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This study is focused on the structure of equivalence problem to probe the evolution from operational 
to relational view of students’ understanding of equals sign. We propose a modified construct map 
which incorporates the intermediate levels in such a transition which were previously ignored. Our 
findings suggest that the structure of number sentences (place value and the position of answer box) 
has undeniably significant role in developing students’ conception of equivalence. In addition, the 
designed and validated example presented here could potentially serve as a tool for better 
assessment of understanding of equivalence. 
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Background / Overview 
There is a consistent and increasing focus by educational researchers on the development of 

elementary grade algebraic reasoning, specifically in regard to the use of open number sentences (e.g. 
4 + o = 5 + 7) (Falkner, Levi, & Carpenter, 1999; McNeil & Alibali, 2004; Molina & Ambrose, 
2008; McNeil, Fyfe, Petersen, Dunwiddie & Berletic-Shipley, 2011). Such open number sentences 
often include expressions on both sides of the equation and are often introduced as arithmetical 
equations where students are tasked to find the unknown or missing number in place of a blank or 
empty box. This affords students the opportunity to explore the underlying structure of an 
arithmetical equation and improve their understanding of the meaning of symbols and operations. 
Various researchers (Mc Neil & Alibali, 2004; McNeil et al., 2006; Sherman & Bisanz, 2009; 
Powell, 2014) suggest that many elementary students are introduced to only traditional arithmetic 
equations (i.e., a + b = c). These studies suggest that such operations equals answer type equations 
encourage the operational view and may hinder students’ development of a relational view of the 
equals sign. 

In an operational view of the equal signs students carry the notion that the equals sign means 
makes, produces the answer, find the total, or as an indication to do something such as computation 
(Behr, Erlwanger & Nichols, 1976; Kieran, 1981; Seo & Ginsburg, 2003; Knuth, Stephens, McNeil 
& Alibali, 2006; McNeil et al., 2006; Jacobs et al, 2007). Students holding a relational view consider 
the equals sign as a mathematical symbol which represents the sameness of the expressions or 
quantities on either side of an equation (Kieran, 1981; Baroody & Ginsburg, 1983; Falkner et al., 
1999; Alibali, Knuth, Hattikudur, McNeil, & Stephens, 2007; Blanton, Levi, Crites, & Dougherty, 
2011). A vast majority of research suggests that a relational understanding of equivalence is a first 
step towards early algebraization (Falkner et al., 1999; Carpenter & Levi, 2000; Blanton & Kaput, 
2005; Jacobs et al., 2007; Byrd, McNeil, Chesney, & Matthews, 2015). Students holding a more 
operational view tend not to develop the conceptual understanding of arithmetic and other more 
advanced mathematics such as Algebra (Kiren, 1981; Knuth et al., 2006; Jones, Inglis, Gilmore, & 
Dowens, 2012; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). Thus, the traditional way of 
introducing equal sign (a + b = c) tends to focus predominately on step-by-step computation to find 
the answer rather. By contrast, explorations of the underlying structure or number relations between 
and within the expressions appears to require alternative forms of equations. 
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The research to date generally interprets the structure of equations as open number sentences (a + 
b = c +¨) vs traditional arithmetic equations (a + b =¨). However, it is unclear whether and to what 
degree other mathematical structure within such equations interacts with children’s conceptions of 
equivalence. Namely, place-value is an aspect of mathematical structure that children engage 
concurrently with their developing conceptions of equivalence.  The aim of this study is to 
investigate the role of number structure, specifically place-value with whole numbers, in students’ 
conception of mathematical equivalence. To facilitate this purpose, we examined third grade 
students’ responses to a conceptions of equivalence assessment using psychometric analysis. 

Theoretical Framework 

Numeric Structure in Number Sentences 
Traditionally, most studies on equivalence define two basic categories of students’ conceptions of 

the equals sign: operational and relational. More recently, Rittle-Johnson et al. (2011) elaborated on 
this dichotomy (operational vs relational) and expanded it into four levels ranging from rigid 
operational to comparative relational. Students at Level 1, the rigid operational level, are expected to 
successfully solve the traditional format (i.e., a + b = c). Students at Level 2, the flexible operational 
level, maintain an operational view of the equal sign with some flexibility to correctly solve and 
accept the atypical or “backwards” equations (i.e., c = a + b and a = a) as valid. At Level 3, the basic 
relational level, children successfully solve, evaluate, and encode equation structures with operations 
on both sides of the equal sign (such as a + b = c + d or a + b - c = d + e). Finally, children identified 
at Level 4, the comparative relational level, show a more nuanced understanding of the equals sign. 
These students can correctly solve and evaluate equations by comparing the expressions on both 
sides of equal sign. Students at this level use compensatory strategies. For example, in solving 37 + 
24 = 36 + ¨, such students may recognize that 36 is 1 less than 37 and use this knowledge to 
determine that the unknown number must be one more than 24 (Carpenter et al. 2003).  

More recently, Singh & Kosko (2015, 2016a) observed other possible levels in the continuum of 
conception of equivalence. Therefore, we argue that further modifications to the field’s models for 
the ways students consider equivalence are needed. Specifically, students who can successfully solve 
a + b = c + d types of equations are currently evaluated as holding a basic relational conception of 
the equals sign. However, Rittle-Johnson et al (2011) suggest that the construct is continuous, which 
allows for the possibility of other sub-constructs between consecutive levels.  

Singh and Kosko (2015) conducted a teaching experiment with a variety of equivalence problems 
and found that some students demonstrated a pseudo-relational conception (PRC) of equivalence. 
Specifically, student with a PRC can solve problems of the form a + b = c + �owhen the numbers 
involved allow them to regroup 10’s and 1’s in an obvious manner. For example, in problems like 34 
+ 25 = 50 + �o, such students first regroup 10’s from 34 and 25 (30 + 20 = 50), which is visually 
available on right hand side. Thus, these students are then able to add the ones (4 + 5 = 9) to find the 
solution. At first glance, it may seem like these students hold a relational view of equivalence. 
However, when closely comparing their strategies in other equations of the same structure but 
different numeric structure, it was apparent that the place-value structure of such equations allowed 
students to use different strategies than working with other a + b = c + o types of equations. For 
example, in solving 15 + 24 = 20 +� o, a student successful with the prior example failed to provide 
the correct solution when using their regrouping of 10’s and 1’s strategy.  This suggests that the 
mathematical structure numbers in an equation, such as that of place-value, plays an important role in 
students’ conceptions of equivalence. This was verified in another study by Singh & Kosko (2016a) 
in which the authors found that some students can successfully solve problems like 4 + 5 + 8 = �o + 
8 by finding the answer 9 (i.e., 4 + 5), whereas the same students demonstrated a different conception 
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in solving very similar problem like 7 + 6 + 4 = 7 + �o. These students used an adding all then 
subtracting strategy to solve the problem 7 + 6 + 4 = 7 + �o. Specifically, students first added 7 + 6 
+ 4 and then the 7 on the right-hand side to get 24. They then subtracted 7 to obtain the answer 17. 
Singh and Kosko (2016a) suggest that the use of this strategy may have more to do with the position 
of the missing value box than students’ operational or relational view of the equal sign. 

Conceptual Model for Conception of Equivalence  
To define the way an equivalence problem is presented to students, different researchers have 

used different terminologies, or the same terminology with different meanings. Molina & Ambrose 
(2008) used the term structure in reference to the structure of mathematics operations. Later, Molina, 
Castro, & Castro (2009) used the term structure in the same sense as used by Kieran (1989), 
describing the surface structure of arithmetic and algebraic expressions. Recently. Stephens et al. 
(2013) used the term “equation structure” as opposed to focusing on probing their computational 
fluency. This study uses a broad definition of structure of number sentences which includes an 
emphasis on place value and the position of the missing value box(es). Thus, the definition differs 
significantly from the meaning of structure used in prior studies.  

Using our definition of structure of number sentence, and based both on our previous findings 
(Singh & Kosko, 2015; Singh & Kosko, 2016a), and ongoing work with elementary students, we 
suggest six levels of conception of equivalence along a continuum (Figure 1). The construct map in 
Figure 1 includes levels from basic operational (least sophisticated) to full relational (most 
sophisticated). A student at the basic operational level can successfully solve traditional number 
sentences (a + b = c) with various positions of unknown or box such as 6 + 7 = o or 5 + o = 9, 
while students at the flexible operational level can successfully solve less typical number sentences 
(e.g. 19 = o + 3; 24 = 10 + o; o = 5 + 7). However, both types of conceptions include student 
strategies that rely on an operational view of equals. 

We argue that the transition from flexible operational to basic relational is not always smooth and 
is accompanied by the existence of pseudo-relational level. Students at this level are able to solve 
number sentences which have operations on both sides (such as a + b = c + d), but only in cases 
where the number sentences can be solved by using regrouping of ones and tens addends.  

Similar to the pseudo-relational level, students at the basic relational level can successfully solve 
number sentences which have operations on both sides (a + b = c + d) with the position of the box 
directly after or before the equals sign. Such students can confirm the sameness of expressions on 
both sides of the equals sign through computation. 

Prior to a full relational conception, we suggest some students demonstrate what we describe as 
an advanced basic relational level. This level is characterized by students who can successfully 
solving number sentences with operations on both sides (a + b = c + d), but such students may use 
either computation or compensatory strategies. Finally, at the full relational level, students can 
successfully solve number sentences which have operations on both sides (such as a + b = c + d) and 
two unknowns either both on same side or one on each side of equal sign by relying predominately 
on compensatory strategies. 
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Figure 1. Construct map for knowledge of equivalence. 

 
The different levels of students’ conception of equivalence are included in the construct map 

shown in figure 1. As discussed above, prior studies (Singh & Kosko, 2015,2016a) describe students’ 
transition from operational to relational conception of equivalence is not always smooth. Rather, 
students’ holding an operational view may do things that resemble, but do not comprise, a relational 
view of equivalence (i.e. pseudo-relational) when solving some specific types of equations. The 
construct map in figure 1 illustrates that as students move in a continuum they should engage in 
different levels of conception of equivalence. 

Methods 

Sample  
Data were collected in Fall 2016 from 157 third grade students (49.7% male; 50.3% female) in a 

suburban school district in a Midwestern U.S. state. Students were enrolled in one of eight 
classrooms across four schools in the district. The district includes a predominately white student 
population (74%), with a significant portion of economically disadvantaged students (40%).  

Test Development and Item Design:  
Our previous work on equivalence indicates some observable gaps in Rittle-Johnson’s 

established framework (Singh & Kosko, 2015, 2016a). In order to address these gaps, we designed a 
new assessment utilizing the aforementioned construct map. An initial version of the assessment was 
piloted with fourth and fifth grade students (n = 157) with 33 items. The overall reliability 
(Cronbach’s alpha = 0.92) of the initial test was sufficient. However, the item discrimination for 
several items was not sufficient. Also, the infit mean square statistics for more than a quarter of items 
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indicated that the initial construct map lacked unidimentionality. To improve these shortcomings in 
item design we revised some items for better fit. First, items with insufficient fit statistics were 
removed or revised. Many of these items illustrated what may be different constructs related to but 
not identifiable as conception of equivalence. Next, true/false items were removed since these items 
were found to have significant structural differences than missing-value addends, and such items also 
tended to have too low of difficulty to provide sufficient information for the assessment. The revised 
instrument included 22 items across six sub-constructs along a continuum (thus, these subconstructs 
are theorized to be hierarchical). Figure 1 shows the revised construct map with example items for 
the six subconstructs. 

The revised instrument was used in the analysis of Fall 2016 data. Raw data was inputted into 
digital files before dichotomously coding student responses (0 = incorrect answer; 1 = correct 
answer). This allowed for examining raw response distributions, as well as analyzing the 
dichotomous data via a Rasch model. The significant feature of the Rasch model is its ability to 
transform ordinal data into equal-interval scales (Bond and Fox, 2015). The item difficulties in the 
Rasch model can be determined, by the process of item calibration, independently of the distribution 
of persons’ abilities in the data and the measurement of person’s traits (i.e. abilities) is independent 
of test items used to measure that trait. Another useful feature of the Rasch Model is that it facilitates 
the process of constructing measurement variables. In other words, the model is derived 
independently of data, tests are then constructed to fit the model, and then the data are used to see if 
they conform to the requirements of the model.  

Results 
The equivalence assessment was found to have sufficient internal reliability (α = 0.92). Crocker 

& Algina (1986) suggest that a Cronbach’s alpha of 0.90 or higher is sufficient for cognitive 
assessments. Test statistics for the Rasch model indicate sufficient item reliability (0.92) and person 
reliability (0.89). To examine the unidimentionality of the assessment, infit and outfit statistics were 
calculated. The item difficulties range from -3.14 to + 2.12, which is considered as a good practice to 
have a range of difficulty among items in an assessment. In this assessment, we hypothesized that the 
item difficulty should increase from lower (i.e. operational) to higher (i.e. advance relational) levels 
and item difficulty appeared to increase as expected. The infit statistics are weighted and provide 
more weight to the performance of person whose ability is closer to the item difficulty level whereas 
outfit statistics is not weighted and as a result more sensitive to outlying scores. This is the reason 
that investigators give more attention to any small irregularities in infit scores than large outfit scores 
(Bond and Fox, 2015) The average item mean-square infit statistics is 0.90 and average mean-square 
outfit statistics is 0.77, which is considered sufficient. Contrasting the overall sufficient item fit 
statistics, item 8 (12 = o) was found to have a relatively high mean square infit statistic (1.45), 
which indicates more randomness than expected (figure 2). We had observed similar results for such 
items with our pilot of grade 4 and 5 students, and data from grade 3 students indicates that this 
particular item format (a =� o) may need further study in regards to the concept of equivalence. We 
decided to remove this item from our final equivalence assessment, given the continued poor fit 
across samples. All remaining items appeared to have sufficient fit (Bond & fox 2015), with point-
biserial statistics ranging between 0.65 to 0.79. To examine how items hypothesized to target specific 
levels along the continuum in the construct map, a Wright map was constructed (figure 2).  
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Figure 2. Wright map for equivalence assessment. 
 

The Wright map shown in figure 2 was produced by ConstructMap 4.6.0 (Kennedy et al., 2010). 
Targeted levels of sophistication (see Figure 1) are abbreviated after each item number (B.O.=Basic 
Operational; F.O.=Flexible Operational; P.R.=Pseudo-Relational; B.R.=Basic Relational; 
A.B.R.=Advanced Basic Relational; and F.R. Full Relational). The location of items in the Wright 
map (Figure 2) aligns well with the hypothesized level of sophistication on the construct map (Figure 
1). However, certain items (i.e., 8, 2, 18, & 21) visually appear at the same level as items at lower or 
higher hypothesized levels. Examination of the items’ delta statistics and associated confidence 
intervals indicates that those items hypothesized as more relational than operational do indeed have 
higher delta statistics.  

Item 21 (¨ + 28 = 46 + ¡) had a lower delta statistic than predicted, and therefore appears lower 
on the Wright map than expected. After a close inspection of students’ raw responses, it was 
observed that some students put a zero in the circular blank position “¡.” However, the the 
instructions for this item stated that students should “find a number bigger than 10 to write in the 
¨…[and] any other number to write in the ¡ that makes the problem true”. By allowing for the 
possibility of students to use zero, it may have reduced the difficulty of the item. Specifically, the 
item was meant to engage students in composing and decomposing number in relation to 
equivalence. Thus, instructions for these items may need revision in future assessments. 

Discussion and Conclusion 
Through our findings, we establish that the structure of number sentences, particularly in regard 

to the role of place value, has a significant role in students’ conception of equivalence. The results of 
our statistical analysis indicate that students may rely on more visually obvious aspects of place value 
in solving equations. This may appear to be relational at face value, but is not as sophisticated a 
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conception of equivalence as other similarly formatted number sentences. Motivated by our findings 
from previous work (Singh & Kosko, 2015, 2016a) we incorporated new intermediate levels in 
Rittle-Johnson and colleagues’ (2011) framework of students’ conception of equivalence. Our 
suggested, modified construct map appropriately incorporates students’ transition from basic 
operational to full relational understanding by considering these additional transitional stages. 
Furthermore, the designed and validated assessment described here can serve as a tool for researchers 
and practitioners interested in students’ conceptions of equivalence. 

Our results provide useful guidelines for instructors and curriculum designers. Specifically, our 
findings suggest more attention be paid to the role of place value in the teaching and learning of 
equivalence. Furthermore, there is a need for more careful examination of students’ understanding of 
equivalence in regard to various mathematical concepts. Future research is needed to confirm and 
extend the findings presented here. For example, prior research has found relationships between 
students’ conception of equivalence and multiplicative reasoning (Singh & Kosko, 2016b). Given the 
connection identified here regarding place value, a better understanding of how equivalence 
interrelates with children’s developing number sense is highly needed. Additionally, findings 
presented here provide evidence that the structure of items similar to a = o is in need of further 
study, given that understanding the Reflexive Property of Equivalence is crucial for students’ success 
in future advanced mathematic. We expect that by conducting such research, the field may better 
understand why such items do not consistently align students’ conceptions of equivalence.  

This study found that place value appears to be inherently tied with conception of equivalence. 
These results are highly significant and need additional study. There appear to be other connections 
between various concepts and equivalence research (Singh & Kosko, 2016b), potentially indicating 
that students’ unit coordination may relate to their coordination between expressions. Such 
interrelationships warrant detailed investigation.  
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