taken from the group proving the conjecture, “If you know the measure of all 

three angles of a triangle, there is only one unique triangle that can be formed with these three angle 
measurements.” Tanya (bottom image, Figure 1) was in front of the game, with the other students, 
including Karen (top image, left, Figure 1), assisting her in formulating a proof.   

 
Figure 1. Transcript of echoing gestures. 

Once Tanya reads the conjecture (Line 1), Karen explains why the conjecture must be false, and 
uses a dynamic gesture where she formulates a triangle with her thumb and index fingers, making it 
grow and shrink (Line 2). Tanya seems to immediately understand and take up this gesture, repeating 
the gesture herself, and putting Karen’s explanation into her own words (Line 3). Tanya and Karen 
performed echoing gestures, where one person made a dynamic gesture, and then a second person 
repeated that gesture while making the accompanying verbal reasoning her own. Other literature has 
identified gestural catchments as repeated similar or identical hand gestures used by a single gesturer 
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(usually an instructor) to convey similarity of or highlight important conceptual connections 
(McNeill & Duncan, 2000). Next, we describe a related use of gesture where one learner echoes and 
repeats the gestures of another learner. 

Mirroring Gestures 
Our second case is taken from the group proving the conjecture, “If one angle of a triangle is 

larger than a second angle, then the side opposite the first angle is longer than the side opposite the 
second.” In this sequence (Figure 2), Haley, shown in the left of the images, works to formulate a 
proof using gestures. She first draws two angles of a triangle in the air with her fingers, and then 
points to the angles of the triangle (Line 4). At the same time, Karen (shown on the right, partially 
cut off) represents a side of the triangle with her arm, interweaving her reasoning (“and the side 
opposite the first…”; Line 5) into Haley’s narrative proof. Haley and Karen perform identical 
gestures where they form equilateral-like triangles with their thumbs and forefingers (Line 6). Haley 
then performs a dynamic gesture where she collapses one side of this equilateral-like triangle inwards 
in order to vary the angle measurements and check how this impacts the side lengths (Line 7). After 
the transcript ends, they come to a consensus that the conjecture is true, both repeating their prior 
gestures as they clarify their reasoning. 

 
Figure 2. Transcript of mirroring gestures. 

Karen and Haley performed mirroring gestures as they were gesturing at the same time in 
response to the same line of reasoning and jointly formulating a mathematical argument. In addition, 
at times their gestures were structurally identical. Mirroring gestures differ from echoing gestures in 
that they occur simultaneously – learners are using their bodies in conjunction with each other as 
they reason together in-the-moment. Echoing gestures, on the other hand, may capture instances 
where one learner’s reasoning is later taken up by another learner, after the initial string of reasoning 
has been communicated and interpreted. 
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Haley’s and Karen’s gestures are representing two distinct geometric shapes, with one shape 
being imagined in the air in front of each of them. In our final case, we observe gestures where two 
learners operate on a single imagined geometric object using gestures. 

Joint Gestures 
Our third case is taken from the group proving the conjecture, “The measure of any central angle 

of a circle is twice the measure of an inscribed angle intersecting the same two endpoints on the 
circumference.”  In this sequence (Figure 3), Karen begins by trying to represent both the circle and 
the angles using her gestures, but struggles to properly represent the conjecture (Line 9). Stephanie 
misunderstands the reasoning she is communicating using this gesture (Line 10), so Karen seeks a 
different approach to make her thinking clear to her group. She calls upon Haley to use her hands to 
make the circle (Line 15), and then Karen layers her hands over Haley’s circle to formulate a central 
angle and then an inscribed angle.  

Stephanie, who is controlling the game for this conjecture, then mimics their gesture (Line 20) 
and agrees with their conclusion that the central angle would be smaller (Line 22). Haley questions 
their reasoning at two points during the discussion (Lines 19 and 23), but ultimately the group 
concludes that the central angle is smaller than the inscribed angle (Lines 26-27). This is a common 
misconception – the central angle is the large angle since it sweeps out more space.    

Discussion and Implications 
 Situated cognition holds that cognitive behavior is embodied, embedded, and extended. An 

embodied cognition perspective (e.g., Lakoff & Núñez, 2000) focuses on ways body states and body-
based resources shape behavior. Embedded and distributed cognition holds that cognition is mediated 
by the physical and social environment and the environment is used to off-load operations that could 
otherwise be performed mentally (Hutchins, 1995). Extended cognition takes this further, positing 
that social actors and the physical environment, in concert with the mind of the one doing the 
reasoning, constitute the cognitive system (Clark & Chalmers, 1998). 

Here we identified three novel ways in which students socially coordinate hand gestures and 
speech that exemplify extended mathematical cognition. In echoing another’s gestures, one learner 
makes a hand gesture representing a mathematical object, and then another learner repeats it, often 
making the reasoning it illustrates personally meaningful. In mirroring gestures, two learners 
simultaneously make the same or similar gestures with each of their set of hands, as a way of 
following each other’s’ reasoning in real time. This strategy goes beyond simply observing another’s 
gestures – by making the same gesture, learners may better understand a collaborator’s reasoning. 
Finally, joint gestures illustrate how multiple learners collaboratively build and manipulate 
mathematical objects that are too complex for one set of hands. Taken together, these findings 
suggest collaborative gestures have the potential to provide learners with additional tools that 
facilitate mathematical communication and proof....” 

An interesting question for future research is how collaborative gestures influence student 
learning – our third case shows an ultimately unsuccessful use of collaborative gestures – and 
whether collaborative gestures are more effective than other tools of extended cognition (e.g., 
manipulatives, pencil and paper, DGS). We are of the view that there is not one optimal tool for 
learning about geometric properties and conjectures; rather that students need a variety of 
experiences exploring geometric ideas with different tools for cognition and collaboration. In the 
present paper, we argue that collaborative gesture should be one element of students’ toolboxes as 
they learn proof in geometry. In this way, we seek to answer the question “How can we lay the 
groundwork for future crossroads between theory, research, and practice?” We use educational 
research to lay the groundwork for the potential importance of collaborative gestures, connecting our 
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research to theories relating to gesture and extended cognition. By studying these gestures within 
classrooms where students are engaged in mathematical reasoning, we begin to consider how this 
research might inform practice. 
 

  

Figure 3. Transcript of joint gestures. 
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