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Abstract 

The goal of the present study was to describe fraction-calculation errors among 4th-grade 

students and determine whether error patterns differed as a function of problem type (addition vs. 

subtraction; like vs. unlike denominators), orientation (horizontal vs. vertical), or mathematics-

achievement status (low- vs. average- vs. high-achieving). We specifically addressed whether 

mathematics-achievement status was related to students’ tendency to operate with whole number 

bias. We extended this focus by comparing low-performing students’ errors in two instructional 

settings that focused on two different types of fraction understandings: core instruction that 

focused on part-whole understanding vs. small-group tutoring that focused on magnitude 

understanding. Results showed students across the sample were more likely to operate with 

whole number bias on problems with unlike denominators. Students with low or average 

achievement (who only participated in core instruction) were more likely to operate with whole 

number bias than students with low achievement who participated in small-group tutoring. We 

suggest instruction should emphasize magnitude understanding to sufficiently increase fraction 

understanding for all students in the upper elementary grades. 
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Error Patterns in Fraction Calculation at Fourth Grade as a Function of Students’ 

Mathematics Achievement Status  

 A solid foundation in fraction understanding is critical for success with higher-level 

mathematics topics, such as algebra, and for competing in the American workforce (Geary, 

Hoard, Nugent, & Bailey, 2012; Siegler et al., 2012). Fractions are typically introduced in third 

grade, and fourth grade is the first year of intensive focus on fractions. By the end of fourth 

grade, students are expected to be proficient with a range of fraction concepts, including adding 

and subtracting fractions with like and unlike denominators. However, fraction calculations pose 

substantial difficulty for many students, especially students at risk for mathematics learning 

difficulties (Bottge, Ma, Gassaway, Butler, & Toland, 2014; Mix, Levine, & Huttonlocher, 1999; 

Siegler & Pyke, 2013). These difficulties persist into high school and beyond (Calhoon, 

Emerson, Flores, & Houchins, 2007). Therefore, understanding common errors with fraction 

calculations in fourth grade can provide insight for how to design instruction to increase 

proficiency and ultimately decrease persistent failure.  

This paper focuses on fractions presented with a numerator and denominator, i.e., 𝑎

𝑏
. We 

refer to whole numbers as positive integers. When the curriculum shifts to include fractions in 

the late elementary grades, many students struggle to consolidate whole numbers and fractions 

into a single numerical framework and tend to over-apply whole-number concepts to fractions 

(e.g., DeWolf & Vosniadou, 2011; Siegler, Thompson, & Schneider, 2011). As such, many 

students approach fraction learning with whole number bias (WNB), which is the 

overgeneralization of the one-to-one counting scheme to fraction problems (e.g., DeWolf & 

Vosniadou, 2011; Ni & Zhou, 2005; Stafylidou & Vosniadou, 2004; Vamakoussi & Vosniadou, 

2004; Vosniadou & Verschaffel, 2004). WNB, therefore, underpins fraction misunderstanding. 
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When students operate with WNB with fraction concepts, they fail to simultaneously attend to 

the numerator and denominator in a meaningful way. Pervasive WNB indicates poor 

understanding of foundational fraction concepts and indicates students are struggling to 

assimilate fraction properties into their general concept of “number”. Because proficiency with 

fractions is one of the strongest predictors of future success with algebraic concepts (e.g., Siegler 

et al., 2012; Wu, 2008), WNB needs to be prevented early (i.e., in the upper elementary grades), 

before students fall too far behind. 

Not only do students tend to overgeneralize whole-number properties to fractions during 

initial fraction learning, but research suggests that they also tend to reciprocally apply fraction 

properties to whole numbers (e.g., when operating with mixed numbers) and often default to 

whichever representational understanding is more familiar (Mack, 1995). One example of 

operating with WNB is viewing the numerator and denominator in a fraction as two independent 

whole numbers. In doing so, students misapply whole-number logic and incorrectly assume that 

as the magnitude of the whole numbers that comprise the fraction increase, magnitude of the 

fraction also increases (Meert, Gregoire, & Noel, 2010a, 2010b; Ni & Zhou, 2005; Stafylidou & 

Vosniadou, 2004). The relationship between the numerator and denominator determines 

magnitude for fractions, not the whole-number magnitudes that comprise it. Misinterpreting 

fraction magnitude can be detrimental to students’ ability to accurately solve fraction 

calculations.  

Whole Number Bias (WNB) and Fraction Calculation Errors 

Because conceptual and procedural knowledge are believed to develop iteratively (Rittle-

Johnson & Alibali, 1999; Rittle-Johnson, Siegler, & Alibali, 2001), students are unable to judge 

the accuracy of their fraction calculations without foundational understanding of fraction 
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magnitude. For example, Siegler & Pyke (2013) found that individual differences in fraction 

calculations among sixth- and eighth-grade students correlated with their fraction-magnitude 

understanding. Fraction calculations involve a more tedious process than is required for whole-

number calculation (e.g., Mix et al., 1999). Thus, students with poor magnitude understanding 

may operate with WNB to avoid multi-step procedures.   

Consider the procedural differences to solve whole number vs. fraction addition 

problems. When adding 4 + 5, students find the answer by simply adding the numbers together. 

If a struggling student cannot immediately recall the answer from long-term memory, she can 

use a counting-up strategy, for example, and count up from 4 to reach 9. Even with this 

compensatory strategy, basic number combinations are essentially solved in a single step. By 

contrast, when adding 
1

4
+

2

4
, students must consider the denominators, determine there is no need 

to write an equivalent fraction (i.e., they can add right away), understand that the denominator in 

the answer is 4, and then compute the answer, 
3

4
 . When the denominators are different, 

additional steps are required to write equivalent fraction(s) so the denominators are the same. For 

example, when adding 
1

4
+

1

2
, the process includes the following steps: (a) find an equivalent 

fraction so the addends have the same denominator; (b) recognize 2 as a multiple of 4; (c) decide 

to rewrite 
1

2
 as an equivalent fraction with 4 in the denominator; (d) multiply the numerator and 

denominator in 
1

2
 times 2; (e) write revised addition problem as 

1

4
+

2

4
; (f) determine 4 is the 

denominator in the answer; and (g) compute the answer, 
3

4
. Understanding why the denominators 

must be the same to add and subtract fractions is an indicator of magnitude understanding. That 

is, you can only add or subtract the numerators if both fractions have the same size parts.  
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Proficiency with fraction calculations, therefore, requires students to effectively apply 

their magnitude knowledge of fractions (i.e., evaluating the denominators) and retrieve basic 

multiplication (i.e., computing equivalent fractions) and addition facts (i.e., solving the problem) 

to correctly to compute the answer. When students ignore fraction properties and rely on whole-

number properties to solve fraction calculation problems, they demonstrate their 

misunderstanding of fraction magnitude. Operating under the assumption that conceptual and 

procedural understanding develop in iterative fashion (e.g., Rittle-Johnson & Koedinger, 2009), 

understanding magnitude—which is one aspect of conceptual understanding with fractions—has 

potential for boosting students’ proficiency with fraction calculations (Siegler & Pyke, 2013).  

The present study investigates students’ fraction calculation errors to determine whether 

WNB is common among fourth-grade students and whether the tendency to operate with WNB 

differs by incoming mathematics achievement status. We summarize three relevant studies, 

which assessed fraction misunderstanding through analyzing error patterns. Two studies utilized 

a qualitative data analysis approach (e.g., Haseman, 1986; Newton, Willard, & Teufal, 2014) by 

characterizing errors and providing descriptions. One study (Bottge et al., 2014), used a 

quantitative data analysis approach. Results from across the three studies underscore the 

relationship of WNB to fraction calculations, especially for students who have disabilities or who 

are at risk for failure.  

 Haseman (1986) examined 70 case studies, including interview data, to analyze error 

patterns on fraction number line activities and computation problems. The author did not use 

quantitative methods to analyze error patterns. He explored students’ misunderstanding of 

fractions by describing their problem-solving choices from written work and post interviews. He 

presented each student a variety of fraction representations and relied on error patterns as well as 
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student explanations to inform theoretical conclusions regarding each student’s mathematical 

thinking. Because his research question was theoretical in nature, he did not identify and describe 

specific errors independent of a student’s verbal explanation of written work. Instead, he focused 

on whether students were consistent in their application and explanation for solving fraction 

problems. He concluded that errors were most often the result of WNB.  

Newton et al. (2014) looked at fraction-calculation error patterns with addition, 

subtraction, multiplication, and division among 11 sixth-grade students with learning disabilities. 

During instruction, the classroom teacher explicitly linked fraction concepts to procedures in 

order to support relational understanding between the numerator and denominator, which is 

similar to the way we define magnitude understanding. One way their instruction focused on 

relational understanding was by linking adding unit fractions to multiplying a unit-fraction by a 

whole number (e.g.,  
1

5
+

1

5
+

1

5
 and

1

5
 ×  3). Results from the study showed students 

systematically misapplied whole-number properties to addition and subtraction problems with 

unlike denominators. Although authors did not specifically address WNB, the error descriptions 

included a lack of attention to fraction properties that underscore magnitude understanding.    

The approach Bottge et al. (2014) used in their fraction error analysis was most similar to 

the present study. They applied quantitative methodology to their error analysis and indexed 

common error patterns for fraction calculations among middle-school students with learning 

disabilities. They examined whether error patterns were remediated as a function of intervention 

vs. business-as-usual (BAU). They identified two error categories: those due to WNB (e.g., 

combining numerators together and denominators together, selecting a denominator from the two 

given, and adding together all numbers to find a total sum) or those related to the procedural 

algorithm (e.g., failing to rewrite an equivalent fraction when required). After coding for these 
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two errors, Bottge et al. (2014) looked at how intervention or BAU affected students’ error 

patterns from pre- to post-testing. Results showed error patterns at pretest were similar between 

the two groups, whereas posttest errors differed by treatment condition. Students who 

participated in intervention significantly reduced two of three errors that demonstrated WNB. 

Overall, errors that occurred for students in intervention were less frequent than those in BAU 

and students who participated in intervention significantly reduced their WNB errors, thus 

increasing overall performance on fraction calculations.  

Our study extends the literature in three important ways. First, we extend the work from 

Newton et al. (2014) by looking at problem types and features in relation to error patterns. In our 

study, we analyze whether operation (addition vs. subtraction), like vs. unlike denominator, and 

problem orientation, (horizontal vs. vertical) affect errors. Second, we describe fraction-

calculation errors among fourth-grade students across three achievement groups: low achieving 

(LA), average achieving (AA), and high achieving (HA). In Newton et al. (2014) and Bottge et 

al. (2014), students with or at-risk for disabilities were the focus. Because prior research has 

shown that fraction problems pose unique challenges to students who do not struggle with whole 

numbers (Hansen, Jordan, & Rodrigues, 2015; Jordan et al., 2013; Namkung & Fuchs, 2015; 

Vukovic et al., 2014), we address error patterns and misconceptions across achievement groups. 

By focusing on calculation errors during fourth grade (the first year of intensive focus on 

fractions) we look at important implications for designing curriculum to prevent the difficulties 

documented by others in the later grades (e.g., Bottge et al., 2014; Siegler & Pyke, 2013). Third, 

to determine whether WNB can be attenuated by instructional approaches, we include a fourth 

comparison group which is comprised of LA students who received small-group tutoring (LA-T) 

that primarily focused on magnitude understanding. LA, AA, and HA students received their 
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fraction instruction in the core classroom. Unlike small-group tutoring, which had a strong 

emphasis on magnitude understanding, instruction in the classroom largely addressed part-whole 

understanding of fractions and procedures related to calculations (based on teacher report).  

Research Questions and Hypotheses 

The goal for the present study is to describe error patterns with fraction-calculation 

problems among fourth-grade students. We were specifically interested in errors that 

demonstrated WNB, although we coded for a range of errors. Our error analysis was guided by 

two research questions. Our first research question is exploratory, and includes an investigation 

of accuracy and WNB by problem type and orientation across the sample of students. Our 

second, and primary research question, addresses errors as a function of mathematics-

achievement status. To understand the development of fraction misconceptions among LA 

students, we compare them to average- and high-achieving students. To gain a better 

understanding of possible ways to reduce students’ misconceptions and frequency of WNB 

errors, we extend our focus by also assessing low-achieving students’ error patterns who 

participated in supplemental tutoring (LA vs. LA-T) that focused on fraction-magnitude 

understanding.  

Research Question 1: Does accuracy and WNB errors differ by problem type (i.e., 

addition vs. subtraction, like vs. unlike denominators) or orientation (vertical vs. horizontal) 

across the achievement groups? We expected greater accuracy on the following: (a) problems 

with like denominators because there are fewer steps required for solution and (b) addition 

problems because students tend to be more accurate for addition than subtraction (Kamii, Lewis, 

& Kirkland, 2001). We explore whether orientation (horizontal vs. vertical) affects accuracy and 

error patterns because findings from Raghubar et al. (2009) suggests problem orientation affects 
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performance for students with disabilities. We hypothesize that WNB errors may be more 

common on horizontally-presented problems because students will simply add or subtract across 

numerators or denominators and vertically-presented problems may elicit more haphazard errors 

and reflect a lack of attention to the numerators and denominators altogether. 

Research Question 2: Do accuracy and error patterns differ as a function of (a) incoming 

mathematics achievement and (b) instructional setting for LA students who received tutoring that 

emphasized magnitude understanding versus LA students who received fraction core 

mathematics instruction (i.e., in the general education classroom) that emphasizes part-whole 

understanding and procedures? We expect the HA group to be the most accurate, followed by 

AA then LA. We expect a higher frequency of WNB errors among LA students followed by AA 

students and then HA students. We categorized students as HA, AA, or LA in mathematics as 

indexed by a screener that included primarily whole-number problems. We chose this screener 

because the items spanned grades K-12 and provided an index of general mathematics 

achievement. We did not screen based on fraction achievement because incoming fourth graders 

have had limited experience with fractions.  

We expected the LA-T students to be more accurate and have fewer WNB errors than LA 

students because small-group tutoring focused on magnitude understanding. By including the 

LA-T students in the analysis with the LA, AA, and HA groups, we are able to address whether a 

focus on magnitude increased accuracy and decreased WNB errors which tested the Siegler et al. 

(2011) hypothesis that increasing students’ magnitude understanding affects conceptual 

understanding, thus boosting their procedural competence (Rittle-Johnson et al., 2001). (Note 

that the LA and LA-T students performed comparably at pretest, ES = .02, 95% CI [-0.23, 0.26]).  

Method 
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Participants 

 Achievement Groups. The present study includes fourth-grade students who participated 

in a larger intervention study focused on fraction-magnitude understanding (Fuchs et al., 2013). 

In the larger study, students were screened at the beginning of fourth grade on a norm-referenced 

measure of mathematics, the Wide Range Achievement Test - Arithmetic (WRAT-4; Wilkinson, 

2008) and students who scored below the 35th percentile were randomly assigned to tutoring or 

control conditions and effects of intervention were assessed (see Fuchs et al., 2013).  

For our error analysis, we used a sub-sample of students who were screened on the 

WRAT-4 in the beginning of the larger study to comprise achievement groups. We used the 27th 

percentile for the cut point for LA students in the present study, which is lower than the cut point 

in the larger study. We made this decision for two reasons: to be more in line with the framework 

put forth by Geary (2013) that students at-risk perform below the 25th percentile,1 and to ensure 

there was a substantive difference between the LA and AA groups.  

LA, AA, and HA distinctions were made based on the WRAT-4 manual’s qualitative 

performance descriptions corresponding to percentile rank standard score ranges (Table 3.1 in 

the WRAT-4 manual). In order to assess error types on an item-by-item basis, we were 

constrained to using categorical groups and therefore stratified students into three distinct 

achievement groups a priori based on their WRAT-4 percentile scores. However, because 

identifying achievement groups is not an exact procedure, especially for LA students (see 

Mazzocco & Myers, 2003), and there are differing schools of thought for how to delineate LA, 

AA, and HA students, we created score buffer zones among groups as an attempt to ensure a 

                                                      
1 In the larger study, students below the 35th percentile were included so we could assess 

responsiveness to instruction for students with more vs. less severe risk for mathematics difficult 

(i.e., below 15th percentile and between the 16th and 34th percentiles; see Fuchs et al., 2013), 

which is not the purpose in the present study. 
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substantive (rather than arbitrary) difference among achievement groups. (Note that these buffer 

zones correspond to a 1-point standard score difference on the WRAT-4.) LA and LA-T students 

scored below the 27th percentile; AA students between the 43rd and 65th percentiles; and HA 

students scored at or above the 81st percentile.   

We randomly sampled students from each of the categories to comprise the sample for 

the error analysis. Data were collected for 824 fourth-grade students from 53 classrooms in 13 

schools as part of the larger study. Because only 51 students in the larger sample fell in the 

percentile range for HA, to create equal groups, we randomly selected 51 participants from each 

of the other three achievement strata to comprise our study sample (n=204). Three students had 

incomplete data, so our final sample included 201 students: 50 HA, 50 AA, 51 LA, and 50 LA-T.  

Note that as part of the larger study, LA-T students received additional and supplemental 

instruction on fraction-magnitude understanding. This was the impetus for using two groups of 

LA students so that we could also investigate how the instructional approach affected accuracy 

and errors. Fraction instruction for HA, AA, and LA students focused on part-whole 

understanding. 

Instructional Context. Part of the second research question focuses on how instruction 

for low-performing students might change error patterns, therefore we describe some key 

differences between fraction instruction focused on magnitude (tutoring for LA-T students) vs. 

part-whole understanding (core instruction for LA, AA, and HA students). Per fourth-grade 

standards, students must be proficient with comparing two fractions, ordering three fractions, and 

placing fractions on number lines, all of which require students to determine magnitude. Core 

instruction (focused on part-whole understanding) emphasized fair shares and teaching 

understanding of parts of units through identifying fractions from set models (e.g., A picture of 4 
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apples is presented; 3 are red and 1 is green. Students write the fraction for the red apples.) or 

area models (e.g., A picture of a square divided into 6 equal parts. 2 of them are shaded. The 

student names the fraction for the shaded part of the square.). When teaching students to place 

fractions on a number line, for example, part-whole instruction emphasized dividing number 

lines into parts of a whole (fair shares) based on the denominator and then counting over the 

number of parts based on the numerator. To compare fractions, core instruction teachers reported 

using cross multiplying (i.e., multiplying the denominator of one fraction by the numerator of the 

other) to determine which fraction was greater. While this is not necessarily in line with part-

whole instruction, it does not promote magnitude understanding and instead offers a “trick” to 

find the answer. By contrast, tutoring focused on magnitude understanding (i.e., LA-T students), 

which taught students to reason about the size of the numerator in relation to the denominator 

and to compare with benchmark numbers to evaluate magnitude. For example, when determining 

if 
1

3
 or 

3

4
 is greater, students are taught to use 0, 

1

2
, and 1 as benchmark numbers rather than 

drawing area models or pictures of sets. Students are taught to compare 
1

3
 to 

1

2
, by considering the 

size of the denominators. They conclude 
1

3
 is less than 

1

2
 because thirds are smaller than halves. 

Then, students evaluate 
3

4
 in comparison to the benchmark numbers 

1

2
 and 1. Students conclude 

that 
3

4
 is greater than 

1

2
  because it is greater than 

2

4
 . They also conclude that 

3

4
 less than1 because 

it is less than 
4

4
.  Therefore, 

1

3
 is less than 

3

4
. This instruction underscores the relationship of the 

numerator and denominator to determine whether the fraction is closer to 0 or less than or greater 

than 1. Reasoning in this way can be used when comparing two fractions, ordering three or more 

fractions, or placing fractions on a number line.  

Measures 
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For the WRAT-4-Arithmetic (Wilkinson, 2008) screening measure, students complete 

calculation problems of increasing difficulty for 15 min. WRAT-4 fourth-grade problems almost 

entirely samples whole-number problems. Coefficient alpha on this sample was .84. 

 Although this study focuses on students’ fraction computation, we also collected data on 

students’ whole-number computation ability (two measures) and general fraction knowledge 

(one measure) to describe the sample’s mathematics achievement. For all measures, students 

were tested in large groups. 

Whole number computation. Both whole-number computation measures are timed 

fluency tasks. Number Fact Fluency (Fuchs, Hamlett, & Powell, 2003a) tests students’ basic fact 

skills, and includes an addition and subtraction subtest. Each subtest includes 25 problems. For 

addition fact fluency, sums range from 0-18; for subtraction fact fluency, minuends range from 

0-18. For each subtest, problems are presented horizontally on one page, and students have 1 min 

to write answers. Two staff members entered all responses independently into a computerized 

scoring program and any discrepancy was reconciled in joint effort for 100% agreement. Alpha 

on this sample was .87.  

 Procedural Calculations tests students’ double-digit addition and subtraction skills, and 

includes an addition and subtraction subtest (Fuchs, Hamlett, & Powell, 2003b). Each subtest 

includes 20 problems, half of which require regrouping. Students have 3 minutes to write 

answers for each subtest. Two staff members independently entered all responses into a 

computerized scoring program and any discrepancy was reconciled for 100% agreement. Alpha 

on this sample was .91.   

Fraction concepts. We administered 18 released fraction items from 1990-2009 National 

Assessment of Education Progress (NAEP) mathematics released items: the pool of items 
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classified by NAEP as easy, medium, or hard from the fourth-grade assessment or as easy from 

the eighth-grade assessment (NAEP, 2015). Sixteen items assess magnitude understanding (half 

focus on part-whole understanding); one requires subtraction with like denominators; and one 

asks how many fourths make a whole. Students select an answer from four choices (11 

problems); write an answer (3 problems); shade a portion of a fraction (1 problem); mark a 

number line (1 problem); write a short response (1 problem); or write numbers, shade fractions, 

and explain the answer (1 problem; multiple parts). The maximum score is 22. Alpha on this 

sample was .82.  

All of these measures (except for the screener) were used for descriptive purposes. We 

used them to index the sample’s performance on whole-number calculations and general fraction 

concepts, which are related to, yet not the primary focus of the present study. 

Fraction computation. From the 2011 Fraction Battery (Schumacher, Namkung, & 

Fuchs, 2011), we included two measures of fraction calculation to be the focus of the error 

analysis study. Fraction Addition includes 10 problems: four addition problems with like 

denominators and six addition problems with unlike denominators. Five are presented vertically 

and five horizontally. Fraction Subtraction includes 10 problems: five subtraction problems with 

like denominators and five with unlike denominators; five are presented vertically and five 

horizontally. Before conducting the error analysis, problems were scored as correct or incorrect 

(without regard for answers being in simplest form). We used the total score across both tests, 

with a maximum score of 20. Alpha on this sample was .94. See Appendix A for test items. 

Procedure  

Students were tested on WRAT-4 in September of their fourth-grade year. For the larger 

study, LA students were randomly assigned to tutoring and BAU conditions. Across the district, 
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teachers reported that they taught the fractions unit during the second nine weeks of school 

(October – December) with cumulative review through the remainder of the school year. 

Students assigned to small-group tutoring received their teachers’ instruction in the general 

education classroom during the second nine weeks of school and participated in the 12-week 

small-group tutoring program that spanned those nine weeks and included three additional weeks 

(which coincided with cumulative review with their general classroom). Tutoring was typically 

scheduled for the last part of the math block; therefore, time spent on fractions was therefore 

similar across the four groups. Small-group tutoring focused on assessing fraction magnitude: 

comparing fraction, ordering fractions, and placing fractions on the number line. In March (after 

tutoring had taken place), students were assessed on the whole-number computation measures, 

the general fraction measure, and the fraction computation measures for which we applied error 

analysis.  

 Research staff administered all tests in the general education classroom setting 

(approximately 20 students per class). There were two testers present in every classroom: one 

tester ran all administration procedures by reading directions, keeping time (when specified), and 

pacing students on measures that did not have a finite time limit; the other tester circulated 

throughout the classroom to ensure students were working on correct sections, using their cover 

sheets, and focusing on their own work. Testers moved to the next activity on untimed tests when 

all but two students were finished.  

Error Analysis Coding 

We identified two WNB error types (Independent Whole Number and Combination) and 

one error type that reflected misapplication of fraction procedures (Incorrect Denominator 

Change). (Note that we capitalize the error codes for readability.) Note that we kept the two 
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WNB error subtypes separate in our analysis, unlike Bottge et al. (2014), who collapsed these 

error types into a single WNB category. We posit that these two errors represent fundamentally 

different aspects of WNB because Independent Whole Number errors account for fraction 

notation whereas Combination errors do not, although both ignore the relationship between the 

numerator and denominator.  

Whole number bias errors. Independent Whole Number errors reflect a solution in 

which students operated on the numerators and denominators independently. We identified and 

coded three examples of this error. Example 1: students add or subtract across the numerator and 

denominator (e.g., 
1

2
+

3

8
=

4

10
). Example 2: students add or subtract across the numerator and 

pick one of the denominators for the answer (e.g., 
1

2
+

3

8
=

4

10
 or 

4

2
). Example 3: students add or 

subtract across the numerator and apply a different operation (i.e., multiplication or division) to 

the denominator (e.g., 
1

2
+

3

8
=

4

4
 or

4

16
). These three examples were all characterized by isolating 

the numerator and denominator in the calculation and operating on them independently. Note 

that we coded these three examples separately, but combined them to comprise the Independent 

Whole Number error for data analysis.  

Combination errors reflect a solution in which students combined the numerals in the 

fraction calculation problem (rather than operating across numerator and denominators). We 

identified two examples. Example 1: students add the four numerals in the addition or 

subtraction problem and the answer is written as a whole number (e.g., 1

2
+ 3

8
= 14;  i.e., 1 + 2 +

3 + 4 + 8 = 14). Example 2: students add the numerator and denominator in the first fraction to 

become the numerator in the answer and add the numerator and denominator of the second 

fraction to become the denominator in the answer (e.g., 1

2
+ 3

8
= 3

11
).  When students solve 

problems in either of these ways, the meaning of the numerator and denominator and the 
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requirement to treat them separately is ignored. Both Independent Whole Number and 

Combination errors demonstrate WNB. However, we consider the Independent Whole Number 

errors to demonstrate more advanced fraction understanding than the Combination errors 

because students operate on the numerators and denominators separately, which at least accounts 

for fraction notation, whereas Combination errors ignore fraction notation altogether.  

Other errors. Incorrect Denominator Change errors demonstrate emerging fraction 

understanding as students attempted to apply correct fraction procedures but failed to complete 

them accurately. This error is only applicable to problems with unlike denominators and is 

categorized by a student’s failed attempt to write an equivalent fraction for one of the operands 

to make the denominators the same (e.g., 1

2
+ 3

4
= 6

12
+ 3

12
= 9

12
the student correctly changed 1

2
 to 

6

12
 but incorrectly changed 3

4
 to 3

12
 ) This error is demonstrative of the difficult procedures required 

to solve fraction calculations, which could be related to poor multiplication skills or the multi-

step process required to find a common denominator. This error does not demonstrate WNB; 

instead, this error demonstrates difficulty with the procedures required to solve fraction 

calculations.  

We also coded for errors that did not fit into a particular category. These included: (a) not 

attempting the problem, (b) could not assess the error pattern, or (c) a calculation error (e.g., 1 + 

4 = 4). Note that these errors represent careless or random errors, and do not indicate pervasive 

misunderstanding of fraction concepts. 

Scoring. The scoring procedure occurred in three phases.  In the first phase, the first 

author identified error types relevant to addition and subtraction of fractions by consulting the 

existing literature base and taking a quick review of the sample of tests. After identifying the 

three aforementioned error-type categories, both authors created a scoring rubric with 9 codes:  
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coded for Correct, Not Attempted, the three Independent Whole Number variations, the two 

Combination variations, Incorrect Denominator Change, and No Category. No Category errors 

did not follow a decipherable pattern. See Table 1 for our coding description, which includes 

examples and descriptions of each error and its variations. In the second phase, both authors 

independently scored the tests, applied the coding scheme, and assigned responses. The scorers 

hand-scored each test item. After hand scoring, we entered all data into separate excel 

spreadsheets. In the third and final scoring phase, we identified and reconciled all discrepant 

coded responses. The authors achieved 100% agreement.  

Data Analysis 

We first calculated frequency of correct answers and errors. To address the two research 

questions, we ran multiple cross-classified random effects models (CCREM) using the lme4 

command in R (Baayen, Davidson, & Bates, 2008; Van den Noortgate, De Boeck, & Meulders, 

2003) for each of the outcomes of interest. The data structure included two levels: Level 1 

comprised item-by-item student responses and Level 2 crossed student by problem (see Figure 

1). Because each student answered the same 20 problems, responses were cross-classified by 

student and problem at Level 2. We opted for a CCREM for our analysis of problem type, 

accuracy, and errors because variance within a student is lower than variance between students 

and CCREMs are advantageous for considering both student-specific and item-specific effects 

(Baayen, Davidson, & Bates, 2008). Including the cross-classified term accounts for the fact that 

a single student is more likely to operate with pervasive error across a test. Failing to include a 

cross-classified term has potential to over-inflate the variance within each parameter (e.g., Luo & 

Kwok, 2009). Note that to run an item-by-item CCREM necessitated division of groups into 

dummy codes, which is why we divided students into achievement groups a priori and included 
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a buffer zone in an attempt to ensure groups were in fact different.  

Research Question 1 includes two models (Accuracy and Independent Whole Number) 

for each of the problem types and orientation: addition vs. subtraction problems, like vs. unlike 

denominator problems, and vertical vs. horizontal orientation. Research Question 2 includes 

three models (Correct, Independent Whole Number, and Incorrect Denominator Change) across 

the LA, AA, HA, and LA-T groups.  

To contextualize results for the CCREM parameters, we converted the coefficients to risk 

ratios (Viera, 2008). (Note that when the incidence of a particular error occurs greater than 10% 

of the time, the odds ratio tends to overinflate the relative risk. We therefore rely on risk ratios, 

rather than odds ratios.) Risk ratios contextualize frequency of correct answers and errors by 

achievement group. We use the HA group as the referent group because we conceptualized the 

HA group as the “gold standard” and wanted to compare achievement to the highest achieving 

group. Therefore, the calculated risk ratio indicates the likelihood of committing an error, 

relative to the HA group. Per Viera (2008), if the risk ratio equals 1, that group is just as likely to 

get an item correct or commit an error as the HA group; if the risk ratio is greater than 1, that 

group is more likely to get an item correct or commit an error as the HA group; if the risk ratio is 

less than 1, that group is less likely to get an item correct or commit an error as the HA group. 

Note that we also calculated risk ratios for the HA group, which compares the HA group to all 

other groups.  

Results 

 See Table 2 for a summary of whole-number computation skill and general fraction 

understanding descriptors across achievement groups. HA students had greater fluency with 

whole-number calculations and better fraction understanding than AA and LA students.  
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Table 3 includes frequencies of errors by problem type (addition vs. subtraction; like vs. 

unlike denominators) and orientation (vertical vs. horizontal). WNB errors were the most 

pervasive errors across the sample, and of the two different types of WNB errors, Independent 

Whole Number errors occurred most frequently. Note that Combination errors (5% frequency 

with no difference among problem types or groups) and Incorrect Denominator Change errors 

(2% frequency with no difference among problem types or groups) occurred too infrequently to 

perform logistic regression (Stoltzfus, 2011).  

Research Question 1  

See Table 4 for CCREM parameters estimates on addition v. subtraction, like vs. unlike 

denominators, and vertical vs. horizontal orientation for accuracy and Independent Whole 

Number errors across the sample. Results indicated there were no differences for accuracy or 

Independent Whole Number errors on addition vs. subtraction or vertical vs. horizontal 

orientation. However, for problems with unlike denominators, accuracy was lower and 

Independent Whole Number errors occurred more frequently across the sample, p < .001. For 

like vs. unlike denominators, students across the sample were .48 times less likely to accurately 

answer unlike denominator problems and 6.58 times more likely to commit Independent Whole 

Number errors on these problems.  

Research Question 2  

Table 5 includes frequencies for accuracy and error type by achievement group. See 

Table 6 for CCREM parameter estimates comparing problem type across separate error type 

models. There were significant differences among groups for accuracy and Independent Whole 

Number errors, p < .001. Using the HA group as the referent group, AA students were .60 times 

less accurate, LA students were .51 times less accurate, and LA-T students were 1.22 times more 
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accurate. For Independent Whole Number errors (again using HA as the referent group), AA 

students were 2.63 times more likely to apply Independent Whole Number errors, LA students 

were 2.73 times more likely to apply Independent Whole Number errors, and LA-T students 

were .14 times less likely to apply Independent Whole Number errors. 

Discussion 

Research Question 1 addressed whether accuracy and WNB errors differed by problem 

type (i.e., addition vs. subtraction, like vs. unlike denominators) and orientation (vertical vs. 

horizontal) across all students in the sample. Our findings indicate that operation (i.e., addition 

vs. subtraction), did not affect accuracy or frequency of errors, which was surprising given prior 

work with whole-number calculations that has shown that subtraction is more difficult than 

addition for whole numbers (e.g., Kamii et al., 2001). We anticipated this pattern to hold for 

fractions. Also surprising was the fact that students were just as likely to apply WNB errors on 

subtraction problems as addition problems. Consider this problem and its incorrect solution 
1

2
−

2

10
=  

1

8
. Students ignore the “small from big” whole-number concept to subtract across 

numerators (1 – 2) and denominators (2 – 10) independently. Instead, students reverse the 

subtrahend and minuend to avoid a negative number for the answer. Fourth-grade students do not 

typically know how to add/subtract negative numbers, so ignoring this principle of whole-

number subtraction and operating on the numerator and denominator as independent whole 

numbers speaks to the fact that students likely do not recognize the bipartite structure of a 

fraction as a meaningful number and apply the only strategies they know how to apply (i.e., 

WNB), even though the strategy violates their known rules of subtraction. Three of the 10 items 

on the assessment included numerators/denominators that would result in a negative number if 
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subtracted across from left to right and students who applied this error to these problems and 

subtracted from right to left and ignored the order of the fractions in the subtraction problem.  

For orientation, horizontal vs. vertical, there were no difference for accuracy or errors. 

We expected students to apply Independent Whole Number errors more frequently on horizontal 

problems due to the presentation of the numerator and denominator lending themselves to adding 

or subtracting across on a horizontal problem. That is, it is conceivably more difficult spatially to 

keep track of adding the numerator and the denominator independently on vertical problems. In 

fraction addition and subtraction, students are required to evaluate whether denominators are the 

same in both fractions before they can perform the calculation. When fractions are presented 

vertically, the denominators and numerators are not next to one another, which may pose an 

increased challenge to students when determining if they need to rewrite one or both fractions in 

the problem before adding or subtracting. Because vertical problems present a more taxing 

spatial arrangement, we anticipated students might apply procedures more haphazardly, which 

was not the case. Raghubar et al. (2009) showed that students’ reading status detrimentally 

affected performance on math problems with taxing spatial arrangements, which is one reason 

we wanted to explore error patterns with horizontal vs vertical problems. Even though we did not 

collect reading achievement data for the sample in this study, we assumed some students may 

have reading difficulties (Fletcher, 2005) and hypothesized that different response patterns might 

emerge between vertical and horizontal orientations. These data did not support this hypothesis. 

We did, however, find that students were more accurate on problems with like 

denominators than with unlike denominators and Independent Whole Number errors were more 

common on problems with unlike denominators than those with like denominators. Given the 

conceptual foundation and multi-step procedures required for unlike denominator problems, this 
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pattern supports the notion that students with poor conceptual understanding of fractions have a 

more difficult time judging the validity of their approach to solving the problem and also the 

accuracy of their answers (Rittle-Johnson et al., 2001). We posit that when students are presented 

with unlike denominators, they do not know which procedures to apply and choose to avoid the 

multi-step process of changing denominators and thus resort to familiar procedures that 

demonstrate WNB. For example, for the problem 
2

10
+

1

2
, the correct answer is 

7

10
. Adding across 

the numerators and denominators would result in 
3

12
, which is less than one of the addends and 

violates the rule of adding two positive numbers together.  

Research Question 2 examined whether accuracy and frequency of errors differed among 

HA, AA, and LA students and whether instructional context affected accuracy and error patterns 

between low-achieving students who received core classroom instruction based on part-whole 

understanding (LA) and low-achieving students who received supplementary small-group 

tutoring based on magnitude understanding (LA-T). (Note again that Combination and Incorrect 

Denominator Change errors occurred too infrequently to analyze with CCREM). We therefore 

center the discussion on the most pervasive WNB error across the sample – Independent Whole 

Number errors.  

For students who received their mathematics instruction only in their core classroom (i.e., 

LA, AA, HA), mathematics-achievement status was related to the probability of applying 

Independent Whole Number errors. This error is characterized by students independently 

operating across numerators and denominators and occurred significantly more often for the LA 

group, followed by the AA group, and then the HA group, which was expected. Surprisingly, the 

AA and LA groups applied Independent Whole Number errors with similar frequency. Given 

that the AA students had greater incoming fraction understanding (as indexed by the NAEP, see 
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Table 2) than the LA group, we would have expected them to outperform LA students at the end 

of fourth grade on fraction calculations.  

We also found that mathematics-achievement status was significantly related to accuracy 

for LA, AA, and HA students. The HA group was more accurate than the other two groups, and 

the LA group was least accurate. This pattern was expected. Accuracy for LA students was only 

marginally less than AA students, demonstrating again that the performance pattern for LA and 

AA students was similar, and significantly different from the HA students. The similar patterns 

for both Independent Whole Number errors and accurate responses between LA and AA students 

suggest that a measure of general mathematics achievement does not adequately predict 

performance in fractions, especially for students in the bottom two-thirds of the class. Therefore, 

before fractions are introduced into the curriculum, it appears that it is difficult to determine 

which students will struggle consolidating fraction properties with whole-number properties.  

This finding corroborates the larger body of work that describes students’ tendencies to 

operate with WNB when learning to solve fraction calculations (e.g., Bottge et al., 2014; DeWolf 

& Vosniadou, 2011; Mack 1995; Meert, Gregoire, & Noel, 2010a, 2010b; Mix et al., 1999; 

Stafylidou & Vosniadou, 2004) and prior work that has shown that fractions present challenges 

for a wide range of students (Ni & Zhou, 2005; Vamakoussi & Vosniadou, 2010) regardless of 

their whole number knowledge. Our findings support this by indicating that even students who 

are performing at grade level (AA) or higher (HA) in mathematics may still operate with WNB.  

As mentioned, we focused on Independent Whole Number errors (rather than the 

Combination error which also demonstrates WNB) because it occurred most often across the 

sample and was applied by students across all three achievement groups who participated in core 

instruction. The three examples we documented for Independent Whole Numbers demonstrate 
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how students incorrectly add and subtract fractions by viewing the numerators and denominators 

separately. Students ignore their relationship (and the quantity the fraction represents) and rely 

on whole-number properties to drive the procedure they apply. The misapplication of whole 

number properties in this way underscores the tediousness of fraction calculations as they require 

an understanding of the bipartite representation of fractions and the multiple steps required to 

solve them.  

In terms of instructional setting and the nature of instruction, our results suggest that 

instruction focused on magnitude increases accuracy and attenuates applying Independent Whole 

Number errors. The LA-T group (who received small-group tutoring focused on magnitude 

understanding) applied Independent Whole Number errors significantly less often than all the 

other three groups. And similarly, the LA-T group was significantly more accurate on fraction 

calculations than all of the groups. Given the low-performance for LA-T students prior to 

tutoring, we did not expect their gains from tutoring focused on magnitude understanding to be 

over that of both the AA and HA groups. We expected LA-T students to be more accurate than 

LA students based on data from the larger study that assessed effects of intervention (see Fuchs 

et al., 2013), but were surprised that they were significantly more accurate than both the AA and 

HA groups. However, the LA-T group outperforming the AA group makes sense given the 

similar pattern that emerged between the LA and AA groups. Yet, the LA-T students 

outperformed the HA group, which was unforeseen.  

In our opinion, the accuracy and error patterns for the four groups of students 

demonstrates the importance of instructional approach in addition to context. As a reminder, core 

instruction focused on part-whole understanding (LA, AA, HA) and supplemental tutoring 



ERROR PATTERNS WITH FRACTION CALCULATIONS  27 

 

 

focused on magnitude understanding (LA-T).2 The performance of the LA-T students supports 

the Siegler et al. (2011) hypothesis that a strong focus on magnitude understanding boosts 

students understanding of fractions and allows students to judge the accuracy of their 

calculations (e.g., Rittle-Johnson et al., 2001). Our findings also echo prior work that suggests 

fraction instruction focused on magnitude understanding promotes a deeper understanding of 

fractions than instruction focused on part-whole understanding (Cramer, Post, & delMas, 2002; 

Fuchs et al., 2013; Fuchs et al., 2014; Fuchs et al., 2016; Hecht, 2011; Siegler et al., 2011). We 

do, however, feel strongly that part-whole understanding is still important for learning fractions 

because it capitalizes on students’ prior understandings of whole numbers and can therefore 

begin to bridge whole number and fraction concepts. In the tutoring program that the LA-T 

students participated in, the first week (out of 12) of instruction focused on bridging part-whole 

understanding to magnitude understanding (which was the focus for 9 out of the 12 weeks). 

During the magnitude focus, activities were centered around comparing two fractions, ordering 

three fractions, and placing fractions on the number line while reasoning about the size of 

fractions in relation to 0, 1, and ½ rather than focusing on fair shares.  

Because of the high level of accuracy for which the LA-T students performed on fraction 

calculations, especially compared to AA and HA students, we recommend instruction focused on 

magnitude for students of all achievement levels in both core and tutoring contexts.3 Magnitude 

understanding is a unifying property of all numbers (especially whole numbers and fractions) 

and drives proficiency when students evaluate quantities. When comparing or ordering fractions 

                                                      
2 It is important to note that many of the kids in the LA-T group missed a portion of their core 

mathematics instruction by participating in tutoring, and therefore instructional time across the 

four groups was similar. 
3 It is important to note that fraction calculation was not a major emphasis in the tutoring 

program (Fuchs et al., 2013). That is, only three of the 36 days of tutoring included explicit 

instruction on fraction calculations. 
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or whole numbers and estimating fraction or whole number placement on the number line, 

magnitude understanding is critical (Siegler et al., 2011). Understanding fraction magnitude, as 

opposed to whole number magnitude, includes two fundamental fraction principles: (a) that there 

are an infinite number of fractions between any two given numbers on a number line and, (b) that 

any given point on a number line can be represented with an infinite number of fractions. To 

simultaneously attach meaning to whole number and fraction magnitude may minimize students’ 

tendency to operate with WNB (Mack, 1995) when determining fraction magnitude or 

calculating with fractions.  

In considering instructional context, many studies have focused on fraction intervention 

(rather than core) and have increased low-performing students’ accuracy with fraction 

calculations, decreased errors that demonstrate WNB, and enhanced understanding of fraction 

concepts (Bottge et al., 2014; Fuchs et al., 2013; Fuchs et al., 2014; Fuchs et al., 2016; Newton et 

al., 2014). In all of these studies, the focus was on intervention for students who perform below 

grade level or who are at risk for learning disabilities and did not include the full range of 

learners. In Asian countries, magnitude understanding typically drives fraction instruction, which 

could help to explain why they tend to outperform U.S. students in mathematics, and especially 

on rational number topics (Miura, Okamoto, Vlahovic-Stetic, Kim, & Han, 1999; Paik & Mix, 

2003; Provasnik et al., 2012). By contrast, instruction in U.S. schools primarily focuses on the 

part-whole understanding of fractions (Mix et al., 1999). Even though part-whole understanding 

is foundational for magnitude understanding and important to overall fraction understanding, it is 

not sufficient (e.g., Charalambous & Pitta-Pantazi, 2007) for developing a deep understanding of 

fractions, as demonstrated by the performance for the three groups who only participated in core 

instruction focused on part-whole understanding.  
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The recommendations from the Fraction Practice Guide, Developing Effective Fractions 

Instruction for Kindergarten Through 8th Grade, published by IES include centralizing the 

number line representation (Siegler et al., 2010) when introducing fractions in core instruction. 

However, this recommendation does not specify number line estimation, which forces students to 

confront fraction magnitude understanding. While number lines are critical for increasing 

magnitude understanding and for consolidating whole number and fraction properties, they do 

not generate these understandings on their own. Number lines can be divided into fair shares 

which illustrates part-whole understanding whereas number line estimation is the mechanism for 

developing magnitude understanding (Siegler & Pyke, 2013). Therefore, we propose not only 

centralizing the number line representation in core instruction, but also using it as a tool to 

support magnitude understanding by teaching students how to evaluate fraction magnitude 

through reasoning and then to estimate placement on the number line.   

Limitations and Conclusion  

One limitation of this study centers on the achievement group categorical structure, 

specifically the cut points we used on the screener, as they were chosen arbitrarily to capture 

three distinctive achievement groups. These cut points were not based on a widely known or 

accepted categorical structure, because there is not an agreed upon way to distinguish 

mathematics achievement groups. However, we feel that by including the buffer zones and 

constraining the range for each category, we can more confidently report that these students 

comprised LA, AA, and HA groups in fourth grade. A second limitation includes the 

categorization of error types. For one of the examples of the Independent Whole Number error 

(i.e., pick a denominator), occurrences were eligible only on problems with unlike denominators. 

When this strategy is applied to problems with like denominators, the correct answer results. 
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Despite this, we felt coding for this error was necessary since it reveals students’ inability to 

concurrently operate on the numerator and denominator when denominators are not the same.   

In conclusion, the findings of this study extend the literature on the difficulties students 

experience when the mathematics curriculum shifts to include fractions. Future research should 

continue to focus on instructional approaches that enhance magnitude understanding to improve 

students’ fraction understanding and accuracy in solving calculations. Results from the present 

study support this, given the finding that LA-T students performed better than all students who 

primarily received part-whole instruction in their core mathematics program. We therefore 

propose that both core and supplemental instruction focus on magnitude understanding when 

introducing fractions in upper elementary school. We urge teachers to consider the increased 

difficulty of mathematics once fractions are introduced and encourage educators not to assume 

that a student with incoming average or high achievement with whole numbers will continue to 

perform at an adequate level with fractions.  
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Table 1 

 

Description of Error Exmaples 

 

 

 

  

Category Description 

Correct  Performed fraction algorithm correctly; reducing optional 

Not Attempted  Student did not attempt problem  

Independent Whole Number*  

Example 1 Perform operations across numerators and denominators  

separately; treats the numerators and denominators as independent whole numbers; e.g., 
2

10
+

1

2
=

3

12
 

Example 2 Picked denominator; treats the numerators as independent whole numbers, but computes the denominator 

using a different operation (multiplication or division); e.g., 
2

10
+

1

2
=

3

10
 or 

7

10
−

1

2
=

6

10
 

Example 3  Computed denominator; treats the numerators as independent whole numbers, but computes the denominator 

using a different operation (multiplication or division); e.g., 
2

10
+

1

2
=

3

20
 or 

2

10
+

1

2
=

3

5
 

Combination**  

Example 1 

 

Combines denominators and numerators into a whole number; adds all (4) numbers together or observes no 

distinction between numerator and denominators; answer is whole number; e.g., 
2

10
+

1

2
= 312 

Example 2 

 

Combines denominators and numerators into a new fraction; makes top fraction the numerator and bottom 

fraction the denominator when set up vertically; e.g., 
2

10
+

1

2
=

13

3
 

Incorrect Denominator Change Changes a fraction incorrectly in an attempt to make like denominators 

No Category  An incorrect answer was written and procedures were unclear 

Note: Independent Whole Number and Combination errors represent whole number bias errors.  

*Independent Whole Number examples 1-3 were coded as distinct errors to increase accuracy of coding, but were collapsed for data 

analysis.  

**Combination examples 1-3 were also collapsed for data analysis. 
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Table 2 

 

Whole Number and General Fraction Understanding Descriptors Across Mathematics Achievement Groups 

 

  Low-risk Sample  At-Risk Sample 

  High 

(n = 50) 

 Average 

(n = 50) 

 Low 

(n = 51) 

 Low + Tutoring 

(n = 50) 

  M (SD)  M (SD)  M (SD)  M (SD) 

WRAT-4   32.76 (2.26)  28.72 (0.99)  23.67 (1.97)  23.68 (2.00) 

Number Fact Fluency – Addition   21.42 (4.38)  17.65 (4.57)  13.35 (5.48)  14.04 (4.54) 

Number Fact Fluency – Subtraction  19.10 (5.19)  12.18 (4.71)  8.69 (4.93)  8.66 (4.55) 

Procedural Calculations – Addition   19.70 (0.65)  19.14 (2.31)  16.18 (4.83)  17.46 (3.45) 

Procedural Calculations – Subtraction   18.20 (3.13)  15.84 (4.07)  10.10 (4.80)  9.34 (3.92) 

NAEP  17.98 (2.83)  13.13 (3.49)  10.93 (3.33)  13.86 (2.79) 
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Table 3 

 

Frequencies for Accuracy and Error Type by Problem Type and Orientation 

 

    Error Category  

Item Category  Itemsa  Correct IWN COMB IDC NA NC 

Problem Type          

 Addition   2,010  1160 598 37 21 130 64 

 Subtraction   2,010  1240 487 29 11 149 94 

 Like Denominator   1,809  1517 120 27 1 85 59 

 Unlike Denominator   2,211  883 965 39 31 194 99 

Orientation           

 Vertical   2,010  1121 548 65 23 164 89 

 Horizontal   2,010  1279 537 1 9 115 69 

Note: IWN = Independent Whole Number; COMB = Combination; IDC = Incorrect 

Denominator Change; NA/NC = Not Attempted or No Category. IWN and COMB errors reflect 

WNB.  
aItems reflects the number of problems answered per item category in the sample. 
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Table 4 

 

CCREM Parameter Estimates Comparing Problem Type (Addition vs. Subtraction and Like vs. 

Unlike Denominators) and Orientation (Horizontal vs. Vertical) for Correct Answers and 

Independent Whole Number Errors 

 
 Correct  Independent Whole Number 

Model/Estimate  (SE) RR p   (SE) RR p 

Addition vs. Subtraction        

Intercepta 1.12   (.77) 0.94 .75  -3.61** (.88) 1.23 .03 

Subtraction .31 (1.03) 1.07 .81  -1.06   (1.15) 0.81 .01 

Like vs. Unlike Denominators        

Interceptb 3.66** (.32) 2.10 .97  -7.09** (.52) 0.15 <.01 

Unlike Denominators  -4.39** (.28) 0.48 .48  5.21** (.30) 6.58 .15 

Horizontal vs. Vertical        

Interceptc  .79   (.76) 0.88 .69  -4.20** (.90) 1.02 .01 

Horizontal .93 (1.01) 1.14 .85  .12   (1.17) 0.98 .02 
aThe intercept represents addition as it was the referent type in the model. 
bThe intercept represents like denominators as it was the referent type in the model. 
cThe intercept represents vertical orientation as it was the referent orientation in the model. 

*p < .01; **p < .001. 
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Table 5 

 

Frequencies for Accuracy and Error Type by Achievement Group 

 

    Error Category  

Achievement Group  Itemsa  Correct IWN COMB IDC NA NC 

High   1,000  718 165 9 14 63 31 

Average   1,000  429 435 0 4 78 54 

Low  1,020  374 461 57 13 71 44 

Low + Tutoring   1,000  879 24 0 1 67 29 

Note. IWN = Independent Whole Number; COMB = Combination; IDC = Incorrect 

Denominator Change; NA= Not Attempted; NC = No Category. IWN and COMB errors reflect 

WNB. 
aItems reflects the number of problems answered per item category in the sample. 
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Table 6  

 

CCREM Parameter Estimates Comparing Achievement Groups for Correct Answers and 

Independent Whole Number Errors 

 
 Correct  Independent Whole Number  

Estimate  (SE) RR p   (SE) RR p  

Intercepta 2.48** (.63) 1.29 .92  -5.62**   (.83) 0.54 <.01  

Average -3.11** (.52) 0.60 .35  4.56**   (.78) 2.64 .26  

Low -3.78** (.52) 0.51 .21  4.80**   (.77) 2.74 .31  

Low + Tutoring 2.13** (.55) 1.22 .99  -3.85** (1.16) 0.15 <.01  
aThe intercept represents the high-achieving group as they were the referent group in the model.  
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Figure 1. Cross-classified model. 
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Appendix A 

 

Fraction Addition and Subtraction  
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