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Abstract 

 

Many children fail to master fraction arithmetic even after years of instruction, a failure that 

hinders their learning of more advanced mathematics as well as their occupational success. To 

test hypotheses about why children have so many difficulties in this area, we created a 

computational model of fraction arithmetic learning and presented it with the problems from a 

widely used textbook series. The simulation generated many phenomena of children’s fraction 

arithmetic performance through a small number of common learning mechanisms operating on a 

biased input set. The biases were not unique to this textbook series – they were present in two 

other textbook series as well – nor were the phenomena unique to a particular sample of children 

– they were present in another sample as well. Among other phenomena, the model predicted the 

high difficulty of fraction division, variable strategy use by individual children and on individual 

problems, relative frequencies of different types of strategy errors on different types of problems, 

and variable effects of denominator equality on the four arithmetic operations. The model also 

generated non-intuitive predictions regarding the relative difficulties of several types of problems 

and the potential effectiveness of a novel instructional approach. Perhaps the most general lesson 

of the findings is that the statistical distribution of problems that learners encounter can influence 

mathematics learning in powerful and non-intuitive ways. 

 

Keywords: numerical cognition; fractions; production systems; textbook analysis; fraction 

arithmetic 
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A Computational Model of Fraction Arithmetic 

 Mathematical knowledge is important for both academic and occupational success 

(Davidson, 2012; McCloskey, 2007; Murnane, Willett, & Levy, 1995; Sadler & Tai, 2007). The 

foundations of later success are laid early. Mathematics achievement at age 7 predicts socio-

economic status (SES) at age 42, even after controlling for the child's general intelligence, 

reading ability, and birth SES (Ritchie & Bates, 2013).  

Fractions are among the most important topics encountered in mathematics education. 

One reason is that understanding them is critical to success in more advanced mathematics 

(Booth & Newton, 2012; Booth, Newton, & Twiss-Garrity, 2014). Consistent with this 

perspective, fifth graders’ fractions knowledge uniquely predicts their knowledge of algebra and 

overall mathematics achievement in tenth grade, even after controlling for their parents’ income 

and education and their own whole number arithmetic knowledge, IQ, working memory, reading 

achievement, race, and gender (Siegler et al., 2012). Fractions knowledge is also required in a 

wide range of occupations: a recent, large-scale survey of American white collar and blue collar 

employees and service workers found that 68% said that they employed fractions and decimals 

during their work (Handel, 2016). Reflecting this importance, fractions are a major topic of 

instruction in fourth, fifth, and sixth grade classrooms (Common Core State Standards Initiative, 

2010; National Council of Teachers of Mathematics, 2000).  

Despite the importance of fractions and the prolonged fraction instruction students 

receive, many children (and adults) struggle to understand them (Stigler, Givvin, & Thompson, 

2010). Illustratively, Algebra I teachers in the United States who were presented 15 topics 

viewed as prerequisites for learning algebra and asked about their students’ preparedness in them 
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rated knowledge of fractions and decimals second lowest (with the amorphous category “story 

problems” being the lowest-rated topic; Hoffer, Venkataraman, Hedberg, & Shagle, 2007). 

 Fraction arithmetic poses a particular challenge for learners. In contrast to whole number 

arithmetic, which most children eventually master at least for single-digit numbers, many 

learners never reach proficiency in fraction arithmetic (Gabriel et al., 2013; Lortie-Forgues, Tian, 

& Siegler, 2015; Stigler et al., 2010). Further, the ability of children in the United States to solve 

fraction arithmetic problems lags far behind that of children in countries with high math 

achievement, such as China (Torbeyns, Schneider, Xin, & Siegler, 2015). The fact that fraction 

arithmetic was part of more than half of the formulas provided on the reference sheets for recent 

(2014) Advanced Placement chemistry and physics exams further illustrates the far-reaching 

importance of fraction arithmetic (Lortie-Forgues & Siegler, in press). 

A recent review identified two classes of difficulties children face in learning fraction 

arithmetic (Lortie-Forgues et al., 2015).  One class includes difficulties relating to the specific 

fraction arithmetic procedures that children are expected to learn, such as the sheer number of 

procedures; the opacity of why the procedures make sense; the complex, partially overlapping 

relations among procedures for different arithmetic operations; and the complex relations 

between fraction and whole number arithmetic procedures. The other class includes difficulties 

relating to the context in which the procedures are learned: the clarity of exposition by teachers 

and textbooks, the types and number of practice problems that children are presented, and the 

prior mathematical knowledge that children bring to the task of learning fraction arithmetic. 

To examine the ramifications of both sources of difficulty, and to test a number of 

specific hypotheses about how learning of fraction arithmetic occurs, we created a formal 

computational model of how children acquire, or fail to acquire, fraction arithmetic proficiency. 
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Such computational models are useful because they make explicit the mechanisms that link 

theoretical accounts to observed behavior and test whether the mechanisms actually generate the 

phenomena they purport to explain. Computational models also can be used to simulate the 

results of future experiments, thereby generating empirical predictions that allow further tests of 

the underlying theory. Moreover, such models can identify potentially effective instructional 

interventions.  

 We named the present model FARRA (Fraction Arithmetic Reflects Rules and 

Associations). FARRA predicts accuracy, patterns of strategy use, and specific errors that 

children make on all four fraction arithmetic operations on varied types of problems. 

Simultaneously examining performance on all four operations seems particularly important for 

models of fraction arithmetic, because confusions among procedures that are appropriate for 

different fraction arithmetic operations appear central to children’s difficulties learning fraction 

arithmetic. The frequency and range of such confusions are only evident when all four arithmetic 

operations are considered together.  

FARRA reflects four main hypotheses. The central hypothesis is that poor fraction 

arithmetic performance reflects well-documented learning mechanisms operating on biased input 

in ways that generate weak learning of confusable procedures. Overgeneralization of these 

confusable procedures seems to be an especially large source of difficulties.  

A second, related hypothesis is that the relative difficulties of different types of fraction 

arithmetic problems largely reflect imbalances in the distribution of practice problems that 

children receive. In particular, children encounter the most challenging types of problems the 

least often, making these problems more difficult than they otherwise would be. A general 
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implication of this hypothesis is that detailed analyses of the problems that children are presented 

can yield valuable insights about learning in specific domains. 

A third hypothesis that FARRA instantiates is that people use statistical associations 

between problem features and solution procedures to guide their choices of procedures. Such 

statistical learning is beneficial in many situations, but it can be harmful in mathematics learning, 

where the normative criteria for applying procedures depend on explicit rules rather than 

statistical associations. In particular, if the practice problems that children receive are biased, the 

children’s choices of strategies will reflect the biases. 

A fourth hypothesis underlying FARRA is that conceptual knowledge plays little role in 

most children’s learning of fraction arithmetic. In some cases, children have relevant conceptual 

knowledge, but ignore it when doing fraction arithmetic. For example, most sixth and eighth 

graders know that the sum of two positive fractions must be larger than either addend (Siegler & 

Lortie-Forgues, 2015), but they often violate this principle when solving fraction addition 

problems, for example by stating “2/4” as the answer to 1/2+1/2. Other times, children lack 

relevant conceptual knowledge. For example, most sixth graders, eighth graders, and pre-service 

teachers incorrectly believe that the product of two fractions with magnitudes between 0 and 1 is 

larger than either multiplicand (Siegler & Lortie-Forgues, 2015). These findings do not imply 

that children have no conceptual knowledge of fraction arithmetic, but they do suggest that for 

many children, procedural knowledge develops and is represented in isolation from whatever 

conceptual knowledge they have. 

This last hypothesis suggests that numerous aspects of fraction arithmetic performance 

can be explained by considering procedural knowledge alone. FARRA tests this view by 
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examining whether a model devoid of conceptual knowledge can generate and explain the main 

phenomena of children’s fraction arithmetic that have been documented. 

Prior research has emphasized the role of conceptual knowledge in fraction arithmetic 

primarily from the perspective that children fail to learn fraction arithmetic because of a 

systematic misunderstanding (Byrnes & Wasik, 1991; Fischbein, Deri, Nello, & Marino, 1985). 

For example, Gelman (1991) argued that children use the conceptual framework of whole 

numbers to think about fractions and therefore think of a fraction as two separate whole numbers, 

a phenomenon known as “whole number bias” (Gabriel et al., 2013; Ni & Zhou, 2005). Whole 

number bias leads to errors in which fraction arithmetic problems are treated as two separate 

whole number arithmetic problems, as in 1/2+1/2 = (1+1)/(2+2) = 2/4 (Byrnes & Wasik, 1991; 

Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980; Mack, 1995).  

However, whole number bias does not explain the many errors that occur in cases where 

the above strategy yields a correct answer, including all fraction multiplication problems. More 

generally, poor conceptual understanding may contribute to children’s poor fraction arithmetic 

performance, but it does not explain the full range of errors that they make, why some errors are 

more frequent than others, or why the frequencies of different errors vary systematically on 

different types of problems. In the present research, we address these questions by comparing to 

children’s behavior the output of a model in which fraction arithmetic is totally unconstrained by 

conceptual knowledge.  

Major Fraction Arithmetic Phenomena 

 Eight well-established empirical phenomena that any comprehensive model of fraction 

arithmetic would need to explain are summarized in Table 1. We first present the phenomena and 

evidence regarding them, and then describe our model and how it explains each one. To provide 
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a common frame of reference, we cite data from Siegler and Pyke (2013) to illustrate each 

phenomenon and also reference other studies that have documented the same phenomena. 

====================== Table 1 about here ====================== 

Low Overall Accuracy 

 Numerous studies have documented poor fraction arithmetic performance among fourth 

to eighth grade children in the United States and Western Europe (Byrnes & Wasik, 1991; Fuchs 

et al., 2013, 2014; Hecht, 1998; Hecht & Vagi, 2010; Jordan et al., 2013; Newton, Willard, & 

Teufel, 2014; Siegler & Pyke, 2013; Siegler, Thompson, & Schneider, 2011; Torbeyns et al., 

2015). Performance does improve with age, but slowly and to a low asymptotic level. For 

example, in one representative study in which U.S. sixth and eighth graders solved a set of 

fraction arithmetic problems including all four arithmetic operations, equal and unequal 

denominators, and operands (numbers in the problem) with numerators and denominators of five 

or less, average accuracy was 46% in sixth grade and 57% in eighth grade (Siegler & Pyke, 

2013). Performance remains poor among high school students (G. Brown & Quinn, 2006), 

community college students (Richland, Stigler, & Holyoak, 2012), and even pre-service teachers 

(Newton, 2008). 

Especially Low Accuracy on Division Problems 

 Fraction division problems are consistently more difficult for children than problems 

involving addition, subtraction, or multiplication (Siegler & Pyke, 2013; Siegler et al., 2011). 

Inaccurate fraction division performance may in part reflect the fact that the standard procedure 

for fraction division that is taught in the United States – that is, to invert the second operand and 

then to multiply the numerators and denominators separately – is more complex than the 

procedures taught for other operations. For example, only for the standard division procedure do 
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learners need to invert an operand and decide which one to invert. The difficulty also may reflect 

the paucity of fraction division problems in at least some U.S. math textbooks. Son and Senk 

(2010) found 250 fraction multiplication problems but only 54 fraction division problems in the 

fifth and sixth grade textbooks and workbooks in a widely used U.S. textbook series, Everyday 

Mathematics (2002). In this article, we found similarly few fraction division problems in three 

other textbook series: enVisionMATH, (Charles et al., 2012), GO MATH (Dixon, Adams, 

Larson, & Leiva, 2012), and a newer edition of Everyday Mathematics (University of Chicago 

School Mathematics Project, 2015c). 

Variable Responses Within Individual Problems 

 In addition to low accuracy, children exhibit striking variability in the mix of correct 

answers and errors they generate on a given problem (Hecht, 1998; Newton et al., 2014; Siegler 

& Pyke, 2013; Siegler et al., 2011). For example, on the problem 2/3+3/5, Siegler and Pyke 

(2013) observed 22 distinct answers from the 59 children who answered incorrectly.  

Variable Strategy Use by Individual Children 

Substantial variability is present within children as well as problems (Siegler & Pyke, 

2013; Siegler et al., 2011).Thus, 60% of children in Siegler and Pyke (2013) used different 

strategies on at least one pair of virtually identical problems (e.g., 3/5×1/5 and 3/5×4/5). This 

variability usually involved a correct strategy on one but not both highly similar items.  

Greater Frequency of Strategy Errors Than Execution Errors 

 Fraction arithmetic errors can be divided into strategy errors and execution errors. 

Strategy errors result from using an incorrect procedure for the given arithmetic operation, for 

example separately adding the two numerators and the two denominators on a fraction addition 

problem. Execution errors result from flawed execution of procedures that are correct for the 
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operation. They include whole number arithmetic errors (e.g., 6×9=48), failure to change 

numerators as well as denominators when establishing common denominators, and inverting the 

wrong operand in fraction division (G. Brown & Quinn, 2006; Byrnes & Wasik, 1991; Hecht, 

1998; Newton et al., 2014; Siegler & Pyke, 2013; Siegler et al., 2011). 

 Strategy errors account for a larger proportion of fraction arithmetic errors than do 

execution errors (G. Brown & Quinn, 2006; Byrnes & Wasik, 1991; Gabriel et al., 2012, 2013; 

Hecht, 1998; Newton et al., 2014; Siegler & Pyke, 2013; Siegler et al., 2011). For example, in 

Siegler and Pyke (2013), strategy errors occurred on 46% of trials and accounted for 91% of 

errors, whereas execution errors occurred on 5% of trials and accounted for 9% of errors.  

 The line between strategy and execution errors is not always clear; for example, inverting 

the wrong operand in fraction division might be viewed as an incorrect strategy rather than 

incorrect execution of a correct strategy. In the studies reported below, we adopt a relatively 

conservative definition of strategy errors, in which potentially ambiguous cases such as the 

example just mentioned are classified as execution errors rather than as strategy errors. As will 

be seen, strategy errors are more common than execution errors even when such a conservative 

definition of strategy errors is used. 

The Most Common Strategy Errors Are Wrong Fraction Operation Errors and 

Independent Whole Numbers Errors 

The most common flawed strategies are wrong fraction operation and independent whole 

numbers approaches (Siegler & Pyke, 2013; Siegler et al., 2011). Wrong fraction operation 

strategies involve using a procedure that is correct for one fraction operation on a problem that 

calls for a different fraction operation. For example, a correct strategy for adding fractions with 

equal denominators is to apply the operation to the numerators while maintaining the common 
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denominator, as in 3/5+1/5=(3+1)/5=4/5. Applying this strategy to a division problem, as in 

3/5÷1/5=(3÷1)/5=3/5, constitutes a wrong fraction operation error. Similarly, a correct strategy 

for dividing fractions is to invert the denominator fraction and then to multiply the numerators 

and denominators of the two operands separately, as in 3/5÷1/4=3/5×4/1=(3×4)/(5×1)=12/5. 

Applying an overgeneralized version of this strategy to a multiplication problem, as in 

3/5×1/4=3/5×4/1=(3×4)/(5×1)=12/5, constitutes a wrong fraction operation error. 

 Independent whole numbers strategies involve applying specified arithmetic operations 

separately to the numerators and denominators of the operands to obtain the numerator and 

denominator of the answer. This strategy is correct for multiplication, but yields errors in 

addition and subtraction, as in 3/5+1/4=(3+1)/(5+4)=4/9.  

Both types of flawed strategies are common. In Siegler and Pyke (2013), wrong fraction 

operation strategies accounted for 51% of errors, and independent whole numbers strategies 

accounted for 27% of errors. 

Equal Denominators Increase Addition and Subtraction Accuracy but Decrease 

Multiplication Accuracy  

 Equal denominators are associated with higher accuracy for addition and subtraction, but 

lower accuracy for multiplication (Gabriel et al., 2013; Siegler & Pyke, 2013; Siegler et al., 

2011). For example, in Siegler and Pyke (2013), fraction addition and subtraction accuracy was 

80% for equal denominator problems and 55% for unequal denominator problems, whereas 

fraction multiplication accuracy was 37% for equal denominator problems and 58% for unequal 

denominator problems. 
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The Most Frequent Type of Error on Each Operation Varies With Denominator Equality 

The most common errors on each arithmetic operation also vary with whether 

denominators are equal. On addition and subtraction problems, children more often commit 

independent whole numbers errors on unequal than on equal denominator items (Gabriel et al., 

2013; Newton et al., 2014; Siegler & Pyke, 2013; Siegler et al., 2011). Thus, 3/5+1/4 elicits the 

incorrect answer 4/9 more often than 3/5+1/5 elicits the incorrect answers 4/10 or 2/5 (Siegler & 

Pyke, 2013). On multiplication problems, by contrast, children commit wrong fraction operation 

errors more often on equal than on unequal denominator items (Gabriel et al., 2013; Newton et 

al., 2014; Siegler et al., 2011). Thus, 3/5×4/5 elicits the incorrect response 12/5 more often than 

3/5×1/4 elicits the incorrect responses 60/20 or 3/1. 

The Model 

Production Rules 

 Within FARRA, as within other production system models, rules are modular 

components of knowledge used to perform tasks. Each rule is a condition-action pair, in which 

the condition specifies when the rule may be fired, and the action specifies what happens when it 

fires. Rules are selected and fired iteratively until an answer is obtained. 

 When solving a problem, FARRA maintains a representation of the problem state, 

including the numerators, denominators, and arithmetic operation in the problem, as well as 

results of intermediate calculations. FARRA also maintains a list of goals that it is trying to 

achieve. Together, the problem state and goals determine which rules’ conditions are met. Firing 

rules causes changes to the problem state and/or goals, thus affecting which rule fires next. 

FARRA includes two types of rules—strategy rules and execution rules—each of which 

can be further divided into correct rules and mal-rules. Correct rules were devised by formalizing 
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the fraction arithmetic procedures presented in a widely-used textbook series (e.g., Charles et al., 

2012). No substantial differences were found between these procedures and those presented in 

two other textbook series (Dixon et al., 2012; UCSMP, 2015). Mal-rules were devised based on 

our review of common fraction arithmetic errors, as described in the previous section. We first 

describe similarities and then differences among the different types of rules. 

Strategy rules. FARRA begins each problem-solving episode with a single goal: find the 

answer. We refer to the relatively few rules that can fire when this is the only goal as strategy 

rules. A complete list of FARRA’s strategy rules is shown in Table 2.  

====================== Table 2 about here ====================== 

Correct strategy rules. Rules 1-4 describe normatively correct strategies. Rules 1 and 2 

describe the standard correct procedures for fraction addition and subtraction, collectively termed 

“Correct Add/Sub.” Rule 1 describes the version of this strategy for equal denominator addition 

and subtraction problems, whereas Rule 2 describes the version for unequal denominator 

problems, the latter rule requiring conversion of the operands to a common denominator. Rule 3 

describes the standard correct procedure for fraction multiplication, termed “Correct Mult,” and 

Rule 4 describes the standard correct procedure for fraction division, termed “Correct Div.”  

Strategy mal-rules. Consistent with cognitive science research on mathematics problem-

solving (J. S. Brown & VanLehn, 1980; Ohlsson, 2016; Payne & Squibb, 1990; Sleeman, 1984; 

Young & O’Shea, 1981), we assume that most fraction arithmetic errors result from mal-rules, 

that is, rules that incorporate relatively small deviations from normatively correct procedures.  

All but one of FARRA’s strategy mal-rules (Rules 5-8 in Table 2) reflect 

overgeneralization of Rules 1-4. Overgeneralization was implemented by deleting the arithmetic 

operation from the condition side of correct rules. Thus, the strategies described by these rules 
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are called “Op-deleted Add/Sub,” “Op-deleted Mult,” and “Op-deleted Div.” These rules lead 

FARRA to overgeneralize Add/Sub, Mult, and Div rules to arithmetic operations other than the 

operation specified in the problem.  

One likely reason why such mal-rules are used frequently is the blocked presentation of 

problems of a given arithmetic operation (e.g., fraction addition) in classroom instruction and 

textbooks.  The blocked presentation may lead learners to ignore the arithmetic operation beyond 

the first problem or two in a set. Indeed, given the blocked presentation of particular operations 

in textbook chapters, many children may not attend to the operations of any problems in a set; 

why encode the operation if this is (e.g.) the fraction multiplication chapter? 

 The one mal-rule that does not reflect overgeneralization of correct fraction arithmetic 

procedures instead reflects overgeneralization to fraction multiplication of the cross-

multiplication procedure for comparing fractions. In the fraction comparison context, cross 

multiplication involves multiplying the numerator of one operand by the denominator of the 

other, multiplying the remaining numerator by the remaining denominator, and choosing as 

larger the fraction that contributed the numerator to the larger product. In the fraction 

multiplication context, the cross-multiply mal-rule (Table 2, rule 9) establishes the goal of 

performing similar cross multiplications (Newton, 2008). This mal-rule yields the same answers 

as the Op-deleted Div strategy, so trials on which the two strategies are used are grouped 

together in analyses of FARRA’s accuracy. 

Execution rules. Firing any strategy rule creates new goals that permit execution rules to 

fire. As shown in Table 3, some execution rules implement strategies correctly (Rules 10-15); 

other execution rules produce the most frequent execution errors that children make (Rules 16-
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18). (Several execution rules of little theoretical interest are omitted from the table for purposes 

of brevity; a complete list of FARRA’s rules appears in the Supplemental Materials, Part A.) 

====================== Table 3 about here ====================== 

Correct execution rules. Once a strategy is chosen, rule 10 sets up a whole number 

arithmetic problem relevant to computing the numerator, and Rules 11-15 serve similar functions 

for computing the denominator. Other execution rules, presented in Supplemental Materials, Part 

A, solve the whole number arithmetic problems needed to specify the numerator and 

denominator in intermediate calculations and in the answer.  

Execution mal-rules.  Incorrect variants of correct execution rules are called execution 

mal-rules. The main such rules in FARRA reflect incomplete execution, that is, failure to 

perform one or more parts of the correct procedure. Table 3 lists three common execution mal-

rules: leaving numerators unchanged when converting operands to a common denominator (rule 

16); changing the operation from division to multiplication but not inverting either operand when 

dividing (rule 17); and inverting a random operand instead of the second operand when dividing 

(rule 18). All execution mal-rules are shown in the Supplemental Materials, Part A. 

 Another mechanism, the assumption of closure of whole number arithmetic, generated 

execution mal-rules that reflected the belief that whole number arithmetic problems must yield 

whole number answers. This belief may arise because it is consistent with the input children 

receive prior to learning fraction arithmetic. Whole number addition and multiplication always 

yield whole number answers. Whole number division problems with fractional or decimal 

answers, and whole number subtraction problems with negative answers, do violate the 

assumption of closure, but they are not recommended by the Common Core State Standards for 

instruction before fifth or sixth grade and were not introduced before then in any of the textbook 



COMPUTATIONAL MODEL OF FRACTION ARITHMETIC  16 

series we examined. The mal-rules reflecting belief in closure of whole number arithmetic were 

a) when subtracting whole numbers, always subtract the smaller from the larger number; and b) 

when dividing whole numbers, always divide the larger by the smaller number and ignore any 

remainders. When these rules were used, they led FARRA to avoid generating answers that 

included a fraction, decimal, or negative in the numerator or denominator. 

Rule Selection and Learning 

 FARRA often must choose among multiple rules whose conditions are met, such as 

between a correct strategy rule and overgeneralized versions of other rules. We assume 

stochastic rule selection combined with a reinforcement learning mechanism, in which using a 

rule increases the likelihood of using that rule in the future to a greater extent on problems with 

similar features if its use led to a correct answer. Equations 1-3 describe these mechanisms 

formally. 

 j ij i
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 At each step in a problem-solving episode, FARRA first determines which rules’ 

conditions are met. The activation of each of these candidate rules is calculated according to 

Equation 1, which states that the activation 𝜂𝑗 of rule j is the sum of the problem’s values 𝑥𝑖 (0 

or 1) on features i, weighted by the associative weights 𝑤𝑖𝑗 connecting the features to rule j. 

FARRA then selects from among the candidate rules using probabilities specified by Equation 2, 
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which states that the probability 𝑝𝑗 of selecting rule j from among candidate rules k is a softmax 

function (a generalization of the logistic function) of the rules’ activations. Noise in this decision 

rule is governed by 𝛾, a free parameter of the model. 

 The associative weights 𝑤𝑖𝑗 are initialized to 0, with the result that all candidate rules 

initially have an equal probability of being selected. When FARRA is in learning mode, it 

receives feedback about whether its answer was correct after the answer is advanced. Then, for 

each step in the problem-solving episode, for each problem feature i that was present at that step, 

and for whichever rule j was fired on that step, the weights 𝑤𝑖𝑗 are adjusted according to 

Equation 3. The equation contains two free parameters: the learning rate e and the error discount 

d, both constrained to be positive numbers. The learning rate governs the degree of 

reinforcement after the model obtains a correct answer. The error discount determines how much 

less positive reinforcement is received after the model generates an incorrect answer. 

 In principle, the error discount can permit decrements in the associative weights of rules 

that yielded incorrect answers. However, in Studies 1-4 of the present article, d was set to values 

that precluded such decrements in associative weights. This constraint follows several previous 

models of learning whole number mathematics (Shrager & Siegler, 1998; Siegler & Araya, 2005; 

Siegler & Shipley, 1995), in which even when use of a rule yields an incorrect answer, the 

probability of using that rule slightly increases. In Study 5, we tested the effects of this constraint 

on FARRA's learning. 

 Equations 1 and 3 presuppose a set of problem features. Within FARRA, three features 

were encoded. One feature indicated the arithmetic operation. Another indicated whether the 

operands’ denominators were equal. The third feature indicated whether both operands were 
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fractions, one operand was a mixed number and the other a fraction or mixed number, or one 

operand was a whole number and the other a fraction or mixed number.  

Input to the Model 

  A major assumption of the present research is that the problems that children encounter 

shape their learning. To understand the characteristics of the problems that children encounter, 

we extracted problem sets from three commercial textbook series: Pearson Education’s 

enVisionMATH (Charles et al., 2012), Houghton Mifflin Harcourt’s GO MATH! (Dixon et al., 

2012), and McGraw Hill’s Everyday Mathematics (UCSMP, 2015a, 2015b, 2015c). These series 

were selected to include one representative from each of the three largest publishers of primary 

and middle school mathematics textbooks. 

The problem sets included all fraction arithmetic problems from the textbooks that had 

two operands, at least one of which was a fraction or mixed number; were in symbolic form (i.e., 

not story problems); and required an exact numerical answer (i.e., not an estimate). Such 

problems accounted for the large majority of fraction arithmetic practice problems in the three 

series, and in three other textbook series analyzed by Cady, Hodges, and Collins (2015). The 

number of problems meeting the above criteria was 659 in enVisionMATH, 807 in GO MATH!, 

and 464 in Everyday Mathematics.  

The three problem sets were very similar in several respects. First, as shown in Table 4, 

division was less common than the other three arithmetic operations in all three problem sets.  

====================== Table 4 about here ====================== 

Second, equal denominator multiplication and division problems were almost completely 

absent, accounting for no more than 2% of the total in any of the sets (Table 4). Thus, the vast 

majority of equal denominator problems involved addition or subtraction. By contrast, the largest 
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number of unequal denominator problems involved multiplication, and the second largest 

involved division. 

 A third similarity among the three textbook series involved the relative frequency of 

problems with different types of operands (Table 5). Problems were classified according to 

whether their operands included only fractions, only mixed numbers, or one whole number and 

one fraction or mixed number. (Items of the last type were classified as unequal denominator 

problems in Table 4.) In all three sets, among problems in which one operand was a whole 

number and the other was a fraction or mixed number, addition and subtraction were almost 

completely absent, accounting for no more than 2% of the total in any of the sets. Thus, the vast 

majority of these problems involved multiplication or division. By contrast, among problems 

whose operands included only fractions and/or mixed numbers, the majority involved addition or 

subtraction. 

====================== Table 5 about here ====================== 

The problems in the three textbook series did differ in a few respects. One difference was 

that addition and subtraction were more common than multiplication in the enVisionMATH set, 

whereas in the GO MATH! and Everyday Mathematics sets, multiplication was the most 

common operation. Also, some series include considerably more practice problems than others 

did. Nonetheless, the similarities were far more striking than the differences. 

The fact that three textbook series published by three different high selling textbook 

companies (Broussard, 2014; Noonoo, 2012) shared very similar distributions of problems 

suggests that these distributions are likely to be representative of the fraction arithmetic practice 

problems encountered by children in the United States. The enVisionMATH set was arbitrarily 

selected as the primary learning set for training FARRA in the simulations reported below. 
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Additional simulations conducted using GO MATH! problems as the learning set yielded similar 

results, as described in Study 2.  

Empirical Predictions 

 We now describe how and why FARRA exhibits each of the empirical phenomena listed 

in Table 1 when it is trained on problems like those in the textbook series described above.  

Low Overall Accuracy. Several factors work toward the model resembling children in 

being relatively inaccurate at fraction arithmetic. One is that FARRA only learns to distinguish 

between correct rules and mal-rules via trial and error. Practice increases the model’s accuracy 

by reinforcing correct rules more than mal-rules, but the learning is slow. 

 Another factor that contributes to low accuracy over a protracted period of learning is that 

practice at solving problems involving a given fraction arithmetic operation increases the 

likelihood not only of correctly using the appropriate strategy on problems involving that 

operation but also of incorrectly generalizing the strategy to problems involving other operations. 

The model’s rule set includes two types of rules for each solution strategy: strategy rules that are 

specific to the fraction arithmetic operation for which the strategy is appropriate, and mal-rules 

representing overgeneralizations of the strategy to all fraction arithmetic operations. These two 

types of rules are identical, except that the mal-rules do not specify the arithmetic operation, and 

thus can be applied to operations where they are inappropriate. Because the overgeneralized mal-

rules yield correct answers on problems involving the arithmetic operation for which the strategy 

is appropriate, these rules are reinforced fairly often, thereby increasing their use on other types 

of problems as well. 

Especially low accuracy on division problems. FARRA predicts especially low 

accuracy for division. Two reasons are primacy and frequency effects.  Fraction division 
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problems are presented later and less frequently than problems involving other arithmetic 

operations. By the time FARRA encounters division problems, the Add/Sub and Mult strategies, 

including the overgeneralized mal-rule versions of those strategies, already have been repeatedly 

reinforced. Competition from those strategies reduces the frequency of FARRA selecting the 

correct fraction division strategy. 

Even if the model correctly chooses the Div strategy to solve a fraction division problem 

(rules 4 or 8, Table 2), there are more opportunities for execution errors, such as inverting the 

wrong operand, not inverting either operand, or randomly inverting operands, than with addition, 

subtraction or multiplication. The many opportunities for execution errors also slow FARRA’s 

learning of the correct division strategy. Because FARRA often obtains incorrect answers when 

using the Div strategy, the model reinforces that strategy less than other correct strategies.  

 Variable responses within individual problems. On a single problem, FARRA 

sometimes generates correct responses; sometimes commits strategy errors, which lead to 

different responses depending on the particular strategy that is chosen; and sometimes produces 

execution errors, which generate different responses depending on the execution error. For 

example, on 3/5+1/4, the model might generate the correct response 17/20; might make the 

strategy error of choosing the mal-rule version of multiplication and answer 4/9 (i.e., 

(3+1)/(5+4)), might make the execution error of converting denominators to common form but 

leaving the numerators unchanged, yielding 4/20 (i.e., (3+1)/(5×4)), etc.  

Variable strategy use by individual children. FARRA predicts high variability in 

individual children’s strategy use for the same reason as it does within individual problems. 

Indeed, it predicts considerable variability even when the same child does the same or highly 

similar problems more than once.  



COMPUTATIONAL MODEL OF FRACTION ARITHMETIC  22 

Greater frequency of strategy errors than execution errors. FARRA predicts that 

strategy errors should be more frequent than execution errors because the rule set offers more 

opportunities for strategy errors. FARRA implements three high-level strategies: Add/Sub, Mult, 

and Div/Cross-Multiply (Table 2). It can use any of these strategies on any problem, but two of 

the three would be incorrect. Thus, FARRA always has at least two different ways to commit a 

strategy error. By contrast, if a correct strategy rule is chosen, the model usually has fewer ways 

to commit execution errors. For example, if the model is presented the problem 3/5+1/4 and 

correctly chooses the strategy of converting to a common denominator and then adding the 

numerators, there is only one possible execution error within the model: leaving the numerators 

unchanged when converting operands to a common denominator (rule 16, Table 3). These 

characteristics do not guarantee that strategy errors will be more common – a single execution 

error could be more frequent than several types of strategy errors combined – but it usually leads 

to that outcome. 

The most common strategy errors are wrong fraction operation errors and 

independent whole numbers errors. All of FARRA’s strategy errors stem from 

overgeneralization. Nearly all of these errors are wrong fraction operation errors or independent 

whole numbers errors1. Overgeneralization of the standard correct strategies for fraction 

addition/subtraction and division (rules 5, 6, and 8, Table 2) result in wrong fraction operation 

errors. Overgeneralization of the standard correct strategy for fraction multiplication (rule 7, 

Table 2) results in independent whole number errors.  

Equal denominators increase addition and subtraction accuracy but decrease 

multiplication accuracy. Two mechanisms produce this effect. One involves effects of 

frequency of presenting different types of problems. Associations between a rule and the features 
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of the problem on which the rule is used strengthen each time the rule is used. If a given problem 

feature is frequently paired with a given arithmetic operation, the model strengthens the 

association between the two, thus increasing the likelihood of using that strategy when that 

feature is present subsequently. Thus, FARRA uses problem features as cues for choosing 

strategies, even if those features are irrelevant to the formal criteria for using each strategy. 

 In the input to FARRA, addition and subtraction problems with equal denominators are 

more frequent than ones with unequal denominators (Table 4). This is one factor that leads to 

FARRA using the correct strategy and obtaining the correct answer more often for equal 

denominator addition and subtraction problems than for unequal denominator ones. By contrast, 

multiplication problems with unequal denominators are far more common than ones with equal 

denominators (Table 4). This leads to the model using the correct strategy and obtaining the 

correct answer more often on multiplication problems with unequal than equal denominators.  

 A second mechanism that influences effects of denominator equality involves the 

likelihood of FARRA committing execution errors. When FARRA selects the correct rule for 

equal denominator addition and subtraction problems, no execution errors are possible2. In 

contrast, when FARRA selects the correct strategy for unequal denominator addition and 

subtraction problems, it can err by leaving the numerators unchanged when converting operands 

to a common denominator (rule 16, Table 3). Thus, FARRA should commit more execution 

errors on addition and subtraction problems with unequal than equal denominators.  

The most frequent type of error on each operation varies with denominator 

equality. The same factors that cause FARRA to associate the correct strategy rules for addition 

and subtraction more strongly with equal denominator problems than with unequal denominator 

ones also cause FARRA to associate the overgeneralized versions of these rules more strongly 
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with equal denominator problems. Wrong fraction operation errors resulting from 

overgeneralization of addition/subtraction strategies should be more common on equal 

denominator multiplication and division problems than on unequal denominator ones. For the 

same reason, FARRA should commit independent whole numbers errors more often on unequal 

denominator addition, subtraction, and division problems than on equal denominator ones. 

Study 1: A Simulation of Children’s Fraction Arithmetic 

 The goal of Study 1 was to evaluate how well FARRA’s performance matches children’s 

behavior. The model was first trained on the 659 problems from the fourth, fifth, and sixth grade 

books of a widely used mathematics textbook series. After this training, the model was tested on 

all 16 fraction arithmetic problems from Siegler and Pyke (2013). FARRA’s performance on this 

test set was compared to children’s performance on the same problems in Siegler and Pyke 

(2013), with the analysis focusing on the eight aspects of children’s performance summarized in 

Table 1.  

Method 

Problems. The 659 fraction arithmetic problems presented in the fourth, fifth, and sixth 

grade volumes of enVisionMATH were FARRA’s learning set. Items were presented once each 

to the model, in the order they appeared in the textbooks. We used enVisionMATH as the source 

of our learning set because it is widely used in schools, presented the median number of 

problems among the three textbook series we examined, and includes books for the grades when 

fraction arithmetic is usually taught: fourth, fifth, and sixth grade. 

 The fraction arithmetic problems presented to children in Siegler and Pyke (2013) served 

as the test set in Study 1. This test set included 16 problems, four problems for each arithmetic 

operation, two with equal and two with unequal denominators. The four addition problems were 
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3/5+1/5, 4/5+3/5, 2/3+3/5, and 3/5+1/4. The problems for the other three arithmetic operations 

involved the same operand pairs but different operations.  

Procedure. One thousand simulated students were created by generating instances of 

FARRA with parameter values drawn randomly from uniform distributions over the following 

ranges: [0.001, 0.02) for the learning rate parameter e, (0.8, 1.0] for the error discount parameter 

d, and [0.5, 1.5) for the decision noise parameter 𝛾. Sixty four additional simulations were run 

using a wider range of parameter values – in particular, with e set to values from 0.005 to 0.05, d 

to values from 0.0 to 1.0, and 𝛾 to values from 0.5 to 5.0. These simulations generally yielded 

similar results to those reported below, with exceptions noted in the text. Results of the 

additional simulations are described in more detail in the Supplemental Materials, Part C. 

Because children would be unlikely to use strategies not yet taught in class, the strategy 

rules corresponding to each arithmetic operation were excluded from the model until the first 

time the textbook presented a problem involving that operation. For example, rules 4 and 8, 

which describe the correct and mal-rule versions of the Div strategy, were not introduced until 

the first division problem was presented. The one exception involved rule 7, the Op-deleted Mult 

strategy, which involves applying the specified arithmetic operation separately to the numerators 

and denominators of the operands. This rule was included from the beginning of training, 

because it is a straightforward application of previously taught whole number arithmetic and 

because previous findings indicated that many children use this strategy well before it has been 

taught in the context of fraction multiplication (Byrnes & Wasik, 1991; Ni & Zhou, 2005). Thus, 

the rule could be thought of as “Whole number/Op-deleted Mult.” 

 After receiving the learning set problems, each simulated student received the test set 

problems. No changes in associative strength occurred during the test set.  
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Coding. Both FARRA’s and children’s responses to the test set problems were classified 

as correct if they were numerically equal to the correct answer, regardless of the procedure used. 

Answers containing decimals were also counted as correct if they met this standard. Responses 

were further classified into three groups based on the strategy that generated them: Add/Sub, 

Mult, or Div/Cross-Multiply (Table 2). Siegler and Pyke (2013) had classified verbal strategy 

reports after each trial into 31 categories. Because the present modeling efforts changed our 

perspective on the processes that generated the verbally reported strategies, we re-categorized 

children’s strategies into the same three categories used to classify FARRA's responses. Any 

response that did not clearly belong to one of the three groups was classified as Other/None. 

Results and Discussion 

 Our description of FARRA’s performance is organized around the eight phenomena in 

Table 1. 

Low overall accuracy. Average accuracy in the simulation was 52%, equal to the 52% 

accuracy exhibited by children in Siegler and Pyke (2013). The equality of the percentages of 

correct answers suggested that the combination of parameter values within the model was 

reasonable. In additional simulations conducted over a broader range of the model’s free 

parameters, accuracy ranged from 42% to 65% (Supplemental Materials, Part C). 

Especially low accuracy on division problems. As predicted, and like children, the 

simulation performed worse on division than on other arithmetic operations (Figure 1). This low 

accuracy reflects the relatively high rate of execution errors when using the Div strategy, as well 

as frequency and primacy effects favoring the other three arithmetic operations over division. 

====================== Figure 1 about here ====================== 
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Variable responses within individual problems. Like children, FARRA generated a 

range of different responses for each fraction arithmetic problem. Table 6 illustrates this 

phenomenon by showing the most common answers generated by FARRA and by children on 

four problems in the test set, one for each operation. On each of these problems, at least four 

distinct answers were generated by at least 2.0% of children in the experiment. Nearly all of 

these answers were also generated by the simulation, with frequencies approximating those in the 

children's data in most cases. For example, the most common error was identical for FARRA and 

the children on all four problems.  

====================== Table 6 about here ====================== 

 To assess the strength of the relation between the frequencies of answers generated by the 

model and by children, we correlated the frequency in FARRA’s and children’s data of each 

problem-answer pair that appeared in either dataset. Over the entire set of problem-answer pairs 

(N=391), answer frequencies between the experimental and model datasets correlated r=.958, p 

< .001. The strength of this correlation partially reflected the frequency of correct answers being 

relatively high in both the children’s and the simulation’s data. However, the correlation 

remained strong when only errors were considered (N=354), r=.878, p < .001. Thus, children’s 

and FARRA’s frequencies of different answers, both correct and incorrect, were closely related. 

 In general, FARRA generated few responses that were not also advanced by children.  

Children, on the other hand, occasionally advanced responses that were never generated by 

FARRA. The following three were the most common. First, children made several whole number 

arithmetic errors that FARRA never made, such as incorrectly retrieving arithmetic facts (e.g., 

3/5÷1/5 = (3÷1)/5 = 1/5, 5% of trials) or incorrectly handling the remainder in whole number 

division (e.g., 3/5÷1/4 = 12/20÷5/20 = (12÷5)/20 = (2 remainder 2)/20 = 2 2/20, 4% of trials). 
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Second, children sometimes used both an incorrect strategy and an incorrect arithmetic operation 

when executing that strategy, as in 2/3×3/5 = 10/15×9/15 = (10+9)/15 = 19/15 (4% of trials). 

Finally, children occasionally used decimals to calculate the answer, as in 3/5÷1/4 = 0.6÷0.25 = 

2.4 (a correct response, advanced on 3% of trials).  

Variable strategy use by individual children. FARRA, like children, generated highly 

variable strategies. Nearly all runs of the simulation (99%) used different strategies on at least 

one of the eight pairs of virtually identical problems in the test set, such as 3/5+1/5 and 4/5+3/5. 

Greater frequency of strategy errors than execution errors. Errors generated using 

strategies other than the standard correct strategy for a given problem were classified as strategy 

errors, whereas errors generated by executing the standard correct strategy incorrectly were 

classified as execution errors. As predicted, strategy errors were more common than execution 

errors for all four arithmetic operations (Table 7).  

====================== Table 7 about here ====================== 

The most common strategy errors are wrong fraction operation errors and 

independent whole numbers errors. As with children, nearly all of FARRA’s strategy errors 

(93%) were wrong fraction operation or independent whole numbers errors. Wrong fraction 

operation errors accounted for 64% of strategy errors; independent whole number errors 

accounted for 29%. The remaining 7% of FARRA's strategy errors involved use of the cross-

multiplication approach.  

To test whether the model correctly predicted when each type of strategy error would be 

most frequent, we classified errors according to the strategy and the type of problem on which it 

was employed. In both the children’s and FARRA’s data, wrong fraction operation errors that 

involved overgeneralization of the Add/Sub strategy to multiplication and division problems 
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were more common than overgeneralizations of the Mult and Div strategies to addition and 

subtraction problems (Table 7). In contrast, independent whole number errors were most 

common on addition and subtraction problems.  

Equal denominators increase addition and subtraction accuracy but decrease 

multiplication accuracy. As predicted, and like children, FARRA demonstrated higher accuracy 

for addition/subtraction problems involving operands with equal rather than unequal 

denominators (Figure 2). For multiplication problems, the reverse was true: accuracy was higher 

for problems involving operands with unequal denominators (Figure 2).  

====================== Figure 2 about here ====================== 

 Considering the paucity of equal denominator division problems in the learning set, one 

might expect lower accuracy on such problems than on unequal denominator ones. However, 

neither children nor FARRA displayed such a tendency. The reason seems to be that the paucity 

of equal denominator division problems was offset by use of a non-standard strategy that 

consistently yielded correct performance on some such problems. This strategy, which was used 

on roughly 20% of trials by both FARRA and children, involves applying the operation specified 

in the problem separately to numerators and denominators (rule 6, Table 3). For division, this 

meant dividing the numerator of one operand by the other and dividing the denominator of one 

operand by the other, as in “3/5÷1/5=(3÷1)/(5÷5)=3/1.  

On the one problem in the test set where dividing numerators and dividing denominators 

both yielded whole number answers (3/5÷1/5), performance when using this strategy was 

accurate for both FARRA (100% correct) and children (69% correct). In contrast, on the other 

three division problems, where dividing numerators and denominators did not yield whole 

number answers, this strategy was inaccurate for both FARRA (35% correct) and children (2% 
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correct). The reason for such answers was that the assumption of closure of whole number 

arithmetic led FARRA and, we believe, children to round or truncate non-whole-number 

numerators and denominators in their answers, thus yielding errors. However, because this non-

standard strategy generated correct answers on one of the two equal denominator division 

problems, performance on such problems was more accurate than it otherwise would have been.  

The most frequent type of error on each operation varies with denominator equality. 

FARRA committed strategy errors resulting from overgeneralization of the addition/subtraction 

strategy more often on equal than on unequal denominator multiplication and division problems 

(Table 8). In contrast, FARRA committed strategy errors resulting from overgeneralization of the 

multiplication strategy more often on unequal than on equal denominator addition and 

subtraction problems (Table 8). Children showed the same pattern. Again, the phenomenon 

appeared to stem from children, like FARRA, learning the statistical relations between 

denominator equality and arithmetic operation in the input problems.  

====================== Table 8 about here ====================== 

In summary, after practice on a learning set drawn from a widely used mathematics 

textbook series, FARRA generated test performance similar to that of middle-school students on 

all eight of the well-documented phenomena listed in Table 1: low overall accuracy; especially 

low accuracy for division; high response variability both within problems and within children; 

high frequency of strategy errors relative to execution errors; the most common errors being 

independent whole number and wrong fraction operation errors; and denominator equality 

exercising different effects on different arithmetic operations for both accuracy and specific 

errors. Thus, the model captures a number of prominent aspects of fraction arithmetic. 
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Study 2: Testing the Model Against Different Data and Problem Sets 

 We wanted to test the generality of the model to different children and different input 

problems to the model to ensure that FARRA’s accurate simulation of children’s performance 

did not depend on idiosyncratic characteristics of either the children’s performance or the 

learning set employed in Study 1. Therefore, in Study 2, FARRA’s fraction arithmetic 

performance after training on either the enVisionMATH learning set, used in Study 1, or an 

alternate learning set drawn from the GO MATH! textbook series was compared to that of the 

children in Siegler et al. (2011) rather than those in Siegler and Pyke (2013).  

Method 

 Problems. Two learning sets were used to train FARRA. One was the learning set used 

in Study 1, consisting of 659 problems from the fourth fifth, and sixth grade books of the 

enVisionMATH textbook series. The other set consisted of 807 problems from the fourth, fifth, 

and sixth grade books of the GO MATH! textbook series. The distributional characteristics of the 

two sets are described in Tables 4 and 5. 

The fraction arithmetic problems presented to children in Siegler et al. (2011) served as 

the test set. It included 8 problems, two problems for each arithmetic operation, one with equal 

and one with unequal denominators. The two addition problems were 3/5+2/5 and 3/5+1/2. The 

problems for the other three arithmetic operations involved the same operand pairs but different 

operations.  

 Procedure. One thousand runs of the model were conducted using each learning set, 

following the same procedure as in Study 1. The model runs conducted using the two learning 

sets will be referred to as the enVisionMATH simulation and the GO MATH! simulation. 
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Coding. Children in Siegler et al. (2011) reported the strategy they used to solve each 

problem immediately after they answered it. To compare children’s strategy use to FARRA’s, 

these verbal strategy reports were classified into the same categories as in Study 1: Add/Sub, 

Mult, Div/Cross-Multiply, or Other/None. 

Results and Discussion 

 As in Study 1, our description of FARRA’s performance is organized around the eight 

phenomena in Table 1. 

Low overall accuracy. Average accuracy was 52% in the enVisionMATH simulation 

and 54% in the GO MATH! simulation, both reasonably close to the 46% accuracy exhibited by 

children in Siegler et al. (2011). 

Especially low accuracy on division problems. Accuracy on division problems was 

lower than on any other operation in Siegler et al. (2011) and in the simulations using each 

textbook series as input problems (Figure 3). 

====================== Figure 3 about here ====================== 

Unlike children in Siegler and Pyke (2013), children in Siegler et al. (2011) were more 

accurate on multiplication than on addition or subtraction. A similar difference appeared between 

the enVisionMATH simulation, which was more accurate on addition and subtraction than on 

multiplication, and the GO MATH! simulation, which was more accurate on multiplication than 

on addition or subtraction (Figure 3). This difference likely reflects the fact that the 

enVisionMATH learning set contained more addition and subtraction than multiplication 

problems, whereas the GO MATH! learning set showed the opposite trend (Table 4). The 

different patterns of accuracy in Siegler and Pyke (2013) and Siegler et al. (2011) might similarly 

reflect different distributional characteristics of children’s practice problems. 
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Variable responses within individual problems. Given either input set, FARRA 

generated a similar range of responses for each problem to those generated by children in Siegler 

et al. (2011). For example, FARRA generated both the most common correct response and the 

most common incorrect response advanced by children for the four problems shown in Table 9, 

as well as the second most common one for three of these (the exception being 3/5×2/5, for 

which FARRA did not generate the second most common incorrect response, 6/10). 

====================== Table 9 about here ====================== 

To assess the correspondence of different response frequencies in FARRA’s and 

children’s data, we correlated the frequency in each simulation and in children’s data of each 

problem-answer pair that appeared in either one. For both simulations, this analysis involved 115 

problem-answer pairs, including 102 pairs in which the answer was incorrect. The correlation 

between frequencies in the enVisionMATH simulation and children’s data was r=.792, p < .001, 

or r=.635, p < .001 when only incorrect answers were included. The correlation between 

frequencies in the GO MATH! simulation and children’s data was r=.820, p < .001, or r=.661, p 

< .001 when only incorrect answers were included.  

Variable strategy use by individual children. FARRA, like children, generated highly 

variable strategies. Half (50%) of children used different strategies on the two problems for at 

least one arithmetic operation, such as 3/5+2/5 and 3/5+1/2. The same was true on the majority 

of simulation runs (96% in the enVisionMATH simulation and 94% in the GO MATH! 

simulation). 

Greater frequency of strategy errors than execution errors. Errors were classified as 

strategy errors or execution errors in the same way as in Study 1. Just as in Siegler and Pyke 

(2013), strategy errors in Siegler et al. (2011) accounted for the majority (87%) of all errors. 
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Similarly, strategy errors accounted for the majority of all errors in both the enVisionMATH 

simulation (85%) and the GO MATH! simulation (85%). 

The most common strategy errors are wrong fraction operation errors and 

independent whole numbers errors. Wrong fraction operations errors resulting from 

overgeneralization of the Add/Sub strategy, and independent whole numbers errors resulting 

from overgeneralization of the Mult strategy, together accounted for the great majority of 

strategy errors in children’s data and both simulations. However, in children’s data, errors due to 

overgeneralization of the Mult strategy were more common than those due to overgeneralization 

of the Add/Sub strategy (28% vs. 8% of trials). In the simulation data, the reverse was true: 

errors due to overgeneralization of the Mult strategy were less common than those due to 

overgeneralization of the Add/Sub strategy in both the enVisionMATH simulation (12% vs. 17% 

of trials) and the GO MATH! simulation (14% vs. 15% of trials). The reason for these deviations 

from the children’s data in Siegler and Pyke (2013) and from the simulation results in response 

to both the GO Math! and enVisionMATH practice sets remain to be determined.  

Equal denominators increase addition and subtraction accuracy but decrease 

multiplication accuracy. As in Siegler and Pyke (2013), children in Siegler et al. (2011) were 

more accurate on equal than on unequal denominator addition and subtraction problems, but they 

were more accurate on unequal than on equal denominator multiplication problems (Figure 4A). 

The same pattern appeared in both the enVisionMATH and GO MATH! simulations (Figures 4B 

and 4C). The GO MATH! simulation, though not the enVisionMATH simulation, also correctly 

predicted virtually no difference in accuracy between equal and unequal denominator division 

problems. 

====================== Figure 4 about here ====================== 
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The most frequent type of error on each operation varies with denominator equality. 

Children in Siegler et al. (2011), like those in Siegler and Pyke (2013), committed strategy errors 

involving use of the Mult strategy more often on unequal than on equal denominator addition 

and subtraction problems, but committed strategy errors involving use of the Add/Sub strategy 

more often on unequal than on equal denominator multiplication problems. Both the 

enVisionMATH and GO MATH! simulations showed the same pattern (Table 10). 

====================== Table 10 about here ====================== 

 In summary, FARRA’s performance resembled that of children in Siegler et al. (2011), as 

it resembled that of children in Siegler and Pyke 2013), regardless of which textbook series it 

was trained on. This outcome increased our confidence that the model captures general 

phenomena and mechanisms of fraction arithmetic learning, rather than idiosyncrasies of a 

particular textbook’s practice problems or of a particular sample of children.  

 A useful model should not only simulate previously observed phenomena: It also should 

generate novel, testable predictions. We examined FARRA’s ability to do this in Studies 3, 4, 

and 5. 

Study 3: Learning Associations Between Problem Features and Solution Strategies 

 As described in the Introduction, the more often a problem feature is paired with an 

arithmetic operation, the more strongly FARRA associates that feature with the correct strategy 

for that operation. In Studies 1 and 2, this property of the model, together with the frequencies of 

equal and unequal denominator problems for each arithmetic operation in the learning set, led 

FARRA to generate the interactions between arithmetic operation and denominator equality that 

had been observed in children.  
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The success of this account implies that children and FARRA may also learn other 

relations in the problems they encounter. One such relation is that between type of operand – 

fraction, mixed number, or whole number – and arithmetic operation. In each of the three 

textbook series described in Table 5, problems with only fraction or mixed number operands 

almost always involved addition or subtraction, whereas problems with one whole number 

operand and one fraction or mixed number operand usually involved multiplication. 

 We were unable to find any data on people's performance on these types of arithmetic 

problems. However, on the basis of FARRA's success in accounting for children's fraction 

arithmetic performance, we predicted that the degree to which FARRA associates the correct 

strategy for each arithmetic operation with problems having each type of operation and operand 

should mirror the frequency with which each arithmetic operation is matched with each operand 

type in the learning set. Thus, we predicted that FARRA would use the correct strategy more 

often on addition and subtraction problems when they involve only fraction and mixed number 

operands, but would use the correct strategy more often on multiplication problems when one 

operand is a whole number.  

Method 

Problems. The enVisionMATH learning set used in Studies 1 and 2 was also used as the 

learning set in Study 3. Table 5 indicates the frequencies in the learning set of problems 

classified in the way relevant to Study 3. 

 The 40 test set problems included the 16 fraction test items from Study 1 and, for each of 

the four arithmetic operations, two problems with a mixed number and a fraction with equal 

denominators, two problems with a mixed number and a fraction with unequal denominators, 

and two problems with a fraction and a whole number. For example, the equal denominator 
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addition problems with a mixed number and a fraction were 2 3/5+1/5 and 3 4/5+3/5; the 

unequal denominator addition problems with a mixed number and a fraction were 2 3/5+1/4 and 

3 1/3+3/5; and the addition problems with a whole number and a fraction were 2+1/4 and 3+1/5. 

The subtraction, multiplication, and division problems involved the same pairs of operands as the 

addition problems.  

Procedure. As in Studies 1 and 2, 1,000 simulated participants were created, run on the 

learning set with feedback on each item, and run on the test set with no feedback. FARRA first 

encoded the relevant features (types of operands, denominator equality, and arithmetic 

operation). Then the model converted whole number operands to fractions with a denominator of 

1 (e.g., 3 became 3/1), and converted mixed number operands to improper fractions with 

denominators equal to those of their fractional part (e.g., 2 3/5 became 13/5).  

Results and Discussion 

 For addition and subtraction problems, FARRA used the Add/Sub strategy more often 

when both operands were fractions or mixed numbers than when one operand was a whole 

number. For multiplication problems, FARRA used the Mult strategy more often when one 

operand was a whole number than when both operands were fractions or mixed numbers (Figure 

5). These were the patterns predicted from the frequencies of problem presentation in the 

textbook series. The prediction that children will show the same pattern remains to be tested. 

====================== Figure 5 about here ====================== 

Study 4: Effects of Differentiated Feedback on Strategy Learning 

 Simulation models allow tests of whether intuitions about the workings of learning 

mechanisms are correct. In Study 4, FARRA provided such a test of the way in which the timing 
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of feedback affects mathematics learning, as well as a test of the usefulness of the theoretical 

distinction between strategy errors and execution errors. 

FARRA’s learning algorithm relies on a single feedback signal (correct or incorrect) 

received at the end of each problem-solving episode. This corresponds to the usual situation in 

classrooms and homework assignments. However, the model’s inability to differentially assign 

credit to different steps in a problem-solving episode might inhibit learning in at least two ways. 

 First, execution errors can reduce reinforcement of correct strategies. For example, for an 

unequal denominator addition or subtraction problem, FARRA can correctly select the Add/Sub 

strategy, but execute it incorrectly by not revising the numerators when converting to a common 

denominator. Similarly, for a division problem, FARRA can correctly select the Div strategy, but 

execute it incorrectly by inverting the wrong operand. In both cases, the strategy choice was 

correct, but it would not receive strong reinforcement because the answer was wrong. 

 Execution errors also can lead to reinforcement of incorrect strategies. For example, on a 

multiplication problem, FARRA can select the Op-deleted Add/Sub strategy, and also execute 

this strategy incorrectly by committing the same error as in the addition example above. These 

two errors offset each other, yielding a correct answer, as in 

3/5×1/4=(3/(5×4)×1/(4×5)=3/20×1/20=(3×1)/20=3/20. The incorrect strategy choice would be 

reinforced as if it were correct, because the final answer is correct. 

 These considerations suggest that FARRA would learn more effectively if provided 

differentiated feedback, that is, separate feedback on strategy selection and execution. In Study 4, 

we tested this prediction by running five simulations. In the control simulation, no differentiated 

feedback was provided. In the other four simulations, differentiated feedback was provided for 

one of four problem categories: addition/subtraction with equal denominators, 
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addition/subtraction with unequal denominators, multiplication, or division. Differentiated 

feedback was expected to improve test performance for the problems in which the differentiated 

feedback was given, relative to performance on that category in the control simulation. 

Method 

Problems. To afford an unbiased comparison between simulations, the enVisionMATH 

learning set used in Studies 1-3 was modified to eliminate frequency and primacy effects 

favoring addition and subtraction. Frequency effects were eliminated by equalizing the 

frequencies in the learning set of the four aforementioned problem categories. The most frequent 

problem category in the textbooks, addition/subtraction with equal denominators, included 218 

problems. We therefore added items to the other three categories of problems by randomly 

selecting existing problems from the set and duplicating them until the total number of problems 

in each category equaled 218. Primacy effects were eliminated by randomizing problem order 

separately for each simulated participant. The test set was always the same as in Study 1. 

Procedure. Simulated participants were run on the learning set and then on the test set 

problems. This was done as in Studies 1-3, except as noted below.  

Simulations were run under five conditions. In the control condition, 1,000 simulated 

participants received standard undifferentiated feedback for all training trials. In each of the other 

four conditions, 1,000 simulated participants received differentiated feedback on the problems in 

the designated category (addition/subtraction with equal denominators, addition/subtraction with 

unequal denominators, multiplication, or division) and standard feedback on the other types of 

problems. For example, in the differentiated multiplication condition, differentiated feedback 

was provided on multiplication items but not on the other three types of problems. 
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 When receiving undifferentiated feedback, the model adjusted its associative weights for 

both strategy and execution rules after completing each training problem. Correctness of the final 

answer determined the amount of adjustment of both. In contrast, differentiated feedback 

involved two rounds of adjustments. The first round was presented immediately after the model 

selected a strategy; this information led to the model adjusting the associative weights for the 

strategy it selected according to its appropriateness for that problem. Then, regardless of which 

strategy had been selected, goals corresponding to those of the correct strategy were assigned, 

and the model continued to run. After generating an answer, the model adjusted the associative 

weights for all execution rules that had been used, with the amount of adjustment determined by 

the correctness of the final answer.  

Results and Discussion 

 Because our predictions concerned effects of differentiated feedback on strategy use, our 

analysis focused on the proportion of test trials on which the model employed the standard 

correct strategy for each problem category. Relative to the control condition, differentiated 

feedback yielded increased use of standard correct strategies for three of the four categories: 

addition/subtraction with unequal denominators, multiplication, and division (Table 11). The 

improvement was largest for division: use of the correct Div strategy on division problems 

increased from 44% in the control condition to 62% when differentiated feedback was provided. 

The greater effect on division was expected, due to its greater opportunities for execution errors, 

which would lead to correct strategy choices not being reinforced in the standard condition.  

====================== Table 11 about here ====================== 

 Addition/subtraction with equal denominators deviated from the general pattern in that 

differentiated feedback on such problems yielded no improvement in accuracy relative to the 
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control condition (the 1% difference in Table 11 appeared due to random variation among 

simulation runs). For such problems, the feedback presented to FARRA was always identical in 

differentiated and undifferentiated conditions, because there were no execution mal-rules for 

them. Under the other conditions, however, differentiated feedback led to greater learning. 

Results of Experiment 4 thus illustrated the potential instructional usefulness of distinguishing 

between strategy errors and execution errors and providing separate feedback on them. 

 An important caveat is that differentiated feedback on a given problem type not only 

increased correct strategy use on that problem type, but also decreased correct strategy use on 

other problem types. For example, relative to the control condition, differentiated feedback on 

unequal denominator addition and subtraction led to 4% less correct strategy use on 

multiplication problems (47% vs. 43%) and 2% less correct strategy use on division problems 

(44% vs. 42%). The reason is that, as noted earlier, conditions that increase reinforcement of a 

given strategy in FARRA tend to increase not only correct use but also overgeneralization of that 

strategy. Nevertheless, each differentiated feedback condition led to an increase in correct 

strategy usage across all problem types (Table 12), suggesting that the positive effects of 

differentiated feedback outweigh its potential negative effects. 

Study 5: Effects of Input Set Characteristics on Learning 

In Study 5, we varied three characteristics of the simulation to examine their effects on 

FARRA's learning. First, the number of learning set problems was varied, to test if providing 

more practice would increase learning. Second, the distribution of different types of learning set 

problems was balanced, to test whether providing a greater proportion of difficult problems 

would improve learning. Third, adjustments to associative strengths following incorrect answers 

were varied, to test whether reducing, rather than slightly increasing, the strengths of rules 
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following incorrect performance would improve learning. The effects of all combinations of 

these three variables on FARRA’s performance were examined. 

Method 

Problems. Four learning sets were created by modifying the enVisionMATH learning set 

used in Studies 1-4. The four sets represented the possible combinations of number of problems 

(659 or 2400) and distribution of problems (textbook or balanced). Sets with 659 problems and 

the textbook distribution included the same items as the original enVisionMATH learning set. 

Sets with 2400 problems and the textbook distribution were created by randomly duplicating 

problems of each type in the enVisionMATH learning set to increase the total number to 2400 

while maintaining the proportion of problems belonging to each combination of arithmetic 

operation and denominator equality/inequality. Sets with a balanced distribution of problems 

were created by randomly duplicating problems to equalize the proportions belonging to each 

combination of operation and denominator equality/inequality, either maintaining the total 

number of problems at 659 or increasing the number to 2400. Within these constraints, a unique 

learning set was generated for each simulated participant.  

Procedure. One thousand simulated participants were run in each of eight conditions, 

representing all combinations of the four types of learning set described in the previous 

paragraph with two types of reinforcement: positive only or positive and negative. In the positive 

reinforcement only conditions, the error discount parameter had the same values as in Studies 1-

4. In the positive and negative reinforcement conditions, incorrect answers during the learning 

set led to decrements in associative weights involving the rules that fired on the trial. Amount of 

decrement following incorrect answers was arbitrarily set at half the amount of the increment 

following a correct answer. In all other respects, the procedure was the same as in Studies 1-4. 
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Results and Discussion 

Each of the three modifications to FARRA’s training led to improved accuracy on the test 

problems (Figure 6). Averaged over the other variables, accuracy improved from 55% when 

there were 659 problems in the learning set to 68% when there were 2400 such problems, from 

60% when the learning set had its original distribution to 63% when it had a balanced 

distribution, and from 55% when only positive reinforcement was allowed to 68% when both 

positive and negative reinforcement were allowed. The simulation was most accurate, 80% 

correct, when all three improvements were implemented simultaneously.  

====================== Figure 6 about here ====================== 

General Discussion 

In this concluding section, we discuss implications of our findings for learning of fraction 

arithmetic, for learning of other aspects of mathematics, and for real world learning in general. 

Implications for Fraction Arithmetic Learning.  

The role of input problems. Perhaps the most striking findings to emerge from the 

present research concern the distribution of fraction arithmetic problems in textbooks, the effects 

of this distribution on FARRA’s learning, and its apparent importance in children’s learning. 

Sets of training problems drawn from three widely adopted textbook series included very few 

equal denominator multiplication or division problems over the period in which fraction 

arithmetic is primarily taught, fourth, fifth, and sixth grades. In contrast, addition and subtraction 

problems with equal denominators were very common.  

FARRA's performance and the closely similar performance of middle school students 

suggest that the lack of equal denominator multiplication problems hampers children’s learning. 

The higher frequency of equal denominator addition and subtraction problems relative to equal 
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denominator multiplication problems caused FARRA to make specific types of 

overgeneralization errors, in which standard rules for solving addition and subtraction problems 

with equal denominators were overgeneralized to multiplication, leading to frequent errors of the 

form 3/5×4/5=12/5. These simulation results explain previous findings with children that equal 

denominator multiplication problems are more difficult than unequal denominator ones, a 

surprising finding given that the standard multiplication algorithm is identical for equal and 

unequal denominator problems (Gabriel et al., 2013; Newton, 2008; Newton et al., 2014; Siegler 

& Pyke, 2013; Siegler et al., 2011). Presentation of such imbalanced sets of practice problems in 

textbooks seems like an unforced error, one that could be corrected easily by increasing the 

number of equal denominator multiplication and division problems. 

Other aspects of the distribution of textbook problems also appeared to influence fraction 

arithmetic learning. There were more addition and subtraction problems with equal than with 

unequal denominators, despite it being inherently more difficult to correctly execute appropriate 

strategies on addition and subtraction problems with unequal denominators. The difficulty is 

likely exacerbated by textbooks presenting unequal-denominator problems more often for 

multiplication than for addition or subtraction. This imbalance leads FARRA to overgeneralize 

the multiplication rule to addition and subtraction problems with unequal denominators. Children 

do the same, probably for the same reason. 

A similar argument applies to division problems. The model-based analysis indicated that 

correctly executing appropriate strategies on division problems is inherently more difficult than 

doing so on multiplication problems. Again, the distribution of problems seems to exacerbate 

this difficulty, in that children and the model encounter relatively few division problems. 
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These results did not appear to be due to any idiosyncrasy of the particular textbook 

series from which the learning set problems were drawn. The three textbook series that we 

examined had highly similar distributional patterns. Less detailed prior analyses of two textbook 

series, Saxon Math and Everyday Mathematics, also revealed that division problems were less 

frequent than multiplication problems in them, though those analyses did not examine 

denominator equality and thus did not reveal the striking interaction between arithmetic 

operation and denominator equality that was documented here (Lortie-Forgues et al., 2015; Son 

& Senk, 2010). Interestingly, an analysis of a textbook series from Korea, a country with very 

high math achievement, showed the opposite pattern: considerably more fraction division than 

fraction multiplication problems (Son & Senk, 2010). Given the inherent difficulty of correctly 

executing the standard correct division algorithm, the more frequent presentation of division 

problems in the Korean textbook makes sense. 

We recognize that assessing textbook problems is an imperfect means for assessing the 

input that children receive. Most teachers do not present all problems in a textbook, different 

teachers use different textbooks, and many teachers present problems from sources other than 

textbooks, such as websites. However, the distribution of problems drawn from enVisionMATH 

and GO MATH! seemed to provide a reasonable approximation to the problems that children 

receive, especially given the similarity of the distribution to that in the other textbook series we 

examined, Everyday Mathematics. The assessment of textbook input proved very useful in 

accounting for numerous aspects of children’s performance, which again suggests that the 

textbook problems were a reasonable approximation to the problems children receive. This 

conclusion dovetails with results of a recent study that successfully predicted aspects of 
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children’s conceptual understanding of rational numbers based on properties of rational number 

story problems found in textbooks (Rapp, Dewolf, & Holyoak, 2014). 

The role of overgeneralization. Another contribution of the present study to 

understanding why fraction arithmetic is so difficult was to provide a parsimonious account for a 

wide range of fraction arithmetic errors. In FARRA, a single error-generating mechanism – 

overgeneralization – accounted for most errors. Other theoretical accounts have provided 

specialized explanations for some of these errors. Most prominently, independent whole number 

errors, such as 3/5+1/4=(3+1)/(5+4)=4/9, have been attributed to “whole number bias” – a 

tendency to view a fraction as two separate numbers (numerator and denominator) rather than as 

a single number (e.g., Gabriel et al., 2013; Gelman, 1991; Ni & Zhou, 2005).  

 However, whole number bias does not predict or explain wrong fraction operation errors, 

which involve overgeneralization of strategies that are appropriate for fraction operations other 

than the one in the problem. Such errors appear to be at least as common as independent whole 

numbers errors (Bailey et al., 2015; Ni & Zhou, 2005; Siegler & Pyke, 2013). In FARRA, 

overgeneralization accounts for both types of errors, and thus appears to be a more powerful 

explanation of fraction arithmetic errors than whole number bias. This does not imply that whole 

number bias does not exist or that it does not lead to errors. Rather, lack of conceptual 

understanding of fraction arithmetic appears to open the door to overgeneralizations, which 

generate both independent whole number errors and wrong fraction operation errors. 

 A practical implication of our emphasis on overgeneralization as a source of fraction 

arithmetic errors is that children should receive explicit instruction and practice in selecting 

which solution strategy to use on the eight types of fraction arithmetic problems identified here 

(four operations with equal and unequal denominators). As the results of Study 4 suggest, the 
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difficulty of correctly executing fraction arithmetic strategies complicates children's task of 

learning which strategy to use. Children likely would benefit from practicing fraction arithmetic 

strategy selection alone, without the added burden of correctly executing the strategies.  

 A related instructional approach would be to present fraction arithmetic problems 

involving different operations in interleaved sequences after operations have been introduced 

separately. Mathematics textbooks in the United States typically present problems involving 

arithmetic operations in separate blocks (e.g. Charles et al., 2012; Dixon et al., 2012). Blocked 

study promotes development of fluency in the execution of each strategy, but not skill in 

selecting which strategy to use. Such blocked presentation of each operation in textbooks is a 

likely contributor to the high frequency of overgeneralizations of strategies to fraction arithmetic 

operations to which they do not apply. The most common strategy mal-rules in FARRA were all 

of the same form – identical to correct rules except for not specifying the operation.  

This analysis points to a previously unsuspected source of difficulty in fraction arithmetic 

learning. Children might learn to ignore the operation in the usual blocked presentation of 

fraction arithmetic problems because, after the first problem in a set, seeing the operation is 

uninformative. Even before that first problem in the set, children might not attend to the 

operation if they know that they are in (e.g.) a multiplication unit.  

By contrast, once a given fraction arithmetic procedure has been learned, interleaving 

problems involving different arithmetic operations with equal and unequal denominators would 

encourage children to identify the conditions under which each strategy is appropriate and thus to 

reduce overgeneralization. Consistent with this conclusion, interleaved practice has been found 

to lead to improved learning in fraction arithmetic (Patel, Liu, & Koedinger, 2016) and other 

areas of mathematics (Rohrer & Taylor, 2007; Taylor & Rohrer, 2010). 
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The role of conceptual knowledge. Many investigators have cited lack of conceptual 

knowledge as a key difficulty in learning fraction arithmetic (e.g., Byrnes & Wasik, 1991; 

Fischbein, Deri, Nello, & Marino, 1985; Gelman, 1991; Lortie-Forgues et al., 2015). Children’s 

frequent implausible errors, such as claiming that 1/2+1/2=2/4, reflect this lack of conceptual 

understanding, or at least lack of application of whatever conceptual knowledge children have to 

solving fraction arithmetic problems. Such lack of conceptual knowledge is implicit in FARRA, 

insofar as the model does not constrain fraction arithmetic strategy choices but instead relies on 

trial and error to learn which procedures to use under which circumstances—a slow and 

imperfect process. FARRA’s success in simulating children’s performance suggests that many 

children do the same.  

 A question raised by the model is how some children are able to master fraction 

arithmetic procedures without huge numbers of practice problems. Even with very large input 

sets, balanced presentation of different types of problems, and negative reinforcement in 

response to incorrect answers, FARRA only generated 80% correct answers. One possibility is 

that the learning of students who master fraction arithmetic to very high levels is constrained by 

their conceptual understanding of the operations. Conceptual knowledge of fraction arithmetic 

procedures includes knowing the rationales and principles underlying the procedures (Crooks & 

Alibali, 2014; Prather & Alibali, 2008), which could allow children to check their solutions for 

plausibility and reject procedures that yield implausible answers, such as the previously 

mentioned 1/2+1/2=2/4. Examining learning processes of children who do master fraction 

arithmetic seems a valuable focus for future research. 
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General Implications for Mathematics Learning 

 FARRA's explanatory power comes largely from domain-general mechanisms operating 

on domain-specific input to the model. In particular, FARRA’s reinforcement learning 

mechanism, together with the biased distribution of fraction arithmetic problems found in the 

textbooks and therefore in FARRA's learning set, allowed the model to generate performance 

much like that of children. 

The same pattern of general learning mechanisms operating on biased input to produce 

non-intuitive aspects of performance may also explain other aspects of mathematics learning. 

One illustration comes from a study of preschoolers’ addition, in which parents of preschoolers 

were asked to present addition problems to their children as they would at home (Siegler & 

Shrager, 1984). The distribution of problems that parents presented paralleled several aspects of 

preschoolers’ performance that were otherwise difficult to explain. Especially striking, parents 

presented “+1” problems (e.g., 4+1) far more often than “1+” problems (e.g., 1+4), and children 

were much more accurate on +1 than on 1+ problems. Neither pattern reflected children 

counting-on from the larger addend; none of the preschoolers in the study used that strategy. 

Similarly, parents presented tie problems (e.g., 2+2) much more often than non-tie problems, and 

their children were much more accurate on tie than on non-tie problems. 

A study of second graders’ learning of whole number multiplication (Siegler, 1988) 

yielded similar findings. Both of the textbooks that were examined presented tie problems more 

often than non-tie problems, and children displayed superior performance on tie problems. 

Inclusion of frequency of problems in textbooks in a computer simulation of multiplication 

learning allowed the simulation to capture this phenomenon.  
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 A related implication of FARRA for mathematics learning in general is that when 

statistical associations exist between problem features and solution strategies, children use the 

features as cues for strategy selection even when the features are formally irrelevant. This 

implication dovetails with previous empirical findings regarding people’s reliance on formally 

irrelevant features to guide problem solving in other mathematical domains (Braithwaite & 

Goldstone, 2015; Braithwaite, Goldstone, van der Maas, & Landy, 2016; Chang, Koedinger, & 

Lovett, 2003; Landy & Goldstone, 2010). For example, university students who were trained to 

compare algebraic fractions using two distinct procedures subsequently used each procedure 

more often on problems similar to those with which the procedure had been paired during 

training, even though both procedures were valid for all problems (Ben-Zeev & Star, 2001). 

These studies, like the present one, suggest that attention to statistical properties of 

problem sets should be an important element in designing mathematics curricula. Spurious 

correlations in problem sets can bias strategy selection in unfortunate directions. Instructional 

designers should avoid building such spurious correlations into textbooks and other materials and 

should provide students greater experience with problems that have been found to elicit 

inaccurate performance.  

A third general implication for mathematics learning concerns relations between strategy 

selection and strategy execution. In FARRA, strategies whose correct execution is difficult 

receive less reinforcement during learning, and therefore are less likely to be selected 

subsequently, compared to strategies that are easy to execute correctly. This observation suggests 

that instruction that increases learners’ ability to execute correctly the component steps of a 

correct procedure should make them not only more likely to obtain correct results when they use 

that procedure but also more likely to choose the procedure over other alternatives.  
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Implications for Learning in General 

It would be difficult to find a theory of learning that did not predict that learning is 

shaped by the frequency of experiences.  Despite this broad recognition of the importance of 

input, most cognitive research proceeds without assessment of the problem environment. There 

are of course exceptions, but only a small minority of studies assess input in the domain being 

examined. This is understandable, because in many domains, the relevant input is unknown or 

difficult to assess. However, the importance of the specifics of input in the present research, and 

its value for understanding other domains in which it has been assessed, suggest that our grasp of 

real-world learning and cognition would benefit from assessing input when possible. 

One well-known example of the benefits that can be gained by assessing input involves 

language development. Hart and Risley (1995, 2003) conducted monthly, hour-long observations 

of family interactions in homes of varied socio-economic status from the time children were 7-

month-olds to the time they were 3-year-olds. They found that children from professional 

families heard more than 2100 words per hour, whereas those from families on welfare heard 

only 600 words per hour. Children’s vocabularies showed large differences that paralleled these 

differences in linguistic input, and individual differences in vocabulary at age three were strongly 

predictive of vocabulary differences at age nine. Hearing relatively rare words at mealtimes has 

been found to be especially predictive of children’s later vocabulary (Snow & Beals, 2006).  

Technology has made possible assessment of some environments that previously were 

impossible to assess. One example involves head mounted cameras (head cams), which have 

been used to assess infants’ visual environments, that is, the objects in the environment at which 

infants look. These studies have revealed non-intuitive findings such as that infants look at 

obstacles in their paths more often when crawling than when walking (Kretch, Franchak, & 
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Adolph, 2014), that the first two years of life see a shift in visual input from dense face input to 

dense hand input (Fausey, Jayaraman, & Smith, 2016), and that infants see people acting as 

causal agents three times as often as they see them engaging in self-propelled motion (Cicchino, 

Aslin, & Rakison, 2011). None of these findings were self-evident; for example, beginning 

walkers might have been expected to look at obstacles more often than crawlers do, because 

stepping on obstacles when walking produces harder falls.  

Assessments of broader environments have also proved useful in predicting concurrent 

and subsequent intellectual outcomes. The HOME (Home Observation for Measurement of the 

Environment; Bradley, 1994) examines numerous aspects of early environments, including 

whether children have books of their own, whether mothers frequently read stories to their 

children, and whether children have play equipment appropriate for their age. HOME scores of 

2-year-olds have been found to predict IQ and school achievement of the children at age 11 years 

(Olson, Bates, & Kaskie, 1992). When HOME scores are relatively stable over time, IQ scores 

also tend to be stable; when HOME scores change substantially, IQ scores tend to change in the 

same direction (Bradley, 1989). Influences of the home environment tend to be especially large 

for children from low-income families (Tucker-Drob et al., 2011; Turkheimer et al., 2003).  

Environmental assessments can reveal surprising commonalities across different topics. 

Consider, for example, the previously mentioned areas of mathematics where inputs on specific 

problems were examined: preschoolers’ whole number addition, elementary school students’ 

whole number multiplication, and elementary and middle-school students’ fraction arithmetic 

with all four operations. In all cases, input was disproportionately frequent on the most 

accurately performed problems: +1 and tie problems in preschoolers’ addition, tie problems in 

elementary school students' multiplication, and equal denominator addition and subtraction 
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problems and unequal number multiplication problems in middle school students' fraction 

arithmetic.  

Two non-mutually-exclusive explanations seem plausible. One is the causal explanation: 

children might do well on frequently presented problems precisely because they are frequently 

presented. The other account might be labeled the self-medication explanation: parents and 

textbooks might disproportionately present easy problems so that children feel good about 

themselves; so that teachers feel good about themselves and their students; so that parents feel 

good about their children, the children’s teachers, and their schools; and so that decision makers 

in school districts feel good about their teachers and their textbook adoption choices. Whatever 

the reason, creating instructional materials that provide substantial experience with challenging 

as well as less challenging problems holds promise for improving learning in many areas.  

Methodological Implications 

 Newell (1973) advocated as an experimental strategy “to accept a single complex task 

and do all of it.” Doing so, he argued, would force researchers to generate mutually compatible 

explanations for many phenomena – the various phenomena associated with the task – rather 

than studying each phenomenon in isolation from the others.  

 FARRA represents an attempt to apply this recommendation to the complex task of 

fraction arithmetic. Accounting for a wide range of fraction arithmetic phenomena required us to 

specify numerous cognitive mechanisms, including knowledge representation, problem 

representation, reinforcement learning, strategy selection, and generalization. Further, our 

assumptions about each of these mechanisms were constrained by our assumptions about the 

others. This approach, we believe, led to a more credible theory – and one of broader relevance – 

than would have been achieved by focusing on a more limited task, such as fraction addition 



COMPUTATIONAL MODEL OF FRACTION ARITHMETIC  54 

alone, or on a single phenomenon, such as whole number bias errors. The present study thus 

points to the utility of providing a unified account of multiple, apparently disparate phenomena 

within the context of a complex task. 

Conclusions 

FARRA is a formal theoretical account of fraction arithmetic learning that explains many 

aspects of children’s performance. It demonstrated that a small number of domain-general 

learning mechanisms, operating on the distribution of input problems in textbooks, can explain a 

wide range of phenomena in fraction arithmetic. The model also yielded novel predictions 

regarding student performance on specific categories of problems and regarding the effectiveness 

of potential instructional interventions. It also yielded implications regarding learning of fraction 

arithmetic, of mathematics more broadly, and of learning in general. Research is needed to test 

these predictions and implications and to examine in a variety of domains the explanatory power 

of models that combine domain-general learning mechanisms with empirically assessed, domain-

specific input. 
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Endnotes 

1. Errors involving the Cross-Multiply strategy (rule 9, Table 2) are an exception. These errors 

result from overgeneralization of a procedure for fraction comparison, rather for fraction 

arithmetic, and thus do not meet the definition of wrong fraction operation errors. 

2. An exception is that the correct strategy for subtraction with equal denominators can be 

executed incorrectly in cases where the correct answer would be a negative number. In these 

cases, the model can reverse the order of operands in order to guarantee a positive number as the 

answer (Supplemental Materials, Part A, Table A2, rule 33), yielding errors such as 1/5–3/5=(3–

1)/5=2/5 instead of -2/5. However, no problems whose correct answers were negative numbers 

were included in any simulation in the present study. 
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Figure Captions 

 

Figure 1. Percent correct by arithmetic operation and dataset (Study 1). “Children” denotes data 

from Siegler and Pyke (2013). Here and throughout, error bars indicate standard errors. 

 

Figure 2. Percent correct by arithmetic operation and denominator equality (Study 1). (A) 

Children’s data from Siegler and Pyke (2013), (B) Simulation data. Here and throughout, 

“denoms” denotes “denominators.” 

 

Figure 3. Percent correct by arithmetic operation and dataset (Study 2). “Children” denotes data 

from Siegler et al. (2011). 

 

Figure 4. Percent correct by arithmetic operation and denominator equality (Study 2). (A) 

Children’s data from Siegler et al. (2011), (B) Simulation data generated with enVisionMATH 

learning set, (C) Simulation data generated with GO MATH! learning set. 

 

Figure 5. Percent of test trials on which the simulation used the standard correct strategy on each 

arithmetic operation and operand type (Study 3). 

 

Figure 6. Percent correct by number and distribution of problems in the learning set (Study 5). 

Number of problems is indicated by “N=659” or “N=2400.” (A) Positive only reinforcement. (B) 

Positive and negative reinforcement. 

 



 

Table 1. Major empirical phenomena of fraction arithmetic. 

Number Phenomenon 

1 Low overall accuracy 

2 Especially low accuracy on division problems 

3 Variable responses within individual problems 

4 Variable strategy use by individual children 

5 Greater frequency of strategy errors than execution errors 

6 The most common strategy errors are wrong fraction operation errors  

and independent whole numbers errors 

7 

 

8 

Equal denominators increase addition and subtraction accuracy but decrease 

multiplication accuracy  

The most frequent type of error on each operation varies with denominator equality 

 

Table



 

Table 2. FARRA’s strategy rules. Mal-rules are marked with *. In all strategy rules, the condition includes the goal of finding the 

answer; we omitted this feature below for purposes of brevity. 

Rule Strategy Name Condition Action 

1 Correct Add/Sub Operation is + or – 

and denominators of 

operands are equal 

Create goals to set denominator of answer equal to common denominator, and 

set numerator of answer equal to result of performing given operation on 

numerators 

2 Correct Add/Sub Operation is + or – 

and denominators of 

operands are unequal 

Create goals to convert operands to a common denominator, then set 

denominator of answer equal to common denominator, and set numerator of 

answer equal to result of performing given operation on numerators 

3 Correct Mult Operation is × Create goals to set denominator and numerator of answer equal to results of 

performing given operation on operand denominators and numerators 

respectively 

4 Correct Div Operation is ÷ Create goal to execute Div strategy (see Table 3, Rule 15) 

5* Op-deleted 

Add/Sub 

Operand 

denominators are 

equal 

Same as Rule 1 

6* Op-deleted 

Add/Sub 

Operand 

denominators are 

unequal 

Same as Rule 2 

7* Op-deleted Mult None Same as Rule 3 

8* Op-deleted Div None Same as Rule 4 

9* Cross-Multiply Operation is × Create goals to set numerator and denominator of answer equal to results of 

performing given operation on operand numerators and denominators cross-wise 

  

Table



Table 3. FARRA’s main execution rules (for a complete list, see Supplementary Materials, Part A). Mal-rules are marked with *. 

Rule Rule Name Condition Action 

10 Operate-Numerators Goal exists to set answer numerator to result of 

performing given operation on numerators 

Create goal to solve appropriate whole number 

arithmetic problem 

11 Operate-Denominators Goal exists to set answer denominator to result of 

performing given operation on denominators 

Create goal to solve appropriate whole number 

arithmetic problem 

12 Maintain-Common-

Denominator 

Goal exists to set answer denominator to common 

denominator of operands 

Set answer denominator equal to common denominator 

of operands 

13 Convert-Common-Denom-

By-LCD 

Goal exists to convert operands to common 

denominator 

Create goals to convert both operands using the LCD 

procedure 

14 Convert-Common-Denom-

By-Mult-Denoms 

Goal exists to convert operands to common 

denominator 

Create goals to multiply numerator and denominator of 

each operand by denominator of other operand 

15 Execute-Invert-Operate Goal exists to execute Div strategy Create goals to invert 2nd operand, change ÷ (if 

present) to ×, then set answer denominator and 

numerator to results of performing given operation on 

operand denominators and numerators respectively 

16* Convert-Denoms-Only-

By-Mult-Denoms 

Goal exists to convert operands to common 

denominator 

Create goals to multiply the denominator of each 

operand by the denominator of the other operand 

17* Execute-Invert-Operate-

Forget-Invert 

Goal exists to execute Div strategy Create goals to change ÷ (if present) to ×, then set 

answer denominator and numerator to results of 

performing given operation on operand denominators 

and numerators respectively 

18* Execute-Invert-Operate-

Random-Invert 

Goal exists to execute Div strategy Create goals to invert one operand, change ÷ (if 

present) to ×, then set answer denominator and 

numerator to results of performing given operation on 

operand denominators and numerators respectively 

 

Table



 

Table 4. Percent of problems belonging to each combination of arithmetic operation and equality 

of denominators of operands in the enVisionMATH, GO MATH!, and Everyday Mathematics 

problem sets (problem counts are given in the Supplemental Materials, Part B). Cells with 

exceptionally low values are bolded. Here and throughout, “add” refers to “addition,” “sub” to 

“subtraction,” “mult” to “multiplication,” and “div” to “division.” 

 Arithmetic Operation 

 Add Sub Mult Div 

 enVisionMATH 

Equal denominators 17 16 1 2 

Unequal denominators 11 12 24 17 

 GO MATH! 

Equal denominators 8 10 1 1 

Unequal denominators 12 14 33 21 

 Everyday Mathematics 

Equal denominators 11 13 0 2 

Unequal denominators 18 8 30 19 

 

Table



 

Table 5. Percent of problems belonging to each combination of operand type and arithmetic 

operation in the enVisionMATH, GO MATH!, and Everyday Mathematics problem sets 

(problem counts are given in the Supplemental Materials, Part B). Cells with exceptionally low 

values are bolded. 

 Arithmetic Operation 

Type of Operands Add Sub Mult Div 

 enVisionMATH 

Two fractions, two mixed 

numbers, or a fraction and 

a mixed number 

28 27 10 7 

A whole number and a 

fraction, or a whole and a 

mixed number 
0 1 14 11 

 GO MATH! 

Two fractions, two mixed 

numbers, or a fraction and 

a mixed number 

20 22 13 6 

A whole number and a 

fraction, or a whole and a 

mixed number 
0 2 21 15 

 Everyday Mathematics 

Two fractions, two mixed 

numbers, or a fraction and 

a mixed number 

29 19 16 11 

A whole number and a 

fraction, or a whole and a 

mixed number 
0 2 14 9 

 

Table



 

Table 6. The most common answers on four fraction arithmetic problems in children’s data from 

Siegler and Pyke (2013) and the simulation data (Study 1). For each problem, all answers that 

were advanced on more than 2.0% of trials in the children’s data, the simulated data, or both are 

shown. Answers are ordered by decreasing frequency in the children’s data. Correct answers are 

bolded. 

  Frequency (% of responses) 

Problem Answer Children Simulation 

2/3+3/5 

19/15 50.8 43.1 

5/8 23.3 34.3 

5/15 5.0 12.0 

1/3 2.5 0.6 

6/7 1.7 2.6 

7/6 0.0 7.4 

3/5–1/4 

7/20 54.2 45.0 

2 or 2/1 20.0 30.8 

2/5 3.3 0.0 

1/10 2.5 0.9 

2/20 2.5 10.9 

1/4 1.7 4.9 

-1/4 0.0 5.4 

4/5×3/5 

12/25 40.0 38.7 

12/5 36.7 40.9 

15/20 4.2 5.5 

20/15 3.3 9.6 

3/5÷1/5 

3/5 37.5 48.5 

3 or 3/1 28.3 21.3 

15/5 7.5 15.1 

1/5 5.0 0.0 

5/15 3.3 5.5 

1/3 2.5 0.8 

3/25 2.5 9.1 

  

Table



  

Table 7. Percent of trials on which different types of errors occurred, by arithmetic operation and 

dataset (Study 1). “Children” denotes data from Siegler and Pyke (2013). 

  Children  Simulation 

 Error Type Add/Sub Mult Div  Add/Sub Mult Div 

Execution error 8 3 19  6 0 16 

Strategy error 25 50 57  31 49 53 

    Add/Sub strategy - 33 33  - 29 40 

    Mult strategy 20 - 12  17 - 13 

    Div strategy/Cross-Multiply 2 9 -  13 20 - 

    Other/None 2 7 12  - - - 

  

Table



  

Table 8. Percent of trials on which different types of strategy errors occurred, by arithmetic 

operation, equality or inequality of denominators, and dataset (Study 1). “Children” denotes data 

from Siegler and Pyke (2013). 

 Add/Sub Mult Div 

 Equal 

denoms 

Unequal 

denoms 

Equal 

denoms 

Unequal 

denoms 

Equal 

denoms 

Unequal 

denoms 

 Children 

Add/sub strategy - - 41 25 40 26 

Mult strategy 14 26 - - 10 15 

Div strategy/Cross-Multiply 2 2 8 10 - - 

Other/None 1 4 8 6 8 15 

 Simulation 

Add/sub strategy - - 40 18 49 31 

Mult strategy 10 24 - - 4 22 

Div strategy/Cross-Multiply 9 18 19 20 - - 

Other/None - - - - - - 

  

Table



 

Table 9. The most common answers on four fraction arithmetic problems in children’s data from 

Siegler et al. (2011) and the enVisionMATH and GO MATH! simulations (Study 2). For each 

problem, all answers that were advanced on more than 2.0% of trials in the children’s data or 

either simulation are shown. Answers are ordered by decreasing frequency in the children’s data. 

Correct answers are bolded. 

  Frequency (% of responses) 

Problem Answer Children 

enVisionMATH 

Simulation 

GO MATH! 

Simulation 

3/5+1/2 

4/7 41.7 33.6 31.9 

11/10 37.5 42.9 47.6 

4/10 4.2 11.2 11.6 

6/5 2.1 3.2 2.0 

1/2 2.1 0.0 0.0 

11/12 2.1 0.0 0.0 

19/10 2.1 0.0 0.0 

2/3 2.1 0.0 0.0 

4/6 2.1 0.0 0.0 

4/8 2.1 0.0 0.0 

5/5 2.1 0.0 0.0 

5/6 0.0 7.4 5.7 

3/5–1/2 

2/3 43.8 30.4 29.3 

1/10 41.7 45.6 50.7 

2/10 4.2 11.1 10.3 

1/4 2.1 9.0 7.0 

4 or 4/1 2.1 3.2 1.9 

4/3 4.2 0.0 0.0 

4/4 2.1 0.0 0.0 

3/5×2/5 

6/25 52.1 40.3 58.4 

6/5 16.7 39.7 25.3 

6/10 10.4 0.0 0.0 

2/3 4.2 1.1 0.7 

1/2 4.2 0.0 0.0 

Table



 

10/15 2.1 6.9 7.1 

10/20 2.1 0.0 0.0 

150/25 2.1 0.0 0.0 

5/10 2.1 0.0 0.0 

5/25 2.1 0.0 0.0 

5/5 2.1 0.0 0.0 

15/10 0.0 11.0 7.2 

3/5÷2/5 

1/5 22.9 23.7 20.1 

1/1 20.8 9.1 10.6 

3/2 16.7 1.6 1.6 

15/10 8.3 16.5 16.9 

1/2 4.2 0.0 0.0 

15 or 15/1 4.2 0.0 0.0 

3 or 3/1 4.2 0.0 0.0 

6/25 2.1 10.3 13.0 

2/3 2.1 0.6 0.6 

0/5 2.1 0.0 0.0 

2/5 2.1 0.0 0.0 

4/10 2.1 0.0 0.0 

5/10 2.1 0.0 0.0 

5/2 2.1 0.0 0.0 

6/5 2.1 0.0 0.0 

65/4 2.1 0.0 0.0 

1.5/5 0.0 25.6 19.7 

10/15 0.0 4.8 4.9 

  

 



  

Table 10. Percent of trials on which different types of strategy errors occurred, by arithmetic 

operation, equality or inequality of denominators, and dataset (Study 2). “Children” denotes data 

from Siegler et al. (2011). 

 Add/Sub Mult Div 

 Equal 

denoms 

Unequal 

denoms 

Equal 

denoms 

Unequal 

denoms 

Equal 

denoms 

Unequal 

denoms 

 Children 

Add/sub strategy - - 21 8 17 15 

Mult strategy 31 48 - - 33 35 

Div strategy/Cross-Multiply 2 2 6 6 - - 

Other/None 2 5 4 8 21 21 

 enVisionMATH Simulation 

Add/sub strategy - - 40 16 49 30 

Mult strategy 10 26 - - 9 14 

Div strategy/Cross-Multiply 10 18 20 20 - - 

Other/None - - - - - - 

 GO MATH! Simulation 

Add/sub strategy - - 25 20 40 39 

Mult strategy 15 27 - - 11 17 

Div strategy/Cross-Multiply 12 12 16 12 - - 

Other/None - - - - - - 

 

Table



  

Table 11. Percent of test trials on which the standard correct strategy was used (Study 4). Bolded 

in each row are the percent correct in the control and differentiated feedback conditions on the 

type of problem specified in the “Test Problem Category” column.  

 Type of Differentiated Feedback 

Test Problem Category None 

(Control) 

Add/Sub 

Equal 

Denoms 

Add/Sub 

Unequal 

Denoms 

Mult Div 

Add/Sub with Equal Denoms 74 75 75 76 74 

Add/Sub with Unequal Denoms 52 52 65 50 45 

Multiplication 47 48 43 54 39 

Division 44 44 42 43 62 

  

Table
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