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Abstract

Multilevel modeling (MLM) is frequently used to detect group differences, such as an intervention
effect in a pre-test–post-test cluster-randomized design. Group differences on the post-test
scores are detected by controlling for pre-test scores as a proxy variable for unobserved factors
that predict future attributes. The pre-test and post-test scores that are most often used in MLM
are summed item responses (or total scores). In prior research, there have been concerns
regarding measurement error in the use of total scores in using MLM. To correct for measure-
ment error in the covariate and outcome, a theoretical justification for the use of multilevel
structural equation modeling (MSEM) has been established. However, MSEM for binary responses
has not been widely applied to detect intervention effects (group differences) in intervention
studies. In this article, the use of MSEM for intervention studies is demonstrated and the perfor-
mance of MSEM is evaluated via a simulation study. Furthermore, the consequences of using
MLM instead of MSEM are shown in detecting group differences. Results of the simulation study
showed that MSEM performed adequately as the number of clusters, cluster size, and intraclass
correlation increased and outperformed MLM for the detection of group differences.
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Introduction

The cluster-randomized trial design is one of the more common designs in education

(Raudenbush, 1997).1 In the cluster-randomized design, clusters of persons rather than individ-

ual persons are assigned at random to treatments. Because many educational and psychological

attributes are unobservable as outcomes for an intervention, multiple indicators (or items) are

often collected to infer the unobserved attributes. There are many circumstances in which items
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measuring these unobserved attributes are binary responses, such as correct–incorrect answers,

true–false answers, present–absent symptoms, and endorsed–not endorsed attitudes in educa-

tional and psychological testing programs.

The objective of statistical analysis in most cluster-randomized designs is to explore group

differences between a control group and a treatment group at the cluster level. Multilevel mod-

eling (MLM) is the general approach used to detect a group difference on post-test outcomes;

often, related covariates at different levels of multilevel data are controlled in the model (e.g.,

Goldstein, 2003). Pre-test scores are important covariates to be controlled because they are

proxy variables for unobserved factors that predict future attributes (e.g., Bloom, Richburg-

Hayes, & Black, 2007). It has been shown that inconsistent estimates can be found when the

initial condition (e.g., pre-test scores) is not considered (e.g., Aitkin & Alfo, 2003). Binary item

responses on pre- and post-test measures are frequently summed (i.e., total score) or averaged

(i.e., proportion score) when using MLM.

Referring to previous research findings, measurement error in covariates (e.g., Lüdtke, Marsh,

Robitzsch, & Trautwein, 2011; Shin & Raudenbush, 2010) and outcomes (Raudenbush & Sadoff,

2008) are two major concerns in using total scores in MLM. However, previous studies have not

presented the effects of these concerns on detecting group differences using MLM. To mitigate

problems due to measurement error, latent variable models can be used for explicit modeling of

unobserved attributes and multiple binary responses. Within a structural equation modeling (SEM)

framework, there are several studies demonstrating the use of latent variable models to test

ANOVA-like mean differences across groups at the latent construct level. For example, structured

means models (SMMs; Sörbom, 1974) and multiple-indicator multiple-cause (MIMIC; Jöreskog

& Goldberger, 1975) approaches have been presented to detect latent group differences with factor

analysis. A relatively novel analytic framework, multilevel SEM (MSEM), has been used to

account for multilevel data in the use of SEM (McDonald, 1993; Muthén & Muthén, 1998-2014;

Rabe-Hesketh, Skrondal, & Pickles, 2004). Within an item response modeling framework, MSEM

for categorical variables is also known as explanatory item response modeling (De Boeck &

Wilson, 2004). However, to the authors’ knowledge, MSEM for binary responses has not been

applied to educational intervention data collected from cluster-randomized designs.

Thus, the purpose of the current study is to illustrate the use of MSEM to correct for mea-

surement error in both covariate (i.e., pre-test) and outcome (i.e., post-test) and to evaluate

MSEM via a simulation study. As another purpose of this study, MLM (specifically, the two-

level random intercept model) and MSEM are compared to show the consequences of using

MLM instead of MSEM. The authors examine the degree of bias in the group difference esti-

mate when MLM is used instead of using MSEM, given a variety of study design conditions

(e.g., number of clusters, cluster size, and intraclass correlation [ICC]). A two-level design was

chosen because of its prevalence in education research (Schochet, 2008) and to ensure a simpler

and clearer explanation of the results than would be possible with a more complex design.

This article is organized as follows. First, MLM is described in assessing group differences.

Next, MSEM is specified for multiple binary responses, which are obtained from pre-test and

post-test, and MSEM and MLM are applied to data from an educational intervention study hav-

ing a pre-test–post-test cluster-randomized design. Subsequently, MSEM is compared with

MLM in assessing group differences when MSEM is the data-generating model and MSEM is

evaluated in terms of parameter recovery in various multilevel designs.

Assessing Group Differences in MLM

For comparison with MSEM, a two-level random intercept MLM is considered to detect group

differences on post-test scores, controlling for pre-test scores (Equation 4.6 in Moerbeek, Van
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Breukelen, & Berger, 2008). Due to space considerations, MLM is specified in the online sup-

plementary material.

Assessing Group Differences in MSEM

In this section, MSEM is described. To frame this data structure within the multilevel literature

(e.g., Bryk & Raudenbush, 1992), item responses are at Level 1, with individuals and items

cross-classified at Level 2. Individuals are nested within clusters at Level 3. In the following

model, a measurement model for the pre-test is specified as a covariate and a measurement

model for the post-test is specified as an outcome (e.g., Battauz, Bellio, & Gori, 2011; Rabe-

Hesketh et al., 2004, Equation 18). A treatment condition variable is a Level 3 covariate

because the intervention is applied equally to all individuals within a cluster in a cluster-

randomized design. In the specification, it is assumed that the same construct is being measured

in a control group and a treatment group to detect the group difference (i.e., measurement

invariance between the two groups; Bejar, 1980). Furthermore, the authors also assume that

each individual answers several items and the same items are administered to all individuals.

The measurement model in MSEM for binary responses can be called a multilevel item

response model. In most multilevel item response models, it is assumed that item discrimination

over Level 2 and Level 3 are the same and constant (often 1) in Rasch multilevel item response

models (e.g., Kamata, 2001) and are the same in two-parameter multilevel item response mod-

els (e.g., Fox, 2010; Jeon & Rabe-Hesketh, 2012). The model formulation having the same item

discriminations over levels can be considered a variance component factor model (Rabe-

Hesketh et al., 2004). Unlike these previous specifications of the multilevel item response

model, in this study’s specification, the different item discriminations over Level 2 and Level 3

were specified in the measurement model of MSEM as a general two-level factor model. A path

diagram is presented to depict an MSEM in the online supplementary material.

Item responses for pre-test (denoted by the subscript 1) are specified as ½y1jk1, . . . ,

y1jki, . . . , y1jkI �0 and item responses for post-test (denoted by the subscript 2) are specified as

½y2jk1, . . . , y2jki, . . . , y2jkI �0 for an individual j ðj ¼ 1; :::; JÞ; a cluster k ðk ¼ 1; :::;KÞ; and an item

i ði ¼ 1; :::; IÞ. At pre-test, dependency in item responses is explained by two latent variables,

u1jk and u1k , for individual level and cluster level, respectively. The measurement model for the

pre-test is as follows:

P y1jki = 1ju1jk , u1k

� �
=F a1i, W � u1jk + a1i, B � u1k � b1i

� �
, ð1Þ

where F denotes the normal cumulative distribution function, y1jki is an item response at pre-

test, a1i, W is an item discrimination parameter at Level 2 for pre-test, a1i, B is an item discrimi-

nation parameter at Level 3 for pre-test, b1i is an item location parameter for pre-test, u1jk is a

latent variable at Level 2, and u1k is a latent variable at Level 3.

The measurement model for the post-test is as follows:

P y2jki = 1ju2jk , u2k

� �
=F a2i, W � u2jk + a2i, B � u2k � b2i

� �
, ð2Þ

where a2i, W is an item discrimination parameter at Level 2 for post-test, a2i, B is an item discrim-

ination parameter at Level 3 for post-test, b2i is an item location parameter for post-test, u2jk is a

latent variable at Level 2, and u2k is a latent variable at Level 3.

Covariates are introduced for the latent variables, u. A structural model for the latent variable

at Level 2 (e.g., the student level) is as follows:
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u2jk = q00 + q10 � u1jk + e2jk , ð3Þ

where q00 is an intercept at Level 2, q10 is the effect of the pre-test latent score at Level 2, and

e2jk is the residual of post-test latent scores at Level 2.

The structural model for the latent variable at Level 3 (e.g., the teacher level) is as follows:

u2k = d00 + d10 � u1k + d20 � TRTk + e2k , ð4Þ

where TRTk is a covariate for treatment condition with a value of 0 for members of the control

group and a value of 1 for members of the treatment group, d00 is the intercept at Level 3, d10

is the effect of the pre-test latent score at Level 3, d20 is the effect of TRTk at Level 3, and e2k

is the residual of post-test latent score at Level 3.

In the structural models (Equations 3 and 4), pre-test covariates (u1jk and u1k) are latent

covariates. As explained earlier, a pre-test covariate is a proxy variable for unobserved fac-

tors that is used to predict post-test scores. Adding the two structural models (Equations 3

and 4) to the measurement model for the post-test (Equation 2), the combined model leads

to the following:

P y2jki = 1je2jk , e2k , u1jk , u1k

� �
=F½a2i, W � q00 + q10 � u1jk + e2jk

� �
+ a2i, B � d00 + d10 � u1k + d20 � TRTk + e2kð Þ � b2i�: ð5Þ

To identify the model, the following constraints are set as indicated by asterisks: q00 = 0�,
u1jk;N(0�, 1�), u1k;N (m, 1�), e2jk;N (0�, 1�), and e2k;N(0�, 1�). Alternatively, the item dis-

crimination for one of the items (e.g., the first item) can be set to 1 instead of setting variances

to 1: a21, W = 1, a21, B = 1, a11, W = 1, and a11, B = 1, to identify the scale unit of parameters.

Parameter Estimation

The authors chose Bayesian estimation to deal with the high-dimensional structure inherent in

MSEMs for binary responses. Maximum likelihood estimation of models for binary data is

challenging because the marginal likelihood does not have a closed form so that maximum

likelihood estimation requires numerical or Monte Carlo integration. In Bayesian analysis, it

is possible to sample complex and high-dimensional posterior densities by Markov chain

Monte Carlo (MCMC) methods through sampling from the conditional distributions of para-

meters without numerical integration. Mplus version 7.11 (Muthén & Muthén, 1998-2014)

was chosen to model the MSEMs. The algorithm used for MCMC in Mplus is GIBBS(PX1).

In addition to the constraints needed to identify MSEMs, residual variances in the Mplus

item response theory (IRT) model specification (see Asparouhov & Muthén, 2013, for IRT

specification in Mplus) were set to 1 to identify the model and also to provide parameters

specified in Equation 5.

For the specified MSEM, the joint posterior distribution for the parameters,

Y = fa1i, W , a1i, B, a2i, W , a2i, B, b1i, b2i, q10, d00, d10, d20, m, u1jk , u1k , e2jk , e2kg, can be rewritten as

P Yjy1jki, y2jki

� �
}P y1jkijY
� �

� P y2jkijY
� �

� P a1i, Wð Þ � P a1i, Bð Þ � P a2i, Wð Þ � P a2i, Bð Þ � P b1ið Þ � P b2ið Þf g�

P q10ð Þ � P d00ð Þ � P d10ð Þ � P d20ð Þf g � P u1jk

� �
� P u1k jmð Þ � P mð Þ � P e2jk

� �
� P e2kð Þ

� �
,

where P(y1jkijY) and P(y2jkijY) are likelihood functions, probabilities within the first braces

indicate prior distributions of item parameters, probabilities within the second braces indicate

prior distributions of regression coefficients, and probabilities within the third braces indicate
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prior and hyper-prior distributions of latent variables or residuals. In the current study, item dis-

crimination parameters were given a mildly informative prior, N (0, 1), as used in many IRT

applications to have stable item discrimination parameter estimates (e.g., Béguin & Glas, 2001;

Patz & Junker, 1999) and item location parameter and regression coefficients were given nonin-

formative priors, N(0, 5). The prior distributions of latent variables or residuals were set as con-

straints (noted by asterisks) as follows: u1jk;N (0�, 1�), u1k;N(m, 1�), e2jk;N (0�, 1�),
e2k;N(0�, 1�). The hyper-prior distribution on the mean was set as m;N (0, 5). The posterior

median and standard deviation of sample values were reported as posterior moments. To ensure

that stable parameter estimates are obtained, Gelman and Rubin’s (1992) method was imple-

mented in Mplus.

Characterizing Multilevel Structure: ICC

With the measurement models (Equations 1 and 2), an ICC can be specified for each item to

indicate the proportion of variance that is attributable to clusters. ICC is the correlation coeffi-

cient (Corr) among probabilities of item responses on the probit scale2 (P0(yjki)) for the same

cluster k, but different persons j and j0, and can be defined as follows3:

ICCi = Corr P0 yjki

� �
, P0 yj0ki

� �� �
=

Cov P0 yjki

� �
, P0 yj0ki

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var P0 yjki

� �� �q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var P0 yj0ki

� �� �q ð6Þ

=
a2

i, Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i, W + a2
i, B

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i, W + a2
i, B

q : ð7Þ

Characterizing Measurement Error in Scores: Reliability

In this section, reliability is presented using measurement models for pre-test and post-test

results. One of the advantages of using MSEM is the ability to cope with measurement error

for each individual and each cluster. In Bayesian analysis, standard errors, SEujk
and SEuk

, are

produced automatically from the MCMC simulations as standard deviations of sampled values.

It is also possible to present a test-level reliability, within-reliability, and between-reliability

in MSEM. Within-reliability represents the ratio of within-cluster true score variance to total

within-cluster variance, whereas between-reliability represents the ratio of the between-cluster

true score variance to total between-cluster variance (Geldhof, Preacher, & Zyphur, 2014;

Muthén, 1991). Applying these definitions of reliability for the specified MSEM leads to a

within-reliability (rW ) estimate as follows4:

rW =
Var ujk

� �
Var bujk

� � =

Var bujk

� �
� 1

J

� � PJ
j = 1

SEujk

� �2

1
J�1

� �
�
PJ
j = 1

bujk � bu1

� �2
, ð8Þ

where bujk is the estimate of ujk and bu1 is the mean of bujk across individuals. Between-reliability

(rB) can be defined as follows:
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rB =
Var ukð Þ

Var buk

� � =

Var buk

� �
� 1

K

� � PK
k = 1

SEuk
ð Þ2

1
K�1

� �
�
PK
k = 1

buk � bu2

� �2
, ð9Þ

where buk is the estimate of uk and bu2 is the mean of buk across clusters.

Empirical Study

The data used in this study were collected in an efficacy trial of Enhanced Anchored Instruction

(EAI). EAI aims to raise math achievement in middle and high school students. Next, a brief

description of EAI is given; interested readers may find additional details in Bottge, Ma,

Gassaway, Butler, and Toland (2014). The design of the efficacy trial was a pre-test–post-test

cluster-randomized design. Schools, rather than classes or students, were randomly assigned to

EAI and business as usual (BAU) because the research team did not have control over students’

class assignment. The research question was as follows:

Do group (EAI vs. BAU) differences emerge for computation?

Teacher and Student Samples

Twenty-four urban and rural middle schools in the Southeast United States participated in the

study. Half were randomly assigned to EAI and BAU. Each school had one participating inclu-

sive math classroom, although one school had two participating classrooms. Of the initial sam-

ple, 25 students did not respond to all items in the pre-test or post-test. As a result, 232 BAU

and 214 EAI students remained in the final sample. The cluster size ranged from 7 to 28 stu-

dents, with an average of 17.84. Students were comparable across instructional conditions in

terms of gender, ethnicity, subsidized lunch, and disability area, based on chi-square tests of

equal proportions. In the study, one inclusive math class from each school was sampled, with

the exception of one school that had two inclusive math classes. Therefore, clustering due to

schools was ignored and a two-level structure (i.e., 446 students nested in 25 teachers) was

considered.

Measures: Fraction Computation Test

The researcher-developed Fraction Computation Test, administered at pre-test and post-test,

was used in the current study to illustrate MSEM. The test comprised 20 items assessing stu-

dents’ ability to manually add and subtract fractions. Item features were described in the online

supplementary material. There were no missing item responses in the final sample of 446 stu-

dents for analyses.

Analysis and Results

The authors chose a Bayesian analysis using Mplus 7.11 to fit the MLM specified for compar-

ability of results with MSEM. Mplus code to fit MLM is available in the online supplementary

material. The same precision in prior distributions as used in MLM was used for fixed effects,

N (0, 5). An inverse-gamma distribution was used for variances of random effects in MLM,

IG(�1, 0) in the Mplus specification. In MLM, the group difference effect between BAU and

EAI groups is coded with a value of 0 for members of the BAU group and a value of 1 for
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members of the EAI group. Based on a Gelman-Rubin statistic with 2 chains, a conservative

burn-in of 1,000 iterations was used followed by 8,000 post-burn-in iterations. The ICC obtained

from the unconditional MLM was :23 for pre-test and :24 for post-test, indicating 23% and 24%

of the total variance of total scores was explained at the teacher level for pre-test and post-test,

respectively. Analysis steps and results of MSEM are described below.

Step 1. Determining the number of dimensions at the individual level. To determine the number of

dimensions at the individual level for MSEM, the authors first compared a set of exploratory

factor analyses (polychoric correlations with limited information robust weighted least squares

estimation with Oblimin rotation) at each time point. Mplus version 7.11 was used for explora-

tory factor analysis. The 1-factor model at the individual level provides a good fit to the data

according to comparative fit index (CFI) and Tucker-Lewis index (TLI) (.:994 at both pre-test

and post-test) and root mean square error of approximation (RMSEA; 0.052, CI = [0.050,

0.052] at pre-test; 0.055, CI = [0.054, 0.056] at post-test). Based on this result, a latent variable

was modeled at the individual level in MSEM in the subsequent analysis.

Step 2. Fitting a multilevel measurement model. The multilevel measurement model of MSEM

(Equations 1 and 2) was fit to check if the multilevel measurement model is required instead of

the single-level measurement model. ICCs for items obtained from the multilevel measurement

model of MSEM ranged from :058 to :297 for pre-test and ranged from :016 to :318 for post-

test, indicating a nonignorable dependency due to clusters (i.e., teachers).

Step 3. Testing measurement invariance. In multiple measurement (or longitudinal) multilevel

data arising from multiple groups, measurement invariance assumptions can be tested across

time points (i.e., pre-test and post-test) and across groups (i.e., BAU vs. EAI). Measurement

invariance across groups is necessary for comparing group means (Bejar, 1980). However, the

measurement invariance assumption across time points is not necessary when a pre-test score is

used as a proxy variable for unobserved factors that predict or explain future attributes (e.g.,

Lockwood & McCaffrey, 2014). Thus, measurement invariance for BAU versus EAI was tested

at each time point.

Using the multigroup multilevel measurement model (i.e., multigroup extension of Equations

1 and 2), three invariance models were compared to investigate measurement invariance across

groups at pre-test and post-test (e.g., Widaman & Reise, 1997): (a) a configural invariance

model, in which all item parameters are estimated simultaneously in each group under the same

factor structures; (b) a weak invariance model, in which only discrimination parameters are con-

strained to be equal across groups; and (c) a strong invariance model, in which all item para-

meters are constrained to be equal across groups.

Competing models to test measurement invariance assumptions were compared using a rela-

tive fit criterion, deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der

Linde, 2002 ) (Verhagen & Fox, 2013). A smaller DIC represents a better fit of the model, and

a difference of less than 5 or 10 units between models does not provide sufficient evidence for

favoring one model over another (Spiegelhalter, Thomas, Best, & Lunn, 2003). MSEM was fit

at each time point using Mplus 7.11 to calculate DIC. Based on DIC, the weak invariance model

was chosen at pre-test (DIC = 8,226 for the configural invariance model, DIC = 8,168 for the

weak invariance model, and DIC = 8,212 for the strong invariance model) and at post-test

(DIC = 8,276 for the configural invariance model, DIC = 8,148 for the weak invariance model,

and DIC = 8,280 for the strong invariance model).

In the presence of weak invariance, the relative ordering of students’ scores can be different

because of the different difficulty levels between the groups. Whether BAU versus EAI can be

scored and compared on the same scale under violation of weak invariance was checked with
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the correlation between scores (bu1jk + bu1:k for pre-test and bu2jk + bu2:k for post-test) using a cali-

bration by BAU versus EAI and a calibration with all students. The correlation coefficients

were high: .975 at pre-test and .950 at post-test. This indicates that the relative ordering of stu-

dents’ scores does not change in the presence of weak invariance for BAU versus EAI. In addi-

tion, the group mean difference between BAU and EAI was compared between the weak

invariance model and the strong invariance model in MSEM, by fitting multigroup MSEM5

with the weak invariance model and MSEM with the strong invariance model, separately. The

weak invariance model does not distort the scale score much at the group level at pre-test or

post-test.6 Based on both individual score and group mean comparisons, strong measurement

invariance was assumed for BAU versus EAI in Step 4.

Step 4. Fitting MSEM. Mplus code to fit MSEMs is available in the online supplementary mate-

rial.7 The group difference effect between BAU and EAI groups is coded with a value of 0 for

members of the BAU group and a value of 1 for members of the EAI group. Based on a

Gelman-Rubin statistic with 2 chains, a conservative burn-in of 7,000 iterations was used, fol-

lowed by 8,000 post-burn-in iterations. Thinning was set at 40, meaning that 32,000 iterations

were required after burn-in to obtain the 8,000 iterations.

Table 1 presents person parameter estimates and 95% credibility intervals (CrIs) for MLM

and MSEM. The pre-test score effect at the cluster level is smaller than the pre-test score effect

at the individual level in both models. The same pattern was found in MSEM. However, the

effect of the pre-test latent score at the teacher level was not significant in MSEM. The group

difference, or EAI intervention effect, was statistically significant in both models. From the

MLM results, the standardized effect size associated with the intervention effect 3.970 was

about 0.571, which indicates that the EAI group performed 0.571 units higher than the BAU

group on a standardized total score scale. However, in MSEM results, the EAI group performed

1.139 units higher than the BAU group on a latent variable scale. Item parameter estimates are

shown in the online supplementary material. At pre-test and post-test, items vary in terms of

item discriminations and difficulties, and items having a like denominator were less discrimi-

nating and less difficult at both within and between levels than items having an unlike denomi-

nator. The within-level reliability (rW ) obtained from the results of MSEM (Equation 8) was

.693 for pre-test and .805 for post-test. The between-level reliability (rB) obtained from the

results of MSEM (Equation 9) was .560 for pre-test and .767 for post-test. These results indi-

cate that there is nonignorable within- and between-level measurement error.

Demographic variables for students and teachers to MSEM were also added to see if the

effect of the intervention was changed with the inclusion of those variables. In fact, the change

in significance and magnitude of the intervention effect was small when other demographic

information for the students and teachers was added to MSEM.

Simulation Study

A simulation study was designed to investigate the performance of MSEM for binary responses

in various multilevel designs including a condition similar to the empirical study and to compare

the performance of MSEM with MLM in detecting group differences. The population data-

generating model was MSEM as specified in Equation 5 and data sets were generated using

R (R Core Team, 2014). Simulation conditions that may affect the group difference result were

selected from previous research (e.g., Lüdtke et al., 2011; Preacher, Zhang, & Zyphur, 2011).

These include the number of clusters (K = 24, 50, or 100), the number of individuals per cluster

(nk = 5, 20, or 50), and the ICC at post-test (ICC = .05, .10, or .20). These three factors were
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fully crossed, yielding 27 ( = 33333) conditions. One thousand replications were simulated for

each of the 27 conditions. Each generated data set was analyzed using both MSEM and MLM.

Simulation Conditions

Number of clusters. The numbers of clusters were set to K = 24, 50, or 100. A sample of 24 and

50 clusters is common in educational experimental intervention research (e.g., Bottge et al.,

2014). Examples of large numbers of clusters include national or international educational

assessments such as the National Assessment of Educational Progress (NAEP) and the Trends

in International Mathematics and Science Study (TIMSS). Accordingly, 100 clusters were

chosen.

Cluster size. Balanced cluster sizes were selected as nk = 5, 20, or 50 as used in MSEM studies

(e.g., Preacher et al., 2011). A cluster size of 5 is found in small group designs (e.g., Kenny,

Mannetti, Pierro, Livi, & Kashy, 2002).

Given a selected number of clusters and cluster size, the total numbers of individuals result

in 9 different sample sizes: J = 120, 250, 480, 500, 1,000, 1,200, 2,000, 2,500, or 5,000.

ICC at post-test. The ICC at post-test was set at ICC = .05, .10, or .20, given the fixed pre-test

ICC of .3. ICC values are rarely greater than .30 in educational and organizational studies (e.g.,

Fox, 2010). As considered in Preacher et al. (2011), values of .05, .10, and .20 are considered

small, medium, and large, respectively.

As shown in Equation 7, each item can have a different degree of ICC in MSEM. To control

for the effect of ICC in these simulation studies, however, the same item discriminations

were set across items and scale constraints were used with respect to latent variables.

Because post-test scores are explained by both a pre-test and an intervention effect at the

cluster level, smaller ICCs for post-test than for pre-test were considered and a smaller a2i, W

for post-test than a1i, W for pre-test was set for all items (i = 1, . . . , I). Given fixed a2i, W = :8
and a1i, W = 1, other population item discriminations were derived using Equation 7 for

all items (i = 1, . . . , I). For the level of ICC = .05, the following item discriminations were

set: a1i, W = 1:000, a1i, B = :655, a2i, W = :800, and a2i, B = :184. For the level of ICC = .10, the

following item discriminations were set: a1i, W = 1:000, a1i, B = :655, a2i, W = :800, and

a2i, B = :267. For the level of ICC = .20, the following item discriminations were set:

a1i, W = 1:000, a1i, B = :655, a2i, W = :800, and a2i, B = :400.

The mean and regression coefficients are specified as follows: m = 0 (overall mean of pre-

test latent variable), q01 = 0:4 (effect of pre-test at the individual level), d00 = � 1 (mean of

post-test latent variable), d01 = 0:7 (effect of pre-test at the cluster level), and d02 = 1:0 (inter-

vention effect with dummy coding). Item difficulty was generated with a standard normal dis-

tribution, b1i;N (0, 1) and b2i;N(0, 1). Random variables (u2jk and u2k) and residuals (e2jk and

e2k) were generated from a normal distribution with a unit variance to match with model identi-

fication constraints. Twenty items were set as used in this empirical study. The same number of

clusters were assigned to control and treatment groups for a balanced design.

Hypotheses for Group Differences

Three outcome measures were considered: relative percentage bias, root mean square error

(RMSE), and the observed coverage of the 95% CrI.

Little bias and variability for MSEM were expected because the population data-generating

model was MSEM. For MLM, bias will be inversely related to ICC (e.g., Preacher et al., 2011).
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The relative percentage bias is given by 1003½(bd20 � d20)=d20� and implies the accuracy of

parameter estimates. The RMSE was computed using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r = 1 (d20 � d20)2=R

q
, where r indi-

cates the rth replication from a converged solution (r = 1, . . . , R). When a parameter estimate is

unbiased, the RMSE quantifies the precision. For biased parameter estimates, the RMSE com-

bines the parameter bias and precision into an overall measure of accuracy.

It is expected that the number of clusters and ICC will influence coverage for MLM. Given

nk , increasing the number of clusters increases the total sample size. As the total sample size

increases, the precision is increased and the CrI width is reduced. This results in reducing cov-

erage for biased estimates. Because larger ICCs correspond to greater between-reliability, cov-

erage should improve with increasing ICC. MSEM is expected to yield the least bias, which

results in CrIs closely centered around the population parameter when the standard error of the

estimate is precise. The precision of the standard error of the group effect was analyzed by

determining the observed coverage of the 95% CrI. Coverage was determined by noting the

proportion of trials in which the 95% CrI for the group difference effect included the population

value of the group difference. Coverage close to .95 indicates that the precision is well

estimated.

Results

No convergence problems were encountered in any replications for MLM and MSEM, except

the sample size condition, nk = 5 and K = 24 (total sample size = 120) in MSEM. This noncon-

vergence problem may be due to the fact that the sample size is too small to estimate 125 para-

meters.8 In the next section, results from only the converged solutions are reported.

Group difference effect in MLM and MSEM. The group difference effects are shown in Table 2.

Relative percentage bias. The following overall patterns in relative percentage bias were

observed as reported in Table 2. First, the relative percentage bias was much lower for MSEM

than for MLM in all conditions. Relative percentage bias ranged in magnitude from �204:400

to �5:440 in MLM, whereas it ranged in magnitude from �16:780 to 0:050 in MSEM. On set-

ting an acceptable bias criterion of 10%, unacceptable bias was found in all conditions in MLM,

whereas unacceptable bias was found only in the condition with nk = 5 and K = 50 in MSEM.

Second, the degree of bias decreased with increasing cluster size (nk), number of clusters (K),

and ICC in both MLM and MSEM. Third, relative percentage bias is negative in all conditions

for MLM, indicating that the group difference effect was underestimated. However, a negative

relative percentage bias was mainly found in MSEM with a small cluster size (nk = 5 or 20), a

small number of clusters (K = 24 or 50), and a small ICC (ICC = .05 or .10).

RMSE. Given biased parameter estimates, the RMSE presents the combined effect of para-

meter bias and parameter variance. RMSE has no accepted cutoff value for deciding whether

an estimate is acceptable or not, but it represents a trade-off between bias and variability. In all

conditions, MSEM outperformed MLM. RMSE ranged in magnitude from 0:132 to 1:025 in

MLM, whereas it ranged in magnitude from 0:027 to 0:243 in MSEM. As was found with rela-

tive percentage bias, RMSE decreased with increasing cluster size (nk), number of clusters (K),

and ICC in both MLM and MSEM.

Coverage. As predicted, MLM coverages were less than .95 when ICC is small and both K

and nk are large. For large ICC, small k, and small nk , coverage was 1.00 in MLM. MSEM cov-

erages were 1.00 in all conditions except one condition (nk = 5, K = 50, and ICC = .05), which

indicates that standard errors can be overestimated in MSEM.
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Other parameters in MSEM. The overall measure of accuracy (RMSE) of MSEM parameter esti-

mates (except the group difference estimate) is reported in the online supplementary material.

For all item parameters (except a2i, B and d00), the behavior of RMSE is similar across different

ICC conditions, given the same cluster size and number of clusters (with the exception of con-

dition nk = 50, K = 100, and ICC = .05), and RMSE decreased as cluster size increased holding

number of clusters (K) constant. The item discrimination parameter, a2i, B, differs depending on

ICC because the degree of ICC in outcomes was manipulated by increasing the magnitudes of

a2i, B. Thus, patterns of results were interpreted within the same ICC. Given the same ICC,

RMSE decreased by increasing cluster size (nk) and number of clusters (K). For d01 and m,

RMSE decreased with increasing cluster size (nk), number of clusters (K), and ICC.

Discussion

In summary, the first goal of this study was to illustrate the use of MSEM for binary responses

to correct for the measurement error in the covariate and outcome using educational

Table 2. Comparisons of the Group Difference Effect in MLM (g20) and MSEM (d20).

MLM MSEM

K nk ICC = .05 ICC = .10 ICC = .20 ICC = .05 ICC = .10 ICC = .20

Relative percentage bias
24 5 2204.400 2132.400 2129.800 — — —
50 5 2129.800 2124.400 2110.000 216.780 213.240 211.000

100 5 2124.400 2116.800 2100.400 27.440 25.900 25.340
24 20 2146.000 2143.000 2140.600 27.540 26.720 25.400
50 20 295.600 285.200 277.800 24.080 23.280 23.060

100 20 260.100 244.600 231.700 21.300 20.500 0.200
24 50 271.200 266.800 269.500 22.820 22.760 22.040
50 50 269.300 231.800 28.600 1.430 1.220 0.500

100 50 220.800 213.540 25.440 0.930 0.190 0.050
RMSE

24 5 1.025 0.834 0.739 — — —
50 5 0.665 0.625 0.557 0.243 0.200 0.165

100 5 0.655 0.449 0.520 0.142 0.139 0.098
24 20 0.717 0.655 0.608 0.151 0.143 0.139
50 20 0.712 0.617 0.560 0.148 0.099 0.054

100 20 0.454 0.347 0.332 0.127 0.041 0.019
24 50 0.699 0.543 0.449 0.144 0.127 0.092
50 50 0.334 0.302 0.253 0.121 0.068 0.044

100 50 0.255 0.214 0.132 0.093 0.034 0.027
Coverage

24 5 1.000 1.000 1.000 — — —
50 5 1.000 1.000 1.000 0.960 1.000 1.000

100 5 0.980 1.000 1.000 1.000 1.000 1.000
24 20 1.000 1.000 1.000 1.000 1.000 1.000
50 20 1.000 1.000 1.000 1.000 1.000 1.000

100 20 0.030 0.920 1.000 1.000 1.000 1.000
24 50 0.990 1.000 1.000 1.000 1.000 1.000
50 50 0.000 0.050 0.060 1.000 1.000 1.000

100 50 0.000 0.010 0.210 1.000 1.000 1.000

Note. MLM = multilevel modeling; MSEM = multilevel structural equation modeling; ICC = intraclass correlation;

RMSE = root mean square error.
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intervention data and to investigate the behavior of MSEM in various multilevel designs. The

authors also sought to describe how model parameters can be estimated using Bayesian analysis

in Mplus 7.11 and present calculations of reliability coefficients and ICC for each item. MSEM

performed well in terms of bias and RMSE in estimating the group difference in all conditions

except conditions with a small cluster size (nk= 5 or 20), a small number of clusters (K= 24 or

50), and a small ICC (ICC = .05 or .10). In addition, overall accuracy was not problematic9 for

other parameter estimates in MSEM. Overall parameter accuracy for all parameters, including

the group difference, was acceptable for the simulation condition (nk = 20, K = 24, ICC = .20),

similar to the empirical study (average n = 17.84, k = 24, average ICC across items at post-

test = .202).

The second goal was to answer questions about the consequences of using MLM instead of

MSEM. MSEM was chosen as a population data-generating model. Unacceptable bias and

lower CI coverage was found in most conditions that were considered in using MLM. However,

MSEM performed well in terms of parameter accuracy regarding bias and RMSE in estimating

the group difference in all conditions except conditions with a small cluster size (nk= 5 or 20), a

small number of clusters (K= 24 or 50), and a small ICC (ICC = .05 or .10). Given this study’s

simulation conditions, standard errors of the group difference estimate were overestimated in

MSEM.

There are methodological limitations to the present study. First, the authors described MSEM

for binary item responses, which are common in educational and psychological research. The

description of MSEM, its parameter estimation description, and other quantities (reliability coef-

ficients and ICC) for binary variables in this study cannot be directly applied to MSEM for out-

comes with more than two categories (i.e., polytomous item responses). More parameters for

item locations (or thresholds) must be modeled for MSEM with polytomous item responses.

Second, one may think that a comparison between MLM and MSEM approaches is unfair

when the population data-generating model is MSEM. The authors chose MSEM as the popula-

tion data-generating model for two main reasons. First, the main interest for the comparison

was to investigate the extent to which group difference detection on total scores in MLM may

produce misleading inferences about the group difference on an error-free latent construct. In

addition, the authors were interested in the degree to which MSEM would outperform MLM

even though it may be expected that MSEM would perform better than MLM overall in this sit-

uation. However, there is no guarantee MSEM will recover its own parameters well even when

MSEM is the population data-generating model. Indeed, MSEM would not converge whereas

MLM would when the sample size is small (K = 24 and nk = 5).

Third, the present research as a simulation study shares the same limitations that are present

in other simulation studies, that is, the conditions employed in the study design are limited,

including the same 20-item test over time points, a balanced design, 1.0 group difference, mea-

surement invariance between a control group and a treatment group, and the same item discri-

minations within a level to control for the effect of ICC. More extensive simulations that vary

these limited conditions should be conducted to make solid generalizations. Furthermore, a

future study should investigate sample size design and power issues with various magnitudes of

the group difference.

Fourth, it was found that the standard error of the group difference estimate can be overesti-

mated, based on the coverage observed in most MSEM conditions that were considered. The

ratio of the mean posterior standard deviation (i.e., Bayesian standard error) to the standard

deviation across replications ranged from 1.08 to 1.30 across the simulation conditions in

MSEM, which implies that the standard errors were not overestimated dramatically. However,

more systematic investigation is required to evaluate Bayesian standard errors, using different

degrees of precision on the prior distribution and Monte Carlo error.
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MLM is frequently used to estimate group differences on the scale of total scores as evidence

of an intervention effect. The main goal of this study was to present and evaluate MSEM as an

alternative model for detecting group differences when measurement error exists in the covari-

ate and outcome. When clusters are the unit of analysis as is typically the case in data sets from

cluster-randomized designs, evaluations of treatment can be expensive. Researchers should be

aware that MSEM can perform adequately only when group size, the number of clusters, and

ICC are large enough.
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Notes

1. According to the authors’ survey from the Institute of Educational Sciences (IES) website, two

branches of the IES, the National Center for Education Research (NCER) and the National Center for

Special Education Research (NCSER), funded 209 Goal 3 (efficacy and replication goal) projects

between 2004 and 2013. A common research design in IES Goal 3 projects is a cluster-randomized

design where clusters such as teachers or schools are the unit of analysis. As a data analytic strategy

for multilevel data, 59% of the IES Goal 3 projects between 2004 and 2013 used a multilevel model-

ing (MLM) framework based on the sum scores of the outcome measures.

2. probit½P(yjki = 1jujk , uk)�= P0(yjki = 1) = ai, W � ujk + ai, B � uk � bi:
3. Subscripts 1 and 2 in Equation 7 were dropped because Equation 7 can be applied for pre-test and

post-test.

4. Subscripts 1 and 2 in ujk and uk were dropped because rW and rB can be applied for pre-test and post-

test.

5. Multigroup models are not available with the BAYES estimator in Mplus 7.11. The KNOWNCLASS

option for TYPE = MIXTURE can be used to fit multigroup models in Mplus 7.11. However, the

Bayes estimator is not allowed with TYPE = TWOLEVEL MIXTURE. Thus, WinBUGS was used to

implement multigroup multilevel structural equation modeling (MSEM).

6. At pre-test, the mean score of the Enhanced Anchored Instruction (EAI) group (coded as 1) was

20.120 (credibility interval, CrI = [20.890, 0.559]) points higher than the mean of the business as

usual (BAU) group (coded as 0) on the standardized cluster-level latent trait continuum in the weak

invariance model, whereas the mean score of the EAI group was 20.160 (CrI = [20.980, 0.673])

points higher than the mean of the BAU group on the scale in the strong measurement model. At

post-test, the mean score of the EAI group (coded as 1) was 1.100 (CrI = [0.255, 1.994]) points higher

than the mean of the BAU group (coded as 0) on the standardized cluster-level latent trait continuum

in the weak invariance model, whereas the mean score of the EAI group was 1.139 (CrI = [0.275,

2.014]) points higher than the mean of the BAU group on the scale in the strong measurement model.
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7. With the same specification of priors and hyper-priors, results of MSEM are comparable in using

WinBUGS and in using Mplus 7.11 with Bayes estimation (ESTIMATOR = BAYES). WinBUGS

code is available from the first author upon request.

8. There are 120 item parameters (20 items 3 6 kinds of item parameters) and 5 structural parameters.

9. It is not problematic when RMSE from MSEM is compared with that of model parameter estimates in

IRT model parameter recovery studies.
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