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ABSTRACT

The gold standard for identifying more effective pedagogi-
cal approaches is to perform an experiment. Unfortunately,
frequently a hypothesized alternate way of teaching does not
yield an improved effect. Given the expense and logistics of
each experiment, and the enormous space of potential ways
to improve teaching, it would be highly preferable if it were
possible to estimate in advance of running a study whether
an alternative teaching strategy would improve learning. This
is true even in learning at scale situations, since even if it
is logistically easier to recruit a large number of subjects, it
remains a high stakes environment because the experiment is
impacting many real students. For certain classes of alternate
teaching approaches, such as new ways to sequence existing
material, it is possible to build student models that can be used
as simulators to estimate the performance of learners under
new proposed teaching methods. However, existing methods
for doing so can overestimate the performance of new teaching
methods. We instead propose the Robust Evaluation Matrix
(REM) method which explicitly considers model mismatch
between the student model used to derive the teaching strategy
and that used as a simulator to evaluate the teaching strategy
effectiveness. We then present two case studies from a frac-
tions intelligent tutoring system and from a concept learning
task from prior work that show how REM could be used both
to detect when a new instructional policy may not be effective
on actual students and to detect when it may be effective in
improving student learning.
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INTRODUCTION

The gold standard for identifying more effective pedagogi-
cal approaches is to perform an experiment. Unfortunately,
frequently a hypothesized alternate way of teaching does not
yield an improved effect. Given the expense and logistics of
each experiment, and the enormous space of potential ways
to improve teaching, it would be highly preferable if it were
possible to estimate in advance of running a study whether
an alternative teaching strategy would improve learning. This
is true even in learning at scale situations, since even if it
is logistically easier to recruit a large number of subjects, it
remains a high stakes environment because the experiment is
impacting real students, and likely many more than in standard
classroom environments.

It is possible to build student models that can be used as simu-
lators to estimate the performance of learners under a variety
of proposed teaching methods. In particular, one important
open question in education is whether and how the sequencing
of a given set of course activities impacts student learning.
There are an enormous possible set of ways to sequence ma-
terial, including the use of adaptive policies (like cognitive
mastery learning [5] or reinforcement learning based policies
[1, 3, 21, 24, 17, 15] which map representation of the cur-
rent student state to a next pedagogical activity). Indeed prior
work has suggested that the pedagogical activity to provide
in terms of maximizing learning gains may depend on the
student state [12], and offer significant benefits over randomly
or suboptimally selecting such activities [5, 3, 15, 21]. To
help estimate the potential performance of new sequencing
approaches, we can build a student model, and use it as a simu-
lator to approximate what the student learning outcomes might
be when taught using the new sequencing policy. In particular,
a common approach is to estimate the efficacy of a policy a
priori by simulating its performance using a student model
that is identical to the one used to compute the policy itself! [3,
17, 25]. Unfortunately, such an approach can overestimate
the performance of the policy [16, 15], and relies on students

Note that this simulation process can in fact be done in multiple
ways, and often the process used to compute the policy given a student
model may itself directly also yield an estimate of the performance
(the student learning outcomes) of the policy assuming the student
model it uses is in fact how students learn in the real world. (For
example, in reinforcement learning, value iteration or policy iteration
would yield such an estimate.)
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really learning in the same way as the student model assumes.
While we hope that we have good models of student learning,
student modeling is an active area of research, and different
models of student learning with similar predictive accuracies
can yield very different policies or outcomes for students [23,
13, 28].

In contrast, in this paper, we present the robust evaluation
matrix (REM) method for estimating the potential impact of
a new way of teaching (focusing on sequencing strategies) in
advance of an experiment. REM seeks to make our predic-
tions more robust to model mismatch, the situation where the
student model used to derive a policy is not the same as the
true model that underlies student learning where the policy
will be deployed. We present two case studies to show how
REM can be used in practice. In the first, we demonstrate
that our method can help correctly predict when a new policy
would not be effective in improving student learning while
standard model-based evaluation predicts otherwise. In the
second, we show that REM could be used to detect policies
that will do better than baselines in a concept learning domain
when deployed on actual students, and again can detect cases
where policies are likely to be ineffective in the real world.

We believe REM could be used to more cautiously estimate
the potential impact of new strategies, and thereby has the
potential to help guide and potentially reduce the number of
experiments needed to find promising new teaching methods.

OFF-POLICY POLICY ESTIMATION AND SELECTION

We are interested in the related problems of off-policy policy
estimation and off-policy policy selection: the setting where
we have access to prior data collected using some policy, and
we want to use that data to make inferences about one or more
other (instructional) policies. Off-policy policy estimation can
be used to estimate the performance of a new instructional
policy without (or in advance of) running an experiment. Such
counterfactual reasoning is important not just in education, but
in a wide swath of other areas including economics, healthcare,
and consumer modeling [27, 29]. Off-policy policy estimation
is often a critical part of off-policy policy selection: deter-
mining which policy from among a set of candidate policies
would have the highest expected performance if deployed in
the future. We are primarily interested in the problem of off-
policy policy selection, as it can have practical implications
with respect to what we do in practice. We consider the prob-
lem of off-policy policy estimation in so far as it helps us
achieve the former. As we will show, while the two have been
tightly coupled in the literature, we present a method that does
not necessarily give us reliable estimates of the performance
of instructional policies but could still be used to compare
instructional policies.

An important class of instructional policies that we focus on
in this paper are policies that determine what problem/activity
to present to a student at any given time based on features
of a student’s state (e.g., the student’s performance on past
problems, how long the student has spent on the system, the
student’s level of prior knowledge etc.). The performance of
an instructional policy might be how much it improves student
learning, which is often assessed in educational experiments

by how well students do on a posttest given after instruction,
or how much faster it helps students learn a fixed amount of
material, which is often what is optimized in mastery learning
contexts. We now discuss approaches to doing off-policy
policy estimation and selection, including how this problem
has been tackled in education settings as well as in some of
the broader reinforcement learning literature.

Model-Based Evaluation

To leverage the data collected from another policy, a common
approach to doing off-policy policy estimation is to first use
that data to fit the parameters of a statistical (student) model
[3, 17, 21]. Given such a model, we can then use that model
as a simulator to evaluate the performance of any compatible
alternate (instructional) policy. Compatibility here involves
two aspects. The first is that the student simulator model must
be a generative model capable of simulating any observations
required by the instructional policy. For example, for the
following instructional policy,

if student took > 100 seconds to complete previous problem
then
| give multiplication problem

else
| give division problem

the student simulator model must be capable of generating the
amount of time a simulated student takes to do each problem.
Second, the alternate policy can only select an activity given
a student state which the model is capable of simulating an
outcome for. Implicitly, this means that the data used to train
the model parameters must have included making a similar
decision for another student in that state, and observing some
outcome. This indicates that the collected data supports the al-
ternate policy. More intuitively, consider collecting data from
an instructional policy (call it policy 0) that randomly either
gives a student a worked example or a short video whenever
the student first logs into the educational software. Now con-
sider a new instructional policy (call it policy A) that provides
a student with a quiz when he first logs into the educational
software. The old policy never provided students with a quiz
upon logging in to the system, and so a model of student
learning and the impact of activities on the student’s learning
state will not include any estimate of what it would be like
if the student were to get a quiz in this situation. In this sit-
uation, the alternate policy cannot be simulated. In contrast,
consider another new instructional policy (policy B) that al-
ways provides students with a worked example when they first
log in to the tutoring software. In this case, we can simulate
the potential performance of policy B, because the statistical
student model of learning that was estimated from policy 0
includes an estimate of potential outcomes that could occur
in this setting. Throughout the rest of this paper, we will fo-
cus our attention on considering instructional policies that are
compatible with the previously collected data— that is, policies
whose outcomes could be simulated by a generative student
learning model estimated from the collected data.



In model-based off-policy estimation, two immediate ques-
tions arise: (1) given a particular (student) model class and
a dataset, how do we estimate the performance of a policy,
and (2) how do we select which model class to choose? Here,
model class refers to the type of statistical model used to
represent student learning. There are many models of stu-
dent learning considered in the literature, including Bayesian
Knowledge Tracing [6], logistic regression models like per-
formance factors analysis [18], Markov decision processes
(MDPs) [3, 25], partially observable MDPs (POMDPs) [21],
and Deep Knowledge Tracing [19].

Given a model class and a dataset, the typical approach is to
use machine learning to fit the parameters that best model the
available data (such as finding the maximum likelihood model,
or a model that minimizes a desired loss function). Using
the resulting fit model parameters, we can then simulate how
a student might learn under a desired compatible policy. To
assess how good a policy is, we also need a way to evaluate the
student learning outcomes generated under a specific policy.
In reinforcement learning this is typically known as the reward
model, which could, for example, provide a positive reward
when a student gets a test question correct. Together the
student learning model and reward model can be used to both
simulate a student’s learning under a compatible policy, and
evaluate the quality of the resulting simulated outcomes. If
the student learning model plus the reward model constitute a
Markov decision process, there exist well known algorithms
(such as value iteration or policy iteration) for computing
an instructional policy that achieves the maximal expected
policy performance under that student learning model and
reward function. This approach has been leveraged in multiple
educational data mining research projects and reinforcement
learning settings [3, 17, 25].

There are at least two issues that arise with this approach. First,
given finite data, the estimated model parameter values will
be approximate, and these parameter uncertainties can result
in error in the resulting estimated performance of a policy,
especially when that policy is designed to maximize perfor-
mance for that model [16]. There do exist multiple techniques
to quantify the amount of error in the resulting estimated pol-
icy performance due to parameter uncertainty, some of which
have been previously considered in the educational technology
literature [16, 3]. In addition, large scale datasets like those
collected when learning at scale reduce parameter uncertainty,
as in general the more data we have the more precise our
parameter estimates will be.

The other, larger issue, is that the chosen model class may be
a poor approximation of how students learn, and may yield
misleading estimates of the performance of a proposed policy.
This relates to the second critical issue: how do we select
which model class to choose?

Indeed, there is a vast amount of research on student modeling,
and a common way to evaluate and compare potential student
model classes is by their predictive accuracy, such as using
cross validation root mean squared error on an input dataset.
One natural idea then is to select the model class with the
smallest predictive error, and then compute an instructional

policy with the highest predicted performance for the given
model class as fit to the available data. Unfortunately, even
if two different student model classes have similar predictive
accuracy when fit to a particular dataset, they may have very
different implications for what instructional policy will be
most effective [23, 13, 28]. Moreover, prior work has shown
that just selecting the student model with the highest accu-
racy on an input dataset may not be the model whose best
associated policy has the highest performance for real stu-
dent learning [15]. Other work has shown the limitations of
considering model accuracy and how it does not capture the
information most meaningful for decision making [2, 9]. All
of this suggests that model accuracy alone is not sufficient for
deciding which model class to select.

A second approach is to select the student model and instruc-
tional policy that under that student model is expected to have
the best performance (e.g. best student learning outcomes).
This requires deriving a policy for each model under consid-
eration (often the optimal policy or an approximation of the
optimal policy for that model) and evaluating that policy by
simulating it on the model used to derive it. We call this direct
model-based evaluation. This approach has been used to
compare and select among different student learning models
and their optimal policies. Chi et al. used this approach to
select an instructional policy, by comparing different student
learning models represented as Markov decision processes
with different student features and the resulting instructional
policy that yielded the best expected performance for a given
model [3]. Similarly, Rowe et al. estimated the predicted
performance of instructional policies that were designed to
maximize performance under particular student models and
compared them to some hand designed baseline policies and a
random policy by evaluating these policies under the same stu-
dent models. Unsurprisingly, the policy that was computed to
have the best predicted performance for a given student model
was also estimated to to out-perform the baseline policies
under that same model [25].

This approach is quite appealing, as it is more directly getting
at what we often care about: estimating the performance of
policies in order to select a policy with the best expected
performance. Unfortunately, since any student model will
not generally capture the way that real students learn (even
given infinite amounts of data used to estimate the model
parameters), evaluating a policy assuming the model it was
derived under is correct will generally not provide an accurate
estimate of the value of a policy if it were to be used with real
students. Comparing the estimated performance of policies
when each policy is evaluated using a different simulated
student model can therefore yield misleading conclusions.
Indeed Mandel et al. have shown that even if the real world
can be accurately modeled as a complex Markov decision
process, it is possible that the optimal policy for an alternate
statistical model that is incorrect might have a higher estimated
performance than the optimal policy of the true MDP, even
with an infinite amount of data? [15]. Therefore, this is not a
problem that learning at scale alone can solve.

2This is because the alternate statistical model may not satisfy the
Markov property.



Indeed, the limitations of evaluating the performance of a pol-
icy with the student model used to derive the policy has been
observed previously. In simulation, Rowe et al. estimated a
new instructional policy would have a performance of 25.4 in
contrast to a random policy that was estimated to have a perfor-
mance of 3.6, where performance was measured as a function
of students’ normalized learning gains® beyond the median
student and the performance of both policies was simulated
with the student model used to derive the new instructional
policy[25]. In contrast, in an experiment with real students,
there was no significant difference between the performance of
students taught by the two policies [24]. While there are many
factors in any experiment with real students, estimating perfor-
mance using the assumed student model may particularly lead
to overly optimistic estimates of the resulting performance.
In this paper, we will present other situations where doing
so incorrectly predicts a difference in performance between
policies that is not found in an actual experiment, but where
our alternate procedure (to be described shortly) would have
correctly anticipated no significant difference in performance
among the policies.

Importance Sampling

Using prior data to obtain an estimator of an instructional
policy’s performance in advance of deploying the new policy
that is not biased by assuming particular statistical student
model could seem rather difficult. However, there does exist
an elegant solution: importance sampling, an approach that
does not require building a student model, but rather re-weighs
past data to compute an estimate of the performance of a new
policy [20]. Importance sampling is statistically consistent
and unbiased. In prior work, Mandel et al. used importance
sampling to find an instructional policy in an educational game
that significantly outperformed a random policy and even an
expert-designed instructional policy [15]. Unfortunately, im-
portance sampling tends to yield highly variable estimates
of a new policy’s performance when evaluating instructional
policies that are used for many sequential decisions, such as
students interacting with a tutoring system across many activ-
ities. Intuitively this issue arises when a new policy is quite
different from a previous policy, and so the old data consists
of quite different student trajectories (sequences of pedagog-
ical activities given and student responses) than what would
be expected to be observed under a new policy. Mathemati-
cally, this is because importance sampling yields unbiased but
high variance estimates, unlike direct-model based evaluation
which can yield very biased estimates (due to choosing an
inaccurate model class) with potentially low variance (when
we have enough data).

It is true that with more data, the variance of the importance
sampling estimator will decrease, so one may assume this
should be the method of choice for learning at scale, but this is
not the case when one has to make a large number of sequential
decisions. For example, consider some educational software
that presents 20 activities to students and only needs to choose
between one of two options at any given time (for example,

3The normalized learning gain for a student is the difference between
the posttest score and pretest score of the student divided by the
maximum possible difference.

whether to give the student a worked example or a problem-
solving exercise). Suppose we have collected existing data
from a policy that randomly chose each option for each of
the 20 decisions and want to use this for off-policy policy
estimation. If we want to evaluate a deterministic instructional
policy (i.e., a policy with no randomness), then only one out
of every 2 (over one million) students would encounter a
trajectory that matches the policy of interest, which means we
need millions of students to get a decent estimate of the policy.
If the software were to make 50 decisions, then we would need
over 10" students!

Finding a statistical estimator that offers the best of both ap-
proaches (model-based evaluation and importance sampling
estimators) is an active area of research in the reinforcement
learning community [8, 11, 26] but remains a challenge when-
ever the (instructional) policies may be used to make a large
number of decisions, as highlighted above.

ROBUST EVALUATION MATRIX (REM)

Ideally we want a method for off-policy policy estimation that
combines the statistical efficiency of (student) model based
estimators with the agnosticism of importance sampling tech-
niques which allows them to be robust to the choice of student
model used to derive a particular policy. As we previously
argued, this is important even given an enormous amount of
data. One potential avenue is to focus on designing better
student models, a key effort in the educational data mining
and artificial intelligence in education communities. However,
since these model classes will still likely be approximate mod-
els of student learning, we propose an alternative approach
that may not enable us to achieve accurate estimates, but can
still help inform comparisons among different policies: using
many models we expect to be wrong, rather than using one
model we hope to be right.

Our robust evaluation matrix (REM) is a tool for more conser-
vatively evaluating the potential performance of a new policy
in relation to other policies during off-policy policy selection.
As shown in Algorithm 1, the simple idea is to estimate the
performance of different instructional policies by simulating
them using multiple plausible student models whose model
parameters were fit using previously collected data. The rows
of the matrix are different student models and the columns
of the matrix are the various policies one wants to estimate
the performance of. An entry in the matrix represents the ex-
pected performance of a particular instructional policy when
simulated under a particular student model. As the student
model simulators have parameters that are fit based on the
previously collected data, they will often represent reasonable
possible ways of modeling the dynamics of student learning.
If we restrict our comparison to models with similar predictive
accuracy (e.g., as evaluated using cross validation or a test
set constructed from the available data), it is unclear which
model is better, but the REM method can be used to assess
trends in performance across policies that are consistent across
multiple possible ways that students may learn in the real en-
vironment (e.g., Bayesian Knolwedge Tracing, Performance
Factors Analysis, Deep Knowledge Tracing etc.).



Simulating the potential performance of instructional policies
under multiple student models to inform off-policy policy se-
lection has been previously underexplored. There has been
some prior work that analyzes the interaction of student mod-
els and instructional policies (that may have been derived with
a particular student model) [21, 13, 23, 9, 4], but such work
has often been done to understand the general differences be-
tween policies run on various models, rather than as a tool to
inform whether a new policy may offer benefits over previous
ones before conducting experiments or embedding a policy in
a tutoring system. One exception is work by Clement et al.,
where they investigate the case where the knowledge graphs
(i.e., prerequisite relations between knowledge components)
used to learn models used to compute policies are not the
same as the ones underlying student learning [4]. The authors
found that a particular model that does not have parameters
fine-tuned to the knowledge graph performs best when there
is a mismatch in the policy’s representation of knowledge
graph and true knowledge graphs of students. Their work
differs from our current paper in that the authors only con-
sider robustness of policy’s of varying complexity in light of
the knowledge graph changing but do not consider student
models that differ more wildly and the authors do not present
a general method for off-policy policy estimation or selec-
tion. Moreover, they only presented results from simulations
with hand-crafted parameters rather than models and policies
fit to real data. Nonetheless, we can consider this work as
an example of REM being used in the past to inform policy
selection. The most closely related work is by Rafferty et
al.[21], which analyzed the potential performance of various
instructional policies derived from different models of student
concept learning under various student concept learning mod-
els that were fit from a previously collected dataset. However,
unlike our current paper, they presented this idea primarily to
understand the interaction between the policies and the models
of student learning (e.g. could a policy assuming a very sim-
ple model of student learning still do well if the real student
exhibits much more complicated student learning), rather than
as a generic tool for off-policy policy estimation and selection.
In the next section, we reinterpret their results as a positive
use case of REM. Moreover, while Rafferty et al. consider
simulating policies only on models of student learning that
were used to derive some of the policies, REM could simulate
policies on other models of student learning, even if one does
not derive any policies from those student models. We present
one example of this in the next section.

REM can be used in several ways. If one or more student
models in the matrix suggest that a new policy is no better
or even worse than other (baseline) policies, then it would
suggest a new policy may not yield a significant improvement
in learning outcomes. On the other hand, if the student models
agree that one policy appears to be better than others (and
these student models are indeed quite different from each
other*), then it should increase our confidence that the policy
will actually out-perform the other policies. Recall that we are

4The difference in student models could be based difference in the-
ory, for example a Bayesian Knowledge Tracing model and a Deep
Knowledge Tracing model make rather different assumptions about

Input: Set of models m =1...M and policies p=1...P
REM < m x p matrix
for modelm=1...M do
for policyp=1... P do
if model m compatible with policy p then
mean, stddev <— Estimate performance of policy
ponmodel m // For example by
simulating many times
REM[m][p] < mean, stddev

return REM
Algorithm 1: Pseudocode for algorithm to fill in robust evalu-
ation matrix.

interested in the joint problems of off-policy policy estimation
and off-policy policy selection. We propose that REM can
help with addressing the second problem, even though it does
not necessarily help us with the first. That is, if we find a
policy that robustly does better than another policy according
to various student models, then we may decide to choose to
implement that policy in practice; however, if different student
models have very different predictions as to how well the new
policy will perform, then we may not have a good estimate of
its performance a priori. But having an estimate of a policy
we are confident will do well a priori may not be necessary if
we are planning on testing it on actual students anyways. This
makes REM differ from off-policy policy selection techniques
in the existing literature, which aim to use imperfect methods
of policy estimation as a way to do policy selection. Rather,
REM aims to help the researcher make decisions about what
policy to select without directly trying to get a good estimate
of a policy’s performance.

CASE STUDIES

We now present two case studies to ground the discussion and
illustrate how REM can inform what instructional policies
may yield improved performance, given prior data. The first
is an experimental study we ran in which we used old data
to derive a new policy we estimated to be better than a stan-
dard baseline, but which yielded equivalent performance in a
subsequent student study. Our post hoc analysis suggests we
could have predicted this result by using a REM analysis. In
the second case study, we will look at the results of a paper
by Rafferty et al. where they perform an analogue of REM
to better understand how various instructional policies might
perform under different student models [21]. Although their
paper did not suggest using such a method for off-policy policy
selection, we show two examples of how it could have been
used both to predict that several policies were likely to do well
when tested on real students and to predict that another policy
may perform poorly (a result that would not have been pre-
dicted if a policy’s performance was only estimated assuming
that the student model used to derive the policy was in fact
how students truly learn).

student learning—or based on empirically observing that simulat-
ing the same instructional policy on two different models results in
reasonably different trajectories quantified in some way.



Case Study 1: Fractions Tutor Experiment

We ran an experiment to test five instructional policies in an
intelligent tutoring system (ITS) designed to teach fractions to
elementary school students [22, 7].

There were two main goals to the experiment: (1) to test
whether adaptive problem selection based on an individual
student’s knowledge state makes a difference (in terms of im-
proving student learning), and (2) to test whether supporting a
variety of activity types in an ITS leads to more robust learning.
Additionally, we were interested in testing whether we could
improve upon the traditional form of adaptive instruction used
in ITSs: cognitive mastery learning using Bayesian Knowl-
edge Tracing (BKT). Namely, we were interested in testing
whether reasoning about (prerequisite) relationships between
skills when deciding what problem to give a student to solve
improves student learning beyond simply giving problems
until a student masters each skill independently. We there-
fore developed a new student model that treats the correctness
on the last two steps of each skill as the state of a student’s
knowledge of that skill, and then predicts the student’s next
state of a skill based on the student’s knowledge of that skill
as well as prerequisite skills. Prerequisite skills were iden-
tified using the G-SCOPE algorithm [10]. Our models used
a skill model that was inferred using the weighted Chinese
restaurant process technique developed by Lindsey et al. [14],
which was seeded with a hand-crafted skill model. Model
parameters were fit given access to data that was previously
collected using a semi-random instructional policy to teach
over 1,000 students, who used the tutor for four to six days,
with most students completing between 20 and 100 problems
out of a potential set of 156 problems. Student learning was
assessed using identical pretests and posttests composed of 16
questions.

We iterated over multiple potential adaptive instructional poli-
cies, seeking to identify a policy that we estimated would yield
improved performance over both strong baseline non-adaptive
policies, and equal or better performance to a state-of-the-art
policy based on mastery teaching. Since each student com-
pleted many problems using the tutor, typically more than 20,
importance sampling techniques for estimating the student
learning outcomes under an alternate instructional policy (that
adaptively sequenced activities in a different way) were infea-
sible (see example above). Instead, we relied on simulating
a policy’s performance based on a student learning model.
We choose adaptive policies that we estimated would yield a
significant improvement over the non-adaptive baselines. This
lead us to choose the following adaptive policies for use in a
future experiment, policies that we believed had a good chance
of yielding a significant improvement,

e Adaptive Policy 1 (AP-1): greedily maximize the number
of skills that students learn with each problem assuming the
fit G-SCOPE model.

e Adaptive Policy 2 (AP-2): Selects problems to myopically
maximize the student’s posttest score under a fit G-SCOPE
student model.

These were to compared to the following baselines

e Baseline 1: Instructional policy that selects standard (induc-
tion and refinement) problems, in a reasonable non-adaptive
order, based on spiralling through the curriculum.

e Baseline 2: Instructional policy that selects among a diverse
set of problem types, in a reasonable non-adaptive order,
based on spiralling through the curriculum.

e BKT Mastery Policy (BKT-MP): This is a state-of-the-art
cognitive mastery learning policy used with a Bayesian
Knowledge Tracing model which has been previously
shown to yield substantial improvements in student learning

[6].

Row 1 of Table 1 shows the estimated performance of the
above policies, where each adaptive policy was simulated us-
ing the student model used to derive the policy. Since the
first two policies are non-adaptive, they were not derived us-
ing a student model. We used the G-SCOPE student model
to simulate the performance of these baseline non-adaptive
policies. All evaluations assumed each (simulated) student
completed 40 problems, and we repeated this process with
1,000 simulated students.

Using these off-policy policy performance estimates, the pre-
dicted Cohen’s d effect size of AP-2 vs. Baseline 2 is 3.66
and the predicted effect size of AP-2 vs. Baseline 1 is 4.14,
indicating that the new adaptive policies may yield a large
improvement in robust student learning.

However, in our subsequent experiments there was no signif-
icant difference in the performance of students taught in the
different policies as shown in Row 2 of Table 1.

We now consider the insight we could have obtained by using
REM. We apply REM to our policies by evaluating them on
three models: (1) the G-SCOPE model (which was used to
derive AP-1 and AP-2), (2) the BKT student model (which was
used to derive BKT-MP), and (3) a Deep Knowledge Tracing
(DKT) model [19]. The results are shown in Table 2.

Using the BKT student model, we see that all the policies
appear to have much more similar expected performance than
when using the G-SCOPE student model, though the new
adaptive policies are still expected to be as good or better than
the state-of-the-art BKT mastery policy in either situation, and
an improvement over the non-adaptive policies. Therefore,
were we only to simulate policies under the models used to
derive the policies, we might still expect that the new adaptive
policies would yield improved performance.

The key distinction comes up when we also simulate under
another plausible student model, which was not used to derive
a particular student policy. In contrast to the other student
models, simulating using a Deep Knoweldge Tracing student
model actually predicts that Baseline 1 will yield the highest
expected student learning performance, and be substantially
higher than the predicted performance of the adaptive instruc-
tional policies.5 Since three student models (BKT, G-SCOPE

S5This Deep Knowledge Tracing model was introduced by Piech et
al. [19] after these experiments were conducted, so interestingly, we
could not have done this analysis prior to running our experiment.



Instructional Policies

Baseline 1 Baseline 2 BKT-MP AP-1 AP-2
Direct Model-Based Evaluation Results 5.874+0.90 6.10+0.97 7.03+1.00 7.854+0.98 9.10£0.80
Actual Experimental Results 5.524+2.61 5.14+£322 546+3.0 557£327 493418

Table 1. The first row shows the estimated expected performance of a student when taught under each policy, assuming either the student model used
to derive the policy, or, in the case of the non-adaptive policies, using the estimated G-SCOPE student model. The second row shows the results of our

actual experiment. Note that the posttest was out of sixteen points.

Instructional Policies

Baseline 1  Baseline 2 BKT-MP AP-1 AP-2
Student New Student Model 5.87+0.90 6.104+0.97 N/A 7.85+098 9.10£0.80
Models BKT Student Model 6.46+0.78 6.65+0.95 7.03+1.00 6.824+0.94 7.044+0.96
DKT Student Model 9.89+1.45 8.694+1.82 8.55+2.08 8.314+2.22 858+2.13

Table 2. Robust evaluation matrix showing predictions of the five policies in our experiment according to the new student model as well as the BKT
student model and a DKT student model. Notice that BKT-MP was not simulated on the new student model since they were not exactly compatible due

to a nuance in the way they represent steps.

and DKT) are all seemingly reasonable choices of student
models with similar predictive accuracies (RMSE between
0.41 and 0.44), our robust evaluation matrix suggests that we
should not have been confident that new adaptive policies
would yield a large effect size improvement over non-adaptive
baselines or even necessarily be better than the non-adaptive
policies (thus consistent with the lack of difference in the true
experimental results).

Therefore, in this case REM could have served as a diagnostic
tool to identify that our new proposed adaptive policies might
not yield the significant improvement we hoped for, by ex-
plicitly considering whether this improvement is robust across
many plausible student models.

Case Study 2: Concept Learning

In Rafferty et al. [21], the authors consider three instructional
policies for concept learning. The models are derived under
three different partially observable Markov decision process
(POMDP) student learning models of varying complexity in-
spired from the cognitive science literature: a memoryless
model in which a learner maintains a single potential concept
until evidence contradicts the correctness of this concept, a
discrete model with memory which augments the memoryless
model to prevent the learner from forgetting prior negative
evidence about the potential concepts, and a continuous model
which assigns probabilities to different potential concepts [21].
The model parameters were fit with data the authors collected
from students given a random policy. The performance of a
policy is measured in how long (time in seconds) it takes for
students to learn a series of rules or a concept.

Like REM, the authors first simulate each policy on each of
the three student models, but unlike REM, the authors only
consider models that are used to derive some instructional
policy (and no other student learning models). This is because
the authors are interested in the interaction of student models
with policies derived from student models and what that says
about human learning, rather than using this simulation as an
off-policy policy selection tool to help decide which instruc-
tional policies may offer a benefit over existing benchmarks.

Indeed, Rafferty et al. test all policies with real students. We
reinterpret their results in terms of insights REM would have
offered about the relative expected performance among the
policies.

In the first experiment, the authors find that in simulation, all
three student models agree that the three policies induced by
the POMDPs would enable student to learn the rules faster than
a random policy (i.e., the memoryless, discrete with memory,
and continuous policies do better than the random policy in all
three rows of the robust evaluation matrix). We propose this
should lead a practitioner to believe that these three policies
will likely do better than a random policy when presented
to actual students (if the student models are believed to be
decent). Indeed, in their experiments, the authors found that
all three POMDP policies induced a smaller average time to
mastering the rules than the policy which selects activities
randomly, two of which were statistically significantly faster.

In this situation REM consistently estimated that the adaptive
policies would have higher performance than the random activ-
ity selection policies, under 3 different student models, and this
result was confirmed experimentally. This shows a situation
where REM consistently identified a predicted improvement,
under a variety of student models.

We now consider another example from this work where REM
could have helped predict that a policy would likely not work
well in practice, but evaluating policies only under the models
used to derive that policy would fail to identify this issue.

In their Experiment 3, Rafferty et al. compare various policies
on three concept learning tasks both in simulation (under all
three student models) and in an actual experiment. The follow-
ing result is of most interest to us: when using the continuous
POMDP model to simulate student learning, they find that a
heuristic greedy policy derived from this model—the maxi-
mum information gain policy—does significantly better than
both the random-action-selection policy and the two POMDP
polices derived from other POMDP models. This was esti-
mated to hold in all three concept learning tasks. However,



in the actual experiment with students, the maximum infor-
mation gain policy yields lower student performance than the
random action selection policy and all the POMDP policies for
all three concept learning tasks. This result could have been
detected using REM, as both the memoryless model and the
discrete model with memory estimated that the performance
of the maximum information gain policy would be lower than
the estimated performance of the random-action-selection in-
structional policy in at least one concept learning task. In
this situation REM would have restricted the confidence with
which one could expect the new policy to yield a big improve-
ment in performance.

DISCUSSION

In some cases, REM might result in one being overly-
conservative by not deploying an instructional policy that is
actually worthwhile, but at the end of the day, it is up to each
researcher to decide if they want to try a policy they think
might result in improved student learning, even if they do not
have strong evidence that it will, or if they would rather find a
policy they are confident would result in an improvement. One
can attain such confidence (although not in any statistically
precise sense) if one finds a policy that does very well under
various student models as we saw an example of in Case Study
2. However, as we have emphasized several times, this confi-
dence depends on being convinced that our choice of student
models to use in the matrix was good. As we mentioned, we
do not expect any of these student models to be correct, so
what does it mean for a model to be “good”? A necessary
condition is that such a model should be able to differentiate
between different policies. For example, a model that predicts
students are always in the same state (perhaps determined by
their prior knowledge or pretest scores) and never learn would
not be a good model to use in REM, because it would predict
all instructional policies result in equal student outcomes. One
way to avoid such “bad” models is to avoid models with bad
predictive accuracy; even if high predictive accuracy is not a
good indicator of a model’s ability to suggest good instruc-
tional policies, an especially low predictive accuracy should
be a red flag.

So far we have been discussing how REM can help address the
problem of wrong classes of student models. But notice that
REM can also help address two other related issues that may
arise in educational contexts and certainly did arise in Case
Study 1. First, recall that in the fractions tutor case study, the
off-policy estimation was based on assuming students would
do 40 problems each (i.e., we simulated trajectories of 40
problems). In reality, trajectories will be of varying length due
to a number of factors: some students work faster than others,
some students spend less time working or may be absent on
certain days of our experiment, etc. However, even if we con-
sider the variance in trajectory lengths that existed in our past
data, the evaluation results would be similar. But one thing we
did not consider is that the distribution of trajectory lengths
varies for different instructional policies. For example, stu-
dents who had the Baseline 1 policy, did around 48 problems
on average, whereas for all the other policies, the average was
28 problems or less. This is, at least in part, because Baseline
1 only gives problems of a particular activity type (induction

and refinement), which tended to be the activity type that took
the least amount of time on average. This could explain why
Baseline 1 did as well as the other policies in our experiment;
these students simply had more problems, which could make
up for the lack of diversity or adaptivity of problems. To tackle
this problem, we can consider different generative models of
how many problems students will do given a particular instruc-
tional policy (for example by taking into account how long
problems took students in our past data); we can then use these
various models as different student models (i.e., different rows
in our matrix) and see if any policies robustly do well with
respect to these differences.

The second issue is that the classrooms that we ran this ex-
periment in were very different from the classrooms we had
collected data from previously to fit the models (and hence
policies) used in this experiment. This mismatch in student
population could mean that our student models learned from
students of one population may not generalize to other stu-
dent populations. For example, students in low-performing
schools may have lower learning rates than students in high-
performing schools, even if the model class could accurately
model student learning. To our knowledge, this is an issue
that is not well studied or solved in the education literature.
To tackle the problem of mismatched student populations, we
can fit our various student models to different subsets of our
data corresponding to different student populations (assuming
we have data from multiple student sub-populations), and then
have these different models (of the same model class) form
new rows in our matrix. Interestingly, Clement et al. cast their
work as training models on different student populations (char-
acterized by student’s with certain knowledge graphs) and
seeing how that generalizes to other populations of students
(with different knowledge graphs) [4]; their work would be
an instance of using REM to explore robustness of policies
to different student populations in simulation. Table 3 shows
a hypothetical matrix depicting how REM could potentially
be used to tackle the various issues of general student model
mismatch, varying trajectory lengths, and generalization of
student population in tandem.

We wish to highlight that the case studies we have examined
were retrospective. We hope that future studies will explore
REM’s use in a prospective manner, and how it might be
leveraged to inform instructional design decisions for later
use.

At this point we do not make any universal recommendations
for how to use the robust matrix method to determine which
instructional policy to use in the future. It is possible that one
policy does not consistently do better than all other policies for
every row of the matrix, but that it tends to do better, or that on
average it does better. In this case, should we be confident in
that policy? The answer must be determined on a case-by-case
basis. The matrix might help reveal trends that can help the
researcher determine whether a policy should be deployed or
not. It is not an algorithm that will tell the researcher what to
do; it is a heuristic that can help inform the researcher to make
better decisions.



Policy 1 Policy2 Policy 3 Policy 4

Student Model 1 with Time Model 1 fit to data from Low Performing Students
Student Model 2 with Time Model 1 fit to data from Low Performing Students
Student Model 1 with Time Model 1 fit to data from High Performing Students

Table 3. Hypothetical robust evaluation matrix that incorporates both various student model classes, different generative time models of how many
problems students will do in a fixed time, and models that are fit to different demographics.

CONCLUSION

We have introduced the robust evaluation matrix, a method to
support off-policy policy selection. Interestingly, even though
REM cannot enable the user to accurately assess the impact
of a policy, it can help a researcher determine when a policy
should or should not be deployed. We have shown how REM
could have been used before running our own experiment
to test new adaptive policies to reduce our confidence that
any of the policies we were testing would do better than any
other, and perhaps dissuade us from running the experiment
until we found a better policy. We additionally showed how
prior work [21] has indirectly provided evidence that REM
could potentially be used to help gain confidence that a policy
will actually improve student performance (beyond baseline
policies). This could have implications to the learning at scale
community as personalization is one of the most important
fronts for learning at scale researchers, and as we have seen,
current techniques in policy estimation and policy selection are
not sufficient, even at scale. Moreover, this new method could
prove promising to the reinforcement learning community,
beyond its impact in the domain of education. For ourselves,
we have helped turn hindsight into foresight; we hope this
foresight will guide future researchers towards more rapidly
discovering effective adaptive instructional policies.
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