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Reliable and More Powerful Methods for Power
Analysis in Structural Equation Modeling

Ke-Hai Yuan,1,2 Zhiyong Zhang,2 and Yanyun Zhao1
1Renmin University of China
2University of Notre Dame

The normal-distribution-based likelihood ratio statistic Tml ¼ nFml is widely used for power
analysis in structural Equation modeling (SEM). In such an analysis, power and sample size
are computed by assuming that Tml follows a central chi-square distribution under H0 and a
noncentral chi-square distribution under Ha. However, with either violation of normality or
not a large enough sample size, both empirical and analytical results indicate that the chi-
square distribution assumptions are not realistic and consequently methods of power analysis
based on such assumptions are not valid. This article describes a Monte Carlo (MC) method
for power analysis. A measure of effect size for characterizing the power property of
different rescaled statistics is also provided. Robust methods are proposed to increase the
power of Tml and other statistics. Simulation results show that the MC method reliably
controls Type I errors and robust estimation methods effectively increase the power, and their
combination is thus recommended for conducting power analysis in SEM.

Keywords: likelihood ratio statistic, Monte Carlo, power, robust estimation, Type I errors

Measurements in social and health sciences typically con-
tain errors. By separating measurement errors from true
scores or latent constructs, structural equation modeling
(SEM) has become a major research methodology in
many areas where the focus is on the relationships among
the latent constructs as well as those between the latent
constructs and their observed indicators. Like any statistical
method, inference in SEM might suffer from Type I or
Type II errors. Proper methods are needed in applications
to minimize those errors. In particular, a power value itself
does not have much meaning if the testing procedure can-
not control Type I errors. Various developments have been
made for power analysis in SEM. Most of them assume that
the involved statistic follows a central chi-square distribu-
tion under the null hypothesis H0, and a noncentral chi-
square distribution under an alternative hypothesis Ha. The
purpose of this article is to present methods for power
analysis that do not rely on unrealistic chi-square distribu-
tion assumptions. In addition, we also discuss the

relationship between the power of a statistical test and the
underlying population distribution of the sample with
respect to effect size in SEM, and propose to use robust
methods for more powerful tests. A Monte Carlo (MC)
study is also conducted to evaluate the proposed methods.

One of the earliest developments for power analysis in
SEM was given by Satorra and Saris (1985). They consid-
ered the normal-distribution-based likelihood ratio statistic
Tml and assumed that ðTmljH0Þ,χ2df and ðTmljHaÞ,χ2df ðηÞ,
where df is the nominal degrees of freedom, and the non-
centrality parameter (ncp) η is obtained by fitting the pro-
posed model to the population covariance matrix generated
by a misspecified model under Ha. The approach to power
analysis in MacCallum, Browne, and Sugawara (1996) is
also based on Tml following a central chi-square distribu-
tion under H0 and a noncentral chi-square distribution
under Ha, but the ncp η in their approach is specified via
a hypothetical value of the root mean square error of
approximation (RMSEA; Steiger & Lind, 1980) rather
than generated by a specific misspecified model. Power
analysis based on Tml following χ2df and χ2df ðηÞ were further
extended to incomplete data by Dolan, van der Sluis, and
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Grasman (2005) and Davey and Savla (2009). However,
because normally distributed data are as rare as unicorns
(Micceri, 1989), procedures based on Tml following a chi-
square distribution might not be valid with either complete
or incomplete data in practice. In particular, with a non-
normally distributed population, Tml could reject a correct
model 100% at the nominal level of 5% (e.g., Hu, Bentler
& Kano, 1992). Actually, even for normally distributed data
with a correctly specified model, Tml might reject the cor-
rect model close to 100% at the nominal level of 5% when
p (the number of variables) is large and N (the number of
observations) is not large enough (Moshagen, 2012). Thus,
more reliable methods for power analysis are needed for
both normally and non-normally distributed data.

Satorra (2003) studied the power properties of three test
statistics: the likelihood ratio statistic Tml, the rescaled
statistic Trml (Satorra & Bentler, 1994), and the residual-
based asymptotically distribution free statistic Tradf
(Browne, 1984). Each statistic is assumed to follow a
central chi-square distribution under H0 and a noncentral
chi-square distribution under Ha. Limited MC results in
Satorra (2003) indicated that the empirical distribution of
Trml is reasonably approximated by its asymptotic distribu-
tion under certain conditions but not always, and the dis-
tribution of Tradf is markedly different from its nominal
asymptotic chi-square distribution at smaller N. The distri-
butions of Tradf and Trml under H0 were also examined in
Nevitt and Hancock (2004), Yuan and Bentler (1998a), and
Bentler and Yuan (1999). The results indicate that the
nominal chi-square distribution χ2df cannot describe the

empirical behavior of Trml well unless the model structure
and the population fourth-order moments satisfy certain
conditions (Yuan & Bentler, 1999) together with a large
enough sample size N ; and Tradf deviates significantly from
χ2df unless N is very large. Thus, statistics designed to

account for non-normality are not good candidates for
conducting power analysis in practice when they are com-
pared against the nominal chi-square distributions.

Muthén and Muthén (2002), Schoemann, Miller,
Pornprasertmanit, and Wu. (2014), and Zhang (2014) pro-
posed using MC methods to evaluate power in testing the
hypotheses on population parameters in SEM models (see
also Wolf, Hamington, Clark, & Miller, 2013). A key ele-
ment in their proposals is to estimate the power through
MC simulation. The model is estimated for each sample
generated under a given population distribution, and the z
score or Wald statistic for the parameter under the hypoth-
esis is then compared against Nð0; 1Þ or a central chi-
square distribution, yielding either a rejection or no rejec-
tion. The power is estimated as the proportion of rejections
across many replications. The methods would be sound if
the z or Wald statistic literally follows Nð0; 1Þ or the central
chi-square distribution under the null hypothesis. However,
empirical results indicate that standard errors (SEs)

obtained via the information matrix, sandwich-type covar-
iance matrix, or other consistent formula can be a lot
smaller than the corresponding empirical SEs when the
sample size is not large enough, especially when the under-
lying population distribution is of heavy tails (see, e.g.,
MacKinnon & White, 1985; Yuan & Bentler, 1997b).
Also, sandwich-type SEs as given in standard programs
might not be consistent (Yuan & Hayashi, 2006) unless
the model is correctly specified. The idea of estimating
the power by comparing the values of z score against
Nð0; 1Þ parallels that in Yung and Bentler (1996), who
proposed estimating power for testing the overall structure
of an SEM model by comparing ðTmljHaÞ against the nom-
inal chi-square distribution, which would be a sound
method if ðTmljH0Þ,χ2df . However, many conditions can

render the Nð0; 1Þ or χ2df invalid, including non-normally

distributed population, not large enough sample size, or
incomplete data.

A power evaluation approach that does not rely on the
assumptions of ðT jH0Þ,χ2df or ðT jHaÞ,χ2df ðηÞ was given
by Yuan and Hayashi (2003), where the critical value
corresponding to the distribution of ðT jH0Þ is estimated
by the method of bootstrap, and power is also estimated
by the bootstrap methodology in which the value of ðT jHaÞ
is estimated at each replication and compared against the
estimated critical value. Because the bootstrap methodol-
ogy is used, this approach is conditional on a given sample.
Yuan and Hayashi (2003) described this approach using a
real complete data set. In this article, we extend this
approach to power analysis by MC simulation when a
sample is not available, and call it the MC method. The
MC method resembles the methodology of parametric boot-
strap (Efron & Tibshirani, 1993, Section 6.5), and it allows
us to include features of the expected population distribu-
tion to be studied. But we do not need to know the exact
form of the distribution of the target population. In parti-
cular, for any statistic T with Type I error and power
defined by

α ¼ PðT > c1�α H0Þ and power ¼ PðT > c1�αjHaÞ;j

we estimate the critical value c1�α and the value of power
using MC simulation. Thus, we do not need to assume a
distribution on either ðT jH0Þ or ðT jHaÞ and can still obtain a
consistent estimate of power by controlling Type I error at
level α. We conduct a simulation study of the MC method
and contrast different approaches to power analysis in SEM.

The true power of a test statistic1 is defined once the
model, sample size, and a target population are given. The

1A test statistic is a numerical value aiming to optimally summarize
the deviance in the data against the null hypothesis, and the statistic
typically depends on the values of parameters computed by a particular
estimation method (see, e.g., https://en.wikipedia.org/wiki/Test_statistic).
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MC method allows us to consistently estimate the true
power. However, the true power varies when a different
statistic or an alternative estimation method is chosen.
Methods for power analyses in the literature are mostly
based on the analysis of sample means and covariances
by assuming data are from normally distributed popula-
tions. For example, the t, and F statistics for analysis of
vanance (ANOVA) and regression, the Fisher z statistic for
the product-moment correlation, and the statistic Tml for
SEM are all based on the normality assumption, which is
idealized rather than realistic (Micceri, 1989). When the
underlying population distribution is of heavy tails, inaccu-
racy in power estimation for testing hypotheses on means
mostly occurs at smaller sample sizes, because the t and F
statistics are asymptotically robust to distribution viola-
tions. However, Tml or other test statistics in the context
of SEM could suffer from severe loss of true power if the
underlying population distribution is of heavy tails. As a
matter of fact, regardless of how wrong a model is, Tml or
the Fisher z statistic at a given sample size might have a
power close to zero. Because real data tend to have heavier
tails than that of the normal distribution, we propose to
apply robust methods for achieving better power. We also
use MC simulation to compare the power of test statistics
following a robust method against that under the analysis of
sample variances–covariances.

There are many test statistics in SEM, and we mainly
study the power of Tml and Trml, but the methods and ideas
described here can be equally applied to other statistics as
well as to evaluating the power for testing parameters. We
discuss power properties of Tml and Trml under different
estimation methods2 in the following section. A simulation
study evaluating the validity of the MC method and compar-
ing the power properties of different statistics is presented in
the following section. Conclusions, discussion, and recom-
mendations are provided in the concluding section.

Power analysis might be performed in the planning stage
of a project before any data are collected or when data are
partially or completely collected. The analysis in the plan-
ning stage is mostly for predicting the minimum sample
size needed to achieve desired results, and is called proac-
tive, whereas analysis after data were collected is called
reactive and can also be useful (see Marcoulides & Chin,
2013). Although the focus of this article is the proactive
approach for power analysis, our emphasis is on methods to
control Type I error and increase statistical power. The
procedures described are equally applicable to power ana-
lysis reactively. In the concluding section, we also discuss
how to use the information from existing data sets in the
planning stage of a related or a new project.

TEST STATISTICS, ROBUST METHODS, EFFECT
SIZE, AND THE MONTE CARLO METHOD

In this section we first discuss properties of Tml and Trml
defined via the method of normal-distribution-based max-
imum likelihood (NML). Power loss of the two statistics
when the population distribution is of heavy tails is
described next. We then introduce robust methods and
discuss power properties of Tml and Trml defined via robust
estimates. The concept of effect size is also introduced
and compared across different estimation methods.
Methods for handling incomplete data and how Tml and
Trml are computed will also be reviewed, to set up the
context for MC study with missing data in the following
section. Because, beyond the class of elliptical distribu-
tions, the distribution of Tml or Trml does not have a
simple form even asymptotically, we mostly refer to ellip-
tical distributions when discussing the effect of heavy-
tailed distribution on the power of the two statistics in
this section. Our MC study in the following section
includes both symmetric and skewed population
distributions.

Test Statistics Tml and Trml

Many test statistics have been developed in the SEM
literature (see, e.g., Yuan & Bentler, 2007). The most
widely used one is the likelihood ratio statistic Tml derived
from NML. Let x1, x2, � � � , xN be a random sample from
a p-variate population represented by x with EðxÞ ¼ μ
and CovðxÞ ¼ Σ; S be the sample covariance matrix; and
Σð θÞ be the structural model. The NML method for SEM
is commonly presented via the ML discrepancy function

FmlðS;Σð θÞÞ ¼ trðSΣ�1ð θÞÞ � log jSΣ�1ð θÞj � p: ð1Þ

Let θ̂ be the value of θ that minimizes FmlðS;Σð θÞÞ,
then Tml ¼ nFmlðS;Σð θ̂ÞÞ, where n ¼ N � 1. Under the
normality assumption and H0:Σ ¼ Σð θÞ, Tml converges
to the nominal chi-square distribution χ2df as N ! 1.

However, Tml does not approach χ2df when the normality

assumption fails to hold. When data are elliptically distrib-
uted with relative kurtosis

β ¼ Ef½ðx� μÞ0Σ�1ðx� μÞ�2g=½pðpþ 2Þ�; (2)

Tml converges to βχ2df under H0. This implies that Type I

error rate of statistical inference, according to Tml,χ2df , is
directly related to the value of β. When β is large enough,
we reject a correct model 100% by comparing Tml against
the critical value of χ2df although the aim is at 5%. For

example, if the population follows a multivariate t-distribu-
tion with degrees of freedom m (i.e., x,tðm; μ ;ΣÞ), then

2As the estimation method varies, the properties of Tml and Trml also
vary, and we label the two statistics with additional notation when they are
evaluated under robust methods.
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its relative kurtosis is given by β ¼ ðm� 2Þ=ðm� 4Þ. Thus,
if the population distribution follows tðm; μ ;ΣÞ, the
statistic Tml,χ2df will reject the correct model 100% when

m is either less than 4 or greater than but close to 4. In such
a case, results of power analysis based on ðTmljH0Þ,χ2df
and ðTmljHaÞ,χ2df ðηÞ are misleading because Type I error

and power are confounded. A larger value of the β in
Equation 2 is reflected by heavier tails in the observed
data, and can be measured by multivariate kurtosis
(Bentler, 2006, p. 106; Cain, Zhang, & Yuan, in press;
Mardia, 1970.)

More generally, when the population x follows a distri-
bution with finite fourth-order moments,

Tml ¼
Xdf
j¼1

βj z
2
j þ opð1Þ; (3)

where op(1) is a term that approaches zero in probability,
the values of βj, j ¼ 1, 2, …, df are determined by the
model structure and the population fourth-order moments
of x; and zj are independent and each follows the standard
normal distribution Nð0; 1Þ. Thus, the asymptotic mean of

Tml is given by
Pdf

j¼1 βj. Consequently, Tml tends to reject

correct models more often when
Pdf

j¼1 βj is greater than df .

Again, results of power analysis based on ðTmljH0Þ,χ2df
and ðTmljHaÞ,χ2df are misleading.

Let β̂ be a consistent estimator of the average
�β ¼ Pdf

j¼1 βj=df , then the rescaled statistic Trml ¼ β̂�1Tml con-

verges to a distribution with mean equal to df . Consequently,
Trml is better approximated by χ2df than Tml when �β�1:0.

However, it does not mean that Trml literally follows a chi-
square distribution. In particular, when there are substantial
differences among the βj, j ¼ 1, 2,…, df , then the distribution

of Trml can be far from χ2df even asymptotically (Yuan &

Bentler, 1999). Power analysis based on Trml,χ2df can also be

misleading, especially when the coefficients βj differ substan-
tially or when the sample size is not large enough (Bentler &
Yuan, 1999; Nevitt & Hancock, 2004; Yuan & Bentler, 1998a).

Power Loss of Tml and Trml with Heavy-Tailed
Population Distributions

Because Tml tends to reject a correct model when the
underlying population distribution is of heavier tails, we
might think that Tml will have a desired power value in
general. However, the story will change if we control Type
I errors, because the power of Tml is determined by the
separation between ðTmljH0Þ and ðTmljHaÞ, which further
depends on the variance of Tml in addition to the size of
model misspecification. For a give model under Ha, the size
of misspecification is measured by

Fmla ¼ FmlðΣ;Σð θaÞÞ; (4)

where θa is the value of θ that minimizes FmlðΣ;Σð θÞÞ.
Thus, the size of model misspecification is determined once
the model is given, and the overlap between ðTmljH0Þ and
ðTmljHaÞ is then determined by the distribution of the
underlying population in addition to sample size. As an
example, consider x following an elliptical distribution.
Then the asymptotic mean and variance of ðTmljH0Þ are
given by βdf and 2β2df , respectively; and those of ðTmljHaÞ
are given by βdf þ η and 2β2df þ 4βη, respectively, where

η ¼ nFmla (5)

is no longer the noncentrality parameter because ðTmljHaÞ
does not follow a noncentral chi-square distribution (see,
e.g., Shapiro & Browne, 1987). Thus, the mean difference
between ðTmljHaÞ and ðTmljH0Þ is affected little by β while
their standard deviations increase as β increases.
Consequently, there is less separation between ðTmljHaÞ
and ðTmljH0Þ as β increases. The analysis implies that the
true power of Tml decreases as the kurtosis of the popula-
tion distribution increases.

Power loss due to heavy-tailed distribution also occurs to
the rescaled statistic Trml. Consider again x following an ellip-
tical distribution, then ðTrmljH0Þ and ðTrmljHaÞ asymptotically
follow χ2df and χ2df ðη=βÞ, respectively (Shapiro & Browne,

1987). Consequently, the mean difference between ðTrmljHaÞ
and ðTrmljH0Þ approximately equals η=β, which goes to zero as
β increases. Thus, although the asymptotic variance of
ðTrmljHaÞ, equal to 2ðdf þ 2η=βÞ, decreases with β, there
will be little separation between ðTrmljH0Þ and ðTrmljHaÞ if β
is rather large. The statistic Trml eventually lacks power in
detecting any misspecified model as β increases.

A parameter test in SEM following the NML method
faces the same issue of power loss. Although sandwich-
type SEs provide consistent estimates of the variability of
parameter estimates, the SEs increase as kurtosis increases.
Consider testing H0 : θ ¼ θ0 based on the NML estimate θ̂

of θ. Assume that the population counterpart of θ̂ is θa; the

sandwich-type SE of θ̂ is estimated as τ̂=
ffiffiffi
n

p
, and the

population counterpart of τ̂ is τ. Then τ is proportional toffiffiffi
β

p
under an elliptically distributed population with kurto-

sis β (Tyler, 1983). If we define effect size as θa � θ0j j=τ,
then it decreases to zero as β increases. Thus, a parameter
test based on sandwich-type covariance matrix will lose its
power when the population distribution is of heavy tails.

It is hard to give a precise quantification of power loss of
Tml and Trml when the population distribution is not ellip-
tical, as the βjs in Equation 3 are no longer equal in general.
We would expect that their power values for a given η to
decrease as the average �β of the βjs increases. We use the
MC method to evaluate their power in the next section.
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Robust Methods and Statistical Power

Closely related to statistical power is efficiency of parameter
estimates. A method yields more efficient parameter esti-
mates also corresponds to higher statistical power in general
when the estimates are used to construct test statistics. This
is because the resulting test statistics ðT jH0Þ and ðT jHaÞ will
have less variation and thus more separation if their mean
difference remains about the same. It is known that the true
ML estimates are asymptotically most efficient, and NML
estimates can be very inefficient when data possess extra
kurtoses than that of Nð μ ;ΣÞ. In practice, with real data
typically having heterogeneous marginal kurtoses (e.g.,
Blanca, Arnau, Lipez-Montiel, Bono, & Bondayan, 2013;
Cain et al., in press; Micceri, 1989), it is unlikely for us to
obtain the true ML estimates. Nevertheless, ML based on a
distribution that can accommodate heavy tails in real data
will lead to more efficient parameter estimates in general. A
class of distributions that can account for heavy tails is
multivariate t-distributions, and t-distribution-based ML
(TML) has been shown to yield more reliable results than
NML when modeling real multivariate data (see, e.g., Lange,
Little, & Taylor, 1989; Little, 1988; Tong & Zhang, 2012;
Wilcox, 2012; Yuan & Bentler, 1998b).

A more general method than TML is robust
M-estimation, which aims to generalize ML methodology
in general (Huber, 1967). The key idea in robust
M-estimation is that observations geometrically sitting far
from the center of the majority of the data are down-
weighted, and different down-weighting schemes correspond
to different M-estimators. Many weighting functions have
been proposed according to the size of the Mahalanobis
distance:

d2i ¼ ðxi � μÞ0Σ�1ðxi � μÞ:

In particular, the weight corresponding to TML is given by
wi ¼ wðdiÞ ¼ ðmþ pÞ=ðmþ d2i Þ, where m is the degrees of
freedom of the t-distribution and p is the number of vari-
ables. The contribution of xi to the estimation of μ and Σ or
the structural parameter in TML is proportional to wi.
Clearly, the weight wi assigned to the ith case becomes
smaller as di increases. In particular, once wi is given, the
estimates of μ and Σ can be regarded as the weighted
average of xi and ðxi � μÞðxi � μÞ0, respectively. In the
estimation process, the value of wi will be assigned auto-
matically and iteratively in the process of estimating μ and
Σ or the parameters in the structural model (Yuan &
Bentler, 1998b). The degrees of freedom, m, can be either
chosen or estimated. Unless the population is truly a multi-
variate t-distribution, fixing m at a given value might be
preferred because the resulting estimation is a lot easier
(Little, 1988). Also, empirical studies suggested that using
a weight function to down-weight extreme cases is more

important than its precise form (Little, 1988; Wilcox, 2012;
Yuan & Zhong, 2008).

Another popular weight is the Huber-type weights
(Huber, 1981). Let r2 be the quantile of the distribution of
χ2p corresponding to probability ð1� αÞ. The Huber-type

weights are given by

wi1 ¼ w1ðdiÞ
¼ 1; if di � r;

r=di; if di > r;
and wi2 ¼ w2

i1=κ

�
(6)

where κ is a constant such that E½χ2pw2
i1ðχpÞ=κ� ¼ p, with κ

being determined by α so that the resulting estimates of
means and covariances or the structural parameters are
consistent when x,Nð μ ;ΣÞ. Different from weights
derived from a multivariate t-distribution, weight wi1 is
applied to case xi in estimating the means μ, and weight
wi2 is applied to ðxi � μÞðxi � μÞ0 in estimating the cov-
ariance matrix Σ. Under Huber-type weights, only cases
having di > r are down-weighted. A larger value of α
corresponds to a smaller r, and consequently more cases
are down-weighted. In the estimation process, one only
needs to choose a value of α and then the weights wi1 and
wi2 as well as κ will be adjusted automatically in the
estimation process (Yuan & Zhong, 2008).

After robust estimates μ̂ and Σ̂ being obtained, SEM can

be performed by replacing the S in Equation 1 with Σ̂ and
proceeding to estimate the structural parameters θ by
minimizing the corresponding discrepancy function Fml.
Similarly, one can also substitute μ̂ for �x when a mean
structure is involved. Yuan and Bentler (1998b) showed

that the resulting robust estimates θ̂ will inherit the robust

properties of Σ̂. In particular, a robust version of the

rescaled statistic, T ðrÞ
rml, can be obtained so that its asympto-

tic mean equals df . Yuan, Chan, and Bentler (2000) also

showed that the test statistic T ðrÞ
ml by treating Σ̂ as S, or a

robust version of Tml, also more closely follows χ2df than

Tml for typical real data with heavy tails. Because the power
of a test statistic is closely related to the efficiency of the
parameter estimates and robust methods tend to yield more

efficient estimates, both T ðrÞ
ml and T ðrÞ

rml are expected to have
better power than Tml and Trml (see Tyler, 1983; Yuan,
Bentler, & Chan, 2004; Yuan & Hayashi, 2003). We use

the MC method to evaluate the power properties of T ðrÞ
ml and

T ðrÞ
ml and contrast them against those of Tml and Trml. Again,

with the MC method, we do not need to make a central or

noncentral chi-square distribution assumption on either T ðrÞ
ml

or T ðrÞ
rml.

Athough robust M-estimation has been shown to yield
more reliable results than NML in analyzing real data in
previous studies, the advantage of a robust method also
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depends on the population distribution underlying the sam-
ple. If the population distribution is multivariate normal,
then a robust method might not perform as well as NML
although the difference is typically minor. Differences
between NML and robust methods can be characterized
asymptotically when x follows an elliptical distribution. A
model Σð θÞ is called invariant under a constant scaling
factor (ICSF) if for any parameter vector θ and a constant
c there exists an θ c such that c2Σð θÞ ¼ Σð θcÞ. As noted
in Browne (1984), essentially all interesting models are
ICSF. Yuan et al. (2004) showed that, for a model that is

ICSF, the rescaled statistic T ðrÞ
rml asymptotically follows

χ2df ðη=βrÞ, where the value of βr is determined by the

estimation method and the underlying elliptical distribution.
When data are normally distributed and NML is chosen,
βr ¼ β ¼ 1. Tyler (1983) studied robust M-estimation for
covariance matrices and examined the properties of a
rescaled statistic for testing hypothesis H0: hðΣÞ ¼ 0,
where hð�Þ is a vector of smooth functions defined over
the covariance matrix Σ. For an SEM model that is ICSF,
the scaling factor used in Tyler (1983) has the same asymp-
totic value as βr that governs the asymptotic distribution of

T ðrÞ
rml for testing the structural model Σ ¼ Σð θÞ (Yuan et al.

2004). Part of the results of Tyler (1983) for the value of βr
is shown in the Table 1 for us to see the effect of robust
methods, where the populations are 10-variate t-distribution
with 1 and 5 degrees of freedom, and normal distribution,
respectively; and the estimation methods are TML based on
1 and 5 degrees of freedom, robust M-estimation using
Huber-type weights with the tuning parameter r in
Equation 6 corresponding to α ¼ :1, .5, and 0 (NML),
respectively. When the underlying population distribution
is normal, NML yields most efficient estimates with βr ¼ 1,
which has the largest ncp possible for the given size of
model misspecification as measured by the η in Equation 5.
Under this ideal condition, the ncp corresponding to Huber
(.1) is only 1% smaller (1=1:01 ¼ :99) than the η defined in
Equation 5. When the underlying population is multivariate
t-distribution with m ¼ 5, TML(5) performs best with βr ¼
1:13 and the resulting ncp is 12% smaller (1=1:13 ¼ :88)

than η; Huber(.5) corresponds to βr ¼ 1:15 and the result-
ing ncp is 87% of η (1=1:15 ¼ :87). In contrast, NML
corresponds to βr ¼ 3:0, which makes the ncp only 33%
of the η defined in Equation 5. When the underlying popu-
lation is multivariate t-distribution with m ¼ 1 degree of
freedom, NML corresponds to βr ¼ 1 and consequently
Tml or Trml becomes powerless regardless of sample size or
the size of misspecification as measured by η. In contrast,

T ðrÞ
rml following TML(1) corresponds to βr ¼ 1:18, and the

resulting ncp is still 85% of η (1=1:18 ¼ :85), and Huber
(.5) corresponds to an ncp that is 81% of η (1=1:23 ¼ :81).
Note that, with x,tð1; μ ;ΣÞ, ncp ¼ η=1:18 is the largest
possible value of ncp a method can achieve because, TML
(1) yields asymptotically most efficient estimates. Athough
Huber-type weights are not optimal, the ncp under Huber
(.5) is only 4% (1:18=1:23 ¼ :96) smaller than the largest
possible value of ncp under one of the worst conditions.

Effect Size in SEM

As is well known, the power of a statistical test is closely
related to sample size and effect size. Effect size in
ANOVA, regression, or analysis of correlation has been
well documented, but not in SEM. We give a definition of
effect size for SEM in this subsection and discuss its value
by relating it to the material presented in the previous
subsections.

For testing H0 : μ ¼ 0 based on a sample of size n from
a normally distributed population Nðμ; σ2Þ with a known
σ2, the effect size is defined as δ ¼ μ=σ (assuming μ>0).
The test statistic z ¼ ffiffiffi

n
p

�x=σ follows Nð ffiffiffi
n

p
δ; 1Þ or equiva-

lently z2 follows χ21ðnδ2Þ, where nδ2 is the ncp. Thus, the

effect size is simply ðncp=nÞ1=2. For SEM with normally
distributed data, both Tml and Trml approximately follow
χ2df ðηÞ. When the population distribution is normal, a direct

imitation of the effect size from the literature on mean
comparison leads us to defining effect size as

ESml ¼ ðncp=nÞ1=2 ¼ F1=2
mla ; (7)

where Fmla is defined in Equation 4. Note that the effect
size in Equation 7 is defined at the population level, not
related to the sample size N ¼ nþ 1.

The material in the previous subsections implies that the
definition of effect size in Equation 7 is applicable only for
Tml and Trml with a normally distributed population. When
x follows a distribution other than normal, ðTmljHaÞ does
not follow a noncentral chi-square distribution in general,
and the definition of effect size in Equation 7 is no longer
valid. When x follows an elliptical distribution with relative
kurtosis β, and ðTrmljH0Þ and ðTrmljHaÞ still asymptotically
follow chi-square distributions, we can define effect size as

TABLE 1
The Value of βr With Three Population Distributions and Five

Estimation Methods (p ¼ 10, Tyler, 1983)

Estimation Method

Population Distribution TML(1) TML(5) Huber(.1) Huber(.5) NML

tð1; μ ;ΣÞ 1.18 1.28 1.48 1.23 1
tð5; μ ;ΣÞ 1.17 1.13 1.21 1.15 3.00
Nð μ ;ΣÞ 1.16 1.09 1.01 1.08 1.00

Note. TML= t-distribution-based maximum likelihood; NML=normal-dis-
tribution-based maximum likelihood.
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ESrml ¼ ðFmla=βÞ1=2; (8)

which is inversely proportional to the relative kurtosis.
When the population distribution of x is multivariate t
with less than 4 degrees of freedom, then the effect size
in Equation 8, associated with Trml, would be zero regard-
less of the value of Fmla. In contrast, the effect size asso-

ciated with T ðrÞ
rml following a robust method would be

ESðrÞrml ¼ ðFmla=βrÞ1=2: (9)

As listed in Table 1, even if x,tð1; μ ;ΣÞ, the effect size

corresponding to Huber(.5) is still 90% ( ¼ 1=
ffiffiffiffiffiffiffiffiffi
1:23

p
) of

the effect size corresponding to a normally distributed
population. Thus, effect sizes following a robust method
can be substantially greater than those following the widely
used NML with real data typically having heavy tails.

When the population is not elliptically distributed, Trml or

T ðrÞ
rml does not follow a central or noncentral chi-square dis-

tribution in general. However, the values of the power of

Trml and T ðrÞ
rml are still inversely affected by the heaviness of

the tails in the population distribution. Considering that Trml
and T ðrÞ

rml are obtained by rescaling Tml and T ðrÞ
ml , respectively,

we can generalize the effect sizes in Equations 8 and 9 to

ESrml ¼ ðFmla=�βÞ1=2 and ESðrÞrml ¼ ðFmla=�βrÞ1=2; (10)

where �β is the average of the βjs in Equation 3 and �βr is the

counterpart of �β corresponding to T ðrÞ
ml . Note that the power

of Trml or T
ðrÞ
rml might only be approximately determined by

the effect size in Equation 10 and sample size when the two
statistics do not follow chi-square distributions. However,

we expect that �βr corresponding to T ðrÞ
rml to be much smaller

than �β corresponding to Trml under NML, and thus T ðrÞ
rml to

be a more powerful test statistic in general when the under-
lying population distribution of x is of heavy tails. We use
MC simulation to study the power properties of Trml and

T ðrÞ
rml in the next section.

Incomplete Data

We have discussed the issue of statistical power in SEM
with complete data via the test statistics Tml, Trml, T

ðrÞ
ml ,

and T ðrÞ
rml. Each of the statistics also has a corresponding

version when a sample contains missing values. In parti-
cular, estimates of Σ can be obtained using the normal-
distribution-based expectation-maximization (EM) algo-
rithm (Dempster, Laird & Rubin, 1977; Enders & Peugh,
2004) or an expectation-robust (ER) algorithm (Little &
Smith, 1987; Yuan, Chan, & Tian, 2016). The incomplete-

data version of test statistics Tml and T ðrÞ
ml are obtained

when the S in Equation 1 is replaced by the corresponding

NML and robust estimates Σ̂, respectively. The advantage
of such a two-stage approach is that rescaled versions of

Tml and T ðrÞ
ml have been developed for data with missing

values (Yuan & Bentler, 2000; Yuan & Zhang, 2012), and
they perform well in practice (Tong, Zhang & Yuan,
2014). We expect that the power of each of the test
statistics will be inversely affected by heavy-tailed distri-
bution, and will use MC simulation to study them in the
next section.

An alternative test statistic is the likelihood ratio sta-
tistic assuming the observed marginal variables of each
incomplete case follow a normal distribution correspond-
ing to a subset of the p complete variables, called direct
ML or full information maximum likelihood (FIML) in
the SEM literature (Savalei & Bentler, 2009; Savalei &
Falk, 2014). However, such an obtained statistic cannot
be expressed in the form of the discrepancy function in
Equation 1. Consequently, it is not clear how to define
effect size for such a statistic or its rescaled version.
Also, with normally distributed data as rare as unicorns
in practice (Micceri, 1989), direct ML might not have
any advantage over the two-stage approach. In addition,
the two-stage approach facilitates the inclusion of aux-
iliary variables, whercas it is not clear how to include
auxiliary variables in direct ML without affecting the
evaluation of the model for the substantive variables
(Savalei & Bentler, 2009; Yuan & Lu, 2008). Thus,
although our proposed method also applies to statistics
evaluated following direct ML estimation, we do not
study the direct likelihood ratio statistic with incomplete
data in this article.

The Monte Carlo Method for Estimating Power and
Sample Size

Let T be a statistic defined under NML, robust M-estimation,
or any other estimation method. For a sample of size N drawn
from a target population under H0 with complete or incom-
plete data, a value of the statistic T is obtained at the end of the
parameter estimation. We next obtain Nr independent replica-
tions of the process of computing T , and then order the
obtained values of T from small to large, and denote them as

Tð1Þ � Tð2Þ � � � � � TðNrÞ:

For a given level α, let the integer part of Nrð1� αÞ be
denoted as Nrð1�αÞ. For example, with α ¼ :05 and
Nr ¼ 1; 000, Nrð1�αÞ ¼ 950. The estimated critical value
for T under the condition (e.g., sample size, population
distribution, missing data scheme, etc.) is
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ĉ1�α ¼ TðNrð1�αÞÞ:

We then draw an independent sample of the same size
from the target population under Ha, compute the value of
T under the same estimation method by fitting an incor-
rectly specified model, and compare the obtained value of T
against ĉ1�α. The statistic is counted as non-significant if
T � ĉ1�α and significant otherwise. Repeating the process
Na times, the percentage of significant T will be the esti-
mated value of power under the MC method. In particular,
the same process will generate an estimate of Type I error if
we draw independent samples from the same population as
that under H0.

The value of power by the MC method, denoted as p̂a,
might be smaller or greater than the desired value pa. If
p̂a<pa, then increase the sample size N and repeat the
processes of computing ĉ1�α and p̂a. Otherwise, repeat the
process by decreasing the sample size N . The estimated
sample size N is obtained when p̂a is close enough to pa,
say p̂a � paj j<:01. In the implementation of the MC
method, the sample size might be increased or decreased
by a step size of 5 initially, and then by a step size of 1
when p̂a becomes closer to pa. The iterative procedure of
estimating N can be automatic and researchers just need to
provide the desired value of pa, the estimation method, and
features of the population distribution (e.g., marginal skew-
nesses and kurtoses, or the multivariate kurtosis) in addition
to the structural model.

SIMULATION STUDY

In this section, we use MC simulation to examine the MC
method and the properties of test statistics Tml, Trml, T

ðrÞ
ml , and

T ðrÞ
rml. Our main interests are (a) how reliable the MC method

is in controlling Type I errors when compared to the con-
ventional methods, and (b) which statistic is most powerful
with typically non-normally distributed data in practice.

Design

The population is generated according to a confirmatory
factor model with nine variables and three factors. The
path diagram of the model is given in Figure 1, where
factor loadings λ2, λ3, λ5, λ6, λ8, and λ9, the nine error
variances, and the three factor variances are all set at 1.0;
and the three factor covariances are ϕ12 ¼ :5, ϕ13 ¼ :3, and
ϕ23 ¼ :4. The particular values of the parameters in the
population are not material because, for a given N , the
power of a test statistic is mainly determined by the size of
misspecification and the population distribution as mea-
sured by the effect sizes in Equation 7 to 10. The three
loadings represented by the dashed lines in Figure 1 are all
equal (a ¼ b ¼ c), and are set as 0 for the condition of H0,
and are set as .2, .4, and .6, respectively for three condi-
tions of Ha. Thus, there are four different population
covariance matrices Σ in the study.

FIGURE 1 A path diagram for the model that generated the population.

322 YUAN, ZHANG, ZHAO

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 0
7:

02
 0

8 
A

ug
us

t 2
01

7 



Two population distributions are included in the study.
The first is multivariate normal, and the second is generated
according to

x ¼ μ þ Σ1=2z=u;

where Σ1=2 is a symmetric matrix such that Σ1=2Σ1=2 ¼ Σ;
z ¼ ðz1; z2; z3; z4; z5; z6; z7; z8; z9Þ0 with z1, z2, z4, z5, z7, z8
following the standard normal distribution Nð0; 1Þ; z3 fol-
lowing standardized χ21, z6 following standardized χ23, and z9
following standardized χ25; u,

ffiffiffiffiffiffiffiffiffi
χ25=3

p
; and z1 to z9 and u are

all independent. Because Eð3=χ25Þ ¼ 1 and
CovðxÞ ¼ Eð1=u2ÞΣ ¼ Σ, the normal and non-normal
population distributions have the same covariance matrix.
With additional statistical and algebraic computation fol-
lowing Equation 2, it can be shown that the relative kurtosis
for the non-normal population is β � 3:558. Thus, we
would expect Tml to have a higher Type I error rate than
the nominal level when compared against χ2df for inference.
We would also expect the power values of Tml and Trml to

be smaller than those of T ðrÞ
ml and T ðrÞ

rml.
At each of the population conditions (four conditions of

Σ and two conditions of population distribution), we have
eight conditions on sample size N ¼ 100, 150, 200, 300,
500, 1,000, 2,000, 3,000, which can be regarded as from
small to large.

A condition of incomplete data is also included. For
each sample, variables x1, x2, x4, x5, x7, and x8 are always
observed. Variables x3, x6, and x9 contain missing values
that are generated according to: x3 is missing if
ðx1 þ x2Þ<c1, x6 is missing if ðx4 þ x5Þ<c2, and x9 is miss-
ing if ðx7 þ x8Þ<c3, where the values of c1, c2, and c3 are
controlled so that x3, x6, and x9 each is missing 10%. Thus,
there are eight observed patterns, and all the non-observed
values are missing at random (MAR; Rubin, 1976).

The same nine-variable, three-factor model, as implied by
the path diagram in Figure 1, is used to fit all the samples in
our study, where the three dashed lines are not included in
the model. Thus, the nominal degrees of freedom for the four
statistics are df ¼ 24. Both NML and robust methods are
used to estimate the model. For each complete sample, NML
is carried out via the Fisher-scoring (FS) algorithm in esti-
mating the parameters θ in the structural model Σð θÞ, and
statistics Tml and Trml are subsequently obtained. The robust
method using Huber-type weights in Equation 6 with r2

being set at the 95th quantile of χ29 is used to obtain Σ̂, the
FS algorithm is then used to obtain the estimate of the

parameters in the structural model, and statistics T ðrÞ
ml and

T ðrÞ
rml are subsequently computed at the robust θ̂ . For each

incomplete sample, NML is carried out first by the EM

algorithm to obtain Σ̂ and then by the FS algorithm to obtain

θ̂ , and subsequently Tml and Trml; robust estimation is

obtained similarly to that for complete data by the Huber-
type weights, where the tuning parameter r2 in (6) is set at
the 95th quantile of χ2pi , with pi being the number of observed

variables in the ith case (Yuan et al., 2016).
With 1,000 replications3 of a statistic T ( ¼ Tml, Trml,

T ðrÞ
ml or T ðrÞ

rml) under H0, our estimated critical value is

ĉ:95 ¼ Tð950Þ;

aiming to control Type I error at 5%. For each condition of
H0 or Ha, we independently draw another 1,000 replica-
tions of a sample at the same size and consequently 1,000
replications of the statistic T . Each replicated value is
compared against the estimated critical value ĉ:95. For the
statistic T replicated under H0, the proportion that is greater
than ĉ:95 is our estimated Type I error. For the T replicated
under an Ha, the proportion that is greater than ĉ:95 is our
estimated value of power.

Our results are arranged in eight tables: two for
complete and normally distributed data, two for complete
and non-normally distributed data, two for incomplete and
normally distributed data, and two for incomplete and non-
normally distributed data. The first table in each set of two
contains the estimated critical values and Type I errors, and
the second table contains the estimated values of power
corresponding to the three alternative covariance matrices
with a ¼ b ¼ c ¼ :20, .40, and .60, respectively. For the
estimated power in Tables 3, 5, 7, and 9, we did not include
the conditions when estimated values of power for all the
statistics are 1.0.

Results

The upper panel of Table 2 contains the estimated critical
values of the statistics Tml, Trml, T

ðrÞ
ml , and T ðrÞ

rml with com-
plete and normally distributed data. The values of ĉ:95 tend
to be greater at smaller N and become close to the value
c:95 ¼ 36:415 corresponding to the nominal chi-square dis-
tribution χ224. The averages of the estimated critical values
across the eight conditions of sample sizes are also reported
in Table 2, and all are slightly greater than 36.415.

The lower panel of Table 2 contains the estimated Type I
errors when compared each statistic against c:95 (left panel)
and against the estimated critical values ĉ:95 (right panel).
Type I errors under c:95 in the left panel tend to be greater
than those under ĉ:95 in the right panel, especially for the
statistic Trml at smaller N. In contrast, there is little varia-
tion among the Type I errors under ĉ:95, although Type I
errors at N = 3,000 tend to be smaller for all the statistics.

3One could choose a larger number of replications if the range of the
involved statistic or its df is large.
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All the Type I errors in Table 2 are reasonably close to .05,
due to a normally distributed population.

With complete and normally distributed data, Table 3
contains the estimated values of power when each statistic

is compared against the critical values c:95 and ĉ:95 in
Table 2, respectively. The values of power under the clas-
sical method determined by the separation between χ224 and
χ224ðηÞ are also included under χ2 in Table 3. Except at the
smallest N , the power values by all the methods are rather
close. When N is small, the values of power under χ2 tend
to be greater than those under ĉ:95 but smaller than those
under c:95, especially with the statistic Trml. Such a phe-
nomenon is closely related to Type I errors in Table 2. It
follows from the averaged values of power in the last row

of Table 3 that T ðrÞ
ml and T ðrÞ

rml are slightly less powerful than
Tml and Trml due to a normally distributed population.

Table 4 contains the estimated critical values and Type I
errors for complete data but with a non-normally distribu-
ted population. The estimated critical values of Tml are
about three times that of c:95 ¼ 36:415, and the average
Type I error of Tml under c:95 ¼ 36:415 is .787! The esti-
mated critical value for Trml at N ¼ 100 is also way above
c:95 ¼ 36:415, reflecting its greater variation at small N .
Regardless of the size of the estimated critical values,
estimated Type I errors of all the statistics under ĉ:95 are
rather close to .05, although not exactly.

The results on power with complete data and the non-
normally distributed population are given in Table 5.
Because we cannot properly control Type I errors by com-
paring a statistic against c:95, as reflected in Table 4, the
estimated values of power in the left panel of Table 5 are
not trustworthy. We thus only discuss the results in the right
panel of Table 5, where substantial differences exist
between NML and the robust method. Although Huber-
type weights by setting the r2 in Equation 6 at the 95th

TABLE 2
Estimated Critical Values ĉ:95 (Upper Panel) and Type I Errors

(Lower Panel), Complete Data and Normally Distributed Population
(df ¼ 24, c:95 ¼ 36:415)

N Tml Trml TðrÞ
ml TðrÞ

rml

100 38.242 39.651 39.020 37.693
150 37.501 37.915 37.538 36.546
200 38.089 38.378 37.944 37.460
300 37.011 37.488 37.596 37.148
500 35.890 36.046 36.364 36.056
1,000 36.632 37.033 37.164 36.704
2,000 37.112 36.956 37.402 37.164
3,000 37.066 36.992 37.212 36.924
Average 37.193 37.557 37.530 36.962

Compared Against c:95 Compared Against ĉ:95

N Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

100 0.077 0.094 0.079 0.069 0.053 0.050 0.048 0.054
150 0.076 0.092 0.079 0.069 0.062 0.072 0.060 0.068
200 0.072 0.081 0.071 0.060 0.046 0.050 0.053 0.045
300 0.062 0.070 0.066 0.060 0.054 0.056 0.049 0.051
500 0.050 0.051 0.051 0.048 0.056 0.059 0.052 0.050
1,000 0.045 0.044 0.050 0.040 0.042 0.038 0.035 0.035
2,000 0.052 0.050 0.054 0.052 0.043 0.047 0.047 0.047
3,000 0.034 0.036 0.043 0.041 0.030 0.032 0.034 0.033
Average 0.059 0.065 0.062 0.055 0.048 0.051 0.047 0.048

TABLE 3
Estimated Values of Power by Classical (Left Panel) and Monte Carlo Methods (Right Panel), Complete Data and Normally Distributed

Population

Compared Against c:95 Compared Against ĉ:95

Ha N χ2 Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

a ¼ :2 100 0.141 0.161 0.188 0.166 0.146 0.118 0.123 0.109 0.124
150 0.204 0.238 0.259 0.246 0.210 0.198 0.207 0.202 0.208
200 0.275 0.279 0.286 0.290 0.254 0.230 0.235 0.238 0.223
300 0.432 0.436 0.447 0.444 0.421 0.414 0.410 0.391 0.398
500 0.715 0.712 0.716 0.715 0.702 0.729 0.725 0.716 0.709

1,000 0.980 0.981 0.981 0.983 0.979 0.979 0.978 0.978 0.976

a ¼ :4 100 0.514 0.529 0.561 0.529 0.478 0.451 0.433 0.428 0.417
150 0.749 0.760 0.785 0.765 0.728 0.729 0.730 0.729 0.722
200 0.892 0.893 0.890 0.896 0.869 0.857 0.847 0.863 0.834
300 0.987 0.985 0.985 0.982 0.979 0.982 0.981 0.979 0.978

a ¼ :6 100 0.884 0.873 0.882 0.870 0.829 0.831 0.814 0.811 0.796
150 0.985 0.987 0.987 0.987 0.981 0.987 0.984 0.985 0.981
200 0.999 0.998 0.998 0.998 0.997 0.996 0.996 0.996 0.996

Average 0.674 0.679 0.690 0.682 0.659 0.654 0.651 0.648 0.643

Note. The values of RMSEA = ðFmla=df Þ1=2 corresponding to a ¼ :2, .4, and .6 are .040, .076, and .106, respectively.
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quantile of χ29 might be far from optimal, the estimated

values of power for statistics T ðrÞ
ml and T ðrÞ

rml are way above
those of Tml and Trml for many conditions, including a ¼ :2
and N ¼ 200, 300, and 500; a ¼ :4 and N ¼ 100, 150; and
a ¼ :6 and N ¼ 100. There is little difference between
NML and the robust method in statistical power when the

values of power for T ðrÞ
ml and T ðrÞ

rml are close to Type I errors
or when the values of power for Tml and Trml are close to
.90. This is expected because no method is able to tell the
difference between two distributions with a tiny separation
due to a small sample size or small effect size, and all
methods would have enough power if the separation
between two distributions is large enough.

Table 6 contains the estimated critical values and Type I
errors with incomplete data from the normally distributed
population, where all the critical values are above
c:95 ¼ 36:415, especially those corresponding to Tml and

T ðrÞ
ml . Except for T ðrÞ

rml, Type I errors for the other three
statistics under c:95 at N ¼ 100 and 150 are double the
nominal level of .05. In contrast, the estimated Type I errors
under ĉ:95 are much closer to .05, although the smallest one
is .028.

Table 7 contains the estimated values of power with
incomplete data and the normally distributed population.
The values of power among the four statistics under ĉ:95 are

TABLE 4
Estimated Critical Values ĉ:95 (Upper Panel) and Type I Errors
(Lower Panel), Complete Data and Non-normally Distributed

Population (df ¼ 24, c:95 ¼ 36:415)

N Tml Trml TðrÞ
ml TðrÞ

rml

100 123.962 52.982 46.861 32.472
150 77.429 39.269 45.057 33.574
200 86.916 39.528 45.206 34.759
300 96.830 36.948 43.022 33.971
500 103.913 36.945 45.076 36.386
1,000 108.315 36.926 45.452 37.522
2,000 105.350 35.683 44.058 36.755
3,000 107.399 36.410 44.211 37.052
Average 101.264 39.336 44.868 35.311

Compared Against c:95 Compared Against ĉ:95

N Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

100 0.667 0.120 0.205 0.012 0.035 0.033 0.036 0.034
150 0.706 0.097 0.198 0.018 0.079 0.061 0.049 0.051
200 0.741 0.068 0.191 0.024 0.047 0.037 0.038 0.043
300 0.762 0.066 0.209 0.030 0.050 0.057 0.066 0.064
500 0.795 0.054 0.179 0.039 0.037 0.045 0.039 0.039
1,000 0.869 0.064 0.179 0.047 0.034 0.058 0.033 0.033
2,000 0.874 0.049 0.179 0.051 0.053 0.055 0.046 0.048
3,000 0.881 0.054 0.187 0.056 0.068 0.054 0.047 0.049
Average 0.787 0.072 0.191 0.035 0.050 0.050 0.044 0.045

TABLE 5
Estimated Values of Power by Classical (Left Panel) and Monte Carlo Methods (Right Panel), Complete Data and Non-Normally Distributed

Population

Compared Against c:95 Compared Against ĉ:95

Ha N χ2 Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

a ¼ :2 100 0.141 0.761 0.201 0.378 0.045 0.049 0.049 0.093 0.094
150 0.204 0.831 0.195 0.459 0.098 0.118 0.132 0.168 0.162
200 0.275 0.861 0.196 0.533 0.150 0.082 0.120 0.215 0.205
300 0.432 0.924 0.251 0.670 0.336 0.091 0.233 0.438 0.440
500 0.715 0.965 0.369 0.862 0.620 0.097 0.343 0.627 0.620

1,000 0.980 1.000 0.690 0.993 0.971 0.287 0.666 0.962 0.963
2,000 1.000 1.000 0.942 1.000 1.000 0.796 0.951 1.000 1.000
3,000 1.000 1.000 0.982 1.000 1.000 0.973 0.982 1.000 1.000

a ¼ :4 100 0.514 0.901 0.472 0.716 0.202 0.107 0.132 0.382 0.346
150 0.749 0.962 0.518 0.857 0.491 0.293 0.422 0.625 0.606
200 0.892 0.981 0.622 0.939 0.724 0.266 0.501 0.794 0.792
300 0.987 0.997 0.800 0.993 0.966 0.385 0.787 0.981 0.979
500 1.000 1.000 0.943 1.000 1.000 0.679 0.938 1.000 1.000

1,000 1.000 1.000 0.997 1.000 1.000 0.994 0.996 1.000 1.000
2,000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000
3,000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000

a ¼ :6 100 0.884 0.978 0.780 0.944 0.559 0.189 0.320 0.748 0.727
150 0.985 0.999 0.858 0.987 0.888 0.629 0.790 0.944 0.938
200 0.999 1.000 0.923 0.998 0.974 0.687 0.873 0.978 0.980
300 1.000 1.000 0.986 1.000 0.998 0.872 0.985 0.999 0.999
500 1.000 1.000 0.995 1.000 1.000 0.992 0.995 1.000 1.000

Average 0.798 0.960 0.701 0.873 0.715 0.504 0.629 0.760 0.755

Note. The values of RMSEA = ðFmla=df Þ1=2 corresponding to a ¼ :2, .4, and .6 are .040, .076, and .106, respectively.
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comparable, with Tml and Trml being slightly more powerful

than T ðrÞ
ml and T ðrÞ

rml on average.
Table 8 contains the estimated critical values and Type I

errors with incomplete data from the non-normally distrib-
uted population, where the estimated Type I errors for all

the statistics under c:95 are affected by the sample size, and
are not trustworthy when N is small. In contrast, Type I
errors under ĉ:95 are rather close to the nominal level,
regardless of the values of ĉ:95 in the upper panel.

Table 9 contains the estimated values of power when the
four statistics are compared against c:95 and ĉ:95, respec-
tively. Again, we cannot trust the estimated values of power
in the left panel of Table 9 because they are confounded
with Type I errors. Similar to the results in Table 5, statis-

tics T ðrÞ
ml and T ðrÞ

rml are much more powerful than Tml and Trml
for many conditions, including a ¼ :2 and N ¼ 200, 300,
500, 1,000; a ¼ :4 and N ¼ 100, 150, 200, 300; and a ¼ :6
and N ¼ 100, 150, 200. Again, there is little difference
between the robust method and NML when Tml and Trml
have enough power or when T ðrÞ

ml and T ðrÞ
rml have little power.

In summary, the MC method developed in this article
allows us to control Type I errors very well for all the test
statistics, regardless of whether the population distribution
is normally distributed or non-normally distributed or
whether the data are complete or incomplete. With com-
plete or incomplete data from the normal distribution, the
robust method performs essentially the same as NML. In
contrast, statistics under the robust method are much more
powerful than those under NML for the non-normally dis-
tributed population, regardless of whether data are com-
plete or incomplete. Compared across the tables, T ðrÞ

ml is

slightly more powerful than T ðrÞ
rml across all the conditions

on average. In contrast, Tml is slightly more powerful than
Trml for the normal population and somewhat less powerful
than Trml for the non-normally distributed population.

Note that evaluating power by comparing each statistic
against c:95 is parallel to the bootstrap and MC methods

TABLE 6
Estimated Critical Values ĉ:95 (Upper Panel) and Type I Errors

(Lower Panel), Incomplete Data and Normally Distributed
Population (df ¼ 24, c:95 ¼ 36:415)

N Tml Trml TðrÞ
ml TðrÞ

rml

100 42.587 40.698 42.983 38.057
150 40.394 37.728 41.001 36.985
200 41.443 38.291 41.345 37.479
300 40.505 37.798 40.779 37.257
500 39.573 37.013 39.947 36.497
1,000 40.539 37.564 40.881 37.346
2,000 40.026 36.945 40.560 37.174
3,000 40.074 36.730 40.328 36.947
Average 40.643 37.846 40.978 37.218

Compared Against c:95 Compared Against ĉ:95

N Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

100 0.139 0.108 0.145 0.078 0.050 0.049 0.050 0.052
150 0.135 0.101 0.143 0.078 0.074 0.074 0.063 0.069
200 0.119 0.080 0.127 0.065 0.049 0.055 0.053 0.054
300 0.109 0.069 0.102 0.057 0.053 0.051 0.053 0.050
500 0.086 0.050 0.084 0.049 0.050 0.047 0.047 0.048
1,000 0.091 0.045 0.094 0.040 0.032 0.030 0.028 0.027
2,000 0.097 0.045 0.102 0.047 0.039 0.040 0.039 0.041
3,000 0.092 0.047 0.089 0.045 0.036 0.041 0.036 0.036
Average 0.109 0.068 0.111 0.057 0.048 0.048 0.046 0.047

TABLE 7
Estimated Values of Power by Classical (Left Panel) and Monte Carlo Methods (Right Panel), Incomplete Data and Normally Distributed

Population

Compared Against c:95 Compared Against ĉ:95

Ha N χ2 Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

a ¼ :2 100 0.141 0.256 0.193 0.257 0.149 0.107 0.105 0.102 0.105
150 0.204 0.337 0.252 0.348 0.220 0.214 0.218 0.198 0.203
200 0.275 0.378 0.286 0.385 0.251 0.217 0.230 0.225 0.226
300 0.432 0.535 0.431 0.543 0.406 0.372 0.374 0.370 0.365
500 0.715 0.768 0.679 0.764 0.657 0.663 0.656 0.655 0.656

1000 0.980 0.984 0.967 0.986 0.966 0.956 0.959 0.955 0.953

a ¼ :4 100 0.514 0.602 0.522 0.605 0.436 0.388 0.367 0.373 0.382
150 0.749 0.790 0.730 0.791 0.682 0.690 0.693 0.675 0.665
200 0.892 0.922 0.865 0.918 0.835 0.815 0.815 0.822 0.814
300 0.987 0.987 0.975 0.988 0.971 0.967 0.967 0.964 0.967

a ¼ :6 100 0.884 0.896 0.860 0.900 0.799 0.780 0.760 0.763 0.752
150 0.985 0.989 0.984 0.989 0.975 0.975 0.979 0.969 0.972
200 0.999 1.000 0.997 0.999 0.996 0.994 0.993 0.994 0.992

Average 0.674 0.726 0.672 0.729 0.642 0.626 0.624 0.620 0.619

Note. The values of RMSEA = ðFmla=df Þ1=2 corresponding to a ¼ :2 .4 and .6 are .040, .076, and .106, respectively.
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proposed in Yung and Bentler (1996), Muthén and Muthén
(2002), Schoemann et al. (2014), and Zhang (2014).
According to Tables 2 and 3, the method controls Type I
error reasonably well when the underlying population is
multivariate normal and data are complete. However, the
method does not work well when data are incomplete,
especially when the underlying population is not multivari-
ate normal.

DISCUSSION AND RECOMMENDATION

In this article we proposed using the MC method for power
analysis in SEM, and using robust M-estimation to deal
with non-normally distributed data in practice. The most
notable feature of the MC method is that it allows us to
reliably control Type I errors for any statistic for which the
distribution might not be known. The advantage of a robust
method is that it programmatically increases the effect size
when the population distribution contains heavy tails.
Compared to conventional methods in which power value
is determined by the separation between χ2df and χ2df ðηÞ, the
MC method needs a population from which we simulate
our data. In practice, a researcher might not know what the
true population distribution is, but can only specify mar-
ginal skewnesses and kurtoses. Then one can simulate data

TABLE 9
Estimated Values of Power by Classical (Left Panel) and Monte Carlo Methods (Right Panel), Incomplete Data and Non-Normally Distributed

Population

Compared Against c:95 Compared Against ĉ:95

Ha N χ2 Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

a ¼ :2 100 0.141 0.814 0.219 0.482 0.053 0.055 0.066 0.106 0.102
150 0.204 0.856 0.144 0.527 0.073 0.095 0.106 0.157 0.139
200 0.275 0.877 0.122 0.599 0.122 0.109 0.121 0.207 0.184
300 0.432 0.921 0.149 0.701 0.286 0.198 0.182 0.376 0.394
500 0.715 0.956 0.281 0.860 0.536 0.286 0.327 0.546 0.563

1,000 0.980 0.999 0.693 0.993 0.935 0.665 0.720 0.924 0.925
2,000 1.000 1.000 0.973 1.000 1.000 0.977 0.974 1.000 1.000
3,000 1.000 1.000 0.999 1.000 1.000 0.999 0.999 1.000 1.000

a ¼ :4 100 0.514 0.923 0.461 0.756 0.180 0.115 0.160 0.330 0.327
150 0.749 0.968 0.403 0.873 0.407 0.292 0.336 0.569 0.529
200 0.892 0.981 0.443 0.939 0.657 0.405 0.443 0.746 0.721
300 0.987 0.996 0.657 0.993 0.925 0.727 0.694 0.962 0.969
500 1.000 0.999 0.931 1.000 0.999 0.936 0.942 0.999 0.999

a ¼ :6 100 0.884 0.979 0.756 0.949 0.511 0.218 0.375 0.679 0.664
150 0.985 0.997 0.697 0.989 0.829 0.643 0.643 0.902 0.892
200 0.999 1.000 0.766 0.994 0.954 0.819 0.766 0.972 0.968
300 1.000 1.000 0.956 1.000 0.997 0.982 0.965 0.997 0.997
500 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000

Average 0.764 0.959 0.592 0.870 0.637 0.529 0.546 0.693 0.687

Note. The values of RMSEA = ðFmla=df Þ1=2 corresponding to a ¼ :2, .4, and .6 are .040, .076, and .106, respectively.

TABLE 8
Estimated Critical Values ĉ:95 (Upper Panel) and Type I Errors
(Lower Panel), Incomplete Data and Non-Normally Distributed

Population (df ¼ 24, c:95 ¼ 36:415)

N Tml Trml TðrÞ
ml TðrÞ

rml

100 120.963 49.944 50.800 32.333
150 77.787 38.532 48.456 33.768
200 76.664 36.440 47.809 34.273
300 72.499 35.127 46.350 33.629
500 72.899 35.271 47.874 35.771
1,000 72.633 35.540 48.730 37.771
2,000 70.664 36.238 46.818 36.463
3,000 70.972 35.800 46.754 36.184
Average 79.385 37.862 47.949 35.024

Compared Against c:95 Compared Against ĉ:95

N Tml Trml TðrÞ
ml TðrÞ

rml Tml Trml TðrÞ
ml TðrÞ

rml

100 0.756 0.141 0.320 0.015 0.038 0.043 0.050 0.050
150 0.790 0.075 0.293 0.018 0.047 0.049 0.058 0.045
200 0.781 0.046 0.278 0.030 0.040 0.046 0.048 0.052
300 0.763 0.033 0.289 0.032 0.054 0.044 0.066 0.072
500 0.753 0.032 0.234 0.035 0.046 0.040 0.042 0.044
1,000 0.789 0.059 0.257 0.051 0.047 0.063 0.037 0.033
2,000 0.764 0.048 0.237 0.052 0.052 0.051 0.046 0.050
3,000 0.784 0.054 0.263 0.045 0.058 0.061 0.043 0.047
Average 0.773 0.061 0.271 0.035 0.048 0.050 0.049 0.049
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using the method as described in Vale and Maurelli (1983),
Nagahara (2004), or Auerswald and Moshagen (2015). In
the Appendix, we describe a method that allows the control
of the relative multivariate kurtosis in addition to marginal
skewnesses and kurtoses.

When nonnormally distributed data are expected and a
researcher can approximately specify the marginal skew-
nesses and kurtoses or multivariate kurtosis, the MC
method including the features of non-normality is recom-
mended. In practice, information on skewness and kurtosis
can be obtained from meta-analysis on distributions of real
data (e.g., Blanca et al., 2013; Cain et al., in press) or by
searching the Web or contacting authors for data that are
collected using the same measurement scales or on the
same research topic. When a sample with a moderate size
has already been collected, then one could execute the MC
method by drawing samples from the empirical distribution
of the sample (nonparametric bootstrap). If a researcher has
no idea of the population distribution, then use the chi-
square-based method when p is relatively small, and the
MC method with normally distributed population when p is
relatively large. However, power and sample size deter-
mined by such methods might not be reliable when the
data to be collected turn out to be non-normally distributed
with heavy tails. As for test statistics, we recommend using

T ðrÞ
ml (Tml following a robust method) with non-normally

distributed data, and use Tml when one has confidence
that the population is normally distributed. The MC meth-
odology as developed in this article together with the robust
methods will be available via an online statistical package,
which allows researchers to conduct power analysis by
specifying marginal skewness and kurtoses as well as the
relative multivariate kurtosis.

For the simulation study in the previous section, we used
the robust method with Huber-type weights corresponding
to down-weighting 5% of a normally distributed popula-
tion. The robust method might be refined by adjusting the
tuning parameter r in Equation 6. In particular, one can
choose r corresponding to the empirically most efficient
parameter estimates using MC or the bootstrap methodol-
ogy (Yuan et al., 2004). The most efficient parameter esti-
mates correspond to the smallest possible βr in Equation 9
and consequently most powerful test statistic.

Because the values of effect sizes defined in Equations 7
to 10 are simply measures of model misspecification, there
might be a conflict of interest between researchers who like
to have a test statistic with better power and those who are
interested in a model that might not fit their data as well but
allows them to elaborate on the substantive variables. A
robust method might yield more efficient parameter esti-
mates but at the same time the test statistics T ðrÞ

ml or T
ðrÞ
rml will

make an already poor model even poorer, due to greater
effect sizes. Although researchers might not choose a test
statistic with a better power, we still recommend using a

robust method in real data analysis. This is because a
seemingly poor model might be due to outliers or a small
proportion of observations that do not fit the model well,
and robust methods will down-weight the influence of these
observations and return the model with the credit it
deserves.
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APPENDIX

Simulation Data with Desired Multivariate Kurtosis

This appendix describes a method for simulating non-
normally distributed data from a distribution with given
marginal skewnesses and kurtoses as well as multivariate
kurtosis. Let μ and Σ be the target population mean vector
and covariance matrix, respectively. There is a symmetric

matrix A ¼ ðaijÞ ¼ Σ1=2 such that AA0 ¼ Σ. Our model
for simulating non-normally distributed data is

x ¼ μ þ uAz; (A:1)

where z ¼ ðz1; z2; � � � ; zpÞ0 with EðzjÞ ¼ 0, Eðz2j Þ ¼ 1:0,
Eðz3j Þ ¼ skewj, and Eðz4j Þ ¼ kurtj þ 3, and u is a standardized

random variable with Eðu2Þ ¼ 1, Eðu3Þ ¼ γ3, Eðu4Þ ¼ γ4,
and is independent with z. The way of simulating data accord-
ing to Equation A.1 is a special case of a method proposed in
Yuan and Bentler (1997a). It can be shown that the marginal
skewness and kurtosis of the x in Equation A.1 are given by

skewðxiÞ ¼ γ3
Xp
j¼1

a3ij skewj=σ
3=2
ii ;

i ¼ 1; 2; . . . ; p; (A:2)

kurtðxiÞ ¼ γ4
Xp
j¼1

a4ij kurtj=σ
2
ii þ 3ðγ4 � 1Þ;

i ¼ 1; 2; . . . ; p; (A:3)

and the relative multivariate kurtosis is given by

β ¼ γ4 1þ
Xp
j¼1

kurtj=½pðpþ 2Þ�
( )

: (A:4)

Note that there are 2pþ 1 Equations in A.2, A.3 and A.4.
The coefficients aij are determined via the covariance
matrix Σ. The left sides of Equation A.2, A.3, and A.4
are the marginal skewnesses, kurtoses, and relative multi-
variate kurtosis to be specified, and the right sides of A.2 to
A.4 contain 2pþ 2 unknown quantities: ðskewj; kurtjÞ,
j ¼ 1, 2, . . . , p, γ3, and γ4. Because the number of
unknowns is more than the number of Equations, there
can be more than one set of skewj and kurtj, j ¼ 1, 2,
. . . , p; and γ3 and γ4 that satisfies A.2 to A.4, which can
be solved numerically.

Once skewj and kurtj, j ¼ 1, 2, . . . , p are obtained,
standardized zj can be obtained by the power transforma-
tion method of Fleishman (1978; see also Tadikamalla,
1980) and so is the random variable u.

Note that the values of skewness and kurtosis of x
cannot be arbitrarily chosen because moments of random
variables need to satisfy certain conditions (see, e.g.,
Yuan & Bentler, 1997a). If Equations A.2, A.3, or A.4
do not have a set of solutions for the required values of
skewðxiÞ and kurtðxiÞ, then it is most likely that the
specified values are inadmissible in the sense that no
pupulation distribution satisfies such conditions.
Similarly, even if skewj and kurtj are obtained, there is
still a possibility that the method in Fleishman (1978) or
Tadikamalla (1980) cannot generate random zi that
satisfy such desired values. In such a case, there is a
need to respecify these values.
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