
2013 ASCUE Proceedings

82

Power monitoring using the Raspberry Pi

Robin M Snyder
RobinSnyder.com

robin@robinsnyder.com
http://www.robinsnyder.com

Abstract

The Raspberry Pi is a credit card size low powered compute board with Ethernet connection, HDMI
video output, audio, full Linux operating system run from an SD card, and more, all for $45. With ca-
bles, SD card, etc., the cost is about $70. Originally designed to help teach computer science principles
to low income children and students, the Pi has taken on a life of its own, with many online resources
and projects that cover most everything one would want to do with a small low monetary cost and low
battery power computer. This paper/session will present the Raspberry Pi and provide ideas of what it
can do and how one can get started using it. The author has used Pi's for Internet data acquisi-
tion/monitoring, cluster processing using more than one Pi, email notifications, and power monitoring.
The particular focus example will be on UPS power monitoring and status using off the shelf Open
Source software. The main software for the purpose of power monitoring is NUT, Network UPS Tools,
whose goal is "to provide support for Power Devices, such as Uninterruptible Power Supplies, Power
Distribution Units and Solar Controllers." Some background in the theory and practice of electrical
power, surge protection, uninterruptible powers supplies, etc., will be provided.

Introduction

The Raspberry Pi is a credit card size low powered compute board with Ethernet connection, HDMI
video output, audio, full Linux operating system run from an SD card, and more, all for $45. With ca-
bles, SD card, etc., the cost is about $70.

The Raspberry part comes from the name of a fruit not yet used so that the name could be trademarked.
For example, Apple is already taken. The Pi part is the Greek letter pi as used in the ratio of circumfer-
ence to diameter. Originally developed to promote computer science among lower income students, the
Pi has taken on a life of its own with a community of users that have and continue to provide support a
large number of areas.

By default, the Pi runs a version of Debian Linux called Raspian. In some cases, such as the Firefox
web browser, technical/legal limitations/restrictions of the open source Firefox web browser have
caused it to be renamed IceWeasel, but is otherwise the same.

One can run the Pi in GUI mode are in headless mode. That is, without a monitor/screen, being ac-
cessed via, say, SSH (Secure Shell Protocol). That is the primary way in which it will be used in this
paper. There are many good intro books and/or online web sites dealing with getting started with the
Raspberry Pi. This paper will only touch on some of the aspects related to the main topic of this paper -
power monitoring and management using the Raspberry Pi.

2013 ASCUE Proceedings

83

Raspberry Pi alternatives

Here are some common alternatives to the Raspberry Pi.

Brick Pi

The Brick Pi is a KickStarter project that provides a board that can interface the Pi to Lego bricks and
Lego sensor devices as found in the Lego MindStorms system.

Arduino

There are many add-on boards that can be used to interface the Raspberry Pi to Arduino boards.

The Arduino is a low cost open source hardware and software system designed to interface to the real
would using an extensive collection of sensor (i.e., input) and actuator (i.e., output) devices. The Ar-
duino, however, has a limited amount of memory and input/output capacity.

Thus, an Arduino combined with the Raspberry Pi can provide a useful system to interface sensors and
actuators to the real world.

Raspberry Pi alternatives

There are many alternatives to the Raspberry Pi. Some of those used and/or investigated by the author
include the following.

BeagleBone

The BeagleBone is faster, with more memory, no composite video (but with HDMI), and flash memory
for the resident ARM Linux based system.

The author found it useful to use a SD card boot with Ubuntu rather than the suggested Linux OS.

Yun

The Yun is an Arduino system combined with a OpenWRT-based Linux system (as used in some rout-
ers). The Yun comes with a network connection and a wireless hotspot device.

3.3 Intel Galileo

The Intel Galileo is a more expensive and, in the authors opinion, not as well designed/realized system,
that has an on-board Linux system and Arduino-like interface for connection to sensors and actuators.

Panda Board

The Panda Board is a dual ARM processor system, about $190, that has been used in a number of larg-
er custom applications.

2013 ASCUE Proceedings

84

Power management

Every electronic device requires some type of power. Some devices require more power than other de-
vices. Intel traditionally assumed that the processor would be always running. The ARM architecture,
on the other hand, allows the process to almost stop completely - which helps a lot when a longer bat-
tery life is required. Intel's response to the demand for the competitor ARM's processors has been to
develop an Atom (and Sandy Bridge, etc.) series of microprocessors to help with reducing power con-
sumption and thereby increasing battery life.

Typical electrical power supply systems have fluctuations in the quality of power provided. Surges can
increase the nominal voltage supplied. Sags can decrease the nominal voltage supplied. A brownout is
a reduction in the voltage/current supplied. A blackout is a total decrease of voltage/current supplied.
Spikes can pass though and induce currents in devices that can burn them out or otherwise cause the
devices to malfunction. In the extreme case, such spikes are called EMP (Electromagnetic Pulses) that
can be created by atomic/nuclear devices and can burn out (or cause to not function properly) sensitive
electronic equipment such as microprocessors and associated memory, etc.

One solution to reasonable surges, sags, and/or spikes (i.e., not EMP) is to use a UPS (Uninterruptible
Power Supply) which will help with sags, surges, and spikes, and can even be delivered by UPS (Unit-
ed Parcel Service)!

It is common to have computers, servers, etc., connected to UPS systems. But what if the power goes
out for an extended period of time such that the connected servers, etc., will lose power. APC makes
UPS systems that can use their PowerChute software to monitor and take actions if power is lost for an
extended period of time. And even if power is not lost, one might want to know how the power systems
have been functioning, the load on each, when they lose power, etc., and then shut down and restart the
servers at an appropriate time.

The rest of this paper will look at how the Raspberry Pi can be used to monitor and manage UPS power
in a network setting.

Security

The default user is user pi with default password raspberry. It is strongly suggested that the default
password be changed. It is also suggested, if external access from the Internet is to be used, that the us-
er pi have a very secure password and that another user be created to do the same things that would be
done with the user pi.

Pi clusters

Multiprocessing using multiple Raspberry Pi boards, a Pi cluster, requires careful configuration to al-
low each Pi to be accessed while allowing each Pi in the cluster to be managed.

The Pi boots from an SD card. As one changes the configuration of the Raspian Linux, it is convenient
to have a way to duplicate SD cards.

2013 ASCUE Proceedings

85

The hardware part of the copying can be done by a dedicated device. The author uses a $99 USB 2.0
flash drive copier, using USB 2.0 SD card adapters. Some SD cards will not be recognized but most
are. One can copy one source SD card to two target SD cards simultaneously and then have them au-
tomatically verified by the copy device.

Each network device has a MAC (Media Access Control) address and an IP (Internet Protocol) address
assigned by the local router. Using the static DHCP (Dynamic Host Control Protocol) of the router,
each device (e.g., a Pi) can be assigned a specific IP address. For example, the author's Raspberry Pi's
are assigned the IP addresses 192.168.100.161 for PX1, 192.168.100.162 for PX2, etc.

The software side of the copying is handled by a Bash/Python script combination that does the follow-
ing using a hard-coded database of hardware MAC addresses and assigned IP addresses. If the Pi, as
identified by the MAC address, does not match the desired IP address, the relevant files (e.g., the hosts
file, hostname file, etc.) are modified and the message is displayed that the device needs to be rebooted,
at which time, the Pi has been reset with all the desired configuration updates from the desired SD card
and the software part has been appropriately modified.

External access

In order to do remote management of, for example, power monitoring, it is necessary to access the Pi
from a remote location (i.e., from the Internet outside of the local network to which the Pi as connect-
ed). If the Pi is to be accessed from the Internet, it is suggested that another port, rather than standard
SSH port of 22, be used.

Provided the ISP (Internet Service Provider), such as ComCast, does not forbid it, the general method
for accessing the Pi from the Internet is as follows.

The local setup is assumed to be as follows, using ComCast as an example.

 The Internet is provided via a Cable Modem using, for example, DOCS v3.
 A local router allows local sharing of the connection between machines.
 Assume the router has an IP address of 74.12.34.56, assigned by the ISP.
 The Pi is connected to the local router at IP address 192.168.100.161.

The general configuration is as follows.
 Assume the external SSH port is 2244.
 Set the port forwarding of the local router to take requests to IP 74.12.34.56 on port 2244 and re-
direct them to the local Pi at 192.168.100.161 on port 2244.
 Set up the Pi SSH Server to accept SSH requests on port 2244.
 Insure that local firewalls allow the desired traffic.

Power management

One use of a Raspberry Pi is the monitor and manage the power for the local network as provided by
one or mare UPS (Uninterruptible Power Supply) systems that support the NUT (Network UPS Tools)
collection of open source software tools.

2013 ASCUE Proceedings

86

The author uses APC (American Power Corporation) UPS systems, most of which support the NUT
protocol for power monitoring. The NUT web site can be used to help determine if a given UPS is sup-
ported by NUT.

The setup of such monitoring can be a useful project that students in the computer science department
could help develop for use by the IT (Information Technology) group at an academic institution.

Since the Pi is a complete Linux system running on the local network, email can be sent, SMS text
messages can be sent, drives can be accessed, logs can be created, etc., just like any other comput-
er/machine but with a small price (in case the device fails or is destroyed, for example, by a lightning
strike) and small power usage (which can otherwise add up to a significant amount over time).

Power monitoring

":nut monitor ups device"

An Internet search term for more information is "Raspberry Pi NUT". The author took some of the
configuration and setup ideas from http://abakalidis.blogspot.com/2013/04/using-raspberry-pi-as-ups-
server-with.html, which is one of the top results in a Google search of the topic.

One can check the NUT web site to see if a UPS is supported. Most APC UPS devices are supported
and those are the only UPS devices used by the author.

The UPS is assumed to have a USB serial interface and not an older serial port interface. APC UPS
systems that support NUT come with a special USB to serial cable for that particular UPS device.

Some Raspberry Pi Linux commands that are relevant to power monitoring are now covered. These are
commands typed at the command line that can later be scripted to run automatically, if desired. The
commands will serve as a gentile introduction to the Linux command line. Most commands here start
with sudo which stands for "Super User Do" and for which there is no password to use this command
on the Pi.

Note that the Linux way is to use text files for configuration so that only text editors are needed to con-
figure, though important systems will have someone write a GUI to do the configuration. The alterna-
tive is the Windows way to make everything somewhat secret and proprietary and, in most respects,
more difficult to change.

The USB utilities should be installed to get status on UPS devices.

sudo apt-get install usbutils

2013 ASCUE Proceedings

87

The USB utilities include the lsusb command. The command lsusb lists the known USB devices
connected to the system. Here is part of a typical output.

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 005: ID 051d:0002 American Power Conversion Uninterruptible Pow-
er Supply
Bus 001 Device 004: ID 051d:0002 American Power Conversion Uninterruptible Pow-
er Supply

Each connected device has a bus (e.g., 001), a device designation (e.g., 004, 005, etc.) and a 32-bit
identifier (e.g., 051d:0002, 051d:0002) that identifies a specific type of device. That is, the identifier is
like a UPC bar code that identifies a type of device and not an RFID tag that identifies a unique in-
stance of a device.

To find the available/used USB devices, use the following command.

find /dev/bus/

The author had originally desired to connect more than one UPS device to a Pi. However, from the
NUT web site:: The driver ignores the "port" value in ups.conf. Unlike previous versions of this driver,
it is now possible to control multiple UPS units simultaneously with this driver, provided they can be
distinguished by setting some combination of the "vendor", "product", "serial", "vendorid", and
"productid" options. Since the author's UPS devices have the same information with respect to this lim-
itation, the rest of this paper will use just one UPS device. Using one Pi per UPS device, however,
would allow overcoming this restriction as a client machine (i.e., not the Pi connected to the UPS)
could monitor the Pi machines that are each monitoring one UPS device.

lsusb -t

/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=dwc_otg/1p, 480M
 |__ Port 1: Dev 2, If 0, Class=hub, Driver=hub/5p, 480M
 |__ Port 1: Dev 3, If 0, Class=vend., Driver=smsc95xx, 480M
 |__ Port 2: Dev 6, If 0, Class=HID, Driver=usbhid, 12M
 |__ Port 3: Dev 5, If 0, Class=HID, Driver=usbfs, 12M

The NUT server

This section describes the NUT server setup, configuration, and usage.

Install the server

The following command can be used to install NUT, the NUT server, and the NUT client.

sudo apt-get -y install nut nut-client nut-server

Relevant files

Here are some relevant configuration files in the /etc/ups folder.

 ups.conf contains settings for UPS-specific drivers.

2013 ASCUE Proceedings

88

 upsd.conf contains settings for the main UPS daemon upsd.
 upsd.users contains user and access control for the UPS daemon upsd.
 upsmon.conf contains settings for the UPS monitoring daemon upsmon.
 upssched.conf contains settings for the upssched daemon.

Configure the server

Use the following command to edit the server configuration file /etc/nut/ups.conf using the nano
editor.

sudo nano /etc/nut/ups.conf

Add the following at the end of this file. In this case, the author has two UPS devices to be added. The
NUT web site has suggested drivers for known UPS devices.

[apc1200]
 driver = usbhid-ups
 port = auto
 desc = "APC Back UPS Pro 1200VA a"

A folder is needed for server operation. Here are some commands to do this.

sudo mkdir /var/run/nut
sudo chown root.nut /var/run/nut/
sudo chmod 770 /var/run/nut/

Start the server

The following command attempts to start the server and shows the resulting status. Any errors in the
configuration file will be noted here.

sudo upsdrvctl start

Here is the output.

Network UPS Tools - UPS driver controller 2.6.4
Network UPS Tools - Generic HID driver 0.37 (2.6.4)
USB communication driver 0.32
Using subdriver: APC HID 0.95
Network UPS Tools - Generic HID driver 0.37 (2.6.4)
USB communication driver 0.32
Using subdriver: APC HID 0.95

Next some connections need to be made so that the client and server and UPS listen on the appropriate
ports. Here is the command to edit the appropriate file.

sudo nano /etc/nut/upsd.conf

Add the following LISTEN directives, where 192.168.100.160 is the IP address of the Pi on the local
network and the IP port being used is 3493. Port 127.0.0.1 is the localhost port.

LISTEN 127.0.0.1 3493
LISTEN 192.168.100.160 3493

2013 ASCUE Proceedings

89

The ifconfig command can be used to determine the IP address of the Pi, although one will want to
use static DHCP from the router so that the Pi always has the same local IP address. Note that the Win-
dows command to see the IP address is ipconfig (starts with "ip") while the Linux command is
ifconfig (starts with "if").

Edit the upsd.users file with the following command.

sudo nano /etc/nut/upsd.users

Here is the header of the file.

Network UPS Tools: Example upsd.users

This file sets the permissions for upsd - the UPS network daemon.
Users are defined here, are given passwords, and their privileges are
controlled here too. Since this file will contain passwords, keep it
secure, with only enough permissions for upsd to read it.

The following should be already set but the users and passwords should be changed as desired for secu-
rity, etc.

[admin]
 password = apcupc1
 actions = SET
 instcmds = ALL

[testuser]
 password = pass
 instcmds = test.battery.start
 instcmds = test.battery.stop

[upsmon_local]
 password = local_pass
 upsmon master

[upsmon_remote]
 password = remote_pass
 upsmon slave

Here, local_pass and remote_pass are used as the passwords, but one should use a secure password
for such purposes. If only local access is desired, do not include the remote user.

Add commands such as the following in the MONITOR section.

MONITOR apc1200@PX0 upsmon_local local_pass master

In this case, PX0 is the domain name set in the hosts file and assigned to localhost - 237.0.0.1.

#MODE=none
MODE=netserver

The following command can be used to start the NUT server.

sudo service nut-server start

Here is a typical output when the server failed to start.

2013 ASCUE Proceedings

90

[ok] Starting NUT - power devices information server and drivers: driver(s).
(upsd failed).

Here is a typical output when the server starts successfully.

[ok] Starting NUT - power devices information server and drivers: driver(s).
upsd.

The following command can be used to insure that the services just configured will start when the sys-
tem is started.

ps -ef | grep ups

The ps command lists all of the running processes while grep filters out all but those that contain the
text "ups".

nut 2567 1 0 20:35 ? 00:00:00 /lib/nut/usbhid-ups -a apc1200a
nut 2569 1 0 20:35 ? 00:00:00 /lib/nut/usbhid-ups -a apc1200b
nut 2572 1 0 20:35 ? 00:00:00 /sbin/upsd
pi 2592 2412 0 20:37 pts/0 00:00:00 grep ups

NUT statistics

Once the server is running, statistics can be obtained using the upsc command as follows.

upsc apc1200@192.168.100.160

A typical output is as follows.
battery.charge: 100
battery.charge.low: 10
battery.charge.warning: 50
battery.date: 2001/09/25
battery.mfr.date: 2012/04/29
battery.runtime: 17676
battery.runtime.low: 120
battery.type: PbAc
battery.voltage: 27.2
battery.voltage.nominal: 24.0
device.mfr: American Power Conversion
device.model: Back-UPS RS 1500G
device.serial: 3B1217X31574
device.type: ups
driver.name: usbhid-ups
driver.parameter.pollfreq: 30
driver.parameter.pollinterval: 2
driver.parameter.port: auto
driver.version: 2.6.4
driver.version.data: APC HID 0.95
driver.version.internal: 0.37
input.sensitivity: medium
input.transfer.high: 147
input.transfer.low: 88
input.voltage: 121.0
input.voltage.nominal: 120
ups.beeper.status: enabled
ups.delay.shutdown: 20
ups.firmware: 865.L3 .D
ups.firmware.aux: L3
ups.load: 8
ups.mfr: American Power Conversion
ups.mfr.date: 2012/04/29
ups.model: Back-UPS RS 1500G
ups.productid: 0002
ups.realpower.nominal: 865
ups.serial: 3B1217X31574
ups.status: OL

2013 ASCUE Proceedings

91

ups.test.result: No test initiated
ups.timer.reboot: 0
ups.timer.shutdown: -

But the following similar commands can also be issued from any computer on the network, not just the
Raspberry Pi's.

upsc apc1200b@192.168.100.160
upsc apc1200b@192.168.100.162
upsc apc1200b@192.168.100.163
upsc apc1200b@192.168.100.164

In this case, the following Raspberry Pi's were set up on the network.

 PX0, at 192.168.100.160
 PX2, at 192.168.100.162
 PX3, at 192.168.100.163
 PX4, at 192.168.100.164

Note: The author was/is using PX1, at 192.168.100.161, for other purposes (which is why the pattern
is not uniform and contiguous)

Since all of the above information can now be obtained, parsed, processed, saved, etc., for each UPS on
the network, or even from outside the network if the routers and port forwarding and firewalls are ap-
propriately set, a larger power monitoring and management system can be created.

Obviously, some additional programming is needed to make use of this data (e.g, parse and store for
later use), but the data is now available.

Starting at boot

To start NUT at boot time, edit the NUT configuration file using the nano editor with the following
command.

sudo nano /etc/default/nut

Add the following to this file, which is normally empty after a new install.

/etc/default/nut
START_UPSD=yes
START_UPSMON=yes

NUT client

The Raspberry Pi is being used as the NUT server. A client can be installed on some other machine
(e.g., Linux client, Windows client, etc.) which can then access the Pi to get information about the
power state. This access can be local or remote (provided the routers, firewalls, etc., are properly con-
figured).

Additional configuration involves making decisions about what to do when the power fails.

2013 ASCUE Proceedings

92

There are GUI programs available to monitor and manage power. These programs automate and add a
GUI interface to the commands presented above.

Ideas

Some ideas of usage are as follows.

 Monitor and report power usage.
 Determine if the load is too much for a given UPS.
 Determine when the battery should be replaced, or warn of the battery getting old.
 Send an email, or SMS message, when appropriate conditions are encountered.
 Send messages to have a server, which is monitoring the conditions, shut down, and then, when
power is returned, start again. (This is non-trivial and requires careful planning and setup for eve-
rything to work).

Summary

This paper/session has discussed and/or demonstrated the Raspberry Pi with an emphasis on power
monitoring and management. Some operational details were covered and some future ideas presented.

References

McGrath, M. (2013). Raspberry Pi in Easy Steps. Computer Step.

Monk, S. (2012). Programming the Raspberry Pi: Getting Started with Python. Mcgraw-hill.

Norris, D. (2013). Raspberry Pi Projects for the Evil Genius. McGraw-Hill Education.

Philbin, C.A. (2014). Adventures In Raspberry Pi. Wiley.

Richardson, M. and Wallace, S. (2012). Getting Started with Raspberry Pi. O'Reilly Media, Inc.

Upton, E. and Halfacree, G. (2012). Raspberry Pi User Guide. Wiley.

