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Abstract

The relations among various spatial and mathematics skills were assessed in a cross-

sectional study of 854 children from kindergarten, third, and sixth grades (i.e., 5 to 13 years of 

age).  Children completed a battery of spatial mathematics tests and their scores were submitted 

to exploratory factor analyses both within and across domains.  In the within domain analyses, 

all of the measures formed single factors at each age, suggesting consistent, unitary structures 

across this age range.  Yet, as in previous work, the 2 domains were highly correlated, both in 

terms of overall composite score and pairwise comparisons of individual tasks.  When both 

spatial and mathematics scores were submitted to the same factor analysis, the 2 domain specific 

factors again emerged, but there also were significant cross-domain factor loadings that varied 

with age.   Multivariate regressions replicated the factor analysis and further revealed that mental 

rotation was the best predictor of mathematical performance in kindergarten, and visual-spatial 

working memory was the best predictor of mathematical performance in sixth grade.  The 

mathematical tasks that predicted the most variance in spatial skill were place value (K, 3rd, 6th), 

word problems (3rd, 6th), calculation (K), fraction concepts (3rd), and algebra (6th).  Thus, 

although spatial skill and mathematics each have strong internal structures, they also share 

significant overlap, and have particularly strong cross-domain relations for certain tasks.

Keywords: spatial cognition, mathematics, cognitive development, elementary age

Supplemental materials: http://dx.doi.org/10/1037/xge0000182.supp 
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Separate But Correlated:  

The Latent Structure of Space and Mathematics Across Development 

Children and adults who perform better on spatial tasks also perform better on tests of 

mathematical ability (Burnett, Lane, & Dratt, 1979; Casey, Nuttall, & Pezaris, 2001; Casey, 

Nuttall, Pezaris, & Benbow, 1995; Delgado & Prieto, 2004; Geary, Saults, Liu, & Hoard, 2000; 

Lubinski & Benbow, 1992; Robinson, Abbott, Berninger, & Busse, 1996). Some theorists have 

argued that the two are related because mathematics, along with other complex concepts, is 

mentally represented in a spatial format (Barsalou, 2008; Lakoff & Nunez, 2000).  Others have 

shown that similar neural circuits are activated when people process spatial and numerical 

information (Hubbard, Piazza, Pine, & Dehaene, 2005; Walsh, 2003), and there is behavioral 

evidence the two are connected (e.g., Dehaene, Bossini, & Giraux, 1993; McKenzie, Bull, & 

Gray, 2003). Thus there is reason to think the relation is based on shared processing. 

But what shared processing might this be?  Both domains are comprised of multiple skills 

and concepts, so when we say space and mathematics are related, what kind of spatial skill do we 

mean?  What kind of mathematics?  Indeed, several studies have reported that the relations 

between spatial skill and mathematics shift depending on the demands of particular tasks 

(Caviola, Mammarella, Cornoldi, & Lucangeli, 2012; Robert & LeFevre, 2013; Trbovich & 

LeFevre, 2003), suggesting these cross-domain connections may be more specific than is 

currently understood. 
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The present study addressed these issues by measuring a range of spatial and mathematics 

skills.  Like other studies, we examined the intercorrelations of performance on these tasks, but 

we also used factor analysis to probe the latent structures that emerge when performance in both 

domains is analyzed together.  Performance was measured in three age groups that span the 

elementary school years, thereby allowing us to examine age-related changes in these structures. 

Within-Domain Structure 

As in many areas of human performance, psychologists have studied the within-domain 

structures of spatial skill and mathematics to determine whether these are unitary or 

multidimensional constructs.  One approach has been to use exploratory factor analysis to 

identify valid subdivisions within domains.  However, the results of these within-domain 

analyses are complex and researchers have still have not reached consensus (see Mix & Cheng, 

2012, for a review).  Another approach has been to use theory-driven divisions to group tasks 

within each domain.  However, although plausible, the psychological validity of these 

hypothesized structures have not been confirmed using factor analytic methods and are 

themselves the topic of much debate.  Although this backdrop does not offer clear predictions 

regarding the structural underpinnings for the nexus of spatial thought and mathematics, it is the 

starting point for examining cross-domain structure, so we begin with a brief review. 

The Structure of Spatial Thought 

The dimensionality of spatial thought has been the subject of controversy for some time.  

Early factor analysts were unable to establish the existence of a spatial factor distinct from 

general intelligence (see Smith, 1964, for a thorough review) and even this broad division has 

been contentious (Carroll, 1993; Lohman, 1988; Miyaki et al., 2001).  At the other end of the 
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spectrum, it has been argued that spatial skill is not only distinct, but can be further divided into 

multiple subfactors (Carroll, 1993; Linn & Peterson, 1985; Höffler, 2010; Voyer, Voyer, & 

Bryden, 1995).  However, these divisions do not appear to be clear-cut or stable, as there is a 

great deal of overlap and noise around the category boundaries, with divisions shifting as 

specific tasks are included or excluded (Carroll, 1993; Höffler, 2010; Lohman, 1988; Miyake et 

al., 2001).  Furthermore, researchers have disagreed about the number of independent factors, 

what comprises each factor, and what to call them (Carroll, 1993; Höffler, 2010; Kelley, 1928; 

Lohman, 1979; Michael, Guilford, Fruchter & Zimmerman, 1957; Thurstone, 1944).  For 

example, some have argued that visual spatial working memory (VSWM) is an independent 

subfactor (Ackerman, Beier, & Boyle, 2005; Shah & Miyake, 1996), whereas others have 

questioned whether working memory is itself distinct from executive control, let alone divisible 

into modality-specific subabilities (i.e., verbal vs. visuo-spatial; Hambrick, Kane, & Engle, 

2005).  Still others have argued that spatial skill, VSWM, and general intelligence are so tightly 

interrelated that each might be viewed as a stand-in for the others, indicating that intelligence is, 

to a large extent, the ability to spatially manipulate mental models (e.g., Lohman, 1996).  Taken 

together, these studies fail to yield a clear picture of the structure of spatial thought, although 

they suggest some intriguing possibilities. 

It has been argued that one reason the existing factor analyses were inconclusive is that 

the structures they probed were not theory-driven (Uttal et al., 2013).  There are many well 

known theoretical distinctions in the spatial literature, including categorical versus coordinate 

representations of space (e.g., Kosslyn et al., 1989), near versus far perceptions of space (e.g., 

Cowey, Small & Ellis, 1994), global versus local processing (e.g., Navon, 1977), and allocentric 
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versus egocentric perspectives (e.g., Kesner, Farnsworth, & DiMattia, 1989), all of which derive 

support from behavioral and neurological evidence.  More recently, a novel typology has been 

proposed based on two theoretical dimensions along which spatial tasks can differ (i.e., static-

dynamic and intrinsic-extrinsic; Newcombe & Shipley, 2015; Uttal et al., 2013).  These theory-

driven distinctions offer an alternative approach to parsing the landscape of spatial skills.  Still, it 

is an open question whether these distinctions mirror the latent ability structure underlying 

spatial performance, as one might demonstrate in a confirmatory factor analysis.  That is not to 

say these distinctions do not reflect latent structures, but rather, that the dimensionality of spatial 

skill remains unclear.  Indeed, the nature of these theoretical distinctions is still debated, with 

issues of measurement, context-specificity, and order of processing (e.g., parallel vs. sequential) 

yet in flux (see, e.g., Burgess, 2006; Lourenco & Longo, 2009). 

All in all, with respect to the relation between spatial skill and mathematics, these studies 

seem to raise more questions than they answer.  It is hard to know whether the cross-domain 

relation that has been observed repeatedly is based on general overlap involving the entire 

constellation of spatial skills or specific overlap involving one or more of the proposed 

subfactors.  As we will see, the situation is further complicated by similar uncertainties in terms 

of mathematical thought. 

The Structure of Mathematical Thought 

The history of attempts to identify the substructures of mathematical thought via factor 

analysis parallels that for spatial skill.  Investigators initially reported that mathematics skill was 

indistinguishable from general intelligence, and thus could not be considered a separate factor 

(Fouracre, 1926; Spearman & Jones, 1950; Werdelin, 1958; Wilson, 1933).  However, evidence 
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subsequently emerged to reveal a cluster of tasks that formed a uniquely mathematical factor 

comprised of arithmetic, procedural fluency, and numeracy (e.g., Barakat, 1951; Holzinger & 

Harman, 1938; Wrigley, 1958).  A third factor was related to success on more conceptual math 

tasks, such as geometry and algebra (Barakat, 1951; Holzinger & Swineford, 1946; Werdelin, 

1958; Wrigley, 1958).  This distinction between procedural and conceptual performance has 

since had a strong influence on research related to mathematics education and mathematics 

disability and continues to be a source of debate (Baroody, Feil, & Johnson, 2005; Geary, 1993; 

Hiebert & LeFevre, 1986; Schneider, Rittle-Johnson, & Star, 2011; Star, 2005).  It is interesting 

to note that the conceptual factor was related to spatial visualization, offering an indication of at 

least one specific point of contact between domains. 

Aside from the results of these factor analyses, many other theory- or task-driven 

divisions have been proposed for mathematics.  For example, standards for mathematics 

instruction generally divide concepts and tasks into strands or topics, such as whole number 

concepts, operations/algebra, measurement, fractions, ratios, and geometry (e.g., Common Core 

State Standards for Mathematics [CCSS-M], National Council of Teachers of Mathematics 

[NCTM] Standards).  These topics are further subdivided into specific tasks, such as the third 

grade content standard: "Understand a fraction as a number on the number line; represent a 

fraction on a number line diagram" (CCSS-M, 3.NF.A.2).  Just as for spatial skills, these 

mathematical divisions are mostly based on apparent similarities in content or operations with 

support from behavioral and neurological experiments, yet the dimensionality of mathematics 

also remains debated and the relations between these theory-driven distinctions and the latent 

structures underlying mathematics performance has not been tested directly, to our knowledge.  
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Potential Cross-Domain Relations 

Our main question is whether all or only certain tasks within the domains of space and 

mathematics share processing, hence clarifying the latent structure that underlies their well-

established correlation.  The within-domain analyses offer hints as to ways this structure might 

take shape.  For example, if the typology proposed by Uttal et al. (2013) corresponds to 

measurable differences in these latent structures, then it is possible only some spatial subtypes 

will relate to mathematics performance.  Similarly, it is possible only some mathematical 

subtypes (e.g., numeracy, procedural knowledge, problem solving) will relate to spatial skill.  

However, there are many other possible outcomes.  One is that specific abilities will share 

processing even if the latent structure of the tasks within each domain is unitary.  For example, 

even if all the spatial tasks form a single stable factor with no apparent subdivisions, specific 

tasks such as mental rotation or visual spatial working memory (VSWM) could exhibit unique 

shared processing with mathematics.  Another possible outcome is that both spatial skill and 

mathematics will form separate, unitary factors that are correlated but for which no specific tasks 

cross-load.  In this case, one might argue that the previously established relation is based on 

more general shared processing, such as working memory or attention.  A third possibility is that 

performance in the two domains overlaps so much that all measures load onto a single factor, 

suggesting that spatial and mathematical thought are so tightly linked they cannot be considered 

separate.  Finally, there may be multiple shared processes, leading to a number of separate mixed 

domain factors, each of which is comprised of several spatial and mathematics tasks.  The reason 

we take an exploratory approach is that the particular constellation of factor loadings is so 

difficult to predict.  Still, we can make some reasonable guesses as to what the underlying shared 
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processes might be, based on the demands of various mathematics and spatial tasks and the 

outcomes of previous research.  In the following sections, we focus on three strong possibilities: 

(1) Spatial Visualization, (2) Form Perception, and (3) Spatial Scaling. 

Spatial Visualization 

Spatial visualization is the ability to imagine and mentally manipulate figures or objects 

in space.  This skill could play a role in mathematics by helping children ground concepts or 

represent a problem space.  For example, when children interpret a word problem, they may 

build a mental model to represent the problem elements and relations (e.g., Huttenlocher, Jordan 

& Levine, 1994), much as they do when they are reading a story (Glenberg, Brown & Levin, 

2007).  Spatially grounded mental models may also support the representation of complex 

mathematical relations, such as the hierarchical, nested structure of multidigit numbers (Laski et 

al., 2013; Thompson, Nuerk, Moeller, & Cohen Kadosh, 2013) or the part-whole relations 

represented in rational numbers (Matthews, Chesney, & McNeil, 2014).  This view bears some 

relation to the notion that people ground symbolic and abstract thought in bodily movement 

through space (e.g., Barsalou, 2008; Lakoff, & Nunez, 2000), and thus suggests there may be 

particularly strong connections between spatial tasks that are based on movement and relative 

positions in space, such as perspective-taking, map reading, block design, and mental rotation, 

and mathematics tasks with relatively complex conceptualization requirements, such as 

interpreting word problems, comprehending place value, and fractions. 

Form Perception 

Form perception is the ability to recognize shapes and tell them apart, distinguish shapes 

from their backgrounds, and decompose them into parts.  This skill could be related to 



!  11

mathematics in terms of its symbol reading demands.  When children read mathematical 

symbols, they must make fine spatial discriminations, such as detecting the difference between a 

plus sign (+) and a minus sign (-), or noticing that 126 is different from 162 because the positions 

of "6" and "2" have shifted.  Research has shown that adults are sensitive to these spatial 

relations in written mathematics and their performance can be disrupted by subtle spatial shifts 

(Landy & Goldstone, 2007, 2010).  This shared processing might explain, at least partially, the 

correlations between reading and mathematics performance that have previously been attributed 

to semantics (Geary, 1993; Krajewski & Schneider, 2009).  Although this correlation may reflect 

a strictly verbal component of mathematics, it might also reflect the basic visuospatial 

components of reading, such as form perception and contrast sensitivity (e.g., Lovegrove et al., 

1982), that are also needed for reading and writing mathematical symbols.  Such shared 

processing could be evident in mathematics tasks that require attention to subtle spatial relations 

in symbolic notation, such as multistep calculation, missing term problems, algebra, and 

interpreting charts and graphs, as well as spatial tasks that involve reproducing spatial locations 

and forms, such as VSWM, map reading, and figure copying.  Consistent with this proposal, 

recent studies have found that the relations between VSWM and mathematics shift depending on 

the symbol reading demands of particular tasks (e.g., addition with carrying is related to VSWM 

in elementary students, but addition without carrying is not; Caviola et al., 2012). 

Spatial Scaling 

A third possible connection could involve spatial scaling—the ability to distinguish 

absolute and relative distances, and recognize equivalence across different spatial scales.  This 

ability has been linked to numeracy and symbol grounding in mathematics (Newcombe, Levine 
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& Mix, 2016), so it is a strong candidate for cross-domain overlap with mathematics.  For 

example, the ability to apprehend and represent spatial extent could contribute to development of 

the mental number line (e.g., DeHaene et al., 1993), correct placement of written numerals on a 

physical number line (e.g., Siegler & Opfer, 2003), and ordinal comparisons between either 

discrete or continuous physical quantities (e.g., Halberda & Feigenson, 2008), or between written 

numerals (e.g., Mix, Prather, Smith & Stockton, 2014).  If so, we might expect to find especially 

strong connections between mathematics tasks that focus on number meaning, such as number 

line estimation, and spatial tasks that require attention to relative distance or scaling, such as map 

reading (as some have already shown, see Barth & Paladino, 2011; Slusser, Santiago, & Barth, 

2013). 

Developmental Changes 

Another consideration in evaluating the common structures underlying spatial skill and 

mathematics is whether these structures are stable across development.  Although research has 

shown that spatial skill and mathematics are related throughout childhood and into adulthood, 

few studies have compared age groups on the same tasks to see whether the strength or quality of 

these relations changes (but see LeFevre et al., 2013, for evidence from a longitudinal approach), 

and none have examined task-specific crossdomain relations across age.  Given that there are 

several distinct ways in which spatial tasks and mathematics tasks might share processing (as 

outlined above), it is important to examine whether the patterns of shared processing remain 

constant. 

One reason major qualitative shifts could occur is that there are changes in mathematics 

content as children progress through school.  For example, the shift from symbol grounding for 
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number in the early grades to multistep equation solving in middle school might be reflected in 

strong relations with spatial scaling or mental rotation among younger children that are replaced 

by equally strong relations with visuospatial working memory and form perception among older 

children.  Alternatively, qualitative shifts might take place depending on whether a task is novel 

or challenging.  Some investigators have suggested that spatial skills are important for 

comprehending new mathematics content but become less integral once tasks are mastered or 

become automatic (e.g., Ackerman, 1988; Uttal & Cohen, 2012).  Perhaps there is a 

developmental cycling wherein spatial skills are tightly linked to mathematics at each age level, 

but only with the specific mathematics tasks that are newly introduced at each age. 

Even if the qualitative pattern of relations among spatial skills and mathematics is 

constant across age, there could be age-related changes in strength.  Perhaps several specific 

spatial skills are weakly associated with mathematics at first, but these relations become more 

tightly connected over development (e.g., as the demands of forming complex mental models for 

mathematical problems and making distinctions among mathematical symbols increases).  Or 

there could be strong relations in early childhood that gradually fade by middle school age as the 

demands of mathematics tasks shift and become more proceduralized.  To illustrate, research 

using dual-task interference with adults showed that phonological, but not visuospatial 

interference affected performance (Logie, Gihooly, & Wynn, 1994), whereas the mathematics 

performance of 6-year-olds was strongly affected by visuospatial, but not phonological 

disruptions (McKenzie et al., 2003).  In 9-year-olds, performance was affected by disruptions in 

both (McKenzie et al., 2003). Taken together, these studies provide evidence for at least one such 
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developmental shift—in this case from a strong visuospatial/mathematics link in early childhood 

to a less strong and finally absent link in adulthood. 

Little is known about these developmental patterns because the majority of related research 

has focused on adolescence and adulthood.  Of the relatively few studies with children, most 

have focused on VSWM.  For example, we know that strong VSWM is related to superior 

performance on counting tasks (Kyttälä, Aunio, Lehto, Van Luit, & Hautamaki, 2003; LeFevre et 

al., 2013), number line estimation (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; 

Thompson et al., 2013), and nonverbal problem solving (LeFevre et al., 2010; Rasmussen & 

Bisanz, 2005), as well as better overall math performance (Alloway & Passolunghi, 2011; 

Dulaney, 2014; Gathercole & Pickering, 2000; Geary, 2013; Holmes, Adams & Hamilton, 2008; 

Laski et al., 2013; Li & Geary, 2013; Meyer, Salimpoor, Wu, Geary, & Menon, 2010; Raghubar, 

Barnes & Hecht, 2010).  In terms of other spatial skills, there is emerging but limited research 

demonstrating correlations with mathematics outcomes in children.  These include mental 

transformation (Gunderson, Ramirez, Beilock & Levine, 2012), mental rotation (Carr, Alexeev, 

Horan, Barned, & Wang, 2015; LeFevre et al., 2013; Kyttälä et al., 2003), block design (Johnson, 

1998; Markey, 2010), and spatial relations (Mazzocco & Myers, 2003). 

Though these studies provide promising evidence for relations between mathematics and a 

few specific spatial skills in childhood, the nature and developmental course of these relations is 

not yet firmly established.  Indeed, some research has failed to show these effects (e.g., Carr, 

Steiner, Kyser & Biddlecomb, 2008), so the relations themselves (other than VSWM perhaps) 

must still be confirmed.  Also, because the spatial skills in these studies were either tested in 

isolation or combined into single composite measures, it is hard to know whether the effects are 
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general or specific.  Furthermore, the literature on spatial development has identified a number of 

key abilities that have not yet been studied with respect to mathematics, such as perspective-

taking, map reading, figure-ground processing, and navigation (e.g., Cornell & Hay, 1984; 

Huttenlocher & Presson, 1973; Liben, 2001; Marzolf & DeLoache, 1994; Newcombe & 

Huttenlocher, 1992; Reiser, Garing, & Young, 1994; Uttal, 2000; Shusterman, Lee, & Spelke, 

2008).  Finally, as noted above, the existing studies tend to use a single spatial task, a single age 

group, and composite mathematics scores, making it difficult to discern process-level 

connections that may unfold over developmental time.  To achieve a more comprehensive picture 

of how spatial skills and mathematics relate, a large-scale study is needed that includes several 

age groups and a broad range of subtests within each domain.  The present study addresses that 

gap. 

The Present Study 

 In this study, we collected multiple measures of spatial and mathematics skill in three age 

groups (kindergarten, third, and sixth grades).  We then used these measures to evaluate the latent 

structures underlying performance using factor analysis and multiple regression.  The measures 

were chosen to represent a broad sample of skills within the two domains (see Measures). 

Although we did not attempt to test any of the particular subrelations that have been claimed 

within each domain, we did include tasks that allowed us to tap into the three potential 

mechanisms by which spatial skill and mathematics might be related, as outlined above (i.e., 

spatial visualization, form perception, and spatial scaling). 

Method 
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Participants.  A total of 854 children participated.  The sample was drawn from 33 

schools serving a range of rural, suburban, and urban communities in the Midwestern United 

States (nine communities).  The average free/reduced lunch rate across the nine communities was 

40% (range = 0%-98%). Children's parents were contacted through their schools and only 

children whose parents signed a consent form approved by the institutional review board were 

tested. Out of 3749 children whose parents were contacted across 33 schools, a total of 952 had 

parents who gave consent (i.e., 25%).  Of these, 98 children were excluded because (a) tests were 

missing due to student absences, children who declined to participate, or schools that declined to 

participate after consents were turned in (n = 26), (b) tests were administered incorrectly or not 

recorded due to experimenter error (n = 68), or (c) children were part of a special population 

(English language learners, special education students, etc.) (n = 4).  The final sample of 854 

children was divided into three age groups: kindergarten (n = 275, 131 boys, mean age = 6.04, 

SD = .40), third grade (n = 291, 142 boys, mean age = 9.04 years, SD = .41) and sixth grade (n = 

288, 131 boys, mean age =11.74 years, SD = .44).  

Procedure.  Children completed a battery of up to 15 tests (depending on age) that 

measured spatial skills, mathematics, and vocabulary (See Table S1 in online supplemental 

material).  Children were tested in three or four 1-hr sessions (depending on age) that took place 

over the course of two weeks.  Some tests were administered in groups—either small groups (n = 

4-6) for kindergarten and third grade students, or entire classes (n = 25-30) for sixth grade 

students. Other tests were administered individually. (Details provided below in the Measures 

section.)  In the kindergarten and third grade group tests, screens were placed between students 

to ensure independent work.  The test order was blocked and counterbalanced by individual 
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versus group administration.  Further, the order of the tests within each block varied randomly. 

Children in all three grades received a decorated folder as a reward for participation. 

INSERT TABLE 1 HERE 

Measures.  Our rationale for choosing measures was empirical, theoretical, and 

developmental.  We first chose a range of tasks that represented the various classes of spatial 

ability identified in previous factor analyses (Carroll, 1993; Höffler, 2010; Linn & Peterson, 

1985; Voyer et al., 1995), as well as Uttal et al.’s (2013) more recent typology.  We further 

ensured that specific tasks with previous evidence of a connection to mathematics were included 

(e.g., mental rotation, visuospatial working memory, figure copying), as well as several others 

for which the connection to mathematics had not yet been tested (e.g., perspective-taking, map 

reading). 

Several of our choices were based on theoretical predictions about the potential shared 

processing between spatial skill and mathematics.  First, we reasoned that if there is a lifelong 

relation between mathematics and spatial skill that predicts success in STEM careers, it must 

extend beyond tasks with an obvious spatial component, such as recognizing shapes or 

comparing lengths.  So instead of targeting, for example, geometry in the early grades, we 

focused on core symbolic skills such as interpreting numeric symbols or manipulating symbols 

to perform operations and mathematical reasoning, such as solving word problems.  We did, 

however, include number line estimation in all three grades because of its symbol grounding 

components (e.g., mapping multidigit numerals to ordinal meanings) and the strong relation of 

this task to mathematical achievement (e.g., Geary, 2011; Schneider, Grabner & Paetsch, 2009). 
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Finally, there were developmental considerations.  We included tasks that, insofar as 

possible, tapped the same conceptual skill across the grades but also were age-appropriate.  For 

example, whole number place value is a common skill targeted by kindergarten and third grade 

mathematics instruction.  Most 6th grade students have mastered whole number place value, so 

to measure a comparable skill, we included an age-appropriate decimal place value test 

(Comprehensive Mathematical Abilities Test [CMAT] Rational Numbers).  We also pilot-tested 

all of the measures to ensure there were enough easy and challenging items at each age level to 

provide an even distribution of performance, and added items in some instances to manipulate 

difficulty (e.g., we added items with larger scale differences and rotated targets to increase 

difficulty in the map reading task).  Finally, although we did not include geometry or 

measurement in the kindergarten and third grade test batteries because this content is mostly 

focused on shapes and sizes (see CCSS-M), we did add geometry and graphing/data subtests in 

sixth grade, at which point the content involves more mathematical reasoning. 

Although our goal was to survey a broad range of skills in both spatial reasoning and 

mathematics, we were limited in the number of skills we could include because of budgetary and 

practical constraints.  One constraint was that, to achieve adequate statistical power, the sample 

size had to increase by 11 children per grade level with each additional measure.  Also, more 

measures required longer test times per child, which was an added cost.  Longer testing times 

were also an obstacle to recruitment and retention because of concerns about missed instructional 

time among parents and school personnel.  Thus, it was not possible to include every measure of 

potential interest. 
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The procedures and materials for the specific measures are described below, as well as 

the reliabilities for each grade.  Some measures were standardized tests and have published 

reliabilities that we report here.  For the others, we computed reliabilities from our own data 

using Cronbach's alpha. 

INSERT FIGURE 1 ABOUT HERE 

Mental Rotation (Adapted From Neuberger, Jansen, Heil, & Quaiser-Pohl, 2011, and 

Peters et al., 1995).  Two variations of Vandenberg and Kuse's (1978) mental rotation task were 

used.  In the kindergarten/third grade version, small groups of children were shown four figures 

(i.e., two-dimensional forms based on capital letters) and asked to indicate which two were the 

same as the target.  The two matching items could be rotated in the picture plane to overlap the 

target, whereas the two foils could not because they were mirror images of the target.  In 

kindergarten and third grade, the task was introduced with four practice items presented on a 

laptop screen.  Children received feedback on the correctness of their choices, and also were 

shown animations with the correct answers rotating to match the target.  Following the practice 

session, children completed the 16 test items in a paper booklet (kindergarten α = .72; third grade 

α = .87). The sixth grade version was the same, except that children were shown 12 items 

consisting of perspective line drawings of three-dimensional block constructions, two of which 

could be rotated in the picture plane to match the target, and the practice trials were not presented 

on a laptop screen (α = .79).  Children received credit for answering each item correctly only if 

both matches were identified. 

          Visual Spatial Working Memory (Adapted From Kaufman & Kaufman, 1983). On 

each test trial, children were shown a 14 cm x 21.5 cm grid that was divided into squares (e.g., 3 
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x 3, 4 x 3, etc.), with drawings of objects displayed at random positions within the grid.  Item 

difficulty was manipulated by adding divisions to the grid (up to 5 x 5) and adding objects (up to 

nine).  On each trial, the stimulus display was left in full view for five seconds and then it was 

removed and children indicated where the drawings had appeared by marking an "X" in the 

previously filled positions on a blank grid of the same size and shape.  Note that the grids were 

marked with lines for response items, but not the stimulus items. Stimulus displays were 

presented on a laptop computer and children made their responses in individual, paper test 

booklets.  The test was introduced with two (sixth grade) or three (kindergarten and third grade) 

practice items for which children received feedback on the correctness of their answers and were 

allowed to compare their responses to the stimulus display. The test trials (n = 19 for 

kindergarten, n = 15 for third grade, n = 29 for sixth grade) began immediately after the final 

practice trial.  The test was group administered.  Because we modified the test significantly and 

the publication date was several decades ago, we computed reliabilities based on our own data (α 

= .74, .63, and .82 for kindergarten, third grade, and sixth grade, respectively). 

Test of Visual Motor Integration (6th ed.; VMI; Beery & Beery, 2010).  On each trial, 

children copied a line drawing of a geometric shape on a blank sheet of paper.  There were 18-24 

trials, depending on the age of the child, over which the figures became increasingly complex. 

We administered the test in small groups.  The reliability of the VMI based on a split-half 

correlation (reported in the test manual) was .93.   

Block Design (Wechsler Intelligence Scale for Children — Fourth Edition; WISC-

IV; Wechsler et al., 2004).  On each trial, children were shown a printed figure comprised of 

white and red sections, and they produced a matching figure using small cubes with red and 
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white sides.  The test was individually administered following the instructions in the WISC-IV 

manual.  Items ranged in difficulty and children completed different numbers of items depending 

on their basal and ceiling performance. The reliability coefficient reported in the WISC-IV 

manual for the Block Design subtest is between .83 and .87 depending on age group.   

INSERT FIGURE 2 ABOUT HERE 

        Map Reading (Adapted From Liben & Downs, 1989).  Kindergarten and third grade 

students completed 14 test trials in which they were first shown a full color three-dimensional 

model town with buildings, roads, a river, and trees.  The model was 10- by 10-in. in area and the 

tallest structure was 0.50 in. high.  The sixth grade task was similar except the locations were 

presented on a full-color screenshots of three-dimensional virtual models printed on 8-1/2 X 11 

sheets of paper (8 images total, one per trial).  On each trial, a location was identified on the 

model or photograph, and children marked the same location on a two-dimensional scale map 

(six X 6 in.).  Item difficulty was manipulated by varying the scale ratio of the map (1:1, 1:2.5) 

and degree of rotation between the photograph or model, and the map (0 to 180).  The items were 

ordered from easiest to most difficult based on the results of pilot-testing.  Feedback was given 

on the first three test questions to ensure that children understood the task.  Children in the 

younger age groups were tested individually, but sixth grade students completed the test in 

groups. The reliability of this task was kindergarten α =.56; third grade α =.72; sixth grade α =.

57. 

INSERT FIGURE 3 ABOUT HERE 

      Perspective Taking  (Frick, Mohring & Newcombe, 2014; Hegarty & Waller, 2004; 

Kozhevnikov & Hegarty, 2001).  The two perspective taking tasks required children to imagine 
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a scene from different points of view.  In the kindergarten/third grade version (adapted from 

Frick et al., 2014), children saw a set of Playmobil figures in a particular arrangement. Then, 

they were shown four pictures and asked to indicate which picture was taken from each 

character's perspective. Items varied in difficulty based on the number of objects in the pictures 

and the angles of view. The 27 test questions were preceded by 4 practice items with feedback. 

The reliability of this test was kindergarten α = .56; third-grade α =.87. The sixth-grade version 

(adapted from Kozhevnikov & Hegarty, 2001) was similar. Children were shown six to eight 

objects arranged in a circle. They were asked to imagine standing next to one object while 

directly facing another object, and then draw an arrow toward a third object to indicate their 

angle of view from this perspective.  After two practice items with feedback, they completed the 

12 test items. Responses were scored based on the number of degrees they deviated from the 

correct angle on each item. The reliability of this test for the sixth grade students was α = .84. 

Place Value.  We assessed place value concepts in kindergarten and third-grade students 

using a set of 20 items that required children to compare, order, interpret multidigit numerals 

(e.g., Which number is in the ones place?"), as well as match multi-digit numerals to their 

expanded notation equivalents (342 = 300 + 40 + 2).  Reliability on this experimenter-

constructed measure was α =.79 at kindergarten and α =.79 at third grade. Similar concepts were 

assessed in sixth-grade students on the Rational Numbers subtest (CMAT) (α =.94 reported for 

12-year-olds in test manual).  As in the lower grades, children were asked to compare, order, and 

interpret written numbers, but these included a mixture of multidigit numerals, fractions, and 

decimals. 



!  23

 Word Problems.  For kindergarten and third grade students, we tested children's problem 

solving ability using 12 word problems from the Test of Early Mathematics Ability-Third Edition 

(TEMA-3, Ginsburg & Baroody, 2003) (kindergarten α =.70; third grade α =.63).  The TEMA-3 

is a test of numerical skills, such as cardinality, calculation, and commutativity.  The test was 

individually administered to children following the instructions in the test manual.  Although 

children completed the entire TEMA-3 for use in another set of analyses, we analyzed only their 

performance on word problems here.  To measure performance on word problems among sixth-

grade students, we used the Problem Solving subtest from the CMAT (α =.89 reported for 12-

year-olds in test manual). 

Calculation. To measure calculation, we used a group-administered test consisting of 

12-28 items with age-appropriate arithmetic problems (kindergarten: n = 16, α = .76; third grade: 

n = 12, α = .69; sixth grade: n = 28, α = .77).  In kindergarten, the problems consisted of one- to 

four digit whole number addition and subtraction problems.  The third-grade version also had 

one- to four digit whole number addition and subtraction problems, but also included four whole 

number multiplication and division problems (one to three digits).  The sixth-grade calculation 

test consisted of 28 items that sampled from all four operations.  Sixteen of these items used 

whole numbers up to five digits, and 12 of the items used decimals.  

 Missing Term Problems/Algebra.  We analyzed children's performance on missing term 

problems as a separate measure because previous research suggested a causal relation between 

spatial skill and performance on this particular problem type (Cheng & Mix, 2014).  In missing 

term problems, children find the solution to a calculation problem where the missing value is not 

the sum or difference (e.g., X + 9 = 12).   Only kindergarten and third-grade students completed 
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these problems because they are not challenging for most sixth-grade students (n = 8 items, 

kindergarten: α = .61; third grade: α =.71).  However, we used the Algebra subtest from the 

CMAT to measure a similar mathematical ability in these older students (although clearly, 

algebra has additional components and cognitive demands).  The CMAT is standardized for the 

age range 7 to 19 years of age and was administered in groups (n = 10-25).  The reliability for 

the CMAT Algebra subtest was reported in the test manual as α =.88 for 12-year-olds. 

Number Line Estimation (Booth & Siegler, 2006; Siegler & Opfer, 2003).  Children 

were tested in groups of four to six.  They were first shown a line with a numeral at each end 

(e.g., 0 and 100).  Then they were shown a stimulus card with another written numeral and asked 

to mark where it would go on the number line.  To introduce the task, the experimenter asked 

children to mark the approximate positions for “small” and “big” numbers, and ensured their 

responses were relatively correct, based on left-to-right order.  They did not, however, provide 

feedback about the correct positions in terms of numerical magnitude.  The particular numbers at 

the number line endpoints, and the range of stimulus values in between, varied by age group.  

Specifically, kindergarteners placed the numerals 4, 17, 33, 48, 57, 72 and 96 on a 0-to-100 

number line (even-odd reliability: r  = 0.37); third grade students placed 3, 103, 158, 240, 297, 

346, 391, 907 on a 0-to-1000 number line (even-odd reliability: r  = .32); and sixth-grade 

students placed the following on a 0-to-100,000 number line: 25,000; 61,000; 49,000; 5,000; 

11,000; 2,000; 15,000; 73,000; 8,000; 94,000 (even-odd reliability: r  = .56).   Although these 

reliabilities were relatively low, related work shows linear R2 values for subsets of number line 

estimates vary widely (see Young & Opfer, 2011).  Also, when we computed the reliabilities 

using error rate instead of linearity, they were well above conventionally accepted levels 
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(kindergarten α =.74, third grade: α =.87, sixth grade: α =. 86).  In our analyses, we focused on 

linearity because this variable captures internally consistent placements (i.e., sets or responses 

that were linear relative to each other even if they were not mapped onto the number line itself) 

that might be missed if absolute distance to the target were used (i.e., if all the responses were 

skewed to the high or low end of the number line but were nonetheless, increasing linearly); 

however, we also investigated whether task relations changed when error rates were used instead. 

Fractions.  Fraction concepts are typically introduced in third grade and become a major 

part of the mathematics curriculum by sixth grade (e.g., CCSS-M).  For this reason, we did not 

include fraction items in the kindergarten test battery.  In third grade, we included four items that 

tested fraction equivalence and simple calculation with common denominators (α =.56). We used 

two measures to estimate sixth-grade students' understanding of fractions.  One measure was a 

set of 22 items that tested comparisons, calculation with and without common denominators, and 

calculation with mixed numbers (α =.75).  The second measure was a version of number line 

estimation task in which the number line was anchored with 0 and 1, and the quantities to be 

placed were all fractions (i.e., 1/4, 1/19, 2/3, 7/9, 1/7, 3/8, 5/6, 4/7, 12/13, 1/2; split half 

reliability for linearity: r = .40, α for error rate =.78; e.g., Fazio, Bailey, Thompson, & Siegler, 

2014).  These two measures (fraction concepts and fraction number line) were entered separately 

so that we could better evaluate the relations involving number line estimation. 

Supplemental Sixth Grade Tests.  The breadth of mathematics skills increases markedly 

in middle school and it seemed possible that skills we had not measured in younger children 

might be related to spatial skill in sixth grade.  We therefore assessed sixth graders' performance 

on two subtests from the CMAT— Charts and Graphs (α =.91) and Geometry (α =.77) — to tap 
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those additional skills.  In the Charts and Graphs subtest, students are shown data in graphic form 

and asked questions that require them to interpret the information (e.g., when shown a bar graph 

with the number of packages mailed each day for a week, students are asked how many packages 

were mailed on Wednesday, and whether more packages were mailed on Friday or Monday).  For 

Geometry, they were asked to identify geometric forms (angles, lines, solids, etc.), solve for 

unknown angles, calculate perimeter, area, and volume, and so forth. 

Verbal Ability.  To estimate and control for children's verbal skill, we used the Picture 

Vocabulary subtest from the Woodcock-Johnson Test of Achievement-3 (WJ-3).  Although not a 

comprehensive assessment of intelligence, this test also provided a reasonable and easily 

administered estimate of general intellectual ability, based on previous studies demonstrating a 

strong relation between vocabulary and scores on IQ tests (e.g., Sattler, 2001; Woodcock, 

McGrew, & Mather, 2001).  On each item, children were shown a picture and asked to name it 

(e.g., "What kind of insect is this?").  The test was individually administered according to the 

instructions in the test manual.  The reported reliabilities were high (kindergarten = .73; third 

grade = .77; sixth grade: = .74-79).  

Results 

We carried out a series of analyses that probed the relational structure of these measures, 

both within and across domains.  All analyses used children's raw scores.  To control for 

differences in verbal ability, we specified models that used the residualized covariance matrix 

after partialing out children's WJ-3 Vocabulary scores.  

We first calculated pairwise Pearson correlations for all the included measures.  Next, we 

examined the factor structures both within the domains of space and math and, critically, across 
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the two domains when all measures were entered into a common analysis.  Finally, we used 

multiple regression analysis to determine how much variance in domain performance was 

accounted for by each of the cross-domain measures.  Our aim was to go beyond the question of 

whether spatial and mathematical skills are related, to ask how they are related with respect to 

specific measures and processes. 

Correlations Among Subtests.  Before examining the overall patterns of correlation 

among the various measures, we equated the scales across grade levels and tasks, by 

transforming children's scores on each measure into z-scores.  We also adjusted the threshold for 

significance using the Bonferroni correction for multiple comparisons.  As shown in Table S2 in 

the online supplemental material, nearly all of the measures were significantly intercorrelated, 

both within and across domains. Although it is not represented in this composite table, the same 

basic pattern (i.e., nearly all pairwise correlations reaching significance) held within each grade 

as well.  Thus, as shown in previous research, children who performed better on specific math 

and spatial tasks tended to perform better on other math and spatial tasks, suggesting underlying 

shared variance based on one or more overlapping abilities.  

These pairwise correlations, though significant for nearly all pairs, do not necessarily 

mean the tasks are interchangeable.  The underlying processes that connect one pair of tasks 

could be different from those connecting another pair, even if the relations are equally strong.  

Also, if there is unique variance associated with particular tasks, this would be obscured when 

only two tasks are compared at a time.  As we will see, a more nuanced picture emerges when the 

various interrelations are considered simultaneously, via factor analysis and multiple regression 

analysis. 
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INSERT TABLE 2 HERE 

      Next, we constructed composite scores for spatial and mathematical performance and 

assessed their relations to determine whether these two broad classes of ability were correlated at 

each grade level. To construct the composites, we averaged the z-scores across measures for each 

child, resulting in an individual composite score for each subbattery (i.e., spatial measures and 

mathematical measures).  At each grade level, we tested the relation between these composites 

using partial correlations controlling for vocabulary skill.  The correlations were significant at 

each grade level (kindergarten: r =.45; third grade: r =.49; sixth grade: r = .54, all ps < .001). We 

further examined the same scores using a confirmatory factor analysis in which performance on 

the spatial tasks was entered as a factor separate from performance on the mathematical tasks.  

Because SEM models are more sensitive to latent variables and better account for measurement 

error, correlations within an SEM model may be more accurate.  Using this approach, with 

vocabulary controlled, we found even stronger correlations: kindergarten, r = .60; third grade: r 

= .60; sixth grade: r = .64, all ps < .001).  Although the correlations at sixth grade appeared to be 

slightly higher than the others, none of the pairwise comparisons between grades, for either the 

composite scores or SEM models, were significant (Fisher's r-to-z transformation, range: z = 

0.00 to 1.41, p = 1.00 to 0.16, two-tailed).  Thus, there was no evidence that the overall relation 

between general spatial ability and general mathematics ability changes in strength with 

development.  

Factor Analyses.  Next, we report the results of three exploratory structural equation 

models (ESEM), two of which focused on within domain performance for spatial and 

mathematical tasks separately, and one cross-domain analysis in which all the subtests were 
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considered together.  All three analyses were carried out with an oblique geomin rotation in the 

Mplus 7.0 program (Muthén & Muthén, 1998-2012).  We chose oblique rotation because it 

allows factors to correlate if, in fact, they do.  Based on our overall correlation analysis and 

previous research, this outcome seemed likely.  Also, because oblique rotation is nonorthogonal, 

it has the potential to tap both within and cross-domain loadings in the same model, even if tasks 

within each domain happen to be tightly correlated. 

As noted above, data were submitted as raw scores for all measures, in part because 

scores are normalized as part of the factor analysis process so there is no need to use standard 

scores. As a further safeguard against non-normal distributions, we conducted all the reported 

factor analyses using maximum likelihood estimation with robust standard errors (i.e., MLR). 

MLR uses Huber sandwich estimation to provide standard errors that are robust against 

specification errors due to non-normal distribution (Freedman, 2006; Muthén & Muthén, 1998–

2012; Wang & Wang, 2012)—an approach that has proven successful in simulation studies with 

distributions ranging in skewedness from -2 to 2 degrees (Chou & Bentler, 1995; Chou, Bentler, 

& Satorra, 1991).  An examination of the distributions of scores used in the present study 

confirmed that all fell within this range. 

For each analysis, we first extracted factors until they no longer added significant 

explanatory power as indicated by their eigenvalues.  Specifically, we calculated 95% confidence 

intervals around each factor's eigenvalue based on a mathematical function that estimates error 

(see Larson & Warne, 2010) and rejected models with factors for which the lower bound of the 

confidence interval was 1.00 or less.  An eigenvalue of 1.00 indicates that a factor does not 

account for more variance than would an individual measure (i.e., 1 divided by the total number 
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of variables) and a common rule of thumb is to reject models for which this is the case (i.e., the 

Guttman rule).  However, the use of confidence intervals is more conservative and provides 

greater assurance in cases where eigenvalues approach 1.00.  It also guarantees that the factors 

we retained were well above threshold in terms of explaining unique variance. 

After identifying the number of informative factors, we determined the optimal rotation 

for each model and evaluated model fit using three indices.  The root-mean-square error of 

approximation (RMSEA) divides estimated model error by its degrees of freedom and adjusts for 

sample size (Steiger, 1990).  Because RMSEA estimates the "badness of fit," lower RMSEA 

values are better and a generally accepted cut-off is .08 (Browne & Cudeck, 1993; Hu & Bentler, 

1999; Steiger, 1989).  The comparative fit index (CFI) is the ratio of improvement obtained when 

a model generated from the data is compared to a null model that assumes no covariation among 

measures.  A CFI greater than .95 is generally taken to indicate reasonable fit (Hu & Bentler, 

1999; Raykov & Marcoulides, 2006).  Standardized root mean residual (SRMR) compares an 

observed correlation to an ideal correlation and estimates the difference by averaging the 

absolute values of the correlation residuals.  Like RMSEA, lower SRMR values indicate better 

fit and an SRMR of 0.08 or less is generally considered acceptable (Kline, 2005).  Note that 

although such cut-offs have been debated, the risk of false rejection declines with sample sizes 

greater than 200 (Chen, Curran, Bollen, Kirby & Paxton, 2008), as we achieved for each age 

group in the current study.   

 Once the model with the best fit was identified, we determined which tasks loaded onto 

each factor significantly following previously established procedures (Cudeck & O'Dell, 1994; 

Schmitt & Sass, 2011).  Specifically, we derived z-values by dividing the factor loading for each 
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measure by its standard error.  Only tasks with z-values greater than 1.96 were considered 

significant (p = .05). 

Spatial Factor Analysis.  For the spatial tasks alone, we found convergence on a single 

factor at each grade level.  That is, the first factor in each grade level had adequate eigenvalues 

(kindergarten = 2.35 (1.96; 2.74); third grade = 2.70 (2.26; 3.14); sixth grade = 3.19 (2.67; 3.71), 

but the second factors did not (kindergarten = 0.97 (0.81; 1.13; third grade = 0.85 (0.71; 0.99); 

sixth grade = 0.75 (0.63; 0.87).  Furthermore, the fit of these one-factor models was good by all 

three indices (kindergarten: RMSEA = 0.01 (0.00; 0.07), CFI = 1.00. SRMR = 0.02); third grade: 

RMSEA = 0.03 (0.00; 0.07), CFI = 1.00, SRMR = 0.02); sixth grade: RMSEA = 0.04 (0.00; 

0.08), CFI = .99, SRMR = 0.02). 

As shown in Table 1, all the spatial measures loaded significantly onto this factor at each 

grade level, suggesting that these spatial skills were broadly overlapping and perhaps best 

considered a unitary construct.  This outcome is unexpected given previous claims of subfactors 

among spatial tasks (Carroll, 1993; Höffler, 2010; Voyer et al., 1995) as well as the various 

theory-driven subdivision that have guided research on spatial ability (e.g., Uttal et al., 2013).  

One explanation might be that many of the previous studies reporting multiple spatial factors 

have used older age groups (adolescents and adults; e.g., Voyer et al., 1995). If these distinctions 

are weak in younger children, then they may have been missed in our elementary aged sample.  

Also, as we noted earlier, we were not able to include as many spatial measures as one might 

need to fully evaluate the internal factor structure within each domain.  Still this outcome was 

surprising given that the set of spatial measures we included was rather diverse. 

INSERT TABLE 3 HERE 
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The finding of a single spatial factor at all three ages might seem to suggest there is 

enough shared variance that any spatial task would have as strong a relation to mathematics as 

any other.  However, although well fitted to the data, this factor did not account for 100% of the 

variance of any measure.  The task with the highest loading was Block Design in sixth grade, 

and, even in this case (with a loading of .74), the common factor accounted for only 55% of the 

variance in performance.  Thus, even though all of these spatial tasks may tap the same latent 

ability, they must tap other capacities as well—capacities that do not cohere into additional 

separate factors but which may have shared variance with mathematics nonetheless. 

INSERT TABLE 4 ABOUT HERE 

Mathematical Factor Analysis.  When only the mathematics measures were considered, 

we again found that a one-factor model was the best fit in all three grades.  Specifically, the first 

factor in each grade level had adequate eigenvalues (kindergarten = 2.76 [2.30; 3.22]; third grade 

= 2.95 [2.47; 3.43]; sixth grade = 4.53 [3.79; 5.27], but the second factor did not (kindergarten = 

0.74 [0.62; .86]; third grade = 0.83 [0.70; 0.97]; sixth grade = 0.97 [0.81; 1.13].  The fit of these 

one-factor models was generally good, with the exception of the RMSEA for kindergarten, which 

was slightly higher than our preferred cut-off of .08 (kindergarten: RMSEA = 0.10 [0.05; 0.15], 

CFI = 0.98. SRMR = 0.02); third grade: RMSEA = 0.07 [0.03; 0.10], CFI = 0.98. SRMR = 0.03); 

sixth grade: RMSEA = 0.05 [0.03; 0.08], CFI = 0.99. SRMR = 0.02).  As shown in Table 2, all of 

the mathematics tasks loaded significantly onto the single factor at all three grade levels.  

However, as for the spatial tasks, this factor did not account for 100% of the variance in 

mathematics performance as none of the tasks loaded completely onto it (i.e., the highest loading 

tasks—calculation in kindergarten and word problems in sixth grade—accounted for only 56% 
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of the variance). 

Cross-Domain Factor Analysis.  Our central question was whether, when entered into a 

common model, spatial and mathematics measures would converge into common factors based 

on shared variance across domains. Given the strong internal factor structures within each 

domain, one likely outcome would be to replicate the within domain factor models and observe 

no cross-domain loading.  However, as we will see, there was enough shared variance across 

domains to result in novel factor structures when the two domains were combined. 

At all three grade levels, the first two factors had adequate eigenvalues (kindergarten: Factor 

1 = 3.76 [3.13; 4.39], Factor 2 = 1.43 [1.19; 1.67]; third grade = Factor 1 = 4.21 [3.53; 4.90], 

Factor 2 = 1.47, [1.23; 1.71]; sixth grade = Factor 1 = 6.09 [5.08; 7.06], Factor 2 = 1.72 [1.44; 

2.00], whereas the third factor did not (kindergarten = 1.00 [0.83; 1.17]; third grade = 0.89 [0.75; 

1.04]; sixth grade = 0.97 [0.81; 1.13].  The fit of the two-factor models was good at each grade 

level (kindergarten: RMSEA = 0.05 [0.03; 0.08], CFI = 0.97. SRMR = 0.03); third grade: 

RMSEA = 0.05 [0.02; 0.06], CFI = 0.98. SRMR = 0.03); sixth grade: RMSEA = 0.04 [0.03; 

0.06], CFI = 0.98. SRMR = 0.02). 

INSERT TABLE 5 ABOUT HERE 

At each grade level, one of these factors was primarily spatial and the other was primarily 

mathematical (see Table 3); however, the factors were not mutually exclusive and there were 

several significant cross-domain loadings.  In kindergarten, performance on both mental rotation 

and Block Design loaded significantly onto the mathematics factor.  In sixth grade, there also 

were spatial tasks that loaded significantly onto the mathematics factor, but they were VSWM 

and VMI.  In addition, in sixth grade, two mathematics tests—algebra and place value (as 
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measured on the Rational Numbers subtest of the CMAT)—cross-loaded significantly onto the 

spatial factor.1  In third grade, there were no significant cross-loadings; however, as we will see 

in the next set of analyses, this may have been due to a broad distribution of variance across 

spatial tasks as they relate to mathematics in this age group.  Overall, our results indicate that 

rather than simply replicating the factor structure that emerged in each domain, there were 

significant patterns of cross-domain loading and these patterns differed across grade levels. 

One could argue that these cross-loadings provide only weak evidence for a connection 

between spatial skill and mathematics because these effects are small and limited to a few tasks.  

However, the cross-domain loadings do not represent the entire shared variance between spatial 

skill and mathematics.  Recall that the model allowed the factors to correlate and, as expected, 

the correlations were high (kindergarten = .50; third grade = .50; sixth grade = .53).  In the 

context of the overall factor structure, the cross-domain loadings indicate unique or particularly 

strong overlap for particular tasks, above and beyond the variance that is shared generally across 

the two factors. 

But what general shared processing might these strong interfactor correlations reflect?  

To explore the nature of these relations, we repeated the exploratory factor analysis using 

orthogonal rather than oblique rotation.  Whereas oblique rotation can highlight cross-loadings 

by taking more general interfactor correlations into account, orthogonal rotation prevents factors 

from correlating, so all shared variance is expressed in the factor structure itself.  As shown in 

Table 4, the first factor in the orthogonal analysis was comprised of significant loadings on all of 

the tasks from both domains—essentially a unitary, general factor.  This pattern was obtained in 

all three grades.  The second factor was mostly spatial.  Indeed, it was exclusively spatial in 
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kindergarten and third grade, and all of the spatial tasks loaded onto it significantly.  In sixth 

grade, this second factor also was comprised of all the spatial tasks, but included two 

mathematics tasks as well—place value and algebra—just as we found in the cross-loadings for 

the oblique rotation model.  This finding reinforces the notion that, of the mathematics skills we 

tested, place value and algebra are particularly sensitive to differences in spatial skill. 

INSERT TABLE 6 HERE 

Taken together, these results indicate the majority of shared variance between spatial skill 

and mathematics is very general and not reducible to a particular skill or set of skills.  This 

shared variance may reflect individual differences in general ability.  Although we controlled for 

general ability by partialing out children's vocabulary scores, one could argue this control 

addressed only crystallized abilities, and might have allowed fluid abilities to covary with spatial 

skill and mathematics.  Another possibility is that mathematical thought is inherently spatial, in 

the same sense that others have argued much of abstract thought is inherently spatial (Colom, 

Contreras, Botella, & Santacreu, 2002; Lohman, 1996), and it is for this reason that relations 

among the three are so difficult to disentangle.  In light of this, the cross-domain loadings take on 

new meaning.  They indicate there is task-specific shared variance over and above the strong 

general relation to which these same tasks contribute.  Although all the spatial and mathematics 

tasks we measured are interrelated, the cross-loading tasks stand out because they contribute 

extra shared variance, perhaps via multiple routes, and because these tasks contribute in both 

ways (generally and specifically), they may constitute the strongest contact points between 

spatial skill and mathematics. 
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It was surprising that number line estimation did not load significantly onto the spatial 

factor, given previous research (e.g., Gunderson et al., 2012; Thompson et al., 2013) and one 

might wonder whether this had to do with our choice to use linearity as the dependent measure 

rather than error rate.  In past research, the two measures have been used interchangeably (Opfer 

& Siegler, 2007; Siegler & Booth, 2004); however, as we noted earlier, the linearity measure is 

more relaxed in the sense that it requires only correct ordinal positioning and equal spacing 

within the probed numbers but does not require an accurate mapping to the scale of the number 

line stimulus.  To find out whether this difference might alter the factor loadings, we repeated the 

grade specific cross-domain factor analyses using error rate for number line estimation.  The 

factor loadings for number line estimation were unchanged by this manipulation—they remained 

significant for the mathematics factor and not for the spatial factor.2 

Cross-Domain Multiple Regression Analyses.  The factor analyses identified latent 

structures that underlie performance on the spatial and mathematics tasks we measured, but they 

do not address directional hypotheses involving the two domains.  Although we cannot establish 

causality in the present study, it is possible to evaluate specific predictive relations using multiple 

regressions.  Such tests, being more sensitive and targeted than those used in exploratory factor 

analysis, could contribute important information needed to understand these relations.  Also, 

compared to pairwise correlations, multiple regressions are advantageous because they take into 

account the intercorrelations among independent variables while also indicating the relative 

strength of each predictor. 

We used three regression models to evaluate the cross-domain relations among spatial 

ability and mathematics.  The first two models used the individual subtest scores from one 
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domain to predict the factor scores generated for the other domain, and vice versa.  In the third, 

we asked whether the relation to spatial tasks differed for new versus familiar mathematics 

content.  In all three analyses, we controlled for verbal skill by including children's WJ-3 

Vocabulary scores as one of the independent variables.  As before, raw scores were used in all 

analyses.  As a safeguard against non-normal distribution of scores, we examined the error 

variance for each of the reported models and confirmed that they were random and normally 

distributed (Raykov & Marcoulides, 2008). 

Spatial Measures Regressed on Mathematics.  The results of this analysis, presented in 

Table 5, replicated and extended the findings of the cross-domain factor analysis. First, the 

spatial measures as a group were significant predictors of mathematical factor scores in each 

grade (kindergarten: F (7, 267) = 25.58, R2 = .40; third grade: F (7, 283) = 23.57, R2 = .37; sixth 

grade: F (7, 280) = 48.57, R2 = .55).  Second, the same individual measures that cross-loaded 

significantly in the cross-domain factor analysis also were significant predictors in the regression 

analysis (See Table 6).  In kindergarten, mental rotation once again had the strongest relation 

with mathematics, accounting for roughly 4% of the variance. Block Design also was a 

significant predictor at this age, as before, explaining roughly 2% of the variance.  Recall that in 

third grade, the factor analysis failed to reveal any significant cross-domain loadings.  However, 

the regression analysis revealed several significant effects involving mental rotation, VSWM, 

VMI, and perspective-taking.  It is interesting to note that these effects were smaller and more 

distributed across tasks than those in either kindergarten or sixth grade, and this might explain 

why these relations were not evident in the factor analysis.  Another notable point of comparison 

was that mental rotation was significantly correlated with mathematics in both kindergarten and 
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third grade, but not in sixth grade.  For sixth-grade students, as indicated by the factor analysis as 

well, the spatial tasks most strongly associated with mathematics were VSWM and VMI.  

However, the multiple regression indicated a small, but significant effect of perspective-taking as 

well, echoing the same effect in third grade.  These findings suggest a developmental transition 

in the relations among spatial tasks and mathematics, starting with one set of relations and 

moving to a different set of relations by way of a transition period that implicates them both (i.e., 

the third-grade predictors included all of the kindergarten and sixth-grade predictors, except for 

Block Design). 

INSERT TABLE 6 ABOUT HERE 

INSERT TABLE 7 ABOUT HERE 

Mathematics Measures Regressed on Spatial Ability.  The results for the second model, 

in which mathematical variables were regressed onto the spatial factor scores, are shown in Table 

6.  Mathematical variables were significant predictors of the space factor score in each grade 

(kindergarten: F (6, 268) = 23.43, R2 = .34; third grade: F (7, 283) = 24.35, R2 = .38; sixth grade: 

F (10, 277) = 31.16, R2 = .53).  In particular, two mathematics skills were consistent predictors of 

spatial skills across age: (a) interpretation of number meanings, as measured by either our place 

value test (K, 3rd) or the CMAT Rational Numbers subtest (6th) and (b) the ability to solve word 

problems. 

The other predictors of spatial ability were grade-specific.  In kindergarten, calculation 

had the strongest relation with spatial ability.  This is consistent with Cheng and Mix's (2014) 

finding that training on a 2-D mental rotation task had a significant effect on first grade 

calculation scores.  It is noteworthy, however, that missing term problems did not show 
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particularly strong relations with spatial ability, as they had previously (Cheng & Mix, 2014).  

One reason might have been generally worse performance on missing term problems in the 

younger (i.e., kindergarten) children tested here (M = 17% correct) than the first grade students 

trained by Cheng and Mix (pretest M = 39% correct). 

In third grade, performance on the fractions subtest was a predictor of spatial abilities and 

in sixth grade, it was algebra.  Perhaps these grade-specific effects are due to the novelty of these 

concepts at each age point.  Indeed, multidigit calculation, fractions, and algebra are well known 

obstacles in mathematical development that first emerge in kindergarten, third grade, and sixth 

grade, respectively, so it is interesting that they are particularly sensitive to spatial ability, 

consistent with the novel-familiar hypothesis advanced previously (Ackerman, 1988; Uttal & 

Cohen, 2012). 

In summary, these regressions of individual measures from each domain onto each of the 

domain-specific factors demonstrate that even though some correlations were not large enough to 

suggest a single underlying factor, there may be characteristics of specific spatial tasks that make 

them especially useful predictors.  It is clear that some spatial tasks predicted unique variance 

within the general factor that underlies mathematical ability, and vice versa. Thus, although the 

patterns we obtained are generally consistent with those observed in the more conservative factor 

analyses, they go further to uncover additional measures that might have particularly strong 

cross-domain ties. 

Novel Versus Familiar Content. As noted above, it has been hypothesized that spatial 

processing may be implicated more during the initial stages of learning a particular mathematical 

topic than at later stages (Ackerman, 1988; Uttal & Cohen, 2012).  For example, when children 



!  40

are first introduced to fractions, they may recruit spatial processes to (a) map the symbolic 

representations for fractions onto spatial referents or (b) mentally manipulate fraction symbols so 

as to align them with more familiar whole number meanings but these relations may decrease as 

skills become more automatic or procedural.  If so, then we might find stronger relations among 

spatial skills and mathematics for new versus familiar content. 

To find out, we conducted a third regression analysis in which we first divided the 

mathematics items within each measure into two categories—new and familiar—using the grade 

level content standards in the CCSS-M (National Governors Association, 2010).  Items related to 

content from the children's current grade level or higher were considered new, and items related 

to content from any of the preceding grade levels were considered familiar.  From these items, 

we derived factor scores that were then regressed against each of the spatial tasks.  Although the 

CCSS-M have not been fully implemented, they are roughly consistent with previous grade level 

guidelines (e.g., NCTM) and provide a reasonable approximation of the content to which 

children in our study had likely been exposed. 

INSERT TABLE 8 HERE 

As shown in Table 7, although some of the same spatial predictors emerged as in the 

overall analyses reported above, there were distinct patterns for new and familiar mathematics 

content.  In kindergarten, Block Design and perspective-taking were related only to new content.  

Although mental rotation was related to both new and familiar mathematics content, the relation 

was stronger for new content.  Also, VMI emerged as a predictor in kindergarten, but only for 

familiar content.  In kindergarten, one of the main shifts from familiar to novel content was from 
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single to multidigit numerals (instantiated in ordinal judgments, calculation, word problems, 

etc.).  Thus, it may be the case that spatial visualization is more important for interpreting 

multidigit quantities, perhaps because place value relations must be evaluated (consistent with 

recent research by Laski et al., 2013, discussed above).  In contrast, attention to form (VMI) may 

be more important to familiar content as processing numerals becomes more automatic for 

single-digit problems in kindergarten.  

In third grade, mental rotation and VSWM predicted performance on both new and 

familiar mathematics content, but VMI and perspective-taking were predictive for familiar 

content only.   There also was a marginally significant relation between Block Design and novel 

content in this grade.  Novel content in third grade consisted of multiplication, division, and 

fractions, whereas familiar content consisted of addition, subtraction, and multidigit numeral 

interpretation.  As in kindergarten, it appears that attention to shapes and figure copying (as 

measured on the VMI) may become more important once skills are automatic.  However, the 

other results were more mixed.  Perhaps there is greater variability among children this age in 

terms of mastery of content, such that our definitions of novel and familiar were not entirely 

accurate for some students.  There may also be a combination of developmental and content 

related processes driving these age-related changes.  That is, some third grade students may be 

more likely to spatially ground relations in multidigit calculation, regardless of the novelty of 

particular operations, whereas others, those who are more fluent with these calculations, may no 

longer do so. 

For sixth-grade students, new content included geometric equations, translating among 

fractions/decimals/percentages, algebra, and word problems based on ratios, area, and 
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proportions.  Familiar content included number line estimation, calculation, interpreting charts 

and graphs, and fraction calculation.  For the most part, there was not a differentiation between 

these content areas in terms of correlations with spatial tasks.  That is, VSWM and the VMI were 

predictive of both familiar and new content, perhaps because these spatial skills support symbol 

reading and manipulation, which are central to all mathematics content in sixth grade, much as 

we saw in third grade.  It is interesting that a small but significant relation between mathematics 

and Block Design emerged for the first time in this grade level, and was only significant for 

novel content.  This provides a hint that spatial visualization may still come into play when 

children are learning representationally complex new topics, such as algebra, even if it is not 

generally associated with achievement at this age.  There also was a weak relation with 

perspective-taking, for familiar content only. 

In summary, the specific relations between spatial tasks and mathematics differed 

somewhat depending on whether the mathematics content was novel or familiar.  Though these 

patterns were not completely regular across age, and some tasks appear to be implicated in both 

novel and familiar tasks, there were a few notable consistencies.  First, Block Design was only 

associated with novel content (in both kindergarten and sixth grade).  Second, VMI was only 

associated with familiar content (in all three grades).  This contrast echoes the developmental 

shift we observed in the cross-domain factor analysis, from strong relations between spatial 

visualization and mathematics in kindergarten toward strong relations between form perception 

and mathematics in sixth grade, suggesting that this developmental relation may be recapitulated 

within age groups depending upon the novelty of the mathematics content.  Perhaps children 

recruit spatial visualization when tasks are new and require grounding or conceptualization, but 
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rely more on form perception when for rapidly reading symbols and equations when tasks are 

more automatic and procedural. (See Stieff, 2013, for such a pattern in chemistry students.)  If 

so, then the overall developmental picture may be quite complicated, because this cycling pattern 

for novel and familiar content may occur against a backdrop of more general age-related changes 

in mathematics content, procedural skill, and spatial skill.  This might explain why the present 

analysis was not entirely clear-cut and points to the need for more research to sort out these 

potentially complex interactions. 

Discussion 

The present study investigated the well-established relation between spatial ability and 

mathematics by examining interconnections among specific tasks both within and across 

domains.  This approach allowed us to determine whether the relation that has been demonstrated 

previously is due to general overlap in processing between these domains or specific overlap in 

processing between particular space and mathematics tasks.  We further assessed developmental 

changes in these specific relations by comparing patterns cross-sectionally, from kindergarten to 

sixth grade, and by comparing relations involving new and familiar content. 

Our findings indicate strong within-domain factor structures for both space and 

mathematics based on the findings that (a) a one-factor solution best described the latent 

structures within each domain and (b) the two-factor model that best described the cross-domain 

structure had factors comprised of all the spatial and mathematics tasks, respectively.  Contrary 

to previous studies reporting multidimensional structures for spatial skill and mathematics 

separately, we obtained no such evidence.  Notably, there was no evidence that spatial skill was 

subdivided in terms of constructs such as spatial visualization or along the lines of the theoretical 
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distinctions such as static versus dynamic.  Similarly, we found no evidence for a procedural and 

conceptual factors in mathematics or task-specific groupings (e.g., whole number operations vs. 

fractions).  That said, we did not construct our analyses or our measures in a way to probe 

directly for such dimensionality.  Perhaps if we had included more measures or item level 

analyses, such distinctions would have emerged.  As noted above, the number of measures we 

could include was limited by practical considerations and, in order to cover both domains 

adequately, we could not probe either domain very deeply.  Still, it was surprising that no within-

domain differences emerged. 

We also found a strong, consistent correlation between domains across the three grade 

levels.  In fact, when we used an orthogonal model that prevented the factors from correlating, 

spatial skill and mathematics formed a single, shared factor.  Thus, there is a great deal of 

overlapping variance in the two domains, irrespective of task-specificity, that could be due to 

either general ability (e.g., fluid intelligence) or very basic shared processing (i.e., mathematics 

itself being fundamentally spatial), as some theorists have argued (e.g., Lohman, 1996).  This 

general overlap may go a long way toward explaining the previously reported effects at the 

behavioral and neural levels of analysis involving spatial skill and mathematics (e.g., Dehaene et 

al., 1993; Hubbard et al., 2005; McKenzie et al., 2003; Walsh, 2003). 

Yet, against this backdrop of highly correlated domains, there also were significant cross-

domain relations involving particular tasks that varied across grade.  In kindergarten, the spatial 

skills of mental rotation and Block Design were strongly related to mathematics.  In sixth grade, 

the spatial skills of VSWM and form perception (VMI) were strongly related to mathematics and 

the mathematics tasks of algebra and place value were strongly related to spatial processing.1  In 
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third grade, there were no significant cross-domain loadings in the factor analysis, but there were 

a number of weak but significant correlations revealed in the multiple regression analyses.  It is 

interesting to note that these correlations comprised all of the spatial skills (except Block Design) 

that were significantly cross-loaded in kindergarten and sixth grade, suggesting that in terms of 

spatial skill and mathematics, third grade may represent the middle of a qualitative shift. 

In the following sections, we return to several key issues raised in the introduction in 

light of our results.  Specifically, we revisit the three candidates for shared processing (Spatial 

Visualization, Form Perception, and Spatial Scaling).  We also consider possible explanations for 

the age-related shifts we observed.  

Spatial Visualization 

Of the three potential types of processing overlap we identified in the introduction, our 

data were most indicative of a connection between mathematics and spatial visualization.  This 

may reflect shared processing that supports spatially grounded representations of complex 

relations and problem space, consistent with the embodied view of cognition (e.g., Barsalou, 

2008; Lakoff & Nunez, 2000).  One indication was that the mathematics tasks with the strongest 

relations to spatial ability—place value (all grades), word problems (all grades), fractions (third 

grade, sixth grade), and algebra (sixth grade)—are well known obstacles in elementary 

mathematics thought to pose particularly complex representational challenges.  For example, it 

takes years for children to unpack the syntactic structure of place value (e.g., 429 = 4x100 + 

2x10 + 9x1) and carry out multi-digit procedures based on accurate interpretations of base-10 

structure (Cauley, 1988; Cobb & Wheatley, 1988; Fuson & Briars, 1990; Jesson, 1983; Kamii, 

1986; Kouba et al., 1988; Labinowicz, 1985; Moeller et al., 2011; Resnick & Omanson, 1987).  
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Spatial skill may be related to place value understanding in particular because it helps children 

develop a basic level representation of these complex, problems (e.g., Laski et al., 2013).  

Similarly, when children interpret a word problem, they may build a mental model to represent 

the problem elements and relations, much as they do when they are reading a story (Glenberg et 

al., 2007).  Spatially grounded mental models might help them conceptualize the part-whole 

relations in rational numbers (Stafylidou & Vosniadou, 2004) or support the relational view of 

equivalence that underlies balancing of algebra equations (Knuth, Stephens, McNeil, & Alibali, 

2006).  Another indication of this shared process is that most of the spatial tasks with significant 

cross-domain relations— mental rotation (kindergarten, third grade), perspective-taking (thid and 

sixth grades) and WISC-IV Block Design (kindergarten)—have strong spatial visualization 

components.  They require imagining movements in space, shifting and maintaining multiple 

orientations, or analyzing parts and wholes—the kinds of spatial skill that seem likely to help one 

construct a mental model or keep track of related parts. 

Form Perception 

A second type of shared processing we identified involved accurate perception of form, 

spatial layout and the like, and its potential relations with reading symbols and keeping track of 

steps in a complex procedure.  Our results provided evidence for this shared processing as well, 

particularly in the later elementary grades.  One indication was that spatial tasks requiring 

accurate memory of location (VSWM) and detailed forms (VMI) had relatively strong relations 

to mathematics in third and sixth grades.  These tasks emerged as unique predictors in the third 

grade multiple regressions and then exhibited stronger relations in sixth grade with significant 

cross-loadings in the cross-domain factor analysis.  In light of this, it is also telling that algebra 
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was the strongest mathematics cross-loading in sixth grade, as this is a mathematics task for 

which adults have shown sensitivity to spatial layout (Landy & Goldstone, 2007, 2010). 

Not all of the evidence was consistent with this interpretation, however.  There was a lack of 

overlap for other tasks with seemingly similar spatial "reading" demands, such as CMAT Charts 

and Graphs or Geometry.  It makes sense, for example, that reading graphs is aided by some 

facility with perceiving lengths, and visually coordinating bars with scales along axes.  One 

explanation might be that the format of these tests had a verbal component, and this may have 

obscured their spatial components once verbal ability was controlled.  With respect to the CMAT 

Geometry subtest, a second explanation may have to do with the level of reasoning required.  

Although the CMAT Geometry subtest included problems that required reasoning, it arguably 

emphasized procedural knowledge more than the CMAT Algebra or Word Problems subtests, and 

thus, may not have been as strongly related to spatial skill for that reason.  Finally, this finding 

does not mean there are not processes shared between these tests and spatial skill, but rather, that 

they did not have particularly strong or unique overlap. 

Spatial Scaling   

Regarding the third potential type of processing overlap—spatial scaling and magnitude 

representation—we found no direct evidence in the present study.  Specifically, there were no 

significant cross-domain effects involving either number line estimation or map reading—the 

two tasks most closely related to spatial scaling in the present battery.  Admittedly, map reading 

is not the purest possible test of spatial scaling as it involves other skills, such as relating 

analogous parts, and, for some items, shifting perspective.  Perhaps a more direct test of spatial 

scaling, such as Boyer and Levine's (2012) proportional reasoning task, would have less overlap 
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with spatial tasks such as mental rotation or perspective-taking, and thus might provide a cleaner 

test of the relation of spatial scaling to mathematical skills.  Still, it was surprising that a 

mathematics task such as number line estimation, which has a strong spatial component and 

seems particularly likely to involve spatial scaling, shared no unique variance with spatial skill as 

a whole.  Perhaps, as other have found, number line estimation is more math-related than spatial 

(LeFevre et al., 2013).  

Developmental Changes 

With respect to previous research linking spatial skill and mathematics in childhood, the 

present results replicated several key findings.  First, the relatively strong relation between 

mental rotation and mathematics performance in kindergarten and third-grade students is 

consistent with previous correlational research (Carr et al., 2015; Gunderson et al., 2012; 

Thompson et al., 2013), as well as Cheng and Mix's (2014) training study.  Also consistent with 

previous research, VSWM and VMI had significant loadings with mathematics in third and sixth 

grade (Laski et al., 2013; Li & Geary, 2013; McKenzie et al., 2003; Sortor & Kulp, 2003).  Note 

that these specific relations held even when other spatial tasks were included and their shared 

variance was taken into account. 

The pattern of an initially greater role for mental rotation in kindergarten, followed by a 

mixture of weaker relations in third grade, and finally a greater role for VSWM and VMI in sixth 

grade suggests a gradually shifting relation between spatial skill and mathematics.  Perhaps this 

relation is rooted, early in development, in the underlying spatial representation of numerical 

relations and operations, thus sharing more processing with mental rotation ability and other 

visualization tasks, but moves toward more perceptual tracking and memory abilities, such as 
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analyzing the spatial positions of written symbols.  The finding of relatively weak relations 

involving a broad range of spatial tasks in third grade, including mental rotation, block design, 

perspective-taking, VSWM and VMI, is characteristic of the developmental instability that 

occurs during transitions (Perry, Church, & Goldin-Meadow, 1988; Schoner, 2008; Siegler, 2007; 

Thelen et al., 1993), and may reflect a mixture of relations that exist as children shift from one 

dominant processing mode to the other.  This shift could be due to changes in the demands of 

mathematics content, developmental changes in spatial skill, or both.  

For example, the concepts underlying long division are not that different from the concepts 

underlying simple division, but the perceptual-motor demands of the long division procedure 

increase in complexity with each additional digit.  Perhaps conceptualizing division draws upon 

spatial representations like those used to imagine objects rotating into different positions, but 

carrying out complicated multistep mathematics procedures requires the kind of detailed spatial 

processing that is measured in memory for multiple locations in space or chunking and copying 

complex figures.  Similarly, understanding the rough, holistic value of simple fractions or 

common multidigit numbers may be achieved through verbal association or spatial scaling in 

early childhood, but the fine-grained perceptual skills needed to interpret more complex fraction 

notation in a precise way may require stronger spatial perception and memory. 

This pattern may relate more generally to the conceptual-procedural distinction in 

mathematical development in the sense that some forms of spatial ability could have an 

important role in conceptual grounding (i.e., spatial visualization for grounding place value 

meaning), whereas others may come into play when procedural fluency is emphasized (i.e., 

VSWM for carrying multidigit operations).  Consistent with this, recent research has reported 
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that girls who use more sophisticated, decomposition strategies in calculation tasks also have 

better spatial visualization ability (i.e., using mental rotation and block design measures) than 

girls who rely on less sophisticated procedural strategies, like counting (Laski et al., 2013). 

Indeed, this shift from conceptual grounding to procedural fluency, and a possibly linked 

shift in associated spatial skills, may be recapitulated several times developmentally as tasks shift 

from novel to familiar.  Recall that when we divided the mathematics items into new and familiar 

content, some spatial skills related to both, but there were a few cases of a clear, distinct link 

between spatial skill and old versus new content.  For example, in kindergarten, only new 

content (i.e., mostly multidigit numeracy and operations) was related to spatial visualization 

tasks, including Block Design and Perspective-Taking, and only familiar content was related to 

the VMI.  In older children, spatial visualization (i.e., Block Design) was related to new content 

only.  This pattern is consistent with previous hypotheses that spatial skills may play a special 

role when children are first acquiring new concepts (Ackerman, 1988; Uttal & Cohen, 2012), but 

it goes further by suggesting it is not simply spatial skill that is useful at these early stages, but 

rather, spatial visualization in particular.  For familiar content, as operations become more 

automatic and retrievable, spatial visualization may play less of a role, but other spatial skills 

may increase in importance, as we saw in the kindergarten effects with VMI for familiar content 

only and VMI/VSWM for sixth grade overall.  

The age-related patterns we obtained are intriguing, but they are also preliminary.  Further 

study is needed to confirm these shifts in other populations, using alternative tasks, and in 

individual children using a longitudinal design.  Also, whereas our data can suggest relations, 

they do not establish causality or even provide direct evidence for the shared processes we have 
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posited in our interpretations.  Future research using training may be one way to test these ideas 

more directly. 

Conclusions 

The present study indicates that spatial skill and mathematics are separate but broadly 

overlapping domains with a few skills that exhibit particularly strong cross-domain linkages.  

This general overlap does not change from kindergarten to sixth grade, but the specific linkages 

do, and the specific linkages also shift depending upon the familiarity of the mathematics 

content. 

These results may have educational implications but further research with training designs is 

needed.  There has been a great deal of interest in the effects of cognitive training on academic 

outcomes generally speaking (see Schubert, Strobach, & Karbach, 2014, for an overview), and 

calls for such research in the area of spatial cognition in particular (Lubinksi, 2010; Levine, 

Foley, Lourenco, Ehrlich & Ratliff, 2016; NCTM, 2010; Newcombe, 2010, 2013; Sorby, 2009; 

Uttal et al., 2013; Verdine, Irwin, Golinkoff, & Hirsh-Pasek, 2014).  However, initial attempts to 

show transfer of domain general training to academic achievement have yielded mixed results, 

with some studies demonstrating transfer of working memory and executive function to 

academic tasks (e.g., Alloway, 2012; Dahlin, 2011) and others failing to do so (e.g., Holmes, 

Gathercole & Dunning, 2009; see Melby-Lervåg & Hulme, 2013 and Titz & Karbach, 2014, for 

reviews).  This has been the case as well for the few spatial training studies involving 

mathematics (i.e., Cheng & Mix, 2014 vs. Hawes, Moss, Caswell, & Poliszczuk, 2015). 

A key issue in reconciling these discrepancies may be the degree of shared processing among 

various subskills.  As others have pointed out, the crux of cognitive training is not to improve 
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performance on a particular task, but to improve performance of a latent ability that is expressed 

in multiple tasks (Noack, Lovden, & Schmiedek, 2014).  Our results are a step toward 

understanding what those latent abilities might be for spatial skill and mathematics.  Only 

training experiments can determine whether these latent abilities are malleable and whether this 

training generalizes to academic learning.  Indeed, a pertinent question is whether such training, 

if effective, offers greater benefit than simply increasing instruction in the academic skill itself.  

However, by starting with a clearer understanding of what these latent abilities are, researchers 

have the greatest chance of leveraging them effectively. 
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Footnotes. 

1. One concern regarding our comparisons across grades could be that not every subskill was 

measured in all three grades.  Specifically, three measures used in sixth grade were not tested in 

kindergarten or third grade: (a) Charts and Graphs (CMAT); (b) Geometry (CMAT); and (c) 

Fraction Number Line.  Perhaps including these tasks shifted the other factor loadings in a way 

that would be confusable with bona fide developmental changes.  When we repeated the sixth 

grade cross-domain factor analysis with these tasks removed, the same factor structure and 

model fit were obtained on the remaining measures. The factor loadings for spatial tasks onto the 

mathematics factor were also the same, but the cross-loadings for place value and algebra onto 

the spatial factor were no longer significant (p = .55 and .72, respectively).  However, when we 

repeated the multiple regression analyses with these tasks removed, place value and algebra were 

still highly correlated with the spatial factor (Place Value:  = .28, sr2 = .03, p < .0001; Algebra:  = 

.17, sr2 = .01, p = .007).  

2. With respect to the overall models, the cross-domain loading patterns were mostly the same 

whether error rate or linearity was used as the dependent measure, with two exceptions.  First, in 

kindergarten, the previously significant cross-domain loading of Block Design onto mathematics 

became marginally significant (p = .08) when error rate was used.  Second, in sixth grade, the 

previously significant cross-domain loading of algebra onto the spatial factor remained relatively 

high but was no longer significant when absolute error rather than linearity was used (p = .11).  

These differences appear due to slightly higher standard error for the factor loadings in the error 

rate model.  
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Table 1 

Within Domain Variable Loadings by Grade: Spatial Skill 

Note. VSWM = visual spatial working memory; VMI = Test of Visual Motor Integration. 
* p < .05 

Predictor Kindergarten 3rd Grade 6th Grade

Mental Rotation .434* (.054)  .546* (.049) .615* (.042)

VSWM .449* (.056)  .531* (.050) .606* (.042)

VMI .687* (.045) .384* (.064)  .567* (.044)

Block Design .571* (.055) .722* (.045)  .739* (.036)

Map Reading .562* (.048) .537* (.049) .556* (.050)

Perspective Taking .245* (.068) .594* (.047) .609* (.042)
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Table 2 

Within-Domain Variable Loadings by Grade: Mathematics 

Note. CMAT = Comprehensive Mathematical Abilities Test. 
* p < .05 

Predictor Kindergarten 3rd Grade 6th Grade

Place Value .604* (.046) .615* (.047) .687* (.032)

Word Problems .712* (.042) .657* (.051) .747* (.032)

Calculation .747* (.037) .650* (.040) .621* (.041)

Missing Terms .531* (.057) .702* (.038) .623* (.036)

Whole Number Line 
(R2)

.486* (.044) .406* (.059) .257* (.068)

Fractions n/a .512* (.048) .651* (.036)

CMAT-Charts n/a n/a .693* (.033)

CMAT-Geometry n/a n/a .551* (.040)

Fraction Number Line 
(R2)

n/a n/a  .455* (.048)
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Table 3 

Cross-Domain Variable Loadings by Grade (Oblique Rotation) 

Note. VSWM = visual spatial working memory; VMI = Test of Visual Motor Integration; CMAT 
= Comprehensive Mathematical Abilities Test. 
         
* p ≤ .05 
             a .05 <  p < .1 

         Kindergarten 3rd Grade 6th Grade

 Variable Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

Mental Rotation .296* (.
074) .248* (.075) .500* (.076) .087 (.089)  .616* (.050) -.001 (.032)

VSWM .447* (.
075) .027 (.085) .496* (.075) .074 (.082)  .528* (.059) .143* (.

062)

VMI .691* (.
088) -.007 (.064) .349* (.084) .087 (.079)  .497* (.060) .125* (.065)

Block Design .475* (.
076)  .152* (.073) .729* (.083) -.034 (.093)  .748* (.050) -.009 (.049)

Map Reading .577* (.
081)  -.003 (.053) .544* (.058) -.006 (.040)  .563* (.065) -.011 (.059)

Perspective Taking .162* (.
079) .133 (.093) .595* (.064) .009 (.054)  .566* (.059)  .071 (.066)

Place Value/Rational 
Numbers (CMAT) .038  (.079) .588* (.067)  .152  (.099) .532* (.

079)  .148* (.056) .605* (.
044)

Word Problems .002 (.039) .700* (.052)  .135  (.105) .576* (.
087) .065 (.064) .709* (.

053)

Calculation -.006 (.058) .759* (.052)  -.008 (.012) .662* (.
040) -.019 (.059) .637* (.

054)

Missing Terms/Algebra -.126 (.107) .602* (.088)   -.043  (.087) .729* (.
065) .134* (.064) .545* (.

053)

Whole Number Line 
(R2) .024 (.091) .466* (.068)   .085  (.094) .358* (.

089) -.045 (.075) .285* (.
070)

Fractions n/a n/a  .083 (.084) .475* (.
076) -.008 (.045) .658* (.

045)

CMAT-Charts n/a n/a n/a n/a  -.018 (.060) .702* (.
053)

CMAT-Geometry n/a n/a n/a n/a    .083 (.064) .506* (.
050)

Fraction Number Line 
(R2) n/a n/a n/a n/a    .005 (.061) .456* (.

060)
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Table 4 

Cross-Domain Variable Loadings by Grade (Orthogonal Rotation) 

Note. VSWM = visual spatial working memory; VMI = Test of Visual Motor Integration; CMAT 
= Comprehensive Mathematical Abilities Test. 
         
* p ≤ .05 
             a .05 <  p < .1 

         Kindergarten 3rd Grade 6th Grade

 Variable Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

Mental Rotation .394* (.
060) .258* (.065) .329* (.070) .440* (.

068)  .325* (.058) .523* (.
053)

VSWM .248* (.
068) .389* (.068) .313* (.071) .436* (.

067)  .421* (.050) .449* (.
053)

VMI .334* (.
061) .601* (.081) .256* (.073) .308* (.

079)  .387* (.057) .423* (.053)

Block Design .387* (.
064)  .414* (.069) .318* (.087) .638* (.

071)  .385* (.058) .635* (.
050)

Map Reading .281* (.
061)  .502* (.073) .256* (.079) .476* (.

066)  .286* (.060) .478* (.
063)

Perspective Taking .213* (.
081) .141* (.069) .296* (.084) .521* (.

069)  .369* (.055)  .481* (.
052)

Place Value/Rational 
Numbers (CMAT)

 .607*  (.
046) .035 (.070)  .606*  (.055) .142 (.096)  .683* (.033) .128* (.

052)

Word Problems .701* (.
043) .004 (.044)  .641*  (.060) .128 (.101) .744* (.034) .058 (.057)

Calculation .756* (.
037) -.003 (.039)  .658*  (.041) .004 (.016) .627* (.042) -.014 (.050)

Missing Terms/Algebra .540* (.
059) -.108 (.089)   .708*  (.

045) -.025 (.079) .616* (.038) .115* (.
056)

Whole Number Line  
(R2)

.477* (.
045) .022 (.079)   .399*  (.

063) .081 (.085) .262* (.068) -.037 (.064)

Fractions n/a n/a  .515* (.052) .081 (.077) .654* (.037) -.005 (.034)

CMAT-Charts n/a n/a n/a n/a  .693* (.034) -.013 (.052)

CMAT-Geometry n/a n/a n/a n/a   .549* (.
040) .072 (.055)

Fraction Number Line 
(R2) n/a n/a n/a n/a  .454* (.049) -.002 (.055)
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Table 5.  
Regression of Spatial Variables Onto the Mathematics Factor, by Grade 

Note. Standardized coefficients (β) and unique variance accounted (squared semipartial 

correlation: sr
2

) for when regressing math factor scores on spatial variables. WJ-3 = Woodcock-
Johnson Test of Achievement-3. 
* p < .05 

 Kindergarten 3rd Grade 6th Grade

Variable β sr
2

β sr
2

β sr
2

Mental Rotation 0.235* 0.041* 0.154* 0.016* 0.049 0.001

Visuospatial Working 
Memory 0.084 0.005 0.144* 0.015* 0.201* 0.023*

Visuomotor Integration 0.064 0.003 0.120* 0.012* 0.158* 0.015*

Block Design 0.188* 0.023* 0.090 0.004 0.093 0.003

Map Reading 0.062 0.003 0.067 0.003 0.054 0.002

Perspective Taking 0.087 0.007 0.126* 0.010* 0.117* 0.007*

WJ-3 Vocabulary 0.242* 0.047* 0.213* 0.037* 0.333* 0.086*
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Table 6.  

Regression of Mathematics Variables Onto the Spatial Factor, by Grade 

Note. Standardized coefficients (β) and unique variance accounted (squared semipartial 

correlation: sr
2

) for when regressing spatial factor scores on math variables. CMAT = 
Comprehensive Mathematical Abilities test; WJ-3 = Woodcock-Johnson Test of Achievement-3. 
* p < .05 

 Kindergarten 3rd Grade 6th Grade

Variable β sr
2

β sr
2

β sr
2

Place Value/Rational 
Numbers (CMAT) 0.175* 0.014* 0.211* 0.025* 0.285* 0.030*

Word Problems 0.149* 0.010* 0.184* 0.018* 0.159* 0.008*

Calculation 0.214* 0.021* 0.050 0.002 0.019 0

Missing Terms/Algebra -0.026 0 -0.002 0 0.158* 0.011*

Whole Number Line (R2) 0.063 0.003 0.067 0.003 -0.011 0

Fractions n/a n/a 0.153* 0.016* -0.012 0

CMAT-Charts n/a n/a n/a n/a -0.032 0

CMAT-Geometry n/a n/a n/a n/a 0.116 0.006

Fraction Number Line (R2) n/a n/a n/a n/a -0.032 0.001

WJ-3 Vocabulary 0.168* 0.021* 0.199* 0.032* 0.237* 0.037*
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Table 7 

Regression of Spatial Variables on Familiar and Novel Mathematics Skills 

   

Note. Standardized coefficients (β) VSWM = visual spatial working memory; VMI = Test of 
Visual Motor Integration; WJ-3 = Woodcock-Johnson Test of Achievement-3. 
* p ≤  .05 

 Kindergarten 3rd Grade 6th Grade

Predictor Familiar Novel Familiar Novel Familiar Novel

Mental Rotation 0.121* 0.230* 0.157* 0.131* 0.024 0.068

VSWM 0.083 0.078 0.172* 0.143* 0.196* 0.235*

Visuomotor Integration 0.184* 0.004 0.123* 0.061 0.159* 0.141*

Block Design 0.098 0.180* 0.018 0.147* 0.087 0.130*

Map Reading 0.048 0.063 0.064 0.029 0.075 0.006

Perspective Taking 0.040 0.140* 0.165* 0.066 0.128* 0.087

WJ Vocabulary 0.227* 0.228* 0.191* 0.147* 0.261* 0.296*


