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Abstract

Cronbach’s coefficient alpha is a widely used reliability measure in social, behavioral,
and education sciences. It is reported in nearly every study that involves measuring a
construct through multiple items. With non-tau-equivalent items, McDonald’s omega
has been used as a popular alternative to alpha in the literature. Traditional estima-
tion methods for alpha and omega often implicitly assume that data are complete and
normally distributed. This study proposes robust procedures to estimate both alpha
and omega as well as corresponding standard errors and confidence intervals from
samples that may contain potential outlying observations and missing values. The
influence of outlying observations and missing data on the estimates of alpha and
omega is investigated through two simulation studies. Results show that the newly
developed robust method yields substantially improved alpha and omega estimates as
well as better coverage rates of confidence intervals than the conventional nonrobust
method. An R package coefficientalpha is developed and demonstrated to obtain
robust estimates of alpha and omega.
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Introduction

According to classical test theory, an observed score of a test is equal to the true score

plus an error score. The reliability coefficient, or reliability, is the ratio of the true

score variance to the observed score variance (e.g., Raykov & Marcoulides, 2010). In

social, behavioral, and education research, multiple items are often used to measure a

construct through a composite score. Therefore, the reliability of a composite is often

of great interest. Cronbach’s coefficient alpha (a; Cronbach, 1951, 1988; Cronbach

& Shavelson, 2004) and McDonald’s coefficient omega (v; McDonald, 1999) are

probably the most widely used measures of composite reliability. Both alpha and

omega bear their own assumptions when measuring reliability (e.g., Raykov &

Marcoulides, 2010, 2015). For example, only when the items used are true score

equivalent and the error scores are uncorrelated, alpha is equal to reliability (e.g.,

Raykov, 1997; Raykov & Marcoulides, 2010; Raykov, Marcoulides, & Patelis,

2015). Otherwise, alpha can underestimate or even overestimate the reliability (e.g.,

Maydeu-Olivares, Coffman, Garcia-Forero, & Gallardo-Pujol, 2010; Raykov, 1997,

2001). The validity of coefficient omega does not require the items to be true score

equivalent but needs the items to be homogeneous or unidimentional.1

In nearly every study involving the measure of a construct through multiple items

in psychological research, a reliability coefficient, such as alpha, has been reported.

In addition to reporting the sample coefficient alpha and omega, many researchers

strongly recommended reporting corresponding standard errors (SE) and/or confi-

dence intervals (CIs; e.g., Fan & Thompson, 2001; Iacobucci & Duhachek, 2003;

Raykov & Shrout, 2002). There also exist developments regarding the SEs or the

sampling distributions of the sample coefficient alpha and omega under various con-

ditions. For example, under the assumption of parallel items and normally distributed

data, Kristof (1963) and Feldt (1965) showed that a transformation of the sample

coefficient alpha follows an F distribution. Under the multivariate normal assump-

tion, van Zyl, Neudecker, and Nel (2000) showed that the sample coefficient alpha

asymptotically follows a normal distribution without assuming compound symmetry.

Yuan and Bentler (2002) further found that the asymptotic distribution given by van

Zyl et al. (2000) can still be valid for a large class of nonnormal distributions.

Maydeu-Olivares, Coffman, and Hartmann (2007) and Yuan, Guarnaccia, and

Hayslip (2003) studied the distributional properties of sample coefficient alpha, and

their results are asymptotically valid for all populations with finite fourth-order

moments. There are fewer studies on the sampling distribution of omega in the litera-

ture (Cheung, 2009; Raykov, 2002; Yuan & Bentler, 2002). For example, Raykov

(2002) proposed an analytical procedure that can estimate the SE of sample omega,

and Raykov and Marcoulides (2010) illustrated how to get a CI, including the boot-

strap interval, of omega (see also Padilla & Divers, 2013a, 2013b; Raykov, 1998).

Yuan and Bentler (2002) developed a method that yields a robust standard error for

sample omega when data are nonnormal.

However, previous development on the estimation of alpha and omega as well as

corresponding SE and CIs rarely accounts for the influence of outlying observations
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and missing data. The estimation of alpha and omega is typically based on the sample

covariance matrix, which is extremely sensitive to outlying observations. Therefore,

it is expected that alpha and omega are equally influenced by outlying observations.

In fact, previous literature has shown that the sample coefficient alpha can be biased

or very inefficient with the presence of outlying observations and nonnormal data

(e.g., Christmann, & Van Aelst, 2006; Liu & Zumbo, 2007; Liu, Wu, & Zumbo,

2010; Sheng & Sheng, 2013; Wilcox, 1992). Enders (2004) showed that ignoring

missing data in the sample might lead to biased and less accurate estimate of coeffi-

cient alpha and proposed an expectation-maximization algorithm to deal with missing

data when estimating reliability (see Enders, 2003). Headrick and Sheng (2013) pro-

posed to estimate alpha based on the L-moment to handle nonnormal data. However,

methods to deal with both outlying observations and missing data in estimating alpha,

especially omega, are desired.

The purpose of this study is twofold. The first is to propose robust M-estimators of

alpha and omega. We will obtain the robust estimators as well as their SEs and CIs

for alpha and omega to deal with both outlying observations and missing data. The

second is to develop easy-to-use software (R package coefficientalpha) that yields

robust estimates of alpha and omega as well as corresponding CIs. The robustness of

the developed procedure relies on the fact that outlying cases are downweighted in

the estimation process. Missing data are handled by an expectation-robust (ER) algo-

rithm (Yuan, Chan, & Tian, 2015), which is a generalization of the EM-algorithm

based on a multivariate t distribution (Little, 1988). In the development, we assume

that data are missing completely at random (MCAR), missing at random (MAR), or

missing not at random (MNAR) but with auxiliary variables (e.g., Little & Rubin,

2002). As we shall see, the unique contributions of the study include the following:

(1) the robust estimation of alpha and omega with both outlying observations and

missing data, (2) the calculation of the consistent SE, and (3) free software to obtain

robust coefficient alpha and omega estimates and their consistent SE. In particular,

the developed software also provides diagnostic plots for visually examining cases

that are influential to the estimation of alpha and omega. Other desirable features of

the software include being free, and being able to run either locally on a personal

computer within the statistical software R or remotely on a web server. Notably, our

user-friendly web interface does not require researchers to be familiar with R to use

the software.

In the next section, we first distinguish two types of outlying observations and

show their influence on coefficient alpha. Then, we describe how to obtain robust

coefficient alpha estimate and the corresponding CI. Next, we show how to apply the

robust procedure to estimate omega and its CIs. After that, we illustrate the influence

of outlying observations and missing data on alpha and omega through two simula-

tion studies. Through the simulation studies, we also show that the newly developed

robust method yields substantially improved alpha and omega estimates as well as

significantly better coverage rates of CIs than the conventional nonrobust method
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and the bootstrap method. Finally, we demonstrate the use of our software through

an example. Some technical details are provided in an appendix.

Outlying Observations and Their Influence

We first illustrate the influence of outlying observations on coefficient alpha through

an example.2 Using the example, we focus on explaining the different types of outly-

ing observations and their influences on coefficient alpha.

Let y be a vector that denotes a p-variate population with mean m and covariance

matrix S = (sij): The population coefficient alpha for the summation of the scores in

y is defined as

a =
p

p� 1
1�

Pp
i = 1 siiPp

i = 1

Pp
j = 1 sij

 !
: ð1Þ

Let y1, . . . , yn be a random sample of y and S = (sij) be the sample covariance matrix.

Then the sample coefficient alpha is given by

â =
p

p� 1
1�

Pp
i = 1 siiPp

i = 1

Pp
j = 1 sij

 !
: ð2Þ

The influence of outlying observations on sample coefficient alpha can be clearly

illustrated through the analysis of two items. Figure 1 displays a data set of 13 obser-

vations on two items y1 and y2 with different types of outlying observations. The

coordinates of the nine regular observations are given by

y1 1 1 2 2 3 4 4 5 5

y2 1 2 1 2 3 4 5 4 5

The coordinates of the four additional observations are A = (1, 5), B = (5, 1), C = (9,

9), and D = (9, 4). Figure 1 also contains the values of coefficient alpha when differ-

ent combinations of A, B, C, and D are pooled with the nine regular observations. It

is clear from the geometry of Figure 1 that A, B, C, and D are outlying observations.

The four observations can then be classified according to their locations or geometry

relative to the other cases.

We first distinguish between inadmissible outlying observations and admissible

outlying observations. Inadmissible outlying observations are typically erroneous

observations that do not represent the underlying phenomena to be measured. The

scores for inadmissible outlying observations can be either within or out of the range

of a test. Errors in data recording and input are the most common cause of inadmissi-

ble outlying observations. For example, suppose that y1 and y2 are 5-point Likert-

type items. Then, C and D in Figure 1 are obviously erroneous observations because

they have scores larger than 5. These observations can be identified by the robust

procedure and their effect on the follow-up analysis such as the estimation of
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reliability can also be controlled. Particularly, when the weight3 is 0, it is equivalent

to have such observations removed automatically. After identifying the outlying

observations, special attention/treatment by substantive researchers might also be

needed to understand the causes behind each.

2 4 6 8

2
4

6
8

y1

y 2 A

B

C

D

None .95   BC   .91
A    .75   BD   .69
B    .75   CD   .89
C    .98   ABC  .83
D    .78   ABD  .51
AB   .53   ACD  .81
AC   .91   BCD  .84
AD   .63   ABCD .76

S
co
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y1 y2

0
2

4
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B
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D

B

A

Figure 1. Different types of outlying observations and their influence on coefficient alpha:
(A) Scatterplot; (B) Profile plot.
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Admissible outlying observations are different from the majority of the data but

carry valid and useful information and truly represent the underlying phenomena. For

example, suppose both y1 and y2 are continuous measures of mathematics ability with

the maximum possible score 10. For illustration purpose, we further assume that y1 is

a measure of addition and y2 is a measure of multiplication. Reasonably, a theory can

be hypothesized that the two items are determined by the same unidimensional under-

lying mathematical ability4 and should be positively correlated. In this case, the four

observations A, B, C, and D do have valid scores but they also appear different (out-

lying) from the rest of the observations.

For the four outlying observations, each of them represents a different pattern.

First, the observation C has extreme scores on both y1 and y2 but within the limit of

maximum scores. Furthermore, the two scores are extreme in the same direction and

therefore consistent with the hypothesized theory. The observation is outlying most

likely because of the participant’s talent in mathematics that leads to large scores for

y1 and y2: In this study, we refer to such outlying observations that are consistent

with the hypothesized theory/relationship as leverage observations (Yuan & Zhong,

2008). In general, leverage observations are ‘‘good’’ in the sense that they lead to

enlarged coefficient alpha. For example, when the nine regular observations are con-

sidered, the coefficient alpha is .95. With C being included, the alpha increases from

.95 to .98.

The observations A, B, and D are also outlying but geometrically different from

C. For A, it has a large score on y2 but a small score on y1: In other words, the obser-

vation shows high ability in terms of multiplication but low ability on addition. This

is inconsistent with the hypothesized theory on the unidimensional mathematical abil-

ity. The pattern of the observation B is the other way around. Although D has a rela-

tive large score on y1, its value is a lot smaller compared to that of y2: In this study,

we refer to such outlying observations that are inconsistent with the hypothesized the-

ory as outliers (Yuan & Zhong, 2008). Outliers typically reduce the value of coeffi-

cient alpha. For example, with A or B being included, the coefficient alpha changes

from .95 to .75 and with D being included, the alpha changes to .78.

In practice, a data set may contain both outliers and leverage observations;

whether the estimated coefficient alpha becomes smaller or larger depends on their

combined effects. For example, with all three outliers A, B, and D, the estimated

coefficient alpha changes from the original .95 to .51. With outlier A and leverage

observation C, the estimated coefficient alpha has a small decrease to about .91.

However, in general, we may not want the estimated coefficient alpha to be deter-

mined by a few outlying observations, regardless of outliers or leverage observations.

This motivates our development of a robust estimator of coefficient alpha.

Although the scatterplot is useful in identifying outlying observations with two

items, it can be difficult to use when there are more than two items. Instead, a profile

plot can be used to visualize possible outlying observations (e.g., Yuan & Zhang,

2012a). For example, the profile plot in Figure 1B displays the same data as in the

scatterplot. It also shows the difference between the regular and outlying
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observations as well as that between outliers and leverage observations. First, the out-

lying observations distinguish themselves from the regular observations because their

profiles do not mingle together with those of regular observations. Second, for out-

liers, their profiles usually show atypical patterns. For example, the profiles of A and

B show more change than regular ones by having high score on one item but low

score on the other item. Third, for leverage observations, all items may have scores

noticeably smaller or larger than those of the majority, and their profiles, such as

observation C, separate themselves from the profiles of the rest of cases. Note that

the profile of D exhibits patterns of both outliers and leverage observations.

Robust Estimation of Covariance Matrix

In this section, we will first review robust estimation of covariance matrix with com-

plete data, and then describe the idea of robust estimation with incomplete data. The

idea of robust covariance matrix estimation is to use a formula in which cases that are

unusually far from the center of the majority of observations get smaller weights and,

therefore, contribute less to the covariance estimates. For complete data, a covariance

matrix can be robustly estimated according to

Ŝ =
1

n

Xn

i = 1

wi2(yi � m̂ )(yi � m̂)0, ð3Þ

where

m̂ =
1Pn

i = 1 wi1

Xn

i = 1

wi1yi ð4Þ

is the corresponding robust mean estimate; wi1 and wi2 are weights that are inversely

proportional to the deviation between yi and m̂, as measured by the Mahalanobis dis-

tance (M-distance; see Yuan & Zhang, 2012b). Because a larger distance corre-

sponds to a smaller weight, cases that are far from the center of the majority of

observations (represented by m̂) will have a small or tiny contribution to the estima-

tor Ŝ in Equation 3. Thus, the effect of outlying observations on Ŝ is limited. Notice

that, Equation 3 yields the sample covariance matrix S when wi1 = wi2 = 1 for all i.

Because outlying cases are treated equally as regular cases in the formulation of S,

outlying observations have unlimited influences on S and consequently on the result-

ing coefficients alpha and omega.

Both outliers and leverage observations will deviate more from the center of the

majority of data than other typical observations. Their effect on Ŝ can be controlled

when wi1 and wi2 are properly chosen. Many candidates of weights have been sug-

gested in the robust statistical literature. The Huber-type weights are widely used and

are therefore employed in the current study (e.g., Yuan & Zhang, 2012a).5 In Huber-

type weights, a tuning parameter j (0 � j\1) is used to practically control the per-

centage of data to be downweighted. Following the choice of the tuning parameter, a
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threshold value is obtained to determine how the values of weights are calculated. If

the distance of a case from m̂ is less than the threshold, the case is not downweighted;

and otherwise, the case will be assigned a weight that is smaller than 1 in Equation 3

and its value is inversely proportional to the distance. When j= 0, no case is down-

weighted. With the increase of j, more cases will be downweighted and cases are

also more heavily downweighted. A larger j would not only make alpha more resis-

tant to outliers but also less efficient when a substantial proportion of the observations

that truly represent the population are downweighted. In practice, a weight between

0.01 and 0.1 would work well in controlling the effect of outlying observations on the

estimate of coefficient alpha. We will discuss how to choose a proper j with graphs

and examples later.

The idea of robust estimation with missing values is the same as robust estimation

with complete data. The algorithm for calculating the robust estimates of means and

covariance matrix is called the ER algorithm. In the E-step, terms involving missing

values in Equation 3 are replaced by their conditional expectations, and the R-step

parallels to that in Equation 3, where cases that sit far from the center of the majority

of observations will be downweighted. In our R package coefficientalpha, the imple-

mentation of the ER-algorithm with the Huber-type weights is based on Yuan et al.

(2015).

Robust Coefficient Alpha

With the robust covariance matrix Ŝ = (ŝij), the robust alpha estimate is

â =
p

p� 1
1�

Pp
j = 1 ŝjjPp

i = 1

Pp
j = 1 ŝij

 !
: ð5Þ

In addition to the point estimator â, the output of the software also contains the SE

of â and the corresponding CI for alpha.6 The SE is based on the sandwich-type cov-

ariance matrix for the robust estimate Ŝ, and is consistent regardless of the distribu-

tion of the sample (Yuan et al., 2015). It can also provide us the information on the

efficiency of the robust method. The details of the ER-algorithm and the sandwich-

type covariance matrix for Ŝ are not the focus of the study, and are referred to Yuan

et al. (2015) and Yuan and Zhang (2012a). The SE for â based on the sandwich-type

covariance matrix of Ŝ is provided in Appendix A.

Because the robustness is determined by the tuning parameter j, we next describe

three graphs to facilitate its choice and display its effect.

The first one is termed as a diagnostic plot that displays the estimates of coeffi-

cient alpha against different values of j. For a given data set, alpha will generally

change when j varies. For example, if there are outliers, alpha would first increase

quickly and then flatten out with the increase of j. If there are leverage observations,

alpha will decline as j increases. When only outliers exist, one may choose an ‘‘opti-

mal’’ j according to the maximum value of alpha or at the place where alpha shows
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the largest change. When only leverage observations exist, one may choose the tuning

parameter j that corresponds to the first substantial drop of alpha to control the effect

of leverage observations. When leverage observations and outliers coexist, one may

slowly increase the tuning parameter j and choose its value when alpha becomes

stabilized.

The second graph is termed as a weight plot where case-level weights wi2 against

case ID are plotted. We do not include the plot of wi1 because it contains the same

information as the plot of wi2: In the plot, cases with smallest weights are identified

by case numbers. The plot provides the information on which cases are outlying and

how heavily they are downweighted.

The third graph is a profile plot in which centered observations (yij � m̂j) for cases

with smallest weights are plotted against the order of the variable j. With such a plot,

one can visually examine how the profile of each outlying case is different from the

average profile and therefore, why a case is downweighted. The profile plot also pro-

vides information on whether an outlying case is an outlier or a leverage observation.

In summary, the three plots together will allow us to select a proper j according

to the distribution shape of the data. They also facilitate us to see how coefficient

alpha changes when controlling the effect of outliers and/or leverage observations.

We will illustrate how to use the graphs in practice later on in an example when intro-

ducing our R package coefficientalpha.

Robust Coefficient Omega

The procedure for obtaining robust coefficient alpha estimates can be readily

extended to omega for homogenous items. Suppose that p measurements follow a

one-factor model

yij = mj + ljfi + eij,

where yij denotes a score for participant i on item j, mj is the intercept for item j, fi is

the common factor score for participant i, lj is the factor loading for item j, and eij is

the independent unique factor score with variance cjj. The variance of fi is fixed at

1.0 for model identification. The population omega (v) is defined as (McDonald,

1999, Equation 6.20b)

v =
(
Pp

j = 1 lj)
2

(
Pp

j = 1 lj)
2

+ (
Pp

j = 1 cjj)
:

To estimate v, the factor model is typically estimated from the sample covariance

matrix of y. Therefore, the sample omega, denoted by v̂, is similarly influenced by

outlying observations as the sample coefficient alpha. Actually, a can be viewed as a

special case of v when all the factor loadings are equal lj [ l:7 Outliers and leverage

observations can also be distinguished using the factor model (see Yuan & Zhang,

2012b). Generally speaking, cases with extreme common factor scores are leverage
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observations and data contamination leads to cases with large unique factor scores or

outliers.

The robust v̂ can be calculated in three stages. First, a robust covariance matrix Ŝ
as in the estimation of robust alpha can be obtained to account for both outlying

observations and missing data. Second, the factor model can be estimated by any

SEM software based on the robust Ŝ to get l̂j and ĉjj: Third, the robust v̂ is calcu-

lated as

v̂ =
(
Pp

j = 1 l̂j)
2

(
Pp

j = 1 l̂j)
2

+ (
Pp

j = 1 ĉjj)
:

In order to get a robust standard error or CI for omega, one first obtains a consistent

covariance matrix for û = (l̂1, . . . , l̂p, ĉ11, . . . , ĉpp) and then uses the delta method

to get the standard error for v̂. Both the standard error of v̂ and CI of omega are

available in our R packages and therefore the technical details are omitted here for

the sake of space. The robustness of omega is related to the tuning parameter j as

for alpha. The same method for determining j for alpha can be applied here.

Simulation Studies

In this section, we present two simulation studies to show the influence of outlying

observations and missing data on the estimates of alpha and omega. For the sake of

space, we only report the results of a few conditions. To better see the influence of

outlying observations and missing data, we investigate their effects separately

although in practice they often coexist.

Simulation Study 1: Influence of Outlying Observations

The aim of the study is to demonstrate the influence of outlying observations on the

estimates of alpha and omega through simulated data. Consider the one-factor model

yij = mj + lj fi + eij, i = 1, . . . , n, j = 1, . . . , p:

Two sets of population parameters are used in this study. One satisfies tau-

equivalence with lj =
ffiffiffiffiffiffiffi
0:6
p

and cjj = 0:4 for j = 1, . . . , p and p = 6: Thus, the popula-

tion alpha and omega are the same and equal to .9. Another does not conform to tau-

equivalence with lj =
ffiffiffiffiffiffiffi
0:2
p

and cjj = 0:8 for j = 1, 2, 3 and lj =
ffiffiffiffiffiffiffi
0:6
p

and cjj = 0:4 for

j = 4, 5, 6: The intercept mj is set to 0 without losing generality. Under this setting,

the population alpha is .7778 and the population omega is .789. The alpha is smaller

than omega as expected (e.g., McDonald, 1999).

Data are generated as follows. First, 1,000 replications of normally distributed

samples with size n = 100 are generated from populations under tau-equivalence and

non-tau-equivalence, respectively. Second, for each of the samples, a new sample
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with outliers is created by letting yij = yij � 4 for j = 1, 2, 3 and yij = yij + 4 for j = 4, 5, 6

with i = 96, 97, 98, 99, 100: Therefore, each new sample has 5% of outliers. Third, for

each of the normally distributed samples, another new sample with leverage observa-

tions is created by letting yij = yij � 6 for j = 1, . . . , 6 with i = 96, 97, 98, 99, 100:
Therefore, each sample contains 5% of leverage observations.

Both alpha and omega are then estimated from the generated data with three dif-

ferent levels of downweighting rate j= 0, 0:05, 0:1. Note that when j= 0, no obser-

vations are downweighted and therefore both alpha and omega are estimated by the

commonly used nonrobust method.9 Because the bootstrap method has been used to

obtain the bootstrap CIs for alpha and omega when data are nonnormal, we also

obtain the bias corrected and accelerated (BCa) bootstrap CI based on 1,000 boot-

strap samples in our simulation study for comparison (e.g., Padilla & Divers, 2013a,

2013b; Raykov & Marcoulides, 2010). Table 1 presents the results as the average of

the estimated alpha and omega as well as their empirical SEs and the coverage rates

of the 95% CIs.

Results for the analysis of data under tau-equivalence are presented in the upper

panel of Table 1. The following can be concluded from the results. First, for the nor-

mal data, the average of the estimated alpha and omega are extremely close, with a

difference about .001, and are almost the same as the population values. The cover-

age rates of all the CIs are close to the nominal level .95 for both alpha and omega.

Furthermore, robust and nonrobust methods yield essentially the same estimates of

alpha and omega. In addition, empirical SEs based on 1,000 bootstrap replications

are similar to the sandwich SEs, and the corresponding BCa intervals following the

bootstrap provide similar coverage rate. Second, for the data with outliers, the aver-

age of the estimated nonrobust alpha is .663 and that of the estimated nonrobust

omega is .600, both of which largely underestimate their population values. It seems

that omega is influenced even more by outliers than alpha. The coverage rate for

alpha is .115 and for omega is 0, both of which are way off from the nominal level

.95. Notably, the use of the bootstrap method does not improve the alpha and omega

estimates and the BCa intervals do not provide better coverage. In contrast, the robust

alpha and omega estimates become much closer to their population values and the

estimated SEs become substantially smaller than their nonrobust counterparts. The

estimated robust alpha and omega are almost identical to each other. Although the

coverage rates are larger than the nominal level .95, they are much better than those

from the nonrobust method. Third, for the data with leverage observations, the nonro-

bust alpha and omega overestimate their population values. After downweighting,

the robust alpha and omega estimates become slightly closer to but are still much

larger than the population values. However, their SEs become notably larger. This is

because leverage observations correspond to more efficient parameter estimates

(Yuan & Zhong, 2008) and downweighting minimizes the effect. Before down-

weighting, the coverage rates are close to 0 and after downweighting, they become

greater but are still smaller than .95. The same as for the outlier condition, the use of

the bootstrap method does not seem to help.
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The lower panel of Table 1 contains the results for the analysis of data under non-

tau-equivalence, from which we can conclude the following. First, for the normally

distributed data, the average of the estimated omega is slightly larger than the average

of the estimated alpha, both are very close to their population values. Similar to the

results in the upper panel of Table 1, downweighting data does not play an influential

role in the estimated alpha and omega for normally distributed samples. Second, for

the data with outliers, the estimated nonrobust alpha and omega are much smaller

than their population values. Although the robust alpha and omega estimates are still

smaller than their population values, the improvement is substantial. Third, for data

with leverage observations under non-tau-equivalence, both nonrobust and robust

alpha and omega overestimate their population values. The robust estimates show

Table 1. Average Alpha and Omega Estimates and Empirical Standard Errors and Coverage
Rates of 95% Confidence Intervals for Study 1 Under Normally Distributed Data (Normal),
Data With Outliers (Outlier), and Data With Leverage Observations (Leverage).a

j

Alpha Omega

Est SE Coverage Est SE Coverage

Tau-equivalence Normal BCa .898 .016 .931 .899 .016 .933
0 .898 .015 .934 .899 .016 .939

.05 .898 .016 .942 .899 .016 .944
.1 .898 .016 .950 .899 .016 .946

Outlier BCa .663 .112 0 .600 .111 0
0 .663 .109 .115 .600 .101 0

.05 .863 .047 1 .862 .049 1
.1 .872 .033 .991 .873 .033 .995

Leverage BCa .953 .014 .012 .953 .014 .012
0 .953 .012 .004 .953 .012 .004

.05 .944 .018 .241 .945 .018 .236
.1 .940 .019 .348 .941 .019 .337

Non-tau-equivalence Normal BCa .772 .036 .949 .786 .031 .954
0 .772 .034 .934 .786 .033 .933

.05 .772 .035 .937 .786 .034 .935
.1 .772 .036 .939 .786 .034 .930

Outlier BCa .437 .165 .013 .456 .112 .000
0 .437 .161 .313 .456 .112 .025

.05 .691 .100 1.00 .691 .102 .988
.1 .712 .073 .989 .716 .075 .980

Leverage BCa .914 .030 .001 .916 .028 .001
0 .914 .024 .000 .916 .024 .000

.05 .885 .047 .314 .889 .045 .346
.1 .873 .046 .400 .877 .043 .435

Note. Est = estimate; SE = standard error; Coverage = coverage rate of 95% confidence intervals; BCa =

bootstrap standard error and confidence interval based on 1,000 bootstrap samples.
aThe population alpha and omega are both .9 under tau-equivalence; and under non-tau-equivalence, the

population alpha is .777 and the population omega is .789.
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substantial improvement over the nonrobust ones. The pattern of coverage rates is

similar to that for tau-equivalent data. Fourth, as for tau-equivalence, the use of the

bootstrap method does not lead to better results than the nonrobust method.

Concluding Remarks. This simulation study shows that, for normally distributed data,

there is no substantial difference between alpha and omega estimates regardless of

whether the items are tau-equivalent or not. Outliers cause underestimation of alpha

and omega whereas leverage observations cause their overestimation. Our robust pro-

cedure can effectively control the influence of outlying observations although the pro-

cedure seems to work more effectively for outliers than for leverage observations. In

particular, the CIs from our robust method have much improved coverage rates.

Simulation Study 2: Influence of Missing Data

This study aims to demonstrate the influence of missing data on alpha and omega

through simulated data. Complete normal data are generated from populations satis-

fying tau-equivalence and non-tau-equivalence as in Study 1. Incomplete data are

obtained in the following way. First, there are no missing data in y1 and y4: Second,

missing data in y5 and y6 are related to y1. Specifically, an observation for y5 is miss-

ing if y1 � q0:1(y1) and an observation for y6 is missing if q0:1(y1)\y1 � q0:2(y1)

where qp(y) is the 100pth percentile of y. Third, missing data in y2 and y3 are related

to y4 so that an observation for y2 is missing if y4 � q0:9(y4) and an observation for

y3 is missing if q0:8(y4) � y4\q0:9(y4): According to the definition of missing data

mechanisms (e.g., Little & Rubin, 2002), all the missing values are missing at ran-

dom. Based on the simulation, there are about 6.7% missing values and approxi-

mately 20% to 40% of participants have one or more missing values in each

generated data set.

Both alpha and omega are estimated from the generated data with missing values

using either listwise deletion or the robust procedure developed in this article that

automatically takes care of missing data. Table 2 presents the results as the average

of the estimated alpha and omega as well as their empirical SEs and the coverage

rates of the 95% CIs.

First, it is clear that the alpha and omega estimates following from listwise dele-

tion underestimate their population values whether the items are tau-equivalent or

not. Second, the estimated alpha and omega following the robust method are very

close to their population values. Third, it is evident that the SEs of the estimated alpha

and omega from the robust method are much smaller than those based on listwise

deletion. This is because the robust method utilizes more information in the data.

Fourth, when listwise deletion is used, the coverage rates are much smaller than the

nominal level .95, especially for the tau-equivalent data. Our robust method, on the

other hand, yields coverage rates much closer to .95. To separate the influence of

nonnormal data and missing data on the reliability estimates, only normal data are
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investigated in this study. We also have evidences that for nonnormal data, the influ-

ence of missing data is similar (Tong, Zhang, & Yuan, 2014).

Software

To facilitate the computation of robust alpha and omega, we

developed an R package coefficientalpha. The package is freely available

at http://cran.r-project.org/package=coefficientalpha. The package calculates the

robust alpha and omega, their SEs, and CIs for a given data set. In addition, the pack-

age also generates the diagnostic plot, the weight plot, and the profile plot to assist

the selection of the tuning parameter and to visualize outlying observations. To

accommodate users who are not familiar with R, an online interface is also devel-

oped. The R package includes an example data set with 100 cases and 10 variables.

In this section, we illustrate the use of the R package using this data set. The use of

its online interface can be found in Appendix B.

To use the package within R, first install it using the command install.
packages ('coefficientalpha') and then load it using the command

library(coefficientalpha). The R package also includes tests of tau-

equivalence10 and homogeneity of items.11 Both tests are based on the robust F sta-

tistic proposed by Yuan and Zhang (2012a) and further studied in Tong et al.

(2014). The R input and output for the tests are given in Figure 2. Note that the num-

bers on the right of the figure are the line numbers to facilitate the explanation of the

Table 2. Average Alpha and Omega Estimates and Empirical Standard Errors and Coverage
Rates of the 95% Confidence Intervals for Study 2 Under Listwise Deletion (Deletion) and
Maximum Likelihood Method (ML).a

j

Alpha Omega

Est SE Coverage Est SE Coverage

Tau-equivalence Deletion 0 .804 .036 .161 .812 .037 .289
.05 .804 .038 .195 .812 .039 .335
.1 .804 .039 .221 .812 .039 .354

ML 0 .898 .016 .938 .899 .016 .939
.05 .898 .016 .941 .899 .016 .940
.1 .898 .017 .945 .899 .017 .939

Non-tau-equivalence Deletion 0 .670 .062 .679 .695 .059 .733
.05 .670 .065 .714 .694 .062 .764
.1 .669 .067 .746 .693 .063 .778

ML 0 .772 .036 .935 .787 .034 .929
.05 .772 .037 .938 .787 .035 .934
.1 .771 .038 .938 .787 .036 .935

Note. Est = estimate; SE = standard error; Coverage = coverage rate of 95% confidence intervals.
aThe population alpha and omega are both .9 under tau-equivalence; and under non-tau-equivalence, the

population alpha is .777 and the population omega is .789.
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R code, not a part of the code itself. The code on Line 2 loads the example data into R

for use. On Line 3, the function tau.test is used to carry out the tests. The output of

the analysis is given in Line 6 to Line 12. First, the robust F statistic for the test of tau-

equivalence is 1.908 (Line 7) with a p value .0114 (Line 8). Therefore, we have to

reject the tau-equivalence assumption. However, the F statistic for the test of homoge-

neity is 1.401 with a p value .1196, failing to reject the homogeneity assumption.

In addition, when alpha or omega is calculated, the package will produce the test

for tau-equivalence or homogeneity unless a user chooses not to perform such a test.

Figure 3 shows an example. When estimating alpha for the example data set, the out-

put indicates that tau-equivalence is not met.

Because we rejected the tau-equivalence but failed to reject the homogeneity

assumption, we proceed with the robust method in estimating omega in the follow-

ing. The same procedure works for robustly estimating alpha. The R code for the

analysis as well as the output are given in Figure 4.

In Figure 4, Line 2 uses the function omega to initially obtain the robust estimate

of coefficient omega corresponding to the downweighting rate varphi=.1. Note

that if the downweighting rate is set at 0, the conventional nonrobust omega with a

robust standard error will be calculated. The initial calculation is used for the diag-

nostic purpose and a relative large downweighting rate is usually specified. Line 3

uses the plot function to generate the diagnostic plot by specifying the plot type

through type='d'. For the example data, the diagnostic plot is shown in Figure 5A,

which plots the estimated omega corresponding to j from 0 to 0.1 with an interval

1### Input ###

2data(example)

3tau.test(example)

4

5### Output ###

6Test of tau equivalent

7The robust F statistic is 1.908

8with a p-value 0.0114

9

10Test of homogeneous items

11The robust F statistic is 1.401

12with a p-value 0.1196

Figure 2. Testing tau-equivalence and homogeneity of items.
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of 0.01. As j increases, the estimate of omega first increases and then flattens out

when j= 0:02.12 This indicates that 0.02 is a good choice for the downweighting

rate. Therefore, for the rest of the analysis of the data, we let j= 0:02. Line 4 calcu-

lates the robust omega estimate by setting j= 0:02. The standard error is requested

by setting se=TRUE. The output on Lines 11 to 12 shows that the estimated omega

is 0.921 with a robust standard error 0.020. Note that when j= 0, the nonrobust

omega is 0.779. To get the 95% CI for omega, the summary function on Line 5 is

used with prob=.95. The output on Line 19 gives the CI [0.882, 0.960].

Lines 6 and 7 generate the weight plot (Figure 5B) and profile plot (Figure 5C),

respectively. The option, profile=6 is used to ask the software to Label 6 cases

because by default the software only identifies the five most influential cases.

According to the weight plot in Figure 5B, six cases with ID 4, 7, 35, 93, 94, and 98

are downweighted. Except for Case 94, whose weight is about .9, each of the other

five cases has a weight smaller than .4, indicating that these five cases would have

the greatest influence in estimating coefficients omega when using the conventional

nonrobust method. In Figure 5C of the profile plot, each variable is centered at the

robust estimate of the corresponding mean and plotted against the order of the vari-

able. The profile plot suggests that, for Case 94, it has smaller values than average

on all items. Therefore, Case 94 can be viewed as a leverage observation. Cases 4, 7,

35, 93, and 98 show similar patterns where some items have values much larger than

average while other items much smaller than average. Therefore, those cases can be

viewed as outliers. Note the plot function clearly identifies outlier and leverage

observation in the plot by using different legends.

Discussion

In using a test or scale, its reliability is always a primary concern. Cronbach’s

alpha is a widely used measure of reliability in the literature. When items are

1> alpha(example)

2Test of tau-equavilence

3The robust F statistic is 1.908

4with a p-value 0.0114

5**The F test rejected tau-equavilence**

6

7The alpha is 0.9151943.

8About 7% of cases were downweighted.

Figure 3. An example showing the tau-equivalence test output.
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non-tau-equivalent, coefficient omega has been proposed and recommended.

Methods for estimating the coefficient alpha and omega are commonly based on the

sample covariance matrices or the NML estimates of S and, therefore, are not robust

to outlying observations. In this study, we proposed a robust procedure to estimate

alpha and omega as well as their CIs. An R package coefficientalpha together with

an online interface is also developed to carry out the proposed procedure.

With outlying observations, alpha and omega can be overestimated or underesti-

mated. Our purpose is not to obtain a larger estimate but one that is closer to the pop-

ulation value without being overwhelmingly affected by a few influential

observations. Because alpha and omega commonly estimated using NML are unduly

affected by outlying observations, they tend to perform poorly when validating scales

across groups (e.g., gender, race, culture). In contrast, robust estimates of alpha or

omega will still perform well even if small percentages of the participants in differ-

ent groups endorse the items differently. In cases where the majority of the

1### Input ###

2omega.est<-omega(example, varphi=.1)

3plot(omega.est, type='d')

4omega.res<-omega(example, varphi=.02, se=TRUE)

5summary(omega.res, prob=.95)

6plot(omega.res, type='w', profile=6)

7plot(omega.res, type='p', profile=6)

8

9### Output ###

10> omega.res<-omega(example, varphi=.02, se=TRUE)

11The omega is 0.9207303 with the standard error 0.01994788.

12About 6% of cases were downweighted.

13> summary(omega.res, prob=.95)

14

15The estimated omega is

16129.0agemo

17020.0es

18p-value (omega>0) 0.000

19Confidence interval 0.882 0.960

Figure 4. R code and output for computing omega.
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participants in different groups endorse the scale differently, the robust alpha and

omega can still tell the difference, since they are decided by the majority of the

observations as reflected by Equation 3, where only a small percentage of cases lying

far from the center are downweighted.

In practice, the mechanisms that lead to outlying observations can be more com-

plex than discussed in the current study. For example, outlying observations can

result from different understanding of a scale. It is well known that cultural differ-

ences exist between Americans and Chinese in the circumstances evoking pride,

shame, and guilt (e.g., Stipek, 1998). Chinese may view expressing pride in public as

an improper or unacceptable behavior, contrary to most Americans. Consequently,

the recorded data for a Chinese participant in a study with a majority of American

participants may be identified as outlying. Although such data might not be viewed

as admissible anymore, our robust method can still be applied to identify the partici-

pant as outlying and further action, for example, removing such observations, can be

taken by a researcher with substantial knowledge of the study. For this purpose, our

R package facilitates the identification of peculiar observations and allows a user to

drop potentially erroneous ones. On the other hand, if a large number of participants

show such a cultural difference, the population cannot be viewed as homogeneous

any more. Then, multiple group models or mixture models might be needed for bet-

ter analysis. Our robust method can be applied as a diagnostic tool to explore such

heterogeneous samples.

There are also situations where nonnormality is expected and one would not want

to downweight the outlying observations. For example, data on abnormal behaviors

in clinical research tend to be skewed and extreme scores in such data are often what

a researcher is interested in. In this situation, one can opt not to downweight the

extreme scores by setting j= 0 in our R package. However, even for skewed data

with heavy tails, robust estimate of alpha and omega may still be more accurate than

the traditional ones based on the sample covariance matrix. In particular, the graphs

of the R package allow users to identify extreme observations and to examine their

profiles as well as to explore how their inclusion or removal affects the evaluation of

reliability.

Handling outlying observations inevitably involves making subjective decisions.

Our procedure can help identify potential outlying observations and assist the choice

of downweighting rate. The estimated alpha and omega using the default procedure

can be more resistant to outlying observations than their nonrobust counterparts.

However, a researcher can be more involved in the procedure to obtain even better

results. For example, the researcher can identify the outlying observations that should

be removed directly instead of downweighted.

In summary, data in practice are often nonnormally distributed. When the mechan-

ism of nonnormality is not clear, it is always a safer bet to utilize the robust reliability

coefficients than their nonrobust counterparts. At the same time, once outlying obser-

vations are identified, special attention might be paid. Especially, robust methods

should be preferred in the follow-up statistical data analysis (Yuan & Zhang, 2012a).
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In addition to coefficients alpha and omega, other reliability measures have also

been proposed in the literature. They include, among others, coefficient b (Revelle

& Zinbarg, 2009; Zinbarg, Revelle, Yovel, & Li, 2005), the reliability coefficient for

a general structure composite (Raykov & Shrout, 2002), dimension-free and model-

based internal consistency reliability (Bentler, 2009, 2010), and model-based reliabil-

ity that allows nonlinear relationship (Green & Yang, 2009; Yang & Green, 2010).

In assessing interrater agreement, reliability coefficients can also be formulated as a

form of intraclass correlation coefficients (Shrout & Fleiss, 1979). Under certain con-

ditions, these alternative measures can be better than alpha and omega. However,

these reliability measures, typically calculated as functions of the sample covariance

matrix, are also influenced by nonnormal and missing data. Future study can investi-

gate how to extend our robust procedure to these reliability measures. Furthermore,

although there are other robust methods for alpha with complete data (e.g.,

Christmann & Van Aelst, 2006; Headrick & Sheng, 2013; Wilcox, 1992), they are

not applicable with incomplete data. More work is needed to extend these methods

with incomplete data.

Existing literature on missing data analysis typically assumes MCAR and MAR

mechanisms. Incomplete data in educational and behavioral research can be MNAR.

Although we did not emphasize it, our R package can include auxiliary variables

when estimating alpha and omega. With auxiliary variables being included, the over-

all MAR mechanism becomes a more viable assumption. Methods explicitly model-

ing nonignorable missing data mechanism might be worth studying when estimating

reliability coefficients.

Appendix A

Standard Error of â

Notice that Ŝ is a symmetric matrix. Let ŝ be the vector of nonduplicated elements

of Ŝ. Then, under a set of regularity conditions, ŝ is asymptotically normally distrib-

uted, which can be written as

ffiffiffi
n
p

(ŝ � s )!L N (0, G), ðA1Þ

where s is the population counterpart of ŝ, G is the asymptotic covariance matrix offfiffiffi
n
p

ŝ , and can be consistently estimated by a sandwich-type covariance matrix Ĝ (see

Yuan & Zhang, 2012a). Since a is a function of s , it follows from the delta method

that

ffiffiffi
n
p

(â� a)!L N (0, n2), ðA2Þ

where n2 can be consistently estimated by the following:
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n̂2 =
∂â

∂ŝ0
G
∂â

∂ŝ
: ðA3Þ

It follows from Equation 1 that the elements of the vector ∂â=∂ŝ of partial deriva-

tives can be evaluated according to

∂a

∂sij

=

� p

p�1
1Pp

i = 1

Pp

j = 1
sij
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, i = j
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p�1
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i = 1
sii�Pp
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Pp
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, i 6¼ j

8>>>><
>>>>:

ðA4Þ

SE for â and the corresponding CI as implemented in the package coefficientalpha

are calculated according to the asymptotic distribution in Equation A2 and the var-

iance estimate in Equation A3.

Appendix B

Using the Online Software

For researchers who may not be familiar with R, a self-explanatory online interface is

also developed to robustly estimate alpha and omega. In particular, the use of the

online interface does not require previous knowledge of R. To use the online

Figure B1. The online interface of the software coefficientalpha.
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interface, open the web page http://psychstat.org/alpha in a web browser. Figure B1

is a display of the online software interface. To use it, one first uploads a data file in

free format (a text file with observations separated by space) with missing data

denoted by ‘‘NA.’’ Each column of the data file represents an item. Variable names

can be specified in the first line of the data file. Instead of downweighting, users can

also choose to remove certain cases by providing the case numbers. A user can

choose to deal with missing data using our robust algorithm or just removing missing

data through listwise deletion. The default value for the tuning parameter j is .1,

which can be modified. If setting j = 0, then coefficient alpha will be estimated using

the normal-based-ML. A user can choose whether or not to estimate standard error

for alpha. It is recommended but can be slow for large data sets. Finally, a user can

choose to generate the three plots discussed in the article. For the weight and profile

plots, a user can specify how many cases to be labeled and highlighted and the default

is 5.
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Notes

1. In this study, we focus on the unidimensional case although omega can be estimated

under a more general structure (e.g., McDonald, 1999; Raykov & Shrout, 2002).

2. The reason for us to start the discussion with coefficient alpha is because it is relatively

easy to understand by a broad audience. The same procedure applies to coefficient omega

as we will show in our simulation studies.

3. The weight is used to control the influence of outlying observation and will be defined

later.
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4. One can argue that addition and multiplication are two different constructs. However, we

assume they are from the same construct here for illustration purpose.

5. The Huber-type weights also rescale the resulting Ŝ to be unbiased under normality. But

the rescale factor does not affect the estimated alpha and omega.

6. Both the original and the transformed CIs are available (e.g., Raykov & Marcoulides,

2010).

7. With the same factor loadings,

v =
�Xp

j = 1
ljÞ

2
=½
�Xp

j = 1
ljÞ

2
+
�Xp

j = 1
cjjÞ
�

= p2l2=
�
p2l2 +

Xp

j = 1
cjjÞ =

pf1�
Xp

j = 1

�
l2 + cjjÞ

�
½p2l2 +

Xp

j = 1
cjj�g=

�
p� 1Þ =

p
�
1�

Xp

i = 1
sii=

Xp

i = 1

Xp

j = 1
sijÞ
��

p� 1Þ = a:

8. Note that for the non-tau-equivalent condition, alpha should not be used.

9. Even when j = 0, the standard error estimates are still robust because of the use of the

sandwich-type method.

10. The tau-equivalent test evaluates whether a one-factor model with equal factor loadings

adequately fits the data.

11. The test of homogeneity evaluates whether a one-factor model with freely estimated fac-

tor loadings adequately fits the data.

12. One can also use j= 0:01 here. We use j= 0:02 because the weight plot shows an addi-

tional possible outlying observation (Case 94).
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