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Abstract Growth curve models are widely used in social
and behavioral sciences. However, typical growth curve
models often assume that the errors are normally distributed
although non-normal data may be even more common than
normal data. In order to avoid possible statistical inference
problems in blindly assuming normality, a general Bayesian
framework is proposed to flexibly model normal and non-
normal data through the explicit specification of the error
distributions. A simulation study shows when the distribu-
tion of the error is correctly specified, one can avoid the
loss in the efficiency of standard error estimates. A real
example on the analysis of mathematical ability growth data
from the Early Childhood Longitudinal Study, Kindergarten
Class of 1998-99 is used to show the application of the pro-
posed methods. Instructions and code on how to conduct
growth curve analysis with both normal and non-normal
error distributions using the the MCMC procedure of SAS
are provided.

Keywords Growth curve models · Bayesian estimation ·
Non-normal data · t-distribution · Exponential power
distribution · Skew normal distribution · SAS PROC
MCMC

Introduction

In the past half century, growth curve models (GCMs) have
evolved from fitting a single curve of one individual to
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fitting multilevel or mixed-effects models and from lin-
ear to nonlinear models (e.g., McArdle, 2000; McArdle &
Nesselroade, 2002; Preacher et al., 2008; Tucker, 1958). The
application of GCMs in social and behavioral research has
grown rapidly since Meredith and Tisak (1990) showed that
such models can be fitted as a restricted common factor
model in the structural equation modeling framework (see
also, McArdle (1986) and McArdle and Epstein (1987)).
Nowadays, GCMs are widely used in analyzing longitudinal
data to study change (e.g., Laird & Ware, 1982; McArdle &
Nesselroade, 2003; Meredith & Tisak, 1990; Zhang et al.,
2007). For a more comprehensive discussion of GCMs, see
(McArdle & Nesselroade, 2002).

To estimate GCMs, the maximum likelihood estima-
tion (MLE) method is commonly used (e.g., Demidenko,
2004; Laird & Ware, 1982). MLE is available in both
commercial software, such as SAS PROC MIXED, and
free software such as the R package lme4. MLE typically
assumes that the errors of GCMs are normally distributed.
However, in reality, data are more likely to be non-normally
than normally distributed (Micceri, 1989). The violation of
the normality assumption may result in unreliable param-
eter estimates, incorrect standard errors and confidence
intervals, and misleading statistical tests and inference
(Maronna et al., 2006; Yuan et al., 2004; Zu & Yuan, 2010).

Recently, Bayesian methods have become very popu-
lar in the social and behavioral sciences largely advanced
by the work of Lee and colleagues (e.g., Lee, 2007; Song
& Lee, 2012). Nowadays, Bayesian methods have also
received significant attention as useful tools for estimating
a variety of models including GCMs, especially complex
GCMs that can be difficult or impossible to estimate in
the current MLE framework or in MLE based software
(e.g., Chow et al., 2011; Muthén & Asparouhov, 2012;
Song et al., 2009, 2011; Wang & McArdle, 2008; Zhang
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et al., 2007). For example, Song et al. (2009) proposed a
novel latent curve model for studying the dynamic change
of multivariate manifest and latent variables and their
linear and interaction relationships. Wang and McArdle
(2008) applied the Bayesian method to estimate a GCM
with unknown change points. Zhang et al. (2007) dis-
cussed how to integrate information in growth curve mod-
eling through informative priors. There are also Bayesian
studies to analyze non-normal longitudinal data using
GCMs. For example, Wang et al. (2008) developed Tobit
GCMs to deal with limited response data. Zhang et al.
(2013) extended GCMs to allow the errors to follow a
t-distribution.

The Bayesian estimation for GCMs has been gener-
ally implemented in the specialized software WinBUGS.
Although WinBUGS is flexible to estimate a wide range
of models, it is unfamiliar to a lot of researchers and can
be difficult to use. Since the version 9.2, the SAS institute
released a Markov chain Monte Carlo (MCMC) proce-
dure to implement a general Bayesian estimation procedure
through the adaptive block random-walk Metropolis algo-
rithm with normal proposal distributions (SAS, 2009). The
MCMC procedure has the potential to become popular
because of many important advantages, a few given here.
First, SAS already has a large user base who can under-
stand and learn the use of the MCMC procedure relatively
easily. Second, the data manipulation procedure available in
the SAS data step can be used with the MCMC procedure
seamlessly. Third, specifically for the growth curve analysis,
the use of the MCMC procedure is similar to the use of the
existing NLMIXED procedure. Fourth, it is easy to define
new prior and data distributions in the MCMC procedure.
Currently, the use of the MCMC procedure is still rare, not
to say its application in growth curve modeling. One excep-
tion is Zhang (2013) that provides SAS code for the MCMC
procedure for growth curve modeling but does not give any
instruction on its use.

Therefore, this study serves two main purposes. First,
we will present a general framework to flexibly model the
error distributions of GCMs. Second, we will demonstrate
how to estimate the models using the MCMC procedure
with instructions. In the following, we will first discuss
how to model different types of error distributions. Specif-
ically, we will focus on how to use Bayesian methods
to estimate GCMs with the normal, t , exponential power,
and skew-normal errors. Then, we will demonstrate how
to practically apply the method through the analysis of
data from the Early Childhood Longitudinal Study, Kinder-
garten Class of 1998-99 (ECLS-K). Finally, we will evaluate
the influence of distribution misspecification through a
simulation study.

Growth curve models with different types of error
distributions

A typical GCM can be written as a two-level model. The
first level involves fitting a growth curve with random coef-
ficients for each individual and the second level models the
random coefficients. Specifically, the first level of a GCM
can be written as,

yit = f (timeit , bi ) + eit , t = 1, . . . ,T, i = 1, . . . ,N,

where yit is the observed response for individual i at trial or
occasion t , t imeit denotes the measurement time of the t th
measurement occasion on the ith individual, f (timeit , bi )

is a function of time representing the growth curve with
individual coefficients bi = (bi1, bi2, . . . , bip)′, a p ×
1 vector of random coefficients, and eit is the residual
or error.

The function f (timeit , bi ) can take either a linear or a
nonlinear form of the time variable. The function f deter-
mines the growth trajectory representing how an individual
changes over time. For example, if f (timeit , bi ) = bi0 +
bi1t with t imeit = t and bi = (bi0, bi1)

′, it represents a lin-
ear growth trajectory. If f (timeit , bi ) = bi0 + bi1t + bi1t

2

with t imeit = t and bi = (bi0, bi1, bi2)
′, it represents a

quadratic growth trajectory.
The second level of a GCM can be expressed as,

bi = β + ui

where β is a vector of fixed-effects that can be seen as
the average of the random effects bi without covariates in
the second level, and ui represents, typically, the multi-
variate normal errors with E(ui ) = 0p×1 and Cov(ui ) =
Dp×p. The ui is also called the random effects from a
mixed-effects model perspective.

For growth curve analysis, it is typically assumed that eit

is normally distributed with mean 0 and variance σ 2
e . How-

ever, the normal distribution often lacks the flexibility to
deal with complexity of real data. For example, the normal
distribution is symmetric but data in practice can be skewed.
Furthermore, it has been shown that the normal distribution
is not robust to outliers or data with heavy tails (Yuan and
Zhang, 2012b). If a normal distribution is mis-specified for
a non-normal distribution, the parameter estimator will not
be as efficient.

In this study, we propose a general framework to model
the distribution of eit explicitly and flexibly. The eit can be
assumed to have the general form p(eit |ζ ) where its exact
form can be decided from data. The distribution parameter
ζ can typically be estimated within a GCM. To be consis-
tent with the growth curve analysis literature, the mean of
eit is assumed to be 0. To determine the distribution of eit ,
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individual growth curve analysis can be utilized; to estimate
the model parameters including β, D, σ 2

e , and ζ , Bayesian
estimation methods can be applied.

Individual growth curve analysis

To explore the distribution of eit , the method based on
the individual growth curve analysis discussed by Tong
and Zhang (2012) can be applied. Using the method, an
individual growth curve

yit = f (timeit , bi ) + eit , t = 1, . . . ,T

is first fitted to data from each individual through the least
squares method. The individual coefficients bi and the error
eit can be estimated and retained. Specifically, we have

êit = yit − f
(
t imeit , b̂i

)
.

With the estimated errors, one can first conduct a
D’Agostino skewness test (D’Agostino, 1970) on the errors.
The D’Agostino skewness test evaluates whether a distri-
bution is symmetric or not. If the test rejects the symmetry
of the distribution, a skew distribution is desired. One then
conducts an Anscombe test (Anscombe & Glynn, 1983) on
the kurtosis. The Anscombe test evaluates whether the kur-
tosis of the error is different from the normal kurtosis. If the
test rejects the normal kurtosis, a distribution with excess
kurtosis is then needed.

In addition to the summary statistics on skewness and
kurtosis, more detailed distributional information can be
observed through the histogram or density of êit . Based
on the information, one can decide on one or more can-
didate error distributions. If more than one candidate dis-
tribution can be used, the Kolmogorov–Smirnov test (e.g.,
Chakravarti et al., 1967) can also be used to select the
best one. One can also try out all candidate distributions
for comparison. To ease the procedure, an online pro-
gram has been developed to assist the selection of error
distribution. The URL to the program is http://psychstat.org/
gcmdiag.

Two issues need to be emphasized here. First, the indi-
vidual analysis method assumes that the growth function
is already known a priori. The following strategy can be
used to assist the choice of the growth function. If a growth
function is supported theoretically or empirically, it should
be used. Otherwise, exploratory techniques can be used to
assist the selection of a growth function. For example, both
the individual and mean growth trajectories from the data
can be plotted. Based on the plot, one can decide whether
a trajectory is linear or nonlinear. With the linear trajectory,
a linear function can be used. For the nonlinear trajectory,
it might also suggest what kind of nonlinear form fits best.

There are situations where several nonlinear forms can be
applied. In the situations, one might try all the nonlinear
functions or select the one with the simplest form. Note that
in studying the trajectory, both the mean and individual tra-
jectories should be considered because the mean trajectory
is often influenced by the non-normality of data. Second,
even when the growth function is known, the population
error distribution is often impossible to know. The individ-
ual analysis method aims to best approach the population
distribution through the empirical data. In addition, one
would prefer a distribution that is less affected by potential
misspecifications.

Bayesian estimation

General introduction on Bayesian analysis can be found in
both introductory books (e.g., Kruschke, 2011) and special-
ized ones (e.g., Lee, 2007; Song & Lee, 2012. For a GCM
with the error distribution p(eit |ζ ), the joint posterior distri-
bution of the random effects bi and model parameters based
on the data augmentation algorithm (Tanner &Wong, 1987)
is

p(β, D, ζ , bi |yit , timeit , i = 1, . . . , N, t = 1, . . . , T )

∝ p(β, D, ζ )
∏N

i=1

{
p(bi |β, D)

∏T
t=1 [p(yit |f (timeit , bi ), ζ )]

}

= p(β, D, ζ )
∏N

i=1

{
1

2π |�|1/2 exp
[
− 1

2 (bi − β)′�−1(bi − β)
]}

×∏N
i=1

∏T
t=1 [p(yit |f (timeit , bi ), ζ )]

(1)

where p(β, D, ζ ) is the joint prior distribution for model
parameters.

In this study, the uninformative independent priors are
used for β, D, and ζ such that p(β, D, ζ ) = p(β)p(D)p(ζ )

to minimize the influence of priors. For β, a bivariate nor-
mal prior MN(β0, �0) is used with β0 = (0, 0)′ and
�0 = 1000I2. For D, an inverse Wishart prior distribu-
tion IW(m0, V0) is used with m0 = 2 and V0 = I2.
Here, I2 denotes a 2 by 2 identity matrix. These priors
are chosen so that the density is relatively flat and are
often viewed as uninformative in the Bayesian literature
(e.g., Congdon, 2003; Gelman et al., 2003). The prior distri-
bution for ζ depends on the form of the error distribution.

Incorporating the priors above to Eq. 1, the resulting
posterior is readily available but usually in a very com-
plex form. To evaluate the posterior, the Markov chain
Monte Carlo (MCMC) methods can be used to generate a
sequence of random numbers conditionally on consecutive
draws, formally known as Markov chains, from the poste-
rior distribution, and to construct the parameter estimates
using the average and standard deviation of the generated
numbers. In the SAS MCMC procedure, it uses the block
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Metropolis method that divides the model parameters into
different blocks and samples each block of parameter suc-
cessively. Specifically, we divide the parameters and the
random effects into the following blocks - β, D, ζ , and bi ,
i = 1, . . . , N . From the joint posterior distribution, we can
obtain the conditional posterior distribution for each block
given the rest of parameters. Within each block, the condi-
tion posterior can be obtained and sampled. Details on such
algorithms can be found in the literature (e.g., Robert &
Casella, 2004).

There are two practical issues in applying MCMC meth-
ods. The first is to diagnose the convergence of Markov
chains. The convergence ensures that the empirical average
from a Markov chain converges to the mean of the pos-
terior distribution. Brooks and Roberts (1998) and Cowles
and Carlin (1996) discussed many different methods for
testing convergence. For example, one can use the Geweke
test (Geweke, 1992) and/or visually inspect the trace plot of
Markov chains. The Geweke test calculates a statistic that
is normally distributed. For a converged Markov chain, the
absolute value of a Geweke statistic should be smaller than
1.96 at the 0.05 alpha level. Visual inspection focuses on
whether there is any unstable pattern in the plot of the gener-
atedMarkov chains. Often times, the initial part of a Markov
chain does not converge to the posterior and is often dis-
carded as the burn-in period. The second is to decide the
length of Markov chains. By nature, Markov chains always
have autocorrelation. For two Markov chains, the one with
greater autocorrelation provides less information about the
posterior distribution than the one with smaller autocorre-
lation. In other words, a longer Markov chain is needed
to accurately describe a posterior if its autocorrelation is
greater. To characterize the information in a Markov chain,
we use the statistic called effective sample size (ESS). The
ESS is the equivalent sample size assuming no autocorrela-
tion. For two Markov chains with the same length, the one
with the greater ESS provides more information. A practi-
cal rule of thumb is to get an ESS at least 400 (Lunn et al.,
2012).

For a converged Markov chain with sufficient effec-
tive sample size, we can construct the posterior mean,
posterior standard deviation, and highest posterior den-
sity (HPD; Box & Tiao, 1973) credible interval for each
model parameter for inference. Let θ represent a single
parameter in the vector θ = (β, D, ζ )′. Suppose the con-
verged Markov chain for θ is θi, i = 1, . . . , n where n

is the number of iterations. Then, a point estimate of θ

can be constructed by the sample mean of the Markov
chain

θ̂ = θ̄ = 1

n

n∑
i=1

θi .

The standard deviation, or the standard error in the frequen-
tist view, of θ is given by

̂

s.d.(θ̂ ) = 1

n − 1

n∑
i=1

(
θi − θ̄

)2
.

Credible intervals for θ can also be constructed based on
the Markov chain. The most widely used credible intervals
include the equal-tail credible interval and the HPD credi-
ble interval. A 100(1 − α) % equal-tail credible interval is[
θα/2, θ1−α/2

]
, where the lower and upper bounds are the

100α/2th and 100(1 − α/2)th percentiles of the Markov
chain, respectively. The HPD credible interval is the inter-
val that covers 100(1 − α) % region of the density formed
by the Markov chain but at the same time has the small-
est interval width. For symmetrical posteriors, the equal-tail
credible interval is the same as the HPD credible interval.
For non-symmetrical posteriors, the HPD credible inter-
val has smaller width than the equal-tail credible interval.
Therefore, HPD is often used for asymmetrical posterior
distributions.

Illustration of error distributions

Potentially, the error eit can follow any distribution. The
normal distribution is certainly most widely used. In addi-
tion to the normal distribution, we present three other distri-
butions that can extend GCMs to non-normal data analysis.
They include the t , exponential power, and skew normal dis-
tributions. It can be seen that the normal distribution is a
special case of the three distributions.

Student’s t-distribution

The t-distribution can be viewed as a generalization of
the normal distribution. The t-distribution has a kurtosis
greater than that of the normal distribution. If e follows a t-
distribution t (e|ζ = (μ, φ, k)′), its density function can be
written as

pt (e) = �[(k + 1)/2]
�(k/2)

(
1

πkφ

)1/2 [
1 + (e − μ)2

kφ

]− k+1
2

where μ is the location parameter, φ is the scale parame-
ter, and k is the degrees of freedom. The t-distribution has
longer tails and is more robust to outliers than the normal
distribution (e.g., Lange et al., 1989; Zhang et al., 2013).
Therefore, the t-distribution is often used in robust data
analysis. As the degrees of freedom k goes to infinity, the
t-distribution approaches the normal distribution. The mean
of the t-distribution is

E(e) = μ, k > 1,
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and the variance is

V ar(e) = k

k − 2
φ, k > 2.

The t-distribution is symmetric with a skewness value 0. Its
kurtosis is

γ2 = 3k − 6

k − 4
, k > 4.

Note that when k goes to infinity, γ2 = 3, the kurtosis of
the normal distribution. If the error eit ∼ t (eit |0, φ, k), then
yit ∼ t (yit − f (timeit , bi )|0, φ, k).

In Fig. 1, we plot the density of the t-distribution with
the degrees of freedom k = 1, 3, 6, 30,∞ and the same
location parameter μ = 0 and scale parameter φ = 1.
When k = ∞, its density is the same as the normal distri-
bution. Note that with the increase of degrees of freedom,
the t-distribution moves closer to the normal distribution.
Also, it can be observed, on the tails, the t-distribution has
greater density than the normal distribution and therefore
allows data to be far away from the center. For real data, k

can be estimated as an unknown parameter to quantify the
deviation from normality.

Exponential power distribution

The t-distribution can model the error eit with kurtosis
larger, but not smaller, than 3. The exponential power dis-
tribution, also called the generalized error distribution or
generalized normal distribution, on the other hand, can
model the error with both positive and negative kurtosis
(Box & Tiao, 1973; Nadarajah, 2005). The exponential
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Fig. 1 The t-distribution with the location parameter μ = 0 and scale
parameter φ = 1. The degrees of freedom is 1,3,5,30, and ∞, respec-
tively. The kurtosis for k = 1 or k = 3 does not exist, and the kurtosis
is 9,3.23, and 3 for k = 6, 30, and ∞, respectively

power distribution comes with different forms. In this study,
the form by Box and Tiao (1973) is used. If e follows an
exponential power distribution ep(e|ζ = (μ, σ, γ )′), the
density function can be expressed as

pep(e) = ω(γ )σ−1 exp

[
−c(γ )

∣∣∣∣
e − μ

σ

∣∣∣∣
2/(1+γ )

]
(2)

where

ω(γ ) = {�[3(1 + γ )/2]}1/2
(1 + γ ){�[(1 + γ )/2]}3/2 (3)

and

c(γ ) =
{

�[3(1 + γ )/2]
�[(1 + γ )/2]

}1/(1+γ )

. (4)

Here μ is a location parameter, and σ is a scale parame-
ter that is also the standard deviation of the population. γ

is a shape parameter that is related to the kurtosis of the
distribution and characterizes the “non-normality” of the
population. The mean and variance of the exponential power
distribution are

E(e) = μ

V ar(e) = σ 2.

The exponential power distribution is symmetric and there-
fore its skewness is 0. Its kurtosis is

γ2 = �[5(1 + γ )/2]�[(1 + γ )/2]
�[3(1 + γ )/2]2 .

From the exponential power distribution, we can derive
many other distributions. For example, if γ = 0, the expo-
nential power distribution becomes a normal distribution. If
γ = 1, it becomes a double exponential distribution. Fur-
thermore, when γ approaches −1, it approaches a uniform
distribution. For growth curve analysis, the error at different
times can take an exponential power distribution with differ-
ent γ values to account for both platykurtic and leptokurtic
errors simultaneously. If the error eit ∼ ep(eit |0, σ, γ ), then
yit ∼ ep(yit − f (timeit , bi )|0, σ, γ ).

To better illustrate the influence of γ , we plot the density
function of the exponential power distribution with different
γ values in Fig. 2. The five distributions in the figure share
the same location parameter μ = 0 and scale parameter
σ = 1. γ takes one of the five values −.75, −.25, 0, .5, 1.
When γ = 0, the distribution becomes a normal distribu-
tion. When γ > 0, the exponential power distribution has
a fatter tail than the normal distribution; when γ < 0, it
has a thinner tail than the normal distribution. Therefore, the
generalized error distribution can deal with data with both
fat and thin tails. For real data, γ can be estimated as an
unknown parameter (Box & Tiao, 1973).



432 Behav Res (2016) 48:427–444

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

e

de
ns

ity

-0.75

-0.25

0

0.5

1
1
0.5
0
-0.25
-0.75

Fig. 2 The generalized error distribution with μ = 0, φ = 1 and
different values of γ . Each value of γ is placed on the top of the den-
sity plot. The corresponding kurtosis for γ = −.75, −.25, 0, .5, 1 is
1.92,2.55,3,4.22,6, respectively

Skew normal distribution

Both the t-distribution and the exponential power distribu-
tion are symmetric and, therefore, may not be applied if
the error distribution is asymmetric. A skew normal dis-
tribution captures potential departure from symmetry by
allowing for skewness. A skew normal distribution can also
be viewed as a generalization of the normal distribution
(Azzalini, 1985). If e follows a skew normal distribution
sn(e|ζ = (μ, ω, α)′), its density function can be written as

psn(e) = 2

ω
φ

(
e − μ

ω

)
�

(
α

e − μ

ω

)

where μ is a location parameter, ω is a scale parameter, and
α is a shape parameter that determines the skewness of the
distribution. φ and � are the standard normal density func-
tion and cumulative standard normal distribution function,
respectively. The mean and variance of the skew normal
distribution are

E(e) = μ + ωδ

√
2

π

and

V ar(e) = ω2
(
1 − 2δ2

π

)

where δ = α√
(1+α2)

. Furthermore, its skewness is

γ1 = 4 − π

2

(
δ
√
2/π

)3
(
1 − 2δ2/π

)3/2 .

The kurtosis of the distribution is

γ2 = 3 + 2(π − 3)

(
δ
√
2/π

)4
(
1 − 2δ2/π

)2

and is greater than that of the normal distribution.
To show the influence of α on skewness, we plot the den-

sity function of the skew normal distribution with different
α values in Fig. 3. For comparison, we maintained the same
location parameter μ = 0 and scale parameter ω = 1. The
shape parameter α takes value −4, −2, 0, 2, 4. From the
figure, when α = 0, the skew normal distribution becomes
a normal distribution and its density is symmetric. If α > 0,
the distribution is right skewed and if α < 0, the distribu-
tion is left skewed. For real data, α can be estimated as an
unknown parameter. If the error eit ∼ sn(eit |μ,ω, φ), then
yit ∼ ep(yit − f (timeit , bi )|μ,ω, φ). Because we often
assume the mean of error is zero, we can reparameterize the
model parameter μ so that μ = −ωδ

√
2/π .

The error distributions discussed here can be plugged into
the posterior in Eq. 1. The Bayesian method can then be
used to obtain model parameter estimates. We now explain
how to estimate GCMs with different error distributions
using the MCMC procedure of SAS.

Model estimation using the MCMC procedure

GCMs with different error distributions can be estimated
using the MCMC procedure of SAS. We illustrate the use of
the MCMC procedure in estimating GCMs with the normal
distribution, t-distribution, exponential power distribution,
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Fig. 3 The skew normal distribution withμ = 0 and ω = 1 and differ-
ent values of α. The corresponding skewness for α = −4, −2, 0, 2, 4
is −.78, −45, 0, .45, .78, respectively
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and skew normal distribution. The code can be found from
our website at http://psychstat.org/brm2015.

Growth curve model with the normal error

The SAS code using the procedure MCMC for estimat-
ing the normal error model is given in Code Block 1. The
code on the first line controls the overall data analysis.
DATA=ndata specifies the data set to use. NBI=5000
tells SAS to throw away the first 5,000 iterations as burn-
in. NMC=40000 tells SAS to generate Markov chains with
another 40,000 iterations for analysis. THIN=2 means that
every other iteration will be saved for inference. There-
fore, combining with NMC, a total of 20,000 iterations
are saved. SEED=17 specifies the random number gen-
erator seed. INIT=RANDOM is used to generate the ran-
dom initial values for parameters that are not provided
with initial values. DIAG=(ESS GEWEKE) requests the
calculation of the effective sample size and the Geweke
test statistic. STATISTICS(ALPHA=0.05)=(SUMMARY
INTERVAL) requests the calculation of the summary and
interval statistics for each parameter at the alpha level 0.05.
OUTPOST=histnorm will save the generated Markov
chains into a SAS data set named histnorm, which can be
processed further if needed.

Line 2 uses the SAS output delivery system (ODS) to
output nicely arranged tables and figures. PARAMETERS
requests the output of the sampling method, prior dis-
tribution, and initial value information for each parame-
ter. POSTSUMMARIES requests the output of the mean,
standard deviation, and 25 %, 50 %, and 75 % per-
centiles, and POSTINTERVALS requests the output of
the 95 % percentile and HPD credible intervals of
model parameters. GEWEKE and ESS request the out-
put of the Geweke test and the effective sample size.
TADPANELwill generate the trace, autocorrelation and den-
sity plots in one figure for visually inspecting Markov chain
convergence.

The keyword ARRAY specifies an array. For example,
b[2] on Line 3 is an array with two elements and the first
element is L and the second element is S. Sigma b[2,2]
on Line 5 specifies a 2 by 2 array. If the values of an array
are known, they can be provided as fixed values. For exam-
ple, beta0[2] on Line 6 has two elements with values 0
and V[2,2] on Line 8 is an identity matrix.

The keyword PARMS specifies each block of parame-
ters and their initial values. For example, on Line 9, beta
is treated as one block of parameters with the initial val-
ues {5,2}. Note that the initial values are enclosed by
{} for vectors and arrays. The keyword PRIOR specifies
the prior distribution for the model parameters. For exam-
ple, a multivariate normal prior (MVN) is used for beta
on Line 12. Note that beta0 and sigma0 are given in

the ARRAY statement. Furthermore, Sigma b is given an
inverse Wishart prior on Line 13 and var e is given an
inverse Gamma prior on Line 14.

The random coefficients b are augmented with model
parameters in the estimation. The distribution of b is a
multivariate (bivariate specifically) normal distribution and
is specified as RANDOM b ∼ MVN(beta, Sigma b)
SUBJECT=id on Line 15 where id is a variable that
distinguishes each individual.

Since the error eit follows a normal distribution, yit

also has a normal distribution with the mean bi0 + bi1t

and the same variance. Therefore, the data are mod-
eled using a normal distribution as shown in MODEL
y ∼ NORMAL(mu, var=var e) on Line 17 with
the mean is calculated by mu = L + S ∗ time on
Line 16.

Growth curve model with the t error

The SAS code for the linear GCM with the t error is
given in Code Block 2. The code is very similar to that
for the normal error except that the data y are modeled
by the t-distribution y ∼ t(mu, var=var e, df)
with the unknown degrees of freedom df as shown on
Line 19. Furthermore, the df is given a uniform prior
UNIFORM(1,500) on Line 16.

Growth curve model with the exponential power error

The SAS code for the linear GCM with the exponential
power error is given in Code Block 3. The code is similar
to that for the normal error and the t error. In addition to
the extra parameters on γ (g1, g2, g3, g4 on Lines 12-15),
a notable difference is that the data are given a general
distribution with argument ll on Line 26. This is because
there is no built-in exponential power distribution in SAS.
However, a new distribution can be constructed flexibly.
Comparing ll on Line 24 and the exponential power den-
sity function in Eq. 2, the use of a new distribution is clear
and the new distribution is defined as the logarithm density
function. Another difference is that MONITOR=( PARMS
var e) is used on Line 1. MONITOR lists model parame-
ters or newly created parameters with Markov chains to be
saved. PARMS represents all parameters directly used in a
model as specified by the keyword PARMS. New parameter
can be calculated. For example, var e is the variance cal-
culated based on the standard deviation sigma e on Line
25.

Growth curve model with the skew normal error

The SAS code for the linear GCM with the skew normal
error is given in Code Block 4. The difference between

http://psychstat.org/brm2015
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Code Bock 1 SAS code for the GCM with the normal errort

1 PROC MCMC DATA=ndata NBI=5000 NMC=40000 THIN=2 SEED=17 INIT=
RANDOM DIAG=(ESS GEWEKE) STATISTICS(ALPHA=0.05)=(SUMMARY
INTERVAL) OUTPOST=histnorm;

2 ODS SELECT PARAMETERS POSTSUMMARIES POSTINTERVALS GEWEKE ESS
TADPANEL;

3 ARRAY b[2] L S;
4 ARRAY beta[2];
5 ARRAY Sigma_b[2,2];
6 ARRAY beta0[2] (0 0);
7 ARRAY sigma0[2,2] (1000 0 0 1000);
8 ARRAY V[2,2] (1 0 0 1);
9 PARMS beta {5 2};

10 PARMS sigma_b {1 0 0 1};
11 PARMS var_e 1;
12 PRIOR beta ~ MVN(beta0, sigma0);
13 PRIOR Sigma_b ~ IWISH(2, V);
14 PRIOR var_e ~ IGAMMA(0.001, SCALE=0.001);
15 RANDOM b ~ MVN(beta, Sigma_b) SUBJECT=id;
16 mu = L + S * time;
17 MODEL y ~ NORMAL(mu, var=var_e);
18 RUN;

the current code and previous one is that the error e,
instead of the data y, is modeled directly as indicated
by MODEL e ∼ general(ll) on Line 23. The rea-
son to model e is because the mean of the skew normal
distribution is not “centered” around μ in the sense of
the normal distribution. Directly modeling the data y

will make the estimates of β not comparable with those
from using the other distributions. Therefore, we “trick”
the MCMC procedure by specifying a skew normal dis-
tribution with a mean −ωδ

√
2/π as indicted by xi =

-sigma e∗alpha/sqrt(1+alpha∗alpha)∗sqrt
(2/3.1415926) on Line 21.

An example

The Early Childhood Longitudinal Study, Kindergarten
Class of 1998-99 (ECLS-K) focuses on children’s early
school experiences from kindergarten to middle school. The
ECLS-K began in the fall of 1998 with a nationally repre-
sentative sample of 21,260 kindergartners. The ECLS-K is a
longitudinal study with data collected in the fall and spring
of kindergarten (1998-99), the fall and spring of 1st grade
(1999-2000), the spring of 3rd grade (2002), the spring of
5th grade (2004), and the spring of 8th grade (2007). Data on
children’s home environment, home educational activities,

school achievement, school environment, classroom envi-
ronment, classroom curriculum, and teacher qualifications
are available.

Typical longitudinal studies do not have such a large sam-
ple size. Therefore, we randomly selected a sample of 563
(about 2.5 %) children with complete data on mathemati-
cal ability in the fall and spring of kindergarten and the 1st
grade. Summary statistics for this data set are provided in
Table 1 and the longitudinal plot for all data is presented
in Fig. 4. Both the summary statistics and the longitudinal
plot suggested a linear growth pattern.1 Based on the skew-
ness, the data appear to be symmetric. However, based on
the kurtosis, only the data at time 1 seem to be normally dis-
tributed. The data distribution is platykurtic at time 2 and 3
and leptokurtic at time 4.

In order to diagnose the error distribution, we fitted a
linear regression to the data from each individual. The resid-
ual errors from the regression analysis were pooled together
for normality test. Specifically, the D’Agostino skewness
test and Anscombe-Glynn kurtosis test were conducted (See

1A more rigorous method is to fit different models to the data to select
the best fit one. However, it is not clear how to compare different
models in the current framework. Instead, the no growth model, lin-
ear growth model, and the quadratic growth model were fitted to the
data through MLE based on the normal error and it was found that the
linear model fitted best overall.
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Code Bock 2 SAS code for the growth curve model with the t error

1 PROC MCMC DATA=ndata NMC=40000 NBI=5000 THIN=2 DIC SEED=17 INIT=
RANDOM DIAG=(ESS GEWEKE) STATISTICS(ALPHA=0.05)=(SUMMARY
INTERVAL) OUTPOST=histt;

2 ODS SELECT PARAMETERS POSTSUMMARIES POSTINTERVALS GEWEKE ESS
TADPANEL;

3 ARRAY b[2] L S;
4 ARRAY beta[2];
5 ARRAY Sigma_b[2,2];
6 ARRAY beta0[2] (0 0);
7 ARRAY sigma0[2,2] (1000 0 0 1000);
8 ARRAY V[2,2] (1 0 0 1);
9 PARMS beta {5 2};

10 PARMS sigma_b {1 0 0 1};
11 PARMS var_e 1;
12 PARMS df 5;
13 PRIOR beta ~ MVN(beta0, sigma0);
14 PRIOR Sigma_b ~ IWISH(2, V);
15 PRIOR var_e ~ IGAMMA(0.001, SCALE=0.001);
16 PRIOR df~UNIFORM(1,500);
17 RANDOM b ~ MVN(beta, Sigma_b) SUBJECT=id;
18 mu = L + S * time;
19 MODEL y ~ t(mu, var=var_e, df);
20 RUN;

Table 1 Summary statistics of the example data

Time Mean Variance Skewness Kurtosis

1 (Fall, kindergarten) 4.62 8.58 0.69 3.22

2 (Spring, kindergarten) 7.45 11.11 0.04 2.58

3 (Fall, 1st year) 9.00 10.96 -0.22 2.74

4 (Spring, 1st year) 11.95 8.59 -1.00 4.27

Table 2; Anscombe & Glynn, 1983; D’Agostino, 1970).
First, the skewness was -0.06 and the kurtosis was 3.77 for
the overall error distribution. The D’Agostino test indicates
that the error distribution was symmetric but the Anscombe-
Glynn test showed that the kurtosis of the error distribution
was greater than that of the normal distribution. Then, the
error distribution was checked at each measurement time.
The error distribution at each time seemed to be symmet-
ric, too. However, the distribution at time 2 was platykurtic
and at time 4 was leptokurtic. Therefore, the error distribu-
tion seems to be best modeled with the exponential power
distribution at each time.

The linear GCM with the exponential power error distri-
bution was fitted to the data. The trace plots for the model
parameters indicate that the Markov chains for all param-
eters appeared to converge well after a burn-in period of

5,000 iterations. Furthermore, all Markov chains passed the
Geweke test as shown in Table 3. The effective sample sizes
ranged from 448 to 9791 for model parameters. Parameter

Time
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h 
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e

1 2 3 4

0
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15

Fig. 4 Longitudinal plot of the mathematical data of the ECLS-K
sample
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Code Bock 3 SAS code for the growth curve model with the exponential power error

1 PROC MCMC DATA=ndata NMC=100000 NBI=5000 THIN=2 MONITOR=(_PARMS_
var_e) DIC SEED=13 INIT=RANDOM DIAG=(ESS GEWEKE(F1=.2 F2=.5))
STATISTICS(ALPHA=0.05)=(SUMMARY INTERVAL) OUTPOST=histged;

2 ODS SELECT PARAMETERS POSTSUMMARIES POSTINTERVALS GEWEKE ESS
TADPANEL;

3 ARRAY b[2] L S;
4 ARRAY beta[2];
5 ARRAY Sigma_b[2,2];
6 ARRAY beta0[2] (0 0);
7 ARRAY sigma0[2,2] (1000 0 0 1000);
8 ARRAY V[2,2] (1 0 0 1);
9 PARMS beta {5 2};

10 PARMS sigma_b {1 0 0 1};
11 PARMS sigma_e 1;
12 PARMS g1 0;
13 PARMS g2 0;
14 PARMS g3 0;
15 PARMS g4 0;
16 PRIOR beta ~ MVN(beta0, sigma0);
17 PRIOR Sigma_b ~ IWISH(2, V);
18 PRIOR sigma_e ~ IGAMMA(0.01, SCALE=0.01);
19 PRIOR g:~UNIFORM(-.6,5);
20 RANDOM b ~ MVN(beta, Sigma_b) SUBJECT=id;
21 mu = L + S * time;
22 g = g1*(time=1)+ g2*(time=2)+g3*(time=3)+g4*(time=4);
23 p = 1+g;
24 ll = -LOG(sigma_e) + .5*LGAMMA(1.5*p)-1.5*LGAMMA(p/2)-log(p) - (

abs(y-mu)/sigma_e) ** (2/p)  *  (GAMMA(1.5*p)/GAMMA(.5*p)) ** (1/p);
25 var_e = sigma_e*sigma_e;
26 MODEL y ~ general(ll);
27 RUN;

Table 2 Tests of skewness and kurtosis for errors from the individual growth curve analysis

D’Agostino skewness test Anscombe-Glynn kurtosis test

Time Skewness z p-value Kurtosis z p-value

1 -0.08 -0.49 0.625 3.19 1.02 0.309

2 0.18 1.18 0.237 2.65 -1.97 0.048

3 -0.18 -1.15 0.249 3.34 1.60 0.112

4 0.18 1.18 0.237 3.79 2.99 0.003

Overall -0.06 -0.78 0.435 3.77 5.41 0.000

For the D’Agostino skewness test, the null hypothesis is skewness = 0 and for the Anscombe-Glynn test, the null hypothesis is kurtosis = 3
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Code Bock 4 SAS code for the growth curve model with the skew normal error

1 PROC MCMC DATA=ndata NMC=40000 NBI=5000 THIN=2 DIC SEED=17 INIT=
RANDOM DIAG=(ESS GEWEKE) STATISTICS(ALPHA=0.05)=(SUMMARY
INTERVAL) MONITOR=(_PARMS_ var_e) OUTPOST=histsn;

2 ODS SELECT PARAMETERS POSTSUMMARIES POSTINTERVALS GEWEKE ESS
TADPANEL;

3 ARRAY b[2] L S;
4 ARRAY beta[2];
5 ARRAY Sigma_b[2,2];
6 ARRAY beta0[2] (0 0);
7 ARRAY sigma0[2,2] (1000 0 0 1000);
8 ARRAY V[2,2] (1 0 0 1);
9 PARMS beta {5 2};

10 PARMS sigma_b {1 0 0 1};
11 PARMS sigma_e 1;
12 PARMS alpha 0;
13 PRIOR beta ~ MVN(beta0, sigma0);
14 PRIOR Sigma_b ~ IWISH(2, V);
15 PRIOR sigma_e ~ IGAMMA(0.01, SCALE=0.01);
16 PRIOR alpha~UNIFORM(-.5,.5);
17 RANDOM b ~ MVN(beta, Sigma_b) SUBJECT=id;
18 mu = L + S * time;
19 var_e = sigma_e*sigma_e;
20 e = y - mu;
21 xi = -sigma_e*alpha/sqrt(1+alpha*alpha)*sqrt(2/3.1415926);
22 ll = log(2)-log(sigma_e)+logpdf(’normal’,(e-xi)/sigma_e,0,1)+

logcdf(’normal’,alpha*(e-xi)/sigma_e,0,1);
23 MODEL e ~ general(ll);
24 RUN;

Table 3 Results from the linear growth curve model with the exponential power error distribution

Equal-tail CI HPD CI Geweke ESS

Estimates SD Est/SD 2.5 % 97. % 2.5 % 97.% statistic p-value

β0 2.354 0.148 15.934 2.063 2.645 2.064 2.646 −0.291 0.771 9791

β1 2.364 0.035 66.966 2.295 2.434 2.295 2.433 0.011 0.992 3964

σ 2
0 8.911 0.762 11.702 7.494 10.479 7.434 10.412 0.715 0.475 3164

σ01 −0.654 0.156 −4.198 −0.972 −0.363 −0.962 −0.354 −0.770 0.441 1160

σ 2
1 0.242 0.047 5.106 0.154 0.339 0.150 0.335 0.950 0.342 672

σ 2
e 2.444 0.110 22.237 2.236 2.666 2.232 2.660 −1.011 0.312 2394

γ1 0.599 0.490 1.224 −0.238 1.712 −0.289 1.658 −0.264 0.792 448

γ2 −0.196 0.161 −1.220 −0.491 0.137 −0.500 0.126 1.802 0.072 1831

γ3 0.091 0.164 0.555 −0.216 0.435 −0.238 0.406 0.937 0.349 2313

γ4 0.649 0.317 2.048 0.104 1.360 0.078 1.321 −1.384 0.167 861
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estimates for the model are given in Table 3. Based on the
estimates of γt , the errors at time 1, 3, and 4 had kurtoses
greater than 3 (positive γ ) while the errors at time 2 had
kurtosis smaller than 3 (negative γ ). Furthermore, based on
the credible intervals, γ4 is statistically significant indicat-
ing that the error distribution at time 4 cannot be treated as
normal. Based on the parameter estimates, the average inter-
cept was 2.354 with an average rate of growth 2.364 in the
mathematical ability. There were also significant individual
differences in both the intercept and rate of growth. Further-
more, children with a greater intercept would show a lower
rate of growth based on the covariance estimate.

Influence of error distribution misspecification

We have demonstrated that we can model error distribu-
tions explicitly through Bayesian methods. If the errors are
not normally distributed but the normal based method is
used, the error distribution is misspecified. On the other
hand, if the errors are normally distribution while a non-
normal distribution is used, the error distribution is equally
misspecified. In this section, we evaluate the influence of
error distribution misspecification under the two situations
through a simulation study. In the literature, the boot-
strap method is often used to obtain the standard errors
for model parameters when data are suspected of non-
normality. Therefore, we also compare our methods using
the non-normal distributions with the bootstrap method.

Data generation

Date are generated from the following linear GCM,

yit = bi0 + bi1t + eit

bi0 = β0 + vi0

bi1 = β1 + vi1

where β0 = 5 and β1 = 2. The random effects fol-
low a bivariate normal distribution with mean zeros and
V ar(vi0) = σ 2

0 = 2, V ar(vi1) = σ 2
1 = 1, and

V ar(vi0, vi1) = σ01 = 0.2 To evaluate the influence of
misspecifying normal error to non-normal error, eit is set to
follow a normal distribution with mean 0 and variance σ 2

e =
1. To evaluate the influence of misspecifying non-normal
error to normal error, eit is set to follow a t-distribution
with ζ = (μ, φ, k) = (0, 1/3, 3), an exponential power
distribution with ζ = (μ, σ, γ ) = (0, 1, γ ), and a skew nor-
mal distribution with ζ = (μ, ω, α) = c(−1.31, 1.64, 10),
respectively. Note that the parameters of the skew normal
distribution are chosen so that the mean of the distribution

2The population parameter values were chosen rather arbitrarily. But
we do not expect that the choice of the values affects the simulation
conclusions.

is 0. For the exponential power distribution, the parameter
γ is set at different values at different measurement times.
Three different sample sizes with N = 100, 300, 500 and
two different measurement occasions with T = 4, 5 are
investigated. The parameters γ = (−0.8, −0.8, 0, 0.8, 0.8)
for T = 5 and γ = (−0.8, −0.8, 0.8, 0.8) for T = 4. Under
each condition, 100 sets of data are generated and analyzed.

To estimate the model with the normal, t , exponen-
tial power, and skew normal distributions, the Bayesian
method is used and implemented in the MCMC procedure
of SAS as discussed earlier. For the bootstrap method, the
same data are analyzed using Mplus and 1000 bootstrap
samples are used. R code for data generation, running sim-
ulation, as well as Mplus script can be found online at
http://psychstat.org/brm2015.

Misspecifying non-normal error as normal error

For the linear GCM with the normal error, t error, expo-
nential power error, and skew normal error, the parameters
β0, β1, σ

2
0 , σ01, and σ 2

1 are comparable and of the greatest
interest to users. Figure 5 displays the scatter plots of param-
eter estimates and their standard errors for the 5 parameters
when modeling the error distribution as the normal and as
non-normal distributions with N = 500 and T = 5 across
all 100 replications of data analysis. The scatterplots of the
parameter estimates on the left panel of Fig. 5 clearly show
that when the non-normal error distributions were misspeci-
fied as a normal distribution, there was not much difference
in terms of parameter estimates. This is evidenced by the
fact that the scatterplots nicely fall on the straight diagonal
line.

However, the right panel of Fig. 5 shows that the standard
errors became greater if the non-normal error distributions
were misspecified as normal distribution because in the
scatterplots, the majority individual points fall under the
straight line. This means that the standard errors were over-
estimated with the incorrect error distributions. To further
quantify the overestimation, we calculate a statistic called
reduced efficiency in standard error (RESE)3 defined as

RESE = 100 ×
⎛
⎝ 1

100

100∑
r=1

̂

ser (θ̂w)

̂

ser (θ̂c)

− 1

⎞
⎠

where ̂

ser (θ̂w) is the standard error estimates of the parame-
ter estimate θ̂w from the wrongly specified error distribution

and ̂

ser (θ̂c) is the corresponding one with the correctly spec-
ified error distribution for the rth replication of data. Note

3One can also define similar statistic based on mean squared error. The
pattern of the results is similar and can be obtain from the author along
with the parameter estimates, standard error estimates, HPD interval,
Geweke statistic, and effective sample size for each replication.

http://psychstat.org/brm2015
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Fig. 5 Parameter estimates and
their standard errors when the t ,
exponential power, and skew
normal distributions are,
respectively, misspecified as
normal distribution from top to
bottom
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that if RESE > 0, it indicates a loss of efficiency; other-
wise, there is a gain in the efficiency.4 The RMSE for each
parameter is given in Fig. 5 for the condition N = 500 and

4Given that the standard error is generally inversely proportional to the
square root of the sample size, RESE = 5 % indicates an increase
of about 10 % sample size and RESE = 10 % indicates an increase
of about 20 % sample size to achieve the same efficiency. Therefore,
RESE = 5 % should not be ignored and RESE = 10 % can be
considered as substantial.

T = 5 and all of them are greater than 0, indicating the loss
of efficiency when the error distribution is misspecified.

Table 4 summarizes the RESE when the non-normal
error distributions are misspecified as the normal distribu-
tion with different sample sizes and measurement occasions.
Although the RESE varies, the overall patterns are the
same. First, under all studies condition, there shows a
reduced efficiency. Second, the random-effects parameters
σ 2
0 and σ 2

01 are influenced the most by the misspecification
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Table 4 RESE when the non-normal error distributions are misspecified as normal (in percentage)

Sample Size (N)

t Exponential Power Skew Normal

100 300 500 100 300 500 100 300 500

T=4

β0 7.25 8.52 8.18 0.64 1.97 2.29 2.43 2.54 2.78

β1 2.04 2.95 2.89 0.61 0.59 0.53 0.94 1.04 1.11

σ 2
0 14.47 20.87 19.54 8.45 6.59 8.02 11.29 10.49 11.97

σ01 10.07 14.68 14.24 4.12 3.99 4.96 7.37 7.49 8.22

σ 2
1 4.39 6.50 6.23 0.88 1.26 1.55 2.55 2.78 3.02

T=5

β0 5.61 7.77 6.38 0.89 1.86 1.90 2.79 3.39 3.29

β1 1.21 1.92 1.47 0.11 0.40 0.33 0.91 1.03 0.81

σ 2
0 12.57 19.34 14.28 1.04 5.51 5.39 10.60 11.01 10.66

σ01 7.40 9.66 9.27 0.78 2.79 3.05 6.32 7.11 6.76

σ 2
1 2.59 2.77 3.21 0.22 0.87 0.83 2.01 2.10 1.97

of the error distributions.Third, there is no clear pattern of
the relationship between RESE and sample sizes as well as
measurement occasions.

Table 5 summarizes the RESE to compare the boot-
strap method and the Bayesian method with the correctly
specified error distributions. If the RESE is negative, the
bootstrap method is more efficient. Otherwise, the Bayesian
method is more efficient. The results show that for β0, σ 2

0 ,
and σ 2

1 , the Bayesian method is consistently more efficient.
For β1 and σ01, the results are mixed. Overall, it seems that
the Bayesian method is more efficient than the bootstrap
method.

Misspecifying normal error as non-normal error

We have shown that misspecifying a non-normal error dis-
tribution to the normal distribution can reduce the efficiency
of standard error estimates. Now, we evaluate the situa-
tion where the normal error distribution is misspecified as
a non-normal distribution. The normal distribution can be
viewed as a special case of the t-distribution, exponen-
tial power distribution, and skew normal distribution. If the
errors are normally distributed but the three non-normal dis-
tributions are used in the model, the error distribution is
over-specified, more precisely than misspecified. Therefore,

Table 5 RESE comparing the bootstrap standard errors with the Bayesian standard deviations using correctly specified error distributions (in
percentage)

Sample Size (N)

t Exponential Power Skew Normal

100 300 500 100 300 500 100 300 500

T=4

β0 11.20 10.56 10.22 5.33 5.07 3.62 5.60 4.62 5.90

β1 −0.14 1.24 1.90 0.13 1.98 0.30 −0.51 0.97 1.16

σ 2
0 24.12 44.16 42.35 3.79 8.20 8.72 9.17 12.29 16.09

σ01 10.20 22.01 20.66 −0.72 4.22 3.75 −1.58 4.11 5.18

σ 2
1 27.01 43.72 42.50 4.97 9.79 8.99 9.21 12.77 15.28

T=5

β0 14.52 14.62 14.01 9.89 10.01 9.96 11.28 11.04 11.29

β1 −0.59 1.39 1.47 −1.50 1.06 0.35 −0.98 −0.63 0.38

σ 2
0 28.53 43.93 42.56 12.28 20.66 21.08 21.43 25.37 26.94

σ01 −2.85 7.62 7.19 −1.73 −1.97 0.41 −2.26 −1.88 0.52

σ 2
1 20.46 33.74 33.83 10.39 18.27 18.41 16.11 19.79 21.12
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Fig. 6 Parameter estimates and
their standard errors when the
normal error distribution is
misspecified as the t ,
exponential power, and skew
normal distributions,
respectively, from top to bottom
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one would expect this kind of misspecification should not
have a big influence on the parameter estimates and their
standard errors.

Figure 6 shows scatterplots of the parameter estimates
and their standard errors when modeling the error distribu-
tion as both the normal and non-normal distributions with
N = 500 and T = 5 across all 100 replications of data
analysis. Clearly, the parameter estimates and their standard

errors were very similar when the error was modeled as
both the normal and non-normal distributions. Table 6 sum-
marizes the RESE for all investigated conditions. Across
the table, RESE is mostly smaller than 0.5 %. Compared
to RESE in Table 4, the loss in efficiency in the standard
error estimates is negligible when the normal error distri-
bution was misspecified as any of the three non-normal
distributions discussed here.
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Table 6 RESE when the normal error distribution is misspecified as non-normal (in percentage)

Sample Size (N)

t Exponential Power Skew Normal

100 300 500 100 300 500 100 300 500

T=4

β0 0.20 −0.12 −0.08 0.43 0.12 0.07 0.58 −0.04 −0.09

β1 −0.01 0.03 0.14 0.22 −0.01 0.10 0.29 −0.06 −0.07

σ 2
0 0.17 −0.15 −0.05 −0.11 0.19 0.53 1.20 −0.11 0.14

σ01 0.10 −0.09 −0.09 0.35 0.05 0.30 0.60 0.16 0.14

σ 2
1 −0.08 0.02 −0.11 0.23 0.12 0.27 0.33 0.16 0.03

T=5

β0 0.09 0.05 0.05 0.39 0.16 0.15 0.20 0.05 −0.10

β1 −0.07 0.04 −0.06 0.01 −0.01 0.03 0.07 0.07 −0.05

σ 2
0 0.14 0.00 0.25 0.38 0.31 0.32 0.62 0.01 −0.03

σ01 0.16 −0.06 −0.09 0.16 0.22 0.17 0.31 −0.03 0.05

σ 2
1 0.07 0.13 −0.14 0.01 0.12 −0.01 0.02 −0.02 0.00

Summary

When the error distributions were misspecified, there was
no noticeable influence on the parameter estimates of the
GCMs. If the normal error distribution was misspecified
as one of the three non-normal distributions discussed in
the study, its influence on the standard error estimates was
also negligible. However, if the non-normal error distribu-
tions were misspecified as normal distributions, the loss in
the efficiency of the standard error estimates can be large.
In addition, by correctly specifying the error distribution,
one can obtain more efficient results than the bootstrap
method.

Discussion

Growth curve models have been widely used in social and
behavioral sciences. However, typical GCMs often assume
that the errors are normally distributed. The assumption
is further carried by both commercial and free software
for growth curve analysis and makes it less flexible for
non-normal data analysis although non-normal data may
be even more common than normal data (Micceri, 1989).
As already shown by the literature, blindly assuming nor-
mality may lead to severe statistical inference problems
(Yuan et al., 2004; Yuan & Zhang, 2012a).

In this study, we proposed a general Bayesian framework
to flexibly model normal and non-normal data through the
explicit specification of the error distributions. Within the
framework, the error distribution is first explored through
exploratory data analysis techniques. Then, a statistical dis-
tribution that best matches the error distribution is used
in growth curve modeling. Bayesian methods are then

used to estimate the model parameters. Although we have
focused on the discussion of the t-distribution, exponen-
tial power distribution, and skew normal distribution, almost
any distribution can be applied to the error in growth curve
analysis.

Through a simulation study, we found that when the nor-
mal error distribution was misspecified as non-normal error
distributions discussed in this study, both parameter esti-
mates and their standard errors were very comparable. How-
ever, when the non-normal error distributions were misspec-
ified as normal distribution, the loss in the efficiency of the
standard error estimates can be large. Therefore, it seemed
that moving from normal distribution to those that closely
resemble the data is compelling. The similar conclusion is
also found in Zhang et al. (2013).

We demonstrated how to conduct growth curve anal-
ysis with both normal and non-normal error distributions
practically using the MCMC procedure. The normal dis-
tribution and t-distribution are built-in distributions of the
MCMC procedure. Therefore, the extension of the growth
curve model with the normal error in the MLE frame-
work to the Bayesian framework is almost effortless. It is
also logically natural to extend the models with the nor-
mal error to the ones with the t error. Although there
are no built-in functions for exponential power distribution
and skew normal distribution, the MCMC procedure allows
the specification of new distributions. From our demon-
stration, potentially any distribution with known density
function can be used to model the error of a GCM. Overall,
Bayesian growth curve modeling seems to offer great flex-
ibility in longitudinal data analysis. Although GCMs with
non-normal error distributions potentially can be estimated
in the MLE framework, we are not aware of easy to use
software to carry out such analysis.



Behav Res (2016) 48:427–444 443

For demonstration purposes, we have focused our dis-
cussion on the linear GCMs. However, the methods
proposed can be equally applied to the nonlinear GCMs
(e.g., Grimm et al., 2011). The nonlinear model esti-
mation can also be conducted using the the MCMC
procedure.

Given the fact that standard error estimates, not param-
eter estimates, are influenced by distribution misspecifica-
tion, one might wonder why not use the MLE with robust
standard error or bootstrap standard error (e.g., Yuan &
Hayashi, 2006). Based on the likelihood theory, the MLE
is most efficient when the distribution is correctly specified
(e.g., Casella & Berger, 2001). Asymptotically, Bayesian
method is equivalent to MLE especially with uninforma-
tive priors (e.g., Gelman et al., 2003). Therefore, one would
still expect the Bayesian method will provide more effi-
cient standard error estimates than the robust or bootstrap
method based on the misspecified normal error distribution.
Our simulation study actually supported this in finding that,
overall, modeling the error distribution is more efficient
than the bootstrap method.

The current study can be extended in different ways.
Firstly, in determining the error distribution, the individ-
ual growth curve analysis is used. However, the method
assumes that the growth function is known a priori. In
practice, this might not be possible. Although it is easy to
distinguish a linear growth from a non-linear growth, it can
be difficult to choose among several potential non-linear
forms. Therefore, more rigorous method can and should be
developed to determine the best growth function. Secondly,
in exploring the error distribution, it is assumed that the
error would follow a certain known distribution. It is likely
that one cannot find a good distribution to approximate the
error distribution from the individual growth analysis. One
potential solution is to use a non-parametric error distri-
bution as discussed by Tong and Zhang (2014). Thirdly,
although it is shown that when a normal distribution is mis-
specified as a non-normal distribution, the loss of efficiency
is minimum, it is not clearly what will happen if the error
distribution is completely misspecified. For example, what
will happen if a skewed normal distribution is misspecified
as an exponential power distribution with negative kurtosis.
Fourthly, the current study did not discuss how to evalu-
ate a model fit and how to conduct model selection with
the new error distributions. Evaluation of a model fit can
inform whether a model fits the data adequately and model
selection can help decide among more than one compet-
ing models. Especially, model selection can also help the
choice of the growth function forms and the error distri-
butions. Many criteria for model evaluation are available
(e.g., Lu et al., 2015; Spiegelhalter et al., 2002) and can
be potentially applied for the current study. Fifthly, the cur-
rent study assumes that the error can be non-normal but

the random coefficients are still normal. There exist multi-
variate counterparts for the t , exponential power, and skew
normal distributions. However, we are only aware of the
extension of the multivariate t-distribution to the model the
random coefficients (Tong & Zhang, 2012). Although the
above concerns are out of the scope of the current study,
that is to introduce a new way to model error distribu-
tions in growth curve analysis, they will be investigated in
future studies.
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