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Generalization is a critical aspect of doing mathematics, with policy makers recommending that it be 
a central component of mathematics instruction at all levels. This recommendation poses serious 
challenges, however, given researchers consistently identifying students’ difficulties in creating and 
expressing normative mathematical generalizations. We address these challenges by introducing a 
comprehensive framework characterizing students’ generalizing, the Relating-Forming-Extending 
framework. Based on individual interviews with 90 students, we identify three major forms of 
generalizing and address relationships between forms of abstraction and forms of generalization. 
This paper presents the generalization framework and discusses the ways in which different forms of 
generalizing can play out in activity.  
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Introduction: The Importance of Mathematical Generalization  
The act of generalizing is at the core of mathematical activity, serving as the means of 

constructing new knowledge. Researchers have argued that mathematical thought cannot occur in the 
absence of generalization (Sriraman, 2003; Vygotsky, 1986). As a result, “developing children’s 
generalizations is regarded as one of the principal purposes of school instruction” (Davydov, 
1972/1990, p. 10). Researchers have studied the importance of generalization for promoting algebraic 
reasoning (Cooper & Warren, 2008), mathematical modeling (Becker & Rivera, 2006), functional 
thinking (Ellis, 2011; Rivera & Becker, 2007), and probability (Sriraman, 2003), among other areas. 
Despite the importance of generalization to success in mathematical reasoning, research on students’ 
abilities to generalize has identified pervasive student difficulties. For instance, Rivera (2008) 
reported results of 5 years of performance assessments on generalization given to more than 60,000 
middle and early high school students; these findings revealed a stable ceiling value of only a 20% 
success rate in the construction of a general formula. Other researchers have similarly documented 
students’ difficulties in creating correct general statements, shifting from pattern recognition to 
pattern generalization, and using generalized language (e.g., English & Warren, 1995; Mason, 1996). 

Although student difficulties are well documented, the instructional conditions necessary for 
fostering more productive student generalizing are not well understood. Complicating the matter, the 
bulk of research on generalization has occurred with algebraic patterning tasks, situating 
generalization as a type of, and route to, algebraic reasoning (Becker & Rivera, 2006; Cooper & 
Warren, 2008). There remains a need to understand how students construct generality in more varied 
and more advanced mathematical domains. The goals of this study are to investigate students’ 
mathematical generalizing from middle school through the undergraduate level in the topics of 
algebra, advanced algebra, and combinatorics. In particular, our aim is to elaborate the nature of 
students’ generalizing, contributing to the field’s knowledge base by extending the investigation of 
generalization up the grade bands. Based on clinical interviews with 90 students from 6th grade 
through the undergraduate level, we introduce a framework characterizing three major forms of 
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generalizing activity: relating, forming, and extending. We also introduce and discuss relationships 
between forms of generalization and forms of abstraction.   

Theoretical Framework  

Forms of Generalization 
Definitions of generalization vary, with the most prominent situating generalization as an 

individual, cognitive construct (e.g., Kaput, 1999). More recent sociocultural definitions position 
generalization within activity and context, as a collective act distributed across multiple agents 
(Tuomi-Gröhn & Engeström, 2003). These perspectives attend to how social interaction, tools, and 
history shapes people’s generalizing, recognizing generalization as a social practice that is rooted in 
activity and discourse (Jurow, 2004). We borrow from both the cognitive and the sociocultural 
traditions to define generalizing as an activity in which learners in specific sociocultural and 
instructional contexts engage in at least one of the following three actions: (a) identifying 
commonality across cases (Dreyfus, 1991), (b) extending one’s reasoning beyond the range in which 
it originated (Radford, 2006), and/or (c) deriving broader results from particular cases (Kaput, 1999). 
We use the term generalizing to refer to any of these processes, whereas generalization refers to the 
outcome(s) of these processes.  

Borrowing from Lobato’s (2003) transfer framework, we take an actor-oriented approach to 
studying students’ processes of generalizing. This approach represents a shift from the observer’s 
(usually the researcher’s) stance to the actor’s (the student’s) stance. In particular, it compels us to 
abandon normative notions of what should count as a generalization, instead seeking to understand 
the processes by which students construct relations of similarity that they experience as meaningful. 
Our framework also builds on Ellis’ (2007) taxonomy of generalizations, which distinguishes 
between students’ activity as they generalize, called generalizing actions, and students’ final 
statements of generalization, called reflection generalizations.   

Forms of Abstraction 
The second line of research we rely on examines the role of abstraction in developing 

generalizations (e.g., Dorfler, 1991). Abstraction has been characterized in multiple ways, but we 
focus particularly on reflective abstraction and the interrelationships among the actions and 
operations that constitute students’ construction of mental objects. In particular, we distinguish three 
types of reflective abstraction salient in informing students’ generalizing activity: pseudo-empirical 
abstraction, reflecting abstraction, and reflected abstraction (Montangero & Maurice-Naville, 1997; 
Piaget, 2001). Pseudo-empirical abstraction is based on the observation of perceptible results, in 
which new knowledge is drawn not just from the properties of objects, but from how the student has 
organized the activities she has exerted on those objects. We further distinguish pseudo-empirical 
abstraction from other forms by noting that pseudo-empirical abstraction includes reflection on the 
outcome of one’s activity. The focus is on the products of a learner’s actions, rather than the 
coordination and transformation of actions themselves.  

In contrast, reflecting abstraction includes reflection on one’s actions, not merely on the 
outcomes of those actions. One can transfer to a higher plane what he or she has gleaned from lower 
levels of activity, leading to differentiations that imply new, generalizing compositions at that higher 
level. In reflected abstraction, one becomes conscious of his or her actions, bringing awareness of 
qualitative differences between his or her actions. Through reflected abstraction, one is able to 
formulate, formalize, and subsequently operate on his or her thought.  
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 Methods  
We conducted a series of individual semi-structured interviews with middle school (ages 12-14), 

high school (ages 14-17), and undergraduate students in the domains of algebra, advanced algebra, 
discrete mathematics, and combinatorics. The algebra and advanced-algebra topics included linear, 
quadratic, higher-order polynomial, and trigonometric functions, and the discrete mathematics and 
combinatorics topics included counting problems, combination and permutation problems, and the 
binomial theorem. We conducted 10 middle-school, 11 high-school, and 10 undergraduate algebra or 
advanced algebra interviews, and 19 middle-school, 13 high-school, and 27 undergraduate discrete 
mathematics (combinatorics) interviews.  

During the interviews we presented the participants with domain-specific tasks to elicit both near 
and far generalizations, and we asked the participants to identify patterns and themes, discuss any 
elements of similarity they noticed, and, where reasonable, explain and discuss the generalizations 
they formed. All interviews were videotaped and we used gender-preserving pseudonyms for all 
participants. Table 1 presents a sample of the interview tasks across the mathematical domains.  

Table 1: Sample Interview Tasks 

Interview Task Domain and 
grade level 

The rectangle below grows along the dotted path as shown: 

 
Complete the following statement: When the length of the rectangle grows by 
_____, the area grows by _____. 

Algebra, middle 
school 

You have a 1 cm by 1 cm by 1 cm cube, and all sides grow at the same rate. How 
much additional volume does the cube gain when the sides each increase by 1 cm? 

Adv. algebra,           
high school 

You have a deck of number cards numbered 1-6. You create a two-card hand by 
drawing a card from the deck, putting it back, and drawing a second card. 
Determine how many possible two-card hands you could get. How many times the 
number of two-card hands would you have if you had twice the number of cards? 

Discrete math, 
middle school 

Suppose passwords consist of (uppercase) As, Bs, and/or the number 1. How many 
such passwords are there that are n characters long?  

Combinatorics, 
undergraduate 

Analysis 
We relied on the constant comparative method (Strauss & Corbin, 1990) to analyze the interview 

data in order to identify forms of generalization and abstraction. For the first round of analysis we 
drew on Ellis’ (2007) analytic framework for categorizing students’ generalizing actions and 
reflection generalizations, using open coding to infer categories of generalizing activity based on 
students’ talk, gestures, and task responses. This first round led to an initial set of codes, which then 
guided subsequent rounds of analysis in which the project team met weekly to refine and adjust the 
codes in relation to one another. This iterative process continued until no new codes emerged. A final 
round of analysis was descriptive and supported the development of an emergent set of relationships 
between forms of abstraction and forms of generalizing, characterizing the evolving nature of 
students’ mental activity as they generalized. 
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Results: The Relating-Forming-Extending Framework  
Based on data analysis from the 90 interviews we developed an empirically-grounded framework 

capturing the broad range of generalizing activity across a variety of grade bands and domains. We 
present the results in two major sections. First we introduce the framework itself, which provides 
definitions, descriptions, and examples of each form of generalization demonstrated by the study 
participants (Tables 2-4). Due to space constraints, we do not elaborate on every form of 
generalizing, but we instead present a data episode identifying the interrelationships between the 
forms of abstraction and forms of generalizing. This episode is meant to be representative of the 
explanatory power of the framework, which we limit to one student due to space considerations. The 
Relating-Forming-Extending framework distinguishes between inter-contextual forms of 
generalizing, in which students established relations of similarity across problems or contexts, and 
intra-contextual forms of generalizing, in which students formed and extended similarities and 
regularities within one task. Following the actor-oriented perspective, we made the inter/intra 
distinction based on evidence of whether the student perceived the establishment of similarity or 
regularity he or she formed to occur across different contexts or situations, or to occur within the 
same context.  

Table 2: Inter-Contextual Forms of Generalizing (Relating) 
Form of Generalizing Example 

Relating 
Situations: 
Forming a relation 
of similarity across 
contexts, 
problems, or 
situations 

Connecting Back: 
Formation of a 
connection between 
a current and 
previous problem 
or situation. 

HS Adv. Algebra Student: All the sides are the same 
length. The formula is generally the same [as the prior 
problem], you’re just adding one more side for the 4-
dimensional one. 

Analogy Invention: 
Creating a new 
situation or 
problem to be 
similar to the 
current one. 

MS Algebra Student: The more seconds he has, he’ll slow 
down. And the less seconds he has, he’ll speed up faster. 
Int: Okay, and how come? Student: You know how, if you 
had less time to go into the grocery store to get the foods 
on the grocery list, you would go faster if you had like 1 
second to do it in? You would, like, be in and out real 
quick. Same thing here. 

Relating Ideas or Strategies (Transfer): 
Influence of a prior context or task is 
evident in student’s current operating. 

HS Adv. Algebra Student: So in this case it’d be P plus, 
let’s do V for valence because that’s one word I know for 
outer ring. Int: Cool, is that from chemistry? Student: Yep. 
Like the valence electrons…how much that equals plus the 
previous one, would equal your new answer. 

 
The inter-contextual forms of generalizing all involved a type of relating activity. The intra-

contextual generalizing, however, occurred in two major categories: (a) forming a similarity or 
regularity, in which students searched for and identified similar elements, patterns, and relationships 
(Table 3); and (b) extending or applying a similarity or regularity (Table 4). In the latter case, 
students extended established patterns or relationships to new cases. 

We illustrate several intra-contextual generalizations and their relationships to forms of 
abstraction by presenting the work of Willow, a middle-school algebra student, who worked on the 
growing rectangle task (Table 1). Willow initially established a numerical relationship between the 
length of 4 cm and the area of 6 cm2: 
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Well, the area is 2 more than the length so I would think if, however, if they grew like the same 
amounts of, if this (points to the area) grew by 2 in the area, so it would be 8 and this (points to 
the length) grew by 2 and it would be 6, then it would always be 2 more if they grew in the same, 
like, the same amount. 

Table 3: Intra-Contextual Forms of Generalizing (Forming) 
Form of Generalizing Example 

Relating 
Objects: 
Forming a 
relation of 
similarity 
between two or 
more present 
mathematical 
objects 

Operative: Associating 
objects by isolating a 
similar property, function, 
or structure. 

Und. Adv. Algebra Student: [Comparing x = sin(y) 
with y = sin(x) graphs] They’re both representing the 
same thing…with equal changes of angle measures 
my vertical distance is increasing at a decreasing rate 
[tracing graph]…here it’s doing the exact same thing. 

Figurative: Associating 
objects by isolating 
similarity in form. 

HS Adv. Algebra Student: How does the volume 
equation relate to this cube? Well the three numbers 
are getting one bigger and the three sides got one 
bigger. 

Activity: Relating objects 
or ideas based on 
identifying one’s activity 
as similar. 

MS Algebra Student: I think it would be 2 more than 
the 6. Int: Two more than the 6? Okay, how come? 
Student: Because, like, same as this one [points to the 
prior problem] you’re just adding it. 

Search for similarity or regularity: Searching 
to find a stable pattern, regularity, or element 
of similarity across cases, numbers, or 
figures. 

HS Adv. Algebra Student: I don’t think it goes up by 
the same amount each time. Does it? That goes up by 
3, and that goes up by 5, and that goes up by 7. Three, 
5, 7. Yeah, it goes up by…okay.  

Identify a 
regularity: 
Identification of 
a regularity or 
pattern across 
cases, numbers, 
or figures. 

Extracted: Extracting 
regularity across multiple 
cases. 

MS Combinatorics Student: For every addition 
problem that we do, like 6 plus 6 equals 12, it is 
always one more added to that every time. 

Projected: Describing a 
predicted or known stable 
feature. 

MS Algebra Student: You could do, you could do 1.5 
times growth and that would get you, times the growth 
in the length and then that would give you the growth 
in area.  

Isolate constancy: Focusing on and isolating 
regularity – a stable feature – across varying 
features. 

HS Adv. Algebra Student: This is like the one thing 
that you started off with [circles the original 
rectangle]. It’s like the only constant really. And so 
each time it changes a little bit so it’s really one of 
these is being added each time and so that’s not really 
taking it into account, the 15 that was already there. 

 
Willow identified a regularity by stating “It (the areas) would always be 2 more (than the 

length)”. Although Willow’s generalization is incorrect, it represented a pattern that she saw as valid. 
We also suspect Willow’s generalization relied on a pseudo-empirical abstraction, not because her 
generalization was incorrect, but because she appeared to generalize based on the outcome of her 
activity. Specifically, Willow’s operation was to take the difference of the numbers 4 and 6, and she 
generalized the difference remaining constant. She made an additive comparison between numerical 
values that did not appear to be based in quantitative operations relating length to area. When asked 
what would happen if the rectangle grew by another 4 cm, Willow responded, “So it grew by 
4…would the area have grown by 4 too? It could be, like, 10.” Here Willow extended by continuing 
the “area = length + 2” relationship she had established to a new case. She then further generalized 
by stating, “If the length grew by x, then the area would be 2 more than the total length,” which she 
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expressed as “A = 2 + T”. Here Willow extended by removing particulars in order to algebraically 
express the relationship she had established. We maintain that this string of generalizations remained 
grounded in Willow’s activity of pseudo-empirical abstraction. Her focus remained on the result of 
her operation, the difference of 2, and at no time did Willow coordinate the growth of the rectangle 
simultaneously with varying measures of length and area. 

Table 4: Intra-Contextual Forms of Generalizing (Extending) 
Form of Generalizing Example 

Continuing: Continuing an existing pattern or 
regularity to a new case. 

MS Combinatorics Student: [Moves from a 7-card 
case to an 8-card case]: It is like the last time. You 
don’t count (8, 8) twice. 

Operating: 
Operating on 
an identified 
pattern, 
regularity, or 
relationship in 
order to extend 
it to a new 
case. 

Near: Making a minor 
change to a regularity in 
order to extend it to a new 
case. 

HS Adv. Algebra Student: [After having established a 
pattern of adding 8 square units for every additional 
rectangle]: And then plus 8, or I could just do plus, 
um, 8 times 5, right? And so that would be 40. 

Projection: Making a major 
change to a regularity in 
order to project it to a far 
case. 

Und. Combinatorics Student: [After solving cases 
with 3 and 4 combinations]: So now I believe if you 
gave me something where if there was 20 
combinations I could solve how many combinations 
there are without having to write them all out: 220 and 
whatever that equals. 

Transforming: 
Extending a 
generalization 
and, in doing 
so, changing 
the 
generalization 
that is being 
extended. 

Constructing a Quantity: 
Constructing a new quantity 
or a relationship between 
quantities in order to extend 
a regularity to a new case. 

HS Adv. Algebra Student: [Exploring the three sides 
of a rectangular prism, the interviewer asks the 
student to express one side in terms of the other.] So 
it’s x plus 1, right? 

Recursive Embedding: 
Embedding a previous 
situation into a new one as a 
key component of the new 
task. 

Und. Combinatorics Student: Okay, we’re definitely 
using 1, so we’re limiting ourselves to only 2 
possible states for the entire password, A and B, 
which means it’s basically no different than what we 
did in one of the earlier examples. So that I’ll 
probably just figure, okay, 2 to the 3rd equals 8. 

Removing particulars: Extending a specific 
relationship, pattern, or regularity by 
removing particular details to express the 
relationship more generally. 

MS Algebra Student: I was thinking, like, trying to 
put it in an equation I guess, so it kind of makes 
sense…Well it could be, area equals 2 plus total 
length [writes A = 2 + T]. 

 
Right when the interviewer began to remove the task in order to transition to a new problem, 

Willow suddenly evidenced a shift in her thinking, saying, “Unless it will start at 0?” 

Because if you start it at 0…to find out the actual growth, then, say this is like the first they grew 
and this, kind of, so this grew by 4 first (gestures along the length) and then this grew by 6 
(gestures to the whole figure, along the area). So this (the length) could grow by 4 again, and this 
(the area) could grow by 6 again. 

Willow appeared to construct a dynamic image of the rectangle growing “from 0”. She further 
explained, “Because it would always be plus 4 and plus 6, so if you said when the length grows by 8, 
the area grows by 12.” Willow imagined the rectangle growing in chunks, iterating twice. Willow 
therefore identified a regularity that if the rectangle started growing from 0, then for every 4-cm 
increase in length, the rectangle would increase in area by 6 cm2. This regularity, unlike the first one 
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Willow identified, was based on an image of growth in which Willow was able to coordinate an 
increase in length with a corresponding increase in area. This image was informed by the operations 
of forming a ratio and iterating it. It was also a product of reflecting abstraction in that Willow 
reflected on her activity in order to coordinate iterating her formed ratio with the number of times it 
was iterated. Therefore, she could then state that the length would increase by 4 again, resulting in 
another increase of 6 for the area. Willow extended by continuing the relationship, and she did so by 
relying on her ability to coordinate growth in one quantity with growth in the other. 

We take further evidence that Willow engaged in reflecting abstraction by what occurred next. 
Namely, she was able to extend by operating on the relationship she had formed, multiplying each 
term in the 4:6 ratio by 4, then by 10, ½, ¼, ¾, and 5/4 in order to generate new length:area pairs. 
This extension was significant because it included the use of both whole number and fraction values. 
It also suggests that Willow had reflected on her operation of forming a ratio in order to develop a 
flexible, generalizable relationship with which she could meaningfully operate. Willow ultimately 
developed a unit ratio, explaining, “Each time the growth in length goes up by 1, the growth in area, I 
think the growth in area equals [writes A = 1.5 × L].” Thus Willow identified a new regularity and 
then removed particulars for this regularity. When she removed particulars, she reflectively 
abstracted a ratio from the phenomenological bounds in which it was created, and Willow’s 
subsequent flexible use of this ratio with messy numbers is evidence that she could imagine it 
holding for any arbitrary value. 

Discussion  
The Relating-Forming-Extending framework identifies forms of generalizing based on data from 

multiple grade bands and mathematical domains, addressing the need to understand how students 
construct generality in more varied and advanced mathematical contexts. Willow’s work provides 
evidence that students can and do generalize their reasoning on a variety of problems beyond typical 
patterning tasks. In particular, in contrast to much of the literature identifying how students 
inductively generalize patterns, Willow abductively (Peirce, 1931-1958; Radford, 2006) developed a 
generalization from just one case. Willow’s reflective activity enabled her to develop, solidify and 
apply generalizations in two ways. Firstly, she generalized an additive comparison based on the 
numerical relationship she established between 4 and 6 (a pseudo-empirical abstraction). Secondly, 
she generalized by forming and operating on a ratio between quantities that was rooted in her image 
of the rectangle’s length growing in tandem with its area (a reflecting abstraction). 

The Relating-Forming-Extending framework extends prior work by distinguishing and 
characterizing three forms of generalizing activity and by coordinating these forms of generalizing 
with forms of abstracting. The case of Willow shows that students can engage in many forms of 
generalizing, such as identifying regularities, extending by continuing, and removing particulars, 
based on either pseudo-empirical or reflecting abstraction. Other forms of generalizing, such as 
extending by operating or transforming, appear to be more typically grounded in reflecting 
abstraction, as they often entail differentiations based on activity in order to support new 
compositions. By attending to both abstraction and generalization in students’ sense-making, we can 
begin to characterize how students can leverage initial abstractions into first-pass generalizations that 
they can then reflect on and transform in further activity. Further analysis of these relationships 
between abstraction and generalization will inform a better understanding of the conceptual 
mechanisms driving generalizing activity in a variety of mathematical contexts. 
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