Florida Center for Reading Research (FCRR) Reading Assessment (FRA)

Grades 3 through 12

Technical Manual

Barbara R. Foorman, Ph.D.

Yaacov Petscher, Ph.D.

Chris Schatschneider, Ph.D.

Florida Center for Reading Research
Florida State University

Version 1.0

7/12/2015

Acknowledgements

The items, dynamic flow, computer-adaptive task flow and placement algorithms, creation of the development application, and psychometric work for this component skills battery were funded by grants from the Institute of Education Sciences (IES) to Florida State University:

Institute of Education Sciences, USDOE (\$4,447,990), entitled "Assessing Reading for Understanding: A Theory-Based, Developmental Approach," subcontract to the Educational Testing Service for five years (R305F100005), 7/1/10-6/30/15 (Foorman, PI on subcontract; Petscher and Schatschneider, Co-Is).

Institute of Education Sciences, USDOE (R305A100301; \$1,499,741), entitled "Measuring Reading Progress in Struggling Adolescents," awarded for four years, 3/1/10-2/28/14. (Foorman, PI; Petscher and Schatschneider, Co-Is).

We would like to acknowledge the following individuals for their leadership in executing the work funded by the above two IES grants: Dr. Adrea Truckenmiller, Karl Hook, and Nathan Day. We also would like to thank the numerous school districts administrators and teachers who participated in the research funded by these two grants.

Table of Contents

Acknowledgements
Introduction
Mastering the Alphabetic Principle
Comprehending Written Language (better known as Reading Comprehension)
Summary of FRA Constructs and Tasks
Description of the Tasks in the FRA
Description of Method13
Item Response Theory
Guidelines for Retaining Items
Linking Design & Item Response Analytic Framework10
Norming Studies
Score Definitions
Reliability20
Marginal Reliability
Standard Error of Measurement
Test-Retest Reliability22
Validity26
Assessment of Model Fit
Criterion Validity
Concurrent Validity
Predictive Validity
Contextual Considerations in the Probability of Literacy Success (PLS) Error! Bookmark not defined
FRA Introduction

Differential Accuracy of Prediction
Construct Validity41
Convergent Validity
Discriminant Validity
References
Appendix A: G3-G12 Weights50
Appendix B: Distribution of the Log Odds and Predicted Probability of Success on the SAT-10 at the 50 th Percentile
Appendix C: Distribution of the Log Odds and Predicted Probability of Success on the SAT-10 at the 70 th Percentile
Appendix D: Quantile Correlations between FRA Vocabulary Knowledge and PPVT-IV 57
Appendix E: Quantile Correlations between FRA Word Recognition and TOWRE Real Word . 58
Appendix F: Quantile Correlations between FRA Word Recognition and TOWRE Non-Word . 59
Appendix G: Quantile Correlations between FRA Syntax Knowledge and GJT 60
Appendix H: ESE Code Definitions

Introduction

The first question to ask when designing an assessment of reading and language skills is what predicts success in comprehending written language, that is, success in word reading and in reading comprehension? We are fortunate to have several consensus documents that review decades of literature about what predicts reading success (NRC, 1998; NICHD, 2000; NIFL, 2008; Rand, 2002; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001).

Mastering the Alphabetic Principle

What matters the most to success in reading words in an alphabetic orthography such as English is mastering the alphabetic principle, the insight that speech can be segmented into discrete units (i.e., phonemes) that map onto orthographic (i.e., graphemic) units (Ehri, Nunes, Willows, et al., 2001; Rayner et al., 2001). Oral language is acquired largely in a natural manner within a hearing/speaking community; however, written language is not acquired naturally because the graphemes and their relation to phonological units in speech are invented and must be taught by literate members of the community. The various writing systems (i.e., orthographies) of the world vary in the transparency of the sound-symbol relation. Among alphabetic orthographies, the Finnish orthography is highly transparent: phonemes in speech relate to graphemes in print (i.e., spelling) in a highly consistent oneto-one manner and graphemes in print relate to phonemes in speech (i.e., decoding) in a highly consistent one-to-one manner. Thus, learning to spell and read Finnish is relatively easy. English, however, is a more opaque orthography. Phonemes often relate to graphemes in an inconsistent manner and graphemes relate to phonemes in yet a different inconsistent manner. For example, if we hear the "long sound of a" we can think of words with many different vowel spellings, such as crate, brain, hay, they, maybe, eight, great, vein. If we see the orthographic unit -ough, we may struggle with the various pronunciations of cough, tough, though, bough. The good news is that 69% of monosyllabic English words—those Anglo-Saxon words most used in beginning reading instruction—are consistent in their letter to pronunciation mapping (Ziegler, Stone, & Jacobs, 1997). Most of the rest can be learned with grapheme-phoneme correspondence rules (i.e., phonics), with only a small percentage of words being so irregular in their letter-sound relations that they should be taught as sight words (Ehri, Nunes, Stahl, & Willows, 2001; Foorman & Connor, 2011).

In grades 3-12, alphabetic skills are measured with a word recognition task. In this computer-adaptive task, three words are presented on the computer monitor and students must select the word that best matches the word pronounced by the computer. About 10% of target words are nonsense words so that phonological decoding skills are tapped. When the target is a real word, distractors tap orthographic knowledge. For example, a distractor for "prerogative" might be *perogative*. By tapping orthographic knowledge in this task, the quality of a student's lexical representation for a printed word is assessed. The more complete and accurate the lexical representation of a word is, the more efficient the student's word recognition and reading comprehension (Perfetti & Stafura, 2014).

Comprehending Written Language (better known as Reading Comprehension)

Knowledge of word meanings. Mastering the alphabetic principle is a necessary but not sufficient condition for understanding written text. We may be able to pronounce printed words, but if we don't know their meaning our comprehension of the text is likely to be impeded. Hence, our knowledge of word meanings is crucial to comprehending what we read. Grasping the meaning of a word is more than knowing its definition in a particular passage. Knowing the meaning of a word means knowing its full lexical entry in a dictionary: pronunciation, spelling, multiple meanings in a variety of contexts, synonyms, antonyms, idiomatic use, related words, etymology, and morphological structure. For example, a dictionary entry for the word exacerbate says that it is a verb meaning: 1) to increase the severity, bitterness, or violence of (disease, ill feeling, etc.); aggravate or 2) to embitter the feelings of (a person); irritate; exasperate (e.g., foolish words that only exacerbated the quarrel). It comes from the Latin word exacerbātus (the past participle of exacerbāre: to exasperate, provoke), equivalent to ex + acerbatus (acerbate). Synonyms are: intensify, inflame, worsen, embitter. Antonyms are: relieve, sooth, alleviate, assuage. Idiomatic equivalents are: add fuel to the flame, fan the flames, feed the fire, or pour oil on the fire. The more a reader knows about the meaning of a word like exacerbate, the greater the lexical quality the reader has and the more likely the reader will be able to recognize the word quickly in text, with full comprehension of its meaning (Perfetti & Stafura, 2014).

In the grades 3-12 FRA, knowledge of word meanings is measured by a Vocabulary Knowledge Task that taps morphological awareness. In the Vocabulary Knowledge Task, the student reads a sentence that has a missing word. The student selects among three words the one that best completes the sentence. The distractors and target vary in their morphological structure (i.e., prefixes or suffixes consisting of inflectional morphemes or derivational morphemes). It is relatively easy to read derived words that are pronounced similarly to their base (e.g., reason, reasonable). Words that contain a phonological shift (e.g., vine, vineyard) or an orthographic shift (e.g., pity, piteous) are harder to read, and words that contain both a phonological and an orthographic shift (e.g., theory, theoretical) are the hardest of all (Carlisle & Stone, 2005). The Vocabulary Knowledge Task in the FRA explained 2%-9% unique variance beyond prior reading comprehension, text reading efficiency, and spelling in predicting spring reading comprehension (Foorman, Petscher, & Bishop, 2012) and, by doing so, addresses aspects of language critical to understanding written language, language often called academic language because it is found in books and at school but not in informal conversations at home or outside school. Part of academic language is inferential language or decontextualized language, which allows speakers or writers to go beyond the present context and to predict, hypothesize, compare and contrast, and reason about events (e.g., an upcoming referendum) or abstract concepts (e.g., photosynthesis, gravity). Examples of words that signal such inferential or decontextualized language are describe, analyze, hypothesize.

Syntactic awareness. In addition to understanding word meanings, another important aspect of academic language is syntactic awareness. Syntax or grammar refers to the rules that govern how words are ordered to make meaningful sentences. Children typically acquire these rules in their native language prior to formal schooling. However, learning to apply these rules to reading and writing is a

goal of formal schooling and takes years of instruction and practice. In the grades 3-12 FRA, there is a diagnostic task called Syntactic Knowledge Task (SKT). In this task the student listens to a sentence that is missing a word and selects the best word from a dropdown menu to complete the sentence. The words are verbs, pronouns, or connectives. Connectives are words that represent causal (e.g., because), temporal (e.g., when), logical (e.g., if-then), additive (e.g., in addition), or adversative (e.g., although) relations and are important linguistic devices for linking ideas and information within and across sentences. They link back to information already read through pronoun reference (anaphora) or repetition of nouns and verbs and provide clues to future meaning (e.g., therefore, nonetheless). Knowledge of the meaning and use of connectives is an important aid to comprehension (Cain & Nash, 2011; Crosson & Lesaux, 2013).

Reading comprehension. If a student can read and understand the meanings of printed words and sentences, then comprehending text should not be difficult, given the emphasis above on achieving the alphabetic principle, lexical quality, and syntactic awareness. Individual differences in readers' background knowledge, motivation, and memory and attention will create variability in word recognition skills, vocabulary knowledge, and syntactic awareness and this variability, in turn, will create variability in reading comprehension. Furthermore, genre differences—informational or literary text—may interact with reader skills to affect reading comprehension. For example, some students may have better inferential language skills so critical to comprehending informational text; other students may have better narrative language skills of discerning story structure and character motivation and, therefore, be good comprehenders of literary text. Because reading comprehension is affected by the interactions of variables related to reader and text characteristics (RAND, 2002), tests of reading comprehension typically consist of informational *and* literary passages and provide as much relevant background information within the passage as possible.

States' reading comprehension tests typically have questions written to their state standards. One challenge for these tests are the trade-offs between coverage of the standards, time, and reliability. Typically, one should strive for about 15 items per standard. If a state has 14 standards per grade, then 210 questions would be needed to reliably cover the standards. If 7-9 questions are written for each passage, then students would need to read 23-30 passages, which would take them about 10 days. Most states prioritize testing the superordinate standards in order to reduce the testing time to 7 passages or so over two days. A limitation of many standards-based tests is their sole focus on grade-level proficiency. Students are given only grade-level passages; therefore, students who read below grade level tend to guess and students who read above grade level are not challenged. In both cases, no information about their actual reading ability is obtained. Furthermore, when the grade level of passages is determined by readability formulae or by qualitative ratings, the precision is not at a particular grade but rather within grade bands of two to three grades (e.g., upper elementary, middle school, high school; Foorman, 2009; Nelson, Perfetti, Liben, & Liben, 2012).

The FRA Reading Comprehension task in grades 3-12 avoids the problems with precision and efficiency noted above by being a computer-adaptive test. Students are placed into their first reading

FRA Introduction

comprehension passage based on their ability on the computer-adaptive Word Recognition and Vocabulary Knowledge Tasks—which take 2-3 minutes each. The student reads the passage and answers the 7-9 multiple choice questions. Subsequent passage placement is based on relations among student ability, standard error, and discrimination parameters from a 2-parameter logistic item response theory (IRT) model. Students continue to receive passages until a precise estimate of reading comprehension is achieved (i.e., reliability >.80). In the FRA, students receive 1-3 passages in about 10-30 minutes. Given that the two Screening tasks and one Diagnostic task take, on average, 11 minutes, the entire 3-12 battery easily fits into a 45-minute class period. During the 2013-2014 implementation study in Pinellas County, reliability on the Reading Comprehension task was above .80 for 93 percent of students and above .90 for 54 percent of students.

Individual tasks in the FRA yield two score types—percentile ranks and ability scores. The ability score is used to measure growth and can be displayed against grade-level percentile ranks to communicate the important point that students are improving across the year even though they are performing far below or above grade-level peers.

Summary of FRA Constructs and Tasks

The FRA consists of computer-adaptive reading comprehension and oral language screening tasks that provide measures to track growth over time, as well as a Probability of Literacy Success (PLS) linked to grade-level performance (i.e., the 50th percentile) on the reading comprehension subtest of the Stanford Achievement Test (SAT-10) in the 2014-2015 school year. Thus, the FRA provides universal screening and diagnostic tasks in a precise and efficient computer-adaptive framework with psychometrics and norms derived from large samples of Florida K-12 students representative of Florida demographics. The diversity of Florida's demographics is a microcosm of the United States. By including Vocabulary Knowledge and Syntax Knowledge Tasks, the FRA has excellent construct coverage of oral language, which has been shown to account for the vast majority (i.e., 72%-96%, with a median of 87%) of individual differences in reading comprehension in grades 4-10 (Foorman, Koon, Petscher, Mitchell, & Truckenmiller, 2015) and comparable variance to decoding fluency in grades 1-2 (Foorman, Herrera, Petscher, Mitchell, & Truckenmiller, 2015).

Description of the Tasks in the FRA

Item development. Item development was broadly based on the empirical theories regarding reading development described above. Retention for specific items was based principally on the statistical properties of the items and is detailed in the Description of Method section. Items were originally written and reviewed by a team of experienced educators with advanced degrees in education, communication, and psychology. Item writers generally wrote to late elementary, middle, and high school students using vocabulary and text complexity that the writers had experienced in typical curricula and materials targeted to those age groups. Item writers created a variety of items that they considered to be easy, moderate, and difficult for the range of students. Writers were asked to provide a larger number of easier and moderate items. Given that screening assessments are more

FRA Introduction

commonly given to lower performing students and those students are assessed more frequently, the item bank needed to have a large number of easy and moderate items so that there were enough items in the item bank that students did not have to see the same items each year. Each item was reviewed by at least three other members of the review team for errors and appropriateness. All items in the Reading Comprehension task were aligned with a standard from the Common Core State Standards.

Target words for the WRT and VKT tasks were based on pilot work with a small group of students and printed word frequency (Zeno, Ivens, Millard, & Duvvuri, 1995). A rough estimate of the range in difficulty of the sentences in the VKT and SKT tasks was obtained through use of the Flesch-Kincaid grade-level readability formula.

Passages and items in the Reading Comprehension Task were written to address the ELA Common Core Standards in three strands (Reading Informational Text, Reading Literary Text, and Language). Items writers also reviewed publicly available examples from the Partnership for Assessment of Readiness for College and Careers and the SmarterBalanced Consortium. The range of text complexity of the passages was evaluated for a variety of freely available quantitative measures (i.e., Lexile, Flesch-Kincaid, Pearson Maturity Metric, Text Evaluator, ATOS, and Degrees of Reading Power) and the qualitative rating guide from Appendix A of the Common Core State Standards. The passages in elementary grades were originally written to be evenly split between literary and informational passages. The passage and item difficulty was ultimately determined by the normative sample's performance on the task, so the resulting item bank is split 42% literary passages and 58% informational. Since the goal of this assessment is to cover the range of student ability as opposed to equally addressing all standards, the guidelines for item creation on the Reading Comprehension task was to make 30% of the items focused on vocabulary and 70% of the items focused on explicit and inferential comprehension questions. The comprehension items for elementary aged students were split evenly between explicit and implicit questions with the percentage favoring implicit questions at the upper grade levels.

Word Recognition Task (WRT). In the Word Recognition Task, the student listens to a word pronounced by the computer. The computer monitor displays a drop-down menu with the correctly spelled word and two distractors that are spelled incorrectly. The student may replay the audio for the word up to three times. The student has unlimited time to respond to each item. The item bank contains 274 available items and includes real words and some non-words. The range of possible theta scores in the WRT is -3.88 to 3.85. This range corresponds to an ability score range of 112 to 885.

Vocabulary Knowledge Task (VKT). Each item in the Vocabulary Knowledge Task consists of one sentence with a word missing. The missing word is replaced with a choice of three morphologically related words. The student selects the word that best completes the sentence. There are 374 items available. The student has unlimited time to respond to each item. The range of possible theta scores in the VKT is -2.55 to 3.59. This range corresponds to an ability score range of 245 to 859.

Reading Comprehension (RC). The Reading Comprehension task consists of passages that are between 200 and 1300 words in length. Each passage has between 7 and 9 multiple choice questions.

FRA Introduction

Each question has one correct response and three distractors. All questions associated with the passage are displayed at the same time and the passage is also available on the computer monitor. Each question has an individual item difficulty and discrimination value. Each set of 7 to 9 questions has an average item difficulty, which is used to determine which set of questions (and associated passage) is administered to the student next. The Reading Comprehension task ends when a reliable score has been reached (i.e., the standard error is less than 0.50) or the student has responded to three sets of questions. The initial set of questions administered to a student is determined by a formula that includes the student's score on the WRT and the VKT. The computer will automatically log out students after 15 minutes of inactivity; otherwise, students have an unlimited amount of time to read the passage and respond to questions. There are a total of 139 sets of questions associated with passages available in the grades 3-12 FRA. The range of possible theta scores in the RCT is -2.80 to 5.24. This range corresponds to an ability score range of 220 to 1024.

Syntactic Knowledge Task (SKT). In the Syntactic Knowledge Task, the student listens to a sentence or sentences read by the computer that is missing one word. The computer monitor also displays the sentence(s) for the student to read along. The missing word(s) in the sentence(s) is replaced by a dropdown box with the correct word or phrase and two distractors. There are a total of 240 items available. Some items require a student to select the correct connective word, the correct pronoun reference, or the correct verb that creates appropriate subject-verb agreement. The range of possible theta scores in the SKT is -3.08 to 3.34. This range corresponds to an ability score range of 192 to 834.

Task Administration. In grades 3 through 12, the FRA consists of four computer-adaptive tasks that each provide unique information regarding a student's literacy skills. Each of the tasks below, except for Reading Comprehension, have four stop rules that determine when administration of each task is complete¹.

- 1. A reliable estimate of the student's abilities is reached (i.e., standard error is less than 0.50).
- 2. The student has responded to 30 items.
- 3. The student responds correctly to all of the first 8 items.
- 4. The student responds incorrectly to all of the first 8 items.

At subsequent administrations of the tasks within the same school year, the student's prior score on that task determines the initial set of items administered to the student at that administration period.

¹ The stop rules for reading comprehension are a maximum of three passages or a reliable estimate of the student's ability (i.e., standard error < 0.50).

The tasks in the FRA can be used as a highly efficient diagnostic tool due to the utilization of computer adaptive functionality. Computer administration allows for large groups of students to be assessed at once with a high degree of standardization. Adaptability in the items allows for a highly reliable score to be reached sooner and decreases the amount of time needed for each task. Although educators are most concerned with students' abilities in reading comprehension, it is a complex skill that takes significant amounts of time to assess (due to close reading of extended text) and poor performance does not necessarily signal which component skills of reading to target for instruction. The FRA efficiently assesses multiple research-based component skills of reading comprehension to help teachers diagnose skill weaknesses and target instruction. During the implementation study, more than 98% of students reached a highly reliable score (marginal reliability above .80) by taking an average of only 20 items on the WRT, 9 items on the VKT, and 18 items on the SKT. Table 1 provides a description of the efficiency of each task. The increase in efficiency allows for more tasks to be administered to achieve a more complete diagnostic profile for a student. For example, in the implementation study 84% of students in grades 3 through 12 completed all four of the computer-adaptive tasks within one class period (i.e., 45 minutes).

Table 1

Task Efficiency

	Word Recognition Task	Vocabulary Knowledge Task	Syntactic Knowledge Task	Reading Comprehension Task							
N	lumber of item	S		Passages administered	% students						
mean	20	9	17	1 passage	9.7%						
median	19	8	16	2 passages	22.7%						
administered 30 items	31%	2%	15%	3 passages	67.6%						
	Reliability										
marginal reliability											
coefficient	0.93	0.91	0.93		0.94						
Cronbach's alpha ≥ .9	82%	98%	87%		54%						
Cronbach's alpha \geq .8	98%	99%	99%		93%						
Time	(minutes : seco	onds)									
mean	3:04	2:06	3:54		NA*						
median	2:36	1:40	3:30		NA*						
directions time	0:42	0:24	0:35		0:15						

^{*}The mean and median values for amount of time spent on the Reading Comprehension Task are not available due to the nature of the task.

Description of Method

Item tryout and validation work with the above tasks occurred from 2010-2015 through the funding provided by two IES grants (see Acknowledgements). Once item writers had written items for each task, tasks were piloted with students in grades 3-12. Results from Item Response Theory (IRT) analyses were evaluated and in several cases items were deleted or more difficult items were written and further field trials were conducted. A large-scale linking study was conducted during the Spring of 2013 with approximately 45,000 students in grades 3 through grade 12 in two districts in Florida. Outcome data consisted of well-known standardized measures of reading comprehension (Gates-MacGinitie and the SAT-10). Item response and differential item function analyses were conducted. Parameters derived from these analyses are used in the look-up tables in the computer-adaptive system.

Item Response Theory

Data for the grades 3-12 FRA were analyzed using Item Response Theory (IRT). Traditional testing and analysis of items involves estimating the difficulty of the item (based on the percentage of respondents correctly answering the item) as well as discrimination (how well individual items relate to overall test performance). This falls into the realm of measurement known as classical test theory (CTT). While such practices are commonplace in assessment development, IRT holds several advantages over CTT. When using CTT, the difficulty of an item depends on the group of individuals on which the data were collected. This means that if a sample has more students that perform at an above-average level, the easier the items will appear; but if the sample has more below-average performers, the items will appear to be more difficult. Similarly, the more that students differ in their ability, the more likely the discrimination of the items will be high; the more that the students are similar in their ability, the lower the discrimination will be. One could correctly infer that scores from a CTT approach are entirely dependent on the makeup of the sample on which the items are tested.

The benefits of IRT are such that: 1) the difficulty, discrimination, and pseudo-guessing parameters are not dependent on the group(s) from which they were initially estimated; 2) scores describing students' ability are not related to the difficulty of the test; 3) shorter tests can be created that are more reliable than a longer test; and, 4) item statistics and the ability of students are reported on the same scale.

Item Difficulty. The difficulty of an item has traditionally been described for many tests as a "p-value", which corresponds to the percent of respondents correctly answering an item. Values from this perspective range from 0% to 100% with high values indicating easier items and low values indicating hard items. Item difficulty in an IRT model does not represent proportion correct, but is rather represented as estimates along a continuum of -3.0 to +3.0. Figure 1 demonstrates a sample item characteristic curve which describes item properties from IRT. Along the x-axis is the ability of the individual, denoted by theta. As previously mentioned, the ability of students and item statistics are reported on the same scale. Thus, the x-axis is a simultaneous representation of student ability and item difficulty. Negative values along the x-axis will indicate that items are easier, while positive values describe harder items. Pertaining to students, negative values describe individuals who perform below average, while positive values identify students who perform above average. A value of zero for both students and items reflects average level of either ability or difficulty.

Along the y-axis is the probability of a correct response, which varies across the level of difficulty. Item difficulty is defined as the value on the x-axis at which the probability of correctly endorsing the item is 0.50. As demonstrated for the sample item in Figure 1, the difficulty of this item would be 0.0. Item characteristic curves are graphical representations generated for each item that allow the user to see how the probability of getting the item correct changes for different levels of the x-axis. Students with an ability of -3.0 would have an approximate 0.01 chance of getting the item correct, while students with an ability of 3.0 would have a nearly 99% chance of getting an item correct.

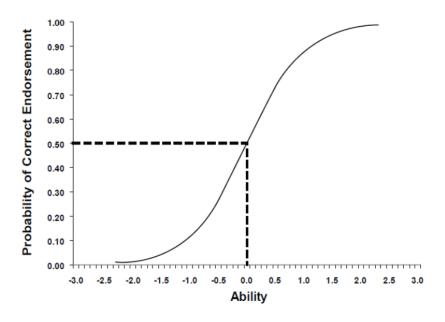


Figure 1. Sample Item Characteristic Curve

Item Discrimination. Item Discrimination is related to the relationship between how a student responds to an item and their subsequent performance on the rest of a test. In IRT it describes the extent to which an item can differentiate the probability of correctly endorsing an item across the range of ability (i.e., -3.0 to +3.0). Figure 2 provides an example of how discrimination operates in the IRT framework. For all three items presented in Figure 2, the difficulty has been held constant at 0.0, while the discriminations are variable. The dashed line (Item 1) shows an item with strong discrimination, the solid line (Item 2) represents an item with acceptable discrimination, and the dotted line (Item 3) is indicative of an item that does not discriminate. It is observed that for Item 3, regardless of the level of ability for a student, the probability of getting the item right is the same. Both high ability students and low ability students have the same chance of doing well on this item. Item 1 demonstrates that as the xaxis increases, the probability of getting the item correct changes as well. Notice that small changes between -1.0 and +1.0 on the x-axis result in large changes on the y-axis. This indicates that the item discriminates well among students, and that individuals with higher ability have a greater probability of getting the item correct. Item 2 shows that while an increase in ability produces an increase in the probability of a correct response, the increase is not as large as is observed for Item 1, and is thus a poorer discriminating item.

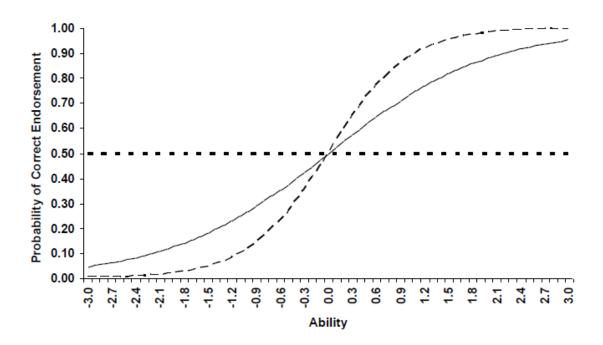


Figure 2. Sample Item Characteristic Curves with Varied Discriminations

Guidelines for Retaining Items

Several criteria were used to evaluate item validity. The first process was to identify items which demonstrated strong floor or ceiling effects in response rates >= 95%. Such items are not useful in

FRA | Description of Method

creating an item bank as there is little variability in whether students are successful on the item. In addition to evaluating the descriptive response rate, we estimated item-total correlations. Items with negative values are indicative of poor functioning such that it suggests individuals who correctly answer the question tend to have lower total scores. Similarly, items with low item-total correlations indicate the lack of a relation between item and total test performance. Items with correlations <.15 were flagged for removal. Following the descriptive analysis of item performance, difficulty and discrimination values from the IRT analyses were used to further identify items which were poorly functioning. Items were flagged for item revision if the item discrimination was negative or the item difficulty was greater than +4.0 or less than -4.0.

Secondary criteria were used in evaluating the retained items, which was comprised of a differential item function (DIF) analysis. DIF refers to instances where individuals from different groups with the same level of underlying ability significantly differ in their probability to correctly endorse an item. Unchecked, items included in a test which demonstrate DIF will produce biased test results. For the FRA assessments, DIF testing was conducted comparing: Black-White students, Latino-White students, Black-Latino students, students eligible for Free or Reduced Priced Lunch (FRL) with students not receiving FRL, and English Language Learner to non-English Language Learner students.

DIF testing was conducted with a multiple indicator multiple cause (MIMIC) analysis in Mplus (Muthén & Muthén, 2008); moreover, a series of four standardized and expected score effect size measures were generated using VisualDF software (Meade, 2010) to quantify various technical aspects of score differentiation between the gender groups. First, the signed item difference in the sample (SIDS) index was created, which describes the average unstandardized difference in expected scores between the groups. The second effect size calculated was the unsigned item difference in the sample (UIDS). This index can be utilized as supplementary to the SIDS. When the absolute value of the SIDS and UIDS values are equivalent, the differential functioning between groups is equivalent; however, when the absolute value of the UIDS is larger than SIDS, it provides evidence that the item characteristic curves for expected score differences cross, indicating that differences in the expected scores between groups change across the level of the latent ability score. The D-max index is reported as the maximum SIDS value in the sample, and may be interpreted as the greatest difference for any individual in the sample in the expected response. Lastly, an expected score standardized difference (ESSD) was generated, and was computed similar to a Cohen's (1988) d statistic. As such, it is interpreted as a measure of standard deviation difference between the groups for the expected score response with values of .2 regarded as small, .5 as medium, and .8 as large.

Linking Design & Item Response Analytic Framework

A common-item, non-equivalent groups design was used for collecting data in our pilot, calibration, and validation studies. A strength of this approach is that it allows for linking multiple test forms via common items. For each task, a minimum of twenty-percent of the total items within a form were identified as vertical linking items to create a vertical scale. These items served a dual purpose of not only linking forms across grades to each other, but also linking forms within grades to each other.

FRA | Description of Method

Because the tasks in the FRA were each designed for vertical equating and scaling we considered two primary frameworks for estimating the item parameters: 1) a multiple-group IRT of all test forms or 2) test characteristic curve equating. We chose the latter approach using Stocking and Lord (1983) to place the items on a common scale. All item analyses were conducted using Mplus software (Muthén & Muthén, 2008) with a 2pl independent items model. Because the samples used for data collection did not strictly adhere to the state distribution of demographics (i.e., percent limited English proficiency, Black, White, Latino, and eligible for free/reduced lunch), sample weights according to student demographics were used to inform the item and student parameter scores.

Norming Studies

Students from several districts throughout Florida participated in the common-item, non-equivalent groups linking study to estimate and evaluate the item parameters and student ability score distributions for each of the computer adaptive tasks (CAT) in the FRA. A total of 44,780 students in grades 3-12 across six districts in Florida participated in the calibration and validation studies which consisted of students taking the FRA tasks appropriate to levels of performance. Table 2 provides a breakdown of the sample sizes used by grade level for each of the FRA adaptive assessments. Average demographic information for the state in grades 3-10 was as follows: 41% White, 30% Hispanic, 23% Black, 6% Other; 60% eligible for free/reduced price lunch; 8% limited English proficient². Four percent of students were identified with a primary exceptionality as follows: Specific Learning Disabled (1.6%), Gifted (1.2%), Speech Impaired (.3%), Language Impaired (.2%), Emotionally Handicapped (.2%), Other Health Impaired (.2%), Autistic (.1%), Intellectual Disability (.1%), Orthopedically Impaired (<.1%), Deaf or Hard of Hearing (<.1%), and Visually Impaired (<.1%). Appendix H includes definitions for Florida's ESE categories.

The sample demographics for our validation sample approximately reflected state demographics as it pertains to the percent of White, Black, and Hispanic students, percentage of English language learners (ELL) and percentage of students eligible for free/reduced price lunch (FRL). A particular nuance with assessment research is that the collected sample data may not precisely reflect the population of interest. To correct for observed imprecision in how well a sample reflects a population, sample weights are used to reduce bias and compensate for over- or under- representativeness of the sample. Subsequently, our analyses were informed by weights constructed by evaluating the proportion of individuals who existed across combinations of race/ethnicity, ELL status, and FRL status. This resulted in 16 unique weights applied to the data to account for the four levels of race/ethnicity (White, Black, Hispanic, Other), two levels of FRL status (eligible/not eligible), and two levels of ELL status (ELL/not ELL). In this way our analyses were able to more precisely reflect the distribution of Florida's

⁻

² Data sources: Race data from 2013-14 Survey 3, Florida Department of Education; Free/Reduced Lunch data from 2013-14 Survey 2 data, Florida Department of Education and Archive Data Core, Florida Center for Reading Research; English Language Learner data from Education Information and Accountability Services, Florida Department of Education and Archive Data Core, Florida Center for Reading Research.

demographics according to key demographic characteristics. Specific sample weight data used in this study are reported in Appendix A.

Table 2
Sample Size by Grade for FRA Tasks

Grade	Vocabulary Knowledge	Word Recognition	Syntactic Knowledge	Reading Comprehension
3	502	651	962	2,723
4	570	586	857	2,679
5	519	697	981	2,721
6	606	652	865	3,835
7	599	612	617	3,683
8	597	613	616	3,814
9	813	1,054	1,053	3,964
10	574	1,109	869	3,787
Total	4,780	5,974	6,820	27,206

Score Definitions

Several different kinds of scores are provided in order to facilitate a diverse set of educational decisions. In this section, we describe the types of scores provided for each measure, define each score, and indicate its primary utility within the decision making framework of the FRA. An ability score and a percentile rank are provided for each task (WRT, VKT, RC, and SKT) at each time point. One probability of literacy success score is provided at each assessment period.

Probability of Literacy Success (PLS). The Probability of Literacy Success score indicates the likelihood that a student will reach end of year expectations in literacy. For the purposes of the FRA in the 2014-2015 school year, reaching expectations is defined as performing at or above the 50th percentile on the Stanford Achievement Test, Tenth Edition (SAT-10). The PLS is used to determine which students are at-risk for meeting grade level expectations by the end of the school year. In addition to providing a precise probability of reaching grade level outcomes, the PLS is color-coded:

- red = the student is at high risk and needs supplemental and/or intensive instruction targeted to the student's skill weaknesses
- yellow = the student may be at-risk and educators may consider differentiating instruction for the student and/or providing supplemental instruction
- green = the student is likely not at-risk and will continue to benefit from strong universal instruction

In the grades 3-12 FRA, the components that are included in the PLS are an aggregate of the individual student's VKT, WRT, and RC scores.

Percentile Ranks. Percentile ranks can vary from 1 to 99, and they divide the distribution of scores from a large standardization sample (in this case a representative sample of students from Florida) into 100 groups that contain approximately the same number of observations in each group. Thus, a sixth grade student who scored at the 60th percentile would have obtained a score better than about 60% of the students in the standardization sample. The median percentile rank on all the tests of the grades 3-12 FRA is 50, which means that half the students in the standardization sample obtained a score above that point, and half scored below it. The percentile rank is an ordinal variable meaning that it cannot be added, subtracted, used to create a mean score, or in any other way mathematically manipulated. The median is always used to describe the midpoint of a distribution of percentile ranks. Since this score compares a student's performance to other students within a grade level, it is meaningful in determining the skill strengths and skill weaknesses for a student as compared to other students' performance.

Ability Scores. Each computer-adaptive task has an associated ability score. The ability score provides an estimate of a student's development in a particular skill. This score is sensitive to changes in a student's ability as skill levels increase or decrease. Ability scores in the grades 3-12 FRA span the development of each of four important skills: Word Recognition, Vocabulary Knowledge, Reading Comprehension, and Syntactic Knowledge. Each task's vertical scale has a mean of 500 and standard deviation of 100. This score has an equal interval scale that can be added, subtracted, and used to create a mean score. Therefore, this is the score that should be used to determine the degree of growth in a skill for individual students.

Reliability

Marginal Reliability

Reliability describes how consistent test scores will be across multiple administrations over time, as well as how well one form of the test relates to another. Because the FRA uses Item Response Theory (IRT) as its method of validation, reliability takes on a different meaning than from a Classical Test Theory (CTT) perspective. The biggest difference between the two approaches is the assumption made about the measurement error related to the test scores. CTT treats the error variance as being the same for all scores, whereas the IRT view is that the level of error is dependent on the ability of the individual. As such, reliability in IRT becomes more about the level of precision of measurement across ability, and it may sometimes be difficult to summarize the precision of scores in IRT with a single number. Although it is often more useful to graphically represent the standard error across ability levels to gauge the range of abilities for which the test is more or less informative, it is possible to estimate a generic estimate of reliability known as marginal reliability (Sireci, Thissen, & Wainer, 1991) with:

$$\bar{\rho} = \frac{\sigma_{\theta}^2 - \overline{\sigma_{e*}^2}}{\sigma_{\theta}^2}$$

where σ_{θ}^2 is the variance of ability score for the normative sample and $\overline{\sigma_{e*}^2}$ is the mean-squared error. Marginal reliability coefficients for the four FRA Screening tasks are reported in Table 3 by grade and assessment period.

Table 3

Marginal Reliability for FRA Screening Tasks of Vocabulary Knowledge, Word Recognition, Syntax and Reading Comprehension at the Fall, Winter, and Spring Administrations

	Voca	bulary Kno	wledge	Word Recognition				Syntax			Reading Comprehension		
Grade	Fall	Winter	Spring	Fall	Winter	Spring	Fall	Winter	Spring	Fall	Winter	Spring	
3	.84	.86	.87	.73	.85	.89	.85	.87	.89	.85	.86	.83	
4	.81	.83	.86	.86	.84	.88	.88	.87	.88	.76	.85	.89	
5	.87	.87	.88	.87	.84	.90	.87	.88	.90	.80	.83	.90	
6	.85	.85	.86	.86	.85	.91	.88	.89	.91	.84	.87	.91	
7	.85	.85	.86	.86	.86	.91	.88	.89	.91	.78	.83	.91	
8	.83	.84	.84	.87	.83	.92	.91	.88	.92	.81	.85	.92	
9	.85	.82	.86	.88	.80	.91	.91	.87	.90	.67	.78	.91	
10	.85	.81	.84	.88	.78	.90	.91	.87	.90	.76	.82	.92	
All Grades	.91	.89	.90	.92	.88	.93	.93	.92	.93	.86	.88	.93	

Note. Reliability coefficients for the Fall and Winter Reading Comprehension scores are reflective of fixed item administrations. Spring reliability coefficients for Reading Comprehension are reflective of performance on the CAT version. Marginal reliability coefficients for Vocabulary and Word Recognition are reflective of CAT versions of the assessments.

FRA | Reliability

Across all grades and assessment periods, the marginal reliability was quite high ranging from .86 for reading comprehension to .93 for spring word recognition and reading comprehension. Values of .8 typically viewed as acceptable for research purposes while estimates at .90 or greater are acceptable clinical decision making (Nunnally & Berstein, 1994). Marginal reliability coefficients for the diagnost Syntactic Knowledge Task are reported in Table 4. Similar to the other tasks, marginal reliability coefficients were quite high across all grades ranging from .92 to .93.

Standard Error of Measurement

A standard error of measurement (SEM; Harvill, 2005) is an estimate that captures the amount of variance that might be observed in an individual student's performance if they were tested repeate That is, on any particular day of testing, an examinee's score may fluctuate and only through repeatesting is it possible to get closer to one's true ability. Because it is not reasonable to test a student enough to capture his/her true ability, we can construct an interval by which we can observe the exto which the score may fluctuate. The SEM is calculated with:

SEM =
$$\sigma_x \sqrt{1 - \rho^2}$$

where σ_x is the standard deviation associated with the mean for assessment x, and ρ^2 is the marginal reliability for the assessment. Means and SEM are reported in Tables 4-6 for the 3 Screening tasks, respectively.

Table 4

Means and Standard Error of Measurement for Vocabulary Knowledge Scores

	Fa	II	Win	ter	Spring		
N	Mean	SEM	Mean	SEM	Mean	SEM	
466	380.28	29.30	393.07	27.98	413.82	25.91	
486	431.77	28.42	439.80	28.63	453.59	26.85	
423	469.14	29.17	473.85	28.12	482.07	26.89	
639	492.40	29.23	498.09	29.17	505.10	27.05	
632	521.95	29.24	518.13	29.34	529.92	26.97	
681	550.11	29.60	540.88	30.88	551.98	29.40	
1014	555.66	29.40	560.26	32.00	562.86	28.62	
887	571.88	30.28	575.32	36.19	574.38	30.44	
	466 486 423 639 632 681 1014	N Mean 466 380.28 486 431.77 423 469.14 639 492.40 632 521.95 681 550.11 1014 555.66	466 380.28 29.30 486 431.77 28.42 423 469.14 29.17 639 492.40 29.23 632 521.95 29.24 681 550.11 29.60 1014 555.66 29.40	N Mean SEM Mean 466 380.28 29.30 393.07 486 431.77 28.42 439.80 423 469.14 29.17 473.85 639 492.40 29.23 498.09 632 521.95 29.24 518.13 681 550.11 29.60 540.88 1014 555.66 29.40 560.26	N Mean SEM Mean SEM 466 380.28 29.30 393.07 27.98 486 431.77 28.42 439.80 28.63 423 469.14 29.17 473.85 28.12 639 492.40 29.23 498.09 29.17 632 521.95 29.24 518.13 29.34 681 550.11 29.60 540.88 30.88 1014 555.66 29.40 560.26 32.00	N Mean SEM Mean SEM Mean 466 380.28 29.30 393.07 27.98 413.82 486 431.77 28.42 439.80 28.63 453.59 423 469.14 29.17 473.85 28.12 482.07 639 492.40 29.23 498.09 29.17 505.10 632 521.95 29.24 518.13 29.34 529.92 681 550.11 29.60 540.88 30.88 551.98 1014 555.66 29.40 560.26 32.00 562.86	

FRA | Reliability

Table 5

Means and Standard Error of Measurement for Word Recognition Scores

		Fal		Wint	er	Spring		
Grade	N	Mean	SEM	Mean	SEM	Mean	SEM	
3	470	341.36	29.72	351.25	29.79	377.59	24.21	
4	491	407.69	31.06	405.81	30.43	427.49	29.73	
5	426	437.77	30.92	440.94	30.42	466.91	27.06	
6	646	465.32	31.28	458.53	31.06	490.20	26.41	
7	634	498.42	32.22	482.32	31.74	518.74	27.85	
8	690	531.50	32.88	515.55	36.63	555.32	27.06	
9	1017	543.01	33.21	543.53	43.68	567.72	29.29	
10	916	574.34	33.96	558.00	47.27	591.01	32.76	

Table 6

Means and Standard Error of Measurement for Reading Comprehension Scores

		Sprir	ng
Grade	N	Mean	SEM
3	325	386.03	28.69
4	322	440.07	32.96
5	302	497.25	36.49
6	431	499.96	37.63
7	426	524.45	39.67
8	461	571.71	48.61
9	703	583.06	39.26

FRA | Reliability

 $\hbox{@ 2014 Florida State University. All Rights Reserved.}$

10 626 589.72 44.65

Note. Data is only provided for Spring due to the CAT version only being administered in the Spring.

Means and standard error of measurement for the diagnostic Syntactic Knowledge Task are reported in Table 7.

Table 7

Means and Standard Error of Measurement for Syntactic Knowledge Scores

		Fa	II	Win	ter	Spring		
Grade	N	Mean	SEM	Mean	SEM	Mean	SEM	
3	377	328.84	30.80	358.06	30.58	402.12	25.29	
4	376	403.74	30.06	417.15	30.80	452.63	24.85	
5	340	430.52	30.12	452.58	30.82	483.09	25.29	
6	383	456.01	31.18	473.15	31.59	505.59	25.04	
7	396	510.01	30.40	504.94	31.41	529.24	25.49	
8	380	523.01	30.16	533.04	34.28	554.57	25.73	
9	457	554.38	32.05	551.09	36.27	571.61	27.52	
10	443	554.98	31.07	549.89	38.55	562.49	28.15	

Test-Retest Reliability

The extent to which a sample of students performs consistently on the same assessment across multiple occasions is an indication of test-retest reliability. Reliability was estimated for students participating in the field testing of the FRA by correlating their ability scores across three assessments. Retest correlations for vocabulary and word recognition (Table 8) were the strongest between winter and spring while the fall-winter correlations were strongest for reading comprehension. Correlations between the fall and spring were the lowest, which is expected as a weaker correlation from the beginning of the year to the end suggests that students were differentially changing over time (i.e., lower ability students may have grown more over time compared to higher ability students). Retest correlations for the diagnostic Syntactic Knowledge Task are reported in Table 10. Similar to the Vocabulary Knowledge and Word Recognition Tasks, the strongest correlations between time-points were the winter-spring associations.

Table 8

FRA Screening Test-Retest Correlations for Vocabulary Knowledge, Word Recognition, Syntax and Reading Comprehension

	Vocab	ulary Know	ledge	Wor	d Recogni	tion	Syntax			Reading Comprehension		
Grade	Fall- Winter	Winter- Spring	Fall- Spring	Fall- Winter	Winter- Spring	Fall- Spring	Fall- Winter	Winter- Spring	Fall- Spring	Fall- Winter	Winter- Spring	Fall- Spring
3	.59	.61	.44	.46	.51	.31	.49	.55	.48	.74	.66	.66
4	.58	.62	.51	.59	.62	.45	.62	.70	.56	.83	.77	.71
5	.75	.74	.65	.63	.73	.64	.68	.75	.68	.83	.77	.73
6	.60	.72	.51	.59	.65	.66	.63	.69	.65	.85	.80	.77
7	.66	.69	.54	.65	.69	.73	.68	.74	.69	.80	.79	.73
8	.63	.67	.63	.66	.72	.74	.66	.76	.70	.81	.79	.71
9	.65	.64	.65	.65	.68	.76	.70	.73	.80	.77	.72	.65
10	.62	.70	.64	.69	.70	.80	.67	.70	.72	.75	.74	.66

FRA | Reliability

Validity

Assessment of Model Fit

A first step in testing the validity of scores was to evaluate the dimensionality of item responses on each of the FRA tasks. An important assumption in IRT is unidimensionality, which states that a score from a test can only have meaning if the items measure one dimension. Connected to this assumption is the framework of local item independence, which requires that, for a given level of individual ability, individual responses to a set of items are statistically independent of each other (Hattie, Krakowski, Rogers, & Swaminathan, 1996). McDonald (1979) suggested that a weaker principle of independence should be used, whereby only the covariances must be zero, and that the relationship between moments did not need to be considered. Stout (1990) extended the logic of weak local independence to argue for "essential unidimensionality" rather than ascribing to more stringent standards. Conceptually, Stout argued that a test is unidimensional if, for a given level of ability, the average covariance over pairs of items on the test is small in magnitude, as opposed to zero. Essential unidimensionality may be formally assessed through a variety of methods including parametric and non-parametric exploratory and confirmatory factor analysis. For the FRA tasks, a parametric confirmatory factor analysis was run on scores for different forms of each task by grade level. Because a planned missing data design was used, the covariance coverage was necessarily low. A planned missing data design with a large number of items frequently precludes a factor analysis of the full item response matrix when using the weighted least squares multivariate estimator. This estimator is necessary to produce commonly used fit indices for confirmatory factor analysis. Subsequently, the factor analysis was carried out by form and grade within each task. The comparative fit index (CFI), Tucker-Lewis index (TLI), and root mean square error of approximation (RMSEA) were used to evaluate model fit for the Vocabulary Knowledge, Word Recognition, and Syntax Knowledge tasks. CFI and TLI values of at least .90 are considered acceptable as are RMSEA values less than .10. For the Reading Comprehension task, we tested the extent to which a unidimensional model fit better than a testlet model. The two models were compared using the AIC and BIC indices.

Fit statistics for Vocabulary Knowledge, Word Recognition, and Syntax Knowledge are reported in Tables 9, 10, and 11, respectively. Results demonstrate that item responses across forms and grades converge on an essentially unidimensional construct for the three tasks.

Table 9

Fit statistics by form and grade for the Vocabulary Knowledge Task

Grade	Form	χ²	df	<i>p</i> -value	RMSEA	RMSEA LB	RMSEA UB	RMSEA <i>p</i> -value	CFI	TLI
3	А	202.51	170	0.045	0.020	0.000	0.032	1.00	0.96	0.96
	В	175.65	152	0.092	0.019	0.000	0.031	1.00	0.97	0.96
4	Α	195.50	189	0.358	0.009	0.000	0.022	1.00	0.99	0.99
	В	214.65	189	0.097	0.017	0.000	0.027	1.00	0.97	0.97
5	Α	199.62	189	0.284	0.011	0.000	0.024	1.00	0.98	0.98
	В	169.92	170	0.487	0.000	0.000	0.022	1.00	1.00	1.00
6	Α	385.84	377	0.366	0.006	0.000	0.016	1.00	0.99	0.99
	В	441.40	377	0.012	0.017	0.008	0.023	1.00	0.96	0.96
7	Α	207.17	189	0.174	0.014	0.000	0.025	1.00	0.95	0.94
	В	219.36	189	0.064	0.018	0.000	0.028	1.00	0.98	0.98
8	Α	216.55	189	0.083	0.017	0.000	0.027	1.00	0.97	0.97
	В	228.64	189	0.026	0.021	0.008	0.029	1.00	0.94	0.93
9	Α	215.70	189	0.089	0.014	0.000	0.023	1.00	0.98	0.98
	В	225.72	189	0.035	0.017	0.005	0.002	1.00	0.96	0.96
10	Α	204.25	189	0.212	0.012	0.000	0.022	1.00	0.98	0.98
	В	232.27	170	0.001	0.028	0.018	0.037	1.00	0.89	0.88

Note. df = degrees of freedom; RMSEA = root mean square error of approximation; LB = lower bound; UB = upper bound; CFI = comparative fit index; TLI = Tucker-Lewis index.

Table 10

Fit statistics by grade and form for the Word Recognition Task

Form	χ²	df	<i>p</i> -value	RMSEA	RMSEA UB	RMSEA LB	RMSEA <i>p</i> -value	CFI	TLI
Α	233.54	152	0.000	0.042	0.031	0.052	0.91	0.93	0.92
В	130.20	104	0.042	0.027	0.006	0.041	1.00	0.96	0.95
Α	99.27	65	0.004	0.044	0.025	0.061	0.71	0.90	0.87
В	135.26	119	0.146	0.021	0.000	0.036	1.00	0.95	0.94
Α	173.02	152	0.117	0.020	0.000	0.030	1.00	0.96	0.95
В	81.14	65	0.085	0.027	0.000	0.044	0.99	0.94	0.93
Α	478.14	377	0.000	0.020	0.014	0.026	1.00	0.93	0.93
В	425.31	350	0.004	0.018	0.011	0.024	1.00	0.94	0.94
Α	189.75	152	0.020	0.029	0.012	0.041	1.00	0.90	0.89
В	86.31	90	0.590	0.000	0.000	0.028	1.00	1.00	1.00
Α	179.94	152	0.060	0.025	0.000	0.038	1.00	0.91	0.90
В	154.74	135	0.118	0.022	0.000	0.036	1.00	0.95	0.94
Α	198.25	152	0.007	0.024	0.013	0.032	1.00	0.96	0.95
В	140.16	152	0.745	0.000	0.000	0.016	1.00	1.00	1.00
Α	196.33	152	0.009	0.025	0.013	0.034	1.00	0.92	0.91
В	102.48	77	0.028	0.029	0.010	0.040	1.00	0.88	0.86
С	404.31	377	0.159	0.017	0.000	0.029	1.00	0.95	0.94
	A B A B A B A B A B A B A B A B A B A B	A 233.54 B 130.20 A 99.27 B 135.26 A 173.02 B 81.14 A 478.14 B 425.31 A 189.75 B 86.31 A 179.94 B 154.74 A 198.25 B 140.16 A 196.33 B 102.48	A 233.54 152 B 130.20 104 A 99.27 65 B 135.26 119 A 173.02 152 B 81.14 65 A 478.14 377 B 425.31 350 A 189.75 152 B 86.31 90 A 179.94 152 B 154.74 135 A 198.25 152 B 140.16 152 A 196.33 152 B 102.48 77	A 233.54 152 0.000 B 130.20 104 0.042 A 99.27 65 0.004 B 135.26 119 0.146 A 173.02 152 0.117 B 81.14 65 0.085 A 478.14 377 0.000 B 425.31 350 0.004 A 189.75 152 0.020 B 86.31 90 0.590 A 179.94 152 0.060 B 154.74 135 0.118 A 198.25 152 0.007 B 140.16 152 0.745 A 196.33 152 0.009 B 102.48 77 0.028	A 233.54 152 0.000 0.042 B 130.20 104 0.042 0.027 A 99.27 65 0.004 0.044 B 135.26 119 0.146 0.021 A 173.02 152 0.117 0.020 B 81.14 65 0.085 0.027 A 478.14 377 0.000 0.020 B 425.31 350 0.004 0.018 A 189.75 152 0.020 0.029 B 86.31 90 0.590 0.000 A 179.94 152 0.060 0.025 B 154.74 135 0.118 0.022 A 198.25 152 0.007 0.024 B 140.16 152 0.745 0.000 A 196.33 152 0.009 0.025 B 102.48 77 0.028 0.029	A 233.54 152 0.000 0.042 0.031 B 130.20 104 0.042 0.027 0.006 A 99.27 65 0.004 0.044 0.025 B 135.26 119 0.146 0.021 0.000 A 173.02 152 0.117 0.020 0.000 B 81.14 65 0.085 0.027 0.000 A 478.14 377 0.000 0.020 0.014 B 425.31 350 0.004 0.018 0.011 A 189.75 152 0.020 0.029 0.012 B 86.31 90 0.590 0.000 0.000 A 179.94 152 0.060 0.025 0.000 B 154.74 135 0.118 0.022 0.000 A 198.25 152 0.007 0.024 0.013 B 140.16 152 0.745 0.000 0.000 A 196.33 152 0.009 0.025 0.013 B 102.48 77 0.028 0.029 0.010	A 233.54 152 0.000 0.042 0.031 0.052 B 130.20 104 0.042 0.027 0.006 0.041 A 99.27 65 0.004 0.044 0.025 0.061 B 135.26 119 0.146 0.021 0.000 0.036 A 173.02 152 0.117 0.020 0.000 0.030 B 81.14 65 0.085 0.027 0.000 0.044 A 478.14 377 0.000 0.020 0.014 0.026 B 425.31 350 0.004 0.018 0.011 0.024 A 189.75 152 0.020 0.029 0.012 0.041 B 86.31 90 0.590 0.000 0.000 0.028 A 179.94 152 0.060 0.025 0.000 0.038 B 154.74 135 0.118 0.022 0.000 0.036 A 198.25 152 0.007 0.024	A 233.54 152 0.000 0.042 0.031 0.052 0.91 B 130.20 104 0.042 0.027 0.006 0.041 1.00 A 99.27 65 0.004 0.044 0.025 0.061 0.71 B 135.26 119 0.146 0.021 0.000 0.036 1.00 A 173.02 152 0.117 0.020 0.000 0.030 1.00 B 81.14 65 0.085 0.027 0.000 0.044 0.99 A 478.14 377 0.000 0.020 0.014 0.026 1.00 B 425.31 350 0.004 0.018 0.011 0.024 1.00 A 189.75 152 0.020 0.029 0.012 0.041 1.00 B 86.31 90 0.590 0.000 0.000 0.028 1.00 A 179.94 152 0.060 0.025 0.000 0.036 1.00 B 154.74	A 233.54 152 0.000 0.042 0.031 0.052 0.91 0.93 B 130.20 104 0.042 0.027 0.006 0.041 1.00 0.96 A 99.27 65 0.004 0.044 0.025 0.061 0.71 0.90 B 135.26 119 0.146 0.021 0.000 0.036 1.00 0.95 A 173.02 152 0.117 0.020 0.000 0.030 1.00 0.96 B 81.14 65 0.085 0.027 0.000 0.044 0.99 0.94 A 478.14 377 0.000 0.014 0.026 1.00 0.93 B 425.31 350 0.004 0.018 0.011 0.024 1.00 0.94 A 189.75 152 0.020 0.029 0.012 0.041 1.00 0.90 B 86.31 90 0.590

Note. df = degrees of freedom; RMSEA = root mean square error of approximation; LB = lower bound; UB = upper bound; CFI = comparative fit index; TLI = Tucker-Lewis index.

Table 11

Fit statistics by grade and form for the Syntax Knowledge Task

Grade	Form	χ²	df	<i>p</i> -value	RMSEA	RMSEA UB	RMSEA LB	RMSEA <i>p</i> -value	CFI	TLI
3	А	189.18	170	0.149	0.011	0.000	0.019	1.00	0.94	0.93
	В	198.78	152	0.007	0.018	0.010	0.024	1.00	0.96	0.96
4	Α	188.69	135	0.001	0.022	0.014	0.029	1.00	0.90	0.88
	В	167.71	152	0.182	0.011	0.000	0.020	1.00	0.97	0.97
5	Α	211.22	170	0.017	0.016	0.007	0.022	1.00	0.92	0.91
	В	177.81	152	0.075	0.013	0.000	0.021	1.00	0.97	0.96
6	Α	205.98	170	0.031	0.160	0.005	0.023	1.00	0.96	0.95
	В	293.34	230	0.003	0.018	0.011	0.024	1.00	0.95	0.94
	С	231.39	170	0.001	0.020	0.013	0.027	1.00	0.93	0.93
7	Α	160.33	170	0.691	0.000	0.000	0.015	1.00	1.00	1.00
	В	176.75	170	0.345	0.008	0.000	0.020	1.00	0.98	0.97
8	Α	304.36	170	0.000	0.036	0.029	0.042	1.00	0.82	0.80
	В	275.77	135	0.000	0.041	0.034	0.048	0.98	0.77	0.74
9	Α	184.00	170	0.219	0.009	0.000	0.017	1.00	0.99	0.99
	В	221.00	170	0.005	0.017	0.010	0.023	1.00	0.92	0.91
10	Α	199.47	170	0.061	0.014	0.000	0.022	1.00	0.93	0.93
	В	160.32	135	0.068	0.015	0.000	0.023	1.00	0.88	0.86
A1 - 4 1C	-l C C	L DA46E4					1 1 115	1 1 051		T T

Note. df = degrees of freedom; RMSEA = root mean square error of approximation; LB = lower bound; UB = upper bound; CFI = comparative fit index; TLI = Tucker-Lewis index.

Model fit comparisons between the unidimensional and testlet models for the Reading Comprehension Task are reported in Table 12.

Table 12

AIC and BIC values for the unidimensional and testlet models in Reading Comprehension by grade

Grade	Model	AIC	BIC	adjusted-BIC
3	Unidimensional	103845	106019	104851
	Testlet	103672	106928	105177
4	Unidimensional	113842	115987	114830
	Testlet	113553	116765	115033
5	Unidimensional	101720	130349	102539
	Testlet	101471	104130	102700
6	Unidimensional	151414	153927	152649
	Testlet	150809	154579	152663
7	Unidimensional	121206	123155	122158
	Testlet	-	-	-
8	Unidimensional	141907	144093	142981
	Testlet	141541	144820	143153
9	Unidimensional	143848	146261	145041
	Testlet	143673	147293	145463
10	Unidimensional	122108	124454	123259
	Testlet	121811	125330	123538

Note. Grade 7 Testlet model did not converge.

Results from this comparison based on AIC and BIC were mixed. The AIC suggests that the testlet model should be used while the BIC and adjusted BIC values were smaller for the unidimensional model. Although the indices provide mixed information, the penalty term is greater in the BIC compared to the AIC. Due to the penalty difference, the BIC is a more conservative estimate and given the results above it was deemed more appropriate for model selection. Subsequently, the unidimensional model was retained.

Criterion Validity

Criterion validity describes how well scores on one assessment relate to other theoretically relevant constructs, both concurrently and predictively. Concurrent validity was evaluated by correlating scores from the tasks amongst each other while predictive validity was evaluated by using the FRA tasks to predict later reading comprehension performance on the SAT-10.

Concurrent Validity

Reading and language skills tend to have moderate associations between them; thus, the expectation of the FRA Vocabulary Knowledge, Word Recognition, and Syntactic Knowledge Tasks would be that stronger associations with reading comprehension would be observed compared to more moderate associations with each other. Correlation results are reported in Table 13.

Table 13

Bivariate Associations among FRA Tasks

Grade	Measure	Reading Comprehension	Vocabulary	Word Recognition	Syntax
3	Reading Comprehension	1.00			
	Vocabulary Knowledge	.60	1.00		
	Word Recognition	.42	.37	1.00	
	Syntax Knowledge	.48	.38	.30	1.00
4	Reading Comprehension	1.00			
	Vocabulary Knowledge	.42	1.00		
	Word Recognition	.43	.30	1.00	
	Syntax Knowledge	.52	.35	.29	1.00
5	Reading Comprehension	1.00			
	Vocabulary Knowledge	.58	1.00		
	Word Recognition	.40	.37	1.00	
	Syntax Knowledge	.57	.44	.31	1.00
6	Reading Comprehension	1.00			
	Vocabulary Knowledge	.54	1.00		
	Word Recognition	.48	.36	1.00	
	Syntax Knowledge	.58	.45	.36	1.00
	Word Recognition	.48	.36		

7	Reading Comprehension	1.00			
	Vocabulary Knowledge	.46	1.00		
	Word Recognition	.45	.38	1.00	
	Syntax Knowledge	.60	.44	.42	1.00
8	Reading Comprehension	1.00			
	Vocabulary Knowledge	.49	1.00		
	Word Recognition	.49	.40	1.00	
	Syntax Knowledge	.59	.44	.46	1.00
9	Reading Comprehension	1.00			
	Vocabulary Knowledge	.53	1.00		
	Word Recognition	.55	.53	1.00	
	Syntax Knowledge	.63	.58	.54	1.00
10	Reading Comprehension	1.00			
	Vocabulary Knowledge	.50	1.00		
	Word Recognition	.49	.51	1.00	
	Syntax Knowledge	.59	.55	.57	1.00

Predictive Validity

The predictive validity of the Screening tasks to the SAT-10 Reading Comprehension test for grades 3-12 was addressed through a series of linear and logistic regressions. The linear regressions were run two ways. First, a correlation analysis was used to evaluate the strength of relations between each of the Screening tasks' ability scores with the SAT-10. Second, a multiple regression was run to estimate the total amount of variance that the linear combination of the predictors explained in SAT-10 reading comprehension performance. Results from the linear regression analyses are reported in Table 14.

Table 14

Bivariate Correlations between FRA Screening Tasks and SAT-10. Percent Variance Explained in SAT-10 by FRA Vocabulary, Word Recognition, and Reading Comprehension

Grade	Vocabulary Knowledge	Word Recognition	Reading Comprehension	Total R ²
3	.56	.43	.74	.62
4	.45	.39	.71	.56
5	.57	.41	.74	.59
6	.53	.46	.71	.53
7	.43	.43	.66	.45
8	.46	.47	.67	.48
9	.51	.55	.60	.47
10	.47	.51	.57	.39

For the logistic regressions, students' performance on the SAT-10 Reading Comprehension test was coded as '1' for performance at or above the 50th percentile, and '0' for scores below this target. This dichotomous variable was then regressed on a combination of vocabulary knowledge, word recognition, and reading comprehension scores at each grade level. Further, we evaluated the classification accuracy of scores from the FRA as it pertains to risk status on the SAT-10. By dichotomizing the combination of screening task scores as '1' for not at-risk for reading difficulties and '0' for at-risk for reading difficulties, students could be classified based on their dichotomized performances on both. As such, students could be identified as not at-risk on the combination of screening tasks and demonstrating grade level performance on the SAT-10 (i.e., specificity or true-negatives), at-risk on the combination of screening task scores and below grade level performance on the SAT-10 (i.e., sensitivity or true-positives), not at-risk based on the combination of screening task scores and not at grade level on the SAT-10 (i.e., false negative error), or at-risk on the combination of screening task scores and at grade level on the SAT-10 (i.e., false positive error). Classification of students in these categories allows for the evaluation of cut-points on the combination of screening tasks (i.e., PLS) to determine which PLS cut-point maximizes predictive power

The concept of risk can be viewed in many ways, including the concept as a "percent chance" which is a number between 0 and 100, with 0 meaning there is no chance that a student will develop a problem,

and 100 being there is no chance the student will not develop a problem. When attempting to identify children who are "at-risk" for poor performance on some type of future measure of reading achievement, this is typically a yes/no decision based upon a "cut-point" along a continuum of risk. Oftentimes this future measure of achievement is a state's high-stakes assessment, which typically provides a standard score that describes the performance of each student. Grade-level cut-points are chosen that determine whether a student has passed or failed the state-wide assessment.

Decisions concerning appropriate cut-points for screening measures are made based on the level of correct classification that is desired from the screening assessments. While a variety of statistics may be used to guide such choices (e.g., sensitivity, specificity, positive and negative predictive power; see Schatschneider, Petscher, & Williams, 2008), negative predictive power was utilized to develop the FRA cut-points. Negative predictive power is the percentage of students who are identified as "not at-risk" on the screening assessments that end up not passing based the outcome assessment. Predictive power is not considered to be a property of the screening assessments since it is known to fluctuate given the proportion of individuals who are at-risk on the selected outcome (Streiner, 2003).

As it pertains to the FRA, we evaluated various cut-points on the PLS which would result in a minimum value of .85 negative predictive power for grades 3-10. Results from this analysis (Table 15), showed that a .70 PLS could be used to obtain the .85 negative predictive power threshold.

Table 15

Classification Accuracy of the Probability of Literacy Success (PLS) in Grades 3-12 using .85 and .70 CutPoints

Cut-Point	Grade	SE	SP	PPP	NPP	OCC	Base Rate
.70	3	.85	.69	.66	.87	.76	.41
	4	.77	.74	.59	.88	.75	.32
	5	.83	.76	.65	.89	.78	.35
	6	.92	.56	.68	.87	.86	.50
	7	.91	.60	.61	.91	.73	.40
	8	.85	.67	.62	.88	.74	.39
	9	.76	.69	.45	.90	.71	.25
	10	.64	.74	.49	.84	.71	.28

Note. SE= Sensitivity, SP = Specificity, PPP = Positive Predictive Power, NPP = Negative Predictive Power, OCC = Overall Correct Classification. Students in Grades 11 and 12 are classified according to Grade 10 criteria.

Differential Accuracy of Prediction

An additional component of checking the validity of cut-points and scores on the assessments involved testing differential accuracy of the regression equations across different demographic groups. This procedure involved a series of logistic regressions predicting success on the SAT-10 test (i.e., at or above the 50^{th} percentile). The independent variables included a variable that represented whether students were identified as not at-risk (PLS \geq .70; coded as '1') or at-risk (PLS < .70; coded as '0') on the combination of screening task scores, a variable that represented a selected demographic group, as well as an interaction term between the two variables. A statistically significant interaction term would suggest that differential accuracy in predicting end-of-year performance existed for different groups of individuals based on the risk status determined by the screening assessment. For the combination of FRA screening task scores, differential accuracy was separately tested for Black and Latino students as well as for students identified as English Language Learners (ELL) and students who were eligible for Free/Reduced Price Lunch (FRL).

When testing for differential accuracy between Black and White students (Table 16), a significant effect for the interaction between the PLS cut-point and minority status existed in grade 4 (p = .005). This finding indicated that for the sample tested at the winter assessment period, White students with a PLS above the cut-point had a greater chance of being at or above the 50^{th} percentile on the SAT-10 compared to Black students above the cut-point on the PLS. We note that replication will be needed across multiple administrations with a larger sample to evaluate the extent to which this phenomenon continues to exist.

No significant differential accuracy between Hispanic and White students (Table 17), ELL and non-ELL students (Table 18), or students eligible for FRL and those who were not (Table 19).

Table 16

Differential Accuracy for FRA Screening Tasks by Grade: Black-White (BW)

Grade	Parameter	df	Estimate	SE	χ²	<i>p</i> -value
3	Intercept	1	0.15	0.28	0.30	0.580
	PLS	1	4.64	1.34	11.86	<.001
	BW	1	-0.60	0.34	3.06	0.080
	PLS *BW	1	-2.28	1.42	2.56	0.109
4	Intercept	1	-0.60	0.34	3.05	0.080
	PLS	1	2.99	0.48	38.28	<.001

	BW	1	0.45	0.41	1.19	0.274
	PLS *BW	1	-1.67	0.60	7.61	0.005
5	Intercept	1	-0.37	0.26	1.99	0.157
	PLS	1	3.83	0.63	36.26	<.001
	BW	1	-0.22	0.35	0.41	0.517
	PLS *BW	1	-1.43	0.74	3.70	0.054
6	Intercept	1	-0.09	0.20	0.19	0.657
	PLS	1	2.82	0.46	36.31	<.001
	BW	1	-0.88	0.32	7.21	0.007
	PLS *BW	1	-0.27	0.80	0.11	0.735
7	Intercept	1	-0.39	0.22	3.23	0.071
	PLS	1	3.27	0.50	42.28	<.001
	BW	1	-0.00	0.33	0.00	0.985
	PLS *BW	1	-0.39	0.78	0.25	0.612
8	Intercept	1	-0.20	0.25	0.67	0.410
	PLS	1	2.42	0.43	31.30	<.001
	BW	1	0.11	0.38	0.08	0.771
	PLS *BW	1	-1.04	0.70	2.24	0.134
9	Intercept	1	0.24	0.24	0.94	0.329
	PLS	1	2.66	0.46	32.48	<.001
	BW	1	-0.42	0.37	1.30	0.253
	PLS *BW	1	-0.26	0.64	0.17	0.679
10	Intercept	1	0.55	0.27	4.11	0.042
	PLS	1	1.82	0.37	24.04	<.001

FRA | Validity

BW	1	-0.79	0.37	4.52	0.033
PLS *BW	1	0.48	0.56	0.74	0.387

Table 17

Differential Accuracy for Screening Tasks by Grade: Hispanic-White (HW)

Grade	Parameter	df	Estimate	SE	χ²	<i>p</i> -value
3	Intercept	1	0.15	0.28	0.30	0.580
	PLS	1	4.64	1.34	11.86	<.001
	HW	1	-0.79	0.31	6.32	0.011
	PLS*HW	1	-1.70	1.39	1.49	0.222
4	Intercept	1	-0.60	0.34	3.05	0.080
	PLS	1	2.99	0.48	38.28	<.001
	HW	1	0.19	0.37	0.25	0.610
	PLS*HW	1	-0.46	0.55	0.69	0.405
5	Intercept	1	-0.37	0.26	1.99	0.157
	PLS	1	3.83	0.63	36.26	<.001
	HW	1	-0.33	0.31	1.11	0.291
	PLS*HW	1	-0.86	0.69	1.53	0.215
6	Intercept	1	-0.09	0.20	0.19	0.657
	PLS	1	2.82	0.46	36.31	<.001
	HW	1	-0.80	0.25	9.98	<.001
	PLS*HW	1	-0.08	0.58	0.02	0.886
7	Intercept	1	-0.39	0.22	3.23	0.071
	PLS	1	3.27	0.50	42.28	<.001

FRA | Validity

	HW	1	-0.15	0.27	0.30	0.577
	PLS*HW	1	-0.63	0.61	1.08	0.298
8	Intercept	1	-0.20	0.25	0.67	0.410
	PLS	1	2.42	0.43	31.30	<.001
	HW	1	-0.47	0.31	2.29	0.129
	PLS*HW	1	0.77	0.60	1.60	0.205
9	Intercept	1	0.24	0.24	0.94	0.329
	PLS	1	2.66	0.46	32.48	<.001
	HW	1	-0.02	0.31	0.00	0.934
	PLS*HW	1	-0.56	0.57	0.97	0.324
10	Intercept	1	0.55	0.27	4.11	0.042
	PLS	1	1.82	0.37	24.04	<.001
	HW	1	-0.66	0.33	4.01	0.045
	PLS*HW	1	0.53	0.48	1.21	0.270

Table 18

Differential Accuracy for FRA Screening Tasks by Grade: English Language Learners (ELL)

•	Grade	Parameter	df	Estimate	SE	χ²	<i>p</i> -value
-	3	Intercept	1	-0.23	0.11	4.09	0.043
		PLS	1	2.74	0.27	102.81	<.001
		ELL	1	-1.18	0.30	14.91	<.001
		PLS*ELL	1	13.93	743.00	0.00	0.985
-	4	Intercept	1	-0.10	0.14	0.58	0.445
		PLS	1	2.10	0.21	99.65	<.001

FRA | Validity

	ELL	1	-0.99	0.29	11.04	<.001
	PLS*ELL	1	0.22	0.88	0.06	0.802
5	Intercept	1	-0.49	0.14	12.17	0.000
	PLS	1	2.97	0.23	159.44	<.001
	ELL	1	-0.42	0.26	2.63	0.104
	PLS*ELL	1	-1.00	0.66	2.25	0.133
6	Intercept	1	-0.32	0.12	7.17	0.007
	PLS	1	2.61	0.26	95.81	<.001
	ELL	1	-1.71	0.32	28.18	<.001
	PLS*ELL	1	-0.58	0.83	0.50	0.478
7	Intercept	1	-0.13	0.12	1.10	0.293
	PLS	1	2.80	0.28	94.38	<.001
	ELL	1	-1.51	0.31	23.75	<.001
	PLS*ELL	1	-0.55	0.70	0.60	0.437
8	Intercept	1	0.04	0.15	0.08	0.772
	PLS	1	2.23	0.27	65.49	<.001
	ELL	1	-1.66	0.33	25.51	<.001
	PLS*ELL	1	0.57	1.03	0.30	0.582
9	Intercept	1	0.19	0.14	1.85	0.173
	PLS	1	2.31	0.23	95.15	<.001
	ELL	1	-0.44	0.35	1.61	0.204
	PLS*ELL	1	-1.66	0.92	3.25	0.071
10	Intercept	1	0.17	0.14	1.40	0.236
	PLS	1	2.21	0.21	105.95	<.001

FRA | Validity

ELL	1	-0.88	0.33	6.75	0.009
PLS*ELL	1	-1.25	0.70	3.19	0.073

Table 19

Differential Accuracy for Screening Tasks by Grade: Free or Reduced Price Lunch (FRL)

Grade	Parameter	df	Estimate	SE	χ²	<i>p</i> -value
3	Intercept	1	0.83	0.32	6.47	0.011
	PLS	1	3.04	0.85	12.65	<.001
	FRL	1	-1.46	0.34	17.84	<.001
	PLS*FRL	1	-0.18	0.90	0.04	0.836
4	Intercept	1	1.04	0.42	6.00	0.014
	PLS	1	1.54	0.54	7.93	0.004
	FRL	1	-1.55	0.44	12.26	<.001
	PLS*FRL	1	0.73	0.58	1.54	0.214
5	Intercept	1	-0.12	0.35	0.12	0.721
	PLS	1	2.55	0.47	28.86	<.001
	FRL	1	-0.55	0.37	2.15	0.141
	PLS*FRL	1	0.49	0.53	0.85	0.354
6	Intercept	1	-0.31	0.24	1.65	0.197
	PLS	1	2.61	0.42	38.51	<.001
	FRL	1	-0.45	0.27	2.84	0.091
	PLS*FRL	1	0.14	0.52	0.07	0.780
7	Intercept	1	0.12	0.23	0.29	0.588
	PLS	1	3.12	0.53	34.83	<.001

FRA | Validity

	FRL	1	-0.74	0.27	7.69	0.005
	PLS*FRL	1	-0.50	0.60	0.70	0.401
8	Intercept	1	0.14	0.28	0.26	0.606
	PLS	1	2.25	0.48	21.33	<.001
	FRL	1	-0.70	0.32	4.72	0.029
	PLS*FRL	1	0.44	0.57	0.60	0.436
9	Intercept	1	0.27	0.22	1.44	0.230
	PLS	1	2.54	0.37	46.89	<.001
	FRL	1	-0.22	0.27	0.67	0.410
	PLS*FRL	1	-0.44	0.46	0.91	0.338
10	Intercept	1	0.02	0.20	0.01	0.890
	PLS	1	2.63	0.31	70.35	<.001
	FRL	1	-0.04	0.26	0.02	0.863
	PLS*FRL	1	-0.68	0.40	2.86	0.090

Construct Validity

Construct validity describes how well scores from an assessment measure the construct it is intended to measure. Components of construct validity include convergent validity, which can be evaluated by testing relations between a developed assessment and another related assessment, and discriminant validity, which can be evaluated by correlating scores from a developed assessment with an unrelated assessment. The goal of the former is to yield a high association which indicates that the developed measure converges, or is empirically linked to, the intended construct. The goal of the latter is to yield a lower association, which indicates that the developed measure is unrelated to a particular construct of interest.

Convergent validity. Data was collected in two large school districts in central Florida with four elementary schools, three middle schools, and two high schools. A total of 1,825 students in grades 3 through 10 were administered the four tasks in the FRA and gold standard clinical norm-referenced assessments of word reading (Test of Word Reading Efficiency – 2, Wagner, Torgesen, & Rashotte, 2012), vocabulary (Peabody Picture Vocabulary Test – 4, Dunn & Dunn, 2007), and syntax (the Grammaticality Judgment Test of the Comprehensive Assessment of Spoken Language, Carrow-Woolfolk, 2008).

Students' abilities to derive word meanings receptively was measured by the VKT and the Peabody Picture Vocabulary Test-4 (PPVT-4; Dunn & Dunn, 2007). The PPVT-4 is used frequently as a normative measure and as a diagnostic. The PPVT-4 requires students to point to a picture, from a group of four pictures, which best represents a word spoken by the examiner. The PPVT-4 manual reports high reliability, with internal consistency reliability ranging from .92 to .98. The PPVT-4 also demonstrates high convergent validity to other measures, with correlations ranging from .80 to .83 with the Expressive Vocabulary Test (Williams, 2007) and correlations with the Clinical Evaluation of Language Fundamentals (Semel, Wiig, & Secord, 2003) ranging from .67 to .79.

Students' abilities to use the structure of sentences to comprehend the sentences' meaning was measured by the SKT and the Grammaticality Judgment subtest (GJT) of the Comprehensive Assessment of Spoken Language (CASL; Carrow-Woolfolk, 2008). The CASL is most frequently used by speech language pathologists to determine instructional/therapy goals for students with diagnostic weaknesses in language skills such as syntax. In the GJT, students were orally presented sentences with and without grammatical errors and asked indicate whether or not there were errors. The items have an additional component asking students to fix any perceived errors in the sentence without changing its meaning. The GJT subtest has high internal consistency reliability ranging from .85 to .94 and high criterion-related validity with other oral language assessments within the CASL. The manual reports that, after correcting for variability between norm groups, the GJT correlates to the Listening Comprehension and Oral Expression Scales (Carrow-Woolfolk, 1995) Oral Composite score at .75.

Word recognition was measured by the WRT and compared to performance of a measure of decoding fluency, the Sight Word Efficiency and Phonemic Decoding Efficiency subtests of the Test of Word Reading Efficiency-2 (TOWRE-2; Wagner, Torgesen, & Rashotte, 2012). The TOWRE-2 was designed to monitor the progress of students receiving additional instruction for weaknesses in word reading abilities and has demonstrated discrimination between low-performing students with language and reading disabilities (Wagner, Togesen, & Rashotte, 2012). When administering this assessment, the examiner asks students to read nonwords and sight words aloud as quickly as possible within 45 seconds. The alternate-forms reliability coefficient ranges from .82-.94 and average test—retest coefficients amongst forms exceeds .90. Correlations with other measures of word reading is high, such as the Letter-Word Identification subtest of the Woodcock-Johnson III (r = .76; Woodcock, McGrew, & Mather, 2001), reading fluency (r = .91) on the Gray Oral Reading Test-4th ed. (GORT-4; Wiederholt & Bryant, 2001), Test of Silent Contextual Reading Fluency (TOSCRF; Hammill, Wiederholt, & Allen, 2006; r

= .75), and the Woodcock Reading Mastery Test–Revised (WRMT-R; Woodcock, 1987) Passage Comprehension (r = .88).

Relations between the FRA Reading Comprehension Task and the SAT-10 Reading Comprehension are found in Table 14. Correlations in Table 20 demonstrate moderate associations exist between the FRA Vocabulary Knowledge Task and the PPVT-IV. The average correlation across grade levels is .52 with a range of .47 to .67. Correlations between the FRA Word Recognition Task and the TOWRE Real Word component of the TOWRE demonstrated moderate associations as well. The average correlation across grade levels is .33 with a range of .24 to .49. Correlations between the FRA Word Recognition Task and the TOWRE Non-Word component of the TOWRE were moderate. The average correlation across grade levels was .38 with a range of .30 to .47. Correlations between the FRA Syntax Knowledge Task and the GJT were moderate. The average correlation across grade levels was .49, with a range of .37 to .61.

Table 20

Correlations between FRA scores and the PPVT-IV, GJT, and TOWRE

Grade	N	FRA Task	PPVT-IV	GJT	TOWRE	TOWRE
					Real Word	Non-Word
3	251	Vocabulary Knowledge	0.47	0.40	0.37	0.29
		Syntax Knowledge	0.54	0.49	0.34	0.28
		Word Recognition	0.27	0.31	0.42	0.43
4	161	Vocabulary Knowledge	0.56	0.57	0.50	0.44
		Syntax Knowledge	0.60	0.61	0.35	0.33
		Word Recognition	0.36	0.40	0.45	0.45
5	167	Vocabulary Knowledge	0.61	0.51	0.35	0.39
		Syntax Knowledge	0.56	0.47	0.33	0.32
		Word Recognition	0.22	0.10	0.24	0.30
6	113	Vocabulary Knowledge	0.62	0.53	0.41	0.44
		Syntax Knowledge	0.52	0.44	0.20	0.20
		Word Recognition	0.36	0.26	0.49	0.47
7	72	Vocabulary Knowledge	0.58	0.50	0.43	0.33
		Syntax Knowledge	0.50	0.49	0.30	0.28
		Word Recognition	0.34	0.31	0.46	0.51
8	71	Vocabulary Knowledge	0.50	0.53	0.36	0.45
		Syntax Knowledge	0.74	0.51	0.33	0.47
		Word Recognition	0.41	0.45	0.28	0.46
9	227	Vocabulary Knowledge	0.65	0.55	0.27	0.29
		Syntax Knowledge	0.35	0.37	0.25	0.27
		Word Recognition	0.39	0.25	0.35	0.43
10	169	Vocabulary Knowledge	0.67	0.61	0.36	0.44
		Syntax Knowledge	0.52	0.56	0.34	0.38
		Word Recognition	0.40	0.40	0.28	0.36

Note. PPVT-IV = Peabody Picture Vocabulary Task – 4th Edition; GJT = Grammaticality Judgment Task, TOWRE = Test of Word Reading Efficiency.

A secondary analysis of convergent validity evaluated the extent to which the correlations between the FRA and the PPVT-IV, GJT, and TOWRE tasks varied dependent on one's level of ability. Because traditional correlations are representative of average associations, it is possible that the average does not best characterize relations for students with low, average, and high ability levels. For example, it is plausible that at low levels of the GJT, a stronger correlation exists between the GJT and the FRA Syntax Knowledge compared to a weaker correlation at higher levels of the GJT. Because the GJT is a clinical measure of syntax knowledge, it is designed for students who are supposed to be deficient in this skill. The GJT is not typically administered to students with average or high syntax skills; therefore, reporting the average correlation between scores on the GJT and the FRA Syntactic Knowledge could mask a stronger association for students with poor syntax skills. Typical regression models are ill-equipped to test for differential correlations across the range of scores for an outcome variable. Rather, quantile regression (Koenker & Bassett, 1978; Petscher & Logan, 2014; Petscher, Logan, & Zhou, 2013) is suitable to estimating the correlation between measures conditional on performance of the outcome. In this manner we tested the extent to which: 1) the correlation between the FRA Vocabulary Knowledge and PPVT-IV varied for students with low, average, and high PPVT-IV scores; 2) the correlation between the FRA Word Recognition and TOWRE-Real Word varied for students with low, average, and high TOWRE Real Word scores; 3) the correlation between the FRA Word Recognition and TOWRE Non-Word varied for students with low, average, and high TOWRE Non-Word scores; and 4) the correlation between the FRA Syntactic Knowledge and GJT varied for students with low, average, and high GJT scores.

Figures from the quantile correlation analyses are reported in Appendices D-G. The quantile correlations between FRA Vocabulary Knowledge and the PPVT-IV (Appendix D) show that in general the correlations between the two assessments are more strongly related for students who performed lower in PPVT-IV. The implication is that lower performance on the PPVT-IV is correlated with low performance on the Vocabulary Knowledge task. At higher levels of the PPVT-IV the correlation is still moderate but less than that observed at the lower level of PPVT-IV. To better capture the nature of the relations between the variables, Table 21 provides a summary of the average correlation between the two tasks by grade for students who are low on the PPVT-IV (i.e., <40th quantile/percentile), average (40th -60th quantile/percentile) and high (> 60th quantile/percentile). The quantile correlations demonstrate a trend that higher correlations between the measures are observed for students who score low or average on the PPVT-IV. A similar trend is generally observed for the FRA Word Recognition Task in its relation to the two TOWRE outcomes (Appendix E and F; Table 21) as well as for the Syntactic Knowledge Task (Appendix G; Table 21).

Average correlations within ranges of quantiles/percentiles by grade and task

			Quantil	Quantile/Percentile Range			
FRA Task	Outcome	Grade	<40	40-60	>60		
Vocabulary Knowledge	PPVT-IV	3	0.60	0.48	0.40		
		4	0.60	0.50	0.42		
		5	0.66	0.67	0.52		
		6	0.67	0.58	0.54		
		7	0.66	0.63	0.55		
		8	0.52	0.34	0.25		
		9	0.72	0.56	0.51		
		10	0.72	0.70	0.54		
Word Recognition	TOWRE Real Word	3	0.47	0.47	0.34		
		4	0.44	0.41	0.40		
		5	0.19	0.19	0.16		
		6	0.54	0.48	0.49		
		7	0.53	0.45	0.40		
		8	0.11	0.28	0.38		
		9	0.31	0.29	0.43		
		10	0.19	0.31	0.37		
Word Recognition	TOWRE Non-Word	3	0.45	0.48	0.35		
		4	0.50	0.47	0.35		
		5	0.39	0.31	0.27		
		6	0.57	0.38	0.36		
		7	0.67	0.38	0.33		
		8	0.55	0.37	0.38		
		9	0.48	0.41	0.29		
		10	0.52	0.33	0.18		
Syntactic Knowledge	GJT	3	0.44	0.52	0.52		
		4	0.66	0.58	0.58		
		5	0.50	0.52	0.40		
		6	0.50	0.48	0.37		
		7	0.71	0.41	0.50		
		8	0.70	0.48	0.30		
		9	0.39	0.38	0.47		
		10	0.61	0.55	0.52		

Note. PPVT-IV = Peabody Picture Vocabulary Task -4^{th} Edition; GJT = Grammaticality Judgment Task, TOWRE = Test of Word Reading Efficiency.

Discriminant validity. Discriminant validity was evaluated by estimating correlations between the FRA tasks and variables that should not be related to measures of reading: sex and birthdate (Table 22). Results indicated that weak associations were generally observed across grade levels.

Table 22

Correlations between FRA tasks and birthdate/sex

Grade	Task	Birthdate	Sex
3	Vocabulary Knowledge	0.10	0.11
	Word Recognition	0.09	0.08
	Reading Comprehension	0.11	0.22
	Syntax Knowledge	0.04	0.08
4	Vocabulary Knowledge	0.16	-0.02
	Word Recognition	0.21	0.03
	Reading Comprehension	0.14	0.14
	Syntax Knowledge	0.09	0.04
5	Vocabulary Knowledge	0.13	-0.12
	Word Recognition	0.02	-0.01
	Reading Comprehension	0.23	0.13
	Syntax Knowledge	0.17	-0.12
6	Vocabulary Knowledge	0.26	-0.20
	Word Recognition	0.14	-0.01
	Reading Comprehension	0.28	-0.20
	Syntax Knowledge	0.23	-0.20
7	Vocabulary Knowledge	0.01	-0.12
	Word Recognition	0.20	0.00
	Reading Comprehension	0.12	-0.06
	Syntax Knowledge	0.22	0.05
8	Vocabulary Knowledge	0.01	-0.26
	Word Recognition	0.12	-0.13
	Reading Comprehension	0.09	0.04
	Syntax Knowledge	0.12	-0.16
9	Vocabulary Knowledge	0.15	-0.10
	Word Recognition	0.12	-0.10
	Reading Comprehension	0.12	0.01
	Syntax Knowledge	0.18	0.12
10	Vocabulary Knowledge	0.20	0.04
	Word Recognition	0.14	0.02
	Reading Comprehension	0.18	0.10
	Syntax Knowledge	0.20	0.17

References

- Cain, K., & Nash, H. M. (2011). The influence of connectives on young readers' processing and comprehension of text. *Journal of Educational Psychology*, 103(2), 429-441.
- Carlisle, J. F., Stone, C. A. (2005). Exploring the role of morphemes in word reading. *Reading Research Quarterly*, 40, 428-449.
- Carrow-Woolfolk, E. (1999). Comprehensive Assessment of Spoken Language. Circle Pines, MN: AGS.
- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (Second ed.). Hillsdale: Lawrence Erlbaum Associates.
- Crosson, A. C., Lesaux, N. K. (2013). Connectives: Fitting another piece of the vocabulary instruction puzzle. *The Reading Teacher*, *67*(3), 193-200.
- Dunn, L.M., & Dunn, D.M. (2007). *Peabody Picture Vocabulary Test-IV*. Circle Pines, MN: American Guidance Service.
- Ehri, L. C., Nunes, S., Stahl, S., & Willows, D. (2001). Systematic phonics instruction helps students learn to read: Evidence from the National Reading Panel's meta-analysis. *Review of Educational Research*, 71, 393-447.
- Ehri, L. C., Nunes, S., Willows, D., Schuster, B., Yaghoub-Zadeh, Z., & Shanahan, T. (2001). Phonemic awareness instruction helps children learn to read: Evidence from the national Reading Panel's meta-analysis. *Reading Research Quarterly*, *36*, 250-287.
- Foorman, B. R. (2009). Text difficulty in reading assessment. In E.H. Hiebert (Ed.), *Reading more, reading better* (pp. 231-247.) New York, NY: Guilford.
- Foorman, B. R., & Connor, C. (2011). Primary reading. In M. Kamil, P. D. Pearson, & E. Moje (Eds.), *Handbook on reading research* (Vol. 4, pp. 136–156). New York, NY: Taylor and Francis.
- Foorman, B., Herrera, S., Petscher, Y., Mitchell, A., & Truckenmiller, A., (2015). The structure of oral language and reading and their relation to comprehension in grades K-2. *Reading and Writing*, 28(5), 655-681.
- Foorman, B., Koon, S., Petscher, Y., Mitchell, A., & Truckenmiller, A. (2015). Examining General and Specific Factors in the Dimensionality of Oral Language and Reading in 4th-10th Grades. *Journal of Educational Psychology*. Advance online publication. doi: 10.1037/edu0000026.
- Foorman, B. R., Petscher, Y., & Bishop, M. D. (2012). The incremental variance of morphological knowledge to reading comprehension in grades 3-10 beyond prior reading comprehension, spelling, and text reading efficiency. *Learning and Individual Differences*, 22, 792-798.

- Hammill, D. D., Wiederholt, J. L., & Allen, E. A. (2006). *TOSCRF: Test of silent contextual reading fluency: Examiner's manual.* Austin, TX: Pro-Ed.
- Harvill, L.M. (2005). Standard error of measurement. *Educational Measurement: Issues and Practice, 10,* 33-41.
- Hattie, J., Krakowski, K., Rogers, H.J., & Swaminathan, H. (1996). An assessment of Stout's index of essential unidimensionality. *Applied Psychological Measurement*, 20, 1-14
- Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
- Meade, A. W. (2010). A taxonomy of effect sizes for the differential functioning of items and scales. *Journal of Applied Psychology*, *95*, 728-743.
- McDonald, R.P. (1979). The structural analysis of multivariate data: A sketch of general theory. *Multivariate Behavioral Research*, 14, 21-38.
- Muthén, B., & Muthén, L. (2008). Mplus User's Guide. Los Angeles, CA: Muthén and Muthén.
- National Early Literacy Panel. (2008). *Developing early literacy: Report of the National Early Literacy Panel.* Washington, DC: National Institute for Literacy. Retrieved from: http://lincs.ed.gov/publications/pdf/NELPReport09.pdf
- National Institute of Child Health and Human Development. (2000). Report of the National Reading Panel. Teaching children to read: Reports of the subgroups (NIH Publication No. 00-4754). Washington, DC: U.S. Department of Health and Human Services.
- National Research Council (1998). *Preventing reading difficulties in young children*. Committee on the Prevention of Reading Difficulties in Young Children, Committee on Behavioral and Social Science and Education, C.E. Snow, M.S. Burns, & P. Griffin, eds. Washington, D.C.: National Academy Press.
- Nelson, J., Perfetti, C., Liben, D., Liben, M. (2012). Measures of text difficulty: Testing their predictive value for grade levels and student performance. Retrieved from: http://www.ccsso.org/Documents/2012/Measures%20ofText%20Difficulty_final.2012.pdf
- Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd Ed.). New York: McGraw-Hill.
- Perfetti, C., & Stafura, J. (2014). Word knowledge in a theory of reading comprehension. *Scientific Studies of Reading*, *18*, 22-37. DOI: 10.1080/10888438.2013.827687
- Petscher, Y., Kim, Y.S., & Foorman, B.R. (2011). The importance of predictive power in early screening assessments: Implications for placement in the RTI framework. *Assessment for Effective Intervention, 36,* 158-166.
- Petscher, Y., Logan, J.A.R., & Zhou, C. (2013). Extending conditional means modeling: An introduction to quantile regression (pp. 3-33). In Y. Petscher, C. Schatschneider, & D.L. Compton (Eds.) *Applied quantitative analysis in education and social sciences*. New York: Routledge.

- Petscher, Y., & Logan, J.A.R. (2014). Quantile regression in the study of Developmental Sciences. *Child Development*, 85, 861-881. Doi: 10.1111/cdev.12190.
- RAND Reading Study Group (2002). Reading for understanding. Santa Monica, CA: RAND Corporation.
- Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M. S. (2001). How psychological science informs the teaching of reading. *Psychological Science in the Public Interest*, 2(2), 31-74.
- Schatschneider, C., Petscher, Y., & Williams, K. M. (2008). How to evaluate a screening process: The vocabulary of screening and what educators need to know (pg. 304-317). In L. Justice & C. Vukelic (Eds.). Every moment counts: Achieving excellence in preschool language and literacy instruction. New York: Guilford Press.
- Semel, E., Wiig, E. & Secord, W. (2003). *Clinical evaluation of language fundamentals -4 (CELF-4)*. San Antonio, TX: PyschCorp.
- Sireci, S. G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests. *Journal of Educational Measurement*, 28, 237-247.
- Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. *Applied Psychological Measurement*, 7, 201-210.
- Stout, W.F. (1990). A new item response theory modeling approach and applications to unidimensionality assessment and ability estimation. *Psychometrika*, *55*, 293-325.
- Streiner, D. L. (2003). Diagnosing tests: Using and misusing diagnostic and screening tests. *Journal of Personality Assessment*, *81*, 209-219.
- Torgesen, J.K., Wagner, R.K., & Rashotte, C.A. (2012). *Test of Word Reading Efficiency, 2nd Edition*. Austin, TX: Pro-ED, Inc. Wiederholt J. L & Bryant B. R. (2001) *Gray Oral Reading Test-IV*. Austin; TX: Pro-ED, Inc.
- Williams, K. T. (2007). Expressive Vocabulary Test, Second Edition. (2nd ed.) Minneapolis, MN: Pearson Assessments.
- Woodcock, R. W. (1987). *Woodcock reading mastery tests–Revised*. Circle Pines, MN: American Guidance Service.
- Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). *Woodcock-Johnson III Test*. Riverside PublishingCompany. Itasca, IL
- Zeno, S. M., Ivens, S. H., Millard, R. T., & Duvvuri, R. (1995). *The educator's word frequency guide.* New York: Touchstone Applied Science Associates. Inc., Brewster.
- Ziegler, J. C., Stone, G. O., & Jacobs, A. M. (1997). What's the pronunciation for _OUGH and the spelling for /u/? A database for computing feedforward and feedback inconsistency in English. *Behavior Research Methods, Instruments, & Computers, 29*, 600-618.
- FRA | References

Appendix A: G3-G12 Weights

Table A1

Population values for each grade for each of the sixteen demographic groups

			Grade							
Race	FRL	ELL	3	4	5	6	7	8	9	10
White	Yes	Yes	0.00	0.20	0.64	0.25	0.33	0.36	0.17	0.43
White	Yes	No	18.11	17.52	17.26	17.69	16.80	16.37	15.24	13.48
White	No	Yes	0.09	0.30	0.09	0.13	0.00	0.07	0.25	0.14
White	No	No	22.02	23.22	23.61	23.69	25.00	25.95	27.56	29.39
Black	Yes	Yes	0.18	0.30	0.27	0.19	0.47	0.43	0.25	0.57
Black	Yes	No	19.75	18.72	18.80	18.88	18.20	17.53	16.49	15.55
Black	No	Yes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Black	No	No	3.00	3.20	3.36	3.75	4.20	4.50	5.83	6.56
Hispanic	Yes	Yes	6.82	5.51	7.27	7.75	7.07	6.79	2.83	3.85
Hispanic	Yes	No	16.65	17.42	15.26	14.38	14.53	14.37	16.49	14.41
Hispanic	No	Yes	0.18	0.20	0.18	1.00	0.40	0.79	0.67	0.86
Hispanic	No	No	6.73	6.81	6.81	6.06	6.93	7.01	8.33	8.92
Other	Yes	Yes	0.00	0.30	0.09	0.25	0.53	0.21	0.25	0.36
Other	Yes	No	3.46	3.21	3.36	3.00	2.60	2.57	2.41	2.07
Other	No	Yes	0.09	0.10	0.00	0.06	0.07	0.07	0.08	0.00
Other	No	No	2.91	3.00	3.00	2.94	2.87	2.93	3.16	3.42

Note. Not all race/ethnicity subgroups are represented due to limited information provided when evaluating interactions among (i.e., White, Black, Hispanic, Other), free/reduced lunch status (eligible or ineligible), and English language learner (identified or not identified). Students in grades 11 and 12 use the grade 10 distribution of ability scores. FRL = Free/reduced price lunch. ELL = English language learners.

Table A2
Sample weight values for Reading Comprehension Task

			Grade							
Race	FRL	ELL	3	4	5	6	7	8	9	10
White	Yes	Yes	0.00	0.77	1.16	1.09	1.22	2.00	1.13	1.65
White	Yes	No	0.91	1.04	1.04	1.32	1.26	1.34	1.10	1.08
White	No	Yes	0.41	1.58	1.29	0.57	0.00	0.44	1.92	1.08
White	No	No	0.58	0.53	0.52	0.67	0.71	0.72	0.97	0.96
Black	Yes	Yes	1.64	2.73	2.45	0.61	0.87	0.61	0.45	1.04
Black	Yes	No	2.08	2.11	2.06	1.31	1.18	1.16	0.85	0.92
Black	No	Yes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Black	No	No	0.86	0.92	1.09	1.04	1.40	1.16	1.34	1.17
Hispanic	Yes	Yes	1.93	1.92	1.96	1.41	1.39	1.42	1.04	1.23
Hispanic	Yes	No	1.83	1.93	2.03	0.91	0.96	0.98	0.94	0.92
Hispanic	No	Yes	0.33	0.54	0.62	1.23	0.59	1.08	1.56	1.37
Hispanic	No	No	1.05	1.28	1.39	1.24	1.31	1.17	1.52	1.41
Other	Yes	Yes	0.00	1.00	0.23	0.96	1.39	0.72	1.39	1.24
Other	Yes	No	1.11	1.10	0.99	1.15	1.03	1.11	0.78	0.69
Other	No	Yes	0.24	0.29	0.00	0.46	0.64	0.44	0.80	0.00
Other	No	No	0.53	0.60	0.71	1.31	1.01	1.16	0.91	0.81

Note. Not all race/ethnicity subgroups are represented due to limited information provided when evaluating interactions among (i.e., White, Black, Hispanic, Other), free/reduced lunch status (eligible or ineligible), and English language learner (identified or not identified). Students in grades 11 and 12 use the grade 10 distribution of ability scores. FRL = Free/reduced price lunch. ELL = English language learners.

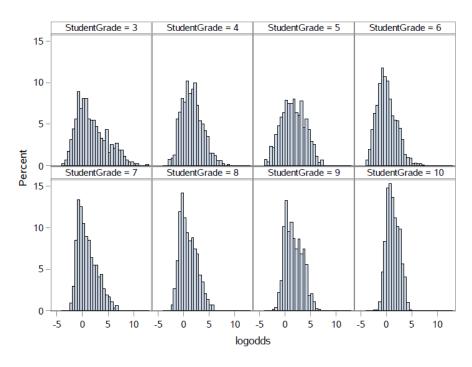
Table A3
Sample weight values for Vocabulary Knowledge Task

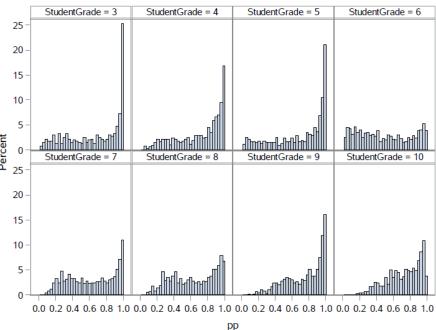
			Grade							
Race	FRL	ELL	3	4	5	6	7	8	9	10
White	Yes	Yes	0.00	2.00	0.64	0.25	0.33	0.36	0.17	0.43
White	Yes	No	0.69	0.67	0.66	0.89	0.87	0.72	0.69	0.77
White	No	Yes	9.00	0.30	0.09	0.13	0.00	0.07	0.25	0.14
White	No	No	0.84	0.81	0.82	1.06	1.01	0.90	1.01	0.89
Black	Yes	Yes	0.90	1.67	1.50	0.19	2.76	2.53	0.68	0.57
Black	Yes	No	1.77	2.01	1.52	1.14	1.00	1.18	1.07	1.06
Black	No	Yes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Black	No	No	1.00	0.96	0.97	0.65	0.72	0.93	1.44	1.08
Hispanic	Yes	Yes	2.85	10.40	5.39	7.83	6.04	5.18	2.16	3.16
Hispanic	Yes	No	0.93	0.88	0.89	0.56	0.71	0.71	0.87	1.02
Hispanic	No	Yes	18.00	1.11	0.95	5.88	2.35	4.65	5.58	0.86
Hispanic	No	No	1.35	1.55	1.36	1.41	1.66	1.74	1.88	1.31
Other	Yes	Yes	0.00	3.00	0.47	0.25	0.53	0.21	2.08	0.36
Other	Yes	No	0.96	1.14	1.34	1.52	1.04	1.53	0.89	0.92
Other	No	Yes	9.00	0.56	0.00	0.06	0.07	0.07	0.08	0.00
Other	No	No	0.86	0.71	1.20	1.37	0.95	2.90	0.95	0.85

Note. Not all race/ethnicity subgroups are represented due to limited information provided when evaluating interactions among (i.e., White, Black, Hispanic, Other), free/reduced lunch status (eligible or ineligible), and English language learner (identified or not identified). Students in grades 11 and 12 use the grade 10 distribution of ability scores. FRL = Free/reduced price lunch. ELL = English language learners.

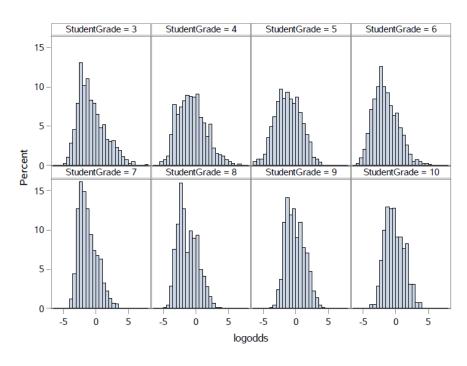
Table A4
Sample weight values for Word Recognition Task

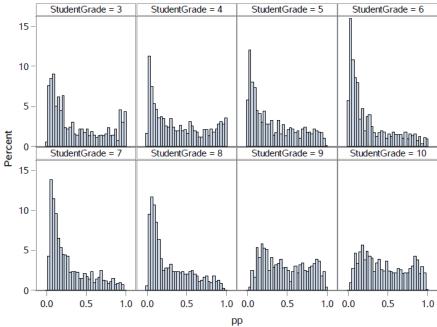
			Grade							
Race	FRL	ELL	3	4	5	6	7	8	9	10
White	Yes	Yes	0.00	1.18	0.64	0.25	0.33	0.36	1.89	0.43
White	Yes	No	1.71	1.63	1.60	2.45	2.23	2.45	2.82	3.56
White	No	Yes	0.09	0.30	0.09	0.13	0.00	0.44	1.32	0.14
White	No	No	0.52	0.51	0.54	0.55	0.49	0.50	0.59	0.48
Black	Yes	Yes	0.18	0.30	0.27	0.19	2.94	0.43	2.78	6.33
Black	Yes	No	0.83	0.84	0.87	0.67	0.84	1.01	0.72	1.00
Black	No	Yes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Black	No	No	0.32	0.38	0.29	0.36	0.41	0.39	0.48	0.60
Hispanic	Yes	Yes	45.47	16.21	51.93	75.00	70.00	6.79	2.83	10.69
Hispanic	Yes	No	9.05	14.64	6.63	9.59	12.01	11.98	16.49	11.44
Hispanic	No	Yes	1.20	1.18	0.18	1.00	0.40	4.94	3.53	3.19
Hispanic	No	No	2.58	2.66	2.37	2.82	2.83	3.92	2.74	3.96
Other	Yes	Yes	0.00	0.88	0.64	1.67	1.61	0.64	0.89	0.36
Other	Yes	No	1.07	1.45	2.92	1.09	1.14	1.31	1.70	2.30
Other	No	Yes	0.20	0.59	0.00	0.06	0.44	0.21	0.89	0.00
Other	No	No	0.57	0.53	0.55	0.83	1.17	0.49	0.51	0.92

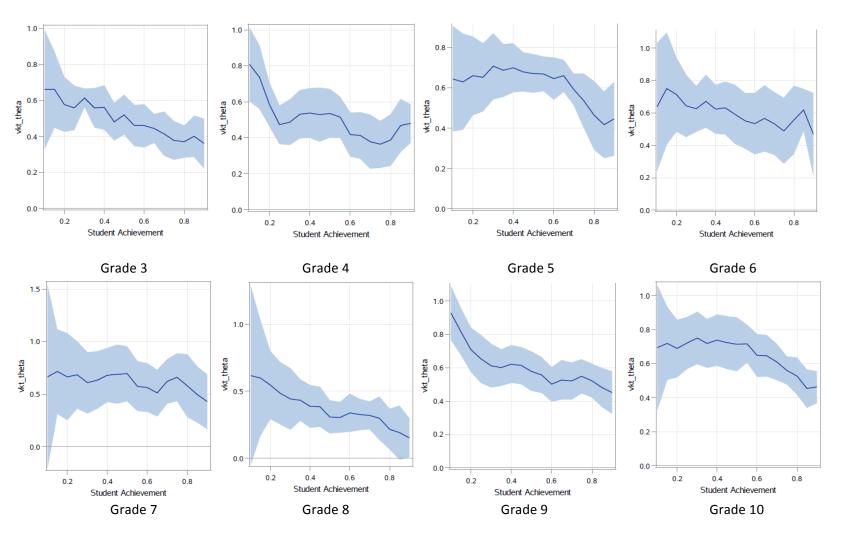

Note. Not all race/ethnicity subgroups are represented due to limited information provided when evaluating interactions among (i.e., White, Black, Hispanic, Other), free/reduced lunch status (eligible or ineligible), and English language learner (identified or not identified). Students in grades 11 and 12 use the grade 10 distribution of ability scores. FRL = Free/reduced price lunch. ELL = English language learners.


Table A5
Sample weight values for Syntactic Knowledge Task

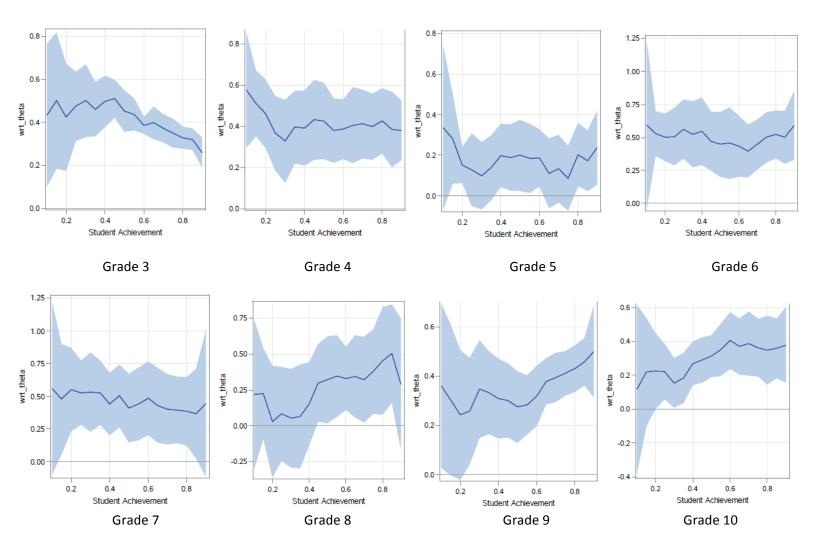
							Grade			
Race	FRL	ELL	3	4	5	6	7	8	9	10
White	Yes	Yes	0.00	1.67	1.00	1.00	1.00	36.00	17.00	43.00
White	Yes	No	2.39	2.14	2.27	2.31	3.23	14.36	14.65	12.96
White	No	Yes	0.29	1.00	1.00	1.00	0.00	7.00	25.00	14.00
White	No	No	0.50	0.47	0.43	0.39	0.37	0.33	0.37	0.38
Black	Yes	Yes	0.10	0.14	0.33	0.23	2.94	43.00	2.78	57.00
Black	Yes	No	0.83	0.98	1.15	1.08	1.26	2.12	1.31	1.35
Black	No	Yes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Black	No	No	0.46	0.55	0.51	0.59	0.58	0.73	0.89	0.93
Hispanic	Yes	Yes	9.34	2.36	5.08	13.36	70.70	679.00	283.00	385.00
Hispanic	Yes	No	3.27	3.83	3.32	4.61	29.65	29.33	24.98	120.08
Hispanic	No	Yes	0.43	1.67	1.80	100.00	4.00	79.00	67.00	86.00
Hispanic	No	No	2.31	3.89	2.67	3.50	4.28	14.31	14.61	38.78
Other	Yes	Yes	0.00	2.50	0.29	2.08	3.31	1.31	25.00	36.00
Other	Yes	No	1.23	1.06	2.35	1.52	1.78	1.76	4.23	9.00
Other	No	Yes	0.17	0.83	0.00	0.50	0.44	0.44	0.89	0.00
Other	No	No	1.12	0.99	0.89	1.16	1.61	1.39	0.88	2.28

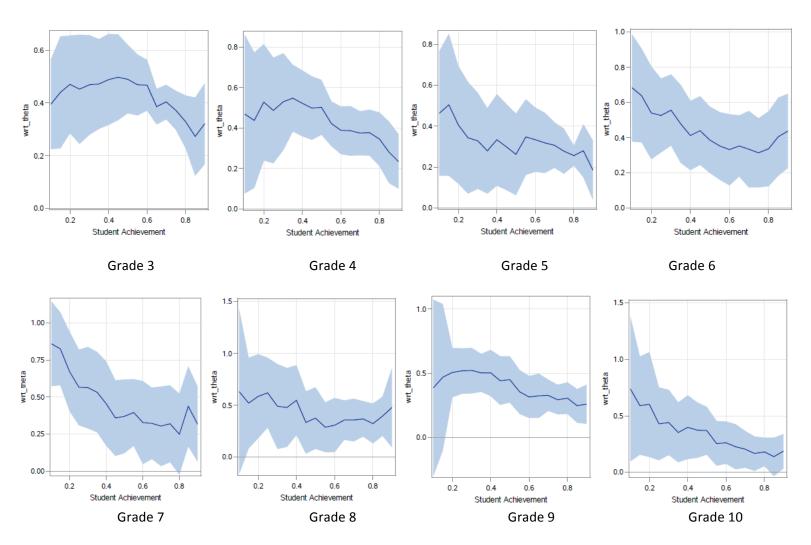

Note. Not all race/ethnicity subgroups are represented due to limited information provided when evaluating interactions among (i.e., White, Black, Hispanic, Other), free/reduced lunch status (eligible or ineligible), and English language learner (identified or not identified). Students in grades 11 and 12 use the grade 10 distribution of ability scores. FRL = Free/reduced price lunch. ELL = English language learners. Note that Table A1 should be used with Tables A2 through A5. Large sample weights reflect subgroups which needed to be weighted more in the analyses; however, a large value does not necessarily indicate gross under-sampling. For example, Table A.5 highlights that Hispanic students who are FRL and ELL have large weights in grades 8-10 (e.g., 679, 283, and 385). Note also that Table A1 shows that Hispanic students who are FRL and ELL constitute only 6.79% of the state population in grade 8. Thus, the large sample weight reflects the need to weight the smaller sample by a factor of 679 so that it can adequately reflect the state population at an appropriate level.

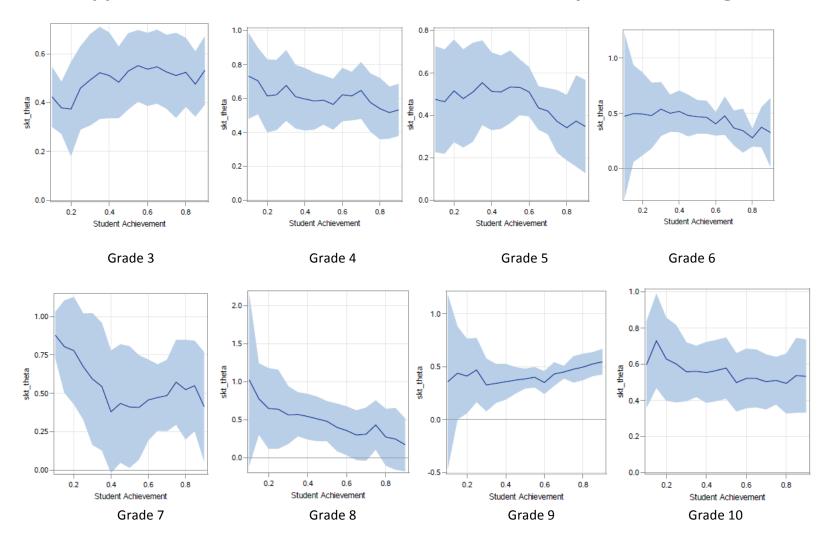

Appendix B: Distribution of the Log Odds and Predicted Probability of Success on the SAT-10 at the 40th Percentil



Appendix C: Distribution of the Log Odds and Predicted Probability of Success on the SAT-10 at the 70th Percentile




Appendix D: Quantile Correlations between FRA Vocabulary Knowledge and PPVT-IV


Appendix E: Quantile Correlations between FRA Word Recognition and TOWRE Real Word

Appendix F: Quantile Correlations between FRA Word Recognition and TOWRE Non-Word

Appendix G: Quantile Correlations between FRA Syntax Knowledge and GJT

Appendix H: ESE Eligibility Definitions in Florida

- Autism Spectrum Disorder (ASD) Autism Spectrum Disorder is defined to be a range of pervasive developmental disorders that adversely affects a student's functioning and results in the need for specially designed instruction and related services. Autism Spectrum Disorder is characterized by an uneven developmental profile and a pattern of qualitative impairments in social interaction, communication, and the presence of restricted repetitive, and/or stereotyped patterns of behavior, interests, or activities. These characteristics may manifest in a variety of combinations and range from mild to severe. Autism Spectrum Disorder may include Autistic Disorder, Pervasive Developmental Disorder Not Otherwise Specified, Asperger's Disorder, or other related pervasive developmental disorders. The corresponding definition is found in State Board of Education Rule 6A-6.03023, F.A.C.
- Deaf or Hard-of-Hearing (DHH) A student who is deaf or hard-of-hearing has a hearing loss aided or unaided, that impacts the processing of linguistic information and which adversely affects performance in the educational environment. The degree of loss may range from mild to profound.

Ages Birth - 5 Years

- Birth Through 2 Years A prekindergarten child with disabilities is a child who is below five (5) years of age on or before September 1 and has a sensory, physical, mental, or emotional condition which significantly affects the attainment of normal developmental milestones.
 - Established Conditions (EC): Ages Birth Through 2 Years Old A child with an established condition is defined as a child from birth through two (2) years of age with a diagnosed physical or mental condition known to have a high probability of resulting in developmental delay or disability. Such conditions shall include genetic disorders, metabolic disorders, neurological abnormalities and insults, or severe attachment disorder.
 - Developmentally Delayed (DD): Ages Birth Through 2 Years Old A child who is developmentally delayed is defined as a child from birth through two years of age who has a delay in one (1) or more of the following areas:
 - 1. Adaptive or self help development;
 - 2. Cognitive development;

- 3. Communication development;
- 4. Social/emotional development;
- 5. Physical/motor development

These definitions are found in State Board of Education Rules 6A-6.03031, F.A.C. and 6A-6.03030, F.A.C.

- Ages Three Through Five Years A prekindergarten child with disabilities is a child who is below five (5) years of age on or before September 1 and has a sensory, physical, mental, or emotional condition which significantly affects the attainment of normal developmental milestones.
 - Developmentally Delayed (DD): Ages 3-5 Years A child who is developmentally delayed is three (3) through five (5) years of age and is delayed in one (1) or more of the following areas:
 - 1. Adaptive or self-help development,
 - 2. Cognitive development,
 - 3. Communication development,
 - 4. Social or emotional development,
 - 5. Physical development including fine, or gross, or perceptual motor.

This definition is found in State Board of Education Rule 6A-6.03026, F.A.C.

- **Dual Sensory Impairment (DSI): Deaf-Blind** A student who has dual-sensory impairments affecting both vision and hearing, the combination of which causes a serious impairment in the abilities to acquire information, communicate, or function within the environment, or who has a degenerative condition which will lead to such an impairment.
- Emotional/Behavioral Disability (E/BD) A student with an emotional/behavioral disability has persistent (is not sufficiently responsive to implemented evidence based interventions) and consistent emotional or behavioral responses that adversely affect performance in the educational environment that cannot be attributed to age, culture, gender, or ethnicity. The corresponding definition is found in State Board of Education Rule 6A-6.03016, F.A.C.
- Gifted –

- Homebound or Hospitalized (HH) A homebound or hospitalized student is a student who has a medically diagnosed physical or psychiatric condition which is acute or catastrophic in nature, or a chronic illness, or a repeated intermittent illness due to a persisting medical problem and that confines the student to home or hospital, and restricts activities for an extended period of time. The corresponding definition is found in State Board of Education Rule 6A-6.03020, Florida Administrative Code (FAC)
- Intellectual Disability (InD) An intellectual disability is defined as significantly below average general intellectual and adaptive functioning manifested during the developmental period, with significant delays in academic skills. Developmental period refers to birth to eighteen (18) years of age.
- Language Impairment (LI) Language impairments are disorders of language that interfere with communication, adversely affect performance and/or functioning in the student's typical learning environment, and result in the need for exceptional student education. A Language impairment is defined as a disorder in one or more of the basic learning processes involved in understanding or in using spoken or written language. These include:
 - 1. **Phonology** Phonology is defined as the sound systems of a language and the linguistic conventions of a language that guide the sound selection and sound combinations used to convey meaning;
 - 2. **Morphology** Morphology is defined as the system that governs the internal structure of words and the construction of word forms;
 - 3. **Syntax** Syntax is defined as the system governing the order and combination of words to form sentences, and the relationships among the elements within a sentence;
 - 4. **Semantics** Semantics is defined as the system that governs the meanings of words and sentences; and
 - 5. **Pragmatics** Pragmatics is defined as the system that combines language components in functional and socially appropriate communication.

The language impairment may manifest in significant difficulties affecting listening comprehension, oral expression, social interaction, reading, writing, or spelling. A language impairment is not primarily the result of factors related to chronological age, gender, culture, ethnicity, or limited English proficiency. This definition is found in State Board of Education Rule 6A-6.030121, F.A.C.

- Other Health Impairment (OHI) Other health impairment means having limited strength, vitality or alertness, including a heightened alertness to environmental stimuli, that results in limited alertness with respect to the educational environment, that is due to chronic or acute health problems. This includes, but is not limited to, asthma, attention deficit disorder or attention deficit hyperactivity disorder, Tourette syndrome, diabetes, epilepsy, a heart condition, hemophilia, lead poisoning, leukemia, nephritis, rheumatic fever, sickle cell anemia, and acquired brain injury. This definition is found in State Board of Education Rule, Florida Administrative Code (F.A.C.).
- Orthopedic Impairment (OI) Orthopedic impairment means a severe skeletal, muscular, or neuromuscular impairment. The term includes impairments resulting from congenital anomalies (e.g. including but not limited to skeletal deformity or spina bifida), and impairments resulting from other causes (e.g., including but not limited to cerebral palsy or amputations). This definition is found in State Board of Education Rule 6A-6.030151, F.A.C.
- Specific Learning Disability (SLD) A specific learning disability is defined as a disorder in one or more of the basic learning processes involved in understanding or in using language, spoken or written, that may manifest in significant difficulties affecting the ability to listen, speak, read, write, spell, or do mathematics. Associated conditions may include, but are not limited to, dyslexia, dyscalculia, dysgraphia, or developmental aphasia. A specific learning disability does not include learning problems that are primarily the result of a visual, hearing, motor, intellectual, or emotional/behavioral disability, limited English proficiency, or environmental, cultural, or economic factors. This definition is found in State Board of Education Rule 6A-6.03018, F.A.C.
- Speech Impairment (SI) Speech impairments are disorders of speech sounds, fluency, or voice that interfere with communication, adversely affect performance and/or functioning in the educational environment, and result in the need for exceptional student education.
 - Speech sound disorder A speech sound disorder is a phonological or articulation disorder that is evidenced by the atypical production of speech sounds characterized by substitutions, distortions, additions, or omissions that interfere with intelligibility. A speech sound disorder is not primarily the result of factors related to chronological age, gender, culture, ethnicity, or limited English proficiency.
 - 1. **Phonological disorder** A phonological disorder is an impairment in the system of phonemes and phoneme patterns within the context of spoken language.

- 2. **Articulation disorder** An articulation disorder is characterized by difficulty in the articulation of speech sounds that may be due to a motoric or structural problem.
- 2. **Fluency disorder** A fluency disorder is characterized by deviations in continuity, smoothness, rhythm, or effort in spoken communication. It may be accompanied by excessive tension and secondary behaviors, such as struggle and avoidance. A fluency disorder is not primarily the result of factors related to chronological age, gender, culture, ethnicity, or limited English proficiency.
- 3. **Voice disorder** A voice disorder is characterized by the atypical production or absence of vocal quality, pitch, loudness, resonance, or duration of phonation that is not primarily the result of factors related to chronological age, gender, culture, ethnicity, or limited English proficiency.

This definition is found in State Board of Education Rule 6A-6.03012, F.A.C.

• Traumatic Brain Injury (TBI) - A traumatic brain injury means an acquired injury to the brain caused by an external physical force resulting in total or partial functional disability or psychosocial impairment, or both, that adversely affects educational performance. The term applies to mild, moderate, or severe, open or closed head injuries resulting in impairments in one (1) or more areas such as cognition, language, memory, attention, reasoning, abstract thinking, judgment, problem-solving, sensory, perceptual and motor abilities, psychosocial behavior, physical functions, information processing, or speech. The term includes anoxia due to trauma. The term does not include brain injuries that are congenital, degenerative, or induced by birth trauma.

This definition is found in State Board of Education Rule 6A-6.030153, F.A.C.

Visual Impairment (VI): Blind and Partially Sighted - Students who are visually impaired include students who are blind, have no vision, or have little potential for using vision or students who have low vision. The term visual impairment does not include students who have learning problems that are primarily the result of visual perceptual and/or visual motor difficulties.

The corresponding definition is found in State Board of Education Rule 6A-6.03014, Florida Administrative Code (F.A.C.).