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The positive correlation between spatial ability and mathematical ability has been well-documented, 
but not well-understood.  Examining student work in spatial situations that require numerical 
operations provides us with insight into this elusive connection.  Drawing on student work with 
angle, length, volume, and area, we examine the ways in which students associate numerical 
operations with their spatial structurings of objects.  We find that for students to correctly coordinate 
their spatial structurings and numerical operations, their solution methods must satisfy basic 
properties of measurement functions. We illustrate this claim by providing examples in which 
students successfully and unsuccessfully employ spatial-numerical linked structurings. 
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Numerous studies have found that spatial ability and mathematical ability are positively 
correlated (Mix et al., 2016).  But specifying the exact nature of the connection between these 
abilities has been elusive, with much research in this area focused on understanding correlations 
between specific spatial skills (e.g., as measured by visualization and form perception tests) and 
mathematical performance (Mix et al., 2016).  In this paper, we seek to precisely specify the spatial-
mathematical connections in geometric measurement—a content area for which numerical and 
spatial reasoning must be properly coordinated.  Indeed, de Hevia and Spelke claim that the human 
mind is "predisposed to treat number and space as related" (2010, p. 659).  And researchers in 
mathematics education argue that understanding relationships between numerical and spatial 
reasoning is fundamental to developing a full understanding of geometric and measurement 
reasoning (Clements & Battista, 1992).  However, although a great deal of research has investigated 
how students represent numbers on number lines (Gunderson, et al., 2012), in geometric 
measurement, numerous situations arise that are more complex than envisioning numbers on number 
lines.  We have investigated numerous instances of these more complex situations, and in this paper, 
we analyze these situations to more fully understand the nature and properties of the connection 
between numerical and spatial reasoning in geometric measurement.       

Theoretical Framework 

Measurement Properties 
For spatial reasoning and numerical reasoning to be properly connected in geometric 

measurement, certain basic properties of measurement functions must be followed, as described by 
Krantz: “When measuring some attribute of a class of objects or events, we associate numbers … 
with objects in such a way that properties of the attribute are faithfully represented as numerical 
properties” (1971, p. 1).  That is, if M is the function that assigns measurement values to objects—
M(a) is the measure of object a—then, consistent with Krantz et al. and basic axioms for geometric 
measurement (Moise, 1963), M satisfies the following properties: 

1. If object a and object b are congruent, then M (a) =M (b) .    
2. Object a is spatially larger than object b if and only if M (a)>M (b) . 
3. If we join-without-intersection object a and object b, then M (a  join b) =M (a)+M (b) . 
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4. Given n copies of congruent and non-overlapping unit-measure objects a1 … an: 

If  ai
i=1

n

∪ ≅ b, then nM (a1) =M (b).  

These properties justify the measurement iteration process in which we determine measure by 
iterating a unit measure to "cover" the object being measured with no gaps or overlaps.  If, however, 
there are gaps in a unit-measure covering so that it is a proper subset of the object being measured, 
then Property 2 implies that the measure of the covering will be less than the measure of the object.  
If there are overlaps, then Property 3 is not satisfied, so we cannot count/add the unit measures to 
find the measure of the object.    

Spatial-Numerical Linked Structuring 
Beyond the basic measurement properties, linking spatial and numerical reasoning in geometric 

measurement requires use of what we call spatial-numerical linked structuring (SNLS).  Spatial 
structuring is the mental act of constructing a spatial organization or form for an object or set of 
objects, imagined or real (Battista, 1999, 2007, 2008; Battista et al., 1998; Battista & Clements, 
1996).  Numerical structuring is the mental act of constructing an organization or form for a set of 
computations.  A correct spatial-numerical linked structuring is a coordinated process in which a 
numerical measurement operation is performed along with a linked spatial structuring in a way that is 
consistent with the above measurement properties.  Incorrect student enumeration is generally based 
on SNLS that violates at least one of the measurement properties.  Note that each measurement 
property expresses a spatial-numerical linked structuring.  For instance, putting one angle inside 
another to decide which is bigger spatially organizes the two angles with respect to each other.  In 
this paper, we give examples of correct and incorrect spatial-numerical linked structuring.   

Methods and Data Sources 
The data we analyze comes from individual interviews and one-on-one teaching experiments 

with elementary and middle school students from several NSF-funded geometry projects awarded to 
the first author. 

Sample Results and Discussion 
To illustrate our results and analysis, we provide examples of spatial-numerical linked structuring 

for angle, length, volume and area.  The examples (a) describe student actions, (b) discuss what 
students did, and (c) interpret what students did using the spatial-numerical linked structuring 
conceptual framework.     

Spatial-Numerical Linked Structuring for Angles  
For the computer-presented problem in Figure 1, KS employed several spatial-numerical linked 

structurings to find the angle that rotates the green point onto the red point. 
 

              
      Figure 1.             Figure 2. 
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KS: I think it may be 40 [enters 40; green ray rotates to the 40° position Figure 2]. 
Int: So what are you thinking? 
KS: So if this is 40 [angle in Figure 2], I may have to go up maybe 20 more. 
Int: Okay, why 20 more? 
KS: Cause, if this was 40 [pointing at the interior of the green 40° angle], then half of it is 
this [pointing to the interior of the angle between 40° and the target angle; enters 60°; Figure 3]. 
 

      

Figure 3.              Figure 4.  

Int: Very close, what are you thinking? 
KS: Hum.  So maybe with the other [computer page showing 5° iterations of a ray] it shows that 

they were really close together, so maybe it’d be 65 [enters 65°; Figure 4]. 

 
Discussion.  KS used a sequence of spatial-numerical linked structurings (SNLSs) for solving 

this problem (see Table 1).  After viewing the result of her first estimate, which is quite a bit off, KS 
reasoned that her original estimate was too small.  This is an example of SNLS 1, in which KS 
recognized the smaller-than spatial relationship between the angle she made and the target angle.  KS 
then, using SNLS 2, spatially compared the angle between the green ray and the black ray from her 
40° estimate as half of the 40° angle.  Then, using SNLS 3, she added 20° to 40° to produce a second 
estimate of 60°.  Finally, in her third estimate, KS used SNLS 4 followed by SNLS 3 to recall a 
previously viewed 5° angle and add that to her estimate of 60°.     

Table 1: Definitions of Types of Angle Spatial-Numerical Linked Structuring  
SNLS 1.  [Bigger Angle ⇔ Greater 

Measure; Property 2]:  If Angle X is bigger 
than Angle Y, then the measure of Angle X is 
greater than the measure of Angle Y. 

 
Definition/Spatial Structuring:  Angle X is 

spatially "bigger" than Angle Y if the angles 
have the same vertex and Angle Y fits in the 
interior of Angle X.  
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SNLS 2.  [One-half angle ⇔ One-half 
measure]   If Angle X is one-half of Angle Y, 
then the measure of Angle X equals one-half of 
the measure of Angle Y. 

 
Definition: Angle X is one-half of Angle Y 

if the initial side of Angle X coincides with the 
initial side of Angle Y and the terminal side of 
Angle X is in the interior of Angle Y and is 
halfway toward the terminal side of Angle Y. 

 

SNLS 3.  [Add angles ⇔ Add measures; 
Property 3]   If Angle X equals Angle Y plus 
Angle Z, then the measure of Angle X equals 
the measure of Angle Y plus the measure of 
Angle Z. 

 
Definition: If point D is in the interior of 

Angle ABC, then Angle ABC equals Angle 
ABD "plus" [joined with] Angle DBC.  

SNLS 4.  [Compare perceived angle to recalled angle; Property 1]  The student compares a 
perceived angle to the recalled visual image of a previously seen angle, and says that the two angles 
are congruent so their measures are equal. 
  

Spatial-Numerical Linked Structuring for Length  
To examine the way students use spatial-numerical linked structuring with length, we consider a 

student’s work in a computer golf game (Figure 5).  Students "putt" a ball by entering a distance and 
angle. When students click the PUTT button, the ball travels to the right the entered distance, then 
arcs around counterclockwise as it sweeps out the entered angle, which is a multiple of 5° (Figure 6).  
Students receive visual feedback on each of their estimates until they determine a correct putt angle 
and distance.  SJ is doing the problem in Figure 5. 

 

           
 

 Figure 5.  Figure 6. 

Example 1: 
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SJ: [Pointing along hash marks 0-140 on the number line with the cursor] These lines are the 
pixels right? 

Int: Yep.  So this [pointing with a finger] is 100 pixels. That’s 200 [pointing]. So they might be 
counting by, what do you think, in those little ones [points to hash marks between 100 and 
200 on the number line]? 

SJ: 25s? 
Int: So let’s see. If this is 100 [pointing to 100]. That’d be 125 [pointing to 110], 150 [pointing to 

120], 175 [pointing to 130], 200 [pointing to 140]. 
SJ: Aw, never mind.  
Int: So what do you think? 
SJ: 10, 15, [points along hash marks 110 to 190 on the number line] 45.  No [goes back to 110 on 

the number line]. Oh, tens!   

Discussion: SJ understood that each hash mark represents the same amount of space 
(Measurement Property 1), but she could not immediately determine the correct numerical value for 
the distance associated with the space between each hash mark.  When she estimated 25 as the 
distance, the Interviewer iterated by 25 starting at the landmark for 100 so that SJ recognized that the 
numerical value of 25 for each hash mark was too large. After choosing a smaller value of 5 and 
realizing it was too small, she correctly concluded that 10 was the distance between each hash mark.  
This is an example of a student using the measurement properties and the iteration spatial-numerical 
linked structuring to develop an understanding of the coordinate system inscription embedded in the 
game.  The mistakes she made with the 25 and 5 estimates for hash-mark values seem to arise from 
not coordinating the number iterations of the hash-mark interval with the beginning and end values of 
the 100-to-200 interval.  In essence, she violated Measurement Property 4. 
 

Example 2: 

 

Figure 7.                                                      Figure 8. 

SJ: [For the problem in Figure 7] Okay. This one is probably going to be 50 [points the cursor at 
50 on the number line]. Because like 10, 20, 30, 40, 50 [counting on the 10-50 hash marks 
with the cursor]. Here’s the 50 [moves from 50 towards the hole; Figure 8]. Maybe even 60.  

 
Discussion: In this example, SJ's spatial structuring of the rotation path of the ball is incorrect.  

Because of this incorrect spatial structuring, her numerical choice for the length of the putt was 
incorrect—her spatial structuring violated Measurement Property 2.  Importantly, note that SJ does 
not understand the meaning of the distance-arc inscriptions for the embedded coordinate system.  
Because of her incorrect structuring of a point rotation, she does not recognize that every point on a 
distance arc is the same distance from the origin as the reference measurement on the number line.  
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Similar to many elementary students using rectangular coordinates (Battista, 2007; Sarama et al., 
2003), SJ does not conceptualize the spatial-structural metric properties of the coordinate system.  In 
order to accurately recall spatial relations, students must abstract not pictures but mental models that 
have encoded spatial properties of objects (e.g., Hegarty & Kozhevnikov, 1999). 

Spatial-Numerical Linked Structuring for Volume 
In the complex context of enumerating unit cubes in rectangular boxes, students must link their 

numeric structuring to their spatial structuring.  For instance, consider the following example 
(Battista, 2004, 2012). 

      
     a            b 

Figure 9. 
 
For the building shown in 9a, Fred counted based on the spatial structuring shown in 9b.  He said 

that there are 12 cubes on the front, then immediately said there must be 12 on the back; he counted 
16 on the top, and immediately said there must be 16 on the bottom; finally, he counted 12 cubes on 
the right side, then immediately said there must be 12 on the left side.  He then added these numbers.  
Fred's numerical structuring of 12 + 12 + 16 + 16 + 12 + 12 corresponded to his spatial structuring 
of (front + back) + (top + bottom) + (right side + left side).  So his spatial structuring of the building 
into composite units of cubes violated Measurement Property 3—the cubes that he double-counted 
occupied the same space.   

Below we see two alternative SNLSs for the same cube building. On the left, the spatial 
structuring of front + what's left on right side + (9 columns of 3) corresponds to the numerical 
structuring of 12 + 9 + (repeat 9 times counting 3 cubes in a column).  In Figure 10b, we see a 
column spatial structuring that a student numerically structured as 3, 6, 9...45, 48.  Another spatial 
structuring is horizontal layers (Figure 10c) which students variously structure numerically as 16 + 
16 + 16, 3 x 16, or skip counting 16, 32 48. 

  

      
    a                b         c 

Figure 10. 
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Note that, unlike the first SNLS in Figure 9b, the last three SNLSs produce correct answers.  
Given that there are multiple correct SNLSs for this cube building enumeration task, part of SNLS 
reasoning is consideration of enumeration efficiency.  The SNLS in Figure 10a is correct but too 
cumbersome to be efficient and too unwieldy for large arrays.  The SNLS in Figure 10b could be 
conceptualized in terms of 3 cubes in each column times 4 columns in a horizontal row times 4 
horizontal rows, leading to the standard volume formula, as could the layer structuring SNLS (Figure 
10c).  So part of SNLS reasoning is metacognitive consideration of enumeration efficiency.  
Furthermore, using SNLS reasoning to make sense of the volume formula illustrates how SNLS 
reasoning can be used for generalization, not just enumeration.   

SNLS reasoning as sense making for volume.  The next example further illustrates how SNLS 
reasoning can be used to make sense of geometric measurement problems that deal with 
generalizations rather than enumeration.  Consider the following problem (Battista, 2012).  The 
dimensions of a box are 3 cm by 2 cm by 4 cm.  Give the dimensions of a box that has twice the 
volume.  The most common error that students make on this problem is to multiply all three 
dimensions by 2.  SNLS reasoning can help students understand why the numerical structuring of 
multiply all the dimensions by 2 is incorrect and what correct numerical structurings are possible. For 
instance, Figure 11a shows that doubling all the dimensions of a 3 cm by 2 cm by 4 cm box gives 8 
times the original box volume, whereas Figures 11b, c, d show that doubling any one of the 
dimensions of the box doubles its volume.      

   

 
a    b   c   d 

Figure 11. 

Spatial-Numerical Linked Structuring for Area 
The ability to mentally construct an accurate spatial structure for rectangular arrays is a critical 

reasoning process for students determining area.  But this process is surprisingly difficult for students 
to construct (Battista, et al., 1998).  For example, student CS was asked to determine the number of 
squares required to completely cover the inside of the rectangle in Figure 12a (Battista, et al., 1998).  
CS counted in a non-random way as shown in Figure 12b.  She counted the pre-drawn squares first, 
then she counted 9, 10, 11, 12, 13 down the right side and an equivalent number (15, 16, 17, 18, 19) 
up; overall counting in a clockwise spiral (Battista, et al., 1998).   Because of the overlapping 
positions of CS' squares, her spatial structuring of the squares violated Measurement Property 3.  

    
a         b 

Figure 12. 
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Significance 
In addition to helping us untangle the complicated nature of students' coordination of spatial and 

numerical reasoning, this research helps us decompose the basic mental processes that students use in 
geometric measurement.  It therefore helps us understand, for one content area, more precisely how 
spatial reasoning is related to numerical reasoning in geometry, which in turn helps us start 
penetrating why spatial reasoning has been found to be related to mathematical reasoning in so many 
correlational studies.    
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