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Abstract 

We use statewide administrative data from Missouri to examine the role of high schools in 
explaining students’ initial college and major placements at 4-year public universities. To facilitate 
our investigation of postsecondary sorting, we develop a “preparation and persistence index” 
(PPI) for each university-by-major cell in the Missouri system to measure the quality of that cell. 
The PPI depends on the pre-college academic qualifications of degree completers. Our analysis of 
high schools shows that the high school attended predicts the quality of the initial university, as 
measured by PPI, conditional on a student’s own academic preparation. Consistent with previous 
research, we further show that students from lower-SES high schools systematically enroll at 
lower-quality universities relative to their similarly-qualified peers from higher-SES high schools. 
However, high schools offer little explanatory power over major placements within universities. 
Correspondingly, there are not meaningful differences in the quality of these placements by high-
school SES. 
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1 Introduction 

College and major placements play an important role in shaping students’ academic and 

post-college outcomes (Arcidiacono, 2004; Astin, 1993; Carnevale et al., 2016; Cohodes and 

Goodman, 2014; Stinebrickner and Stinebrickner, 2014). These placements also collectively 

influence the human capital of the workforce, which is important in light of concerns that students 

in the United States are no longer keeping pace with their global competitors in developing the 

key skills that promote long-term economic prosperity (Committee on Prospering in the Global 

Economy of the 21st Century, 2007). For these reasons, and because the socioeconomic 

backgrounds of students are unequally distributed across universities and majors, recent research 

has focused increasingly on the factors that explain how and why students enroll in different 

colleges and pursue different majors (Arcidiacono, Aucejo, and Hotz, 2016; Bowen, Chingos and 

MacPherson, 2009; Hoxby and Turner, 2014; Hurwitz et al., forthcoming; Porter and Umbach, 

2006; Wiswall and Zafar, 2015).  

We contribute to the literature on college and major sorting by examining the role of high 

schools in explaining students’ initial university and major placements. An innovation of our study 

is to develop an empirical measure of academic quality for each university-by-major cell in the 

state university system we study (Missouri), which we refer to as a “preparation and persistence 

index” (PPI). The PPI for each cell is a function of the pre-college academic qualifications of 

students who complete a degree in that cell. The PPI therefore varies across university-by-major 

cells because of differences in admissions decisions, students’ initial university and major choices, 

persistence within cells, and cross-cell transfers. Our PPI measures allow for a detailed 

investigation of postsecondary sorting both across and within universities and offer several 

conceptual benefits that derive from their flexible, empirical foundation. One benefit is that they 
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facilitate rankings of major quality that overlap across universities with different levels of overall 

selectivity – for example, in the case of two universities that differ in selectivity on average, the 

PPI measures permit cases where some majors at the less-selective university are of higher quality 

than some majors at the more-selective university. PPI also allows us to move away from 

traditional, subjective divisions of college majors that have been used in the past – most notably, 

between majors broadly grouped as science, technology, engineering and mathematics (STEM) 

and other majors. Relatedly, it allows for a better accounting of heterogeneity within groups of 

STEM and non-STEM majors.1 

We use our PPI measures to document across- and within-university variance shares of the 

quality of university-by-major cells in the Missouri system. Universities explain a substantial 

fraction of the total variance of PPI – about 64 percent – but within-university variance is also 

important (36 percent). We also explore related variability in the academic alignment between 

students and their entering university-by-major cells. This analysis complements previous research 

focusing on “undermatching” in the alignment between students’ academic preparation and 

university of attendance (Arcidiacono and Lovenheim, 2016; Dillon and Smith, forthcoming; 

Hoxby and Turner, 2014; Rodriguez, 2015; Smith, Pender, and Howell, 2013), which we extend 

to consider alignment between students and majors within universities. We show that within- and 

across-university sorting both contribute substantially to the total system-wide variance in 

academic alignment for individual students. This finding has implications for the way that we 

                                                           
1 As an example, rather than lumping all STEM fields together, our measures differentiate relatively more-selective 
STEM disciplines (e.g., engineering fields) from less-selective ones (e.g., biological sciences). There is growing 
awareness of the diversity of majors within STEM and non-STEM categories. For example, Webber (2016) 
estimates wage premia for many majors and although STEM (and business) majors are associated with higher 
earnings on average, the premia for some fields are lower than others; e.g., Webber reports that the premium for 
biology majors is in line with the premium for arts/humanities majors (p. 305). 
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evaluate and design policies related to the alignment of students and their postsecondary 

placements. 

A number of studies examine how high schools influence academic performance in college, 

focusing on outcomes such as college grades, persistence, and graduation (Black, Lincove, 

Cullinane, and Veron, 2015; Fletcher and Tienda, 2010; Long, Iatarola, and Conger, 2009; Pike 

and Saupe, 2002; Niu and Tienda, 2013). We complement this body of research by examining the 

predictive power of high schools over the quality of students’ initial university-by-major 

placements conditional on their own pre-entry academic preparation. We observe large numbers 

of students who enter and exit the university system via various college and major pathways from 

hundreds of high schools in the state. Our results indicate that high schools are strong predictors 

of the quality of the entering university-by-major cell. This finding is driven primarily by the 

explanatory power of high schools over university placements. Consistent with prior research, we 

find that students from lower-SES high schools systematically enroll at lower-quality universities 

conditional on their own academic preparation – i.e., universities where their peers have worse 

pre-entry academic preparation. However, despite the presence of substantial variation in the 

quality of entering-major cells within universities, high schools explain a negligible fraction of the 

variance in these placements. 

2 Context and Data 

We use administrative microdata provided by the Missouri Department of Higher 

Education (DHE) for the empirical analysis. We focus our attention on six cohorts of full-time, 

state-resident, non-transfer students who entered the public 4-year university system in Missouri 

from a public high school between 1996 and 2001 as college freshman. In total, our analytic sample 
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includes 58,377 students. Basic descriptive statistics of students in our analytic sample are 

provided in Appendix Table A.1.2 

We identify collegiate major pathways based on the Classification of Instructional 

Programs (CIP) taxonomy developed by the US Department of Education.3 We define majors as 

specific to each university. This means that we treat students who enter the same major (i.e., same 

CIP code) at different universities as entering via separate pathways. We also note that in Missouri, 

like in other states, university enrollment is not entirely separable from major enrollment because 

universities have different major offerings. In total, over the course of our data panel we identify 

476 unique university-by-major cells in the Missouri 4-year public university system.  

The initial major that we use to define the entering cell is best interpreted as an “intended” 

major because there are no requirements or formal system rules that govern the initial selection 

(e.g., a student can declare herself to be a business major upon entry, prior to being officially 

accepted into the business program). Though not formally binding, the initial major is important 

because it shapes students’ initial plans of study, peers, and advisors.4 We match enrollment data 

to completion records to identify a final university and major for each graduate. Each student is 

tracked for eight years to determine graduation outcomes; all individuals who do not obtain a 

degree within eight years from a university in the Missouri system are coded as non-completers. 

                                                           
2 Our dataset is similar to the dataset used by Arcidiacono and Koedel (2014). Notable differences between the 
datasets are that we include students from all racial and ethnic groups in our data, whereas they restrict their analysis 
to African American and white students, and we restrict our attention to students who matriculate into the system 
from public high schools.  
3 We aggregate majors at the 4-digit CIP code level. For sparsely populated university-by-major cells (those with 
less than 10 who start or less than 5 that finish in the cell), we aggregate them with other majors within the 2-digit 
CIP code level, but this type of aggregation affects a small number of students (approximately four percent of 
completers obtain a degree with a CIP code that must be aggregated).  
4 Furthermore, as documented below, the initial major is highly predictive of the final major. In cases where students 
list multiple majors, we identify the primary major based on the first listed major. 
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We observe students’ high schools of attendance and for many high schools we observe 

large numbers of students entering the 4-year university system.5 Thus, our data are well-suited to 

examine the transition from high schools to university-by-major cells, given that we typically have 

large unit-level samples at both levels. The DHE data additionally include detailed information on 

the pre-college academic preparation of individual students – most notably, students’ class 

percentile ranks and ACT scores. We use these data to (a) construct the empirically-derived PPIs 

for each university-by-major cell as described in the next section, and (b) investigate the role of 

high schools in determining student sorting conditional on students’ own pre-entry academic 

preparation. 

There are 13 public 4-year universities in the state system, mapped in Figure 1.6 The 

University of Missouri-Columbia is the flagship university and only university with the highest 

research activity distinction. The other highly selective universities are Truman State University 

and the STEM-focused Missouri University of Science and Technology.7 There are also two 

historically black universities in the system, Harris-Stowe State University and Lincoln University 

(the latter is a land grant university). 

We provide additional information about Missouri universities in Table 1. The universities 

are ordered by the average of an individual academic preparation index for entering students in the 

first column (we describe the preparation index in the next section). There are several notable 

features of the system. Beginning with how enrollment is distributed across universities, the third 

                                                           
5 We drop records from approximately 3 percent of in-state students who do not have an assigned high school of 
attendance in the DHE data or who come from high schools that send a small number (<10) of students to an in-
state, public university during the period. We observe students who attended 455 different public high schools. 
6 We use the word “system” to describe all 13 Missouri universities. In terms of governance, there are several 
subsystems of universities (e.g., the 4-campus “University of Missouri” system) but we do not distinguish between 
these subsystems in our work. 
7 Based on the 2015 Carnegie Classifications of Higher Education.  See http://carnegieclassifications.iu.edu. We use 
the term “highly selective” to characterize institutions with an undergraduate profile considered “more selective” in 
the Carnegie lexicon (the highest level of selectivity).  
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column shows that over forty percent of students in the analytic sample enter into just two 

universities: the University of Missouri-Columbia and Missouri State University. No other 

university has more than a 10-percent enrollment share. The three universities with the highest 

average pre-entry preparation indices also exhibit the least variation in the index among entrants. 

 The fourth column of Table 1 shows the eight-year graduation rate for each campus 

(determined by tracking students in our sample for up to eight years after entry to see if a bachelor’s 

degree was obtained). Graduation rates map fairly closely to the pre-entry preparation index in 

column 1. The most notable differences occur at the urban campuses, University of Missouri-

Kansas City and University of Missouri-St. Louis, which have lower graduation rates than would 

be predicted by students’ pre-entry preparation alone. The low graduation rates at the urban 

campuses are consistent with similar results reported using Missouri data in Arcidiacono and 

Koedel (2014), and more broadly for urban campuses in Bowen, Chingos and McPherson (2009), 

who show that graduation rates are negatively related to commuter share.  

 Finally, the last two columns of Table 1 display the average and standard deviation of the 

academic preparation index among graduates. As expected, the average index is higher among 

graduates than non-graduates, which can be seen by comparing the inclusive index values in 

column 1 with the graduate-only values in column 5. The average index difference between 

entrants and graduates is negatively related to the average index of entrants. 

3 Defining Students’ Academic Indices and University-Major Quality 

3.1 Students’ Academic Indices 

We begin by constructing academic indices for individual students. The first step is to 

regress graduation outcomes on students’ academic qualifications prior to college entry: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝛽𝛽1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝛽𝛽2 + 𝐶𝐶𝐶𝐶𝑖𝑖𝛽𝛽3 + 𝛾𝛾𝑡𝑡 + 𝜃𝜃𝑗𝑗𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   (1) 
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In equation (1), ijmtY  is an indicator for whether student i in year-cohort t, who entered the system 

in the university-by-major cell defined by university j and major m, completed a degree within 

eight years of entry.  The variables iACTM  and iACTR  are the student’s math and reading ACT 

scores, and iCR  is the student’s class percentile rank in high school. tγ  are cohort fixed effects, 

jmθ  are fixed effects for each university-by-major cell, and ijmtε  is an error term, which we specify 

as having a Type I extreme value distribution implying that the probability of graduation follows 

a logit. This model is similar to the one developed by Arcidiacono and Koedel (2014).8 

 We use the output from equation (1), and in particular our estimates of 𝛽𝛽1 − 𝛽𝛽3, to construct 

an index of pre-entry academic qualifications, AI, for each student as follows: 

𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝛽̂𝛽1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝛽̂𝛽2 + 𝐶𝐶𝐶𝐶𝑖𝑖𝛽̂𝛽3     (2) 

The index is a weighted average of students’ pre-entry academic qualifications, where the weights 

are empirically derived from the graduation model in equation (1) so that the pre-entry 

qualifications that best predict success in college (as measured by graduation) are given the most 

weight. A critical aspect of the index is that by the inclusion of tγ  and jmθ  in equation (1), we 

ensure that the identifying variation for the weighting parameters (𝛽𝛽1 − 𝛽𝛽3) comes from within 

university-by-major cells and cohorts.9 

Table 2 shows results from the estimation of equation (1) – in particular, the coefficient 

values used to construct the academic index in equation (2) – to provide a sense of the relative 

importance of students’ pre-entry characteristics in shaping the index. Focusing on the estimates 

                                                           
8 Unlike Arcidiacono and Koedel, we do not allow for students’ pre-entry academic qualifications to differentially 
predict student success across university-by-major cells. This adjustment is mainly to preserve analytic tractability, 
as our much narrower definition of a major (CIP code), multiplied across up to 13 system universities, greatly 
expands the parameter space relative to their study. 
9 We exclude explicit measures of high school quality (high school fixed effects) from the graduation model and 
index. This allows for a more straightforward examination of the explanatory power of high schools over student 
placements below.  
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from our preferred specification in column 1, a student’s class percentile rank is the strongest 

predictor of graduation conditional on the entering cell. A one standard deviation change in the 

class rank corresponds to a change in the index of about 0.65. One standard deviation changes in 

ACT math or reading scores correspond to index changes of 0.16 and 0.05, respectively. The point 

estimate on the ACT reading score is negative in column 1, but this is because we also condition 

on high school class rank – ACT reading scores positively predict graduation independently. 

The index in column 2 excludes the class rank, which means that no locally-normed 

information is used to construct the index. This can be useful for interpretation. For example, a 

key finding below is that students from lower-SES high schools enroll in lower-quality university-

by-major cells conditional on their own index values. One explanation is that a high class rank at 

a low-SES high school is a weaker indicator of academic preparation. We explore this possibility 

below using the sparser academic index shown in column 2.  

3.2 Preparation and Persistence Indices for University-by-Major Cells  

The PPI for each university-by-major cell is based on the academic index values of 

individuals who complete a degree in that cell, regardless of the entering cell. Therefore, variation 

in cell quality arises from differences in initial selection (which can be driven by students’ own 

choices and the behavior of admissions officials), student persistence within cells, and cross-cell 

student transfers. We start by taking the average academic index among degree completers in cell 

jm: 

1

1 jmN

jm i
ijm

Q AI
N =

= ∑           (3) 

where jmN  is the number of individuals who complete a degree in the cell defined by university j 

and major m. We then define jmδ , an empirical Bayes estimate of quality for cell jm, as follows: 
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* (1 )*jm jm jm jm jQ Qδ α α= + −        (4) 

In equation (4), jQ  for university j is defined analogously to jmQ  as shown in equation (3), but at 

the university level, and is treated as deterministic. The parameter jmα , with 0 1jmα< <  , shrinks 

the overall quality estimate for cell jm toward the university mean (i.e., the prior). The degree of 

shrinkage depends on the precision with which jmQ  is measured, with more-precisely measured 

values corresponding to higher values of jmα . The formula we use for jmα  is: 

2

2

ˆ
ˆˆjm

jm

σα
σ λ

=
+

          (5) 

In equation (5), 2σ̂  is an estimate of the true variance of Q  across university-by-major cells, net 

of sampling variance, and ˆ
jmλ  is an estimate of the estimation-error variance of jmQ .  

We follow the recent literature on teacher quality to estimate the parameters used in 

equation (5) (Koedel, Mihaly and Rockoff, 2015). Briefly, we first estimate the following 

regression using degree completers in our analytic sample: 

ijm ijmAI e= +jmD π          (6) 

where ijmAI  is the academic index for individual i who completes a degree in cell jm, and jmD  is 

a vector of indicators for each cell. The raw variance of the academic index for completers across 

cells is estimated by the variance of ˆ jmπ , which we adjust to obtain an estimate of the true variance 

– 2σ̂  in equation (5) – by netting out the total estimation-error variance following the procedure 
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outlined in Koedel (2009).10 We estimate jmλ  for each cell as the square of the standard error of 

ˆ jmπ  from equation (6). 

 An appealing aspect of our quality measures is their objectivity. As noted in the 

introduction, PPI is not influenced by subjective assessments of college majors, either within or 

across universities, as it depends entirely on the pre-entry academic qualifications of graduates. In 

Appendix Table A.2 we list the ten highest- and lowest-quality university-by-major cells in the 

Missouri system based on PPI for illustrative purposes.11 

4 Variation in University-by-Major Cell Quality and Student Sorting 

A basic variance decomposition of cell-level PPI indicates that 64 percent of the variance 

occurs across universities and 36 percent occurs within. While this split affirms the literature’s 

focus on the importance of institutional sorting (Arcidiacono and Lovenheim, 2016; Dillon and 

Smith, forthcoming; Hoxby and Turner, 2014; Rodriguez, 2015; Smith, Pender, and Howell, 

2013), it also highlights the presence of substantial variability in the quality of majors within 

institutions.  

In addition to the decomposition, we also use measures of academic alignment between 

individual students and their initial university-by-major cells to contextualize system sorting. To 

do so, we first define academic alignment for student i who enters cell jm as ,i jm i jmM AI δ= − . We 

compare observed alignment based on actual student sorting to alignment under two types of 

                                                           
10 Koedel’s procedure is similar to related procedures found in other studies such as Aaronson, Barrow and Sander 
(2007), but is better suited to handle situations where there is larger sample-size variance across units (in this case a 
unit is a university-by-major cell).  
11 There are some system cells in which students enter but none graduate – the most prominent example includes 
students who initially enroll as an undecided major. We cannot construct PPI measures using our base methodology 
for these cells because the quality measures depend on completers. As an alternative, we construct analogous 
measures of entry-cell PPI that are a weighted average of final-cell PPI among completers, who by construction 
must have switched to a different cell. This is an imperfect but functional solution to permit the inclusion of these 
individuals in our sample. Below we examine the robustness of our findings to dropping students who enter these 
cells and we obtain similar results. 
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counterfactual sorting conditions: (1) random assignment of students to system cells; and (2) 

perfect sorting of students to system cells (where we assign the highest-AI students to the cells 

with the highest values of jmδ ). For each set of counterfactual conditions, we consider two 

scenarios: (a) a “global” scenario in which the counterfactual sorting occurs across and within 

universities; and (b) a “local” scenario where the counterfactual sorting is conditional on the initial 

university. For example, with global random assignment, we randomly assign students to majors 

and universities; whereas with local random assignment, we randomly assign students to majors 

holding the entering university fixed. The variance of the alignment measure, ,i jmM , will be 

minimized in the global perfect-sorting case because students’ own academic indices will align 

most closely with the hypothetical entering university and major.12 The variance will be at its 

practical maximum with global random assignment. These comparisons provide context for 

observed sorting.  

Table 3 reports the results. The top row shows the variance of ,i jmM  based on students’ 

actual university-by-major placements. Subsequent rows report the variance under the four 

counterfactuals. The observed variance of ,i jmM , 0.43, falls comfortably in between the two global 

counterfactual bounds of 0.22 (perfect sorting) and 0.60 (random sorting). 

The counterfactual scenarios provide useful insight into the potential for cross-university 

and within-university sorting to affect alignment. For example, the within-university, perfect 

sorting condition minimizes within-university misalignment (last row of Table 3). The variance of 

,i jmM  in this scenario is 0.28, which is close to the global perfect-sorting condition (0.22); 

certainly much closer than to the observed sorting condition (0.43). The implication is that 

                                                           
12 This minimization is subject to the pre-existing structure of the system, and in particular the size of system cells, 
which we hold fixed for this descriptive analysis. 
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resorting students to majors with closer academic alignment, without any switching across 

universities, would increase alignment nearly as much as resorting students across the entire 

system. This does not diminish the importance of college placements in studying postsecondary 

sorting; rather, it motivates the importance of also studying sorting within universities.  

5 The Role of High Schools in Student Sorting  

Having defined each student’s own preparation index and the PPI of the entering 

university-by-major cell, we examine the explanatory power of high schools over student 

placements into colleges and majors conditional on each student’s own academic preparation. We 

start with the following linear regression model: 

, 0 1 ,jm is i jm isAI uδ γ γ= + + +is 2HS γ         (7) 

In equation (7), the PPI of university-by-major cell jm into which student i from high school s 

enters, ,jm isδ , is a function of the student’s own academic index, iAI , and the high school attended, 

where isHS  is a vector of indicator variables in which the student’s own high school indicator is 

set to one and all others are set to zero. We do not allow a student’s own academic index to 

contribute to ,jm isδ   to prevent spurious correlations. Thus, if a student starts and completes a degree 

in cell jm, her own academic index is jack-knifed out of the calculation of ,jm isδ . The parameter 1γ  

is identified using within high-school variation in iAI  to estimate the empirical relationship 

between a student’s own academic preparation and the PPI of the initial cell. Conditional on this 

relationship, the vector of high school fixed effects, 2γ , captures systematic differences in the PPI 

of placements across high schools. ,jm isu  is the residual in the regression. We estimate standard 

errors using a 2-way clustering structure to account for dependence in the data within university-

by-major cells and high schools following Petersen (2009; also see Cameron and Miller, 2015).  
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 We are also interested in studying the extent to which high schools explain differences in 

the PPI of student placements across majors within universities. The model in equation (7) can be 

extended for this purpose as follows: 

(𝛿𝛿𝑗𝑗𝑗𝑗 − 𝛿𝛿𝑗𝑗)𝑖𝑖𝑖𝑖 = 𝜃𝜃0 + 𝐴𝐴𝐴𝐴𝑖𝑖𝜃𝜃1 + 𝐇𝐇𝐇𝐇is𝛉𝛉2 + 𝑒𝑒𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖      (8) 

The only change in equation (8) is that the dependent variable is measured relative to overall 

university PPI, where universities are subscripted by j. Our measures of university PPI are 

constructed analogously to our measures of university-by-major PPI per the description in Section 

3.13  

 Next we examine whether characteristics of high schools systematically explain the PPI of 

students’ placements. Following on previous research showing that students from disadvantaged 

backgrounds tend to enroll in universities where their own academic preparation exceeds that of 

their peers, we are particularly interested in the degree to which measures of socioeconomic 

disadvantage at the high school level predict placement quality. To investigate this question we 

estimate the following analogs to equations (7) and (8): 

, 0 1 ,jm is i jm isAIδ ρ ρ ξ= + + +is 2Z ρ        (9) 

0 1 ,( )jm j is i jm isAIδ δ ψ ψ ζ− = + + +is 2Z ψ        (10) 

These equations substitute measures of socioeconomic disadvantage for high schools and their 

surrounding local areas in the Z-vector for the high school indicators that are in equations (7) and 

(8). The high-school disadvantage measures we include are the share of the student body that is 

free or reduced price lunch (FRL) eligible and the share of individuals age-25 and older with less 

than a bachelor’s degree in the high school’s zip code. Because socioeconomic factors can also 

                                                           
13 In fact, because we treat university PPI as deterministic per Section 3, j jQδ =   
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vary systematically by the minority composition of the high school, we also include the share of 

the student body that identifies as a minority race or ethnicity in the Z-vector. The school-level 

data are taken from the Common Core of Data (CCD) and the local-area data are from the year-

2000 U.S. Census.  

We explore the predictive influence of high-school SES conditional on students’ own 

academic indices as shown in equation (9) and (10), and also conditional on basic characteristics 

of high schools including urbanicity (schools are divided into five groups: urban, suburban, town, 

rural and missing) and school size (enrollment). For ease of interpretation, we normalize the 

dependent variables and high-school characteristics to have a mean of zero and a variance of one.14 

In our preferred specifications as shown in equations (7)-(10), we also normalize the academic 

index for individuals and enter it into the models linearly. In Appendix Table A.4 we show that 

our findings are qualitatively unaffected if we use a more flexible modeling approach where we 

divide students into twenty equal-sized bins based on their own index values and condition on bin 

assignment instead. 

6 Results 

Equations (7) and (8) allow us to assess the general importance of high schools in 

explaining students’ initial placements conditional on their own academic indices. Table 4 reports 

the overall R-squared and partial R-squared attributable to the vector of high school indicators for 

each model. High schools explain 11.3 percent of the variance in university-by-major PPI overall. 

However, they explain just 1.4 percent of the within-university variance.  

                                                           
14 More precisely, the dependent variables are normalized so that a one-unit change represents a one-standard-
deviation change in the true distribution of PPI. In practice, the normalized dependent variables have a standard 
deviation of less than one because they are normalized by the un-shrunken standard deviations. This facilitates the 
interpretation of a one-unit change in PPI as corresponding to a one standard deviation change in the true (rather than 
empirical) distribution (see also Chetty, Friedman, Rockoff, 2014; Jacob and Lefgren, 2008). 
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In Table 5 we show results from variants of equation (9) where we replace the high school 

indicators with high school characteristics. We include the minority share and each measure of 

socioeconomic disadvantage in the model separately and then include them all simultaneously, 

with and without conditioning on the other basic high school characteristics. In the full 

specification in the final column of Table 5, one standard deviation increases in the minority share, 

the percentage of FRL-eligible students, and the share of the local area with less than a bachelor’s 

degree correspond to changes in the PPI of the initial university-major cell of -0.02 (not statistically 

significant), -0.02 (not statistically significant), and -0.14 standard deviations, respectively. A 

general takeaway from Table 5 is that students from more disadvantaged backgrounds sort to lower 

quality university-by-major cells conditional on their own academic preparation, which is in line 

with previous research on undermatch to universities (Turner, 2017). 

Next we extend the analysis to look for systematic placements by high school minority 

share and SES within universities. Table 6 follows the same structure as Table 5, but focuses on 

within-university placements per equation (10). Consistent with the limited explanatory power of 

high schools over within-university sorting documented in Table 4, and in contrast to the results 

for overall placements in Table 5, the results in Table 6 provide little indication of differences 

between students from high schools with different characteristics. Neither of the high-school SES 

measures are meaningfully associated with placement quality within universities, individually or 

jointly, and the same is true for the minority share. 

7 Extensions 

7.1 An Alternative Academic Index Excluding Class Rank 

The measure of academic preparation that receives the most weight by far in the individual 

academic index – the high school class percentile rank – is a locally-normed measure. One reason 
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we might find that students from low-SES high schools enter the system in lower-quality cells is 

that conditional on the index, their preparation is lower. Put differently, it may be that performing 

at the top of the class at a low-SES high school does not signify the same level of preparation as 

performing at the top of the class at a high-SES high school. This explanation is consistent with 

findings from Black et al. (2015), who show that students in Texas with high class ranks but who 

attended low-performing high schools have persistently lower grades throughout college than their 

peers who attended better high schools. We gain insight into this issue by using a version of the 

academic index that does not include class percentile rank (from column 2 of Table 2).  

We present results from this exercise in Table 7, where we replicate our full procedure and 

show specifications akin to those in Tables 5 and 6 using the restricted academic index without 

high school class rank. A caveat to these results is that we sacrifice substantial informational 

content by excluding information about students’ class ranks.15 Bearing this in mind, in the model 

examining system-wide placements in columns 1 and 2, we find generally similar but weaker 

results to what we show in Table 5 for the income and education SES measures, but the coefficient 

on the minority share flips in sign and is statistically significant. This pattern of results is also 

apparent when we enter the high-school SES and minority share measures into the models 

separately (not shown for brevity). In columns 3 and 4, where we replicate the results from the full 

specifications in Table 6, there is also a moderate shift toward the appearance of less under-

placement for students from low-SES high schools. Specifically, whereas with our primary 

specification there is not a detectable pattern of within-university sorting by high school SES 

conditional on students’ own academic preparation, when we use the restricted index we find that 

                                                           
15 While ACT scores have the benefit of not being locally normed, they are much weaker predictors of college 
success than class ranks (or similar measures such as high-school GPA). In addition to this being shown in our 
analysis in Table 2, also see Bowen, Chingos, and McPherson (2009), Fletcher and Tienda (2010), and Rothstein 
(2004). 
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students from lower-SES high schools conditionally enroll in modestly higher-quality majors 

within universities. In summary, students from low-SES high schools seem less under-placed when 

we no longer account for class rank. 

This shift in results is consistent with the interpretation that our primary estimates in Tables 

5 and 6 are driven partly by the fact that highly ranked students from low-SES high schools are 

not as well prepared as their highly ranked peers from high-SES high schools. Either by their own 

application and enrollment actions or the actions of university admissions officials, this is reflected 

in lower-quality placements conditional on these students’ own academic indices. This 

interpretation has significant social meaning: the unequal value of class rank would directly imply 

that differential opportunities for human capital development during K-12 schooling between 

students in high- and low-SES high schools explain some of the differences we observe in entry-

cell quality.  

7.2 Cells without Completers 

Next we turn to the issue that approximately one-third of the students in the sample enter 

into cells in which there are no completers. The predominant example is students who list their 

initial field of study as “undecided,” who account for about one-fifth of our sample, or 

approximately 13,000 students. There are also another 5,800 students who begin in a cell without 

any finishers, with the most common reason being that the initial cell is a broad field such as 

“general engineering.” Students who enter into a broad field like “general engineering” do not 

finish with a general degree. Instead, they either finish in a more specific engineering subfield, 

such as chemical engineering or mechanical engineering, switch to a completely different 

discipline, or drop out. In the analysis thus far, we have handled such cells by assigning them a 

PPI measure that is a weighted average of finishing cell PPI across all graduating students who 
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enter. This is a functional solution, but treats these cells differently than other cells (for other cells, 

only finishers matter regardless of the entering cell as described in Section 3.2). 

In Appendix Table A.3 we examine the sensitivity of our findings to dropping all students 

who enter university-by-major cells with no completers, since we do not have a consistent strategy 

for constructing measures of cell PPI for these students. For brevity, we replicate our estimates 

from the full models shown in Tables 5 and 6 only. The results show that our findings are 

qualitatively unaffected by whether we include these individuals in the analysis. 

7.3 The Mapping Between Initial and Final University-by-Major Cells 

Students’ initial enrollment placements influence their academic experiences and outcomes 

(e.g., Astin, 1993; Carrell, Fullerton, and West, 2009; Porter and Umbach, 2006; St. John et al., 

2004). However, there is also a robust literature that connects post-college outcomes to final 

college and major (Arcidiacono, 2004; Carnevale et al., 2016; Hamermesh and Donald, 2008; 

Thomas and Zhang, 2005). An obvious question given our focus on initial university-by-major 

placements is how initial placements translate to final placements. 

To answer this question we begin with basic summary statistics. A substantial proportion 

of the students in our sample finish in the university-by-major cell in which they start. Among 

those that declared a major when they entered the system and graduated, almost 40 percent finished 

in the same cell that they entered. Furthermore, nearly 60 percent finished in the same major group 

(with the same 2-digit CIP code) as the entering major.  

To address this question more generally, we estimate the relationship between the PPI of 

the initial and final cell using a simple, student-level regression of the following form: 

, 0 , 1 2 ,
F I
jm is jm is i jm isAIδ ϕ δ ϕ ϕ ζ= + + +        (11) 
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In equation (11), ,
F
jm isδ is the normalized PPI of the final cell and ,

I
jm isδ  is the normalized PPI of the 

initial cell.16 The estimation of equation (11) is restricted to degree completers. 

 Figure 2 plots the unconditional relationship between ,
F
jm isδ and ,

I
jm isδ  among completers. 

The markers represent the average ending PPI for each bin of beginning PPI, with bin sizes of 0.1 

standard deviations. The size of each marker reflects the number of students in the bin.  It is 

visually apparent that the PPI of the initial major is highly predictive of the PPI of the final major, 

and that this strong relationship holds throughout the distribution of beginning-cell PPI. This is 

supported formally by results from equation (11) where we estimate 1ϕ  to be 0.78 with a standard 

error of 0.02.  

 The strong link we identify between PPI of the starting and ending cells should not be 

interpreted causally and it is important not to infer that simply changing initial placements will 

necessarily change final placements. That said, the link between the PPI of the initial and final cell 

is quite strong, which implies that policies that change students’ initial placements and the factors 

that underlie these placements can meaningfully change the distribution of university-by-major 

quality at exit.  

8 Conclusion 

We develop new empirical measures of the quality of university-by-major cells that depend 

on the pre-college academic qualifications of degree completers. Our measures – which we term 

“preparation and persistence indices” (PPIs) – afford us great flexibility in examining student 

sorting within the 4-year public university system in Missouri. We find that the quality of 

                                                           
16 As in the preceding analysis, the normalizations are performed to facilitate interpretations in terms of the real 
(rather than empirical) distributions of PPI. Because the PPI measures are shrunken, estimates of 1ϕ  will not be 
affected by attenuation bias (Jacob and Lefgren, 2008). 
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university-by-major cells varies substantially both within and across universities, and relatedly, 

that sorting both within and across universities meaningfully contributes to the total system-wide 

variance in academic alignment for students.  

Our examination of the explanatory power of high schools over students’ initial university-

by-major placements, conditional on students’ own academic preparation, yields the insights that 

high schools explain (a) a substantial share of the variance in the PPI of university placements, and 

(b) little of the variance in the PPI of major placements within universities. Corroborating previous 

research, the socioeconomic status of high schools and their surrounding areas is a clear predictor 

of the PPI of students’ initial university placements, with lower-SES students systematically 

enrolling at lower-PPI universities conditional on their own academic preparation (Dillon and 

Smith, forthcoming; Hoxby and Avery, 2013; Hoxby and Turner, 2014; Smith, Pender, and 

Howell, 2013). A similar pattern is not present for within-university sorting to majors, which is 

consistent with the limited explanatory power of high schools over within-university placements 

that we document generally. 

Our findings have several important implications for research and policy. First, they point 

toward the value of interventions that inform students of the educational options for which they 

are academically qualified, which can better align students from low-SES high schools with 

universities (Hoxby and Turner, 2014). The differences in sorting to institutions that we document 

between these students and their higher-SES peers are disconcerting in light of compelling 

evidence that more-selective institutions, as measured by the academic qualifications of entering 

students, improve educational outcomes (Cohodes and Goodman, 2014; Hoekstra, 2009; 

Melguizo, 2010). Even if some of the disparate sorting behavior between seemingly similarly-

qualified students from high- and low-SES high schools is driven by true gaps in student 
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preparation owing to unequal opportunities during high school (per Table 7), the greater efficacy 

of more selective institutions will still likely benefit lower-SES students (Arcidiacono and Koedel, 

2014; Dillon and Smith, forthcoming).  

Second, we document substantial within-university variation in PPI between majors within 

universities. While majors can affect learning and influence students’ academic environments, 

including interactions with faculty and the development of peer groups (e.g., Astin, 1993; Carrell, 

Fullerton, and West, 2009; Porter and Umbach, 2006; St. John et al., 2004; Umbach and 

Wawrzynski, 2005), little is known about the practical importance of quality differences across 

majors in terms of affecting student outcomes, or about the malleability of student allocations to 

departments within universities should reallocations be desirable. Our findings at least raise the 

possibility that, like with the aforementioned recent literature on college selectivity, educational 

production could be improved by more purposeful allocations of students to majors within 

colleges. Said another way, students across the ability distribution may benefit from placements in 

high quality majors; future research probing the significance of within-university variability in 

major quality and student sorting can shed light on this issue.  

Finally, we show that the quality of the initial university-by-major cell is a strong predictor 

of the quality of the final university-by-major cell among degree completers. This is driven in large 

part by cell persistence, but it is also the case that cell changes tend to be PPI-aligned. An 

implication is that a pressure point for policy interventions that aim to affect the skill distribution 

of the workforce through human capital development in college occurs prior to college entry.  
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Figure 1: Geographic Distribution of 4-year Public Universities in Missouri 

 
Legend 

A: Truman State University B: UM-Rolla 
C: UM-Columbia D: UM-Kansas City 
E: UM-St. Louis F: Missouri State University 
G: Northwest Missouri State University H: Southeast Missouri State University 
I: University of Central Missouri J: Missouri Southern State University 
K: Western Missouri State University L: Lincoln University 
M: Harris Stowe State University  

 
Note: Circle sizes correspond to enrollment shares from the analytic sample.  
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Figure 2: Relationship between the PPI of the Final and Initial University-Major Cell 
 

 
 
Notes: Graph depicts the relationship between normalized ending university-major cell PPI (on the y-axis) and 
normalized beginning cell PPI (on the x-axis). Markers are the average ending PPI for the values of beginning PPI, 
with beginning PPI grouped into bins of 0.1 standard deviations. The size of each marker reflects the number of 
students in the bin. This chart only includes students who finish.  
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Table 1. University Descriptive Statistics for Analytic Sample. 

University 

Average 
Academic 

Index 
Of Entrants 

Standard 
Dev. 

Academic 
Index of 
Entrants Entry Share 

Graduation 
Rate 

Average 
Academic 

Index 
Of Graduates 

Standard 
Dev. 

Academic 
Index of 

Graduates 
Overall 2.77 0.73 1.00 0.62 2.97 0.63 
Univ of Missouri -Rolla 3.32 0.52 0.04 0.72 3.42 0.46 
Truman State Univ 3.12 0.40 0.08 0.78 3.17 0.38 
Univ of Missouri-Columbia 3.08 0.59 0.22 0.75 3.16 0.55 
Univ of Missouri -Kansas City 3.02 0.65 0.04 0.55 3.09 0.62 
Univ of Missouri -St. Louis 2.83 0.65 0.03 0.50 2.87 0.64 
Missouri State Univ 2.71 0.66 0.19 0.59 2.88 0.60 
Northwest Missouri State Univ 2.61 0.68 0.07 0.64 2.78 0.64 
University of Central Missouri 2.59 0.69 0.10 0.60 2.77 0.64 
Southeast Missouri State Univ 2.59 0.75 0.09 0.58 2.79 0.68 
Missouri Southern State Univ 2.52 0.77 0.05 0.44 2.82 0.68 
Western Missouri State Univ 2.19 0.79 0.07 0.41 2.61 0.69 
Lincoln Univ 2.05 0.86 0.02 0.39 2.48 0.79 
Harris Stowe State Univ 1.94 1.01 0.00 0.30 2.04 1.06 

Notes: The analytic sample includes full-time, resident, non-transfer students who entered the system between 1996 and 2001 as college freshman from public 
high schools. It omits students whose high school of attendance, class rank, and/or ACT scores are unavailable (combined data loss ≈ 6 percent). The enrollment 
shares presented in this table are broadly reflective of the relative sizes of the public universities in Missouri, but can differ from total enrollment shares because 
we exclude transfer students from community colleges as well as part-time students, and these students are not evenly distributed across the system. 
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Table 2. Index Parameters from Primary and Alternative Specifications for the Index. 
 (1) (2) 

HS Class Percentile Rank 3.12 
(0.06)***  

ACT Math Score 0.03 
(0.00)*** 

0.08 
(0.00)*** 

ACT Reading Score -0.01 
(0.00)*** 

0.01 
(0.00)*** 

Note: Standard errors included in parentheses.  
*** p<0.01, ** p<0.05 
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Table 3. Variance of Student-Level Alignment to University-by-Major Cells with Observed and 
Counterfactual Sorting Conditions. 
 Variance of ,i jmM  
Observed 0.43 
  
Counterfactual Scenarios  
Global Random Assignment 0.60 
Global AI-Sorting 0.22 
Random Assignment Conditional on Initial University 0.47 
AI-Sorting Conditional on Initial University 0.28 

Notes: This table reports on the system-wide variance of observed and counterfactual academic alignment, measured 
by the difference between students’ own academic preparation and the PPI of the entering cell. See text for 
description of counterfactual scenarios. 
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Table 4. The Explanatory Power of High Schools over the PPI of Student Placements. 

 Cell PPI 
Cell PPI, 

Net of University PPI 
 (1) (2) 
Coefficient on AI variable 0.33 

(0.03)*** 
0.13 

(0.04)*** 
   
Total Model R2 0.269 0.029 
Partial R2 Attributable to High 
School Fixed Effects 0.113 0.014 

Note: Standard errors clustered by university-by-major cell and high school are included in parentheses. Cell PPI 
and the individual academic index are normalized such that estimates can be interpreted as mapping a one-standard-
deviation move in a covariate to one standard deviation of the true distribution of PPI. 
*** p<0.01 
  
 



32 
 

Table 5. Results from High School Covariate Models, Cell PPI. 
 (1) (2) (3) (4) (5) 
Academic Index 0.32 0.33 0.35 0.35 0.34 
 (0.04)*** (0.04)*** (0.04)*** (0.04)*** (0.04)*** 
% HS Minority 0.01   -0.01 -0.02 
 (0.02)   (0.02) (0.02) 
% HS FRL  -0.10  -0.04 -0.02 

 (0.01)***  (0.01)*** (0.01) 
Zip % Less than BA   -0.16 -0.15 -0.14 
   (0.01)*** (0.01)*** (0.02)*** 
      
Basic HS Controls     X 
R-squared 0.18 0.19 0.22 0.22 0.22 

Notes: Standard errors clustered by university-by-major cell and high school are included in parentheses. The basic high school characteristics included in 
column (5) are indicators for urbanicity (urban, suburban, town, rural, missing) and schools size. Cell PPI, the academic index, Pct Minority, Pct Free/Reduced 
Price Lunch, and Zip Pct Less than BA are all normalized such that estimates can be interpreted as mapping a one-standard-deviation move in the covariate to 
one standard deviation of the true distribution of PPI.  
*** p<0.01, ** p<0.05, * p<0.10 
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Table 6. Results from High School Covariate Models, Cell PPI Net of University PPI. 
 (1) (2) (3) (4) (5) 
Academic Index 0.12 0.12 0.12 0.12 0.12 
 (0.04)*** (0.04)*** (0.04)*** (0.04)*** (0.04)*** 
% HS Minority -0.01   -0.01 -0.01 
 (0.02)   (0.02) (0.02) 
% HS FRL  0.01  -0.00 0.00 

 (0.01)  (0.01) (0.01) 
Zip % Less than BA   0.02 0.02 0.02 
   (0.02) (0.02) (0.02) 
      
Basic HS Controls     X 
R-squared 0.02 0.02 0.02 0.02 0.02 

Notes: Standard errors clustered by university-by-major cell and high school are included in parentheses. The basic high school characteristics included in 
column (5) are indicators for urbanicity (urban, suburban, town, rural, missing) and schools size. Cell PPI, the academic index, Pct Minority, Pct Free/Reduced 
Price Lunch, and Zip Pct Less than BA are all normalized such that estimates can be interpreted as mapping a one-standard-deviation move in the covariate to 
one standard deviation of the true distribution of PPI.  
*** p<0.01, ** p<0.05, * p<0.10  
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Table 7. Alternative Academic Index without High School Class Rank 
 Cell PPI Cell PPI net of Univ PPI 
 (1) (2) (3) (4) 
Academic Index 0.49 0.49 0.19 0.19 
 (0.05)*** (0.05)*** (0.05)*** (0.05)*** 
% HS Minority 0.06 0.04 0.03 0.02 
 (0.02)*** (0.02)** (0.02) (0.02) 
% HS FRL -0.03 -0.00 0.00 0.01 

(0.01)** (0.02) (0.01) (0.01) 
Zip % Less than BA -0.06 -0.05 0.05 0.05 
 (0.01)*** (0.02)*** (0.01)*** (0.01)*** 
     
Basic HS Controls  X  X 
R-squared 0.29 0.30 0.03 0.04 

Notes: Standard errors clustered by university-by-major cell and high school are included in parentheses. The basic 
high school characteristics included in columns 2 and 4 are indicators for urbanicity (urban, suburban, town, rural, 
missing) and schools size. Cell PPI, the academic index, Pct Minority, Pct Free/Reduced Price Lunch, and Zip Pct 
Less than BA are all normalized such that estimates can be interpreted as mapping a one-standard-deviation move in 
the covariate to one standard deviation of the true distribution of PPI.  
*** p<0.01, ** p<0.05, * p<0.10
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Appendix A 
Supplementary Tables 

 
Appendix Table A.1: Summary Statistics for Student and High School Characteristics in the 
Sample 

 Mean SD 
Students in the sample   
High School Percentile Class Rank 0.72 0.21 
ACT Math Score 22.63 4.76 
ACT Reading Score 24.38 5.51 
White Male 0.39 0.49 
African American Male 0.02 0.15 
Asian Male 0.01 0.09 
Hispanic Male 0.01 0.07 
Other Race Male 0.01 0.11 
White Female 0.49 0.50 
African American Female 0.04 0.19 
Asian Female 0.01 0.09 
Hispanic Female 0.01 0.08 
Other Race Female 0.01 0.12 
High schools in the sample   
City 0.18 0.38 
Suburb 0.38 0.48 
Town 0.21 0.41 
Rural 0.17 0.38 
Locale Missing 0.06 0.24 
Number of Students (000) 1.12 0.66 
Pct Minority (%) 12.11 16.81 
Pct Free or Reduced Price Lunch (%) 10.48 15.35 
Zip Pct Less than BA (%) 77.09 13.50 
Number of Students 58377  
Number of High Schools 455  
Number of University-by-Major Cells 476  

Notes: Student data are from DHE state administrative records. High school data are taken from the Common Core 
of Data (CCD). Area information (the share of individuals age-25 and older with at least a bachelor’s degree in the 
high school’s zip code) comes from the year-2000 United States Census. The high school and local-area averages 
and standard deviations reported in the table are student weighted.  
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Appendix Table A.2: Ten Highest and Lowest PPI University-by-Major Cells.  
University Level 

(Selective or Less Selective) Major Average AI 
of Finishers 

A. Highest Average AI of Finishers   
Selective University Mathematics 3.61 
Selective University Biochemistry 3.61 
Selective University Applied Mathematics 3.60 
Selective University Computer Engineering 3.57 
Selective University Physics 3.54 
Selective University Industrial Engineering 3.53 
Selective University Chemical Engineering 3.53 
Selective University Agricultural Engineering 3.25 
Selective University Chemistry 3.20 
Selective University Electrical Engineering 3.19 
B. Lowest Average AI of Finishers   
Less selective University Business Administration 1.86 
Less selective University Social Sciences, General 2.04 
Less selective University Journalism 2.05 
Less selective University Education, General 2.15 
Less selective University Criminal Justice and Corrections 2.17 
Less selective University Parks, Recreation and Leisure Facilities Management 2.25 
Less selective University Criminal Justice and Corrections 2.26 
Less selective University Fine and Studio Arts 2.29 
Less selective University General Sales, Merchandising, & Marketing Operations 2.33 
Less selective University Psychology 2.34 

Note: Cells displayed in these tables are restricted to those with at least 40 graduates. University names are masked 
to preserve anonymity; in total, the cells listed in the table are spread across seven of the thirteen universities in the 
system. “Selective” universities are those with an undergraduate profile considered “more selective” or “selective” 
in the 2015 Carnegie Classifications of Higher Education. “Less selective” universities in this table are universities 
with undergraduate profiles that are not considered as selective as “selective” colleges. See 
http://carnegieclassifications.iu.edu.  
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Appendix Table A.3: Sensitivity Analysis: Dropping Cells without Finishers. 
         Cell PPI     Cell PPI net of Univ PPI 
 (1) (2) 

Academic Index 0.36 0.18 
 (0.03)*** (0.05)*** 
% Minority -0.04 -0.04 
 (0.03) (0.02) 
% FRL -0.02 0.01 

(0.02) (0.02) 
Zip % Less than BA -0.15 0.02 
 (0.02)*** (0.02) 
Basic HS Controls X X 
R-squared 0.21 0.03 

Notes: Standard errors clustered by university-by-major cell and high school are included in parentheses. The basic 
high school characteristics include school size and indicators for urbanicity (urban, suburban, town, rural, missing). 
Cell PPI, the academic index, Pct Minority, Pct Free/Reduced Price Lunch, and Zip Pct Less than BA are all 
normalized such that estimates can be interpreted as mapping a one-standard-deviation move in the covariate to one 
standard deviation of the true distribution of PPI. 
*** p<0.01, ** p<0.05, * p<0.10 
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Appendix Table A.4: Sensitivity of Primary Findings (Tables 5 & 6, Column 5) to Replacing the 
Linear AI Control with a 20-Bin AI Control Set. 

 
Cell PPI 

(1) 
Cell PPI net of Univ PPI 

(2) 
% Minority -0.02 -0.01 
 (0.02) (0.02) 
% FRL -0.02 0.00 

(0.01) (0.01) 
Zip % Less than BA -0.14 0.02 
 (0.02)*** (0.02) 
   
Basic HS Controls X X 
R-squared 0.23 0.02 

Notes: Standard errors clustered by university-by-major cell and high school are included in parentheses. The basic 
high school characteristics include school size and indicators for urbanicity (urban, suburban, town, rural, missing). 
Cell PPI, Pct Minority, Pct Free/Reduced Price Lunch, and Zip Pct Less than BA are all normalized such that 
estimates can be interpreted as mapping a one-standard-deviation move in the covariate to one standard deviation of 
the true distribution of PPI. Students are divided into twenty equal-sized bins based on their AI values and we 
control for the AI bins (coefficients not displayed) in place of the linear AI control used in the main text. This allows 
for a flexible, highly non-linear relationship between AI and the quality of the university-by-major placement but 
has no bearing on our findings qualitatively. 
*** p<0.01, ** p<0.05, * p<0.10 
 


	WP 165 Cover
	WP 165 - Title Page
	Acknowled&Abstract_165
	Acknowledgements
	Abstract

	WP 165 Body
	Legend




