
RUNJUMPCODE: AN EDUCATIONAL GAME FOR

EDUCATING PROGRAMMING

Matthew Hinds, Nilufar Baghaei, Pedrito Ragon, Jonathon Lambert, Tharindu Rajakaruna,

Travers Houghton and Simon Dacey
Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142, New Zealand

ABSTRACT

Programming promotes critical thinking, problem solving and analytic skills through creating solutions that can solve
everyday problems. However, learning programming can be a daunting experience for a lot of students. RunJumpCode is
an educational 2D platformer video game, designed and developed in Unity, to teach players the fundamental concepts of
C# programming. The game enhances the player’s programming knowledge by providing a fun range of challenges and
puzzles to solve. We promoted the interaction of programming through a ‘Code Box’, allowing players to enter lines of
predefined code that modifies in-game objects. This tool is essential in completing the challenges and puzzles we
designed. To allow alterations of its properties, we made further manipulation of each object possible, which would give

the player creative freedom to complete each level. Quizzes and journals were utilized to assess and collate their learnt
material for future reference. In addition, we created a mobile application to track each player’s statistics throughout the
game and compare their progress with other users. A full evaluation study has been planned, the goal of which is to
examine the effect of using the system on students’ learning.

KEYWORDS

Game design, education, programming.

1. INTRODUCTION

Programming promotes critical thinking, problem solving and analytic skills through creating solutions that

can solve everyday problems. Technology in the 21st century has evolved in many ways, helping us to be

connected. Through each of these innovations comes a need to develop and design new solutions. Getting

into programming can be a daunting experience and has shown to be too overly complex, frustrating and

unenjoyable for many novice students (Lahtinen, Ala-Mutka, and Jarvinen, 2005; Milne and Rowe, 2002).

Current easy to access resources consist of articles and written tutorials. There has also been attempts in

improving teaching through classes, video and auditorial – being able to learn through a fun interaction can

be a more enjoyable and knowledge retention experience. Video games are not a new concept and while they

are popular and generally created for entertainment purposes, they can be adapted and used for engaging

users with educational materials.

Determining the age group in designing educational programming video games comes from identifying
the curriculum of which is planned to be taught. The more complex the content, the higher the recommended

age bracket is. However, current video games that teach programming generally cater towards the ages 16

and below. This can be attributed to the fact that more complex and involved topics require a dedicated

classroom teaching environment that offers live guidance through a teacher. Current educational video

games, e.g. Code Spell (https://codespells.org/), Kodu (www.kodugamelab.com/) and Scratch

(https://scratch.mit.edu/) typically teach the basic fundamentals and later on expand each topic resulting in a

progressively increasing learning curve of content difficulty, which in turn can reduce the overall retention of

players and learning speed.

While progressing the content naturally increases its difficulty, it is important to present the new material

in a way that is easily accessible and personalise it towards the knowledge of the player. In this project, we

slowed down the progression of new information and packaged it together with new gameplay mechanics so
that players learn through naturally completing each level. In addition, after every three levels we included a

13th International Conference Mobile Learning 2017

109

quiz that recaps the previous levels’ content. By doing so, players are reminded to pay more attention

throughout each level so they can successfully pass the quiz and proceed to the next level.

Video games first emerged since the successful proof of concept by Physicist William Higinbotham in

October 1958 using circuitry revolving around the use of resistors, relays, capacitors and transistors (“The
First Video Game of William Higinbotham,” n.d.). Since then during the next decade, video games have seen

a radical change as general computing became more developed and commercially viable.

With the release of the first video game console, the Magnavox Odyssey the video game industry saw its

first leap towards public interest and the industry began its capitalization of the at home entertainment system

(Schilling, 2003; Williams, n.d.). Popularity with video games made its first big break with the release of the

Atari 2600 in 1977 (Bellemare, Veness, and Bowling, 2012) and the Nintendo 64 in 1996 (Schilling, 2003);

since then video games have caught the attention of millions of children and families which has strengthen its

status as a must have electronic of the modern household.

Video game interaction revolves around user input on a touchscreen, gamepad or keyboard and mouse to

control and perform the appropriated directed action desired on screen. These repetitious actions are

fundamental in playing and through studies have shown to help improve motor functionality and hand eye
coordination. The video game experience in particular allows gamers to develop perceptual and cognitive

skills in many aspects that exceeds those of their non-gamer counterparts (Green and Bavelier, 2004).

The educational games genre has yet to see their popularity boom, as most players tend to use video

games as a form of entertainment rather than education. However, in more recent times the use of video

games to develop educational tools has expanded due to the rise of affordable and accessible technology,

especially in smart tablet devices. It allows them to be an effective classroom tool to help students learn and

reinforce a variety of skills and knowledge (P. Rossing, Miller, Cecil, and Stamper, 2012).

Rewards should be given out to players for completing specific tasks that range from easy to hard.

The drive to seek out higher rewards come from video games tendency to promote competitiveness amongst

players and their peers. Such behavior can be exploited to promote higher engagement and retention rates as

players are more likely to work to completing more difficult tasks if they are tempted with a greater reward

for completion. Such rewards are built around how the game is developed, but should be meaningful so that
they do not feel worthless. For example, giving new unlocks for levels, badges, medals, titles or character

customization options are suitable rewards and can garnish players’ attention.

An educational game designer should first thoroughly understand the contents and methodologies of its

subject. Without a strong and accurate background, it would be difficult to have confidence in the teaching

material and curriculum. One can then decide on the best way to represent that content in a meaningful way.

Each dimensional environment (2D or 3D) has its own strengths and weaknesses, one being more immersive

through freedom of a three-dimensional world, but heavier on hardware taxing reducing the potential

adoption of low end system players. While the other is less engaging through a lack of connection that is

brought in from a two-dimensional world, it also allows a wider adoption due to less hardware constraints.

Following a teaching structure that is similar to a classroom curriculum will help build a path of content

that is easy to grasp in the beginning and later becoming more difficult. Progressively expanding the content
allows players to start off with the basics and slowly move up to more in-depth and complex concepts, giving

them a natural curve of increasing knowledge.

2. RUNJUMPCODE GAME DESIGN

RunJumpCode is a 2D platform with basic left, right jumps & gravity idea. It was adopted from Super Mario
Bros. (Pedersen, Togelius, and Yannakakis, n.d.) due to its high success rate (Ryan, 2011, Baghaei 2016),

simplicity and level of entertainment. User have to learn theory, solve problems and apply learned knowledge

in order to progress through the game.

Once launched, the player is taken to the main menu where items are clear and easy to understand.

The idea behind the simplicity is so that the players on a broad age group will be able to figure out the

workings of the GUI with minimal effort. And since this is the user’s first point of contact with game and as a

first impression, it was imperative for the design to be cluster free and easily understandable.

RunJumpCode was developed with a diverse age group in mind, mainly senior high school students

and/or undergraduate tertiary students. The first step is to login which is done either with a new account or an

ISBN: 978-989-8533-61-6 © 2017

110

existing account. Once logged in, the player will be taken to the level selection window where the completed

levels and the next level are highlighted. Once clicked on a highlighted it will show the level name,

description and the difficulty to give the user an idea as to what they are about to do and learn in order to

complete the level. Once the user selects a level and click play, the level will be initiated. The first thing the
user sees on the level is the level information screen. Key information shown here is the programming

tutorial section, which highlights what is taught and the exclusions section, which highlights the restrictions

applied to the level. This helps the users to familiarize themselves with the level so they know what to expect

for the coming session.

The game character moves by detecting arrow key presses. The user has to navigate the game space to

reach the endpoint by clearing obstacles along the way. Each obstacle poses a learning curve to the user. This

is an approach to promote logical thinking. Logical thinking is by far the most important aspect of software

engineering and this is where some people struggle. With our application, the users are actively encouraged

to come up with solutions to each problem. To make things more interesting, each level also comes with a set

of restrictions just like lifelike scenarios where not all the options are available. On each level these

restrictions are different, to ensure the user cannot interact with a problem same way if it occurs multiple
times, thus forcing them to think differently.

Obstacles also require object manipulation, meaning the user may have to spawn, scale, enable & disable

objects to progress. This approach was encouraged by need to teach syntax. As an example to spawn a box a

player has to enter “player.spawnItem(Box);”. If the user makes an error a syntax error will be shown with

the cause, helping the user to understand how important it is to follow syntax in coding.

Apart from that, the user also has a theory section as well, giving the user key theory knowledge required

to progress with the game such as explaining what Integers are in Level 1. This is further elaborated with

examples which in our past experience helped with memorizing theory. Before the user can complete any

level, there is a minimum number of coins to be collected, which is another measure taken to make sure the

player gets a minimum level of knowledge before progressing forward.

The game starts at a very simple level, which is made even easier with hints and lots of mouse clicks and

less coding. As the game progresses, it involves more and more coding and less GUI operations. This is also
a systematic approach since people who are not very technical, seem to need more help till they get more

familiar with the concept of coding. Although hints are available, it is not free to use them. The user loses

some marks for using hints. This helps to discourage the player from using them and guides them more

towards thinking and independent learning. Both of which are again quite important for software developers.

Figure 1. RunJumpCode Level 1.

In level 1 (shown in Figure 1) the obstacles are very simple to overcome. All the player needs to do is to

place a box, jump on it and continue on. As the player progresses, the obstacles get progressively trickier. In
figure 2 one box is not allowed so the user has to summon a ladder. Merely summoning one ladder is not

enough as the player also has to scale the ladder. This makes the user interact more with the game on a

13th International Conference Mobile Learning 2017

111

creative level. With development tools such as Unity1 and Unreal Engine2 being available for free, 3D

development has become slightly easier. Having said that, budget plays a role on how a game is being

developed. 2D game development cost less as teams can be smaller in size and development is less complex.

Math and art are more complicated in 3D. As for gameplay, 2D game has simpler physics mechanics and
basic intuitive controls. Players would be able to identify interactive objects in the environment easily.

Interactive tutorials and Code Box also work well on 2D because of the said simpler layout and should cater

well to users of all ages compared to 3D. 2D development requires low system requirements thus the game

can be played on a very low end system without sacrificing the gameplay. Another issue with 3D

development is having to use more memory and resources thus producing inconsistent framerate could

greatly impact player’s experience on a slow machine.

Building a good programming foundation is one of the goal of this game. It aims to enhance player’s

knowledge by solving a wide range of challenges and puzzles as they go through each stage. The primary

focus was the introduction of programming in a way that is mentally stimulating while being engaging and

fun. This would provide the user an engaging experience and help increase knowledge of programming

fundamentals.

3. TARGET AUDIENCE

The game is designed to cater for teenagers and young adults. It is easy to understand and would be attractive

to Senior High School students and young professionals. It can feed their interest with both gaming and

programming. Those who are new to gaming should find an easy take on into the game. RunJumpCode is

also challenging enough for regular game players and we believe parents might be interested in trying it out
too.

 Figure 2. RunJumpCode Level 3. Figure 3. Mobile App collecting
 myRunJumpCode statistics

The elements of this game are tailored carefully, with the aim of eliminating the possibility of the user

getting deterred, confused, or bored easily. As the game progresses, it challenges players more based on an

increasing learning curriculum. Each stage is focused on teaching one programming skill. The more stages

the player goes through, the more skills they learn and utilize to progress. This way, anticipation is being fed
to avoid boredom among players but at the same time keeping the process simple enough to cater for

teenagers and young adults who have basic computer knowledge. The game provides a Code Box in which

the user learn how to write a code. By using the code the player writes in the box, they are able to manipulate

the object in the game. The number of stages reached should equate to the user’s interaction with the

computer and his acquired programming skills.

1
https://unity3d.com/

2
https://www.unrealengine.com/

ISBN: 978-989-8533-61-6 © 2017

112

Finally, Figure 3 shows the player’s interaction data collected by the mobile application we have

implemented. Users, researchers and/or parents can view the statistics for each level (picked from a drop

down menu), e.g. total scores, time taken to complete the level, number of hints received, number of times

reseted etc. We will be analysing this data for the upcoming study to see how engaged players are with the
game in addition to assessing the improvement in their programming knowledge.

4. CONCLUSIONS & FUTURE DIRECTIONS

We presented RunJumpCode, an educational game to teach the fundamental concepts of programming.

We used C# for this project, as we have two C# programming courses in our undergraduate curriculum.
The game enhances the player’s programming knowledge by providing a fun range of challenges and puzzles

to solve. We promoted the interaction of programming through a ‘Code Box’, allowing players to enter lines

of predefined code that modifies in-game objects. This tool is essential in completing the challenges and

puzzles we designed. To allow alterations of its properties, we made further manipulation of each object

possible, which would give the player creative freedom to complete each level. Quizzes and journals were

utilized to assess and collate their learnt material for future reference. In addition, we created a mobile

application to track each player’s statistics throughout the game and compare their progress with other users.

Going forward, we plan to conduct an evalution study with 20-30 undergraduate tertiary students to

measure the effectives of RunJumpCode in teaching C#. We will have a control group who will complete a

pre-test, do an introductory C# course followed by a post-test. We will also have an experimental goup of

students who take the same course, sit the same pre-test and will be given the game to play in their free time.

They will complete the post-test at the end of the course. We will be measuring the learning outcome,
engagement with game and enjoyment via pre-test, post-test and subjective questionnnaire as well as

analysing the data logged during the players’ interaction with the game features. We hypothesise that those

students who play the game enjoy their experience and enhace their programming knowledge significantly

more than their control group. We believe our research paves the way for the systematic design and

development of full-fledged eductional games dedicated to teaching fundamental conceptos of programming.

REFERENCES

Baghaei, N., Nandigam, D., Casey, J., Direito, A., & Maddison, R. (2016). Diabetic Mario: Designing and Evaluating
Mobile Games for Diabetes Education. Games for Health Journal: Research, Dev, and Clinical Applications

(Vol. 5(4)), pp.270-278.

Bellemare, M.G., Veness, J. and Bowling, M. (2012) Investigating Contingency Awareness Using Atari 2600 Games.
University of Alberta, Edmonton, Canada, 1-2.

Green, C.S. and Bavelier, D. (2004) The Cognitive Neuroscience of Video Games. Messaris & Humphreys, 5-7.

Lahtinen, E., Ala-Mutka, K. and Jarvinen, J.M. (2005). A Study of the Difficulties of Novice Programmers. Tampere
University of Technology Institute of Software Systems. 15-17.

Milne, I. and Rowe, G. (2002) Difficulties in Learning and Teaching Programming—Views of Students and Tutors.
Kluwer Academic Publishers, 59-62.

Pedersen, C., Togelius, J. and Yannakakis, G.N. Modeling Player Experience in Super Mario Bros. IT University of
Copenhagen (n.d.), 1-4.

Rossing, J.P., Miller, W.M., Cecil, A.K. and Stamper, S.E. (2012). iLearning: The future of higher education? Student
perceptions on learning with mobile tablets. Journal of the Scholarship of Teaching and Learning, 12(2), 13-16.

Ryan, J. (2011) Super Mario: How Nintendo Conquered America. Penguin, 155-162. Schilling, M. (2003) Technological
Leapfrogging: Lessons from the U.S. Video Game Console Industry. California management review, 7-10.

Williams, D. A Brief Social History of Game Play. Univeristy of Illinois at Urbana-Chappaign (N.D), pp. 3-5.
Wall-Montgomery, M. (2015) Facebook launches TechPrep: 'By 2020 there will be 1M programming jobs left
unfulfilled'. Retrieved from http://venturebeat.com/2015/10/20/facebook-launches-techprep-by-2020-there-will-be-
1m-programming-jobs-left-unfulfilled/

13th International Conference Mobile Learning 2017

113

https://www.researchgate.net/journal/0008-1256_California_management_review
http://venturebeat.com/2015/10/20/facebook-launches-techprep-by-2020-there-will-be-1m-programming-jobs-left-unfulfilled/
http://venturebeat.com/2015/10/20/facebook-launches-techprep-by-2020-there-will-be-1m-programming-jobs-left-unfulfilled/

	13TH INTERNATIONAL CONFERENCE ON MOBILE LEARNING 2017
	COPYRIGHT
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	PANEL I
	PANEL II
	FULL PAPERS
	DESIGN OF A PROTOTYPE MOBILE APPLICATION TO MAKE MATHEMATICS EDUCATION MORE REALISTIC
	TABLETS AND APPLICATIONS TO TELL MATHEMATICS’ HISTORY IN HIGH SCHOOL
	ASSESSING THE POTENTIAL OF LEVELUP AS A PERSUASIVE TECHNOLOGY FOR SOUTH AFRICAN LEARNERS
	#GOTTACATCHEMALL: EXPLORING POKEMON GO IN SEARCH OF LEARNING ENHANCEMENT OBJECTS
	A FRAMEWORK FOR FLIPPED LEARNING
	THE TECHNOLOGY ACCEPTANCE OF MOBILE APPLICATIONS IN EDUCATION
	ENGAGING CHILDREN IN DIABETES EDUCATION THROUGH MOBILE GAMES
	A MOBILE APPLICATION FOR USER REGULATED SELF-ASSESSMENTS
	ACCEPTANCE OF MOBILE LEARNING AT SMES OF THE SERVICE SECTOR

	SHORT PAPERS
	POSSIBLE POTENTIAL OF FACEBOOK TO ENHANCE LEARNERS’ MOTIVATION IN MOBILE LEARNING ENVIRONMENT
	D-MOVE: A MOBILE COMMUNICATION BASED DELPHI FOR DIGITAL NATIVES TO SUPPORT EMBEDDED RESEARCH
	SMALL PRIVATE ONLINE RESEARCH: A PROPOSAL FOR A NUMERICAL METHODS COURSE BASED ON TECHNOLOGY USE AND BLENDED LEARNING
	EXPERIMENTING WITH SUPPORT OF MOBILE TOUCH DEVICES FOR PUPILS WITH SPECIAL EDUCATIONAL NEEDS
	MOBILE LEARNING IN THE THEATER ARTS CLASSROOM
	NOMOPHOBIA: IS SMARTPHONE ADDICTION A GENUINE RISK FOR MOBILE LEARNING?
	ANALYSIS OF MEANS FOR BUILDING CONTEXT-AWARE RECOMMENDATION SYSTEM FOR MOBILE LEARNING
	RUNJUMPCODE: AN EDUCATIONAL GAME FOR EDUCATING PROGRAMMING
	READINESS FOR MOBILE LEARNING: MULTIDISCIPLINARY CASES FROM YAROSLAVL STATE UNIVERSITY
	THE M-LEARNING EXPERIENCE OF LANGUAGE LEARNERS IN INFORMAL SETTINGS

	REFLECTION PAPERS
	NEW MODEL OF MOBILE LEARNING FOR THE HIGH SCHOOL STUDENTS PREPARING FOR THE UNIFIED STATE EXAM
	RE-MENT - REVERSE MENTORING AS A WAY TO DECONSTRUCT GENDER RELATED STEREOTYPES IN ICT
	ACADEMIC SUCCESS FOUNDATION: ENHANCING ACADEMIC INTEGRITY THROUGH MOBILE LEARNING
	USING TABLET AND ITUNESU AS INDIVIDUALIZED INSTRUCTION TOOLS
	DUOLIBRAS - AN APP USED FOR TEACHING-LEARNING OF LIBRAS
	EDUCATORS ADOPTING M-LEARNING: IS IT SUSTAINABLE IN HIGHER EDUCATION?
	M-KINYARWANDA: PROMOTING AUTONOMOUS LANGUAGE LEARNING THROUGH A ROBUST MOBILE APPLICATION

	POSTERS
	DESIGN OF MOBILE E-BOOKS AS A TEACHING TOOL FOR DIABETES EDUCATION
	READING WHILE LISTENING ON MOBILE DEVICES: AN INNOVATIVE APPROACH TO ENHANCE READING

	DOCTORAL CONSORTIUM
	HOW CAN TABLETS BE USED FOR MEANING-MAKING AND LEARNING

	AUTHOR INDEX

