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This study evaluated the effects of a mathematics software program, the Building 
Blocks software suite, on young children’s mathematics performance. Participants 
included 247 Kindergartners from 37 classrooms in 9 schools located in low-income 
communities. Children within classrooms were randomly assigned to receive  
21 weeks of computer-assisted instruction (CAI) in mathematics with Building Blocks 
or in literacy with Earobics Step 1. Children in the Building Blocks condition 
evidenced higher posttest scores on tests of numeracy and Applied Problems after 
controlling for beginning-of-year numeracy scores and classroom nesting. These 
findings, together with a review of earlier CAI, provide guidance for future work on 
CAI aiming to improve mathematics performance of children from low-income back-
grounds.
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All citizens need a broad understanding of mathematics to function in today’s 
society, but mathematics proficiency rates in the United States are low (Ginsburg, 
Leinwand, Anstrom, & Pollock, 2005; Kilpatrick, Swafford, & Findell, 2001). 
International comparisons indicate that children in the United States perform 
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worse in mathematics, and their lagging mathematics development is evident as 
early as preschool (Cross, Woods, & Schweingruber, 2009; Sarama & Clements, 
2009; Starkey, Klein, & Wakeley, 2004). Importantly, children who live in poverty 
and who are members of linguistic and ethnic minority groups demonstrate 
significantly lower levels of mathematics achievement than their majority, middle-
class peers (Clements & Sarama, 2011; Denton & West, 2002; National Assessment 
of Educational Progress [NAEP], 2013). Moreover, the achievement gap is wider 
in the United States than in any other country in the world (Akiba, LeTendre, & 
Scribner, 2007). Given that early mathematics knowledge is a stronger predictor 
of later mathematics achievement than even intelligence or memory abilities 
(Krajewski, 2005) and that children who begin with the lowest achievement levels 
show the lowest mathematics growth from Kindergarten to the third grade 
(Bodovski & Farkas, 2007), such achievement gaps in mathematics are pernicious 
(Claessens, Duncan, & Engel, 2009; Clements & Sarama, 2011; Horn, 2005; 
National Mathematics Advisory Panel [NMAP], 2008).

In the United States, low socioeconomic status and status in some minority 
groups are risk factors for low mathematics achievement, which has been attributed 
to lack of opportunities to learn mathematics (Clements & Sarama, 2009). 
Moreover, high-quality instructional experiences early in the lives of children can 
help to improve mathematics achievement and help to prevent or mitigate the 
development of mathematics learning difficulties (Clements & Sarama, 2011; Cross 
et al., 2009; Magnuson, Meyers, Ruhm, & Waldfogel, 2004). Benefits derived from 
effective mathematics instruction provided during the preschool to early elemen-
tary school period appear greatest for children from low-income families and whose 
parents have little education (Case, Griffin, & Kelly, 1999; Clements, Sarama, 
Spitler, Lange, & Wolfe, 2011; Griffin & Case, 1997). Instructional effects have 
been shown to continue into the late elementary school and high school years 
(Brooks-Gunn, 2003; Friedman-Krauss & Barnett, 2013). However, few rigorous 
evaluations of Kindergarten mathematics programs vetted by the What Works 
Clearinghouse (WWC) exist (U.S. Department of Education, Institute of Education 
Sciences, What Works Clearinghouse, n.d.). Of the 40 mathematics programs listed 
in the WWC, only one pertained to Kindergartners, the DreamBox Learning 
program. Of the 11 evaluation studies that focused on this computer program, only 
one met the WWC highest category of evidence, “evidence standards without 
reservations”; none of the other 10 evaluations met even low evidence standards 
(U.S. Department of Education, Institute of Education Sciences, What Works 
Clearinghouse, 2013). Thus, there is a pressing need for rigorous research on 
Kindergarten mathematics interventions in the United States, especially those 
aimed at improving mathematics outcomes for children from low-income and 
minority groups, which is the aim of the present study.

The Need for Research on Computer-Assisted Instruction
Computer-assisted instruction (CAI) refers to computer software programs that 

help students learn mathematics or provide an opportunity for students to learn and 
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apply mathematics concepts and skills (Harskamp, 2015); it is most often used as 
a supplement to children’s classroom instruction (Slavin & Lake, 2008). CAI is a 
potentially attractive means for supporting mathematics learning due to its ease of 
implementation, standardized scope and sequence of curriculum, and suitability 
for individualized instruction through regular monitoring of children’s progress 
coupled with adaptive instruction (Anthony, 2015; Clements & Sarama, in press). 
However, educators’ questions and concerns about developmental appropriateness, 
logistics of implementation, and compatibility with core curricula as well as 
concerns about effectiveness hamper widespread use of CAI during the early school 
years. Reviews of the scientific literature have generally concluded that when used 
appropriately, CAI can provide substantial benefits for children’s mathematics 
learning (Baroody, Eiland, Pupura, & Reid, 2013; Clements & Sarama, 2010, in 
press; Cross et al., 2009; Lentz, Seo, & Gruner, 2014; Li & Ma, 2010; Räsänen, 
Salminen, Wilson, Aunio, & Dehaene, 2009; Slavin & Lake, 2008). Moreover, 
research findings have suggested that children in preschool (Fletcher-Flinn & 
Gravatt, 1995) and primary grades, especially those in compensatory educational 
settings (Lavin & Sanders, 1983; Niemiec & Walberg, 1985; Ragosta, Holland, & 
Jamison, 1982), have made the largest gains in mathematics from CAI. 

One review (NMAP, 2008) indicated that CAI applications that are well 
designed and implemented can have a positive impact on mathematics perfor-
mance, and recent studies support this conclusion (Harskamp, 2015; Moradmand, 
Datta, & Oakley, 2013; Nusir, Alsmadi, Al-Kabi, & Sharadgah, 2013). A more 
recent meta-analysis of rigorous studies similarly concluded that there are positive 
effects of CAI in mathematics when used as a supplement to children’s daily 
classroom instruction (Cheung & Slavin, 2013). Another meta-analysis of studies 
examining the use of CAI for early mathematics learning found a moderate effect 
size (Harskamp, 2015), whereas still another meta-analysis found positive effects 
for the use of technological manipulatives (Moyer-Packenham & Westenskow, 
2013). Therefore, CAI represents a viable medium to deliver supplemental math-
ematics instruction.

Although results from meta-analyses suggest that supplemental use of educa-
tional software has an overall positive effect, one large and noteworthy random-
ized control trial indicated virtually no effect for computer use with older students 
and several varieties of software (Dynarski et al., 2007). Further, the work of 
Cuban (2001) indicated that computers can often be “oversold and underused” in 
early childhood education. Cuban (1993) argued that the efficacy of computer use 
in the classroom is too frequently doomed to failure because teachers are reluctant 
to use the technology, particularly because technology is thought to take time away 
from teacher–student interactions. Others have argued that CAI may focus only 
on basic skills for students from low-income and minority backgrounds, further 
limiting their opportunities to learn mathematical reasoning (Kitchen & Berk, 
2016). Given these concerns and conflicting empirical results, it is important to 
examine the effectiveness of educational software programs aimed at improving 
children’s mathematical competencies.
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The Building Blocks Mathematics Program
The Building Blocks mathematics program is comprehensive in that it includes 

a teacher’s edition, assessment and resource guides, manipulatives, “big books,” 
and a software suite (Clements & Sarama, 2013). The program, including the 
Building Blocks software suite, aims to develop understanding and skill fluency 
in the domains of numeracy and geometry. Three mathematical subthemes are 
woven throughout both domains: patterns, data, and sorting and sequencing. 
Although initially developed before the Common Core State Standards for 
Mathematics (CCSSM; National Governors Association Center for Best Practices 
& Council of Chief State School Officers, 2010), Building Blocks content coverage 
is aligned closely with the CCSSM, which specifies grade-level standards for the 
areas of counting, arithmetic operations, place value, measurement, and geometry. 
The Building Blocks software suite targets developmental learning trajectories that 
span from preschool to third grade. Its more than 200 activities are organized into 
topical learning trajectories that were designed based on a comprehensive 
Curriculum Research Framework (Clements & Sarama, 2007; Clements, 2007) and 
a specific model, consistent within that framework, that details the development of 
scientifically based software (Clements & Battista, 2000). Thus, the software suite 
is research based in several fundamental ways. Research-based computer tools 
stand at the base, providing computer analogs to critical mathematical ideas and 
processes. These are implemented with activities and a management system that 
guides children through fine-grained, research-based learning trajectories. These 
activities are designed to connect children’s informal knowledge to more formal 
school mathematics. The result is a software package that is motivating for children 
but is also comprehensive in that it includes both exploratory environments that 
include specific tasks and guidance, building concepts and well-managed practice 
in building skills, and a full range of mathematical activities.

The design process for the curriculum and the software was based on the 
assumption that both can and should have an explicit theoretical and empirical 
foundation. It also should interact with the ongoing development of theory and 
research—reaching toward the ideal of testing a theory by testing the software or 
the curriculum in which it is embedded. The model includes specification of 
mathematical ideas (computer objects or manipulatives) and processes or skills 
(software tools or actions) and extensive field testing from inception through large 
summative evaluation studies (Clements & Battista, 2000; Clements & Sarama, 
2007, 2008; Sarama & Clements, 2009). Thus, this study represents not just an 
evaluation of one particular suite of technology-based activities but a rigorous test 
of the efficacy of software designed on scientific principles.

A series of empirical studies have supported the effectiveness of the full Building 
Blocks curriculum, which includes the classroom components along with the inte-
grated software suite (e.g., Clements & Sarama, 2007, 2008; Sarama & Clements, 
2009). One evaluation of the Building Blocks program demonstrated the curricu-
lum’s effectiveness with preschool children from low-income backgrounds 
(Clements & Sarama, 2007). Using a proximal measure closely aligned with the 
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curriculum’s hypothesized learning trajectories, Clements and Sarama (2007) 
demonstrated that the mathematics achievement of children in two experimental 
classrooms who used the Building Blocks program increased significantly more 
than that of children in the two comparison classrooms, who used the school’s 
existing curriculum. Thus, achievement gains of the experimental group indicated 
that the Building Blocks program was effective under controlled conditions.

Two additional studies examined Building Blocks on a larger scale. The first study 
(Clements & Sarama, 2008) involved 36 teachers randomly assigned to one of three 
conditions: (a) Building Blocks, (b) another pre-Kindergarten mathematics curric-
ulum (with equal professional development and resources), and (c) control (or busi-
ness as usual). Estimates of effect size (Cohen’s d) indicated that the mean gain for 
early numeracy and geometry skills for children in the Building Blocks group was 
significantly greater than that of children in the comparison group (d = 0.47) and 
control group (d = 1.07). The study therefore demonstrated that the comprehensive 
Building Blocks curriculum was effective—that is, it contributed to children’s 
mathematics learning when implemented outside of controlled conditions by 
teachers of state-funded pre-K and Head Start classrooms. A second randomized 
control trial (Clements et al., 2011) involved 106 teachers and 1,305 children 
attending 42 schools serving children from low-income backgrounds in two states. 
The results corroborated those of the first study and demonstrated that teachers 
effectively implemented the Building Blocks curriculum and that students in class-
rooms where Building Blocks was implemented learned more mathematics than 
students in the comparison classrooms (Hedge’s g = 0.72).

Classroom observational data gathered as part of the three studies described 
above indicated that use of the computer software suite was one of the factors that 
was most highly correlated with children’s gains in mathematics achievement. For 
example, in the study of 36 classrooms (Clements & Sarama, 2008), the number 
of computers running the Building Blocks software was one of the variables that 
most differentiated the treatment groups andcorrelated with children’s gains in 
mathematics. In the study of 106 teachers (Clements et al., 2011), the classroom 
observation data indicated that the number of computers running the Building 
Blocks Software had one of the three highest relationships with child outcomes, 
mediating the effect of treatment on student gains in mathematics while accounting 
for the effects of two other mediators: structured mathematics activities and class-
room culture. In summary, a number of studies have demonstrated that the 
Building Blocks curriculum is efficacious and effective. There is also correlational 
evidence suggesting that experimental classrooms in which more computers were 
running the CAI component of the Building Blocks program tended to have 
students who learned more mathematics than did students in experimental class-
rooms in which fewer computers were running the CAI component. However, 
random assignment to experimental conditions, with one condition that included 
use of the software and another condition that did not, was not employed in the 
studies above. The aforementioned studies, therefore, do not allow for causal 
inferences concerning the impact of CAI via the Building Blocks software, either 
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within or outside of the context of the larger Building Blocks curriculum.

Purpose of the Current Study
Poor mathematics achievement of students from low-income and ethnic 

minority backgrounds is acknowledged as a problem of national significance 
(Jordan, Kaplan, Ramineni, & Locuniak, 2009). The extant literature, however, 
includes few rigorous evaluations of mathematics curricula (Rutherford et al., 
2014), especially of CAI programs for Kindergarteners. Consequently, little is 
known with regard to the “ingredients” needed for specific instructional methods 
or programs to be most effective at improving the mathematical competencies of 
young children, especially those at risk for school failure (Jordan et al., 2009). 
Therefore, there is a pressing need to identify effective mathematics programs for 
Kindergartners from low-income and minority backgrounds. Our interest in 
evaluating the Building Blocks software suite in these populations is motivated 
by the fact that for decades, children from low-income and some minority back-
grounds have demonstrated substantially lower levels of mathematics achievement 
than their majority, middle-class peers (NAEP, 2013). It is also noteworthy that 
the Building Blocks software suite was developed for children between the ages 
of 4 to 9 years, when prevention efforts are likely to prove most beneficial 
(Clements, Baroody, & Sarama, 2013; Clements et al., 2011). To this end, the 
present randomized control study addressed the following research question: 
When used as a supplement to typical classroom instruction, does use of the 
Building Blocks software lead to improvements in mathematics achievement as 
measured by proximal and distal measures of children’s mathematics perfor-
mance? It was hypothesized that low-income minority children who received 
supplemental CAI via the Building Blocks software would demonstrate higher 
levels of mathematics achievement than children who did not receive CAI via the 
Building Blocks software.

Method
This randomized control study included three annual cohorts of students. All 

students received some form of CAI throughout most of their Kindergarten school 
year. To determine the effectiveness of the Building Blocks software program, we 
used multilevel modeling to examine the effect of the experimental condition on 
Kindergarten mathematics outcomes while controlling for beginning-of-the-year 
mathematics performance and classroom-level differences. To determine treat-
ment specificity, we examined the effect of the Building Blocks software on 
children’s vocabulary scores.

Participants and Contexts

Schools. Nine schools participated over the course of the 3-year project. These 
schools were located in a large urban school district in Texas and were chosen 
because they served a large population of low-income children. Indeed, the 
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percentage of students eligible for free or reduced lunch programs at each school 
ranged from 70% to 98% (M = 92.2, SD = 8.6). Participating schools primarily 
served African American and Hispanic children.

Teachers. Across three annual cohorts, 27 Kindergarten teachers participated. 
All teachers were certified by the state to teach in the public school system. All 
teachers were female, college-educated, and native or fluent speakers of English; 
two were also fluent in Spanish. Data about teachers’ ethnicity were reported for 
22 of the 27 teachers: 15 were African American, five were Caucasian, and two 
were Hispanic. Because three annual cohorts of Kindergarten children participated 
and because some teachers were assigned to the same grade in subsequent years, 
a few teachers participated in more than 1 year. Specifically, two teachers partici-
pated all 3 years, four teachers participated in 2 years, and 23 teachers participated 
in 1 year, resulting in a total sample size of 37 Kindergarten classrooms.

Classrooms. All of the children in the 37 classrooms participating in the study 
attended full-day Kindergarten. The average class size was 21 students. On 
average, 95% of the students were native speakers of English, and 5% were native 
speakers of Spanish who were learning English as a second language. Teachers in 
the majority of classrooms (60%) reported that 100% of their mathematics instruc-
tion was provided in English, whereas teachers in the remaining classrooms (40%) 
reported providing mathematics instruction in Spanish to varying degrees. More 
specifically, teachers in 16% of classrooms reported that 50% to 85% of their 
mathematics instruction was provided in Spanish. The remaining 24% reported 
that 90% to 100% of their mathematics instruction was provided in Spanish. 
Teachers reported that daily mathematics instruction ranged between 30 and 125 
minutes (M = 78.55 minutes, SD = 20.17). When asked to report their goals for 
classroom instruction and individual teaching opportunities on a 5-point Likert 
scale that reflected relative proportions of emphasis on understanding mathemat-
ical concepts versus practice (without an emphasis on understanding mathematical 
concepts), teachers in 46% of the classrooms reported equally emphasizing 
conceptual understanding and practice. Teachers in the remaining classrooms 
reported emphasizing concept building with some practice (39%), emphasizing 
conceptual understanding (11%), and emphasizing practice (4%). No teachers 
reported emphasizing practice with some emphasis on conceptual understanding.

Participating classrooms reflected commonplace instructional practices in 
Kindergarten that balanced discovery learning with explicit instruction. In almost 
all classrooms (98%), instruction followed a version of the enVisionMath mathe-
matics program for Kindergarteners. That program included daily lesson plans 
organized into focused topics aimed at developing students’ conceptual under-
standing through practice and problem-solving activities. All teachers were 
allowed to alter their pace through the program and to supplement their mathe-
matics instruction with materials and activities that were not part of the enVision-
Math program. In fact, of higher priority than following the program was adher-
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ence to the state curriculum standards, Texas Essential Knowledge and Skills 
(TEKS),1 and adherence to the school district’s written expectations for student 
learning, which were very closely aligned with TEKS. In doing so, teachers may 
have used materials in addition to their classroom mathematics program in order 
to support students learning of the TEKS for mathematics.

Students. All children in participating classrooms were provided some form of 
CAI. However, only children whose parents provided active informed consent and 
whose families exclusively spoke English in the home were enrolled in the study. 
Participants’ classmates who were learning English as a second language (i.e., 5% 
of peers) were allowed to participate in the testing if their parents provided consent, 
but their data were excluded from analyses because, as outliers, they would have 
undue influence on the findings. A total of 243 monolingual English-speaking 
children were enrolled: 127 female students and 120 male students. These children 
ranged in age at pretest from 5.04 to 6.71 years, (M = 5.62 years, SD = 0.32 years). 
At the study’s onset, most participants achieved low average  or below average scores 
on norm-referenced standardized tests of verbal ability (M = 84; SD = 14) and 
nonverbal ability (M = 77, SD = 11), indicating significant risk for poor academic 
outcomes. Most participating children represented ethnic minorities: 63% African 
American, 30% Hispanic, 4% mixed ethnicity, 2% Caucasian, and 1% other.

Research Design and Experimental Conditions

Study design. Participants were randomized with equal probability within each 
classroom to one of two conditions: CAI in mathematics delivered via the Building 
Blocks software or CAI in phonological awareness delivered via Earobics Step 1 
(Version 1). Randomization at the student level to study conditions allowed us to 
identify the effect of the Building Blocks software on children’s mathematics 
outcomes relative to those of children who participated in the Earobics Step 1 
condition. It is important to note that none of the phonological awareness instruc-
tion delivered by Earobics Step 1 explicitly taught numeracy, quantity, geometric 
or spatial reasoning, or any other obvious mathematical skills. The study design 
ensured that children in the two experimental groups experienced the exact same 
classroom instruction and that group differences in academic outcomes were 
necessarily a consequence of the experimental conditions. Employing CAI in 
reading instruction as the control condition guaranteed that children in the control 
group did not receive any additional mathematics instruction during the time that 
children in the experimental group received CAI in mathematics. Also, the 
computerized nature of the control condition ensured that any positive gains asso-
ciated with the Building Blocks software were not due to enhanced computer skills, 

1 The state curriculum standards are presented as part of the Texas Education Code (2012). 
The mathematics standards for Kindergarten can be found at http://ritter.tea.state.tx.us/rules/tac/ 
chapter111/ch111a.pdf.
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enhanced attentional abilities, increased motivation, or increased interactions with 
adults in a CAI context.

General CAI procedures. Children worked individually on computers in their 
school’s computer lab during the ancillary instructional block designated for 
computer time. Although children worked individually with the computers, three 
research assistants were responsible for setting up hardware and software in each 
school’s computer lab. Research assistants were also present in the lab to assist 
with noninstructional aspects of the supplemental CAI, such as providing behav-
ioral supervision, technical assistance, and explanation of procedures if needed. 
For example, if a child had difficulty navigating between tasks, logging back into 
a program, or understanding a particular task, the research assistant provided 
appropriate direction. Research assistants were unaware of which children in the 
class were enrolled in the study.

All children used stereo headphones during CAI to help eliminate distraction 
and interference from background noise, given that CAI was delivered simultane-
ously to all children. All responses were made using an external mouse. Children 
in both groups received 90 minutes of CAI per week in addition to the standard 
instruction that they received in their general education classrooms. The 90 
minutes of CAI per week were delivered in either three 30-minute sessions per 
week or two 45-minute sessions per week, depending on a given school’s block 
schedule. The duration of 21 weeks of CAI was spread across 30 calendar weeks 
to accommodate the school districts’ fall, winter, and spring holidays, district-wide 
standardized testing, and Kindergarten progress monitoring assessments.

It should be noted that the Building Blocks software and Earobics Step 1 are 
both adaptive software programs in that each adjusts the level of instruction to 
match the level of ability demonstrated by an individual child. In other words, 
each particular task (e.g., addition, sequencing, patterning, tapping sounds, 
blending sounds) is leveled such that a given task becomes more and more difficult 
until the child either successfully completes all levels of the task or chooses to 
discontinue the task by choosing to play a different game. Thus, children directed 
their own instruction insomuch as they were free to move from game to game 
within a given software program and by responding either correctly or incorrectly 
to each learning trial, which affected the level of instruction.

Computer software programs. The Building Blocks software teaches funda-
mental mathematical ideas through multiple series of leveled games that comprise 
a given learning trajectory along two separate strands, numeracy and geometry. 
Within each strand, there are a number of learning trajectories: counting, 
comparing and ordering numbers, subitizing, composing numbers, adding and 
subtracting, multiplying and dividing, classifying, measuring, recognizing shapes, 
composing shapes, comparing shapes, spatial sense and motions, and patterning. 
Participants in this study were not given access to any of the games that correspond 
to the geometry strand (e.g., recognizing shapes, comparing shapes, composing 
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shapes) because of our focus on numeracy. Thus, participants were only permitted 
to interact with the games that teach numeracy, and all levels of those games were 
available (see the Appendix for the list of games and their description).

Earobics Step 1 includes six educational games that teach phonological aware-
ness, short-term memory, sound discrimination, and letter–sound correspondence 
to children ages 4 to 7 years. Participants in this study were only permitted to 
interact with all levels of the three games that teach phonological awareness (i.e., 
Caterpillar Connection, Rhyme Time, and Rap-a-Tap-Tap).

In Caterpillar Connection, Katy-Pillar speaks parts of words (i.e., syllables, 
onset and rime, or phonemes), and children click on the picture that illustrates the 
blended word. If the correct picture is selected, then Katy turns into a butterfly, 
and praise and explanation are provided. Otherwise, Katy provides corrective 
feedback. Learning trials are leveled by increasing the number of response 
choices, the phonological similarity among response choices, and the length of 
time between parts of words that are to be blended together.

Rhyme Time includes two tasks. The rhyme-matching task has a character 
named Bog Frog who says a word, and children are instructed to select one of the 
other frogs that said a word that rhymed with Bog Frog’s word. Children who 
master the rhyme-matching task proceed to the rhyme oddity task. For rhyme 
oddity, each frog speaks a word, and children are instructed to click on the frog 
whose word did not rhyme with the others. If the child responds incorrectly or 
does not respond within the time limit, then corrective feedback is provided, and 
the frog that represents the correct response choice jumps off its lily pad and into 
the water. When the child selects the correct frog, its lily pad sprouts a flower, and 
verbal praise and explanation are provided. For both rhyming tasks, teaching trials 
vary in number of response choices, phonological similarity among response 
choices, and loudness of background noise.

Rap-a-Tap-Tap teaches segmenting by having children click on an image of a 
drum each time a syllable or phoneme is spoken by an animated member of a rock 
band. If the child responds with the right number of clicks, then the rock band 
provides verbal praise and plays a short riff. If the child responds with the wrong 
number of clicks, a band member provides corrective feedback, and the drummer 
plays the correct number of taps. Instruction is leveled by increasing the number 
of word parts presented, decreasing the size of the linguistic units to attend to, and 
increasing the amount of time between the presentations of word parts.

Fidelity of implementation. Prior to the provision of any supplemental CAI, 
children’s access privileges to a specific software suite and specific games were 
programmed according to their experimental conditions. Thereafter, a research 
assistant ensured that the CAI was implemented consistently and according to 
study design specifications by monitoring children’s usage via daily reports gener-
ated online by each software program, which helped to ensure that children were 
moving along their learning trajectories within a software program. Research 
assistants checked all hardware, software, and power sources for proper  
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functioning at the beginning of each day. They also supervised children’s participa-
tion to ensure that children wore headphones, played on their own computer, and 
remained on task. Research assistants also maintained attendance records and logs 
of any technical problems experienced. Missed sessions were usually due to child 
absences, field trips, districtwide standardized testing, or technical difficulties such 
as Internet connectivity problems. Individual children or whole classes of children 
who missed a CAI session made up the missed session within a 2-week period.

Assessment Measures

Numeracy. Children’s numeracy skills were assessed at the beginning and again 
at the end of the school year. Specifically, the fall administration (i.e., pretest) 
preceded CAI by 1 or 2 weeks, and the spring administration (i.e., posttest) 
followed CAI by 1 or 2 weeks. Numeracy skills were assessed with the Research-
based Early Maths Assessment (REMA; Clements, Sarama, & Liu, 2008). The 
REMA was chosen because of its broad coverage of early numeracy skills and 
sensitivity to detect differences in early mathematics performance among young 
children (Clements et al., 2008). Items from the number concepts strand were 
administered because they indexed an outcome proximal to the intervention; 
however, items from the geometry strand were not administered because geometry 
was not addressed in this evaluation. The number strand includes four subscales: 
number recognition and subitizing, composition of number, arithmetic, and 
number comparison and sequencing. Core mathematics skills assessed within the 
number strand include verbal counting, object counting, number recognition and 
subitizing, number comparison, number sequencing, numeral recognition, number 
composition and decomposition, and adding and subtracting. General concepts 
and processes, such as part–whole thinking and the corresponding processes of 
composition and decomposition, classification, and seriation were woven 
throughout the core areas enumerated above. Standardized administration and 
scoring procedures were followed. Although the REMA is closely aligned concep-
tually with the Building Blocks software (i.e., proximal), it assesses numeracy 
skills more broadly and uses different tasks and materials so that it does not serve 
as an assessment specific to the Building Blocks software program. The internal 
consistency of this task with the present sample was good at pretest (alpha = .89) 
and posttest (alpha = .87).

Applied Problems. Because of our interest in examining treatment impact on 
distal mathematics outcomes, children were administered the Applied Problems 
subtest of the Woodcock-Johnson III Tests of Achievement (WJ-III; Woodcock, 
McGrew, & Mather, 2007). This subtest was administered at the end of the year 
during the first or second week that followed the completion of the intervention. 
The Applied Problems subtest requires children to analyze and solve verbally 
presented mathematics problems. For example, when looking at a stimulus page 
that depicts five ducks, two of which are swimming, the child is asked: “How many 
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ducks are in the water?” The internal consistency of the Applied Problems subtest 
when used with the present sample at posttest was good (alpha = .90).

Vocabulary. To examine treatment specificity, that the effect of the Building 
Blocks Software was specific to mathematics and not vocabulary, children were 
administered the Expressive One-Word Picture Vocabulary Test (EOWPVT; 
Brownell, 2000). The EOWPVT presents examinees with colored line drawings 
that depict an action, object, category, or concept. Children were asked by an 
examiner to verbally respond to prompts such as “What is this?” “What is she 
doing?” and “What are these?” Standardized administration and scoring proce-
dures were followed. The internal consistency of the EOWPVT when used with 
the present sample was good at pretest (alpha = .83) and posttest (alpha = .84).

Examiners. Seven experienced examiners administered the assessment battery. 
All examiners had undergraduate or advanced degrees. One was a former teacher, 
and another was a former psychologist. Examiners attended a 3-day workshop led 
by the second author. After training and ample practice, examiners demonstrated 
competence in the administration and scoring of all tests by administering the 
tests to the second author or to a postdoctoral fellow through role playing. 
Examiners were naïve to the study’s aims and children’s assignments to experi-
mental conditions.

Results
Preanalysis Data Inspections

Of the 243 participants, 18 from the Building Blocks group and 15 from the 
Earobics group dropped out of the study (n = 33). Pretest comparisons indicated 
that these groups evidenced equivalent distributions for verbal ability (F = 1.18,  
p = .28), nonverbal ability (F = 0.31, p = .58), REMA number strand total scores 
(F = 1.12, p = .29), and three of the REMA subscale scores (F-values = 0.09 to 
2.42, p-values = .12 to .77). Children who dropped out of the study, however, 
evidenced significantly higher scores on the arithmetic subscale of the REMA  
(M = 1.38, SD = 3.57) than children who remained in the study (M = 0.53,  
SD = 1.27) at pretest (F = 5.79, p = .02). Although these findings provide little 
evidence in support of group differences for key measures of verbal, nonverbal, 
and mathematics ability, listwise deletion excluded children who dropped out of 
the study in subsequent analyses.

The mathematics performance of children who completed the study is summa-
rized by assessment wave for the full sample and by experimental condition in 
Table 1. Growth is apparent for the REMA number strand total score and most of 
its subscales. There was minimal evidence of data nonnormality. Floor effects 
were apparent for the arithmetic subscale at pretest for the Building Blocks group 
(M = 0.39, SD = 1.04, Skewness = 3.27) and the Earobics Step 1 group (M = 0.85, 
SD = 1.36, Skewness = 1.81). There was no additional evidence of nonnormality, 
and group variances were homogeneous.
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To verify the success of random assignment, we evaluated whether or not the 
experimental groups differed on demographic characteristics and competencies 
at pretest. Tests of group differences indicated that the two experimental groups 
had equivalent distributions of age (F = 0.74, p = .39), gender (χ2 (1) = 1.51, p = 
.22), and ethnicity2 (χ2 (2) = 1.65, p = .44). The two groups also had equivalent 
vocabularies (F = 1.88, p = .17) and nonverbal abilities (F = 1.31, p = .25). For 
mathematics, the two groups evidenced equivalent pretest distributions for the 
REMA number strand total score (F = 1.55, p = .21). Of the REMA subscales, the 
groups differed for arithmetic (F = 4.02, p = .05) in favor of the Earobics Step 1 
group (see Table 1 for achievement scores). The groups did not differ significantly 
on the three remaining subscales of the REMA (F-values = 0.59 to 3.62, p-values 
= .06 to .44) at pretest.

Finally, unconditional means models and means models conditional on pretest 
mathematics achievement were estimated for the full sample to compute intraclass 
correlations (ICC) and design effects (DE) for posttest scores. The ICCs (see  
Table 2) for the unconditional means models ranged from .00 to .08, indicating 
that between 0% and 8% of the variance in mathematics scores at posttest were 
due to classroom-level differences. DEs ranged from 1.00 to 4.19, one of which 
exceeded a recommended cutoff criterion of 2.0 (cf. Muthén, 1991, 1994), 
suggesting the need to use multilevel modeling. For the conditional means models, 
ICCs ranged from .00 to .15. Corresponding DEs ranged from 1.00 to 6.62, two of 
which exceeded the cutoff criterion of 2.0. Given the ICCs, DEs, and desire to 
maintain consistency across analyses, multilevel modeling was employed when 
analyzing all outcomes to guard against Type 1 error and biased parameter esti-
mates (cf. Peugh, 2010; Singer & Willett, 2003).

General Data Analytic Approach
Multilevel modeling afforded us the opportunity to consider the effect of 

experimental condition while accounting for classroom-level differences (e.g., 
variations in teacher styles, instructional emphases) on assessment results. Within 
this context, the influence of experimental condition on mathematics outcomes 
was evaluated separately because a univariate approach was consistent with our 
interest in examining treatment specificity (e.g., impact on numeracy but not 
vocabulary) versus impacts on proximal (REMA) and distal (Applied Problems) 
measures. The direct effect of wave on REMA scores was tested using repeated 
measures (pre- and post-intervention). The intervention’s impact on both REMA 
scores and Applied Problems scores was then investigated with a multilevel 
ANCOVA. Specifically, pretest scores were specified as the covariate and exper-
imental condition was specified as the predictor of children’s mathematics 
outcomes. All models were estimated with restricted maximum likelihood and 
the Kenward-Roger method for tests of fixed effects.3 Finally, multilevel effect 

2 Because of the limited frequency of “mixed ethnicity,” “Caucasian,” and “other,” these three 
categories were combined to form a single group for the purpose of evaluating the distribution of 
ethnicity between treatment groups.
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Fall Spring

Measure Max M SD M SD

Full sample

Number strand total 43 13.40 6.01 20.36 6.67

Number recognition  
and subitizing 

5 2.64 1.06 3.36 0.93

Composition of number 5 1.06 1.41 1.76 1.83

Arithmetic 15 0.63 1.23 2.01 2.37

Number comparison  
and sequencing 

18 9.72 4.11 13.77 3.59

Applied Problems 63 —a —a 18.45 3.70

Building Blocks

Number strand total 43 12.91 5.43 20.79 6.73

Number recognition  
and subitizing 

5 2.50 1.11 3.47 0.91

Composition of number 5 0.94 1.43 2.07 1.98

Arithmetic 15 0.39 1.04 2.23 2.47

Number comparison  
and sequencing 

18 9.52 3.73 13.65 3.45

Applied Problems 63 —a —a 18.76 3.66

Earobics Step 1

Number strand total 43 13.89 6.52 19.91 6.62

Number recognition  
and subitizing 

5 2.77 1.00 3.25 0.94

Composition of number 5 1.18 1.40 1.47 1.62

Arithmetic 15 0.85 1.36 1.78 2.25

Number comparison  
and sequencing 

18 9.92 6.52 13.89 3.73

Applied Problems 63 —a —a 18.13 3.73

Note. All values are reported in raw score units without corrections for pretest differences or class-
room nesting.
a The Applied Problems measure was not administered in the fall of the school year.

Table 1
Mathematics Means and Standard Deviations for the Full Sample and by Experimental 
Condition by Assessment Wave
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size estimates were determined using calculation procedures derived from 
Feingold (2009),4 which are consistent with Raudenbush and Liu (2001).

Mathematics Learning and Building Blocks Software Impact
REMA number strand total score. A repeated measures examination of the 

effect of wave for the full sample indicated that number strand total scores at post-
test were significantly higher than at pretest after accounting for classroom 
nesting, F(1, 412) = 141.77, p < .0001. The average improvement for the sample as 
a whole was 6.94 points on this 43-item scale. Next, a multilevel ANCOVA that 
included REMA number strand total scores at pretest and group found that 
experimental condition significantly predicted number strand total scores at post-
test, F(1, 178) = 8.08, p < .01, after controlling for individual differences in pretest 
numeracy. The Building Blocks group outperformed the comparison group, with 
a difference in least squared means of 1.85 raw score units. The resulting effect 
size was 0.43, which exceeds the WWC threshold of a substantively important 
positive effect (U.S. Department of Education, Institute of Education Sciences, 
What Works Clearinghouse, 2014).

3 Degrees of freedom based on the Kenward-Roger method.
4 The following formula adapted from Feingold (2009) was used to determine estimates of effect 

size: ES = β11 (time)/SDRAW, where β11 (average growth rate) is the treatment effect accounting for 
the multilevel structure of the data, SDRAW is the treatment effect’s standard deviation, and time is 
the number of time points or waves of data. This method conveys effect magnitude by estimating 
the difference between the treatment groups’ mean growth rates and is calculated with the standard 
deviation of raw scores.

Table 2
Intraclass Correlations and Design Effects

Unconditional 
means models

Conditional  
means modelsa

ICC DE ICC DE

Number strand total .000 1.00 .013 1.49

Number recognition  
and subitizing 

.001 1.04 .010 1.38

Composition of number .019 1.72 .000 1.00

Arithmetic .000 1.00 .000 1.00

Number comparison  
and sequencing 

.000 1.00 .066 3.51

Applied Problemsb .084 4.19 .148 6.62

Note. ICC is intraclass correlation; DE is design effect.
a Conditional on pretest achievement.
b Number strand total score was used as pretest achievement because the Applied Problems measure 
was not administered in the fall of the school year.
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REMA number recognition and subitizing. Again, a repeated measures 
examination of the effect of wave for the full sample indicated that number recog-
nition and subitizing scores at posttest were significantly higher than at pretest 
after accounting for classroom nesting, F(1, 423) = 59.70, p < .0001. The average 
improvement for the sample as a whole was 0.71 points on this 5-item subscale. 
Next, a multilevel ANCOVA that included pretest scores on this subscale and 
group as predictors indicated that experimental condition significantly predicted 
posttest number recognition and subitizing scores. As with the number strand total 
scores, the results indicated that the Building Blocks group outperformed the 
comparison group, F(1, 188) = 6.07, p =.01, with a difference in least squared 
means of 0.30 raw score units. The resulting effect size was 0.36, which represents 
a substantively important positive effect.

REMA composition of number. The effect of wave on the composition of 
number subscale for the full sample was significant after accounting for classroom 
nesting, F(1, 348) = 18.08, p < .0001, indicating that scores for composition of 
number were significantly higher at posttest than at pretest. The average improve-
ment for the sample as a whole was 0.72 points on this 5-item subscale. Next, a 
multilevel ANCOVA indicated that experimental condition significantly predicted 
composition of number posttest scores when accounting for pretest scores on this 
subscale, F(1, 134) = 7.61, p < .01. The Building Blocks group outperformed the 
comparison group, with a difference in least squared means of 0.82 raw score units. 
The resulting effect size was substantively important, 0.48.

REMA arithmetic. The effect of wave on the arithmetic subscale was signifi-
cant after accounting for classroom nesting, F(1, 277) = 34.70, p < .0001. The 
average improvement for the sample as a whole was 1.38 points on this 15-item 
arithmetic subscale. Next, a multilevel ANCOVA that accounted for pretest arith-
metic scores indicated that experimental condition significantly predicted arith-
metic posttest scores, F(1, 96) = 7.77, p < .01. Again, the Building Blocks group 
outperformed their comparison peers, with a difference in least squared means of 
1.36 raw score units. The resulting effect size was substantively important, 0.57.

REMA number comparison and sequencing. After accounting for classroom 
nesting, the effect of wave was significant, F(1, 417) = 127.31, p < .0001. The average 
improvement for the sample as a whole was 4.03 points on the 18-item number 
comparison and sequencing subscale. Results of the next analysis, contrary to the 
results for other mathematics outcomes, indicated that the experimental condition 
did not explain variation in posttest number comparison and sequencing scores 
beyond that explained by pretest scores on this subscale, F(1, 181) = 0.01, p = .94. The 
Building Blocks group performed similarly to the comparison group, with a differ-
ence in least squared means of 0.03 raw score units. The resulting effect size was 0.01. 
Thus, all students improved in number comparison and sequencing between pretest 
and posttest; however, there was not a reliable difference between groups.
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Woodcock-Johnson Applied Problems. The effect of wave on change in scores 
obtained on the Applied Problems test was not examined because this measure was 
only administered at posttest. When the number strand total score was specified 
as a pretest covariate in the multilevel ANCOVA that evaluated treatment impact, 
results indicated a statistically significant effect for the experimental condition after 
accounting for pretest number strand total scores and classroom nesting, F(1, 176) 
= 5.90, p = .02. Results favored the Building Blocks group over the control group, 
with a difference in least squared means of 0.96 raw score units. This equates to a 
substantively important effect size of 0.37 and a difference in least squared means 
of the norm-referenced standard scores of approximately 3.61 standard score units.

Vocabulary Learning and Building Blocks Software Impact
To examine treatment specificity, we examined the effect of the Building Blocks 

software on children’s vocabulary scores. A repeated measures examination of the 
effect of wave for the full sample indicated that vocabulary scores at posttest were 
significantly higher than at pretest after accounting for classroom nesting, F(1, 422) 
= 78.81, p < .001. Average improvement for the sample as a whole was 9.49 points 
on this 130-item test. However, results of the subsequent multilevel ANCOVA indi-
cated that the experimental condition did not explain variation in posttest vocabulary 
scores beyond that explained by pretest scores on this test when controlling for 
classroom nesting, F(1, 198) = 0.25, p = .62. The Building Blocks group performed 
similarly to the comparison group, with a difference in least squared means of 2.06 
raw score units. The resulting effect size was -0.07. Thus, all students improved in 
vocabulary between pretest and posttest; however, group differences were not reli-
able. It can therefore be concluded that the Building Blocks software demonstrated 
treatment specificity, impacting mathematics skills but not vocabulary.

Discussion
The purpose of this study was to examine the effect of adding the Building 

Blocks software to general education mathematics instruction in schools that serve 
children from low-income and ethnic minority backgrounds. Our sample of chil-
dren had low average or below-average scores on standardized tests of verbal and 
nonverbal ability when they entered Kindergarten, confirming their at-risk status. 
The findings demonstrated that a relatively low-intensity supplemental implemen-
tation of the Building Blocks software throughout most of the Kindergarten school 
year led to reliable improvements in mathematics achievement. Specifically, the 
experimental group who received supplemental CAI via the Building Blocks 
software performed significantly higher on posttest measures of numeracy and 
Applied Problems than did the control group who received supplemental CAI via 
Earobics Step 1, after controlling for pretest numeracy achievement. The value 
added by the Building Blocks software to children’s numeracy and applied math-
ematics skills was moderate (effect size = 0.43 and 0.37, respectively) and exceeded 
the WWC threshold of a 0.25 effect size to be considered of “substantive impor-
tance” (U.S. Department of Education, Institute of Education Sciences, What 
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Works Clearinghouse, 2014). The present findings are also commensurate with 
results from research in CAI (Fletcher-Flinn & Gravatt, 1995; Lavin & Sanders, 
1983; Niemiec & Walberg, 1985; Ragosta et al., 1982), more recent research studies 
(Clements & Sarama, 2003, 2010; Räsänen et al., 2009), and meta-analyses 
(Cheung & Slavin, 2013; Li & Ma, 2010; Slavin & Lake, 2008), which collectively 
suggest that the mathematics learning of Kindergarten children can be enhanced 
by using research-based software interventions. Nonetheless, non-CAI can 
produce similar, if not stronger effects in samples of children similar to those in 
the present study. Dyson, Jordan, Beliakoff, and Hassinger-Das (2015) demon-
strated that a supplemental Kindergarten number sense intervention delivered to 
small groups of students had substantially positive impacts on children’s number 
sense, arithmetic f luency, and mathematics calculation achievement (effect  
sizes = 0.32 to 0.82). In contrast, Clarke et al. (2015) reported negligible effects 
(p-values = .0517 to .89) of a core Kindergarten mathematics curriculum on four 
mathematics outcomes (effect sizes = -0.008 to .108). The effect sizes in the present 
study are therefore significant because supplemental use of the Building Blocks 
software, as implemented in the present study, does not involve a large amount of 
teachers’ time, does not interrupt children’s regular mathematics classroom 
instruction, and does not interfere with other academic programming.

A noteworthy pattern of findings was that the Building Blocks software was 
generally found to have its greatest effects on mathematics outcomes measured 
by the REMA. This was not surprising, given that the REMA was designed to 
assess all of the progressions in mathematics development that underlie the 
Building Blocks learning trajectories (see Sarama & Clements, 2009). Although 
the REMA is closely aligned conceptually with the Building Blocks software, it 
was developed before the software and assesses numeracy skills using different 
tasks and different materials; thus, it does not exclusively serve as a curriculum 
mastery test. Nonetheless, we included the Applied Problems subtest as a more 
distal measure to assess generalization of learned skills to broader mathematics 
achievement. This subtest is not aligned with the Building Blocks software, and 
it assesses a broader skill set as a general outcome measure. A possible alternative 
explanation of the pattern of results is that perhaps the REMA is more sensitive 
than the Applied Problems subtest at measuring Kindergarteners’ mathematics 
abilities. For instance, the descriptive statistics of children’s raw scores on the two 
measures at postintervention indicate greater variance in scores on the REMA, 
which could be (but are not necessarily) indicative of increased sensitivity to 
individual differences. Indeed, two national panels on preschool assessment 
(National Institute of Child Health and Human Development, 2002; Kochanoff, 
Hirsh-Pasek, Newcombe, & Weinraub, 2003) cautioned against the sole use of the 
Woodcock-Johnson test for assessment of mathematical skills in preschoolers (and 
Kindergartners) because it has not been validated for children in the youngest age 
ranges; covers a narrow range of problems (e.g., the oft-used Applied Problems 
has multiple tasks in which children must count a proper subset, all with numbers 
from 1 to 4) and jumps too quickly to advanced, formal knowledge; and is not 
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based on current research on the development of mathematical thinking, including 
giving little attention to developmental sequences. Regardless of which possible 
explanation of the noted pattern of findings holds true, the fact that there were 
reliable group differences on Applied Problems at postintervention only 
strengthens the conclusion that the Building Blocks software improved mathe-
matics achievement because either the intervention effects generalized to broad 
application of mathematics skills or the intervention effects were robust enough 
to be evident on a less sensitive outcome measure.

When considering the effects of the Building Blocks software on specific math-
ematics skills, the software program was shown to positively affect children’s 
skills with arithmetic, number composition, and number recognition and subi-
tizing. With the exception of the null effect on number comparison and sequencing, 
the positive effects of the Building Blocks software evidenced in the present study 
are consistent with findings from previous research that evaluated the larger, 
comprehensive Building Blocks program (e.g., Clements & Sarama, 2007, 2008; 
Sarama & Clements, 2009). In considering the one null finding, it is important to 
note that the teacher-led instruction that takes place as part of the larger Building 
Blocks program includes an emphasis on higher level thinking. Moreover, teacher-
led instruction with the full Building Blocks program generally targets number 
comparison and sequencing more frequently and intensely than does the software 
(see Clements et al., 2011). Thus, the active involvement of the teacher, whether 
through whole-group or small-group instruction, is a critical component for 
engaging children in mathematical reasoning that should not be replaced by CAI.

Finally, although it is important not to overgeneralize, it is worth noting that the 
software that we evaluated was designed on scientific principles. That is, the 
Building Blocks software was based on a refined version of a previously published 
model for “developing effective software” (Clements & Battista, 2000). The final 
model is a 10-phase research-and-development process with three categories of 
development, a priori research reviews, the development of learning trajectories, 
and formative and summative evaluation (described in Clements, 2007, and 
Clements & Sarama, 2015). However, all summative evaluations before the present 
study were of the entire set of Building Blocks materials. Results concerned with 
the effectiveness of the software suite were therefore confounded with the effec-
tiveness of the larger Building Blocks program. This is the first study to validate 
this specific software suite and thus provides evidence of the efficacy of the 
scientific principles for software development.

Implications
Children at risk of school failure need high-quality instructional experiences to 

prevent or mitigate the development of mathematics learning difficulties 
(Bowman, Donovan, & Burns, 2001; Cross et al., 2009; Magnuson et al., 2004; 
Peisner-Feinberg et al., 2001; Shonkoff & Phillips, 2000). The present study 
provides support for the use of the Building Blocks software as a supplemental 
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mathematics program in an effort to decrease risk of school failure by increasing 
the mathematical competencies of children from low-income and ethnic minority 
backgrounds. Further, the software program’s value-added and broad impacts 
speak well of the program’s adaptive functionality and comprehensive coverage 
of relevant competencies. That is, even though children seemingly directed their 
own instruction, the adaptive algorithms assured that instruction was provided 
at appropriate levels such that it allowed children to extract benefits from the 
educational software in accord with their personal competencies. Breadth of 
scope and adaptive instruction are important considerations for both developers 
and consumers of educational software. Administrators, educators, and parents 
alike desire educational software that teaches multiple competencies and that can 
appropriately be used with children who vary in school readiness. Thus, use of 
the Building Blocks software can provide substantial benefits regarding mathe-
matics learning, at least when used as a supplement to general education.

A specific policy implication that follows from the present results is that CAI 
interventions may be especially useful in diverse schools, such as those in this 
study. Given the effectiveness of the Building Blocks software and its ease of 
implementation, which does not interfere with children’s academic programming, 
further use of the software in the prevention of mathematics learning difficulties 
is supported. In particular, schools and districts are continuously faced with how 
best to meet the educational needs of their students in the context of limited 
resources. Such software offers much promise as an efficient, affordable, and 
effective form of intervention and prevention because it precisely provides 
instruction at the level of a given pupil’s ability, and it does so without an unfea-
sible 1:1 ratio of educators to students. Thus, these results contradict concerns 
about the use of CAI with students from low-income and minority backgrounds 
(Kitchen & Berk, 2016). These cautionary polemics are examples of what Papert 
called technocentrism (Papert, 1987), which refers to the focus on the technology 
rather than focusing on the pedagogical context as a whole, including the content 
of particular CAI programs. Such perspectives can oversimplify challenges faced 
within educational systems, such as access to high-quality and rigorous mathe-
matics education in the United States, by limiting discussions of CAI to programs 
focused on drill and skill development and then generalizing to other forms of 
educational software (Kitchen & Berk, 2016). The Building Blocks software 
studied here includes different goal and pedagogical structures, which may 
account for its success with this low-income population. That is, its design avoids 
the false and pernicious division between skills and reasoning, which we believe 
is more consistent with the CCSSM than is reflected in many polemics. Although 
the present findings are valuable to administrators who allocate intervention 
resources, the Building Blocks software should not be used as a band-aid or “fix 
all” to compensate for classroom instruction that lacks intensity. Instead, it should 
be implemented judiciously as a supplement, and its effectiveness under various 
instructional contexts should be studied further.
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Limitations
First, the present findings may not be generalized beyond the population of 

ethnic minority Kindergarten children in low-income schools in Texas. For 
example, the impact of the Building Blocks software may differ in other popula-
tions of children, such as those who evidence developmental delays, learning 
disabilities, or intellectual disabilities; children identified as speech, language, or 
hearing impaired; or children learning English as a second language. Second, the 
present study only evaluated the efficacy of the Building Blocks software games 
that teach early numeracy. The Building Blocks software games that teach 
geometric understandings, such as identifying shapes and their components, 
composition of their shape, representing shape, geometric measurement, 
patterning, and comparing shapes, were neglected in this randomized control trial. 
Third, although the study design permits causal statements about the impact of 
supplemental use of the Building Blocks software, the design does not permit 
statements concerning the merit of the Building Blocks software relative to other 
supplemental mathematics programs. For example, it remains possible that other 
supplemental mathematics programs, tutoring, and even mathematics homework 
could be equally beneficial. Thus, improved mathematics outcomes of children in 
the Building Blocks software condition may in part be a result of additional time 
practicing mathematics. Finally, it is unclear how regular classroom instruction 
supported or impeded the learning of mathematics of the children in the present 
study. For example, some regular classroom teachers may have been more effective 
in teaching mathematics relative to other teachers. Although we accounted for 
such classroom effects in our research design and statistical models, the present 
study was not designed to examine the interaction of supplemental use of the 
Building Blocks software and general education programming. Instead, the gener-
alization of the study’s findings is limited to use of the Building Blocks software 
as a supplement to the enVisionMath curriculum.

Conclusion
In summary, the Building Blocks software led to improved numeracy and 

applied problems achievement in monolingual English-speaking ethnic minority 
children from low-income backgrounds. These results are consistent with prior 
research and add to evaluations that support the judicious use of research-based 
educational software. Similarly, these findings suggest that adaptive mathematics 
instruction software programs may be an efficacious supplemental method for 
ameliorating mathematics learning difficulties in children from ethnic minority 
and low-income backgrounds.
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APPENDIX

Table A1
Description of Building Blocks Software Games Targeting Numeracy

Game Mathematics skills targeted Description

Number 
Snapshots

Number recognition and  
subitizing (instantly recognize) 

Children are given only a few 
seconds to see a digital image (an 
array of dots) before they have to 
click on the target numeral on the 
film strip to the left (or click on the 
peek button for another look) of the 
image.

Before and 
After Math

Verbal counting and arithmetic Children identify and select 
numbers that come either just 
before (i.e., n – 1) or right after 
(i.e., n + 1) a target number.

Sea to Shore Verbal counting and arithmetic Children identify number amounts 
by moving forward (or counting 
on) a number of spaces on a game 
board (image displayed on the 
computer screen) that is one more 
than a given numeral.

Book Stacks Verbal counting and arithmetic Children “count on” (through at 
least one decade) from a given 
number as they load books onto a 
cart.

Memory 
Number

Number recognition, composi-
tion of number, and number 
comparison 

Children match displays 
containing numerals with displays 
containing collections of objects 
within the framework of a 
“Concentration” card game.

Number 
Compare Number comparison and 

sequencing

Children compare two cards and 
then choose the one with the 
greater value.

School Supply 
Shop

Number sequencing and skip 
counting

Children see it as counting school 
supplies that are bundled in groups 
of ten to reach a target number. 

Tire Recycle Number sequencing and skip 
counting

Children count tires by twos or 
fives as they move the groups of 
tires into a recycling container.

Bright Idea Verbal counting, counting  
strategies, and arithmetic 

Children count on from a numeral 
to identify number amounts and 
then move forward a corre-
sponding number of spaces on a 
game board.


